MAR 20140015: MAURICE CREEK

Received date: Dec 19, 2014

Public release date: Jan 18, 2016

DISCLAIMER

By accessing and using the Alberta Energy website to download or otherwise obtain a scanned mineral assessment report, you ("User") agree to be bound by the following terms and conditions:

- a) Each scanned mineral assessment report that is downloaded or otherwise obtained from Alberta Energy is provided "AS IS", with no warranties or representations of any kind whatsoever from Her Majesty the Queen in Right of Alberta, as represented by the Minister of Energy ("Minister"), expressed or implied, including, but not limited to, no warranties or other representations from the Minister, regarding the content, accuracy, reliability, use or results from the use of or the integrity, completeness, quality or legibility of each such scanned mineral assessment report;
- b) To the fullest extent permitted by applicable laws, the Minister hereby expressly disclaims, and is released from, liability and responsibility for all warranties and conditions, expressed or implied, in relation to each scanned mineral assessment report shown or displayed on the Alberta Energy website including but not limited to warranties as to the satisfactory quality of or the fitness of the scanned mineral assessment reports and warranties as to the non-infringement or other non-violation of the proprietary rights held by any third party in respect of the scanned mineral assessment report;
- c) To the fullest extent permitted by applicable law, the Minister, and the Minister's employees and agents, exclude and disclaim liability to the User for losses and damages of whatsoever nature and howsoever arising including, without limitation, any direct, indirect, special, consequential, punitive or incidental damages, loss of use, loss of data, loss caused by a virus, loss of income or profit, claims of third parties, even if Alberta Energy have been advised of the possibility of such damages or losses, arising out of or in connection with the use of the Alberta Energy website, including the accessing or downloading of the scanned mineral assessment report and the use for any purpose of the scanned mineral assessment report.
- d) User agrees to indemnify and hold harmless the Minister, and the Minister's employees and agents against and from any and all third party claims, losses, liabilities, demands, actions or proceedings related to the downloading, distribution, transmissions, storage, redistribution, reproduction or exploitation of each scanned mineral assessment report obtained by the User from Alberta Energy.

Alberta

Alberta Mineral Assessment Reporting System

DEC 1 9 2014 2014 00 15

DECLAN RESOURCES INC.

ASSESSMENT REPORT: 2014 EXPLORATION OF THE MAURICE CREEK PROPERTY, NORTHEAST ALBERTA

PART B

Metallic and Industrial Mineral Permits: 93009100639, 9309100640, 9309100641

Geographic Coordinates: 59°23' N to 59°31' N 110°0' W to 110°21' W

NTS Sheets: 74M08/09

- OWNER: 877384 ALBERTA LTD. SUITE 18, 10509 - 81 AVENUE EDMONTON, ALBERTA T6E 1X7
- OPERATOR: DECLAN RESOURCES INC. SUITE 302, 1620 WEST 8TH AVENUE, VANCOUVER, BC, CANADA, V6J 1V4 +1-604-639-4450
- CONSULTANT: DAHROUGE GEOLOGICAL CONSULTING LTD. SUITE 18, 10509-81 AVENUE, EDMONTON, AB, CANADA, T6E 1X7 TEL: +1 780 434 9808 | FAX: +1 780 439 9789 | www.dahrouge.com
- AUTHORS: NEIL MCCALLUM, B.SC., P.GEOL. JANINE AMUNDSEN, B.SC., GEOL.I.T. DATE: DECEMBER 17^{TH,} 2014

Declan Resources Inc.

TABLE OF CONTENTS

1. SL	UMMARY	5
2 IN	TRODUCTION	5
3.	GEOGRAPHIC SETTING AND ACCESS	7
3.1	LOCATION AND ACCESS	7
3.2	INFRASTRUCTURE	
3.3	TOPOGRAPHY, VEGETATION AND CLIMATE	7
4. PR	ROPERTY, EXPLORATION AND EXPENDITURES	
4.1	PROPERTY SUMMARY	
4.2	2014 Exploration Summary	
4.3	EXPLORATION EXPENDITURES	
5. GI	EOLOGY	
5.1	REGIONAL GEOLOGY AND MINERALIZATION	
5.2	PROPERTY GEOLOGY AND MINERALIZATION	
6. RE	ESULTS	
7. CC	ONCLUSIONS AND RECOMMENDATIONS	
8. RE	FERENCES	
9. ST.	ATEMENT OF QUALIFICATIONS	

FIGURES

Figure 1. Location of the Maurice Creek Property	. 6
Figure 2. Access to the Maurice Creek Property	. 8
Figure 3. Maurice Creek Property	. 9
Figure 4. Regional Geologic Map of the Athabasca Basin (from Jefferson et al, 2007)	11
Figure 5. Geology of the Maurice Creek Property	12
Figure 6. Historic Geology and Work Compilation	15
Figure 7. Reconstructed Total Field Magnetics (RTF) of the Airborne Survey	18
Figure 8. Filtered Equivalent Uranium	19

TABLES

Table 1. Land Description and Allocation of Expenditures for the Maurice Creek Proper	ty 10
Table 2. Land to Retain	10
Table 3. Summary of Drill holes Intersecting Athabasca Sst	
Table 4. Summary of Results from Allan, 1978	
Table 5. Summary of Radiometric Targets	

APPENDICES

APPENDIX 1:	COST SUMMARY FOR THE 2014 EXPLORATION	.25
	OF THE MAURICE CREEK PROPERTY	

PART C

APPENDIX 2:	TERRAQUEST LTD. OPERATIONS REPORT	(OVERSIZED MAPS ON CD)	END
-------------	-----------------------------------	------------------------	-----

1.

2

SUMMARY

The Maurice Creek Property consists of three contiguous Metallic and Industrial Mineral (MAIM) permits, 9309100639, 9309100640 and 9309100641, with a total area of 27,648 ha. Declan Resources Inc. acquired the Maurice Creek Property in April, 2014 and operates the property for 877384 Alberta Ltd.

The Property is located just north of Lake Athabasca and lies adjacent to the Alberta-Saskatchewan border. The nearest community is Uranium City, SK, which located approximately 88 km to the east. The Maurice Creek Property is located on the western margin of the Athabasca Basin, which is known for high grade uranium deposits. The objective of the work described within this assessment report was to locate geophysical anomalies associated with basement-hosted, unconformity type uranium deposits on the Maurice Creek Property.

From October 25th through October 30th, 2014, Dahrouge Geological Consulting Ltd. contracted Terraquest Ltd., on behalf of Declan Resources Inc., to conduct an airborne, high sensitivity Horizontal Magnetic Gradient and Radiometric survey. The purpose of the geophysical survey was to detect surface radiometric anomalies and map the magnetic character of the property as a tool for interpreting rock types and structures at depth, which could be associated with basement-hosted, unconformity type uranium deposits. In total, 1326.5 line-km were flown over the Maurice Creek Property and the neighboring Maurice Bay Property in Saskatchewan. Terraquest provided a detailed logistical report and associated figures following the survey.

INTRODUCTION

In October 2014, Terraquest Ltd. of Markham, ON, was contracted to fly an airborne, high sensitivity Horizontal Magnetic Gradient and Radiometric survey over the Maurice Creek Property. The objective of this survey was to identify electromagnetic and magnetic anomalies commonly associated with unconformity style uranium deposits. A total of 1326.5 line-km were flown over the Maurice Creek neighboring Maurice Bay Properties.

The survey was conducted with a Piper Navajo PA 31-325 CR aircraft which is owned and operated by Terraquest Ltd. and has been retrofitted with long-range fuel cells and a sensor array to conduct the airborne geophysical surveys. The survey was flown in a "tight drape mode" with the survey elevation averaging 81 m above the ground and mean aircraft speed at 277 km/hr. Lines were flown at 150 m intervals with 1,030 m tie line intervals and data sample points at 80 m (for 1 Hz radiometric data) and 8 m (for 10 Hz radiometric data). The magnetic base station for the survey was located in Uranium City, SK.

Declan Resources Inc.

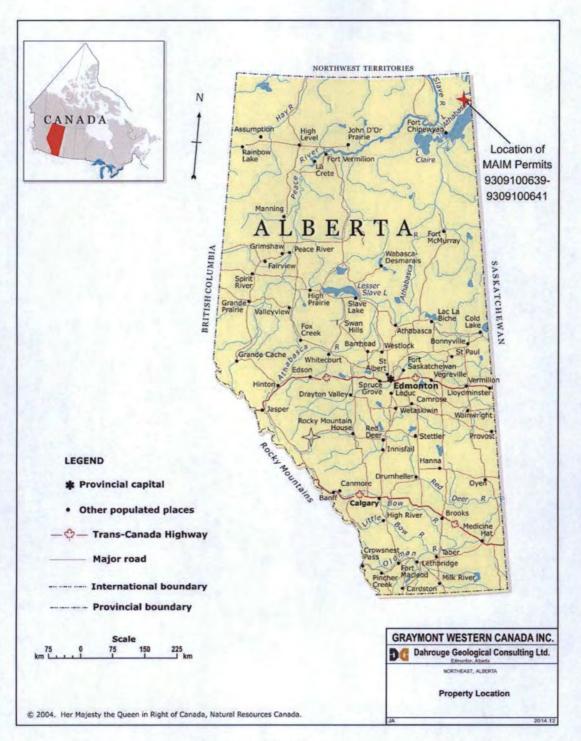


Figure 1. Location of the Maurice Creek Property

3.

GEOGRAPHIC SETTING AND ACCESS

3.1 Location and Access

The Maurice Creek Property is located within the National Topographic System Map Sheets 74M08 and 74M09. The permit area is bound by geographical coordinates 59°23' N to 59°31' N and 110°0' W to 110°21' W

The Terraquest survey crew based operations out of Uranium City, SK, located 88 km east of the property. Fort Chipewyan, AB is approximately 100 km southwest and Fort McMurray is located approximately 310 km to the southwest of the property. Airstrips are available in both Fort Chipewyan and Uranium City.

3.2 Infrastructure

Accommodations, food, fuel and other necessary services are available in Fort Chipewyan, AB, which has a population 1,008 (2012 Municipal Census) and Uranium City, SK, which has a population of 201 (Wikipedia). Uranium City has a certified airport which offers regular flights to Stony Rapids on Pronto Airways. The survey crew stayed at the Classen Lodge in Uranium City, which provided internet access.

Fort McMurray is the nearest major center with a population of 61, 000 and has most major services available, including a commercial airport with regular flights from Edmonton, Calgary, Saskatoon, Toronto, and Vancouver.

3.3 Topography, Vegetation and Climate

The topography is generally flat with the elevation ranging from approximately 240 to 340 m. The area consists of sandy dunes and plateaus as well as swampy low lying wetland areas. There are many lakes on the Maurice Creek Property, the largest being Roderick Lake and Lake Athabasca is located 6 km to the southeast.

Vegetation commonly consists of boreal forest cover, including white spruce, aspen and jack pine. In lower areas, along the river valleys and muskegs, vegetation includes a mix of deciduous and coniferous trees including: black spruce, willow, and birch, with an abundance of sphagnum moss.

In the Fort Chipewyan area, annual snowfall is 117 cm and the annual rainfall is 250 cm. River breakup generally occurs in the third week of April. Summer temperatures average 17°C and winter temperatures drop to an average of -19°C with extremes as low as -58°C and rare highs of up to 34°C.

Declan Resources Inc.

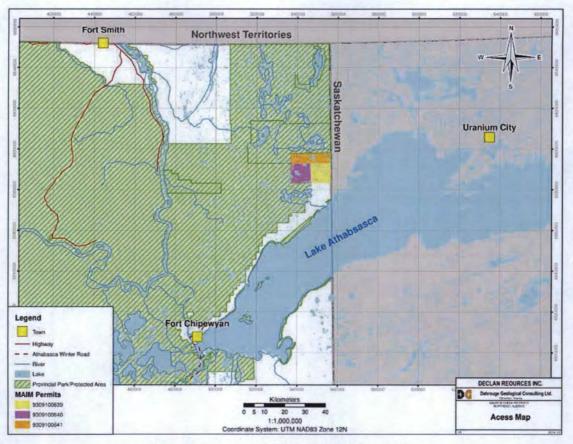


Figure 2. Access to the Maurice Creek Property

4. PROPERTY, EXPLORATION AND EXPENDITURES

4.1 Property Summary

Declan Resources Inc. acquired 100% interest MAIM Permits 9309100639-9309100641 in April, 2014 from 877384 Alberta Ltd., who originally staked the claims on October 21, 2009. The property has a total area of 27,648 ha and is located along the Alberta-Saskatchewan border, just north of Lake Athabasca. Due to the development of the Lower Athabasca Regional Plan, an extension was granted for the Maurice Creek Property and the claims are still in the first assessment period. The Maurice Creek Property was not affected by the creation of new park area.

Declan Resources Inc.

Maurice Creek Property

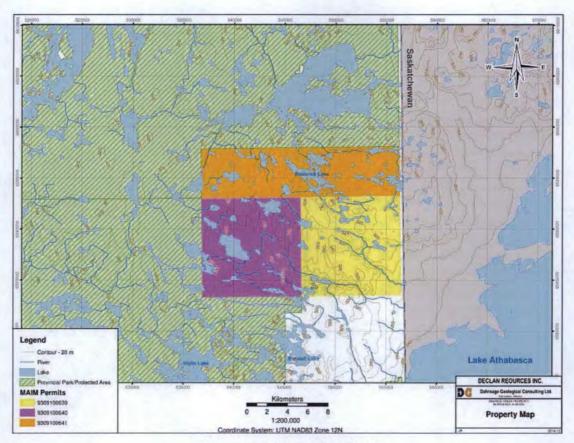


Figure 3. Maurice Creek Property

4.2 2014 Exploration Summary

From October 25th through October 30th, 2014, Dahrouge Geological Consulting Ltd. contracted Terraquest Ltd., on behalf of Declan Resources Inc., to conduct an airborne High Resolution Aeromagnetic and Gamma Ray Survey. The purpose of the geophysical survey was to detect surface radiometric anomalies and map the magnetic character of the property as a tool for interpreting rock types and structures at depth, which could be associated with basement-hosted, unconformity type uranium deposits. In total, 1326.5 line-km were flown over the Maurice Creek Property and the neighboring Maurice Bay Property in Saskatchewan. 1,227.6 line-km of the survey was flown on the Maurice Creek Property of Alberta.

Terraquest mobilized to Uranium City, on October 25th. The following day, they set up the magnetic base station for the survey, but the weather conditions were not suitable for flying. Despite persisting poor weather conditions, they were able to perform most of the required calibrations, on October 27th, but were again unable to fly again on the 28th. Three survey flights were completed over two days (October 29-30) and no reflights were required. Surface conditions during the survey were classified as slightly frozen with no significant snow accumulation. The survey crew demobilized at the end of the day on October 30th.

The survey was flown in a "tight drape mode" with the survey elevation averaging 81 m above the ground and mean aircraft speed at 277 km/hr. Lines were flown at 150 m intervals with 1,030 m tie line intervals with data sample points at 80 m (for 1 Hz radiometric data) and 8 m (for 10 Hz radiometric data). Following the survey, Terraquest provided a detailed logistical report (Appendix 2) with accompanying figures from the airborne High Resolution Aeromagnetic, Gamma Ray, and VLF-EM Surveys. No formal interpretation was requested from Terraquest.

4.3 Exploration Expenditures

Expenditures for the 2014 exploration totaled \$78,482.80, which does not fulfill the \$138,240.00 required expenditures for the current assessment period. The entirety of MAIM permit 9309100639 will be retained and a portion of MAIM permits 9309100640 and 9309100641 will be released. The allocation of expenditures and the areas to be retained are described below and a detailed cost summary for the 2014 exploration can be found in Appendix 1. The excess expenditures of \$82.80 will be applied to permit 9309100639 for the next assessment period.

Table 1. Land Description and Allocation of Expenditures for the Maurice Creek Property

Land Description	Size (ha)	Assessment Period	Expiry Date	Required Expenditures	Previous Credit	Assigned Expenditures
4-120-1	9,216	1	10/21/13	\$46,080	\$0	\$46,080
4-120-2	9,216	1	10/21/13	\$46,080	\$0	\$7,680
4-121-1: 1-18 4-121-2: 1-18	9,216	1	10/21/13	\$46,080	\$0	\$24,640
Total:	27,648		Total:	\$138,240	\$0	\$78,400

Table 2. Land to Retain

MAIM Permit	Land Description (Original)	Size (ha)	Land to Release	Size (ha)	Land to Retain	Size (ha)
9309100639	4-120-1	9,216	0	0	4-120-1	9,216
9309100640	4-121-2	9,216	4-120-2: 2-11, 14-23, 26-35	7,680	4-120-2: 1, 12-13, 24-25, 36	1,536
9309100641	4-121-1: 1-18 4-121-2: 1-18	9,216	4-121-1: 18 N,SW 4-121-2: 2-11, 13-18	4,288	4-121-1 : 1-17, 18 SE 4-121-2 : 1, 12	4,928
	Total:	27,648	Total:	11,968	Total:	15,680

5.

GEOLOGY

5.1 Regional Geology and Mineralization

The Maurice Creek Property is located near the western margin of the Athabasca Basin, which is home to some of the world's highest grade uranium deposits. The Athabasca Basin is comprised

of the Athabasca Group, which consists of four quartzose, unconformity bound fluvial sequences deposited between 1760 Ma and 1500 Ma (Ramaekers et al, 2007). Below the unconformity exists a variably preserved layer of paleo-weathered, hematitic, clay altered regolith, which grades into a chloritic altered zone, then transitions into fresh basement rock. The basement rocks dominantly consist of metamorphosed Archean to Paleoproterozoic granitoids and supracrustal gneisses, including graphitic metapelites which commonly host reactivated shear zones and numerous uranium deposits (Jefferson et al, 2007).

The uranium deposits associated with the Athabasca Basin are generally located in close proximity to the unconformities between the quartz rich sandstone conglomerates and highly metamorphosed basement rock. They occur in numerous shapes, sizes and deposit types, ranging from basement hosted veins to lenses straddling or just above the unconformity (Jefferson et al, 2007). Figure 4 displays the regional geology of the Athabasca Basin in addition to past producing/active mines, advanced stage and recently discovered uranium deposits.

