MAR 20110006: VALLEYVIEW

Valleyview - A report on lithium exploration near Valleyview, west-central Alberta.

Received date: Mar 03, 2011

Public release date: Feb 22, 2012

DISCLAIMER

By accessing and using the Alberta Energy website to download or otherwise obtain a scanned mineral assessment report, you ("User") agree to be bound by the following terms and conditions:

- a) Each scanned mineral assessment report that is downloaded or otherwise obtained from Alberta Energy is provided "AS IS", with no warranties or representations of any kind whatsoever from Her Majesty the Queen in Right of Alberta, as represented by the Minister of Energy ("Minister"), expressed or implied, including, but not limited to, no warranties or other representations from the Minister, regarding the content, accuracy, reliability, use or results from the use of or the integrity, completeness, guality or legibility of each such scanned mineral assessment report;
- b) To the fullest extent permitted by applicable laws, the Minister hereby expressly disclaims, and is released from, liability and responsibility for all warranties and conditions, expressed or implied, in relation to each scanned mineral assessment report shown or displayed on the Alberta Energy website including but not limited to warranties as to the satisfactory quality of or the fitness of the scanned mineral assessment reports and warranties as to the non-infringement or other non-violation of the proprietary rights held by any third party in respect of the scanned mineral assessment report;
- c) To the fullest extent permitted by applicable law, the Minister, and the Minister's employees and agents, exclude and disclaim liability to the User for losses and damages of whatsoever nature and howsoever arising including, without limitation, any direct, indirect, special, consequential, punitive or incidental damages, loss of use, loss of data, loss caused by a virus, loss of income or profit, claims of third parties, even if Alberta Energy have been advised of the possibility of such damages or losses, arising out of or in connection with the use of the Alberta Energy website, including the accessing or downloading of the scanned mineral assessment report and the use for any purpose of the scanned mineral assessment report.
- d) User agrees to indemnify and hold harmless the Minister, and the Minister's employees and agents against and from any and all third party claims, losses, liabilities, demands, actions or proceedings related to the downloading, distribution, transmissions, storage, redistribution, reproduction or exploitation of each scanned mineral assessment report obtained by the User from Alberta Energy.

Alberta

Alberta Mineral Assessment Reporting System

ALBERTA ENERGY, OFFICIAL MINERAL ASSESSMENT REPORT OF RECORD

NTS 83N04,03; 83K13, 14

PARTS B AND C

ASSESSMENT REPORT FOR LITHIUM EXPLORATION ON THE VALLEYVIEW PROPERTY, SWAN HILLS AREA, WEST-CENTRAL ALBERTA: METALLIC AND INDUSTRIAL MINERAL PERMITS 9308120658 to 9308120666

Prepared For: First Lithium Resources Inc. #3102-788 Richards St., Vancouver, British Columbia V7B 0C7

Prepared By: APEX Geoscience Ltd. Suite 200, 9797 – 45th Avenue Edmonton, Alberta, Canada T6E 5V8

i

February 28, 2011 Edmonton, Alberta, Canada. Michael Dufresne, M.Sc., P.Geol.

ASSESSMENT REPORT FOR LITHIUM EXPLORATION ON THE VALLEYVIEW PROPERTY, SWAN HILLS AREA, WEST-CENTRAL ALBERTA: METALLIC AND INDUSTRIAL MINERAL PERMITS 9308120658 to 9308120666

TABLE OF CONTENTS

PAGE

SUMMARY
INTRODUCTION AND TERMS OF REFERENCE
RELIANCE ON OTHER EXPERTS
PROPERTY DESCRIPTION AND LOCATION
ACCESSIBILITY, CLIMATE, LOCAL RESOURCES, INFRASTRUCTURE AND PHYSIOGRAPHY
HISTORY AND PREVIOUS EXPLORATION
GEOLOGICAL SETTING
Precambrian Geology14
Phanerozoic Geology18
Late Tertiary - Quaternary Geology20
Structural Geology
DEPOSIT TYPES
Continental Brines
Geothermal Brines
Oilfield Brines
MINERALIZATION
2009 – 2010 LITHIUM EXPLORATION
SAMPLING METHOD AND APPROACH
SAMPLE PREPARATION, ANALYSES AND SECURITY
DATA VERIFICATION
ADJACENT PROPERTIES
OTHER RELEVANT DATA AND INFORMATION
ESTIMATED EXPENDITURES
INTERPRETATION AND CONCLUSIONS

RECOMMENDATIONS	31
REFERENCES	33
CERTIFICATE OF AUTHOR	36

I

TABLES

TAE	<u>BLE</u>	PAGE
1	Industrial and Metallic Mineral Permit Descriptions	7
2	Representative Chemical Compositions from the Swan Hills and Leduc Formations from Hitchon <i>et al.</i> , 1995	11
3	Regional Stratigraphy of the Fox Creek Area	16
4	First Lithium geochemical sample results for 2010 samples	
5	Analytical Method Summary for 2010 Well Sampling	29
6	Quality Assurance for 2010 Sampling First Lithium	

FIGURES

OF

FIG	URE	PAGE
1	Property Location	5
2	Metallic Mineral Permits	6
3	Wells Into Devonian Current Well Status	9
4	Devonian Aquifers and Li in Formation Waters	12
5	Basement Geology	15
6	Bedrock Geology	17
7	2010 Well Sampling For Li in Formation Waters	

APPENDICES

APP	PENDIX	Ξ
1	Metallic and Industrial Mineral Permit Descriptions AT EN	٩D
2	GeoScout [™] Oil Well Data AT EN	٩D
3	2009 - 2010 Sample Locations, Results and Assays Certificates AT EN	٩D
4	2009 – 2010 Exploration Expenditures AT EN	ND

ASSESSMENT REPORT FOR LITHIUM EXPLORATION ON THE VALLEYVIEW PROPERTY, SWAN HILLS AREA, WEST-CENTRAL ALBERTA: METALLIC MINERAL PERMITS 9308120658 to 9308120666

SUMMARY

In mid 2010 First Lithium Resources (First Lithium) engaged APEX Geoscience Ltd. (APEX) to perform a review and compilation of formation water and petroleum well data for First Lithium's Valleyview Lithium Property. The Valleyview Property is located in west-central Alberta, just south of the town of Valleyview. The Valleyview Property is comprised of 9 Industrial and Metallic Mineral Permits which together form a single contiguous package of land that totals approximately 82,304 hectares (Ha). In December 2008, First Lithium earned 100% interest.

First Lithium's Valleyview mineral permits cover a large portion of an oil field hosted in the Devonian Woodbend (Leduc) carbonate reef complex. Spatially associated with the oil pool is an aquifers comprised of formation water chloride brines with high concentrations of sodium and calcium chloride (NaCl and CaCl₂) and anomalous concentrations of potassium chloride (KCl) and lithium (Li). Based upon a search of the Energy and Resources Conservation Board (ERCB) database using geoSCOUT_{TM}, First Lithium's Fox Creek and Valleyview properties (Main Swan Hills Block) have 2,807 separate well locations with 637 wells that have penetrated Devonian strata, within Property boundaries.

Based upon the information provided by Hitchon *et al.* (1995) in AGS Bulletin 62, First Lithium's Valleyview Property is a high priority for exploration for Lithium (Li) in Devonian formation water aquifers as it provides not only highly anomalous concentrations of Li but also large quantities of formation waters in producible aquifers with other potentially producible elements such as potassium (K), bromine (Br), boron (B) and iodine (I). Within the Valleyview Property, there is one main area that should be targeted for Li in formation waters. The South perls oil pool is a high priority target area for formation water sampling as it covers a Devonian Woodbend oil field and aquifer where Hitchon *et al.* (1995), and Eccles and Jean (2010) have identified at least one historic well that has yielded up to 140 ppm from Devonian Formation waters.

To date, exploration for Li on the Valleyview Property has consisted of a detailed compilation of well data along with the initiation of a sampling program during late 2010 that is ongoing into 2011. Maxxam Environmental through Barrick Energy have been engaged and have started the sampling program, however, analytical results are pending. While sampling on First Lithium's Valleyview property is in progress, little else has been done in the surrounding areas at his time. However, an overview of the industrial mineral potential of formation waters from across Alberta was completed by the Alberta Geological Survey (AGS) in 1995 and represented the culmination of formation water geochemical work performed by Dr. Brian Hitchon that started in the 1970's. The study compiled nearly 130,000 analyses of formation waters from

numerous sources including regulatory submissions for drilling conducted by the petroleum industry stored at the ERCB, published data from work by Dr. Hitchon and unpublished analyses from samples collected by Dr. Hitchon whilst he was in the employ of the Alberta Research Council (ARC) and the AGS.

Dr. Hitchon's work indicated that a total of 96 geochemical formation water analyses yielded Li concentrations above the regional threshold value of 50 parts per million (ppm) and 47 analyses yielded Li concentrations above the detailed threshold value of 75 ppm. The study identified three areas of Devonian stratigraphy in westcentral Alberta, hosted in the Beaverhill Lake and Woodbend-Leduc carbonate and reef complexes, with combined high concentrations of Li in the formation waters along with high porosity and permeability that could have potential for the production of formation waters centered around and in the vicinity of the town of Valleyview.

In addition, recently published results from a 2009 sampling program, completed on behalf of Channel Resources Ltd., (Channel) confirms that the Devonian Beaverhill Lake aquifer contains highly anomalous concentrations of Li as determined by the Alberta Geological Survey. The presence of significant concentrations of other elements of interest in the brine also validates the project's potential to support a multi-product brine processing operation. The Channel sampling program has validated the concept of establishing the Fox Creek area project as a potential producer of a number of highvalue products, including lithium chloride, lithium carbonate, potash and borates.

Based upon the APEX data review, the encouraging sampling results from the region and the similarities to the producing Clayton Valley brines, aquifers within the Devonian Beaverhill Lake and Woodbend (Leduc) carbonate reef complexes underlying the Valleyview Property held by First Lithium warrant further exploration for Li as well as other associated elements including Na, Ca, K, Mg, B, Br and I. The concentrations of Li in conjunction with numerous producing gas wells and other infrastructure on the Property that are already producing significant amounts of formation waters from the targeted horizons indicate that significant potential exists for the Valleyview Property to yield brines with Li. Further work is required to confirm the continuity and producibility of the Li-bearing brines and, if the continuity and producibility can be confirmed, a process methodology that could work in conjunction with current gas field batteries that are currently producing the waters, treating them and re-injecting those waters back into the reservoirs or other formations.

Stage 1 exploration should continue with a) further compilation and research for existing water chemical analyses, with the office work consisting of recreating Dr. Hitchon's formation water database, further investigations at the ERCB in Calgary, an investigation of the water producibility of each active well and even some of the suspended or abandoned but old producing wells. Concurrently with the compilation, Stage 1 b) should consist of continuing the ongoing field based water chemistry sampling program consisting of further ongoing well sampling to better determine the Li and other element potential of the Valleyview Property formation brines.

APEX strongly recommends sampling a minimum of 50 wells within the Valleyviewk Property. The sampling program will require the use of an LGR Unit to conduct the sampling which will cost about \$2,500 per day and include the sophisticated LGR Unit (truck mounted) along with two technicians to operate it and conduct the sampling. The end result would be a number of formation water analyses. If a reasonable grade of Li of about 80 to 150 ppm confirmed and is reasonably consistent from one well to the next, the data might permit a preliminary resource calculation.

Once the field and analytical data are in hand, geochemical groundwater modeling should be carried out followed by process engineering design and bench scale testing. In order to get to a proper 43-101 compliant resource a hydrogeological consultant will be required help evaluate the porosity, permeability, total content of formation water and recharge capacity of the reservoir.

The total all up estimated cost including a 43-101 report at the end of the program is \$100,000 including GST. The estimated time frame to conduct the sampling is about 3 months.

INTRODUCTION AND TERMS OF REFERENCE

APEX Geoscience Ltd. (APEX) was retained during mid 2010 as consultants by First Lithium Resources Ltd (First Lithium), to compile all existing geological, geophysical and geochemical data for First Lithium's Valleyview Lithium Property (the Property) in order to perform an independent evaluation of the potential of the property to host recoverable lithium (Li) from Paleozoic carbonate hosted aquifers. First Lithium obtained 100% interest in the Valleyview Lithium Property, which is located approximately 340 km northwest of Edmonton, Alberta. This report is written as an Assessment Report for First Lithium. The Valleyview Lithium Property is considered an early stage exploration project. There is no known mineral resource as defined by "CIM Definition Standards on Mineral Resources and Ore Reserves" dated November 22nd, 2005, however, there are a number of historic reported formation water geochemical analyses with anomalous concentrations of Li. This evaluation has been prepared on the basis of available published and unpublished material, including those outlined in the references section.

Mr. Michael B. Dufresne, M.Sc., P.Geol., the author of this Assessment report, is a principal of APEX and is an independent and Qualified Person as defined in National Instrument 43-101. Mr. Dufresne has conducted fieldwork on and in the vicinity of the Property and surrounding area along with supervising a number of exploration programs for a variety of commodities across the Swan Hills region. No field work has been conducted by the author or First Lithium in the search for Li on the Property.

RELIANCE ON OTHER EXPERTS

The report written by Mr. Dufresne is a compilation of proprietary and publicly available information. The author, in writing this report, uses sources of information as listed in the 'References' section. The government reports were prepared by a person or persons holding post secondary geology, or related university degree(s). For those reports, which were written by others, whom are not qualified persons, the author must rely upon the professional measures used by the employees of the companies who completed the work. The information in those reports is assumed to be accurate, based on the data review. The reports which were used for background information are reviewed and referenced in the history section below.

PROPERTY DESCRIPTION AND LOCATION

The Valleyview Lithium Property is located in west central Alberta, just south of the town of Valleyview, 270km northwest of Edmonton (Figure 1). The property is comprised of 9 Industrial and Metallic Mineral Permits (Table 1), which together form a single contiguous package of land that totals about 82,300 hectares (Figure 2). The mineral permits are owned 100% by First Lithium and are subject to a 3% Net Smelter Royalty and/or a 5% Gross Overriding Royalty. The property has not been legally surveyed. The

legal descriptions for the property are provided in Table 1. Copies of the Industrial and Metallic Mineral Permit agreements are included in Appendix 1. The center of the property is located at approximately 477143 east and 6086892 north in Universal Transverse Mercator (UTM) Zone 11 using North American Datum 1983 (NAD 83) or at 117°21'31" west longitude and 54°55'5" north latitude.

Permit No.	Owner	Term Date	Area (Ha)	Legal Description
9308120658	First Lithium	December 2, 2008	9088.24	5-22-067
9308120659	First Lithium	December 2, 2008	9216	5-21-068
9308120660	First Lithium	December 2, 2008	9216	5-22-068
9308120661	First Lithium	December 2, 2008	9216	5-23-068
9308120662	First Lithium	December 2, 2008	9216	5-24-068
9308120663	First Lithium	December 2, 2008	9216	5-21-069
9308120664	First Lithium	December 2, 2008	9216	5-22-069
9308120665	First Lithium	December 2, 2008	9216	5-23-069
9308120666	First Lithium	December 2, 2008	8704	5-24-069; 5-25-069

Table 1: Industrial and Metallic Mineral Permit descriptions.

Alberta Mining regulations grant metallic and industrial mineral permits to the permittee for 14 year terms during which at any time after the initial two-year term the mineral permit may be converted into a lease. Leases are granted for 15 year terms and may be renewed. A metallic and industrial mineral permit gives First Lithium the respective permit holder exclusive right to explore for and develop economic deposits of metallic and industrial minerals including diamonds, gold and industrial minerals such as lithium (Li) within the boundaries of the permit. The exclusive right to explore is subject to ALBERTA REGULATION 213/98 of the Alberta Mines and Minerals Act and the contained Metallic and Industrial Minerals Regulations. The standard terms and conditions for the permits are described in detail on Alberta Energy's website at http://www.energy.alberta.ca/minerals/708.asp.

A permit holder shall spend or cause to be spent on assessment work with respect to the location of the mineral permit an amount equal to \$5 for each hectare in the location during the first two year period; an amount equal to \$10 per hectare for each of the second and third two year periods; and an amount equal to \$15 per hectare for each of the fourth, fifth, sixth and seventh two year periods. Mineral permits may be grouped and excess expenditures may be carried into the next two year period.

In addition to the financial commitment, a metallic and industrial mineral permit holder is required to file an assessment report that documents all of the work conducted as well as the results of the work to Alberta Energy. The assessment report must be filed within 60 days after the record date after each two year period.