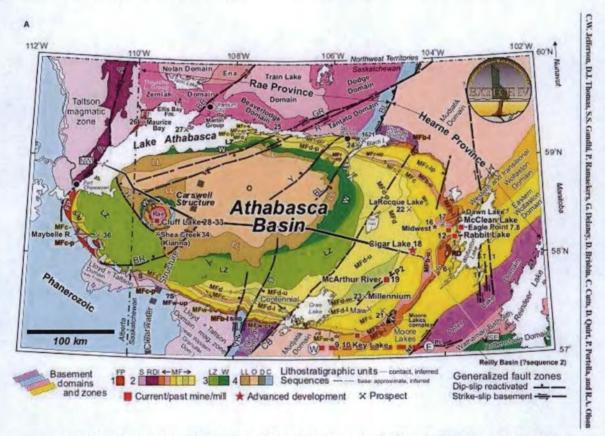


Figure 4. Regional Geologic Map of the Athabasca Basin (from Jefferson et al, 2007)

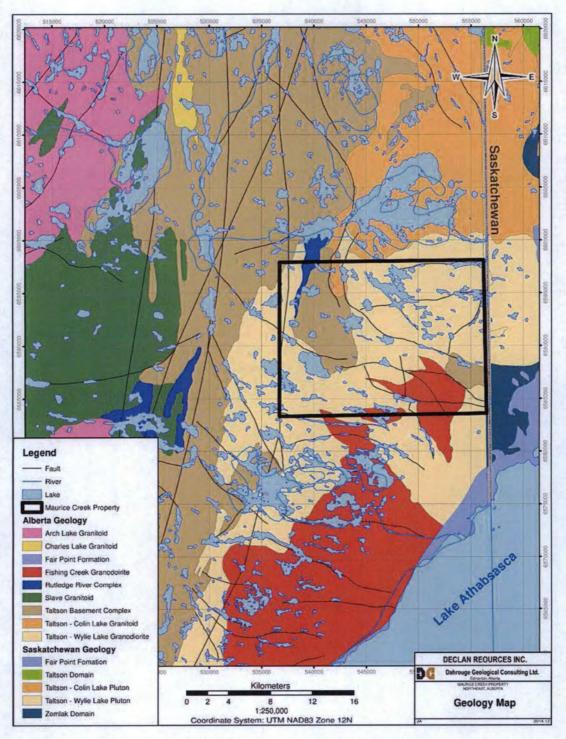


Figure 5. Geology of the Maurice Creek Property

5.2 Property Geology and Mineralization

The Maurice Creek Property is located near the western margin of the Athabasca Basin (Fair Point Formation, Saskatchewan). The Property overlies the Taltson Basement Complex which is a suite of banded to massive gneisses. Lithologies include hornblende-biotite granodiorite and granite gneiss, quartz diorite gneiss, amphibolite, para-gneiss and mylonitic gneiss (Lexicon). The dominant member of the Taltson member is the Wylie Lake granodiorite complex, which comprises most of the property. The Wylie Lake granitoid is a medium-grained, equigranular, granodiorite to tonalite with plagioclase to potassic-feldspar strained to recrystallized quartz, brown biotite, clinopyroxene, epidote and chlorite (AGS website). The western edge of the Wylie Lake granitoid complex is terminated by a major regional fault, known as the Allan Fault (Godfrey. 1980).

The Fishing Creek granitoid occurs in the southeast corner of the property (Figure 5). It is a medium to coarse-grained, massive, granodiorite to tonalite with variable mafic content. Mineralogy for the Fishing Creek granitoid includes: plagioclase to potassic-feldspar, strained quartz, brown biotite, clinopyroxene, myrmekite, epidote and chlorite (AGS website).

Regional mapping in the Maurice Creek Property area by Godfrey, 1980 identified several basement metasedimendary units on the property and they are mapped on Figure 6. Metasedimentary rocks in the are generally considered to be good geological basement rock types in relation to unconformity-style uranium mineralization, as they are occasionally graphitic and are often the focus of structural displacement adjacent to more competent granitic basement units.

To the south, the complex is unconformably overlain by the sedimentary rocks of the Athabasca Formation. Occurrence of the Athabasca Formation has been confirmed 500 m east of the property, as shown on a detailed compilation map by Cameco in 2005 (Jiricka et al. 2006). The formation is generally preserved in lower elevations.

The Fair Point Formation outcrops along the shore of Lake Athabasca (Figure 5 & 6). It is the basal unit of the Athabasca Group and consists of conglomeratic, quartzose sandstone in a clay matrix (Lexicon). Pebbles up to 10 cm (4 in) in diameter can be found along bedding and planar, trough/hummocky and low angle cross-bedding are common throughout the unit (Lexicon).

Faults are mapped in a regional compilation of Pana, 2010 in a southeast-northwest direction and structural trends vary throughout the property (Figure 6).

The digital drill hole compilation of Alberta (Kupsch and Olson, 2005) identifies 10 drill holes from 1981 drilled by Norcen Energy at the eastern edge of the Property (Figure 6). 5 of these holes, along the border with Saskatchewan intersected varying amounts of Athabasca Formation. The holes are apparently located at the Mineral Core Research Facility, but the assessment report was not filed, so no details are available at this time.

Hole ID	OVB Depth (m)	ATHABASCA Thickness (m)	BASEMENT Depth (m)	Depth into Basement (m)	EOH (m)
81-bl-05	13	4.5	17.5	9.5	27
81-bl-06	20.6	6.1	26.7	8.3	35
81-bl-07	15.4	0.3	15.7	4.3	20
81-bl-08	15.7	16.8	32.5	5.5	38
81-bl-09	15.7	22.3	38	4.5	42.5

Table 3. Summary of Drill holes Intersecting Athabasca Sst.

The Godfrey, 1986 map of the "Mineral Showing of the PreCambrian Shield in Northeastern Alberta" shows several sites with anomalous radioactivity around Roderick Lake, which is contained within MAIM Permit 9309100641 of the Maurice Creek Property (Figure 6). These showings were discovered by radioactivity readings from a Geiger counter or Scintillometer and visual observation of oxidized uranium staining. Radioactivity of the mapped anomalies was generally twice the background reading.

Historic Assessment report (Allan, 1978) reports the results of an exploration program with several radioactive prospecting samples returning results of up to 0.66% U3O8 within a small portion of the eastern end of the current Maurice Creek Property (Figure 6). Table 4 summarizes the most notable results on the property. The samples are described in the report as being from pegmatite intrusions. Pegmatite rocks are generally not directly associated with unconformity-style uranium mineralization, but they highlight the generally uraniferous potential of the region.

Sample	U ₃ O ₈ (%)
R-130	0.220
R-131	0.066
R-136	0.660
R-137	0.205

The regional-scale Geological Survey of Canada lake sediment compilation covers the property. Within the Precambrian shield area of Alberta and surrounding areas of Saskatchewan and Northwest Territories there are 926 lake sediment samples. The samples in the Maurice Creek area are mapped on Figure 6 (Friske, 1994A; Friske, 1994B). The Property contains some of the highest samples within the region. Of the 926 samples selected from the compilation, the average uranium value (ppm) is 12.4, and the highest is 153. The highest value in the Maurice Creek area is 150 ppm, just north of the Property. And the highest value on the Property is 117 ppm. A series of anomalous lake sediments on either direction of the structural trend, from Roderick Lake to Maurice Creek is noted in the area of the 117 ppm U value.

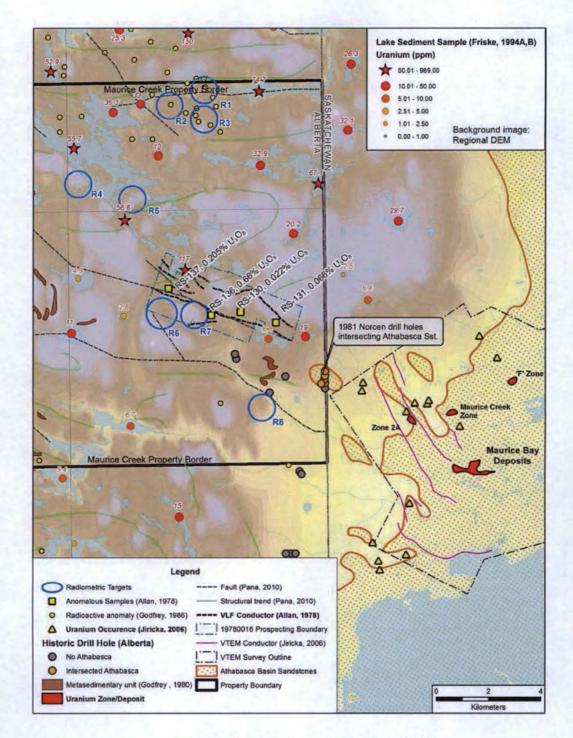


Figure 6. Historic Geology and Work Compilation

6.

RESULTS

The full survey details are included in Appendix 2.

Generally, the magnetic results of the survey can be useful to map geological units and to infer structures. Figure 7 displays the *Reconstructed Total Field* Magnetics. In other areas of the Athabasca Basin, the magnetic high areas often correlate with "granitic" rocks, whereas the magnetic lows generally correlate with the "metasedimentary" rocks. This appears to be the case on the Maurice Creek Property where the trend of metasedimentary rocks mapped by Godfrey, 1980 correspond to the general magnetic low along that trend. Another marked magnetic low at the northern half of the property does not correspond with any previously mapped metasedimentary units. The faults of Pana, 2010 are generally present as magnetic contacts, however many more can be inferred. A detailed structural interpretation of the results, using the 3-asis magnetic gradient data should be conducted.

Airborne radiometric results can be useful to map bedrock units, where outcrop exposure is good. It can also be used to focus ground mapping and prospecting efforts by looking at only the uranium channel, and filtering the higher results. Using this method required some interpretation, as point anomalies are generally preferred over large regional highs. Keeping this in mind, even point highs within large regionally high areas can be of interest. The results of the survey reveal 8 target areas using the basic filtering method using only values greater than 2.8 ppm eU (Figure 8).

Targets R1 to R3, at the northern end of the survey are considered to be of moderate priority. They are within a region that is generally high, and an area with generally elevated regional uranium in lake sediments. This suggests that the region is underlain by a granitic body with generally high uranium content, and may not be prospective for unconformity-style uranium mineralization. The spot highs, especially R3, should be ground-checked in any case in order to gain a better understanding of the property. Several "radioactive anomalies" are mapped by Godfrey, 1986 and would explain the generally high uranium values of the survey.

Targets R4 and R5 are at the southern end of the generally high area and should be ground-checked due to their location along the Roderick Lake-Maurice creek trend of uraniferous lake sediment samples.

Targets R6 and R7 are considered to be high priority targets as they are near the previously mapped metasedimentary basement rocks, and are near the historic samples from Allan, 1978 and faults of Pana, 2010. They are also located along the magnetic contact of Figure 7.

Target R8 is an isolated spot-high near the metasedimentary basement rocks, and near one of the faults of Pana, 2010.

Target ID	Description	Priority
R1, R2, R3	In the region of the historically defined radioactive bedrock anomalies (Godfrey, 1986) and the area of the high lake sediment samples.	Moderate
R4, R5	At the edge of the generally elevated uranium region of the northern half of the survey	Low
R6,R7	Located along the magnetic contact, and fault of Pana, 2010. Near the pegmatite samples of Allan, 1978.	High
R8	Near the metasedimentary units of Godfrey, 1980 and fault of Pana, 2010.	High

Table 5. Summary of Radiometric Targets

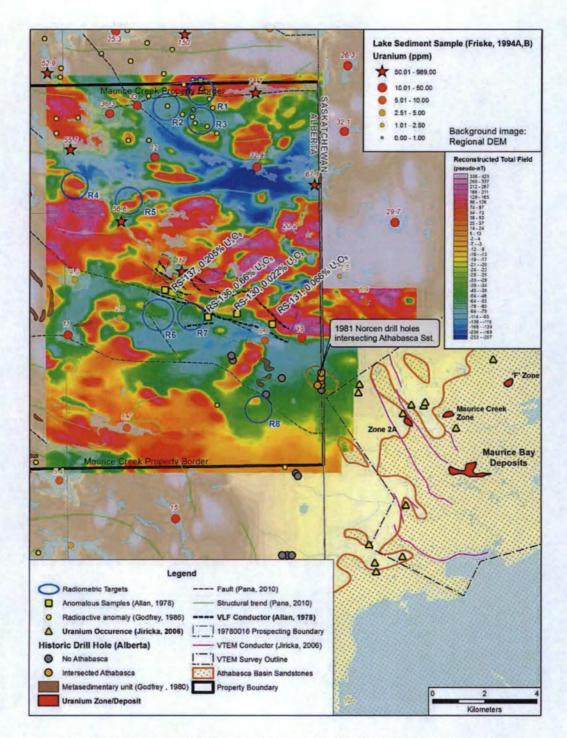


Figure 7. Reconstructed Total Field Magnetics (RTF) of the Airborne Survey

Declan Resources Inc.

Maurice Creek Property

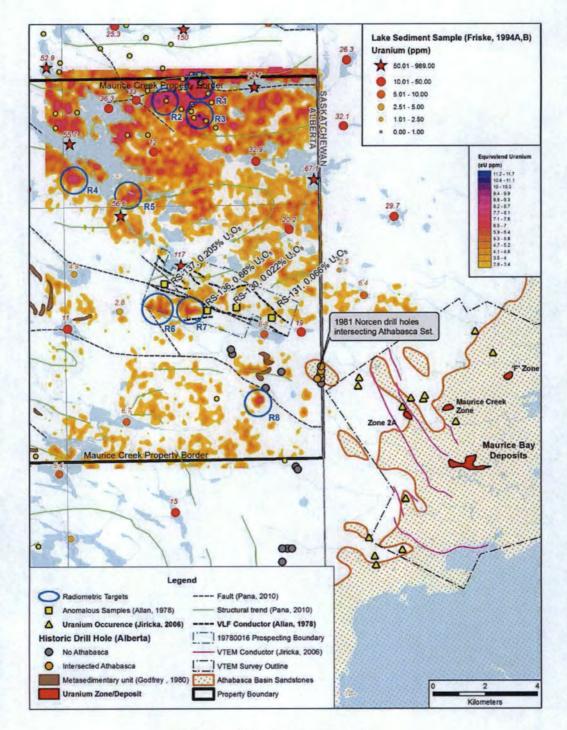


Figure 8. Filtered Equivalent Uranium

7.

CONCLUSIONS AND RECOMMENDATIONS

The 2014 airborne magnetic and has successfully assisted the geological understanding of the Property and provides targets for additional ground work. The Radiometric targets, in order of priority should be ground checked with a prospecting campaign. And the results of the airborne survey should be interpreted in detail in order to gain a better understanding of the structural setting, and bedrock mapping.

It is also recommended that the company survey the property with an airborne electromagnetic (EM) survey in order to map graphitic basement rocks. These rocks are often recessive to glacial erosion, and if present, are likely below overburden cover. The EM trends will likely be the focus of unconformity-style uranium mineralization, and the recently completed radiometric survey will hopefully identify uraniferous bedrock or boulder clusters.

REFERENCES

- Allan, J. R., 1978. A Geological Evaluation of the Burstall Lake Project, Alberta, Quartz Mineral Permit 6877070001. On Behalf of Marline Oil Corporation, by Tiaga Consultants. Alberta Mineral Assessment Report #19780016.
- Alberta Geological Survey Website. Uranium Granitoids. Modified September 11, 2012. Accessed December 10, 2014. <u>http://www.ags.gov.ab.ca/minerals/uranium/granitoids.html</u>
- Friske, P.W.B., McCurdy, M.W., Day, S.J., Gross, H., Balma, R.G., Lynch, J.J., Durham, C.C. 1994A. National Geochemical Reconnaissance lake sediment and water data, northeastern Alberta (parts of NTS 74E, 74L and 74M). Geological Survey of Canada, Open File 2856.
- Friske, P.W.B., McCurdy, M.W., Day, S.J., Gross, H., Balma, R.G., Lynch, J.J., Durham, C.C. 1994B. National Geochemical Reconnaissance lake sediment and water data, northwestern Saskatchewan (parts of NTS 74N and 74O). Geological Survey of Canada, Open File 2858.
- Godfrey, J.D. 1980. Geology of the Alexander Wylie Lakes District, Alberta. Earth Sciences Report 78-1. Alberta Research Council 1980.
- Godfrey, J.D. 1986. Map. Mineral Showing of the PreCambrian Shield in Northeastern Alberta.
 1:250,000. Alberta Research Council, Natural Resources Division, Geological Survey
 Department.
- Jefferson, C W; Thomas, D J; Gandhi, S; Ramaekers, P; Delaney, G; Brisbin, D; Cutts, C; Quirt, D; Portella, P; Olson, R A, 2007: Unconformity-associated uranium deposits of the Athabasca Basin, Saskatchewan and Alberta: in EXTECH IV: Geology and Uranium Exploration Technology of the Proterozoic Athabasca Basin, Saskatchewan and Alberta, (ed.) C.W. Jefferson and G. Delaney; Geological Survey of Canada, Bulletin 588, p. 23-67.
- Jiricka, D. E., Leppin, M., Cristal, J., Witt, G. 2006: Northwest Athabasca Project (SUJV) Maurice Bay Area, 2005 Annual Exploration Report; for Cameco Corporation. Saskatchewan Assessment Report: 74N05-0040.
- Kupsch, B. G., Olson, R. A., 2005: Diamond Drillhole Locations (GIS data, point features). Alberta Geological Survey. Digital Data 2005-0015 (v.2.0).
- Lexicon of Canadian Geology Units. Fair Point Formation. Last Modified April 29, 2003. Accessed December 10, 2014. <u>http://weblex.nrcan.gc.ca/html/004000/GSCC00053004790.html</u>.
- Pana, D. I. 2010: Precambrian Geology of Northeastern Alberta, NTS 74M, 74L and part of 74E, structures (GIS data, line features). Alberta Geological Survey. Digital Data DIG 2010-0005.

8.

Declan Resources Inc.

Ramaekers, P., Jefferson, C.W., Yeo, G.M., Collier, B., Long, D.G.F., Catuneanu, O., Bernier, S.,
Kupsch, B., Post, R., Drever, G., McHardy, S., Jiricka, D., Cutts, C., and Wheatley, K., 2007.
Revised geological map and stratigraphy of the Athabasca Group, Saskatchewan and Alberta;
in EXTECH IV: Geology and Uranium Exploration Technology of the Proterozoic Athabasca
Basin, Saskatchewan and Alberta, (ed.) C.W. Jefferson and G. Delaney; Geological Survey of
Canada, Bulletin 588, 155-191.

Declan Resources Inc.

Maurice Creek Property

9.

STATEMENT OF QUALIFICATIONS

I, Neil McCallum,

do hereby certify that:

- I am a geologist of Dahrouge Geological Consulting Ltd., Suite 18, 10509 81 Ave., Edmonton, Alberta, T6E 1X7.
- I am a 2006 graduate of the University of Alberta, Edmonton, Alberta with a B.Sc. in Geology.
- I have practiced my profession as a geologist continuously since 2006.
- I am a registered Professional Geologist with the Association of Professional Geoscientists of Ontario (APGO), member 2470.
- I hereby consent to the copying or reproduction of this Assessment Report following the oneyear confidentiality period.
- I am the author of the report entitled "2014 Exploration of the Maurice Creek Property in Northeastern Alberta" and accept responsibility for the veracity of technical data and results.

Neil McCallum, B.Sc., P.Geo. APGO 2470

Dated this 17th day of December, 2014.

Page 23

I

a)	Personnel		\$	4,175.00
b)	Food and Accomm	nodation	1	
c)	Transportation			-
d)	Instrument and So	oftware Rental(s)	\$	560.00
e)	Geophysical		\$	66,613.00
f)	Analyses			-
h)	Other			-
_	Total		\$	71,348.00
	Administration (1	<u>0%)</u>	\$	7,134.80
	Total + Administra	ition	\$	78,482.80
-				

Appendix 1: Cost Summary for the 2014 Exploration Of the Maurice Creek Property

Declan Resources Inc.

Appendix 2: Terraquest Ltd. Operations Report

Operations Report: Declan Resources Inc., MAURICE CREEK Project High Resolution Horizontal Aeromagnetic and Radiometric Survey, NE Alberta

TERRAQUEST LTD.

Operations Report

MAURICE CREEK Project NE Alberta

Airborne Horizontal Magnetic Gradient and Radiometric, Survey

December 04, 2014

Report #: B-429

Requested By: Jody Dahrouge Dahrouge Geological Consulting Ltd.