ACCESSIBILITY, CLIMATE, LOCAL RESOURCES, INFRASTRUCTURE AND PHYSIOGRAPGY

Provincial Highway 43 runs north-south through the center-east of the property. The property can also be accessed from the highway via 1 or 2 lane all weather roads. Access within the property is facilitated by numerous all weather and dry weather gravel roads and tracks. Accommodation, food, fuel, and supplies are best obtained in the towns of Valleyview, High Prairie and Fox Creek.

The Valleyview property is situated in the foothills region of west-central Alberta in an area characterized by rugged, hilly topography. Elevation in the region varies from 600 meters (m) to 1380 m (2,000 ft to 4,500 ft) above sea level (ASL). The Little Smoky River and the Goose River are the dominant topographic features and crosses the lower to center of the property from the south to the north. Additionally, numerous creeks and wetlands are found across the property. Forests in the area are dominated by aspen, balsam poplar, lodgepole pine and white spruce. Vegetation in the wetland areas is characterized by black spruce, tamarack and mosses. Annual temperatures range from -40C in January to 30C in July/August with average temperatures above 0C between April and October. Throughout the year, precipitation (as rain and snow) ranges from ~14 mm to >100 mm, with the greatest precipitation falling in June and July.

HISTORY: PREVIOUS EXPLORATION

Exploration in the area of the Valleyview Lithium Property has focused mainly on petroleum resources with numerous oil and gas fields known to underlie the property and nearby area (Mossop and Shetson, 1994). Based upon a search of the Energy and Resources Conservation Board (ERCB) database using geoSCOUTTM, a total of 637 oil, gas or water wells have been drilled within the boundaries of First Lithium's Fox Creek and Valleyview properties, and have been drilled to a depth where they have intersected at least Devonian aged rocks (Figure 3). Today, a total of 144 wells are considered "Active Producing". A total of 456 wells are listed as having been suspended or abandoned. The location of the wells and the important Devonian oil and gas pools and geological elements are shown in Figure 3. A search using the water geochemistry module of geoSCOUTTM, indicates that there are wells on the property that have associated "water" or "filtrate" geochemical analyses, however none of the geochemical analyses in the geoSCOUTTM water geochemical database indicate that Li was analysed.

Although little direct exploration for Li has been done on First Lithium's Valleyview Property, an overview of the industrial mineral potential of formation waters from across Alberta was compiled by the Alberta Geological Survey (AGS) in 1995 and represented the culmination of formation water geochemical work performed by Dr. Brian Hitchon that started in the 1970's (Bulletin 62, Hitchon *et al.*, 1995). Formation water is used as a generic term to describe all water that naturally occurs in pores of a rock and if the rock is permeable could represent an aquifer. Hitchon *et al.* (1995)

compiled nearly 130,000 analyses of formation waters available from numerous sources including the ERCB files of regulatory submissions for drilling conducted by the petroleum industry, published detailed data from Hitchon *et al.* (1971, 1989), Connolly *et al.* (1990a, b) and unpublished detailed analyses collected by Hitchon whilst he was in the employ of the Alberta Research Council (ARC) and the Alberta Geological Survey (AGS).

A method for defining geographic areas with elements in formation waters of possible economic interest was defined by Hitchon (1984) and Hitchon *et al.* (1995). For each element studied, Calcium (Ca), Magnesium (Mg), Potassium (K), Lithium (Li), lodine (I) and Bromine (Br), a detailed exploration threshold value was determined based on the concentrations in economically producing fields at that time (as defined in Hitchon, 1984 and Hitchon *et al.*, 1995). Additionally, a lower regional exploration threshold value was defined to allow for contouring and extrapolation of data to undrilled areas. The regional exploration threshold value was defined to be 50 ppm and the detailed exploration threshold value was defined as 75 ppm (Hitchon *et al.*, 1995). Hitchon *et al.* (1995) identified five stratigraphic intervals in four regions of Alberta in which their sampling and data review indicated that certain elemental concentrations exceeded the threshold values that are of economic interest for regional well and Devonian data exploration and for which porosity and permeability might allow production of the formation waters and recovery of the elements of interest from the aquifers.

Hitchon *et al.* (1995) indicate that Li was reported in 708 formation water analyses out of the 130,000 analyses that they examined in their 1993 to 1995 study. The vast majority of these analyses, including all of the anomalous Li analyses, were derived from Hitchon's unpublished database resulting from direct sample collection by Dr. Hitchon during the period 1975 to 1977 in a joint ERCB and ARC project. Hitchon *et al.* (1995) indicate that a total of 96 geochemical formation water analyses yielded Li concentrations above the regional threshold value and 47 analyses yielded Li concentrations above the detailed threshold value of 75 ppm. The location of several wells with Li analyses from the Beaverhill Lake or Woodbend (Leduc) formation waters with greater than 75 ppm (up to 140 ppm) are shown on Figures 3 and 4 with a few example analyses provided in Table 2. The study identified three geographic areas of stratigraphy (specifically the Beaverhill Lake and Woodbend-Leduc carbonate and reef complexes) with combined high concentrations of Li in the formation waters along with high porosity and permeability that could have potential for the production of formation waters all within west-central Alberta centered around the town of Fox Creek (Figure 4).

Hitchon *et al.* (1995) indicate that at least 25 wells within or near to the Fox Vaslleyview Property have yielded anomalous concentrations of Li in formation water samples from the Beaverhill Lake and/or Woodbend (Leduc) aquifers (Figures 3 and 4). Five of these wells have reported concentrations of Li >75 ppm in the Beaverhill Lake aquifer and ten wells have reported concentrations of Li >75 ppm in the Woodbend (Leduc) aquifer (Figure 4). Representative formation water geochemical analyses with high Li values are provided by Hitchon *et al.* (1995) and are shown in Table 2. The well

locations are shown on Figures 3 and 4. High Li values greater than or equal to 100 ppm were reported from three stratigraphic intervals: Wabamun Group, Woodbend Group (Leduc Formation) and Beaverhill Lake Group (Swan Hills Formation). In these samples, other elements including Mg, Br and I were all consistently below their respective regional exploration thresholds while Ca and K were often between their respective regional and detailed exploration thresholds (Hitchon *et al.*, 1995). Based upon the analyses presented by Hitchon *et al.* (1995) and shown in Table 2, the formation waters are considered Na-Ca chloride brines and are roughly 4 to 5 times the salinity of modern sea water.

Formation	Leduc	Swan Hills	Leduc	Swan Hills
	3	4	5	8
Sample Number	RCAH82-475B	RCAH111-676A	D-44	RCAH110-676A
Li	130	130	120	115
Na	43200	54000	42400	39800
К	7500	5100	5000	4300
Mg	1610	2010	979	1630
Ca	18000	15900	27500	13600
Sr	725	630	615	
Ba	5.7	19	4.7	1.7
Cu		0.49	0.57	0.27
Zn		5.9		1.9
Pb	8.5	3.3	4	10
Ag		1.3	1.5	0.92
Fe		0.85	0.89	0.36
Mn	14	14	0.38	9
V		0.8	0.9	0.28
As				
В	2709	260	180	190
PO4	76	24	23	16
NH3	558	637	551	381
SiO2	54	43	88	19
F	6.7	6.2		4.7
CI	117000	125100	123700	94160
Br	430	426	317	329
1	14	18	18	5
SO4	389	155	239	778
HCO3	365	232	1110	316
(all in mg/L or ppm)				
Salinity (mg/L)	191630	205945	203703	156567
pH	7.15	6.76	8.1	7.34
T (°C)	64	79	113	76

 Table 2: Representative chemical compositions from the Swan Hills and Leduc Formations (Hitchon et al. 1995)

FIGURE 4

Based on the Li concentration and rock property data (porosity and permeability) presented by Hitchon et al. (1995), there are three areas (aquifers) with potential for formation water production and Li extraction in west-central Alberta: the northern Woodbend (Leduc) reef, underlying the Valleyview and Peace South Lithium Properties, the southern Woodbend (Leduc) reef (partially underlying the Fox Creek Lithium Property) and the Beaverhill Lake aquifer (underlying the Fox Creek Lithium Property: Figures 3 and 4). In the southern Woodbend (Leduc) aquifer the potentially productive aguifer zone has an average thickness of 25 m, an average rock porosity of 6% and an average permeability of 2*10⁻¹⁴m² (Hitchon et al., 1995). The potentially productive zone for the Woodbend (Leduc) aquifer is located between about 3,100 and 3,400 m below surface. The potentially productive zone of the Beaverhill Lake aquifer has an average thickness of 46 m, an average rock porosity of 7% and an average permeability of 4.3*10⁻¹⁴m² (Hitchon et al., 1995). The potentially productive zone in the Beaverhill Lake aquifer is located between 3,200 and 3,500 m below the surface. Hitchon et al. (1995) report that in this area the Beaverhill Lake aquifer is intersected by 113 wells with 14,800 physical core analyses for porosity and permeability.

Hitchon et al. (1995) provide a total resource distribution estimate for Li in formation waters for the northern and southern Woodbend (Leduc) and the Beaverhill Lake aguifers. The reader is cautioned that the resource estimates quoted by Hitchon et al. (1995) are considered historical scoping estimates and do not conform to "Best Practice Guidelines for the Estimation of Mineral Resources and Mineral Reserves" (CIM, 2003) and "CIM Definition and Standards on Mineral Resource and Mineral Reserves" (CIM, 2004) and, as such, do not comply with any of the categories set out in National Instrument 43-101. However, the estimates do provide an indication of the order of magnitude of the potential size of a resource that could be present and, therefore, is considered useful information in order to guide future work. Hitchon et al. (1995) calculate a range from 10 to 570 grams of Li per meter squared (gLi/m²) (or tonnes of Li per kilometer squared [tLi/km²]) and between 34 and 340 gLi/m² (tLi/km²) for the southern and northern Woodbend aquifers, respectively (Figures 3 and 4). Hitchon et al. (1995) estimate that Li distribution in the Beaverhill Lake aquifer (Figures 3 and 4) ranges from 11 to 918 gLi/m² (tLi/km²). Hitchon et al. (1995) indicate that the high variability in the resource distribution is due to the characteristic highly variable porosity and thickness of reef complexes that comprise the potentially productive zones. Hitchon et al. (1995) estimate that the total Li resource contained within the Beaverhill Lake and Leduc (North and South) aguifers is potentially 515,000 tonnes of Li over an area of 3,980 km². A portion of this potential resource would be contained within the Beaverhill Lake aguifer and the southern Woodbend (Leduc) aguifer that underlie First Lithium's Fox Creek Lithium Property to the south of the Valleyview Property. This estimate is historic in nature and represents a scoping estimate on how much total Li might be present in these aguifers in the vicinity of Fox Creek. There is no guarantee that this amount of Li will in fact be eventually proven to be present nor that the formation waters could be produced and the Li extracted economically.

Although little direct exploration for Li has been done on First Lithium's Valleyview Property, Channel Resources Ltd. (Channel) conducted a sampling program

of 13 producing gas wells on a property immediately adjacent to First Lithium's Fox Creek Property. Channel's sampling program during 2009 targeted the Beaverhill Lake aguifer (Channel Resources Ltd. News Release, October 7, 2009). The Li concentration of the brines sampled by Channel ranged from 77.2 ppm to 112 ppm. The samples also yielded significant amounts of K, Br and B. All samples collected by Channel and analyzed yielded values above the detailed threshold of 75 ppm. Based on these encouraging results, Channel proceeded with the collection of a 2,000 liter bulk sample in March, 2010 from a producing gas well in the central portion of their Property, which targeted the Beaverhill Lake aguifer. A total of 1,500 liters were processed. Analyses conducted included a variety of methods to identify the optimal process to extract Li, boron (B), potassium (K), bromine (Br) and other potentially economic products from the brine (Channel Resources News Release, March 8, 2010). Preliminary results announced by Channel from the bulk sample indicate that all four primary products can be extracted, including over 95% of the Li to an intermediary compound, up to 88% of elemental Br, up to 100% of the B as sodium borate, and approximately 40% of the K as a carnallite salt (Channel Resources Ltd. News Release, November 17, 2010).

The results from Channel's 2009 sampling program confirm that the Beaverhill Lake aquifer contains highly anomalous Li concentrations as determined in 1995 by the Geological Survey of Alberta (Dufresne, 2009). The presence of significant concentrations of other elements in the brine also validates the project's potential to support a multi-product brine processing operation. Channel's sampling program has validated the concept of establishing the Fox Creek region as a potential producer of a number of high-value products, including lithium chloride, lithium carbonate, potash and borates.

GEOLOGICAL SETTING

The Valleyview property is located in west-central Alberta south of the Peace River High. The basement geology underlying the property is summarized on Figure 5. The regional stratigraphy of the Swan Hills area is summarized in Table 3, and shown on Figure 6.

Precambrian Geology

The Valleyview Property lies near the centre of the Western Canada Sedimentary Basin south of the Peace River Arch (PRA). The property nearly straddles two basement terranes: the Chinchaga Terrane and the Wabamun Domain (Figure 5). The Chinchaga Terrane is part of the Buffalo Head craton which is thought to have accreted to the western edge of North America between 1.8 and 2.4 billion years (Ga) ago (Ross *et al.*, 1991, 1998). The Wabamun Domain is interpreted to be a tectonic escape wedge related to events along the Snowbird Tectonic Zone to the south (Ross *et al.*, 1991). The age of the terrane is poorly understood but it is thought to be similar in age to the Chinchaga Terrane in the vicinity of 2.0 to 2.4 Ga.

PC							PreCam	brian Aquiclud	e							
ambr	ian						Cambrian Aqu	itard System								
	L	Fort	L		L Red Beds Emestina Lake Lotsberg Red Beds		Granite Wash		Lower Devonian Aquiclude	Aquiter	lov					
		Elk	U	Keg Rive Contact	er Rapids		Keg River - G	Keg River - Granite Wash								
Devo	M			Gilwood	Watt Mtn		Muskeg-Watt / Aquitard Sy	Muskeg-Watt Mountain Aquitard System								
nian		Beaverh Lake	nill	Swan Hills Ft.Verm	Waterways lave Point illion		Beaverh Aquifer	ill Lake System	c							
				Cookin	ig Lake											
	υ	υ	υ	Woodbend		Woodbend		Woodbend		Woodbend	Grosmo	Int Ireton	Same Same	Ireton Ac	Ireton Aquitard	
		Winterb	urn				Aquifer System									
	H	Waham	up	Exshaw			Aquitard Wabamun-Wint	terburn	1							
N				Banff			Exshaw-Lower	Banff	'n							
ssissippia		Rundle		Debolt Shunda Pekisko					pper Paleozoic -lo hydrogeologi							
erm	(1b)	Stodda	rt	Belloy Taylor Flat Kiskatinaw Golata		~~~~~	Rundle-Permo-Triassic Aquifer System									
orm	20	Diaber	Diaber						cal							
Trias	sic	Schoole Creek	r	Baldor Charlie Halfwa	nnel e Lake ay				er Meso							
Juras	sic	Fernie		Norde	gg		Fernie Aquitaro	ł	Diozo							
		Bullhead	ł	Gethir Cadon	ng nin		Lower Mannvil	le Aquifer								
				Bluesk	Wilnch		Clearwater-Wilne	ch Aquitard								
	L	St. John		Spirit River	Notikewan Falher		Upper Mannvil	le Aquifer	dn							
Cret		Fort	Fort	Fort	Fort	River	Harmon	and the second second	Harmon-Joli-Fou	Aquitard	vdrd					
ace	Н			Shafte	sbury			:4	Me							
sno	H	Kaskapau Dunyegan							sozo							
		Jinoky		Cardiu	m		Colorado Ad Syster	quitard n	oic-O							
		Smok	Smoky		art		Colorado Ar	w.itand	enoz							
	Π			Wapiti	advau	000000			p oic							
fertia	y	Group		Paskap	00	~~~~~~	1		-							
Period Tertiary		Group	Group Formation Paskapoo Wapiti Puskwaskau			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		3.1.7								

 Table 3: Regional stratigraphy of the Fox Creek area.