> Prepared by: Charles Barrie, Managing Partner *Terraquest Ltd.*

Table of Contents

1. INT	RODUCTION	4
1.1.	EXECUTIVE SUMMARY	4
1.2.	LOCATION	
2. SUR	RVEY PARAMETERS	
2.1.	LINES AND DATA	
2.2.	SURVEY KILOMETRAGE	
2.3.	NAVIGATION	
2.4.	FLIGHT PATH	
2.5.	TOLERANCES - REFLIGHT	
1.	Traverse Line Interval	
2.	Terrain Clearance:	
3.	Diurnal Variation:	
4.	GPS Data:	
5.	Radio Transmission:	
6.	Sample Density:	
7.	Magnetic Noise:	
8.	Measurement Gaps:	
3. AIR	BORNE GEOPHYSICAL EQUIPMENT	
3.1.	EQUIPMENT SUMMARY	
3.2.	SURVEY AIRCRAFT	
3.3.	SURVEY EQUIPMENT AND SPECIFICATIONS:	12
1.	High Sensitivity Magnetometer:	
2.	Tri-Axial Fluxgate Magnetic Sensor	
3.	Radar Altimeter	
4.	Barometric Sensor	
5.	Magnetometer Counter	
6.	Radiometric System (2 pack)	
7.	Analog Processor System	
9.	Navigation System	
10.	GPS Differential Receiver	
	SE STATION EQUIPMENT	
4.1.	BASE STATION MAGNETOMETER	
4.2.	BASE STATION MAGNETOMETER.	
5. TES	TS AND CALIBRATIONS	
5.1.	MAGNETIC FIGURE OF MERIT	
5.2.	MAGNETIC LAG	
5.3.	MAGNETIC HEADING TEST	
5.4.	RADAR ALTIMETER CALIBRATION	
5.5.	RADIOMETRIC SENSITIVITY FACTORS	
5.6.	RADIOMETRIC ALTITUDE ATTENUATION	
5.7.	RADIOMETRIC COMPTON COEFFICIENTS	
5.8.	RADIOMETRIC COSMIC CALIBRATION	
6. LOC	GISTICS	
6.1.	PERSONNEL	
6.2.	FLIGHT REPORTING	
6.3.	BASE OF OPERATIONS	

2014/12/04

Operations Report: Declan Resources Inc., MAURICE CREEK Project High Resolution Horizontal Aeromagnetic and Radiometric Survey, NE Alberta

7. DA'	TA PROCESSING	
7.1.	DATA QUALITY CONTROL	
7.2.	FINAL MAGNETIC DATA PROCESSING	
1.	Lag Correction of Total Magnetic Field	
2.	Diurnal Data and diurnal correction of Total Magnetic Field	
3.	Heading correction of Total Magnetic Field	
4.	Total Magnetic Field Tie-Traverse Line Intersection Leveling	
5.	Total Magnetic Field Micro-levelling	
6.	Calculated Vertical Derivative	
7.	Measured Horizontal Gradients	
8.	Reconstructed Total Magnetic Field (RTF)	
9.	Data Grids	
7.3.	FINAL RADIOMETRIC DATA PROCESSING	
1.	Energy Windows	
2.	NASVD Noise Reduction	
3.	Aircraft and Cosmic Background Correction	
4.	Atmospheric Background Correction	
5.	Compton Stripping	
6.	Altitude Attenuation Correction	
7.	Conversion to Ground Units	
8.	Gridding	
7.4.	LIST OF FINAL PRODUCTS	
8. SUI	MMARY	
9. API	PENDICES	
9.1.	APPENDIX I - CERTIFICATE OF QUALIFICATION	
9.2.	APPENDIX II – FIELD REPORT SUMMARY	
9.3.	APPENDIX III – FIGURE OF MERIT.	
9.4.	APPENDIX IV - RADAR ALTIMETER CALIBRATION	
9.5.	APPENDIX V – DETAILED RADIOMETRIC PROCESSING	
1.	'Live Time' correction	
2.	Cosmic Background correction	
3.	Atmospheric Background correction	
4.	Compton Scatter correction	
5.	Altitude Attenuation correction	
6.	Sensitivity Factors	
9.6.	APPENDIX VI - COSMIC CALIBRATION	
9.7.	APPENDIX VII – COMPTON COEFFICIENTS	
9.8.	APPENDIX VIII- ALTITUDE ATTENUATION	
9.9.	APPENDIX IX – SENSITIVITY FACTORS	
9.10.	APPENDIX X – README FILE	

Terraquest Ltd., Airborne Geophysical Surveys Terraquest File B-429-xks-report,

1. Introduction

1.1. Executive Summary

This report describes the specifications and parameters of an airborne geophysical survey carried out for:

DECLAN RESOURCES INC.

Suite 302, 1620 West 8th Avenue Vancouver, BC V6J 1V4

Attention: Leah Martin, Corporate Secretary tel: 604-639-4450 Email:lmartin@declanresources.com Wayne Tisdale, Director

The survey was performed by:

TERRAQUEST LTD.,

2-2800 John Street, Markham ON, Canada L3R 0E2

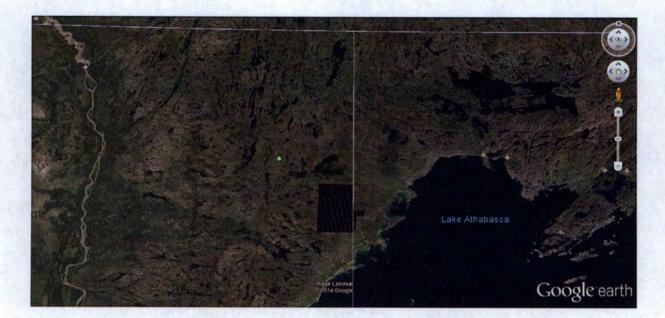
Tel: 905-477-2800 ext. 22

Email: hb@terraquest.ca.

The purpose of the survey of this type is to collect geophysical data for the exploration of mineral resources. Magnetic and Radiometric responses can be used to guide mineral exploration by using the contoured patterns of the geophysical data to make interpretations regarding the surface and subsurface geology and structure. The data are carefully processed and contoured to produce grid files and maps that show distinctive patterns of the geophysical parameters.

To obtain this data, the area was systematically traversed by an aircraft carrying geophysical equipment along parallel flight lines. The lines are oriented to intersect the geology and structure so as to provide optimum contour patterns of the geophysical data.

Operations Report: Declan Resources Inc., MAURICE CREEK Project High Resolution Horizontal Aeromagnetic and Radiometric Survey, NE Alberta


1.2. Location

The survey is located west of Lake Athabasca in northeastern Alberta, Canada, approximately 680 kilometres northeast of Edmonton; the survey block includes Belyea, Peters, Roderick and De Manville Lakes.

The survey is generally rectangular in shape with a small extension to the southeast which crosses into the province of Saskatchewan; there are a total of 12 corners. The maximum east-west dimension is 14 kilometres and the maximum north-south dimension is 15 kilometres. The centre of the area is approximately 59 degrees 27 minutes north and 110 degrees 05 minutes west.

Terraquest Ltd., Airborne Geophysical Surveys Terraquest File B-429-xks-report,

2. SURVEY PARAMETERS

2.1. LINES AND DATA

Parameter	Maurice Creek
Aircraft Speed	mean 77 m/sec 277 km/hr
Magnetic Sampling Interval	8 m (10Hz)
Radiometric Sample Interval	80m (1Hz)
Flight-line Interval	150 m
Flight-line Direction	000/180 degrees
Control-line Interval	1030 m
Control-line Direction	090/270 degrees
Mean Terrain Clearance	81 m

2.2. SURVEY KILOMETRAGE

Number of Lines	Maurice Creek
95 Survey Lines	1,149.6 km
15 Control Lines	177.0 km
76 Total Lines	1,326.6 km

2.3. NAVIGATION

The following file is the navigation parameter file (*.nme) for the survey lines, in WGS84 projection zone 12N, and includes line spacing, line direction, master line and other navigational parameters.

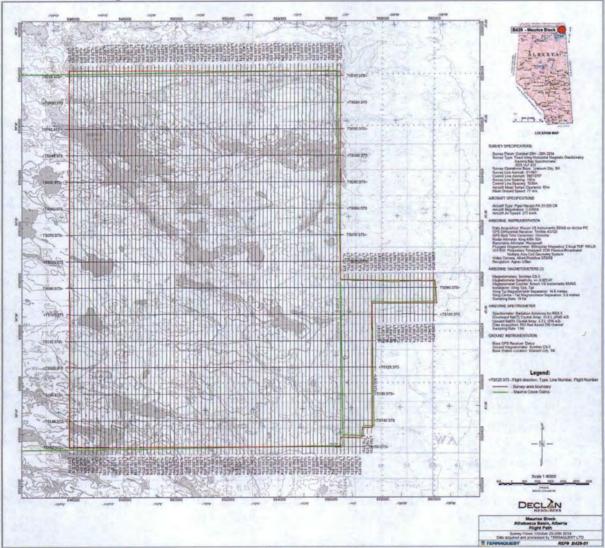
The satellite navigation system was used to ferry to the survey site and to survey along each line. The survey coordinates were supplied by the client and were used to establish the survey boundaries and the flight lines. The flight path guidance accuracy is variable depending upon the number and condition (health) of the satellites employed; the accuracy was for the most part better than 10 metres. Real-time GPS correction using the Trimble receiver and Omnistar broadcast services for North America improves the navigational accuracy to about 3 metres or less in the horizontal plane and 4-5 metres in the vertical direction.

Operations Report: Declan Resources Inc., MAURICE CREEK Project High Resolution Horizontal Aeromagnetic and Radiometric Survey, NE Alberta

File: B429-xks

0 B429


1	U	24	9


10	0 249	
	545862.9803888394 6583461.531616158	
	545854.9201291369 6598110.621591982	
	556413.0147073474 6598163.221391068	
	556422.4256923382 6589986.895467007	
	560025.3340526844 6589986.895467007	
	559991.3443511718 6588525.33830196	
	557612.0652452826 6588514.008401456	
	557634.7250462911 6584197.316309344	
	557294.8280311641 6584197.316309344	
	557306.1579316683 6583800.769791695	
	556422.4256923382 6583800.769791695	
	556403.6763406476 6583475.466842718	
	545862.9803888394 6583461.531616158	
3	545783 6583227 WP1 WAYPOINT 1	
3	545783 6583227 COR1 WAYPOINT 2	
4	95 NUMBER OF LINES	
5	150.0 SPACING, m	
8	75 MAX CROSS TRACK, m	
9	0 0 0 DELTA X/Y/Z	
10	1 LOG FPR EVERY 1 SECS	
11	0.9996000000 0.0 0.0 K0, X/Y SHIFT	
14	0 LINES EXTENDED BEYOND AREA	
16	10 FIRST LINE NUMBER	
17	545867.0 6583262.0 0.0 MASTER POINT, HEAD	DING
18	545655.0 6597922.0 90.0 TIE LINE MASTER PO	INT, HEADING
19	1030.0 0 TIE LINE SPACING, LINE EXT	
20	WGS-84 6378137.0 298.257223563 22 ELL	PSOID
21	0 NO EQUATORIAL CROSSING, N HE	MISPHERE
30	20 9600 N 1 8 RS-232 PORT 2 INCOMING FO	
31	20 9600 N 1 8 RS-232 PORT OUTGOING FOR	MAT
38	0 METRIC SYSTEM	
41	0.00 SYSTEM LAG, Secs.	
80	0.00 PLANNED ALTITUDE, m	
83	0 GPS ALTITUDE FOR VERTICAL BA	R
84	0.00 0.00 ALTITUDE COEFFICIENT, OFF	SET
85	100 MAX VERTICAL BAR SCALE	
102	UTM UTM X/Y SCALE	

File: B429-xks

Operations Report: Declan Resources Inc., MAURICE CREEK Project High Resolution Horizontal Aeromagnetic and Radiometric Survey, NE Alberta

2.4. FLIGHT PATH

2.5. TOLERANCES - REFLIGHT

1. Traverse Line Interval

Contract specifications mandate that re-flights would take place if the flight line separation of the final differentially corrected flight path exceeds 1.2 times or not be less than 0.8 times intended line separation over a distance greater than 3 times the traverse line separation.

2. Terrain Clearance:

Contract specifies that the Maurice Creek survey shall be flown with a tight drape fashion with as low a nominal terrain clearance as safety permits (~ 70 metres best efforts) to optimize the magnetic data. The safe height was determined at approximately 80 metres terrain clearance.

Re-flights were done if the final differentially corrected altitude deviated from the agreed flight surface by +/-15m over a distance of 2 kilometres.

3. Diurnal Variation:

Diurnal activity in the survey was limited to 3 nT deviations from 1-minute chord.

4. GPS Data:

GPS data included at least 4 satellites 15 degrees over horizon for navigation and flight path recovery.

5. Radio Transmission:

The aircraft pilot makes no radio transmission that interferes with magnetic response unless mandated by airport and air traffic safety considerations.

6. Sample Density:

A reflight is required if the sample density along one or more of the survey lines exceeds 8 metres over a cumulative total of 1000 metres for the magnetic data, and 80 metres over a cumulative total of 1000 metres for the radiometric data.

7. Magnetic Noise:

The contract mandates that the fourth difference noise envelope for the tail sensor data does not exceed $\pm - 0.10$ nT.

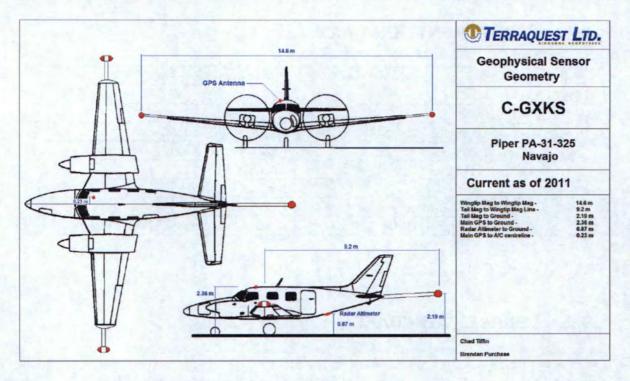
8. Measurement Gaps:

There were no significant gaps in any of the digital data including GPS, radiometric and magnetic data.

3. AIRBORNE GEOPHYSICAL EQUIPMENT

The primary airborne geophysical equipment includes three high sensitivity cesium vapour magnetometers and a gamma ray spectrometer. Ancillary support equipment includes a tri-axial fluxgate magnetometer, data acquisition system, radar altimeter, barometric altimeter, GPS receiver with a real-time correction service, and a navigation system. The navigation system comprises a left/right indicator for the pilot and a screen showing the survey area, planned flight lines, and the real time flight path. All data were collected and stored by the data acquisition system. The following provides detailed equipment specifications:

3.1. EQUIPMENT SUMMARY


Aircraft	Piper Navajo PA 31-325 CR	
Equipment:		
Magnetometers	CS-3 Cesium Vapour	
3-axis Magnetometer	Billingsley TFM100-LN	
Gamma Ray Spectrometer	Radiation Solutions RS-500	
GPS Receiver	Trimble AG 132	
Radar Altimeter	King KRA 10A	
Barometric Altimeter	Honeywell	
Data Acquisition & Mag Counter	Kroum Instruments SDAS system	

3.2. SURVEY AIRCRAFT

The Survey Aircraft for this project was a Navajo PA31-325 CR, owned and operated by Terraquest Ltd. The aircraft has been specifically modified with long-range fuel cells and an array of sensors to carry out airborne geophysical surveys.

2014/12/04

3.3. SURVEY EQUIPMENT AND SPECIFICATIONS:

1. High Sensitivity Magnetometer:

One high-resolution cesium vapour magnetometer is mounted in the tail stinger and two are located in wing tip pods. A fluxgate tri-axial magnetometer is mounted in front of the tail stinger to monitor aircraft manoeuvre and magnetic interference; this data is used post-flight to compensate the high sensitivity data for aircraft manoeuvre noise.

Type of Magnetometer Sensor	Cesium Vapour
Model	CS-3
Manufacturer	Scintrex Ltd.
Resolution	0.001 nT counting at 0.1 per second
Sensitivity	+/- 0.005 nT
Dynamic Range	15,000 to 100,000 nT
Fourth Difference	0.02 nT
Recorded Sample Rate	0.1 seconds
Noise Envelope	0.10nT (Tail Mag)

2. Tri-Axial Fluxgate Magnetic Sensor

Tri-Axial Fluxgate	(for compensation, mounted in mid-section of tail
Magnetic Sensor	stinger)
Model	W/FM100G2-1F
Manufacturer	Billingsley Magnetics
Description	Low noise miniature triaxial fluxgate magnetometer
Axial Alignment	> Orthogonality > +/- 1 degree
Accuracy	< +/- 0.75% of full scale (0.5% typical)
Field Measurement	+/- 100,000 nanotesla
Linearity	< +/- 0.015% of full scale
Sensitivity	100 microvolt/nanotesla
Noise	< 12 picotesla RMS/–Hz @ 1 Hz

3. Radar Altimeter

Altimeter	Radar
Model	KRA-10A
Manufacturer	King
Serial Number	071-1114-00
Accuracy	5% up to 2,500 feet
Calibrate Accuracy	1%
Output	Analog for pilot, converted to digital for data acquisition

4. Barometric Sensor

Sensors	Pressure (mB)
Model	PPT0020AWN2VA-C
Manufacturer	Honeywell
Source	coupled to aircraft barometric (pitot static) system
Output	Serial output to DAARC 500 channels 3 & 4 respectively

5. Magnetometer Counter

Magnetometer Processor	(Stand Alone Unit)
Model	KMAG
Manufacturer	KROUM VS Instruments Ltd.
Input Range	3 ms – 10,000 ms
Input	Four decouplers, four counters, GPS, pps signal
Sampling	10ms to 1,000ms
Bandwidth	No filtering
Resolution	0.005 nT
Ports	Two RS232 ports, one to GPS receiver, one to DAS instrument time, GPS, and up to 4 magnetic fields in pT
Output	Instrument time, GPS, and up to 4 magnetic fields in pT

6. Radiometric System (2 pack)

Туре	Gamma Ray Spectrometer
Model	RS 500
Manufacturer	Radiation Solutions Inc.
Crystal Manufacturer	Saint-Gobain
Downwards Volume	2050 in ³ (33.6 litres) Downward (8 crystals)
Upwards Volume	256 in ³ (4.2 litres) Upward (1 crystal)
Software	Real Time Data Collection
Energy Detection Range	50KeV to 3 MeV
Count Rate	Up to 1000,000 pps communication
RSI Native Spectra	1024 Channels
Output Spectra	512 Channels Up and Down
Sampling Rate	1 Hz, no dead time
Automatic Gain Stabilization	Thorium
Energy Resolution	< 8.5%

7. Analog Processor System

Model	KANA8 (stand-alone unit)
Manufacturer	KROUM VS Instruments Ltd
Analog Processor Set-up	Two KANA8's (total 16 differential analog channels) 24 bit capability, sample at 10Hz

8. Data Acquisition System

Data Acquisition System	Records digital data from all sensors (including GPS, MAG, Spectrometer and altimeter)
Model	Handheld PC
Manufacturer	Archer
I/O Slots	Built in SDIO slot
Software	Kroum VS Instruments Ltd: SDAS ver 3
Display	3.5" transflective
Graphic Display	Scrolling analog chart with 4 windows operator selectable.

9. Navigation System

Navigation & Guidance	Stand-alone module
Model	LiNav P151
Manufacturer	AgNav Inc.
Main Display	LCD Moving map display
Pilot Display	2 line shows left/right, dist. to end of line/survey
Line	Generates and follows survey lines
Input	GPS with corrections; up to 10 Hz
Media	USB memory stick

10. GPS Differential Receiver

GPS Differential Receiver	
Model	AG 132
Manufacturer	Trimble
Antenna	L1/L2
Channels	12
Position Update	0.2 second for navigation
Correction Service	Real time correction service subscription – Omnistar
Sample Rate	1 second
Accuracy	~ 3 meters

4. Base Station Equipment

4.1. BASE STATION MAGNETOMETER

High sensitivity magnetic base station data was provided by a split beam cesium vapour magnetometer logging onto a computer and with time synchronization from a GPS base station receiver.