(adapted from Hitchon et al., 1990)

Assessment Report For First Lithium

Phanerozoic Geology

Overlying the basement is a thick sequence of Phanerozoic rocks comprised mainly of Tertiary and Cretaceous sandstones and shales near the surface (Figure 6) and Mississippian to Devonian carbonates, sandstones and salts at depth (Glass, 1990; Mossop and Shetson, 1994). Information pertaining to the distribution and character of the Phanerozoic-aged units can be obtained from well log data in government databases and various geological and hydrogeological reports (Green *et al.*, 1970; Tokarsky, 1977; Glass, 1990; Mossop and Shetson, 1994).

At the base of the Beaverhill Lake Group (Table 3), the Elk Point Group is comprised of restricted marine carbonates and evaporites which gradationally overlie the Watt Mountain Formation (Mossop and Shetson, 1994). The Upper Elk Point, including the Ft. Vermillion, Muskeg and Watt Mountain formations are an aquitard layer (Hitchon *et al.*, 1990). Overlying the Elk Point Group rocks are the carbonates of the Slave Point Formation (Table 3). The Slave Point Formation was deposited on an open marine carbonate platform and forms the base for the reef complexes in the region including the Swan Hills Complex and the Peace River Arch Fringing Reef Complex (Figures 3 and 5). The Upper Devonian Swan Hills Reef Complex underlies the Valleyview property (Figures 3 and 5). The Swan Hills Complex was deposited on the flank of the West Alberta Ridge. It is a sequence of shallowing upward reef cycles now composed of dolomite (Mossop and Shetson, 1994). The Swan Hills Complex is hydrogeologically part of the Beaverhill Lake Aquifer System. The Swan Hills complex contains the units of interest with elevated concentrations of Li (Hitchon *et al.*, 1995).

The Woodbend Group, of the upper Devonian, conformably overlies the Beaverhill Lake Group (Table 3). The Woodbend Group is dominated by basin siltstones, shales and carbonates of the Majeau Lake. Duvernay and Ireton Formations surrounding and capping the reef complexes of the Leduc Formation (Figure 3). The Leduc Formation is characterized by multiple cycles of reef growth including backstepping reef rimmed complexes and isolated reefs (Mossop and Shetson 1994). In the area of the property it is composed of dolomite and is part of the Beaverhill Lake Aquifer System (Hitchon et al., 1990). Hitchon et al. (1995) indicates that the Beaverhill Lake (Swan Hills) and the Woodbend (Leduc) aquifers in the region of First Lithium's Fox Creek Lithium Property may be indistinguishable and may in fact be connected. The Woodbend (Leduc) Formation is host to prolific reserves of oil and gas in Alberta. It is also the second stratigraphic unit of interest with elevated concentrations of Li (Hitchon et al., 1995). The Duvernay Formation is composed of dark bituminous shale and limestone which contain and preserve a large accumulation of organic carbon thought to be the source for most of the conventional hydrocarbons in the upper Devonian in Alberta. The Ireton Formation caps the Leduc reefs and was formed by an extremely voluminous influx of shale into the region (Mossop and Shetson, 1994). The Ireton Formation is an aguitard that forms an impermeable cap rock over the Leduc reefs (Hitchon et al., 1995).

The Woodbend Group is conformably overlain by the Winterburn and Wabamun Groups of upper Devonian age (Table 3). In the area of the property the Winterburn Group is composed of shales and argillaceous limestones. Further to the east the Winterburn Group is host to the Nisku Reefs, an important gas and oil reservoir. In the area of the property the Wabamun Group is composed of buff to brown massive limestone interbedded with finely crystalline dolomite at the base. These two Groups comprise the Wabamun-Winterburn Aquifer system from which a few anomalous Li analyses have been obtained (Hitchon *et al.*, 1995). The Wabamun Group is unconformably overlain by the Lower Carboniferous Exshaw shale, an aquitard.

The Exshaw shale is overlain by the Banff Group. The Banff Group is composed of a medium to light olive grey limestone with subordinate fine-grained siliciclastics, marlstones and dolostones overlying a basal shale, siltstone and sandstone unit (Mossop and Shetson, 1994). The Rundle Group conformably overlies the Banff Group. The Rundle Group is composed of cyclic dolostone and limestone with subordinate shale. The Group has variable porosity from poor to excellent and grades into dense argillaceous carbonates, shale, siltstone and anhydrite.

The Permian strata in the area of the property are very thin. The Permian Belloy Group unconformably overlies the Rundle Group and is unconformably overlain by the Triassic Montney Formation. It is composed of shelf sands and carbonates (Mossop and Shetson, 1994).

The overlying Mesozoic strata (mainly Cretaceous) are composed of alternating units of marine and nonmarine sandstones, shales, siltstones, mudstones and bentonites. The Triassic is characterized by fine argillaceous siltstone and sandstones. The overlying Jurassic Fernie Group is composed of limestones of the Nordegg Formation at the base overlain by interbedded sandstone, siltstone and shale (Mossop and Shetson, 1994).

The Lower Cretaceous strata are represented by the Bullhead, Fort St. John and Shaftesbury Groups which comprise the second major clastic wedge of the Foreland basin (Table 3 and Figure 6). The Bullhead Group (Lower Mannville equivalent) is composed mainly of fine grained sandstone with well developed interbeds of silty shale. The Fort St. John Group (Upper Mannville equivalent) is comprised of the Spirit River and Peace River Formations. The Fort St. John Group is composed mainly of shale interbedded with silty sandstones with local coal seams (Mossop and Shetson, 1994). The Mannville strata contain extensive oil and gas fields (with gas fields in the area of the property).

The Shaftesbury Formation is lower Upper Cretaceous in age and is comprised of marine shales with fish-scale bearing silts, thin bentonitic streaks and ironstones. The upper contact is conformable and transitional with the Dunvegan Formation, where the Dunvegan Formation is present. Evidence of extensive volcanism during deposition of the Shaftesbury Formation exists in the form of numerous bentonitic horizons throughout the formation, especially within and near the Fish Scales Horizon (Leckie *et al.*, 1992; Bloch *et al.*, 1993).

The Upper Cretaceous is represented by the Dunvegan and Smoky Groups. The Dunvegan Formation is characterized by deltaic to marine, feldspathic sandstones, silty shales and laminated carbonaceous siltstones. The overlying Smoky Group is comprised of thinly bedded, marine, silty shale with occasional ironstone and claystone nodules and thin bentonite streaks. Exposures of the Smoky Group may be present in rivers and stream cuts (Figure 6).

The youngest bedrock unit underlying the Valleyview mineral permits is the late Cretaceous Wapiti Formation (Figure 5). Strata consist of interbedded sandstone and siltstone with minor mudstone and coal, all derived from a northwestern source (Rahmani and Lerbekmo, 1975). Depositional environments were mainly fluvial with local areas of lacustrine influence. The Wapiti Formation attains a thickness greater than 1300 m along the western edge of the foothills and thins toward the east. Outcropping Wapiti Formation can be found along river and stream cuts throughout the property (Figure 6).

Late Tertiary – Quaternary Geology

During the Pleistocene, multiple southerly glacial advances of the Laurentide Ice Sheet across the region resulted in the deposition of ground moraine and associated sediments in north-central Alberta (Dufresne *et al.*, 1996). The majority of the Fox Creek Property is covered by drift of variable thickness, ranging from a discontinuous veneer to just over 15 m (Pawlowicz and Fenton, 1995a, b). Bedrock may be exposed locally, in areas of higher topographic relief or in river and stream cuts. The advance of glacial ice may have resulted in the erosion of the underlying substrate and modification of bedrock topography. Limited general information regarding bedrock topography and drift thickness in north-central Alberta is available from the logs of holes drilled for petroleum, coal or groundwater exploration and from regional government compilations (Mossop and Shetson, 1994; Pawlowicz and Fenton, 1995a, b). Glacial ice is believed to have receded from the area between 15,000 and 10,000 years ago.

Structural Geology

In northern Alberta, the Peace River Arch (PRA) is a region where the younger Phanerozoic and Cenozoic rocks, which overlie the Precambrian basement, have undergone periodic vertical and, possibly, compressive deformation from the Proterozoic into Tertiary time (Cant, 1988; O'Connell *et al.*, 1990; Dufresne *et al.*, 1995, 1996). This pattern of long-lived, periodic uplift and subsidence has imposed a structural control on the deposition patterns of the Phanerozoic, and to a lesser extent the Cenozoic, strata in northern and north central Alberta. In addition, this periodic movement has resulted in a rectilinear pattern of faults that is responsible for the structurally controlled reefs along with oil and gas pools found throughout this area. During the Devonian, the Peace River Arch was emergent and was a positive paleo-topographic relief feature oriented east-northeast from the British Columbia provincial border to at least as far east as Red Earth Creek. Towards the end of the Devonian and into the Mississippian the Peace River Arch collapsed and became the Peace River embayment. The embayment filled in during the Mississippian with a thick sequence of siliciclastic rocks along with dolostones and limestones.

During the mid-Cretaceous to Early Tertiary, compressive deformation occurred as a result of the orogenic event that eventually led to the formation of the Rocky Mountains. The Peace River Arch is thought to have been periodically weakly emergent during this period resulting in the reactivation of many prominent basement faults that also affected the overlying Phanerozoic succession. The Phanerozoic rocks beneath the Fox Creek Property lie south of the south edge of the Peace River Arch (Figures 5 and 6). However, the Phanerozoic rocks are underlain by a prominent east-northeast basement terrane boundary between the Chinchaga Terrane and the Wabamun Domain that is clearly visible in the total field magnetics for the region. The boundary zone clearly underlies the middle to south edge of the property. In addition, there is a prominent north-northwest oriented structural break visible in the magnetics that has likely not only affected the Precambrian basement rocks but also the overlying Phanerozoic rocks and in particular the Beaverhill Lake Reef Complex. It is a fairly well documented fact that a number of Alberta's prominent Devonian Reef Complexes are underlain by and proximal to basement faults and that these reef complexes enjoyed growth over long periods of time at fault interfaces along the shallow water side or uplifted block edge of these faults during slow subsidence of the down side of the fault (Bloy and Hadley, 1989; Dufresne et al., 1996). The northwest trending Fox Creek basement structural break lines up well with the adjacent and overlying edge of the Swan Hills platform and with the prominent Fox Creek gas zone that underlies the property and is contained within or spatially related to the Beaverhill Lake carbonates (Figure 3).

DEPOSIT TYPES

Lithium is a relatively rare element, it is found in a number of rock types and near surface "continental" brines but almost always in very low concentrations. Lithium can become concentrated in flowing and cooling magma (and/or the associated fluids), which often results in high concentrations of Li in pegmatite related mica, and in evaporating continental brines because it has a higher solubility than most other cations in the brine (Garrett, 2004). Currently, the major commercial sources of Li are continental brines and their evaporitic products, and Li-rich mica in pegmatites. Additional sources of Li have been identified including hectorite (a Li-bearing clay) and deeper formation waters in the form of geothermal brines and oilfield brines. Apart from continental brines found near the surface, formation waters have not been used as a commercial source of Li, mainly because of low reported concentrations of Li in the much deeper formation waters across the world is sparse at best. The Li values reported

by Hitchon *et al.*, (1995) for deep formation water brines in the Swan Hills region of the Alberta basin are comparable to those reported for the near surface brines that are currently being produced for Li at Clayton Valley, Nevada. Deposit types pertinent to the Valleyview property are discussed below.

Continental Brines

Continental brines with high Li content are mainly found in the porous strata below the surface of playas (dry lakes), particularly in the volcanically active, high plateaus of the central Andes or China. Currently, Chile (Salar de Atacama) is the largest producer of Li from near surface continental brines, but significant production also comes from Argentina (Salar de Hombre Muerto) and the United States (Clayton Valley, Nevada).

Lithium-bearing playa deposits have several characteristics in common: they occur within volcanic belts, in closed structural depressions and within desert belts (Kunasz, 1980). The source of Li in high Li continental brines is thought to be principally derived from geothermal waters with a minor contribution from surface leaching of volcanic ash, clays or other recent rocks. Studies have shown that at low temperatures, Li is very difficult to leach from rocks and minerals so little is dissolved at near surface conditions (Garrett, 2004). However, Li concentrations of 6 to 50 ppm have been measured from some geothermal springs indicating that at higher temperatures (i.e. >300°C) leaching conditions allow a greater amount of Li to be dissolved. The source of Li for geothermal waters is believed to be volcanic rocks (Kunasz, 1980). However, concentrations of Li of 6 to 50 ppm are still considered quite low and further concentration of the Li content of geothermal waters is achieved by near surface evaporation. When geothermal waters collect in a closed, reasonably impervious basin in an arid climate with low fresh water recharge and good solar ponding conditions, over time, the Li concentration can be significantly increased due to its greater solubility than many of the other component elements in a near-surface brine (Garrett, 2004).

As discussed in the history section above, the formation waters at a depth of 3,300 to 4,000 m below surface of First Lithium's Valleyview Property yield similar Li concentrations to those found in the currently producing Clayton Valley Li brine deposit. The Clayton Valley deposit is hosted in a relatively small playa with an area of 64 km² (Zampirro, 2005). The porous strata below the surface are primarily Quaternary alluvial gravel, sand, silt, and clay with some gypsum, calcite and halite (Kunasz, 1980). Lithium is being produced from shallow wells into the Quaternary sediments and a volcanic ash hosted aquifer. The sediments are tilted and several fault lines are present which act as a trap for the more concentrated Li brine (Zampirro, 2005). They host a concentrated NaCl brine with subordinate concentrations of K and sulfate (SO4) along with very low concentrations of magnesium and other ions (Kunasz, 1980). At initial production in 1966, the Clayton Valley brine had an average Li content of 400 ppm but has been declining since, with current concentrations estimated at 100-300 ppm Li (average 160 ppm; Kunasz, 2006). Production of Li at Clayton Valley is from 50 wells pumping brine at 30-325 gallons per minute from depths of 70 to 487 m (230 to1,600 ft) spanning 6

aquifers (Zampirro, 2005). The original estimates for the total Li reserves at Clayton Valley ranged from 115,000 tonnes Li (Kunasz, 1994) to 382,000 tonnes Li (Garrett, 2004 and references therein).

The origin of the Li in the brines at Clayton Valley is thought to be volcanic and/or related to geothermal activity. It is thought that the brines have then been upgraded due to historic solar evaporative processes. It is not clear what is the original source for the Li in the formation brines underlying the Fox Creek Property. Perhaps the most obvious source is Li derived from the Prairie Evaporite, a significant and thick basin wide evaporite sequence within the Elk Point Group immediately beneath the Beaverhill Lake and Woodbend formation aguifers. The high concentrations of Li would represent a Devonian analogue of the much more recent Li enriched Salars and Playas in South America. An alternative source is from hot and highly corrosive brines associated with dissolution of the Prairie Evaporite salts that come into contact with and can dissolve pegmatitic to granitoid basement rocks at the contact between Elk Point rocks and Precambrian basement. Formation water brines with 300,000 to 350,000 ppm (mg/l) total dissolved salts (more than 6 times the salinity of seawater) are well documented in the Alberta Basin. These highly corrosive brines could dissolve significant amounts of rock putting significant amounts of Li into solution. All that would be needed to get the Li enriched brines into the Beaverhill Lake or Woodbend Formation aquifers is structure.

Geothermal Brines

Geothermal brines form in areas of geothermal activity usually associated with either prominent or latent active volcanism. A well known occurrence is the Salton Sea Brine, a 60 km₂ underground lake of hot (100-400°C) NaCl and CaCl₂ enriched brine, located in southern California (Garrett, 2004; Tahil, 2007). The brine is found in porous sediments at depths ranging from 500 to 3,000 m. The Salton Sea brines contain a very large array of metals and other uncommon ions including Li with an average lithium content of 200 ppm (similar to the Clayton Valley deposit; Vine, 1980). The brine is thought to be sourced from the meteoric water flowing through fault lines deep into the earth where it is heated by hot rocks or magma. The composition of the brine suggests that the descending water dissolved high magnesium potash salts and then underwent a dolomitization reaction converting most of its calcium content to magnesium. Subsequently when the brine was heated it became highly corrosive and dissolved the wide array of metal ions that it now contains (Garrett, 2004). The brine lake lies on the very active San Andreas Fault and the descending Pacific plate indicating that the heat source might be at considerable depth. Lithium values of up to 400 ppm have been measured in pilot solar ponds used for potash recovery but no Li has been recovered (Vine, 1980). The potential recovery of Li has also been studied from the geothermal brines from Reykjanes Geothermal field (Iceland), Wairakei (New Zealand), Cesano (Italy), Cronembourg (France) and Japan (Garrett, 2004).