The magnetometer was similar to the type used in the aircraft, a cesium magnetometer manufactured by Scintrex. The magnetometer processor was a KMAG manufactured by Kroum VS Instruments and the data logger was a PDA by Archer. The counter was powered by a 10VAC 50/60 Hz to 30VDC 3.0 amp power supply with an internal 12VDC fan. The logging software SDAS-1 was written by Kroum VS Instrument Ltd. specifically for handheld pc hardware. It supports real time graphics with selectable windows (uses two user selectable scales, coarse and fine). Time recorded was taken from the base GPS receiver. Magnetic data was logged at 1Hz. Data collection was by RS232 recording ASCII string and stored on flash card.

Ground Magnetometer	Cesium Vapour
Model	CS – L
Manufacturer	Scintrex
Sensitivity	0.005 nT
Noise Envelope	0.05 nT
Sampling Interval	1 second

During the survey period the on-site geophysicist also monitored the Regional Geomagnetic Forecasts for Western North America provided by both NOAA and GSC websites.

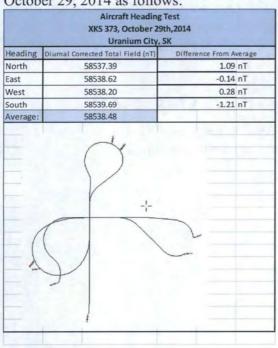
4.2. BASE STATION GPS RECEIVER

The GPS base receiver was used to provide a GPS time stamp to the base station magnetic data.

Model	ProPak-V3 - L ₁ L ₂
Manufacturer	Novatel
Channels	12
Sample Rate	1 second
Accuracy	~1.8 meters

5. TESTS AND CALIBRATIONS

5.1. MAGNETIC FIGURE OF MERIT


Compensation calibration tests were performed to determine the magnetic influence of aircraft maneuvers and the effectiveness of the aircraft compensation method. The aircraft flew a square pattern in the four survey directions at a high altitude over a magnetically quiet area and perform pitches $(\pm 5^{\circ})$, rolls $(\pm 10^{\circ})$ and yaws $(\pm 5^{\circ})$. The sum of the maximum peak-to-peak residual noise amplitudes in the total compensated signal resulting from the twelve maneuvers is referred to as the FOM. The FOM for Maurice Creek survey was done at Uranium City SK on October 27, 2014 with a result for the left, right and tail sensors were respectively 1.68 nT, 1.76 nT and 1.17 nT. Refer to **9.3 Appendix III – Figure of Merit** for details.

5.2. MAGNETIC LAG

Evaluation of the magnetic lag factor was accomplished by flying over a clearly identifiable discrete anomaly flown in opposing directions. The measured lag was 0.2 seconds for the tail sensor.

5.3. MAGNETIC HEADING TEST

A magnetic heading test was flown on site at survey altitude at Uranium City, SK on October 29, 2014 as follows:

5.4. RADAR ALTIMETER CALIBRATION

A radar altimeter calibration was performed by flying in increments of 100 feet up to an altitude of 800 feet over the runway at Uranium City on October 27, 2014. Least Squares Regression analysis on the resulting data generated the slope/intercept factors required to convert the raw radar altimeter data feed calibrated terrain clearance. The slope was 1655.164808 with an intercept of 0.4889. Refer to **9.4** *Appendix IV – Radar Calibration* for a presentation of the results and analysis.

5.5. RADIOMETRIC SENSITIVITY FACTORS

The radiometric system sensitivity was determined on November 15, 2014 from measurements acquired over the Breckenridge calibration test site, near Ottawa, Canada. The concurrent ground survey was performed by Terraquest Ltd. personnel using a calibrated ground spectrometer. The Geological Survey of Canada provided calculated ground results. Refer to 9.9 Appendix IX – Sensitivity Factors for details.

5.6. RADIOMETRIC ALTITUDE ATTENUATION

The altitude attenuation factors were calculated using data acquired at Breckenridge calibration site near Ottawa on November 15, 2014. Refer to 9.8 Appendix VIII – Altitude Attenuation for details.

5.7. RADIOMETRIC COMPTON COEFFICIENTS

The Compton coefficients were determined by analyzing data acquired over standard radiometric calibration pads by the equipment manufacturer (Radiation Solutions) located in Mississauga, Ontario, Canada. These measurements were performed on August 21, 2014. Refer to 9.7 Appendix VII – Compton Coefficients for details.

5.8. RADIOMETRIC COSMIC CALIBRATION

The cosmic calibration was done at Uranium City, SK on October 27, 2014. Refer to **9.6** Appendix VI – Cosmic Calibration for details.

6. LOGISTICS

6.1. PERSONNEL

The contractor supplied the following properly qualified and experienced personnel to carry out the survey and to reduce, compile and report on the data:

Field:

Office:

Survey Pilots Operators Geophysicist Geophysicist Project Manager Chad Tiffin Tyler Diplock Carolyn Boone Carolyn Boone and Allen Duffy (radiometric) Charles Barrie

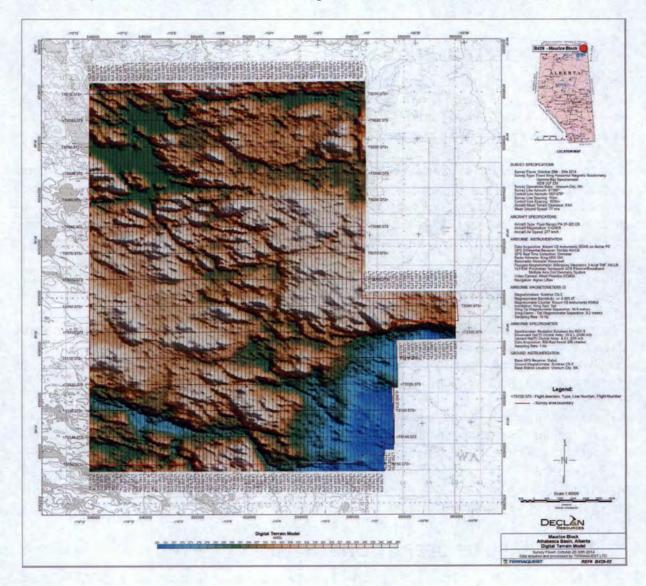
6.2. FLIGHT REPORTING

The contract was signed on October 16, 2014. On October 25, 2014 the aircraft and crew mobilized to Uranium City, SK and the following day the base station was setup but the weather was not suitable for flying. Despite low ceilings for the major part of the next day, most of the calibrations were performed late in the day on October 27th.

The Maurice Creek survey was flown successfully in 3 flights, XKS373-375 over 2 days from October 29 to 30th plus 1 weather day (October 28th). No reflights were required. There were no aircraft maintenance days or geophysical equipment days. The crew was released to demobilize on the evening of October 30, 2014. The ground was slightly frozen at the surface and there was no significant accumulation of snow.

The pilot maintained personal and aircraft log books. The operator recorded all calibration and flight activity on a flight log which was sent to the survey geophysicist along with airborne and base station data. The geophysicist entered all daily activity into an Excel spread sheet. From this spreadsheet daily, weekly and summary reports were automatically generated. The Summary Report lists productions statistics for all flights each day and is shown in Appendix 9.2. The geophysicist performed quality control on the raw survey data and forwarded the raw data to the client via the ftp site after each flight.

All survey personnel adopted and worked under the Terraquest Ltd. Health, Safety and Environmental Protection Manual (which include the Site Specific Safety Plan and the Emergency Response Plan), aviation Safety Management System (SMS), and guidelines from the IAGSA safety and security standards. All aircraft maintenance items were supervised by and signed out by an Approved Mechanical Engineer (AME) under Canadian Aviation Regulations (CARs) with signing authority through Leggat Aviation.


6.3. BASE OF OPERATIONS

The base of operations including the diurnal base station was at Uranium City, SK. The crew stayed at Classen Lodge. Internet access was adequate.

7. Data Processing

7.1. DATA QUALITY CONTROL

The field data were examined during the survey to inspect for quality control and tolerances on all channels. All data were checked for continuity and integrity. Note that GPS correction was done in real-time during the survey using Omnistar subscription services. The magnetic data were post-flight compensated using the fluxgate data. The Digital Terrain Model (see figure Section 2.4) was calculated from the GPSz component and the radar altimeter values.

7.2. FINAL MAGNETIC DATA PROCESSING

1. Lag Correction of Total Magnetic Field

The Evaluation of the magnetic lag factor was accomplished by acquiring survey data flown in opposite directions over a cultural anomaly. The measured factor was 0.2 fiducials for the tail Magnetic sensor.

2. Diurnal Data and diurnal correction of Total Magnetic Field

Magnetic data from the Diurnal Base Station were scrutinized for spurious readings (data spikes) and any obvious cultural interference. Any such features were manually removed and the data re-interpolated (Akima spline) to maintain a continuous record.

3. Heading correction of Total Magnetic Field

The magnetic heading effect was determined by flying a cloverleaf pattern at survey elevation, and oriented in the same directions as the survey lines and control lines. The data were subsequently used to correct measured airborne magnetic readings.

4. Total Magnetic Field Tie-Traverse Line Intersection Leveling

The diurnal and lag corrected data were further refined using tie- line levelling. Using the Geosoft Oasis implementation of this procedure, an initial table of tie-traverse line intersection differences is compiled (together with supporting ancillary parameters such as local gradient, etc.) and intersection data is loaded into the processing databases. In a series of iterative levelling passes, outlier intersection values are either disabled or modified to refine and finalize the overall result.

5. Total Magnetic Field Micro-levelling

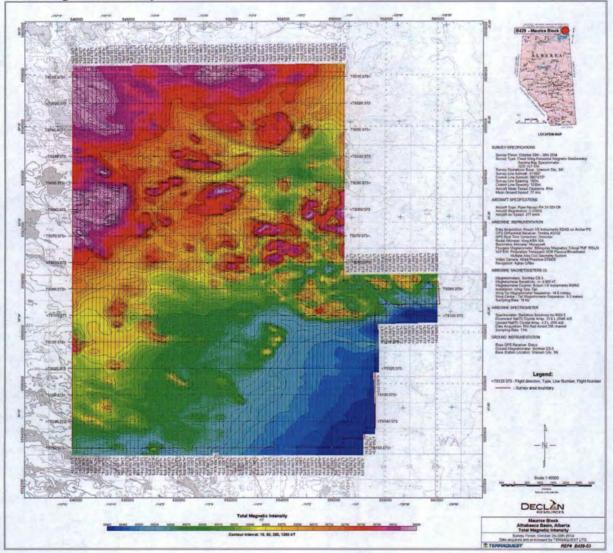
Minor levelling imperfections may still exist in the intersection levelled data, most likely due to incomplete removal of diurnal influences in sections of lines between intersection points. These errors are removed by application of mild micro-levelling procedure whereby highly directional filtering identifies and removes residual noise correlated with the traverse direction. The resulting corrections are limited to the maximum amplitude of 6 nT to avoid "damaging" valid, geologic responses.

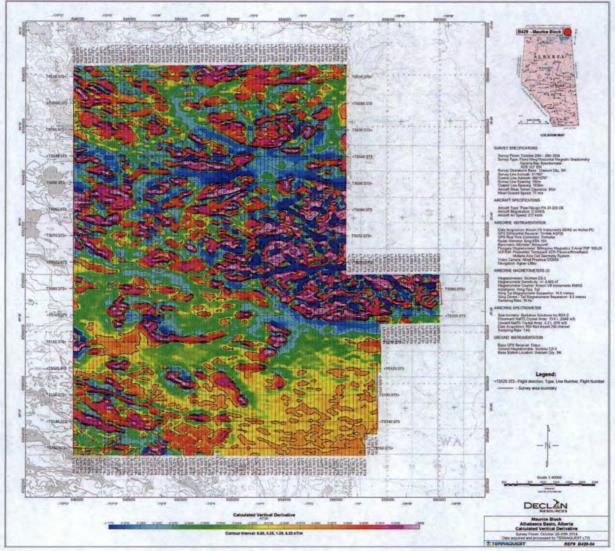
6. Calculated Vertical Derivative

The first Vertical Derivative was calculated using a 2D FFT operator on the Total Magnetic Intensity grid. Unwanted, high frequency " ringing" in the resulting 1VD grid was minimized by concurrent application of an 8th order Butterworth low pass filter keyed to slight larger than the line spacing (160 m).

7. Measured Horizontal Gradients

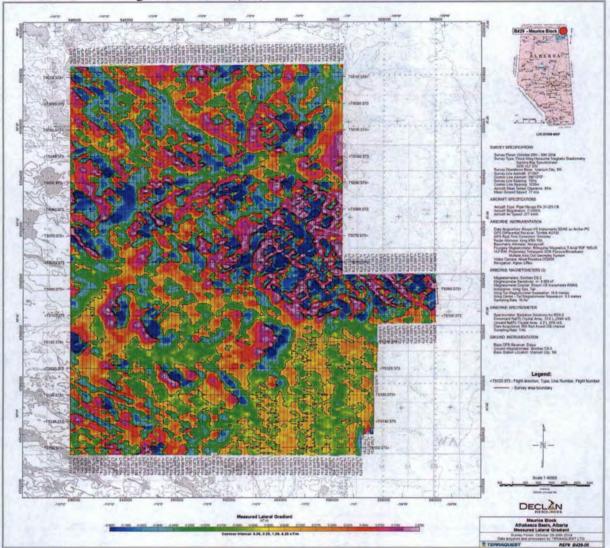
The transverse or lateral magnetic gradient (HX) was calculated by subtracting the left wing sensor reading from the right wing sensor reading and dividing the resulting value by the tip-totip separation (14.6 metres), yielding the measurement expressed as nT/m. The longitudinal gradient (HY) was similarly calculated by subtracting the tail sensor measurement from the average of the wing tip-values normalized by the wing-centre to tail sensor separation of 9.2 metres. Both gradients were "DC shifted" by subtracting the median value on a line-by-line basis and converted from aircraft-centric to survey grid orientation by selectively inverting (multiplying by -1) in the south directions.

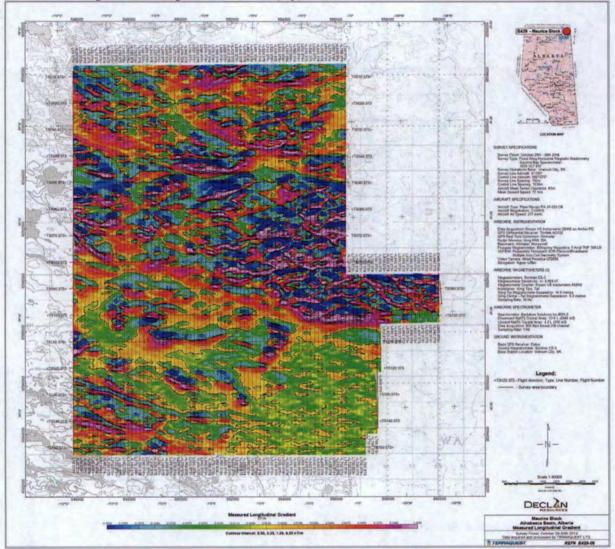

8. Reconstructed Total Magnetic Field (RTF)


Data grids of the measured horizontal gradients (HX, HY) were used to generate the Reconstructed Total Magnetic Field using the 2D FFT process described by J. B. Nelson (reference: Nelson, J.B., 1994, Leveling total-field aeromagnetic data with measured horizontal gradients: Geophysics, 59, 1166-1170). This product (RTF) has the advantage of being unaffected by magnetic diurnal activity, though longer magnetic spatial wavelengths are not represented due to measurement resolution limitations in the magnetometers. The resulting data units (expressed as pseudo nano-Tesla) are not true nT: approximate conversion to true nT may be accomplished by application of scaling factor if required. Using the calculated Reconstructed Total Field data grid, a "RTF" Geosoft database channel is created by performing a grid look-up ("grid sample") for each data point in the production database. Only grids were produced for the Total Reconstructed Field.

9. Data Grids

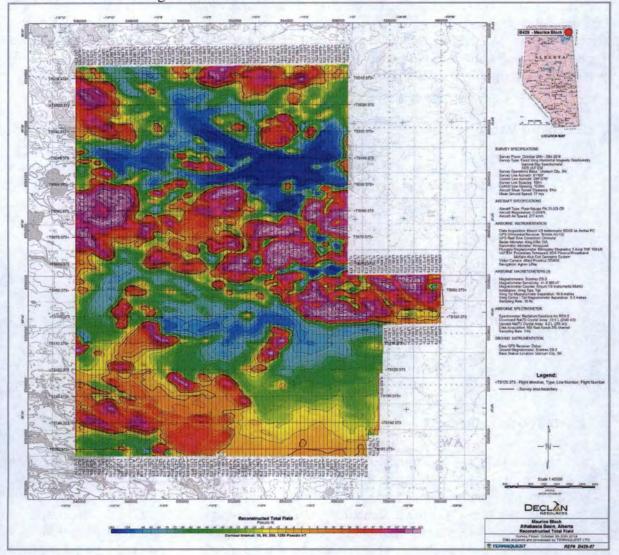
Magnetic data grids were created using Bidirectional data interpolations at a cell size of 25 metres (the Radiometric grids were at a cell size of 50 metres).


Total Magnetic Intensity



Calculated Vertical Derivative of the TMI

Terraquest Ltd., Airborne Geophysical Surveys Terraquest File B-429-xks-report,



Measured Lateral Magnetic Gradient (Hx)

Measured Longitudinal Magnetic Gradient (Hy)

Reconstructed Total Magnetic Field

2014/12/04

7.3. FINAL RADIOMETRIC DATA PROCESSING

The radiometric data were processed according to guidelines established in the definitive IAEA Technical Report "Airborne Gamma Ray Spectrometer Surveying" (IAEA Technical Reports Series No. 323, 1991). A detailed description of the various correction steps may be found in 9.5 Appendix V - Detailed Radiometric Processing Notes; however, the following is a brief, generalized description of the data reduction process:

1. Energy Windows

Recorded as a 256 channel spectrum, the four raw integral (or "terrestrial") windows (Total Count, Potassium, Uranium and Thorium) were initially generated by summing the recorded counts between their appropriate channel limits – as specified below:

Energy	Range (keV)	Chan	nel Range
410	2810	034	234
1370	1570	114	131
1660	1860	138	155
2410	2810	201	234
3000	00	255	
	410 1370 1660 2410	137015701660186024102810	4102810034137015701141660186013824102810201

2. NASVD Noise Reduction

An effective way of ameliorating any effects of decreased signal-to-noise ratio is to reduce the natural Poisson noise component by application of modern principal component analysis techniques - NASVD (or "Noise Adjustment by Singular Value Decomposition" *) being a particularly effective technique. In this process, the measured 256 channel gamma ray spectra are analyzed en masse, producing a set of 256 distinct "principal components" which can be recombined to produce very accurate representations of the original spectral measurements. Given consistent recording of the gamma-ray spectra, the actual "signal" part is concentrated in the first few principal components with the remaining higher order components largely concerned with noise. By reconstructing the original spectra using only these initial components (for example, in this project components 0 - 4 were used in the spectral reconstruction), statistical measurement noise is largely suppressed. ROIs (Total Count, Potassium, Uranium and Thorium) are then extracted from the noise reduced spectra.