Oilfield Brines

Formation waters associated with some of the world's oil fields are known to contain medium to highly anomalous concentrations of Li and are considered potential sources for large tonnages of Li. For example, the Smackover brines in the southern United States (Arkansas and Texas) are high NaCl and CaCl₂ brines with concentrations of Li ranging from 50 to 572 ppm (Garrett, 2004). The Smackover brines are located in an extensive petroleum reservoir, on top of the brines floats crude oil and natural gas. Oil production from the field commenced in the 1920's (Tahil, 2007). The high Ca and Br content of these brines suggest they are concentrated seawater dolomitization brines with the high concentrations of Li (along with B and other trace ions) supplied by geothermal sources. The Smackover brines are found at depths ranging from 1,800 to 4,800 m and have a formation thickness of 213 m. The brine is hosted in an oolitic limestone with an average porosity of about 5% (Garrett, 2004). Currently only Br is recovered from the Arkansas brines however studies have been conducted on the potential recovery of Li (Garrett, 2004; Tahil, 2007).

MINERALIZATION

Mineralization on the property consists of Li-enriched Na-Ca brines hosted in aquifers within Devonian carbonate reef complexes with demonstrated good porosity and permeability. Hitchon *et al.*, (1995) identified the potential Li bearing formation water brines in the Woodbend formation aquifer associated with reef complexes in the Swan Hills Area. The northern Woodbend (Leduc) formation aquifer has a potentially productive area of about 300 km² with the entire surface aquifer area underlying the Valleyview Property at a depth of approximately 3,100 m below surface (Figures 3 and 4). Hitchon *et al.*, 1995 suggests the potentially productive zone in the northern Woodbend (Leduc) aquifer has an average thickness of 25 m, an average porosity of 6% and an average permeability of 2*10⁻¹⁴m². The geochemical analyses of the Woodbend (Leduc) formation aquifers indicates that significant concentrations of Na, Ca, K along with B, Br and I are present in the aquifers. All of these elements should be looked at in conjunction with Li for possible commercial production.

Petroleum products are being produced from at least 144 wells within the boundaries of the Fox Creek and Valleyview Lithium Properties, along with 37 active disposal or injection wells. The Swan Hills region represents a mature petroleum field and today, most, if not all of the wells produce far more water than petroleum products. Many of the wells in this area in their early history started out at hundreds to thousands of barrels per day of petroleum products and required little active pumping to extract.

Today almost all of the wells produce far more formation water than they do petroleum products. Many of the batteries in the region, which take production from 5 to 10 wells, produce on average less than 200 barrels per day of petroleum products with pumping and produce anywhere from 5,000 to 50,000 gallons per hour of formation waters (about 2,500 to 25,000 barrels per day) from Devonian formation aquifers, in

most cases the Beaverhill Lake or Woodbend (Leduc) aquifers underlying the petroleum reservoir (Lee Long, *pers comm.*, 2009). The wells essentially produce formation waters with minor amounts of petroleum products. The hot 80°C formation waters are generally treated in anode-cathode systems and then re-injected back into the reservoir in order to keep the pressures up within the reservoir.

2009 - 2010 LITHIUM EXPLORATION

Exploration during 2009 consisted of a detailed office based well compilation. APEX personnel compiled all available data for Li and other brine related elements that are contained within formation water brines underlying First Lithium's Valleyview and other properties. Based upon a search of the Energy and Resources Conservation Board (ERCB) database using geoSCOUTTM, a total of 637 oil, gas or water wells have been drilled within the boundaries of First Lithium's Fox Creek and Valleyview properties (Appendix 2), and have been drilled to a depth where they have intersected at least Devonian aged rocks (Figure 3). Today, a total of 144 wells are considered "Active Producing" (Appendix 2). A total of 456 wells are listed as having been suspended or abandoned (Appendix 2). The location of the wells, their current status and the important Devonian oil and gas pools and geological elements are shown in Figure 3. A search using the water geochemistry module of geoSCOUTTM, indicates that there are wells on the property that have associated "water" or "filtrate" geochemical analyses, however none of the geochemical analyses in the geoSCOUTTM

The well compilation indicates that there are two prospective target blocks (North and South Blocks) for Li sampling within the Valleyview Property (Figures 3, 4 and 7). The South Target Block contains 5 active wells that are all operated by Paramount Resources Ltd. (Appendix 2; Figures 3 and 7). Hitchon et al. (1995) indicate the presence of a historic well that has yielded greater than 75 ppm Li from formation waters associated with the Woodbend Formation (Figures 3 and 4). The North Target Block, which is centered over a significant Woodbend Formation Oil Pool, contains 86 active oil wells that are almost entirely owned and operated by Barrick Energy Ltd., (Barrick) a subsidiary of Barrick Gold Corp. (Appendix 2; Figures 3 and 7). Hitchon et al. (1995) indicate that a least one historic well yielded 140 ppm Li from formation water brine (Figures 3 and 4). The North Target Block within the Valleyview permits is a high priority target for future formation water sampling for Li. Based upon the analyses presented by Hitchon *et al.* (1995) and shown in Table 2, the formation waters are considered Na-Ca chloride brines and are roughly 4 to 5 times the salinity of modern sea water.

Based upon the well compilation completed in 2009, First Lithium engaged Barrick and their sub-contractor Maxxam Environmental (Maxxam) during late 2010 to conduct formation water sampling of approximately half of the active Barrick wells in the Northern oil field. A number of the wells produce from the Woodbend hosted aquifer as well as from Triassic or Jurassic formations above the Woodbend aquifer. Based upon

Hitchon *et al.*, (1995) and Eccles and Jean (2010), it appears that the concentrations of Li and other important potential co-product elements are lower in the overlying units than for the Devonian carbonate hosted Woodbend aquifer. A number of samples have been collected by Maxxam from mostly the wells taping the Woodbend oil field and associated aquifer, however, analytical results are pending for all of the samples collected to date. A number of samples remain to be collected during 2011.

SAMPLING METHOD AND APPROACH

In 2010, formation water samples were collected from a number of wells producing hydrocarbons from stratigraphic horizons of interest i.e. the Devonian Woodbend Aquifer. Maxxam provided three 100 milliliter (ml) viles and a 1 litre bottle along with chemical stabilizers for the collection of samples by personnel from Maxxam, and APEX. The samples were collected by personnel from Maxxam and APEX using Mobile LGR Units on behalf of the oil and gas companies operating the sampled wells. A number of the wells were considered sour (containing H2S gas) and therefore required experienced well site samplers and the mobile LGR units in order to collect formation water samples. The formation water samples were labelled with the well number and then were couriered to Maxxam's Laboratory in Edmonton for analysis. Personnel from APEX and First Lithium were initially on site to observe and approve the methodology of sample collection. Sample descriptions, locations and the results are presented in Appendix 3 and are summarized on Figure 7.

SAMPLE PREPARATION, ANALYSIS AND SECURITY

The 2010 formation water samples were collected from a number of discreet wells by personnel from Maxxam and APEX and were sent directly to Maxxam's laboratory in Edmonton. Maxxam is currently analyzing the samples using a variety of wet chemical techniques that will be described once the analytical data are in hand. The locations of a number of the sampled wells are shown on Figure 7.

DATA VERIFICATION

All physical sampling, sample handling and testing undertaken as part of the 2010 work program was conducted by independent contractors. The formation water sampling procedure for this program was overseen by First Lithium personnel and Michael B. Dufresne, the Company's independent 'Qualified Person'.

The prepared samples were sent by courier to Maxxam in Edmonton, Alberta for analysis. Maxxam performs analyses according to rigorous QA/QC and certification standards, including the insertion of analytical control samples and blanks (Appendix 3).

ADJACENT PROPERTIES

First Lithium's Fox Creek Property lies about 43 km to the south-southeast of the Valleyview Property. The Fox Creek Project encompasses hundreds of operating oil and gas wells surrounding and covering the property. Aquifers associated with the various oil and gas pools underlying First Lithium's Fox Creek property contain brines with documented anomalous concentrations of Li, K, B, Br and I which have the potential to be recovered during oil and gas production. In addition, east of First Lithium's Fox Creek Property, Channel holds a number of permits and is conducting exploration for Li-bearing brines along with co-product Br, B and K. Channel has conducted well sampling confirming the presence of anomalous Li and other potential co-product elements. Channel has conducted bulk sampling of the brines on their property leading to metallurgical testing. Channel has recently announced that they are conducting further metallurgical tests and have commissioned a resource estimate (Channel Resources Ltd. News Release, November 17, 2010).

Additionally, in 2010, the AGS constructed an Alberta-wide Lithium Ground Water and Formation Water Geochemical dataset, which comprised Li datasets from the AGS (oil and gas wells datasets, AERI and Beaver Basin projects) and the ARC. The intent of the data compilation was to aid industry in evaluating and characterizing resource estimates by being able to distinguish what is background and anomalous values of Li throughout Alberta. The resulting digital dataset resulted in 1,511 records, of which 48 returned results greater than the threshold value of 75 ppm. A total of 19 analyses returned greater than 100 ppm Li from the Beaverhill Lake Formation and Woodbend and Winterburn Groups in west-central to northwestern Alberta. A total of two of these results are located on the Fox Creek Property (Figures 3, 4 and 7; Eccles, D.R. and Jean, G.M., 2010)

OTHER RELEVANT DATA AND INFORMATION

There are no Li producing brine operations in Canada. Production of Li from brines in North America is currently solely from the Clayton Valley playa in Nevada. Lithium has many properties which make it useful in commercial applications. It is electrochemically reactive, has a low thermal expansion coefficient, high specific heat and flat viscosity/temperature ratios. The main uses of Li compounds are in the production of glass, ceramics, lubricants, primary aluminum, pharmaceuticals and batteries (Ebensperger *et al.*, 2005). Growth in Li battery use has resulted in batteries becoming the leading end-use for Li as of 2007 (Jaskula, 2008). Additionally, Li-ion batteries are rapidly becoming the favored technology for powering Hybrid and Electric Vehicles - EVs (Tahil, 2007). Li-Ion batteries require a very pure form of Li carbonate that can only be produced cost effectively from brine deposits (Tahil, 2007).

Over the past two decades cheaper prices and abundant supply has led to a shift away from rock based ore minerals to brines as the major source of Li. Currently production from brine deposits supplies 60-80% of the world's Li market. Production of Li from brines requires much less energy and is much more environmentally friendly than Li production from ores (Warren, 2006). The supply of cheap Li from brine operations led to a drop in the real price of Li by up to 50% from the mid-1990's to early 2000's. However, a steady increase in the price of Li has occurred since 2003 (Table 5) with a steep increase reported for 2007 due to increased global demand (especially for Li batteries) (Moores, 2007; Jaskula, 2008). Currently, estimated Li resources meet or exceed expected demand (Contesse and Ponce, 2008; Warren, 2006). However, it is likely that Li needs will expand over current projections with the increasing use of Li-ion batteries and especially with the advent of Li-lon battery powered EVs, thus reducing the current oversupply (Warren, 2006; Tahil, 2007).

ESTIMATED EXPEDITURES

During 2009 and 2010, exploration conducted on the Valleyview Property included geological research and sampling of formation waters with geochemical analysis pending. First Lithium has also engaged a consulting engineering group to aid in metallurgical work to determine an adequate process for extraction testing. Exploration expenditures totalled CDN\$52,489.25 including the allowed 10% overhead but not including GST. A summary of exploration costs and a detailed expense report is provided in Appendix 4.

INTERPRETATION AND CONCLUSIONS

In 2009 First Lithium engaged APEX to perform a review and compilation of formation water and petroleum well data for First Lithium's Valleyview Lithium Property. The Valleyview Property is located in west-central Alberta, just south of the town of Valleyview. The Valleyview Property is comprised of 9 Industrial and Metallic Mineral Permits which together form a single contiguous package of land that totals approximately 82,304 hectares (Ha).

First Lithium's Valleyview mineral permits cover a large portion of an oil field hosted in the Devonian Woodbend (Leduc) carbonate reef complexe. Spatially associated with the oil pool is an aquifer that consists of Li-enriched Na-Ca chloride brines. Based upon a search of the Energy and Resources Conservation Board (ERCB) database using geoSCOUTTM, First Lithium's Fox Creek and Valleyview properties have 2,807 separate well locations with 637 wells that have penetrated Devonian strata within property boundaries. Based on the Li concentration and rock property data (porosity and permeability) there are three areas (aquifers) with potential for formation water production and Li extraction in west-central Alberta. Of interest to First Lithium's Valleyview property is the northern Woodbend (Leduc) aquifer underlying the Valleyview Property (Figures 3, 4 and 7).

Based upon the information provided by Hitchon *et al.* (1995) in AGS Bulletin 62, First Lithium's Valleyview Property is a high priority for exploration for Li in Devonian

formation water aquifers as it provides not only highly anomalous concentrations of Li but also large quantities of formation waters in producible aquifers with other potentially producible elements such as K, Br and B (Figures 3, 4 and 7). Within the Valleyview Property, there are at least 2 areas that should be targeted for Li in formation waters (Figures 3, 4 and 7). The South Perls oil pool (North Block) is likely the highest priority target area for formation water sampling as it covers the Woodbend hosted oil field and aquifer where Hitchon *et al.* (1995) identified a well with formation water that yielded 140 ppm Li (Figures 3, 4 and 7). The vast majority of active wells in the area are currently owned and operated by Barrick Energy Ltd.

Based upon the well compilation completed in 2009, First Lithium engaged Barrick and their sub-contractor Maxxam Environmental (Maxxam) during late 2010 to conduct formation water sampling of approximately half of the active Barrick wells in the Northern oil field. A number of the wells produce from the Woodbend hosted aquifer as well as from Triassic or Jurassic formations above the Woodbend aquifer. Based upon Hitchon *et al.*, (1995) and Eccles and Jean (2010), it appears that the concentrations of Li and other important potential co-product elements are lower in the overlying units than for the Devonian carbonate hosted Woodbend aquifer. A number of samples have been collected by Maxxam from mostly the wells taping the Woodbend oil field and associated aquifer, however, analytical results are pending for all of the samples collected to date. A number of samples remain to be collected during 2011.

First Lithium's Fox Creek Property lies about 43 km to the south-southeast of the Valleyview Property. Aquifers associated with the various oil and gas pools within First Lithium's Fox Creek property contain brines with documented anomalous concentrations of Li, K, B, Br and I, which have the potential to be recovered during oil and gas production. In addition, east of First Lithium's Fox Creek Property, Channel holds a number of permits and is conducting exploration for Li-bearing brines along with co-product Br, B and K. Channel has conducted well sampling confirming the presence of anomalous Li and other potential co-product elements. Channel has conducted bulk sampling of the brines on their property leading to metallurgical testing. Channel has recently announced that they are conducting further metallurgical tests and have commissioned a resource estimate (Channel Resources Ltd. News Release, November 17, 2010).

In 2010, the AGS constructed an Alberta-wide Lithium Ground Water and Formation Water Geochemical dataset, which comprised Li datasets from the AGS (oil and gas wells datasets, AERI and Beaver Basin projects) and the ARC. The intent of the data compilation was to aid industry in evaluating and characterizing resource estimates by being able to distinguish what is background and anomalous values of Li throughout Alberta. The resulting digital dataset resulted in 1,511 records, of which 48 returned results greater than the threshold value of 75 ppm. A total of 19 analyses returned greater than 100 ppm Li from the Beaverhill Lake Formation and Woodbend and Winterburn Groups in west-central to northwestern Alberta. A total of two of these results are located on the Fox Creek Property (Figures 3, 4 and 7; Eccles, D.R. and Jean, G.M., 2010)

Based upon the APEX data review, the encouraging sampling results in the region and the similarities to the producing Clayton Valley brines, aquifers within the Devonian Woodbend (Leduc) carbonate reef complex underlying the Valleyview Property held by First Lithium warrant further exploration for Li as well as other associated elements including Na, Ca, K, Mg, B, Br and I. The concentrations of Li in conjunction with numerous producing gas wells and other infrastructure on the Property that are already producing significant amounts of formation waters from the targeted horizons indicate that significant potential exists for the Property to yield brines with Li. Further work is required to confirm the continuity and producibility of the Li-bearing brines and, if the continuity and producibility can be confirmed, a process methodology that could work in conjunction with current gas field batteries that are currently producing the waters, treating them and re-injecting those waters back into the reservoirs or other formations.

RECOMMENDATIONS

Stage 1 exploration should continue with a) further compilation and research for existing water chemical analyses, with the office work consisting of recreating Dr. Hitchon's formation water database, further investigations at the ERCB in Calgary, an investigation of the water producibility of each active well and even some of the suspended or abandoned but old producing wells. Concurrently with the compilation, Stage 1 b) should consist of continuing the ongoing field based water chemistry sampling program consisting of a well sampling to better determine the Li and other element potential of the Valleyview Property formation brines.

APEX strongly recommends sampling a minimum of 50 wells within the Valleyviewk Property. The sampling program will require the use of an LGR Unit to conduct the sampling which will cost about \$2,500 per day and include the sophisticated LGR Unit (truck mounted) along with two technicians to operate it and conduct the sampling. The end result would be a number of formation water analyses. If a reasonable grade of Li of about 80 to 150 ppm confirmed and is reasonably consistent from one well to the next, the data might permit a preliminary resource calculation.

Once the field and analytical data are in hand, geochemical groundwater modeling should be carried out followed by process engineering design and bench scale testing. In order to get to a proper 43-101 compliant resource a hydrogeological consultant will be required help evaluate the porosity, permeability, total content of formation water and recharge capacity of the reservoir.

The total all up estimated cost including a 43-101 report at the end of the program is \$100,000 including GST. The estimated time frame to conduct the sampling is about 3 months.

APEX Geoscience Ltd.

Michael B. Dufresne, M.Sc., P.Geol.

Edmonton, Alberta Canada February 28, 2011

Assessment Report For First Lithium

Page 32

REFERENCES

Bloch, J., Schroder-Adams, C., Leckie, D.A., McIntyre, D.J., Craig, J. and Staniland, M. (1993). Revised stratigraphy of the Lower Colorado Group (Albian to Turonian), Western Canada; Bulletin of Canadian Petroleum Geology, vol. 41, no. 3, pp. 325-348.

Bloy, G.R. and Hadley, M.G. (1989). The development of porosity in carbonate reservoirs. Canadian Society of Petroleum Geologists, Continuing education Short Course.

Cant, D.J. (1988). Regional structure and development of the Peace River Arch, Alberta: A Paleozoic failed-rift system?; Bulletin of Canadian Petroleum Geology, 36:284-295.

Connolly, C.A., Walter, L.M., Baadsgaard, H., Longstaff, F.J. (1990a). Origin and evolution of formation waters, Alberta Basin, Western Canada Sedimentary basin. I. Chemistry. Applied Geochemistry, v.5, n.4, pp. 375-395

Connolly, C.A., Walter, L.M., Baadsgaard, H., Longstaff, F.J. (1990a). Origin and evolution of formation waters, Alberta Basin, Western Canada Sedimentary Basin. II. Isotope systematics and water mixing. Applied Geochemistry, v.5, n.4, pp.397-413

Dufresne, M.B. (2009). Technical report on the lithium potential of the Fox Creek Property, Swan Hills Area, West-Central Alberta. Unpublished Technical Report prepared on behalf of Channel Resources Ltd., 39p.

Dufresne, M.B., Olson, R.A., Schmitt, D.R., McKinstry, B., Eccles, D.R., Fenton, M.M., Pawlowicz, J.G., Edwards, W.A.D. and Richardson, R.J.H. (1995). The Diamond Potential of Alberta: A Regional Synthesis of the Structural and Stratigraphic Setting, and Other Preliminary Indications of Diamond Potential. MDA Project M93-04-037, Alberta Research Council Open File Report 1994-10.

Dufresne, M.B., Eccles, D.R., McKinstry, B., Schmitt, D.R., Fenton, M.M., Pawlowicz, J.G. and Edwards, W.A.D. (1996). The Diamond Potential of Alberta; Alberta Geological Survey, Bulletin No. 63, 158 pp.

Ebensperger, A., Maxwell, P., Moscoso, C., (2005). The Lithium Industry: Its recent evolution and future prospects. Resources Policy, V. 30, pp. 218-231

Eccles, D.R. and Jean, G.M. (2010). Lithium Groundwater and Formation Water Geochemical Data. Alberta Geological Survey, Digital Data DIG 2010-0001.

Garrett, D.E., (2004) Handbook of Lithium and Natural Calcium Chloride: Their Deposits, Processing Uses and Properties. Elsevier Academic Press. 488p.

Glass, D.J. (1990). Lexicon of Canadian Stratigraphy, Volume 4. Western Canada, including Eastern British Columbia, Alberta, Saskatchewan and Southern Manitoba; Canadian Society of Petroleum Geologists.

Green, R., Mellon, G.B. and Carrigy, M.A. (1970). Bedrock Geology of Northern Alberta. Alberta Research Council, Unnumbered Map (scale 1:500,000). Hitchon, B., Billings, G.K., Klovan, J.E. (1971) Geochemistry and origin of formation waters in the Western Canadian sedimentary basin – III. Factors controlling chemical composition: Geochemica et Cosmochimica Acta, v. 35, p. 567-598.

Hitchon, B., (1984) Formation Waters as a Source of industrial Minerals Alberta. In: G.R. Guillet, W. Martin, eds., The Geology of Industrial Minerals in Canada. Canadian Institute of Mining and Metallurgy, Special Volume 29, p. 247-249.

Hitchon, B., Sauveplane, C.M., Bachu, S. (1989). Hydrogeology of the Valleyview Area, Alberta: Evaluation for deep waste injection; Bulletin 58; Edmonton, Alberta Research Council.

Hitchon, B. (1990) Hydrochemistry of the Peace River Arch area, Alberta and British Columbia. Alberta Research Council Open File report 1990-18.

Hitchon, B., Bachu, S., Underschultz, J.R., Yuan, L.P. (1995) Industrial Mineral Potential of Alberta Formation Waters. Bulletin 62, Alberta Geological Survey, 64pp.

Jaskula, B.W., (2008). Lithium. 2007 Minerals Yearbook. U.S. Department of the Interior and U.S. Geological Survey. http://minerals.usgs.gov/minerals/ pubs/commodity/lithium/myb1-2007-lithi.pdf, 9 p.

Kunasz, I.A., (1980). Lithium in Brines. Fifth International Symposium on Salt. Northern Ohio Geological Society, No.5, Vol. 1, pp.115-117

Kunasz, I.A., (1994). Lithium Resources. In: D.D. Carr (Ed.) Industrial Minerals and Rocks. Society for Mining, Metallurgy and Exploration Inc., Littleton, USA, 1214p.

Kunasz, I.A., (2006). Lithium Resources. In: J.E. Kogel, N.C. Trivedi, J.M. Barker, S.T. Krukowsk (Eds.) Industrial Minerals and Rocks: Commodities, Markets and Uses. 7th Edition. Society for Mining, Metallurgy and Exploration Inc., Littleton, USA, 1548p.

Leckie, D.A., Singh, C., Bloch, J., Wilson, M. and Wall, J. (1992). An Anoxic event at the Albian-Cenomanian Boundary: the Fish Scale Marker Bed, Northern Alberta, Canada; Palaeogeography, Palaeoclimatology, Palaeoecology, vol. 92, pp. 139-166.

Moores, S., (2007) Between a rock and a salt lake. Industrial Minerals, v.477, pp. 58-69

Mossop, G. and Shetsen, I. (eds.) (1994). Geological Atlas of the Western Canada Sedimentary Basin. Calgary, Canadian Society of Petroleum Geologists and Alberta Research Council, 510 pp.

O'Connell, S.C., Dix, G.R. and Barclay, J.E. (1990). The origin, history and regional structural development of the Peace River Arch, Western Canada; Bulletin of Canadian Petroleum Geology, 38A:4-24.

Pawlowicz, J.J. and Fenton, M.M. (1995a). Bedrock topography of Alberta. Alberta Geological Survey, Energy and Utilities Board, Map 226, scale 1:2,000,000.

Pawlowicz, J.J. and Fenton, M.M. (1995b). Drift thickness of Alberta. Alberta Geological Survey, Energy and Utilities Board, Map 227, scale 1:2,000,000.

Ross, G.M., Parrish, R.R., Villeneuve, M.E. and Bowring, S.A. (1991). Geophysics and geochronology of the crystalline basement of the Alberta Basin, western Canada; Canadian Journal of Earth Sciences, vol. 28, pp. 512-522.

Ross, G.M., Theriault, R. and Villeneuve, M. (1998). Buffalo Head Terrane and Buffalo Head Craton; What's the difference and does it matter?; Calgary Mineral Exploration Group, 7th Annual Calgary Mining Forum, p. 19-20.

Contesse, P., Ponce, E., (2008) Results for 1H08 and Market Outlook. SQM Corporate Presentation. www.sqm.com, 34p.

Tahil, W., (2007). The Trouble with Lithium – Implications of Future PHEV Production for Lithium Demand. Meridian Research International. http://www.meridian-intres.com/Projects/Lithium_Problem_2.pdf, 11p.

Tokarsky, O. (1977). Hydrogeology of the Iosegun Lake Area, Alberta. Research Council of Alberta, Report 76-2.

Vine, J.D., (1980). Where on Earth is all of the Lithium. US Geological Survey Open File Report 80-1234, 107p.

Warren, J.K. (2006) Evaporites: Sediments, Resources and Hydrocarbons. Springer-Verlag Berlin, Germany. 1035p.

Zampirro, D. (2005) Hydrogeology of the Clayton Valley Brine Deposits, Esmeralda County, Nevada. The Professional Geologist, AIPG 42nd Annual Meeting. V 42, No 3, pp. 46-54.

CERTIFICATE OF AUTHOR

I, Michael B. Dufresne, M.Sc., P.Geol., do hereby certify that:

- 1. I am President of: APEX Geoscience Ltd. Suite 200, 9797 – 45th Avenue Edmonton, Alberta T6E 5V8 Phone: 780-439-5380
- 2. I graduated with a B.Sc. Degree in Geology from the University of North Carolina at Wilmington in 1983 and with a M.Sc. Degree in Economic Geology from the University of Alberta in 1987.
- 3. I am and have been registered as a Professional Geologist with the Association of Professional Engineers, Geologists and Geophysicists of Alberta since 1989.
- 4. I have worked as a geologist for more than 25 years since my graduation from university.
- 5. I have read the definition of "Qualified Person" set out in National Instrument 43-101 ("NI 43-101") and certify that by reason of my education, affiliation with a professional association (as defined in NI 43-101) and past relevant work experience, I fulfill the requirements to be a "Qualified Person" for the purposes of NI 43-101.
- 6. I am responsible for, or directly supervised, the preparation of all sections of the Assessment Report titled "Assessment Report for Lithium Exploration on the Valleyview Property, Swan Hills Area, West-Central Alberta: Metallic and Industrial Mineral Permits 9308120658 to 9308120666", and dated February 28th, 2011 (the "Assessment Report").
- 7. I am not aware of any material fact or material change with respect to the subject matter of the Technical Report that is not reflected in the Technical Report, the omission to disclose which makes the Technical Report misleading.
- 8. I consent to the filing of the Assessment Report with any regulatory authority and publication by them for regulatory purposes, including electronic publication in the public company files on their websites accessible by the public, of the Assessment Report.

Dated this February 28th, 2011 Edmonton, Alberta, Canada Michael B. Dufresne, M.Sc., P.Geol

APPENDIX 1

Report Date: March 3, 2011 12:15:07 AM

Agreement Number:

093 9308120658

Status: ACTIVE Agreement Area: 9088.2400 Term Date: 2008.12.02 Continuation Date:

DESIGNATED REPRESENTATIVE

Client Id: 1002554 Client Name: FIRST LITHIUM RESOURCES INC. Address: 788 RICHARDS ST SUITE 3102 VANCOUVER, BC CANADA V6B 0C7

LAND / ZONE DESCRIPTION

5-22-067: 01NEP PORTION(S) LYING OUTSIDE WASKAHIGAN RIVER PROVINCIAL RECREATION AREA.
5-22-067: 01SW,NW;02-36

Report Date: March 3, 2011 12:15:57 AM

Agreement Number:

093 9308120659

Status: ACTIVE Agreement Area: 9216.0000 Term Date: 2008.12.02 Continuation Date:

DESIGNATED REPRESENTATIVE

Client Id: 1002554 Client Name: FIRST LITHIUM RESOURCES INC. Address: 788 RICHARDS ST SUITE 3102 VANCOUVER, BC CANADA V6B 0C7

LAND / ZONE DESCRIPTION

5-21-068: 01-36

METALLIC AND INDUSTRIAL MINERALS

http://gis.energy.gov.ab.ca/Reports/AgreementExternalReport.aspx?AGRTYPE=093&AGRID=93081206593/2/2011 5:16:11 PM

Report Date: March 3, 2011 12:16:15 AM

Agreement Number:

093 9308120660

Status: ACTIVE Agreement Area: 9216.0000 Term Date: 2008.12.02 Continuation Date:

DESIGNATED REPRESENTATIVE

Client Id: 1002554 Client Name: FIRST LITHIUM RESOURCES INC. Address: 788 RICHARDS ST SUITE 3102 VANCOUVER, BC CANADA V6B 0C7

LAND / ZONE DESCRIPTION

5-22-068: 01-36

Report Date: March 3, 2011 12:16:29 AM

Agreement Number:

093 9308120661

Status: ACTIVE Agreement Area: 9216.0000 Term Date: 2008.12.02 Continuation Date:

DESIGNATED REPRESENTATIVE

Client Id: 1002554 Client Name: FIRST LITHIUM RESOURCES INC. Address: 788 RICHARDS ST SUITE 3102 VANCOUVER, BC CANADA V6B 0C7

LAND / ZONE DESCRIPTION

5-23-068: 01-36

Report Date: March 3, 2011 12:16:55 AM

Agreement Number:

093 9308120662

Status: ACTIVE Agreement Area: 9216.0000 Term Date: 2008.12.02 Continuation Date:

DESIGNATED REPRESENTATIVE

Client Id: 1002554 Client Name: FIRST LITHIUM RESOURCES INC. Address: 788 RICHARDS ST SUITE 3102 VANCOUVER, BC CANADA V6B 0C7

LAND / ZONE DESCRIPTION

5-24-068: 01-36

Report Date: March 3, 2011 12:17:23 AM

Agreement Number:

093 9308120663

Status: ACTIVE Agreement Area: 9216.0000 Term Date: 2008.12.02 Continuation Date:

DESIGNATED REPRESENTATIVE

Client Id: 1002554 Client Name: FIRST LITHIUM RESOURCES INC. Address: 788 RICHARDS ST SUITE 3102 VANCOUVER, BC CANADA V6B 0C7

LAND / ZONE DESCRIPTION

5-21-069: 01-36

Report Date: March 3, 2011 12:17:36 AM

Agreement Number:

093 9308120664

Status: ACTIVE Agreement Area: 9216.0000 Term Date: 2008.12.02 Continuation Date:

DESIGNATED REPRESENTATIVE

Client Id: 1002554 Client Name: FIRST LITHIUM RESOURCES INC. Address: 788 RICHARDS ST SUITE 3102 VANCOUVER, BC CANADA V6B 0C7

LAND / ZONE DESCRIPTION

5-22-069: 01-36

Report Date: March 3, 2011 12:32:52 AM

Agreement Number:

093 9308120665

Status: ACTIVE Agreement Area: 9216.0000 Term Date: 2008.12.02 Continuation Date:

DESIGNATED REPRESENTATIVE

Client Id: 1002554 Client Name: FIRST LITHIUM RESOURCES INC. Address: 788 RICHARDS ST SUITE 3102 VANCOUVER, BC CANADA V6B 0C7

LAND / ZONE DESCRIPTION

5-23-069: 01-36

Report Date: March 3, 2011 12:33:28 AM

Agreement Number:

093 9308120666

Status: ACTIVE Agreement Area: 8704.0000 Term Date: 2008.12.02 Continuation Date:

DESIGNATED REPRESENTATIVE

Client Id: 1002554 Client Name: FIRST LITHIUM RESOURCES INC. Address: 788 RICHARDS ST SUITE 3102 VANCOUVER, BC CANADA V6B 0C7