Recognizing that the NASVD enhance data reduction process uses modeled - as opposed to measured - spectra as its starting point, radiometric data were delivered as two separate data streams: one traditionally processed (non-enhanced) and the other NASVD enhanced. Noise levels are clearly reduced in the NASVD enhanced data.

* Hovgaard, J.; Grasty, R.L. : Reducing Statistical Noise in Airborne Gamma Ray Data Through Spectral Component Analysis – presented at Exploration97, Toronto, Canada 1997 (Paper 98 - Radiometric Methods and Remote Sensing)

3. Aircraft and Cosmic Background Correction

The Cosmic and fixed aircraft components of the overall background level of radiation may be calculated using coefficients determined during a specific calibration procedure (see 9.6 Appendix VI – Cosmic Calibration). In this correction step, the assumed linear relationship between count rates measured in the high energy Cosmic window (> 3.0 MeV) and the Cosmic and Aircraft (fixed) contributions to the individual backgrounds in the four terrestrial windows (Total Count, Potassium, Uranium and Thorium) is exploited. Remaining background levels in the resulting corrected count rates will only be influenced by the variable, atmospheric Radon component.

4. Atmospheric Background Correction

A background component, primarily due airborne Radon daughter products, can remain in each of the radioelement windows. The level of background radiation is expected to vary temporally and geographically since the distribution of airborne sources depends on a host of factors such as atmospheric conditions, local ground conditions, etc.

Residual background levels of radiation were determined from data acquired on daily background test lines (flown at 1800 feet where geologic signal contributions are negligible). The data was corrected for Cosmic and Aircraft sources to estimate the remaining atmospheric radiation component.

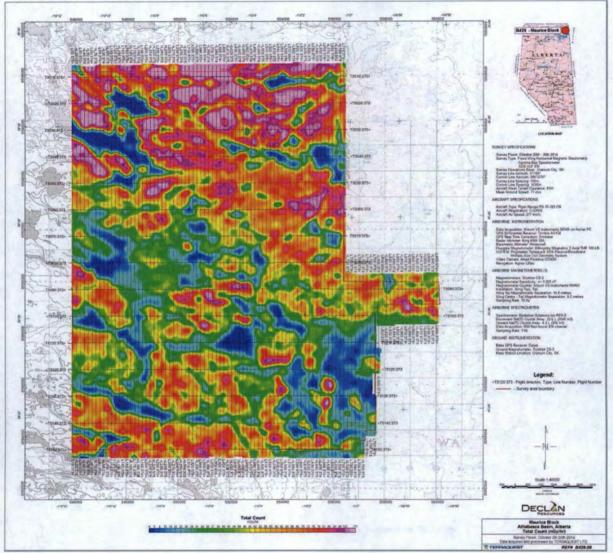
5. Compton Stripping

Following background correction, the measured levels in the three terrestrial spectral windows – Potassium, Uranium and Thorium - are corrected for the natural process of Compton Scattering, by which energy deriving from higher energy sources are down-scattered into lower energy classifications. This procedure, described in greater detail in **9.5** Appendix V – Detailed Radiometric Processing Notes, results in count rates classified as purely Potassium, Uranium and Thorium without influence from the higher energy sources of radiation (this correction step primarily affects the two lower energy spectral windows: Uranium and Potassium).

6. Altitude Attenuation Correction

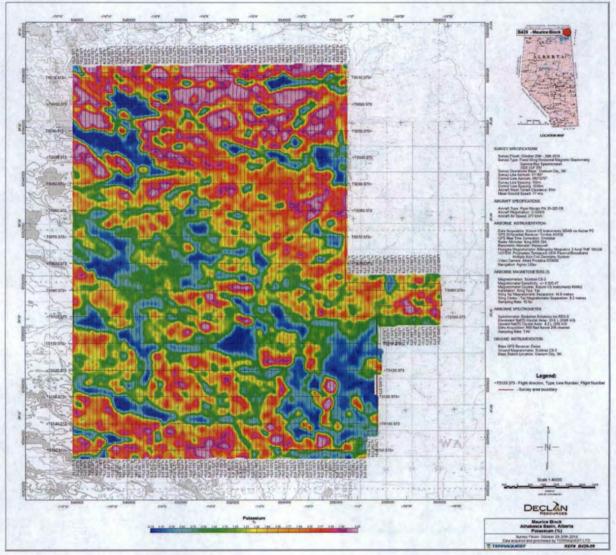
Effects due to varying terrain clearance are compensated for in this correction step. By applying experimentally determined Altitude Attenuation coefficients keyed to terrain clearance corrected to Standard Temperature and Pressure, measured count rates are adjusted to a constant terrain clearance (normally the survey's programmed clearance of 80 metres). Refer to **9.8** Appendix VIII – Altitude Attenuation for details on the determination of the exponential altitude attenuation coefficients.

7. Conversion to Ground Units

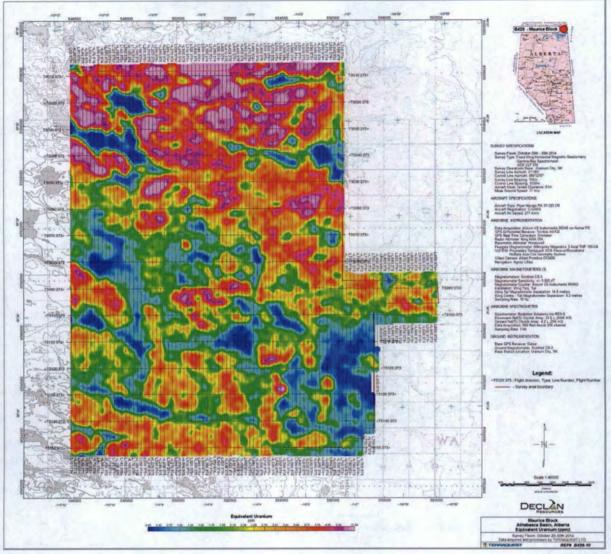

As a final step, the count rates in the integral channel window (Total Count) and the three spectral channel windows (Potassium, Uranium and Thorium) are converted to equivalent ground concentration units through application of sensitivity factors developed during a calibration flight over an approved radiometric test range. The system was calibrated at the Geologic Survey of Canada's calibration facility located outside Ottawa, Ontario, Canada. See **9.9** Appendix IX – Sensitivity Factors. Conversion of measured count rates to ground units has the advantage of presenting the measured levels of radiation using a standardized physical reference framework as well as to facilitate integration of the data with other radiometric data sets. A tabular summary of presentation units follows:

Window ("ROI")	Description	Unit
Total Count	Dosage Rate	nGy/hr
Potassium	Concentration	%K
Uranium	Equivalent Concentration	ppm eU
Thorium	Equivalent Concentration	ppm eTH

8. Gridding

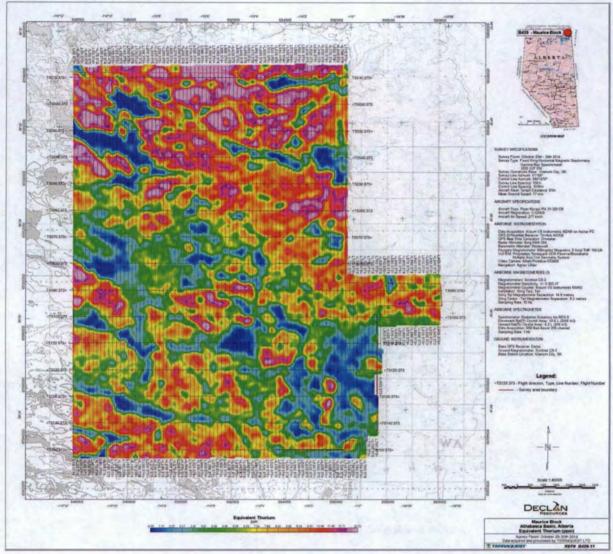

Final data grids were constructed using a symmetrical grid cell definition of 50 x 50 metres. The grid was generated using Minimum Curvature interpolation. Coordinate projection for the grids was WGS84 UTM Zone 12N.

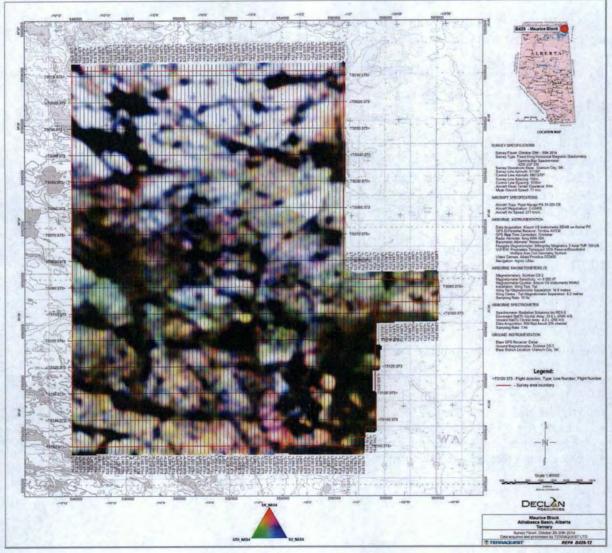
TOTAL COUNT



2014/12/04

POTASSIUM


URANIUM


2014/12/04

File: B429-xks

THORIUM

TERNARY

2014/12/04

7.4. LIST OF FINAL PRODUCTS

A complete list of all final products is listed in the ReadMe file Appendix 9.10. All products including this Report are contained on an Archive DVD in the back pocket of the Report.

Two colour paper copies of the following maps were produced for the survey:

- 1. Flight Path
- 2. Digital Terrain Model (m)
- 3. Total Magnetic Intensity (TMI) (nT)
- 4. Calculated Vertical Gradient of TMI (nT/m)
- 5. Measured Lateral Magnetic Gradient (nT/m)
- 6. Measured Longitudinal Magnetic Gradient (nT/m)
- 7. Reconstructed Total Magnetic Field (RTF) (pseudo-nT)
- 8. Total Count (nGy/hr)
- 9. Potassium (%)
- 10. Thorium (eTh ppm)
- 11 Uranium (eU ppm)
- 12. Ternary

The following digital products were produced on DVD:

- Databases in GEOSOFT GDB (compatible with 4.1 or higher) and ASCII XYZ formats (Magnetic data and Radiometric data are in separate databases)
- Digital grid archives in GEOSOFT GRD format
- GEOSOFT MAP files used to generate the above listed final maps
- Map Images in high resolution JPEG format
- Operations Report in PDF format

8. SUMMARY

An airborne high sensitivity, Horizontal Magnetic Gradient and Radiometric survey was performed over the MAURICE CREEK Project in northeast Alberta. It was flown with a tight drape mode with an average elevation of 81 metres above the ground with 150 metre line intervals, 1,030 metre tie line intervals and with data sample points along the flight lines of approximately 80 metres for 1Hz data (radiometric) and 8 metres for the 10Hz data (magnetic and GPS data). The base of operations including magnetic base station was at Uranium City, SK.

The data were subjected to final processing to produce the following grids and maps (2 paper copies, scale 1:40,000):

- a) Magnetics: total magnetic intensity (TMI)
- b) **Gradient Magnetics:** calculated first vertical derivative of TMI; measured lateral and longitudinal gradients; Reconstructed Total Magnetic Field
- c) Radiometric: Total Count, Potassium, Uranium, Thorium and Ternary Plot

This report and all digital products including a ReadMe file have been archived on a DVD. The databases are in ASCII (XYZ) and Geosoft (GDB) formats (including raw data), and the grid and map files are also in Geosoft format (.grd, .map). High resolution jpeg images of the maps are also included.

Respectfully Submitted,

CHARLES Q. BARRIE Charles Barrie, M.Sc. RACTISING MEMBER Vice President 0 Terraquest Ltd.

9. APPENDICES

9.1. APPENDIX I - CERTIFICATE OF QUALIFICATION

I, Charles Barrie, certify that I:

- am registered as a Fellow with the Geological Association of Canada, as a P.Geo. with the Association of Professional Geoscientists of Ontario (APGO) and work professionally as a geologist,
- hold an Honours degree in Geology from McMaster University, Canada, obtained in 1977,
- 3) hold an M.Sc. in Geology from Dalhousie University, Canada, obtained in 1980,
- 4) am a member of the Prospectors and Developers Association of Canada,
- 5) am a member of the Canadian Institute of Mining, Metallurgy and Petroleum,
- 6) have worked as a geologist for over thirty years,
- 7) am employed by and am an owner of Terraquest Ltd., specializing in high sensitivity airborne geophysical surveys, and
- 8) have prepared this operations and specifications report pertaining to airborne data collected by Terraquest Ltd..

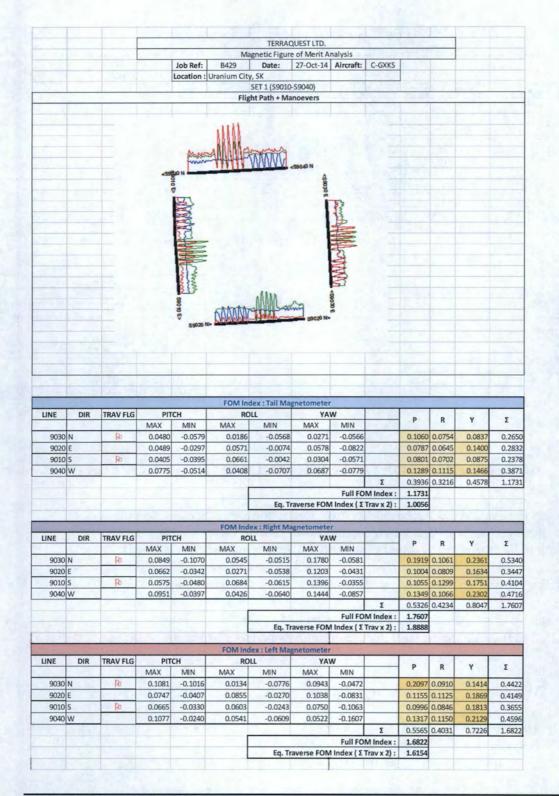
Markham, Ontario, Canada

Signed

Charles Barrie, M.Sc CHARLES Vice President Terraquest Ltd.

File: B429-xks

9.2. APPENDIX II - FIELD REPORT SUMMARY


	Sector.				TER	RAQ	DUEST	T SUR	VEYS	: Field	Ope	ration	ns Si	umm	ary	1				7-10		
CONTR	ACT REF :	3429		1.35		Declar	Resou	rces	Nº S	N.S. HOLS	PROJ	ECT:	M	aurice l	Block Pr	oject	BASE:	Urainium C	ity, SK			
REPORT	REPORT	DATE					LINE	KILOMET	RES	PERCENT	FLIGHT	HOURS	SURVEY	HOURS				ACCUMU	LATED DAYS			
REFERENCE	NUMBER	DATE		FLIGHT NU	JMBER (S)		Day	Total	Refit	COMPLETE	Day	Total	Day	Total	TOTAL	SURVEY	wx	MAINT	EQP	SETUP	MOB	HIATUS
REP001	REP001	25-Oct-14				1200			1997	10 S.S.		1976	10.00	1.0	1	1941	1	19:32 (3)		1.0	1.1.1.1	
REP002	REP002	26-Oct-14	1			112	C.C.C.	125.40		NAME OF	1.7	1015	371		2		193	1. L + + > - 1		2.0		1 353
REP003	REP003	27-Oct-14	XKS372					1918	1		2:03	2:03	1	100	3	1. AL	0 -0	No M		3.0		
REP004	REP004	28-Oct-14		1000			1995	1987	3.3	Sector Sector	1300	2:03			4	125.20	1.0			3.0		
REP005	REP005	29-Oct-14	XKS373	XKS374			768.8	768.8	1	57.96%	6:01	8:04	4:34	4:34	5	1.0	1.0	1	1900	3.0	1.4.2.3	1.00-
REP006	REP006	30-Oct-14	XKS375		1.1	52.5	557.7	1326.5	0.00	100.00%	3:19	11:24	2:33	7:07	6	2.0	1.0		12/13/2	3.0		

Line Listing

SURVEY AN	D CAL	BRATION FLIGH	ITS				S373
Job Reference:	B429	Base of Operation	ns:	Uranium C	ity, SK	Aircraft:	C-GXKS
Flight Crew:		Name			Compa	any	
Captain:	Chad Tif	fin		Terraquest Ltd.			10.00
First Officer:	1.						-
Operator:	Tyler Dip	block		Terraquest Ltd.			-
	-		Pre-Flight		and the second second	-	
Date:	-	29-Oct-14	-	Flight Number:		37:	3
Weather Remarks:							
	Winds:	Turbulen		Temperature:	-3C	Altimeter:	30.11"Hg
Equipment Checks:		the state of the state of		rial Inputs:		1. No. 1.	
	Ortho:	Service and the service of the servi	DGPS:	21.11			
	Vert:	and the second second	Detectors	Stable:			
Time Up:	-	16:29:00	In-Flight Productio	n Start:	16:53:17	Flight Time:	02:58:42
Time Down:		19:27:42	Productio		19:09:00	Prod. Time:	02:15:43
Survey Mode?		Yes	Data File		10.00.00	Trou. Time.	02.10.40
Line Number		GPS Start Time		S End Time		Remarks	1.5.27
		1			Heater on 1	6:33:10	
2.2.2.		C. C. Start and Start	0.1			as been off until	now
		a la serie de la serie	2. A 12 1		nav radio or		
10		10.00.47		46.66.40	nav radio of	16:43:33	
10 Heading Test	-	16:53:17	-	16:56:18	-1C		-
Heading Test		16:58:36		16:58:44		-	
5		17:00:37		17:00:44	-		
		17:02:37		17:02:49		2.00	
N		17:05:02		17:05:16	1000		
Tie Lines			100 M			and the second	
5150	-	17:08:11		17:10:38	-1C		
5140		17:11:49		17:14:21	-1C	210	
5130 5120		17:15:44 17:19:22	-	17:18:17 17:21:55	OC OC		-
5110		17:19:22		17:25:49	OC OC		-
5100		17:27:37		17:30:39	0C	100000	
5090	1.1.1	17:32:34	1 1 1 1 1 1	17:35:37	0C		100
5080	_	17:37:05		17:39:21	0C		
5070		17:40:30		17:42:49	0C		
5060	-	17:44:37		17:46:54	OC 0C	The second	
5050		17:48:15	-	17:50:34	00	-	_
5040		17:51:57 17:55:37	-	17:54:14 17:57:56	OC OC		
5020		17:59:22		18:01:37	0C	101	
5010		18:03:19	1. 1.1.2	18:05:37	OC	21361	100
Traverse Lines			1.1			318 192	
950		18:07:39		18:08:00	0C	212.00	
340	-	18:09:26	2005	18:09:50	0C		
930		18:11:07		18:11:28	00		
920		18:12:51 18:14:35	-	18:13:16 18:14:56	0C		
900		18:14:35	-	18:16:38	OC OC		10.00
390		18:17:59	V	18:18:20	OC		1.1.1
380		18:19:47		18:20:12	0C		
370	-	18:21:31		18:21:53	0C		
360		18:23:21		18:23:46	OC	and the second	-
850		18:25:09	-	18:25:31	00		-
340 330	-	18:27:06 18:28:52		18:27:31 18:29:15	OC OC	the second second	-
320		18:30:38		18:31:02	OC	No. States	1100
310	1	18:32:26		18:32:49	OC	S 507 12 150	
300		18:34:33	10 200	18:35:12		nable start time	. Confusi
/90	1	18:36:42		18:37:27	0C		1
780		18:39:30		18:40:52	0C	23. MAR	
770		18:42:14	1000	18:43:26	00		2011
760		18:45:04		18:46:37	00		-
750		18:48:06	-	18:49:28 18:52:27	0C 1C		-
740 730		18:50:55 18:53:46		18:52:27	1C 0C	C. C. C.	
730		18:56:43	1	18:58:16	0C	94500	13.11
710		19:01:19		19:04:16	0C		
700	1.00	19:05:41		19:09:00	0C		- 1
					1. 1.		
Background		19:15:20		19:17:20	-2C at 1100	AGL over wate	r

2014/12/04

9.3. APPENDIX III – FIGURE OF MERIT

Terraquest Ltd., Airborne Geophysical Surveys Terraquest File B-429-xks-report, 2014/12/04

9.4. APPENDIX IV – RADAR ALTIMETER CALIBRATION

		the second	28 October [FLT XKS372,		INTERCEPT		0.4889
× 1					SLOPE	1655	.164808
LINE	RAW RADAR	GPS ALT	CORRECTED GPS ALT	CALIBRAT	ED RADAR	ERROR	*
Hold		307.0	0.0				
S101:372	0.0167	336.1	29.1	28	.1	-1.0	
S201:372	0.0360	370.3	63.3	60	.1	-3.2	
S301:372	0.0555	399.5	92.5	92	.4	-0.1	
S401:372	0.0776	436.7	129.7	128	3.9	-0.8	
S501:372	0.1300	519.5	212.5	215	5.7	3.2	
S601:372	0.1413	540.2	233.2	234	1.4	1.2	
S801:372	0.1726	589.6	282.6	286	5.2	3.6	
\$2001:372	0.3566	900.5	593.5	590).7	-2.8	
			* Error estimated as	s (Calibrated I	Radar) - (Cor	rected GPS Alt)	
					Imperial	Units	
				LINE	GPS_ALT	CAL_RAD	-
				S101:372	95.5		92.3
				S201:372	207.7		197.1
				S301:372	303.5	Sec. 1	303.0
				S401:372	425.5		423.0
				S601:372	765.1	5	768.9
				S801:372	927.2	1	938.9
				S2001:372	1947.2		1938.1

9.5. APPENDIX V – DETAILED RADIOMETRIC PROCESSING

As noted in "Section 7.3.2 - NASVD Noise Reduction", enhanced noise reduction techniques were used in the data reduction process in an effort to improve the overall resolution. For the reasons stated in section 7.3.2, radiometric data was split into two streams ("Raw" and "Enhanced") and subjected to the following corrections procedures. Both data streams are delivered in the final data set.