LAND / ZONE DESCRIPTION

5-24-069: 01-12;18-19;30-31 **5-25-069:** 01-3;10-15;22-27;34-36

APPENDIX 2

Assessment Report For First Lithium

TABLE 1. PROSPECTIVE WELLS FOR SAMPLING - ORDERED BY WELL

No	Well_ID_Long	Well_ID_Short	Section	Twp-Range	On 1st Lithium Property	Target	Well_Name	TVD_m Current_Status	Current_Operator
Active Ho	les Recommended For Sar	npling							
1	100/13-11-057-19W5/00	13-11-057-19W5	11-057-19W5	57-19W5	Yes	Berland River Woodbend - Active	DAYLIGHT PINE 13-11-57-19	3167.0 Flowing GAS	Daylight Enrg Ltd
2	100/13-26-058-20W5/00	13-26-058-20W5	26-058-20W5	58-20W5	Yes	Berland River Woodbend - Active	AMOCO ET AL PINE CREEK 13-26-58-20	3198.0 Drilled & Cased	BP Cda Enrg Comp
3	100/07-28-058-20W5/00	16 28 058 20105	28.058.20105	58 2014/5	Voc	Berland River Woodbend - Active	AMOCO PINENIW 16 28 58 20	2223 9 Flowing CAS	RP Cdo Enra Comp
5	100/16-28-058-20W5/00	10-20-050-20W5	33-058-20W5	58-201//5	Yes	Berland River Woodbend - Active	AMOCO PINE NORTHWEST 9-33-58-20	3420 0 Drilled & Cased	BP Cda Enrg Comp
6	100/09-33-038-20W3/00	09-22-059-17W5	22-059-17W5	59-17W5	Yes	Athabasca Woodbend - Active	AMOCO ET AL KAYBOBS 9-22-59-17	3001.0 Pumping Gas	Talisman Enro Inc
7	100/11-28-059-17W5/00	11-28-059-17W5	28-059-17W5	59-17W5	Yes	Athabasca Woodbend - Active	TRILOGY KAYBOB S. 11-28-59-17	3285.7 Pumping Gas	Trilogy Enra Ltd
8	100/07-34-059-17W5/00	07-34-059-17W5	34-059-17W5	59-17W5	Yes	Athabasca Woodbend - Active	AMOCO ET AL KAYBOB 7-34-59-17	2941.0 Pumping Gas	Talisman Enro Inc
9	100/15-18-059-20W5/00	15-18-059-20W5	18-059-20W5	59-20W5	Yes	Berland River Woodbend - Active	KFOCC ET AL FIR 15-18-59-20	3384.0 Drilled & Cased	Enermark Inc
10	100/06-19-059-20W5/00	06-19-059-20W5	19-059-20W5	59-20W5	Yes	Berland River Woodbend - Active	DAYLIGHT FIR 6-19-59-20	3537.0 Flowing GAS	Daylight Enrg Ltd
11	100/11-29-059-20W5/00	11-29-059-20W5	29-059-20W5	59-20W5	Yes	Berland River Woodbend - Active	CNRL ET AL FIR 11-29-59-20	3648.5 Flowing GAS	Trilogy Enrg Ltd
12	100/06-24-059-21W5/00	06-24-059-21W5	24-059-21W5	59-21W5	Yes	Berland River Woodbend - Active	CANHUNTER ET AL FIR 6-24-59-21	3340.0 Flowing GAS	ConocoPhillips Cda (BRC)
13	100/16-25-059-21W5/00	16-25-059-21W5	25-059-21W5	59-21W5	Yes	Berland River Woodbend - Active	DAYLIGHT FIR 16-25-59-21	3311.3 Flowing GAS	Daylight Enrg Ltd
14	100/07-36-059-21W5/02	07-36-059-21W5	36-059-21W5	59-21W5	Yes	Berland River Woodbend - Active	DAYLIGHT ET AL HZ FIR 7-36-59-21	3322.5 Flowing GAS	Daylight Enrg Ltd
15	100/07-16-060-17W5/02	07-16-060-17W5	16-060-17W5	60-17W5	Yes	Athabasca Woodbend - Active	NUMAC ET AL KAYBOBS 7-16-60-17	Flowing GAS	Devon Cda Corp
16	100/14-24-060-19W5/00	14-24-060-19W5	24-060-19W5	60-19W5	Yes	Smoke Lake Beaverhill - Active	AMOCO ET AL KAYBOBS 14-24-60-19	Flowing GAS	Celtic Expl Ltd
17	100/02-25-060-19W5/00	02-25-060-19W5	25-060-19W5	60-19W5	Yes	Smoke Lake Beaverhill - Active	AMOCO KAYBOBS 2-25-60-19	3426.0 Flowing GAS	Celtic Expl Ltd
18	100/05-25-060-19W5/00	05-25-060-19W5	25-060-19W5	60-19W5	Yes	Smoke Lake Beaverhill - Active	AMOCO KAYBOBS 5-25-60-19	3403.1 Flowing GAS	Celtic Expl Ltd
19	100/09-34-060-19W5/00	09-34-060-19W5	34-060-19445	60-19975	Yes	Smoke Lake Beaverhill - Active	AMOCO KAYBOBS 9-34BL-60-19	3354.3 Flowing GAS	Celtic Expl Ltd
20	100/01-35-060-19005/00	10 35 060 19905	35-060-19005	60 101/15	Tes	Smoke Lake Beaverhill - Active	AMOCO RHI LINIT 2 KAYPOPS 10 25 60 10	2222 0 Flowing GAS	Celtic Expl Ltd
21	100/10-33-060-19005/00	10.02.060.211//6	02 060 211/5	60 211/5	Vor	Berland Diver Weadhand Active	CANHUNTER EIR 10 2 60 21	2214 0 Pumping Gas	ConocoPhilling Cda (BPC)
22	100/06-19-060-21W5/00	06-19-060-21W5	19-060-21W5	60-21W5	Ves	Berland River Woodbend - Active	AMOCO ET AL BIGSTONE 6-19-60-21	3554 3 Pumping Gas	BP Cda Enra Comp
23	100/10-20-060-21W5/00	10-20-060-21W5	20-060-21W/5	60-21W5	Yes	Berland River Woodbend - Active	AMOCO ET AL BIGSTONE 10-20-60-21	3741 4 Flowing GAS	BP Cda Enra Comp
24	100/09-29-060-21W5/00	09.29.060.21W5	29-060-21W/5	60-21W5	Vee	Berland River Woodbend - Active	AURIGA ENERGY FIR 9-29-60-21	3462 0 Flowing GAS	Aurica Enra Inc
26	100/16-31-060-21W5/00	16-31-060-21W5	31-060-21W5	60-21W5	Yes	Berland River Woodbend - Active	AURIGA ENERGY FIR 16-31-60-21	3441.9 Flowing GAS	Auriga Enro Inc
27	100/03-24-061-18W5/00	03-24-061-18W5	24-061-18W5	61-18W5	Yes	Raspberry Lake Woodbend - Active	TRILOGY FOXCK 3-24-61-18	Drilled & Cased	Triloay Enra Ltd
28	100/14-24-061-18W5/02	14-24-061-18W5	24-061-18W5	61-18W5	Yes	Raspberry Lake Woodbend - Active	TRILOGY FOXCK 14-24-61-18	Pumping Gas	Trilogy Enra Ltd
29	100/12-35-061-18W5/00	12-35-061-18W5	35-061-18W5	61-18W5	Yes	Raspberry Lake Woodbend - Active	TRILOGY FOXCK 12-35-61-18	3102.9 Flowing GAS	Trilogy Enra Ltd
30	100/06-02-061-19W5/00	06-02-061-19W5	02-061-19W5	61-19W5	Yes	Smoke Lake Beaverhill - Active	AURIGA ENERGY KAYBOBS 6-2-61-19	3329.3 Flowing GAS	Auriga Enro Inc
31	100/08-03-061-19W5/00	08-03-061-19W5	03-061-19W5	61-19W5	Yes	Smoke Lake Beaverhill - Active	AURIGA ENERGY KAYBOBS 8-3-61-19	Flowing GAS	Auriga Enro Inc
32	100/04-10-061-19W5/00	04-10-061-19W5	10-061-19W5	61-19W5	Yes	Smoke Lake Beaverhill - Active	AURIGA ENERGY KAYBOBS 4-10-61-19	3311.0 Flowing GAS	Auriga Enro Inc
33	100/10-10-061-19W5/00	10-10-061-19W5	10-061-19W5	61-19W5	Yes	Smoke Lake Beaverhill - Active	AURIGA ENERGY KAYBOBS 10-10-61-19	3310.0 Flowing GAS	Auriga Enrg Inc
34	100/03-16-061-19W5/00	03-16-061-19W5	16-061-19W5	61-19W5	Yes	Smoke Lake Beaverhill - Active	AURIGA ENERGY KAYBOBS 3-16-61-19	3311.7 Flowing GAS	Auriga Enrg Inc
35	100/14-16-061-19W5/00	14-16-061-19W5	16-061-19W5	61-19W5	Yes	Smoke Lake Beaverhill - Active	AURIGA ENERGY KAYBOBS 14-16-61-19	3286.7 Flowing GAS	Auriga Enrg Inc
36	100/07-20-061-19W5/00	07-20-061-19W5	20-061-19W5	61-19W5	Yes	Smoke Lake Beaverhill - Active	AURIGA ENERGY KAYBOBS 7-20-61-19	Flowing GAS	Auriga Enrg Inc
37	100/01-29-061-19W5/00	01-29-061-19W5	29-061-19W5	61-19W5	Yes	Smoke Lake Beaverhill - Active	AURIGA ENERGY KAYBOBS 1-29-61-19	3243.1 Flowing GAS	Auriga Enrg Inc
38	100/10-29-061-19W5/00	10-29-061-19W5	29-061-19W5	61-19W5	Yes	Smoke Lake Beaverhill - Active	AURIGA ENERGY KAYBOBS 10-29-61-19	3285.7 Flowing GAS	Auriga Enrg Inc
39	100/16-30-061-19W5/00	16-30-061-19W5	30-061-19W5	61-19W5	Yes	Smoke Lake Beaverhill - Active	AURIGA ENERGY KAYBOBS 16-30-61-19	3275.0 Flowing GAS	Auriga Enrg Inc
40	102/16-31-061-19W5/00	16-31-061-19W5	31-061-19W5	61-19W5	Yes	Smoke Lake Beaverhill - Active	AURIGA ENERGY 02 KAYBOBS 16-31-61-19	3276.4 Flowing GAS	Auriga Enrg Inc
41	100/15-01-061-22W5/02	15-01-061-22W5	01-061-22W5	61-22W5	Yes	Berland River Woodbend - Active	AURIGA ENERGY BIGSTONE 16-1-61-22	3416.0 Flowing GAS	Auriga Enrg Inc
42	100/06-01-062-18W5/00	06-01-062-18W5	01-062-18W5	62-18W5	Yes	Raspberry Lake Woodbend - Active	CELTIC FOXCK 6-1-62-18	3155.0 Pumping OIL	Celtic Expl Ltd
43	102/11-12-062-18W5/00	11-12-062-18W5	12-062-18W5	62-18W5	Yes	Raspberry Lake Woodbend - Active	CELTIC FOXCK 11-12-62-18	3129.1 Flowing OIL	Celtic Expl Ltd
44	100/06-13-062-18W5/02	06-13-062-18W5	13-062-18W5	62-18W5	Yes	Raspberry Lake Woodbend - Active	CELTIC HZ FOXCK 6-13-62-18	3059.8 Pumping OIL	Celtic Expl Ltd
45	100/13-13-062-18W5/00	13-13-062-18W5	13-062-18W5	62-18W5	Yes	Raspberry Lake Woodbend - Active	CELTIC FOXCK 13-13-62-18	3072.1 Pumping OIL	Celtic Expl Ltd
46	100/15-23-062-18W5/03	15-23-062-18W5	23-062-18W5	62-18W5	Yes	Raspberry Lake Woodbend - Active	CELTIC FOXCK 15-23-62-18	3067.9 Pumping OIL	Celtic Expl Ltd
47	100/06-25-062-18W5/00	06-25-062-18W5	25-062-18W5	62-18W5	Yes	Raspberry Lake Woodbend - Active	ICELTIC FOXCK 6-25-62-18	Flowing OIL	Celtic Expl Ltd
48	100/05-06-062-19W5/00	05-06-062-19W5	06-062-19W5	62-19W5	Yes	Smoke Lake Beaverhill - Active	AURIGA ENERGY KAYBOBS 5-6-62-19	3261.0 Flowing GAS	Auriga Enrg Inc
49	100/16-01-062-20W5/00	16-01-062-20W5	U1-062-20W5	62-20W5	Tes	Smoke Lake Beaverhill - Active	AURICA ENERGY KAYBOBS 10-1-62-20	3267.5 Flowing GAS	Auriga Enrg Inc
50	100/12-13-062-20W5/00	04 12 062 20105	13-062-2005	62-2005	Voc	Smoke Lake Deaverhill - Active	AURICA ENERGY KAVEORS 4 43 63 30	3275 0 Flowing GAS	Auriga Enra Inc
51	102/04-13-062-20W5/00	04-13-062-20W5	13-062-2005	62-20105	Voc	Smoke Lake Beaverhill - Active	AURICA ENERGY KAVEORS 6 22 62 20	3248.3 Flowing GAS	Auriga Enra las
52	100/06-23-062-20005/00	04-24-062-20W5	23-062-2005	62-20105	Ves	Smoke Lake Beaverhill - Active	AMOCO KAYBOBS 4-24-62-20	Pumping Gas	BP Cda Enra Comp
53	102/15-08-067-220/5/00	15-08-067-2210/5	08-067 2214/5	67-2214/5	Yes	Vallevview South - Active	PARA FT ALL SMOKY 15-8-67-22	2449 1 Pumping Oll	Paramount Reroe Ltd
55	100/06-16-067-22/05/00	06-16-067-22W5	16-067-22/05	67-22115	Yes	Vallevview South - Active	PARA ET AL LSMOKY 6-16-67-22	2875 1 Flowing GAS	Paramount Reres Ltd
56	100/11-21-067-22/05/00	11-21-067-22W5	21-067-22/05	67-22W5	Yes	Vallevview South - Active	PARA ET AL LSMOKY 11-21-67-22	2800.0 Drilled & Cased	Paramount Rsrcs Ltd
57	100/06-26-067-22W5/00	06-26-067-22W5	26-067-22W5	67-22W5	Yes	Valleyview South - Active	PARA ET AL LSMOKY 6-26-67-22	2588.5 Flowing GAS	Paramount Rsrcs Ltd
58	100/06-28-067-22W5/00	06-28-067-22W5	28-067-22W5	67-22W5	Yes	Valleyview South - Active	PARA ET AL LSMOKY 6-28-67-22	2338.5 Flowing GAS	Paramount Rsrcs Ltd
59	100/11-30-068-21W5/00	11-30-068-21W5	30-068-21W5	68-21W5	Yes	Valleyview North - Active	CHARIOT STURLS 11-30-68-21	2599.0 Pumping OIL	Barrick Enro Inc
60	100/15-30-068-21W5/00	15-30-068-21W5	30-068-21W5	68-21W5	Yes	Valleyview North - Active	CHARIOT STURLS 15-30-68-21	2609.1 Pumping OIL	Barrick Enrg Inc
61	100/02-31-068-21W5/00	02-31-068-21W5	31-068-21W5	68-21W5	Yes	Valleyview North - Active	CHARIOT STURLS 2-31-68-21	2575.0 Pumping OIL	Barrick Enrg Inc
62	100/08-31-068-21W5/00	08-31-068-21W5	31-068-21W5	68-21W5	Yes	Valleyview North - Active	CHARIOT STURLS 8-31-68-21	2523.0 Pumping OIL	Barrick Enrg Inc
63	100/13-31-068-21W5/00	13-31-068-21W5	31-068-21W5	68-21W5	Yes	Valleyview North - Active	CHARIOT STURLS 13-31-68-21	Pumping OIL	Barrick Enrg Inc
64	100/15-31-068-21W5/00	15-31-068-21W5	31-068-21W5	68-21W5	Yes	Valleyview North - Active	CHARIOT STURLS 15-31-68-21	2616,1 Pumping OIL	Barrick Enrg Inc
65	100/16-31-068-21W5/00	16-31-068-21W5	31-068-21W5	68-21W5	Yes	Valleyview North - Active	CHARIOT STURLS 16-31-68-21	2605.0 Pumping OIL	Barrick Enrg Inc
66	100/13-32-068-21W5/00	13-32-068-21W5	32-068-21W5	68-21W5	Yes	Valleyview North - Active	CHARIOT STURLS 13-32-68-21	2591.7 Pumping OIL	Barrick Enrg Inc
67	1W0/12-32-068-21W5/00	12-32-068-21W5	32-068-21W5	68-21W5	Yes	Valleyview North - Active	CHARIOT 102 STURLS 12-32-68-21	2535.2 Pumping OIL	Barrick Enrg Inc
68	100/09-24-068-22W5/00	09-24-068-22W5	24-068-22W5	68-22W5	Yes	Valleyview North - Active	CHARIOT STURLS 9-24-68-22	Pumping OIL	Barrick Enrg Inc
69	100/01-25-068-22W5/00	01-25-068-22W5	25-068-22W5	68-22W5	Yes	Valleyview North - Active	CHARIOT STURLS 1-25-68-22	2578.9 Pumping OIL	Barrick Enrg Inc
70	100/05-25-068-22W5/00	05-25-068-22W5	25-068-22W5	68-22W5	Yes	Valleyview North - Active	CHARIOT STURLS 5-25-68-22	2614.9 Drilled & Cased	Barrick Enrg Inc
71	100/13-27-068-22W5/00	13-27-068-22W5	27-068-22W5	68-22W5	Yes	Valleyview North - Active	CHARIOT STURLS 13-27-68-22	2632.6 Pumping OIL	Barrick Enrg Inc
72	100/08-34-068-22W5/02	08-34-068-22W5	34-068-22W5	68-22W5	Yes	Valleyview North - Active	CADENCE ACQ STURLKS 0-0-0-0	2596.8 Flowing OIL	Barrick Enrg Inc
73	100/14-34-068-22W5/00	14-34-068-22W5	34-068-22W5	68-22W5	Yes	Valleyview North - Active	CADENCE ACQ STURLKS 14-34-68-22	2637.0 Pumping OIL	Barrick Enrg Inc
74	100/08-36-068-22W5/00	08-36-068-22W5	36-068-22W5	68-22W5	Yes	Valleyview North - Active	KERECO STURLKS 8-36-68-22	Pumping OIL	Barrick Enrg Inc
75	100/11-36-068-22W5/00	11-36-068-22W5	36-068-22W5	68-22W5	Yes	Valleyview North - Active	CHARIOT STURLS 11-36-68-22	2571.3 Pumping OIL	Barrick Enrg Inc