Radiometric data, recorded in its raw state as a 256 channel spectrum (array indices specified as 0:255), are initially integrated into five elemental energy windows as defined below:

Window	Energy Range	Channel Range
Total Count	410 - 2810 keV	034 - 234
Potassium	1370 - 1570 keV	114 - 131
Uranium	1660 - 1860 keV	138 - 155

Thorium	2410 - 2810 keV	201 - 234
Cosmic	3000 - ∞ keV	255

'Live Time' correction 1.

The RSI RSX spectrometer does not suffer from conventional "dead time" and thus no specific correction is required, i.e.:

 $N_{n}^{1} = N_{n}^{0}$

 N_n^1 = live time corrected count rate for channel "n" $N_n^0 = raw$ count rate for channel "n"

2. **Cosmic Background correction**

Primarily caused by photons generated by cosmic ray interactions with nuclei present in the air, aircraft and detector system, an altitude dependent cosmic component is found in each of the four radioelement windows (TC, K, U and Th). A linear relationship exists between radiation detected in the high energy 'Cosmic' window (>3.0 MeV) and the cosmic component detected in the lower energy windows, i.e.

where :

$N_n = a_n * COS + b_n$

- counts due to Cosmic interaction in channel 'n' N_n : (where 'n' is any of TC, K, U or Th)
- COS: counts detected in the high energy Cosmic window (>3.0 MeV)
- a_n,b_n: linear Cosmic coefficients

The Cosmic coefficients are experimentally determined in a special calibration procedure. Counts are corrected for cosmic radiation by simple application of the above relationship, i.e.

 $N_{TC}^{2} = N_{TC}^{1} - (a_{TC} * COS + b_{TC})$ $N_{K}^{2} = N_{K}^{1} - (a_{K} * COS + b_{K})$ $N_{U}^{2} = N_{U}^{1} - (a_{U} * COS + b_{U})$ $N_{Th}^{2} = N_{Th}^{1} - (a_{Th} * COS + b_{Th})$

As a by-product of this operation, background levels of radiation associated with the aircraft are automatically removed since these levels are represented by the bTC,K,U,Th coefficients.

3. Atmospheric Background correction

A background component, primarily due airborne Radon daughter products, can remain in each of the radioelement windows. The level of background radiation is expected to vary temporally and geographically since the distribution of airborne sources depends on a host of factors such as atmospheric conditions, local ground conditions, etc.

Residual background levels of radiation were determined from data acquired on daily background test lines (flown at 1800 feet where geologic signal contributions are negligible). The data was corrected for Cosmic and Aircraft sources to estimate the remaining atmospheric radiation component.

4. Compton Scatter correction

A gamma ray photon of a particular energy may collide with an electron, impart some of its energy to that electron, and be scattered as a lower energy photon. This phenomena - known as Compton Scattering - will cause some incident photons to be wrongly classified as lower energy events. The practical result of this phenomenon is that, for example, a fraction of incoming Thorium radiation will appear in the Uranium and Potassium energy windows, and a fraction of incoming Uranium radiation will appear in the Potassium window. A very small amount of Uranium radiation may also be 'back-scattered' to the Thorium window. Effectively a channel interaction, this is corrected for by the application of Compton Stripping ratios. Corrected Potassium, Uranium and Thorium countrates are calculated by application of the following relations:

$$\begin{split} \mathbf{N^4}_{Th} &= (\mathbf{N^3}_{Th} - \mathbf{a^*N^3}_U) \,/ \,(\,1 - \mathbf{a^*\alpha}) \\ \mathbf{N^4}_U &= (\mathbf{N^3}_U - \alpha^*\mathbf{N^3}_{Th}) \,/ \,(1 - \mathbf{a^*\alpha}) \\ \mathbf{N^4}_K &= (\mathbf{N^3}_K - \beta^*\mathbf{N^4}_{Th} - \gamma^*\mathbf{N^4}_U) \\ \mathbf{N^4}_{TC} &= \,\mathbf{N^3}_{TC} \end{split}$$

where :

- N⁴_n: Compton corrected count-rate for channel 'n' ('n' is TC, K, U or Th as indicated)
- N³_n: background corrected count-rate for channel 'n' ('n' is TC, K, U or Th as indicated)
- α : Th \rightarrow U stripping ratio
- β : Th \rightarrow K stripping ratio
- $\gamma: U \rightarrow K$ stripping ratio
- a: $U \rightarrow$ Th stripping ratio ("back-scatter")

Values for each of the four Compton stripping ratios are determined by formal calibration on standardized radiometric calibration pads. Prior to use in the above relation, the α , β and γ coefficients (originally determined at ground level) are adjusted for aircraft terrain clearance by applying the following corrections:

$$\begin{split} \gamma &= \gamma + 0.00049 * h_{STP} \\ \beta &= \beta + 0.00065 * h_{STP} \\ \gamma &= \gamma + 0.00069 * h_{STP} \end{split}$$

Where h_{STP} is the aircraft terrain clearance corrected to standard temperature and pressure (see step 5 following).

Altitude Attenuation correction

Within the terrain clearances normally encountered in airborne radiometric surveys, ground originating radiation is assumed to attenuate exponentially with distance from source, i.e.

where :

5.

 $N_h = N_0 e^{-\mu h}$

 $N_{n}^{5} = N_{n}^{4} * e^{-\mu n(hs - hstp)}$

 N_h : count-rate at height = h

 N_0 : count-rate at height = 0

μ: altitude attenuation coefficient

The attenuation coefficients, which are specific to each of the four radioelement windows, are evaluated using data from a special calibration exercise (see 9.8 Appendix VIII: Altitude Attenuation Coefficients).

Variation due to terrain clearance is removed from the data by applying the simple relationship noted above in the following manner:

where :

N⁵_n: height corrected count-rate for channel 'n' ('n' is any of TC, K, U or Th)

- N_n^4 : Compton corrected count-rate for channel 'n' (note that Compton corrections do not apply to Total Count so that N_1^4 is, in fact, the un-modified N_1^3)
- μ_n : altitude attenuation coefficient for channel 'n'

h_s: nominal survey terrain clearance

h_{stp}: actual terrain clearance corrected to STP

Indicated terrain clearance is first corrected to standard temperature (flight logs) and calculated pressure (Pressure=101325*(1-0.00002255778AH)^{5.25588} by applying the following steps:

 $h_{stp} = (h*273.15*P)/[(T+273.15)*P_{sl}]$

where:

 h_{stp} = corrected terrain clearance h = measured terrain clearance

P = measured atmospheric pressure, in mB

T = temperature, in degrees Celsius

 P_{sl} = sea-level pressure (=1013.25 mB)

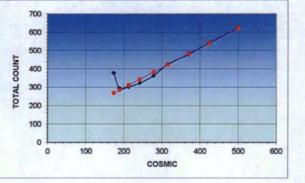
When interpreting height corrected data, care should be taken where terrain clearances significantly exceed the nominal (or programmed) survey clearance since count-rates tend to be artificially boosted due to the exponential nature of the correction algorithm.

6. Sensitivity Factors

Corrected ROI (TC, K, U, Th) channel data in counts per second were converted to concentration units (respectively nGy/h, %K, ppm eU, ppm eTh) by application of sensitivity factors determined during a calibration flight over the Breckenridge Calibration Range located near Ottawa Canada (see 9.9 Appendix IX – Sensitivity Factors)

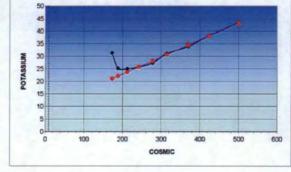
9.6. APPENDIX VI - COSMIC CALIBRATION

TERRAQUEST LTD

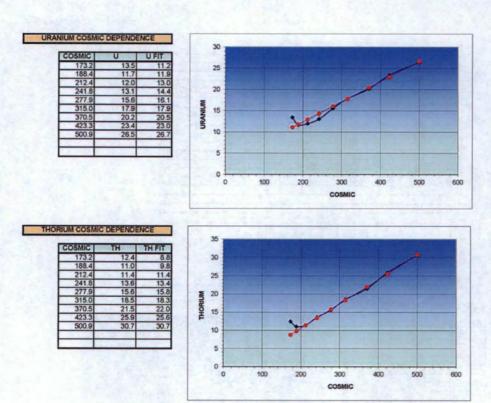

COSMIC ALTITUDE DEPENDENCE

C192.2	-	performed a	at Uranium (City, SK [Xk	(\$372]	The State of State
LINE	GPS ALT metres	TC cps	K cps	U cps	TH cps	COSMIC
S1000:372	703.4	376.8	31.3	13.5	12.4	173.2
S2000:372	883.5	292.9	25.2	11.7	11.0	188.4
\$3000:372	1190.5	301.1	25.0	12.0	11.4	212.4
S4000:372	1476.2	322.2	25.7	13.1	13.6	241.8
\$5000:372	1763.4	361.9	27.4	15.6	15.6	277.9
S6000:372	2054.9	422.3	31.0	17.9	18.5	315.0
\$7000:372	2354.8	477.8	33.9	20.2	21.5	370.5
\$8000:372	2638.6	540.1	38.0	23.4	25.9	423.3
\$9000:372	2951.6	622.2	43.4	26.5	30.7	500.9
\$9050:372	3109.3	686.8	46.7	29.6	33.9	538.0

	C	OSMIC COE	FFICIENTS	Contraction of the second
Land Street of	COS_CO	MPONENT,	= a, COSM	IIC+b _n
		Slope (a _n)	Intercept (b _n)	
2.12	Total Count	1.0839	79.4226	
	Potassium	0.0678	9.2854	
1.1.1	Uranium	0.0473	2.9816	
13.6	Thorium	0.0670	-2.8289	


TOTAL COUNT COSMIC DEPENDENCE

COSMIC	TC	TC FIT
173.2	376.8	267.1
188.4	292.9	283.7
212.4	301.1	309.6
241.8	322.2	341.5
277.9	361.9	380.6
315.0	422.3	420.8
370.5	477.8	481.0
423.3	540.1	538.3
500.9	622.2	622.3



POTASSIUM COSMIC DEPENDENCE

173.2 31.3 21. 188.4 25.2 22. 212.4 25.0 23. 241.8 25.7 25. 277.9 27.4 28. 315.0 31.0 30.	COSMIC	K	K FIT
212.4 25.0 23. 241.8 25.7 25. 277.9 27.4 28. 315.0 31.0 30.	173.2	31.3	21.0
241.8 25.7 25. 277.9 27.4 28. 315.0 31.0 30.	188.4	25.2	22.1
277.9 27.4 28. 315.0 31.0 30.	212.4	25.0	23.7
315.0 31.0 30.	241.8	25.7	25.7
	277.9	27.4	28.1
	315.0	31.0	30.6
370.5 33.9 34.	370.5	33.9	34.4
423.3 38.0 38.	423.3	38.0	38.0
500.9 43.4 43.	500.9	43.4	43.3

Page 1/2

TERRAQUEST LTD

COSMIC ALTITUDE DEPENDENCE

9.7. APPENDIX VII - COMPTON COEFFICIENTS

RADIATION SOLUTIONS INC

CALIBRATION SHEET

							Instrument:	RSX-5
Custome	r: Terra	aquest					Date:	August 21, 2
Contact:							Tech.:	Jim C
Console	N/A						Job Order:	RMA# 10511
Detector							Customer PO	PO#
Detector								
Channels	: 1024		C Offset: N/A	_				
	F	A1	A2		A3	A4	A5	
High Volt	ages	672	714	(648	658	657	
Stripping	Constant		his system"	**	normal"	7		
Alpha		1. 1. 2. 1.	0.279	578	0.250			
Beta		1	0.427		0.400			
Gamma			0.768		0.810			
a	a		0.051					
b			0.001		0.000			
g	0.001			0.003				
ROI#	Chan	nel	IAEA Specific [keV]			Labe		
1	137-9	37	410-2810)	Total Count			
2	457-5	23	1370-1570	1	Potassium K			
3	553-6	520	1660-1860	1	Uranium U			
4	803-9	37	2410-2810		Thorium Th		Th	
5								
6					12-15-1	3		
7					1 grant in		and the second second	
8	553-6	20	1660-1860		Ur	anium Up	oper U	
Det#	Peak	Ce	Cs FWHM	-	Peak Th		Th FWHM	
A1	219		7.72	-	871.80	-	4.35	
	213		1.12		571.00		4.00	

Det#	Peak Cs	Cs FWHM	Peak Th	Th FWHM
A1	219.35	7.72	871.80	4.35
A2	219.50	8.12	872.63	4.69
A3	219.37	8.12	872.53	4.84
A4	219.41	8.01	872.14	4.83
Sum Dn	219.40	7.99	872.29	4.70
Sum Up	218.79	8.51	872.28	5.06

386 Watline Avenue Mississauga • Ontario Canada L4Z 1X2 • Tel (905) 890 1111 • Fax (905) 890 1964 • e-mail sales@radiationsolutions.ca

RADIATION SOLUTIONS INC

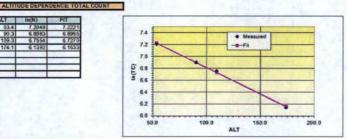
CALIBRATION SHEET

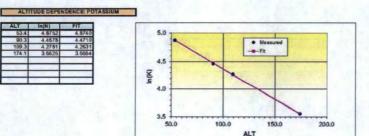
							Instrument:	RSX-4
Customer:	Terraqu	uest					Date:	July 28, 201
Contact:		s Barrie					Tech.:	Jim C
Console :	N/A						Job Order:	RMA# 10494
Detector 1:	5423						Customer PO	PO#
Detector 2:	N/A							
Channels:	1024	ADC	Offset: N/A					
	Г	A1	A2	F	3	A4	A5	
High Volta	ges	636	627	-	26	659	n/a	
Stripping (Constant	"thi	s system"	"n	ormal"			
Alpha	11 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1		0.280		0.250	-		
Beta			0.405		0.400			
Gamma	112		0.763		0.810			
a	1000		0.048		0.060			
b	-	1.20	0.001		0.000			
g			0.003		0.003			
ROI#	l# Channel		IAEA Specification [keV]			Label		
1	137-937	1	410-2810		Total Count		unt	
2	457-523	3	1370-1570		Potassium K		mK	
3	553-620)	1660-1860		Uranium U			
4	803-937		2410-2810		Thorium Th		Th	
5								
6	· · · · · · · · · · · · · · · · · · ·		1			1.	SV ALSO	
7		5 1 .			C CLA	Sec. 1		
8	553-620		1660-1860		U	ranium Up	oper U	
D. 11			0. 54/144	1	Deal T			
Det#	Peak (and the second second	Cs FWHM	-	Peak Th		Th FWHM	
A1	220.76		7.17		872.12		4.23	

Feak US	US I WITHIN	Feat III	THE FUTURE
220.76	7.17	872.12	4.23
220.82	7.04	872.76	4.35
219.27	7.90	873.03	4.91
220.38	6.81	871.92	3.74
220.38	7.21	872.41	4.28
	220.76 220.82 219.27 220.38	220.76 7.17 220.82 7.04 219.27 7.90 220.38 6.81	220.76 7.17 872.12 220.82 7.04 872.76 219.27 7.90 873.03 220.38 6.81 871.92

386 Watline Avenue Mississauga + Ontario Canada L4Z 1X2 + Tel (905) 890 1111 + Fax (905) 890 1964 + e-mail sales@radiationsolutions.ca

14/12/2014

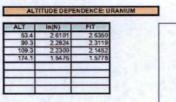

9.8. APPENDIX VIII- ALTITUDE ATTENUATION

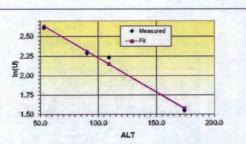

ric Procedures and Calibrat

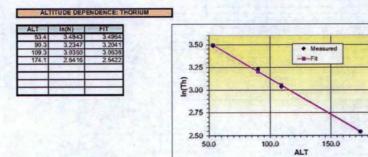
The following presents the calculation of the four sets of altitude attenuation correction coefficients (Total Count, Potassium, Uranium and Thorium) using data acquired at Breckenridge ON on November 15, 2014

TERRAQUEST LTD

	TER RADIOMETRIC AL Pack Install (RSI_1		ENUATION C		
LINE	Average Clearance, STP Corrected (metres)	тс	K (cor. CPS)	U	тн
S1200:0	53.4	1346.0	131.0	13.6	32.0
S1300:0	90.3	990.6	86.3	9.8	25
S1400:0	109.3	858.7	72.1	9.3	20
S1600:0	174.1	463.7	34.9	4.7	12.
S1600:0	202.9	305.3	18.7	3.4	8.
S1700:0	238.2	309.0	20.0	2.7	7)
S1800:0	256.5	314.5	21.3	3.2	8.
	ALTITUDE Celculated by LSQ		ON COEFFIC = ALT*µ + In		n
	TC	Hrc."	-0.008854	In(Nelte =	7.694
	K	µ _k =	-0.010924	In(Ne)x =	5.456
111.13	U	µ., =	-0.008758	In(Ne)u =	3.102
	Th	μn =	-0.007895	In(Na)ra =	3.916


Page 1/2


TERRAQUEST LTD


Radiometric Procedures and Calibrations

14/12/2014

200.0

Atitude Attenuation Coefficients

Page 2/2

9.9. APPENDIX IX – SENSITIVITY FACTORS

Note: Exponential Fit Parameters list the results of applying exponential regression analysis to the experimental data and allow the calculation of system sensitivities at any given altitude: "m" and "b" factors are applied using the general exponential relation $y = b * m^x$. For example, given m = 0.9934 and b = 73.5360, the Total Count sensitivity at clearance 80 metres is calculated as $S_{80m} = 73.5360 * 0.9934^{80}$

The Breckenridge calibration was flown on November 15, 2014.