TABLE 1. PROSPECTIVE WELLS FOR SAMPLING - ORDERED BY WELL

No	Well_ID_Long	Well_ID_Short	Section	Twp-Range	On 1st Lithium Property	Target	Well_Name	TVD m Current Status	Current Operator
76	102/06-36-068-22W5/00	06-36-068-22W5	36-068-22W5	68-22W5	Yes	Valleyview North - Active	KERECO 102 STURLKS 6-36-68-22	2618.3 Pumping OIL	Barrick Enrg Inc
77	100/05-04-069-21W5/00	05-04-069-21W5	04-069-21W5	69-21W5	Yes	Valleyview North - Active	CHARIOT STURLS 5-4-69-21	2621.3 Pumping OIL	Barrick Enrg Inc
78	100/11-04-069-21W5/00	11-04-069-21W5	04-069-21W5	69-21W5	Yes	Valleyview North - Active	CHARIOT STURLS 11-4-69-21	2470.0 Pumping OIL	Barrick Enrg Inc
79	100/05-05-069-21W5/00	05-05-069-21W5	05-069-21W5	69-21W5	Yes	Valleyview North - Active	CHARIOT STURLS 5-5-69-21	Pumping OIL	Barrick Enrg Inc
80	102/06-05-069-21W5/00	06-05-069-21W5	05-069-21005	69-21005	Yes	Valleyview North - Active	KERECO 102 STURLS 6-5-69-21	2630.1 Pumping OIL	Barrick Enrg Inc
81	103/03-05-069-21W5/00	03-05-069-21W5	05-069-21005	69-21W5	Yes	Valleyview North - Active	CHARIOT STURLS 3-5-69-21	2501.5 Pumping OIL	Barrick Enrg Inc
82	103/07-05-069-21/05/00	07-05-069-21W5	05-069-21005	09-21W5	Yes	Valleyview North - Active	CHARIOT STURLS 7-5-69-21	2607.3 Pumping OIL	Barrick Enrg Inc
03	100/01-06-069-21W5/00	01-06-069-21005	06-069-21005	09-21005	Yes	Valleyview North - Active	PARA STURLS 1-6-69-21	2608.5 Pumping OIL	Barrick Enrg Inc
04	100/03-06-069-21005/00	03-06-069-21005	06-069-21005	69-21005	Yes	Valleyview North - Active	CHARIOT STURLS 3-6-69-21	2565.8 Pumping OIL	Barrick Enrg Inc
00	100/09-06-069-21005/00	10.06.060.210/5	06-069-21005	09-21000	Yes	Valleyview North - Active	CHARIOT STURLS 9-6-69-21	2586.8 Pumping OIL	Barrick Enrg Inc
97	100/10-06-069-21005/00	10-06-069-21005	06-069-21005	09-21005	Yes	Valleyview North - Active	CHARIOT STURLS 10-6-69-21	2687.0 Pumping OIL	Barrick Enrg Inc
89	100/12 06 069 210/5/00	12.06.060.211W5	06.069-21W5	60 21W5	Tes	Valleyview North - Active	CHARIOT STURLS 11-6-69-21	2595.4 Pumping OIL	Barrick Enrg Inc
80	100/14 06 069 211/5/00	14.06.060.210/5	06 060 2110/5	60 211/15	Vee	Valleyview North - Active	CHARIOT STURLS 13-6-69-21	2567.3 Flowing OIL	Barrick Enrg Inc
90	100/15 06 069 21W5/00	15 06 069 21W5	06.069.2110/5	69 211/5	Vac	Valleyview North - Active	CHARIOT STURES 14-6-69-21	2532.1 Flowing OIL	Barrick Enrg Inc
91	100/05-07-069-21W5/00	05 07 069 210/5	07.069.211/5	60 211/5	Vac	Valleyview North - Active	CHARIOT STURLS 15-6-69-21	Pumping OIL	Barrick Enrg Inc
92	103/04 07 069 21 05/00	04 07 069 211//5	07 069 211/5	60 211//5	Vac	Valleyview North - Active	CHARIOT STURES 5-7-69-21	2610.6 Pumping OIL	Barrick Enrg Inc
93	100/08-08-069-21W/5/00	08.08.069.21W5	08.069.211//5	69-211//5	Vac	Valleyview North - Active	CHARIOT STURLS 4-7-69-21	2523.0 Drilled & Cased	Barrick Enrg Inc
94	102/05-09-069-21W/5/00	05-09-069-211//5	09-069-21W5	69.211/5	Vee	Valleyview North - Active	CHARIOT STURLS 8-8-69-21	2685.0 Pumping OIL	Barrick Enrg Inc
95	100/04-10-069-211/05/00	04 10 069 211//5	10.069.21W5	69 211//5	Voc	Valleyview North - Active	PARA STURLS 5-9-69-21	2659.0 Pumping OIL	Barrick Enrg Inc
96	100/05-10-069-21W5/00	05-10-069-21W5	10-069-21W5	69-211//5	Vas	Valleyview North - Active	CHARIOT STURLS 4-10-69-21	2791.9 Pumping OIL	Barrick Enrg Inc
97	100/12-11-069-21W5/00	12-11-069-21W/5	11.069.211//5	69.211//5	Vac	Valleyview North - Active	CHARIOT STURES 5-10-69-21	2650.8 Pumping OIL	Barrick Enrg Inc
98	102/06-11-069-21W5/02	06-11-069-21W5	11-069-21W5	69.211/5	Vos	Valleyview North - Active	KERECO STUREKS 12-11-69-21	2825.0 Pumping OIL	Barrick Enrg Inc
99	102/10-11-069-21W5/00	10-11-069-21W5	11-069-21W5	69-21W5	Ype	Valleview North - Active	ANKERTON HOLD STURLS 4-11-69-21	2756.7 Pumping OIL	Barrick Enrg Inc
100	100/01-01-069-22W5/00	01-01-069-22W5	01-069-2210/5	69-221/5	Vac	Vallavaiau North Active	ANNERTON HOLD STURLS 10-11-09-21	2915.0 Drilled & Cased	Barrick Enrg Inc
101	100/08-01-069-22W5/00	08-01-069-22W5	01-069-2210/5	69.221/5	Vec	Valleyview North Active	CHARIOT STURLS 1-1-09-22	Pumping OIL	Barrick Enrg Inc
102	100/10-01-069-22W5/02	10-01-069-22W5	01-069-2210/5	69.2211/5	Vac	Vallevalew North Active	CHARIOT STURES 8-1-69-22	2592.0 Flowing OIL	Barrick Enrg Inc
103	100/05-02-069-22W5/00	05-02-069-22W5	02-069-221/5	69-2210/5	Vec	Valleyview North - Active	CHARIOT HZ STURLS 10-1-69-22	2563.8 Pumping OIL	Barrick Enrg Inc
104	100/03-04-069-22W5/00	03-04-069-22W5	04-069-22W5	69-22W5	Ves	Valleyview North - Active	CADENCE ACQ STURIKS 5-2-69-22	2599.9 Pumping OIL	Barrick Enrg Inc
105	100/16-04-069-22W5/00	16-04-069-22W5	04-069-22W5	69-221//5	Vec	Vallevalev North - Active	CADENCE ACQ STURLKS 3-4-69-22	2621.0 Pumping OIL	Barrick Enrg Inc
106	100/13-09-069-22W/5/00	13-09-069-22W5	09-069-221/5	69-221//5	Vas	Valleyview North Active	CADENCE ACQ STURLKS 16-4-69-22	2629.1 Pumping OIL	Barrick Enrg Inc
107	102/16-10-069-22W5/00	16-10-069-22W5	10-069-22W5	69-22W5	Vec	Vallevuiew North - Active	CADENCE ACQ STURIKS 13-9-69-22	2645.9 Pumping OIL	Barrick Enrg Inc
108	100/07-11-069-22W5/00	07-11-069-22W5	11-069-22/05	69-22/05	Voe	Vallevariew North - Active	CADENCE ACQ STURLKS 16-10-69-22	2558.3 Pumping OIL	Barrick Enrg Inc
109	100/08-11-069-22W5/00	08-11-069-22W5	11-069-22W5	69-22W5	Ves	Valleyview North - Active	DAVLICHT ET AL HZ STURLES 7-11-09-22	2582.3 Pumping OIL	Barrick Enrg Inc
110	102/10-11-069-22W5/02	10-11-069-22W5	11-069-22W5	69-22W5	Ves	Valleyview North - Active	DATLIGHT ET AL HZ STURLS 8-11-09-22	2530.7 Pumping OIL	Barrick Enrg Inc
111	100/03-12-069-22W5/00	03-12-069-22W5	12-069-2210/5	69-22//5	Vee	Valleyview North Active	DATLIGHT 102 HZ STURLS 6-11-09-22	2541.1 Drilled & Cased	Barrick Enrg Inc
112	100/04-12-069-22W5/02	04-12-069-22W5	12-069-2210/5	69-221/5	Vec	Valleyview North Active	CADENCE ACQ STUREKS 3-12-09-22	2574.6 Pumping OIL	Barrick Enrg Inc
113	102/07-12-069-22W5/00	07-12-069-22W5	12-069-22W5	69-22W5	Ves	Valleyview North - Active	CHARIOT STURIES 7 12 50 22	2555.9 Pumping OIL	Barrick Enrg Inc
114	104/01-12-069-22W5/00	01-12-069-22W5	12-069-22W5	69-22W5	Ves	Vallevriew North - Active	CHARIOT STURIES 7-12-09-22	2594.5 Pumping OIL	Barrick Enrg Inc
115	100/05-15-069-22W5/00	05-15-069-22W5	15-069-22W5	69-22W5	Yes	Valleview North - Active	CADENCE ACO STUDI VS E 15 60 22	2549.3 Pumping OIL	Barrick Enrg Inc
116	102/09-16-069-22W5/04	09-16-069-22W5	16-069-22W5	69-22W5	Yes	Vallevview North - Active	KINIWEST ET AL STURIS 5-15-09-22	2607.9 Pumping OIL	Barrick Enrg Inc
117	100/07-19-069-22W5/00	07-19-069-22W5	19-069-22W5	69-22W5	Yes	Valleyview North - Active	CADENCE ACO STUDI KS 7 10 60 22	2560.4 Drimeing Oll	Penn West Petri Ltd
118	100/12-19-069-22W5/03	12-19-069-22W5	19-069-22W5	69-22W5	Yes	Valleyview North - Active	CADENCE ACO STURIKS 0.0.0	2653 3 Elouing OIL	Barrick Enrg Inc
119	100/02-20-069-22W5/00	02-20-069-22W5	20-069-22W5	69-22W5	Yes	Valleyview North - Active	CADENCE ACO STURIKS 2 20 60 22	2609 9 Pumping Oll	Barrick Enrg Inc
120	100/04-20-069-22W5/03	04-20-069-22W5	20-069-22W5	69-22W5	Yes	Valleyview North - Active	CADENCE ACO STURIKS 3 20 69 22	2600.0 Pumping OIL	Barrick Enrg Inc
121	100/05-20-069-22W5/00	05-20-069-22W5	20-069-22W5	69-22W5	Yes	Valleyview North - Active	CADENCE ACO STURIKS 5-20-69-22	2647 2 Rumping OIL	Barrick Enrg Inc
122	102/01-20-069-22W5/02	01-20-069-22W5	20-069-22W5	69-22W5	Yes	Valleyview North - Active	CADENCE ACO STURIKS 16 17 69 22	2598 7 Rumping OIL	Barrick Enrg Inc
Possible A	Active Holes For Sampling	- Check Status as Listed a	as Active and eith	ner Suspended o	or Abandonec		CADENCE ACQ STORERS 10-17-03-22	2000.7 Fumping OIL	Darrick Enrg Inc
123	100/06-35-057-19W5/02	06-35-057-19W5	35-057-19W5	57-19W5	Yes	Berland River Woodbend - Listed as Active and Suspended or Abandoned	AMOCO PINE 6-35-57-19	3365 3 Flowing GAS	BD Cda Enra Comp
124	100/10-04-057-19W5/02	10-04-057-19W5	04-057-19W5	57-19W5	Yes	Berland River Woodbend - Listed as Active and Suspended or Abandoned	AMOCO PINE 10-4-57-19	3299 5 Pumping Gas	BP Cda Enra Comp
125	100/10-10-057-19W5/02	10-10-057-19W5	10-057-19W5	57-19W5	Yes	Berland River Woodbend - Listed as Active and Suspended or Abandoned	AMOCO PINE 10-10-57-19	3550 9 Flowing GAS	BP Cda Enrg Comp
126	100/11-26-057-19W5/02	11-26-057-19W5	26-057-19W5	57-19W5	Yes	Berland River Woodbend - Listed as Active and Suspended or Abandoned	AMOCO PINE 11-26-57-19	3395.2 Flowing GAS	BP Cda Enra Comp
127	100/09-03-058-19W5/02	09-03-058-19W5	03-058-19W5	58-19W5	Yes	Berland River Woodbend - Listed as Active and Suspended or Abandoned	AMOCO PINE CREEK 9-3-58-19	3460 8 Flowing GAS	BP Cda Enra Comp
128	100/16-02-058-19W5/02	16-02-058-19W5	02-058-19W5	58-19W5	Yes	Berland River Woodbend - Listed as Active and Suspended or Abandoned	DAYLIGHT PINE 16-2-58-19	3585 0 Drilled & Cased	Davlight Eng Ltd
129	100/11-15-058-20W5/02	11-15-058-20W5	15-058-20W5	58-20W5	Yes	Berland River Woodbend - Listed as Active and Suspended or Abandoned	AMOCO PINE NW 11-15-58-20	3302 5 Flowing GAS	BP Cda Enra Comp
130	100/12-26-058-20W5/02	12-26-058-20W5	26-058-20W5	58-20W5	Yes	Berland River Woodbend - Listed as Active and Suspended or Abandoned	AMOCO PINE NW 12-26-58-20	3304.9 Drilled & Cased	BP Cda Enrg Comp
131	100/13-21-058-20W5/02	13-21-058-20W5	21-058-20W5	58-20W5	Yes	Berland River Woodbend - Listed as Active and Suspended or Abandoned	CANHUNTER PINE CREEK 13-21-58-20	3192.0 Pumping Gas	ConocoPhillips Cda (BRC)
132	100/16-27-058-20W5/02	16-27-058-20W5	27-058-20W5	58-20W5	Yes	Berland River Woodbend - Listed as Active and Suspended or Abandoned	DAYLIGHT PINE 16-27-58-20	3307.1 Flowing GAS	Davlight Enro I td
133	100/07-07-059-20W5/02	07-07-059-20W5	07-059-20W5	59-20W5	Yes	Berland River Woodbend - Listed as Active and Suspended or Abandoned	FINA ET AL MARSHD 7-7-59-20	3493.0 Pumping Gas	IBP Cda Epro Comp
134	100/07-13-060-19W5/03	07-13-060-19W5	13-060-19W5	60-19W5	Yes	Smoke Lake Beaverhill - Listed as Active and Suspended or Abandoned	AMOCO KAYBOBS 7-13BL-60-19	3336.0 Flowing GAS	Orleans Enro Ltd
135	100/07-25-060-19W5/02	07-25-060-19W5	25-060-19W5	60-19W5	Yes	Smoke Lake Beaverhill - Listed as Active and Suspended or Abandoned	BP CDN-SUP KAYBOBS 7-25-60-19	Pumping Gas	Talisman Enro Inc
136	100/10-26-060-19W5/02	10-26-060-19W5	26-060-19W5	60-19W5	Yes	Smoke Lake Beaverhill - Listed as Active and Suspended or Abandoned	BP KAYBOBS 10-26-60-19	3407 9 Flowing GAS	Celtic Expl I td
137	100/11-02-060-21W5/03	11-02-060-21W5	02-060-21W5	60-21W5	Yes	Berland River Woodbend - Listed as Active and Suspended or Abandoned	DAYLIGHT FIR 11-2-60-21	3297.7 Flowing GAS	Davlight Enro Ltd
138	100/15-29-060-21W5/02	15-29-060-21W5	29-060-21W5	60-21W5	Yes	Berland River Woodbend - Listed as Active and Suspended or Abandoned	AMOCO ET AL BIGSTONE 15-29-60-21	3545.0 Flowing GAS	BP Cda Enrg Comp
139	100/07-13-061-18W5/02	07-13-061-18W5	13-061-18W5	61-18W5	Yes	Raspberry Lake Woodbend - Listed as Active and Suspended or Abandoned	TRILOGY FOXCK 7-13-61-18	3162.0 Flowing GAS	Trilogy Enrg Ltd
140	100/10-13-061-18W5/02	10-13-061-18W5	13-061-18W5	61-18W5	Yes	Raspberry Lake Woodbend - Listed as Active and Suspended or Abandoned	CELTIC FOXCK 10-13-61-18	3111.6 Drilled & Cased	Celtic Expl Ltd
141	100/09-19-061-19W5/03	09-19-061-19W5	19-061-19W5	61-19W5	Yes	Smoke Lake Beaverhill - Listed as Active and Suspended or Abandoned	AMOCO KAYBOBS 9-19-61-19	3309.2 Drilled & Cased	BP Cda Enrg Comp
142	100/14-29-061-19W5/02	14-29-061-19W5	29-061-19W5	61-19W5	Yes	Smoke Lake Beaverhill - Listed as Active and Suspended or Abandoned	AURIGA ENERGY KAYBOBS 14-29-61-19	3256.9 Flowing GAS	Auriga Enra Inc
143	100/16-20-061-19W5/02	16-20-061-19W5	20-061-19W5	61-19W5	Yes	Smoke Lake Beaverhill - Listed as Active and Suspended or Abandoned	AURIGA ENERGY RE KAYBOBS 16-20-61-19	3263.6 Flowing GAS	Auriga Enra Inc
144	100/05-08-061-22W5/02	05-08-061-22W5	08-061-22W5	61-22W5	Yes	Berland River Woodbend - Listed as Active and Suspended or Abandoned	PAN AM B-1 GRIZZLY 5-8-61-22	3459.7 Drilled & Cased	BP Cda Enro Comp
145	102/11-09-061-22W5/03	11-09-061-22W5	09-061-22W5	61-22W5	Yes	Berland River Woodbend - Listed as Active and Suspended or Abandoned	TALISMAN BIGSTONE 11-9-61-22	3300.0 Flowing GAS	Talisman Enrg Inc
146	100/07-14-062-18W5/02	07-14-062-18W5	14-062-18W5	62-18W5	Yes	Raspberry Lake Woodbend - Listed as Active and Suspended or Abandoned	TRILOGY ET AL FOX CREEK 7-14-62-18	3107.7 Drilled & Cased	Trilogy Enra Ltd
147	100/11-14-062-18W5/02	11-14-062-18W5	14-062-18W5	62-18W5	Yes	Raspberry Lake Woodbend - Listed as Active and Suspended or Abandoned	TRILOGY FOXCK 11-14-62-18	3175.0 Flowing GAS	Trilogy Enrg Ltd
148	100/10-28-062-20W5/02	10-28-062-20W5	28-062-20W5	62-20W5	Yes	Smoke Lake Beaverhill - Listed as Active and Suspended or Abandoned	AMOCO KAYBOBS 10-28CM-62-20	3237.0 Pumping Gas	BP Cda Enra Comp
149	100/14-23-062-20W5/02	14-23-062-20W5	23-062-20W5	62-20W5	Yes	Smoke Lake Beaverhill - Listed as Active and Suspended or Abandoned	HUSKY KAYBOBS 14-23-62-20	3201.6 Flowing GAS	Husky Oil Oprtns Ltd
150	102/09-22-062-20W5/02	09-22-062-20W5	22-062-20W5	62-20W5	Yes	Smoke Lake Beaverhill - Listed as Active and Suspended or Abandoned	SECURE KAYBOBS 9-22-62-20	2868.0 Drilled & Cased	Secure Enrg Srvcs Inc