Measured Ground Values:					
Exp (TC) : nGy/hr 56.5000					
%K	1.8900				
ppm U	1.9500				
ppm Th	7.3000				

C-GCFZ Double Pack (RSI-5423, 5587) - Breckenridge 15-N Job Ref : B429 (Ground Survey by Tyler Diplock, RSI Calibrated Portable 6 **** Radar Altimeter values adjusted to STP TC,K,U,Th have been stripped with height adjusted values

Line	Clearance (metres)	TC (cps)	K (cps)	U (cps)	Th (cps)	STC (cps/unit)	SK (cps/unit)	SU (cps/unit)	STH (cps/unit)
S1200:0	53.4	1346.0	131.0	13.6	32.6	23.82	69.31	6.97	4.47
S1300:0	90.3	990.6	86.3	9.8	25.4	17.53	45.66	5.03	3.48
S1400:0	109.3	858.7	72.1	9.3	20.8	15.20	38.15	4.77	2.85
S1500:0	174.1	463.7	34.9	4.7	12.7	8.21	18.47	2.41	1.74
					3				
10.00									
		-					-		-

and the second second		"m"	"b"
Exponential Fit Parameters:	TC	0.9912	38.8756
	K	0.9891	124.0110
	U	0.9913	11.4108
	TH	0.9921	6.8822

	ities
80	ARANCE:
19.15	TC
51.75	К
5.66	U
3.66	TH

File: B429-xks

9.10. APPENDIX X – README FILE

Terraquest Ltd. B429 Maurice Creek, Declan Resources Fixed Wing Horizontal Magnetic Gradiometry and Radiometric Survey

DATA ARCHIVE FOR **B429 Maurice Creek** CONTENTS

- 1.1 /DATABASE
- 1.2 /GRIDS
- 1.3 /MAPS
- 1.4 /JPEGS 1.5 /ReadMe
- 1.5 / Readine

1.1 /DATABASE

B429ARC_Alberta_MAG.gdb B429ARC_Alberta_MAG.xyz B429ARC_Alberta_SPEC.gdb

1.2 /GRIDS

B429_Digitalterrainmodel.grd B429_TotalMagneticIntensity.grd B429_CalculatedVerticalDerivative.grd B429_MeasuredLongitudinalGradient.grd B429_MeausredLateralGradient.grd B429_ReconstructedTotalField.grd

- STC.grd SK.grd SU.grd STH.grd STC_NAS4.grd SK_NAS4.grd SU_NAS4.grd STH_NAS4.grd
- 1.3 /MAPS

B429-FlightPath-01.map B429-DigitalTerrainModel-02.map B429-TotalMagneticIntensity-03.map B429-CalculatedVerticalDerivative-04.map B429-MeasuredLongitudinalGradient-06.map B429-MeausredLateralGradient-05.map B429-ReconstructedTotalField-07.map

B429-TotalCount-08.map B429-Potassium-09.map B429-Uranium-10.map B429-Thorium-11.map B429-Ternary-12.map

1.4 /JPEGS

B429-FlightPath-01.jpg B429-DigitalTerrainModel-02.jpg B429-TotalMagneticIntensity-03.jpg B429-CalculatedVerticalDerivative-04.jpg B429-MeasuredLongitudinalGradient-06.jpg

Digital Terrain Model (m Above Sea Level) Total Magnetic Intensity (nT) Calculated 1st vertical derivative of TMI (nT/m) Measured Longitudinal Horizontal Gradient (nT/m) Measured Lateral Horizontal Gradient (nT/m) Reconstructed Total Field (created from gradients using Nelson Method) (pseudonT) Corrected Total Count, nGy/h Corrected Potassium, %K Corrected Uranium, ppm eU Corrected Thorium, ppm eTh Corrected Total Count, nGy/h, NASVD enhanced Corrected Potassium, %K, NASVD enhanced Corrected Uranium, ppm eU, NASVD enhanced

Flight Path

Digital Terrain Model (m Above Sea Level) Total Magnetic Intensity (nT) Calculated 1st vertical derivative of TMI (nT/m) Measured Longitudinal Horizontal Gradient (nT/m) Measured Lateral Horizontal Gradient (nT/m) Reconstructed Total Field (created from gradients using Nelson method) (pseudonT) Corrected Total Count (nGy/h), NASVD enhanced Corrected Potassium (%K), NASVD enhanced Corrected Total Count (ppm eU), NASVD enhanced Corrected Total Count (ppm eTh), NASVD enhanced Ternary Image (RGB colour model - RED:K, GREEN:TH, BLUE:U), NASVD enhanced

Flight Path

Digital Terrain Model (m Above Sea Level) Total Magnetic Intensity (nT) Calculated 1st vertical derivative of TMI (nT/m) Measured Longitudinal Horizontal Gradient (nT/m) B429-MeausredLateralGradient-05.jpg B429-ReconstructedTotalField-07.jpg

B429-TotalCount-08.jpg B429-Potassium-09.jpg B429-Uranium-10.jpg B429-Thorium-11.jpg B429-Ternary-12.jpg Measured Lateral Horizontal Gradient (nT/m) Reconstructed Total Field (created from gradients using Nelson method) (pseudonT) Corrected Total Count (nGy/h), NASVD enhanced Corrected Potassium (%K), NASVD enhanced Corrected Total Count (ppm eU), NASVD enhanced Corrected Total Count (ppm eTh), NASVD enhanced Ternary Image (RGB colour model - RED:K, GREEN:TH, BLUE:U), NASVD enhanced

File: B429-xks

Operations Report: Declan Resources Inc., MAURICE CREEK Project High Resolution Horizontal Aeromagnetic and Radiometric Survey, NE Alberta

B429 Maurice Creek: B429ARC_Alberta_MAG channel list 10Hz gdb

Note- Traverse lines in the databases are denoted with an L, Tie lines with a T** The Magnetics data files for B429 Maurice Creek survey contain the following channels:

FLIGHTnumberFlight numberDATEdateDate in YYYY/MM/DD formatX_WINmetresEasting (WGS84, UTM Zone 12 N windoweY_WINmetresNorthing (WGS84, UTM Zone 12 N windoweLATdegreesLatitude WGS84 (decimal degrees)TIMEsecondsUTC Time (seconds after midnight)	PARAMETER	UNIT	DESCRIPTION
DATE date date Date in YYYY/MM/DD format X WIN metres Easting (WGS84, UTM Zone 12 N windowe LAT degrees Latitude WGS84 (DTM Zone 12 N windowe LAT degrees Latitude WGS84 (DTM Zone 12 N windowe LAT degrees Latitude WGS84 (decimal degrees) TIME seconds UTC Time (seconds after midnigh) hhmmss hhmmss UTC Time (seconds after midnigh) ALT metres GPS Altitude (metres Above Sea Level) ATA metres GPS Altitude (metres Above Sea Level) DTM_final metres Digital Terrain Model (metres Above Ground Level) DTAPP metres Computer programed drape (metres Above Sea VMX nT Fluxgate X component YMX nT Fluxgate Y component TTRAW nT Fluxgate Y component TTRAW nT Raw Magnetic Intensity (left sensor) TF2RAW nT Raw Magnetic Intensity (tail sensor) TF2RAW nT Compensated Magnetic Intensity (left sensor) TF2CMP nT Compensated Magnetic Intensity (tail sensor) TF3CMP nT Total Magnetic Intensity (right sensor) Diurnal nT Total Magnetic Intensity (right sensor) TF3CD_IVI nT Total Magnetic Intensity (tail sensor) Diurnal nT Magnetic Intensity (diurnal, lagged, and heading corrected tie- 1i leveled) TF3CD_ML nT Magnetic Intensity (diurnal, lagged, and heading corrected, tie- line leveled, and micro-levelled, fin processed TMI) HX_FINAL nT/m Measured Lateral horizontal gradient	LINE	number	Line number
X MINmetresEasting (WGS84, UTM Zone 12 N windoweLATmetresNorthing (WGS84, UTM Zone 12 N windoweLATdegreesLatitude WGS84 (decimal degrees)TIMEsecondsUTC Time (seconds after midnight)hhmmsshhmmssUTC Time (seconds after midnight)ALTmetresGPS Altitude (metres Above Sea Level)RADAR_MmetresDigital Terrain Model (metres Above Ground Level)DTM_finalmetresDigital Terrain Model (metres Above Sea Level)DrapemetresComputer programed drape (metres Above Sea Level)VMXnTFluxgate X componentVMZnTFluxgate Z componentVMXnTFluxgate Z componentTFIRAWnTRaw Magnetic Intensity (left sensor)TF2RAWnTRaw Magnetic Intensity (left sensor)TF3CAPnTCompensated Magnetic Intensity (left sensor)TF3CMPnTCompensated Magnetic Intensity (right sensor)TF3CD_lvlnTTotal Magnetic Intensity (right sensor)TF3CD_MLnTTotal Magnetic Intensity (right sensor)TF3CD_MLnTCompensated Magnetic Intensity (right sensor)TF3CD_MLnTTotal Magnetic Intensity (diurnal, lagged, and heading corrected tie-11Lagged, and heading corrected, tie-11lag	FLIGHT	number	Flight number
Y_WINmetresNorthing (WGS84,UTM Zone 12 N windoweLATdegreesLatitude WGS84 (decimal degrees)LATdegreesUTC Time (Seconds after midnight)hhmmsshhmmssUTC Time (Hours Minutes and Seconds)ALTmetresGPS Altitude (metres Above Sea Level)RDAR_MmetresRadar Altitude (metres Above GroundDTM_finalmetresDigital Terrain Model (metres Above Sea Level)DrapemetresComputer programed drape (metres Above Sea Level)VMXnTFluxgate X componentVMXnTFluxgate X componentVMXnTFluxgate X componentTF1RAWnTRaw Magnetic Intensity (left sensor)TF2RAWnTRaw Magnetic Intensity (left sensor)TF2RAWnTCompensated Magnetic Intensity (left sensor)TF3CMPnTCompensated Magnetic Intensity (left sensor)TF3CMPnTCompensated Magnetic Intensity (right sensor)TF3CD_lvlnTCompensated Magnetic Intensity (left sensor)TF3CD_lvlnTTotal Magnetic Intensity (right sensor)TF3CD_MLnTCompensated Magnetic Intensity (tail sensor)TF3CD_MLnTTotal Magnetic Intensity (diurnal, lagged, and heading corrected tie-11Laged, and heading corrected, tie-11lagged, and heading corrected, tie-11Laged, and heading corrected, tie-11lagged, and heading corrected, tie-11HX_FINALnT/mMeasured Lateral horizontal gradientHY_FINALnT/mMeasured Lateral horizontal gradient	DATE	date	Date in YYYY/MM/DD format
Y MINmetresNorthing (WGS84,UTM Zone 12 N windowe LATLATdegreesLatitude WGS84 (decimal degrees)LATdegreesUTC Time (seconds after midnight)hhmmsshhmmssUTC Time (Hours Minutes and Seconds)ALTmetresGPS Altitude (metres Above Sea Level)RADAR_MmetresRadar Altitude (metres Above GroundDTM_finalmetresDigital Terrain Model (metres Above Sea Level)DrapemetresComputer programed drape (metres Above Sea Level)VMXnTFluxgate X componentVMXnTFluxgate X componentVMXnTFluxgate X componentTF1RAWnTRaw Magnetic Intensity (left sensor)TF2RAWnTRaw Magnetic Intensity (left sensor)TF2RAWnTCompensated Magnetic Intensity (left sensor)TF3CMPnTCompensated Magnetic Intensity (left sensor)TF3CMPnTCompensated Magnetic Intensity (right sensor)DiurnalnTDiurnal Magnetic Intensity (right sensor)TF3CD_lvlnTCompensated Magnetic Intensity (right sensor)TF3CD_LvlnTCompensated Magnetic Intensity (right sensor)TF3CD_MLnTTotal Magnetic Intensity (diurnal, lagged, and heading corrected tie-11Laged, and heading corrected, tie-11lagged, and heading corrected, tie-11Laged, and heading corrected, tie-11lagged, and heading corrected, tie-11HX_FINALnT/mMeasured Lateral horizontal gradientHY_FINALnT/mMeasured Lateral horizontal g	X WIN	metres	Easting (WGS84, UTM Zone 12 N windowed)
LĀT degrees Latitude WGS84 (decimal degrees) TIME seconds UTC Time (seconds after midnight) hhmmss hhmms UTC Time (Hours Minutes and Seconds) ALT metres GPS Altitude (metres Above Sea Level) RADAR_M metres GPS Altitude (metres Above Ground Level) DTM_final metres Digital Terrain Model (metres Above S Level) Drape metres Computer programed drape (metres Above VMX nT Fluxgate X component VMZ nT Fluxgate X component VMZ nT Fluxgate X component TFIRAW nT Fluxgate Z component TFIRAW nT Raw Magnetic Intensity (left sensor) TF2RAW nT Raw Magnetic Intensity (right sensor) TF2RAW nT Compensated Magnetic Intensity (left sensor) TF2CMP nT Compensated Magnetic Intensity (right sensor) TF3CMP nT Compensated Magnetic Intensity (right TF3CD_Lvl nT Total Magnetic Intensity (tail TF3CD_ML nT Maw Magnetic Intensity (tail ternsity (tail) ternsity (tail ternsity (tail) ternsity (tail ternsity (tail) ternsity (tail, ternsity (tail) ternsity (tail, ternsity (tail, ternsity (tail, ternsity (tail) ternsity (tail, ternsity (tail, ternsity (tail, ternsity (tail, ternsity (tail, ternsity (tail, ternsity (tail, ternsity (tail, ternsity (ternsity (tail), ternsity (ternsity (tail), ternsity (ternsity (ternsity (tail), ternsity (ternsity (te	YWIN	metres	
TIMEsecondsUTC Time (seconds after midnight)hhmmsshhmmssUTC Time (Hours Minutes and Seconds)ALTmetresGFS Altitude (metres Above Sea Level)RADAR_MmetresDigital Terrain Model (metres Above Sea Level)DTM_finalmetresDigital Terrain Model (metres Above Sea Level)DrapemetresComputer programed drape (metres Above Sea Level)VMXnTFluxgate X componentVMXnTFluxgate X componentVMXnTFluxgate Z componentVMXnTRaw Magnetic Intensity (left sensor)TF2RAWnTRaw Magnetic Intensity (left sensor)TF3CMPnTCompensated Magnetic Intensity (right sensor)TF3CD_lvlnTDiurnal Magnetic Intensity (right sensor)TF3CD_lvlnTTotal Magnetic Intensity (diurnal, lagged, and heading corrected tie- liTF3CD_MLnTIleveled)Ttal Magnetic Intensity (diurnal, lagged, and heading corrected, tie- liHx_FINALnT/mMeasured Lateral horizontal gradientHY FINALnT/mMeasured Longitudinal horizontal	LAT		
hhmmsshhmmssUTC Time (Hours Minutes and Seconds)ALTmetresGFS Altitude (metres Above Sea Level)RADAR_MmetresRadar Altitude (metres Above Ground Level)DTM_finalmetresDigital Terrain Model (metres Above Sea Level)DrapemetresComputer programed drape (metres Above Sea Level)VMXnTFluxgate X component VMZVMXnTFluxgate X componentVMXnTFluxgate Z component TFIRAWTFIRAWnTRaw Magnetic Intensity (left sensor)TF2RAWnTRaw Magnetic Intensity (tail sensor)TF1CMPnTCompensated Magnetic Intensity (left sensor)TF2CMPnTCompensated Magnetic Intensity (right sensor)TF3CDPnTCompensated Magnetic Intensity (right sensor)TF3CD_lvlnTTotal Magnetic Intensity (durnal, lagged, and heading corrected tie- li lagged, and heading corrected tie- li lagged, and heading corrected, tie- line leveled, and micro-levelled, fin processed TMI)HX_FINALnT/mMeasured Lateral horizontal gradientHY_FINALnT/mMeasured Longitudinal horizontal		-	
ALT metres GPS Altitude (metres Above Sea Level) RADAR_M metres Radar Altitude (metres Above Ground Level) DTM_final metres Digital Terrain Model (metres Above S Level) Drape metres Computer programed drape (metres Above Sea Level VMX nT Fluxgate Y component VMY nT Fluxgate Z component TFIRAW nT Raw Magnetic Intensity (left sensor) TF2RAW nT Raw Magnetic Intensity (left sensor) TF2RAW nT Compensated Magnetic Intensity (left sensor) TF2RAW nT Compensated Magnetic Intensity (left sensor) TF2CMP nT Compensated Magnetic Intensity (left sensor) TF3CMP nT Compensated Magnetic Intensity (tail sensor) TF3CMP nT Compensated Magnetic Intensity (tail sensor) TF3CMP nT Compensated Magnetic Intensity (tail sensor) TF3CD_lvl nT Total Magnetic Intensity (diurnal, lagged, and heading corrected tie- li leveled) TF3CD_ML nT Total Magnetic Intensity (diurnal, lagged, and heading corrected, tie- line leveled, and micro-levelled, fin processed TMI) HX_FINAL nT/m Measured Lateral horizontal gradient HY_FINAL nT/m Measured Lateral horizontal gradient	hhmmss		
RADAR_MmetresRadar Altitude (metres Above Ground Level)DTM_finalmetresDigital Terrain Model (metres Above S Level)DrapemetresComputer programed drape (metres Above Sea Level)VMXnTFluxgate X componentVMYnTFluxgate Y componentVMZnTFluxgate Z componentTF1RAWnTRaw Magnetic Intensity (left sensor)TF2RAWnTRaw Magnetic Intensity (tail sensor)TF3RAWnTCompensated Magnetic Intensity (left sensor)TF2CMPnTCompensated Magnetic Intensity (left sensor)TF3CMPnTCompensated Magnetic Intensity (right sensor)DiurnalnTDiurnal Magnetic Intensity (diurnal, lagged, and heading corrected tie- 11 lagged, and heading corrected, tie- line leveled, more line leveled, and micro-levelled, fin processed TMI)HX_FINALnT/mMeasured Lateral horizontal gradient HY_FINAL			
Level)DTM_finalmetresDrapemetresDrapemetresVMXnTFluxgate X componentVMYnTFluxgate X componentVMZnTFluxgate Z componentVMZnTFluxgate Z componentTFIRAWnTRaw Magnetic Intensity (left sensor)TF2RAWnTRaw Magnetic Intensity (right sensor)TF1CMPnTCompensated Magnetic Intensity (leftTF2CMPnTCompensated Magnetic Intensity (right sensor)TF3CMPnTDiurnalnTTF3CD_lvlnTTF3CD_MLnTTF3CD_MLnTTF3CD_MLnTTF3CD_MLnTTF3CD_MLnTTF3CD_MLnTTF3CD_MLnTTF3CD_MLnTTF3CD_MLnTTF3CD_MLnTTF3CD_MLnTTF3CD_MLnTTF3CD_MLnTTF3CD_MLnTTF3CD_MLnTMagnetic Intensity (diurnal, lagged, and heading corrected tie-1incleveled)Total Magnetic Intensity (diurnal, lagged, and heading corrected, tie-1incleveled, and micro-levelled, fin processed TMI)HX_FINALnT/mHY_FINALnT/mMeasured Lateral horizontal gradient			
DTM_finalmetresDigital Terrain Model (metres Above S Level)DrapemetresComputer programed drape (metres Above Sea Level)VMXnTFluxgate X componentVMYnTFluxgate Y componentVMZnTFluxgate Z componentTFIRAWnTRaw Magnetic Intensity (left sensor)TF2RAWnTRaw Magnetic Intensity (tail sensor)TF2RAWnTCompensated Magnetic Intensity (left sensor)TF2RAWnTCompensated Magnetic Intensity (left sensor)TF2RAWnTCompensated Magnetic Intensity (left sensor)TF2CMPnTCompensated Magnetic Intensity (right sensor)TF3CMPnTCompensated Magnetic Intensity (right sensor)DiurnalnTDiurnal Magnetic Intensity (tail sensor)TF3CD_lvlnTTotal Magnetic Intensity (diurnal, lagged, and heading corrected tie- 1iTF3CD_MLnTIcveled)TF3CD_MLnTMeasured Lateral horizontal gradientHX_FINALnT/mMeasured Longitudinal horizontal		no ci co	
Level)DrapemetresComputer programed drape (metres Abov Sea LevelVMXnTFluxgate X componentVMYnTFluxgate X componentVMZnTFluxgate Z componentTF1RAWnTRaw Magnetic Intensity (left sensor)TF2RAWnTRaw Magnetic Intensity (right sensor)TF1CMPnTCompensated Magnetic Intensity (left sensor)TF2CMPnTCompensated Magnetic Intensity (left sensor)TF3CMPnTCompensated Magnetic Intensity (right sensor)TF3CMPnTCompensated Magnetic Intensity (right sensor)DiurnalnTCompensated Magnetic Intensity (tail sensor)TF3CD_lvlnTCompensated Magnetic Intensity (tail sensor)TF3CD_lvlnTTotal Magnetic Intensity (diurnal, lagged, and heading corrected tie- li leveled)TF3CD_MLnTTotal Magnetic Intensity (diurnal, lagged, and heading corrected, tie- line leveled, and micro-levelled, fin processed TMI)HX_FINALnT/mMeasured Lateral horizontal gradientHY_FINALnT/mMeasured Longitudinal horizontal	DTM final	metres	
DrapemetresComputer programed drape (metres Abov Sea LevelVMXnTFluxgate X componentVMYnTFluxgate Y componentVMZnTFluxgate Z componentTFIRAWnTRaw Magnetic Intensity (left sensor)TF2RAWnTRaw Magnetic Intensity (right sensor)TF3RAWnTRaw Magnetic Intensity (right sensor)TF3CMPnTCompensated Magnetic Intensity (left sensor)TF3CMPnTCompensated Magnetic Intensity (left sensor)TF3CMPnTCompensated Magnetic Intensity (right sensor)DiurnalnTCompensated Magnetic Intensity (tail sensor)TF3CD_lvlnTCompensated Magnetic Intensity (tail sensor)TF3CD_lvlnTTotal Magnetic Intensity (diurnal, lagged, and heading corrected tie- liTF3CD_MLnTTotal Magnetic Intensity (diurnal, lagged, and heading corrected, tie- line leveled, and micro-levelled, fin processed TMI)HX_FINALnT/mMeasured Lateral horizontal gradientHY_FINALnT/mMeasured Longitudinal horizontal	Dim_iinai	metres	
VMXnTSea LevelVMXnTFluxgate X componentVM2nTFluxgate Y componentTF1RAWnTRaw Magnetic Intensity (left sensor)TF2RAWnTRaw Magnetic Intensity (right sensor)TF3RAWnTRaw Magnetic Intensity (tail sensor)TF1CMPnTCompensated Magnetic Intensity (left sensor)TF2CMPnTCompensated Magnetic Intensity (right sensor)TF3CMPnTCompensated Magnetic Intensity (right sensor)TF3CMPnTCompensated Magnetic Intensity (right sensor)DiurnalnTDiurnal Magnetic Intensity (raw)TF3CD_lvlnTTotal Magnetic Intensity (raw)TF3CD_MLnTTotal Magnetic Intensity (diurnal, lagged, and heading corrected tie- liTF3CD_MLnTTotal Magnetic Intensity (diurnal, lagged, and heading corrected, tie-HX_FINALnT/mMeasured Lateral horizontal gradientHY_FINALnT/mMeasured Longitudinal horizontal	Drape	metres	
VMXnTFluxgate X componentVMYnTFluxgate Y componentVMZnTFluxgate Z componentTF1RAWnTRaw Magnetic Intensity (left sensor)TF2RAWnTRaw Magnetic Intensity (right sensor)TF3RAWnTRaw Magnetic Intensity (tail sensor)TF1CMPnTCompensated Magnetic Intensity (left sensor)TF2CMPnTCompensated Magnetic Intensity (left sensor)TF3CMPnTCompensated Magnetic Intensity (right sensor)DiurnalnTCompensated Magnetic Intensity (tail sensor)TF3CD_lvlnTCompensated Magnetic Intensity (tail sensor)TF3CD_lvlnTTotal Magnetic Intensity (diurnal, lagged, and heading corrected tie- liTF3CD_MLnTTotal Magnetic Intensity (diurnal, lagged, and heading corrected, tie-HX_FINALnT/mMeasured Lateral horizontal gradientHY_FINALnT/mMeasured Longitudinal horizontal	prape	mo di do	
VMYnTFluxgate Y componentVMZnTFluxgate Z componentTF1RAWnTRaw Magnetic Intensity (left sensor)TF2RAWnTRaw Magnetic Intensity (right sensor)TF3RAWnTRaw Magnetic Intensity (tail sensor)TF1CMPnTCompensated Magnetic Intensity (left sensor)TF2CMPnTCompensated Magnetic Intensity (left sensor)TF3CMPnTCompensated Magnetic Intensity (right sensor)DiurnalnTCompensated Magnetic Intensity (tail sensor)DiurnalnTDiurnal Magnetic Intensity (tail sensor)TF3CD_lvlnTTotal Magnetic Intensity (diurnal, lagged, and heading corrected tie- liTF3CD_MLnTIctal Magnetic Intensity (diurnal, lagged, and heading corrected, tie- line leveled)TF3CD_MLnTmagnetic Intensity (diurnal, lagged, and heading corrected, tie- line leveled, and micro-levelled, fin processed TMI)HX_FINALnT/mMeasured Lateral horizontal gradientHY_FINALnT/mMeasured Longitudinal horizontal	VMX	nT	
VMZnTFluxgate Z componentTF1RAWnTRaw Magnetic Intensity (left sensor)TF2RAWnTRaw Magnetic Intensity (right sensor)TF3RAWnTRaw Magnetic Intensity (tail sensor)TF1CMPnTCompensated Magnetic Intensity (left sensor)TF2CMPnTCompensated Magnetic Intensity (right sensor)TF3CMPnTCompensated Magnetic Intensity (right sensor)DiurnalnTCompensated Magnetic Intensity (tail sensor)TF3CD_lvlnTCompensated Magnetic Intensity (tail sensor)TF3CD_lvlnTDiurnal Magnetic Intensity (raw)TF3CD_lvlnTTotal Magnetic Intensity (diurnal, lagged, and heading corrected tie- liTF3CD_MLnTleveled)TF3CD_MLnTProcessed TMI)HX_FINALnT/mMeasured Lateral horizontal gradientHY_FINALnT/mMeasured Longitudinal horizontal			
TF1RAWnTRaw Magnetic Intensity (left sensor)TF2RAWnTRaw Magnetic Intensity (right sensor)TF3RAWnTRaw Magnetic Intensity (tail sensor)TF1CMPnTCompensated Magnetic Intensity (left sensor)TF2CMPnTCompensated Magnetic Intensity (right sensor)TF3CMPnTCompensated Magnetic Intensity (right sensor)DiurnalnTCompensated Magnetic Intensity (tail sensor)TF3CD_lvlnTCompensated Magnetic Intensity (raw)TF3CD_lvlnTTotal Magnetic Intensity (diurnal, lagged, and heading corrected tie- liTF3CD_MLnTleveled)TF3CD_MLnTmodel and heading corrected tie- liHX_FINALnT/mMeasured Lateral horizontal gradientHY_FINALnT/mMeasured Longitudinal horizontal			
TF2RAW nT Raw Magnetic Intensity (right sensor) TF3RAW nT Raw Magnetic Intensity (tail sensor) TF1CMP nT Compensated Magnetic Intensity (left sensor) TF2CMP nT Compensated Magnetic Intensity (right sensor) TF3CMP nT Compensated Magnetic Intensity (right sensor) TF3CMP nT Compensated Magnetic Intensity (tail sensor) Diurnal nT Compensated Magnetic Intensity (tail sensor) TF3CD_lvl nT Diurnal Magnetic Intensity (diurnal, lagged, and heading corrected tie- li lagged, and heading corrected, tie- line leveled) TF3CD_ML nT Total Magnetic Intensity (diurnal, lagged, and heading corrected, tie- line leveled, and micro-levelled, fin processed TMI) HX_FINAL nT/m Measured Lateral horizontal gradient HY_FINAL			
TF3RAW nT Raw Magnetic Intensity (tail sensor) TF1CMP nT Compensated Magnetic Intensity (left sensor) TF2CMP nT Compensated Magnetic Intensity (right sensor) TF3CMP nT Compensated Magnetic Intensity (tail sensor) Diurnal nT Compensated Magnetic Intensity (tail sensor) Diurnal nT Compensated Magnetic Intensity (tail sensor) Diurnal nT Diurnal Magnetic Intensity (raw) TF3CD_lvl nT Total Magnetic Intensity (diurnal, lagged, and heading corrected tie- li leveled) TF3CD_ML nT leveled) TF3CD_ML nT model and micro-levelled, fin processed TMI) HX_FINAL nT/m Measured Lateral horizontal gradient HY_FINAL			
TF1CMP nT Compensated Magnetic Intensity (left sensor) TF2CMP nT Compensated Magnetic Intensity (right sensor) TF3CMP nT Compensated Magnetic Intensity (tail sensor) Diurnal nT Diurnal Magnetic Intensity (raw) TF3CD_lvl nT Total Magnetic Intensity (diurnal, lagged, and heading corrected tie- li leveled) TF3CD_ML nT leveled) TF3CD_ML nT magnetic Intensity (diurnal, lagged, and heading corrected, tie- li line leveled) HX_FINAL nT/m Measured Lateral horizontal gradient HY_FINAL nT/m Measured Longitudinal horizontal			
TF2CMP nT Sensor) TF3CMP nT Compensated Magnetic Intensity (right sensor) Diurnal nT Compensated Magnetic Intensity (tail sensor) Diurnal nT Diurnal Magnetic Intensity (raw) TF3CD_lvl nT Total Magnetic Intensity (diurnal, lagged, and heading corrected tie- li TF3CD_ML nT leveled) Total Magnetic Intensity (diurnal, lagged, and heading corrected, tie- line leveled, and micro-levelled, fin processed TMI) HX_FINAL nT/m HY_FINAL nT/m			
TF2CMP nT Compensated Magnetic Intensity (right sensor) TF3CMP nT Compensated Magnetic Intensity (tail sensor) Diurnal nT Diurnal Magnetic Intensity (raw) TF3CD_lvl nT Total Magnetic Intensity (diurnal, lagged, and heading corrected tie- li TF3CD_ML nT leveled) Total Magnetic Intensity (diurnal, lagged, and heading corrected, tie- line leveled, and micro-levelled, fin processed TMI) HX_FINAL nT/m HY_FINAL nT/m	IT ICHT	111	
TF3CMP nT Sensor) Diurnal nT Compensated Magnetic Intensity (tail sensor) Diurnal nT Diurnal Magnetic Intensity (raw) TF3CD_lvl nT Total Magnetic Intensity (diurnal, lagged, and heading corrected tie- li TF3CD_ML nT leveled) Total Magnetic Intensity (diurnal, lagged, and heading corrected, tie- line leveled, and micro-levelled, fin processed TMI) HX_FINAL nT/m HY_FINAL nT/m	TEOCMP	T	
TF3CMP nT Compensated Magnetic Intensity (tail sensor) Diurnal nT Diurnal Magnetic Intensity (raw) TF3CD_lvl nT Total Magnetic Intensity (diurnal, lagged, and heading corrected tie- li TF3CD_ML nT leveled) Total Magnetic Intensity (diurnal, lagged, and heading corrected, tie- line leveled, and micro-levelled, fin processed TMI) HX_FINAL nT/m HY_FINAL nT/m	IF ZOHF		
Diurnal nT Diurnal Magnetic Intensity (diurnal, InT Total Magnetic Intensity (diurnal, lagged, and heading corrected tie- li IF3CD_ML nT leveled) Total Magnetic Intensity (diurnal, lagged, and heading corrected, tie- line leveled, and micro-levelled, fin processed TMI) HX_FINAL nT/m Measured Lateral horizontal gradient HY_FINAL nT/m Measured Longitudinal horizontal	TERCMP	D.T.	
Diurnal nT Diurnal Magnetic Intensity (raw) TF3CD_lvl nT Total Magnetic Intensity (diurnal, lagged, and heading corrected tie- li leveled) Total Magnetic Intensity (diurnal, lagged, and heading corrected, tie- line leveled, and micro-levelled, fin processed TMI) HX_FINAL nT/m Measured Lateral horizontal gradient HY_FINAL nT/m Measured Longitudinal horizontal	TESCHE		
TF3CD_lvl nT Total Magnetic Intensity (diurnal, lagged, and heading corrected tie- li leveled) Total Magnetic Intensity (diurnal, lagged, and heading corrected, tie- line leveled, and micro-levelled, fin processed TMI) HX_FINAL nT/m Measured Lateral horizontal gradient HY_FINAL nT/m Measured Longitudinal horizontal	Diurnal	n ^m	
Iagged, and heading corrected tie-li TF3CD_ML nT TF3CD_ML nT Ieveled) Total Magnetic Intensity (diurnal, lagged, and heading corrected, tie- line leveled, and micro-levelled, fin processed TMI) HX_FINAL nT/m HY_FINAL nT/m Measured Lateral horizontal gradient HY_FINAL nT/m	Diuliai		Diulinal Magnetic Intensity (law)
Iagged, and heading corrected tie-li TF3CD_ML nT TF3CD_ML nT Ieveled) Total Magnetic Intensity (diurnal, lagged, and heading corrected, tie- line leveled, and micro-levelled, fin processed TMI) HX_FINAL nT/m HY_FINAL nT/m Measured Lateral horizontal gradient HY_FINAL nT/m	TESCD 1v1	nΨ	Total Magnetic Intensity (diurnal
TF3CD_ML nT leveled) Total Magnetic Intensity (diurnal, lagged, and heading corrected, tie- line leveled, and micro-levelled, fin processed TMI) HX_FINAL nT/m Measured Lateral horizontal gradient HY_FINAL nT/m Measured Longitudinal horizontal	IFSCD_IVI		
Total Magnetic Intensity (diurnal, lagged, and heading corrected, tie- line leveled, and micro-levelled, fin processed TMI) HX_FINAL nT/m Measured Lateral horizontal gradient HY_FINAL nT/m	TESCO MI	D ^{TT}	
lagged, and heading corrected, tie-line leveled, and micro-levelled, finprocessed TMI)HX_FINALnT/mHY_FINALnT/mMeasured Lateral horizontal gradientHY_FINAL	IFSCD_ML		
line leveled, and micro-levelled, fin processed TMI)HX_FINALnT/mHY_FINALnT/mMeasured Lateral horizontal gradient Measured Longitudinal horizontal			
Processed TMI) HX_FINAL nT/m HY_FINAL nT/m Measured Lateral horizontal gradient Measured Longitudinal horizontal			
HX_FINAL nT/m Measured Lateral horizontal gradient HY_FINAL nT/m Measured Longitudinal horizontal			
HY_FINAL nT/m Measured Longitudinal horizontal	HY FINAL	nT/m	
	TT_FINAL	111/11	
RTF pseudo nT Reconstructed Total Field "sampled	DTF	nseudo nT	
arid"		pseudo III	

B429 Maurice Creek: B429ARC_Alberta_SPEC channel list 1Hz gdb

Note- Traverse lines in the databases are denoted with an L, Tie lines with a T** The Radiometric data files for B429 Maurice Creek survey contain the following channels:

PARAMETER	UNIT	DESCRIPTION
LINE	number	Line number
FLIGHT	number	Flight number
DATE	date	Date in YYYY/MM/DD format
x	metres	Easting (WGS84, UTM Zone 12 N)
Y	metres	Northing (WGS84, UTM Zone 12 N)
X WIN	metres	Easting (WGS84, UTM Zone 12 N windowed)
YWIN	metres	Northing (WGS84, UTM Zone 12 N windowed)
LON	degrees	Longitude WGS84 (decimal degrees)
LAT	degrees	Latitude WGS84 (decimal degrees)
TIME	seconds	UTC Time (seconds after midnight)
hhmmss	hhmmss	UTC Time (Hours Minutes and Seconds)
ALT	metres	GPS Altitude (metres Above Sea Level)
		Radar Altitude (metres Above Sea Level)
RADAR_M	metres	
TEMP	deg	Celsius Temperature
PRESS	mBar	Atmospheric pressure (calculated)
RADSTP	metres	metres radar altitude corrected to
		standard temp- pressure (metres Above
		Ground Level)
SPC_DOWN	cps	256 channel downward gamma ray spectrum
SPC_UP	cps	256 channel upward gamma ray spectrum
SPC_DOWN_NAS4	cps	256 channel downward gamma ray spectrum
		(NASVD enhanced)
RAWTC	cps	Raw Total Count ROI
RAWK	cps	Raw Potassium ROI
RAWU	cps	Raw Uranium ROI
RAWTH	cps	Raw Thorium ROI
RAWCOS	cps	Raw Cosmic ROI
RAWUUP	cps	Raw Upward Uranium ROI
RAWTC NAS4	cps	Raw Total Count ROI (NASVD enhanced)
RAWK NAS4	cps	Raw Potassium ROI (NASVD enhanced)
RAWU NAS4	cps	Raw Uranium ROI (NASVD enhanced)
RAWTH NAS4	cps	Raw Thorium ROI (NASVD enhanced)
CTC	cps	Corrected Total Count ROI
CK	cps	Corrected Potassium ROI
CU	cps	Corrected Uranium ROI
CTH	cps	Corrected Thorium ROI
STC	nGy/h	Corrected Total Count ROI (calibrated
		units)
SK	%K	Corrected Potassium ROI (calibrated units)
su	ppm eU	Corrected Uranium ROI (calibrated units)
STH	ppm eTh	Corrected Thorium ROI (calibrated units)
	PP. OTT	
CTC NAS4	cps	Corrected Total Count ROI, NASVD enhanced
CK NAS4	cps	Corrected Potassium ROI, NASVD enhanced
CU NAS4	cps	Corrected Uranium ROI, NASVD enhanced
CTH NAS4	cps	Corrected Thorium ROI, NASVD enhanced
STC NAS4	nGy/h	Corrected Total Count ROI (calibrated
oro_mor	noyyn	units), NASVD enhanced
SK NAS4	%K	Corrected Potassium ROI (calibrated
SK_NA54	Ac	
CH NACA		units), NASVD enhanced
SU_NAS4	ppm eU	Corrected Uranium ROI (calibrated units),
		NASVD enhanced
STH_NAS4	ppm eTh	Corrected Thorium ROI (calibrated units),
		NASVD enhanced