TABLE 1. PROSPECTIVE WELLS FOR SAMPLING - ORDERED BY WELL

No	Well_ID_Long	Well_ID_Short	Section	Twp-Range	On 1st Lithium Property	Target	Well_Name
151	100/01-31-068-21W5/02	01-31-068-21W5	31-068-21W5	68-21W5	Yes	Valleyview North - Listed as Active and Suspended or Abandoned	CHARIOT STURLS 1-31-68-21
152	100/09-31-068-21W5/02	09-31-068-21W5	31-068-21W5	68-21W5	Yes	Valleyview North - Listed as Active and Suspended or Abandoned	CHARIOT STURLS 9-31-68-21
153	100/14-31-068-21W5/02	14-31-068-21W5	31-068-21W5	68-21W5	Yes	Valleyview North - Listed as Active and Suspended or Abandoned	CHARIOT STURLS 14-31-68-21
154	100/02-25-068-22W5/03	02-25-068-22W5	25-068-22W5	68-22W5	Yes	Valleyview North - Listed as Active and Suspended or Abandoned	CHARIOT STURLS 2-25-68-22
155	100/03-25-068-22W5/03	03-25-068-22W5	25-068-22W5	68-22W5	Yes	Valleyview North - Listed as Active and Suspended or Abandoned	CHARIOT STURLS 3-25-68-22
156	100/09-23-068-22W5/02	09-23-068-22W5	23-068-22W5	68-22W5	Yes	Valleyview North - Listed as Active and Suspended or Abandoned	CHARIOT STURLS 9-23-68-22
157	100/11-25-068-22W5/02	11-25-068-22W5	25-068-22W5	68-22W5	Yes	Valleyview North - Listed as Active and Suspended or Abandoned	CHARIOT STURLS 11-25-68-22
158	100/13-24-068-22W5/02	13-24-068-22W5	24-068-22W5	68-22W5	Yes	Valleyview North - Listed as Active and Suspended or Abandoned	CHARIOT STURLS 13-24-68-22
159	100/15-24-068-22W5/02	15-24-068-22W5	24-068-22W5	68-22W5	Yes	Valleyview North - Listed as Active and Suspended or Abandoned	CHARIOT STURLS 15-24-68-22
160	100/15-25-068-22W5/02	15-25-068-22W5	25-068-22W5	68-22W5	Yes	Valleyview North - Listed as Active and Suspended or Abandoned	POCO STURLS 15-25-68-22
161	100/15-35-068-22W5/02	15-35-068-22W5	35-068-22W5	68-22W5	Yes	Valleyview North - Listed as Active and Suspended or Abandoned	CADENCE ACQ STURLKS 15-35-68-22
162	102/14-14-068-22W5/02	14-14-068-22W5	14-068-22W5	68-22W5	Yes	Valleyview North - Listed as Active and Suspended or Abandoned	SIGNALTA STURLKS 14-14-68-22
163	100/04-07-069-21W5/03	04-07-069-21W5	07-069-21W5	69-21W5	Yes	Valleyview North - Listed as Active and Suspended or Abandoned	CHARIOT STURLS 4-7-69-21
164	100/06-05-069-21W5/04	06-05-069-21W5	05-069-21W5	69-21W5	Yes	Valleyview North - Listed as Active and Suspended or Abandoned	CHARIOT REN STURLS 6-5-69-21
165	100/08-09-069-21W5/02	08-09-069-21W5	09-069-21W5	69-21W5	Yes	Valleyview North - Listed as Active and Suspended or Abandoned	CHARIOT STURLS 8-9-69-21
166	100/13-03-069-21W5/02	13-03-069-21W5	03-069-21W5	69-21W5	Yes	Valleyview North - Listed as Active and Suspended or Abandoned	CHARIOT STURLS 13-3-69-21
167	102/10-05-069-21W5/03	10-05-069-21W5	05-069-21W5	69-21W5	Yes	Valleyview North - Listed as Active and Suspended or Abandoned	CHARIOT STURLS 10-5-69-21
168	105/07-05-069-21W5/00	07-05-069-21W5	05-069-21W5	69-21W5	Yes	Valleyview North - Listed as Active and Suspended or Abandoned	CHARIOT STURLS 7-5-69-21
169	100/07-01-069-22W5/04	07-01-069-22W5	01-069-22W5	69-22W5	Yes	Valleyview North - Listed as Active and Suspended or Abandoned	CHARIOT STURLS 7-1-69-22
170	100/09-01-069-22W5/02	09-01-069-22W5	01-069-22W5	69-22W5	Yes	Valleyview North - Listed as Active and Suspended or Abandoned	CHARIOT STURLS 9-1-69-22
1/1	100/16-01-069-22W5/02	16-01-069-22W5	01-069-22W5	69-22W5	Yes	Valleyview North - Listed as Active and Suspended or Abandoned	CHARIOT STURLS 16-1-69-22
172	100/01-12-069-22W5/02	01-12-069-22W5	12-069-22W5	69-22W5	Yes	Valleyview North - Listed as Active and Suspended or Abandoned	CHARIOT STURLS 1-12-69-22
1/3	100/02-12-069-22W5/02	02-12-069-22W5	12-069-22W5	69-22W5	Yes	Valleyview North - Listed as Active and Suspended or Abandoned	CHARIOT STURLS 2-12-69-22
174	100/06-12-069-22W5/03	06-12-069-22W5	12-069-22W5	69-22W5	Yes	Valleyview North - Listed as Active and Suspended or Abandoned	CADENCE ACQ STURLKS 6-12-69-22
1/5	100/07-12-069-22W5/02	07-12-069-22W5	12-069-22W5	69-22W5	Yes	Valleyview North - Listed as Active and Suspended or Abandoned	CHARIOT STURLS 7-12-69-22
170	103/05-12-069-22005/05	05-12-069-22W5	12-069-22005	69-22W5	Yes	Valleyview North - Listed as Active and Suspended or Abandoned	CADENCE ACQ STURLKS 5-12-69-22
170	102/05-12-069-22005/05	03-12-069-22005	12-069-22005	69-22005	Yes	Valleyview North - Listed as Active and Suspended or Abandoned	DAYLIGHT ET AL STURLS 5-12-69-22
Possible /	Alternative Holes For Same	107-20-069-22VV5	20-069-22005	69-22005	Yes	Valleyview North - Listed as Active and Suspended or Abandoned	CADENCE ACQ STURLKS 7-20-69-22
170	100/16-19-057 10W5/00	16 10 057 10/05	10.057 1010/5	57 1014/5	Vee	Active Well, Describe Alternate for Sempling	AMOCO DINE 16 10 57 10
180	102/16-19-057-19/05/00	16 10 057 10/05	10.057.10\/5	57 10\//5	Vee	Active Well - Possible Alternate for Sampling	AMOCO PINE 10-19-37-19
181	100/03-20-057-20\//5/00	03-20-057-20W5	20.057.201/5	57 201/5	Vac	Active Well - Possible Alternate for Sampling	EMC DINE CREEK 2 20 67 20
182	100/11-11-057-20W5/00	11-11-057-20W5	11-057-20W5	57-2010/5	Vec	Active Well - Possible Alternate for Sampling	AMOCO HB FINA FIR 11 11 57.20
183	100/06-14-057-21W5/00	06-14-057-21W5	14-057-21W5	57-211/05	Voe	Active Well - Possible Alternate for Sampling	AMOCO ET AL EIR 6.14.57.21
184	100/05-11-058-21W5/00	05-11-058-21W5	11-058-21W5	58-21W5	Yes	Active Well - Possible Alternate for Sampling	CANHUNTER PCP FIR 5-11-58-21
185	100/06-36-058-21W5/00	06-36-058-21W5	36-058-21W5	58-21W5	Yes	Active Well - Possible Alternate for Sampling	AMOCO FT AL FIR 6-36-58-21
186	100/07-23-058-21W5/00	07-23-058-21W5	23-058-21W5	58-21W5	Yes	Active Well - Possible Alternate for Sampling	CANHUNTER FIR 7-23-58-21
187	100/13-23-058-21W5/00	13-23-058-21W5	23-058-21W5	58-21W5	Yes	Active Well - Possible Alternate for Sampling	PAM FIR 13-23-58-21
188	100/11-27-059-19W5/00	11-27-059-19W5	27-059-19W5	59-19W5	Yes	Active Well - Possible Alternate for Sampling	AMOCO PRESLEY 11-27-59-19
189	100/16-20-059-21W5/00	16-20-059-21W5	20-059-21W5	59-21W5	Yes	Active Well - Possible Alternate for Sampling	AMOCO ET AL L-1 FIR 16-20-59-21
190	100/06-08-060-19W5/00	06-08-060-19W5	08-060-19W5	60-19W5	Yes	Active Well - Possible Alternate for Sampling	CNRL KAYBOBS 6-8-60-19
191	100/07-33-060-19W5/00	07-33-060-19W5	33-060-19W5	60-19W5	Yes	Active Well - Possible Alternate for Sampling	AMOCO KAYBOBS 7-33-60-19
192	100/11-25-060-20W5/00	11-25-060-20W5	25-060-20W5	60-20W5	Yes	Active Well - Possible Alternate for Sampling	PERL ET AL PASS 11-25-60-20
193	100/14-24-061-18W5/00	14-24-061-18W5	24-061-18W5	61-18W5	Yes	Active Well - Possible Alternate for Sampling	TRILOGY FOXCK 14-24-61-18
194	100/07-30-061-19W5/00	07-30-061-19W5	30-061-19W5	61-19W5	Yes	Active Well - Possible Alternate for Sampling	AURIGA ENERGY KAYBOBS 7-30-61-19
195	100/10-13-061-20W5/00	10-13-061-20W5	13-061-20W5	61-20W5	Yes	Active Well - Possible Alternate for Sampling	CNRL KAYBOBS 10-13-61-20
196	100/10-21-061-20W5/00	10-21-061-20W5	21-061-20W5	61-20W5	Yes	Active Well - Possible Alternate for Sampling	DAYLIGHT KAYBOBS 10-21-61-20
197	100/07-07-062-18W5/00	07-07-062-18W5	07-062-18W5	62-18W5	Yes	Active Well - Possible Alternate for Sampling	TRILOGY FOXCK 7-7-62-18
198	100/09-28-062-18W5/00	09-28-062-18W5	28-062-18W5	62-18W5	Yes	Active Well - Possible Alternate for Sampling	TRILOGY FOX CREEK 9-28-62-18
199	100/10-09-062-18W5/00	10-09-062-18W5	09-062-18W5	62-18W5	Yes	Active Well - Possible Alternate for Sampling	TRILOGY FOX CREEK 10-9-62-18
200	100/01-22-062-20W5/00	01-22-062-20W5	22-062-20W5	62-20W5	Yes	Active Well - Possible Alternate for Sampling	AURIGA ENERGY KAYBOBS 1-22-62-20
201	100/06-31-062-21W5/00	06-31-062-21W5	31-062-21W5	62-21W5	Yes	Active Well - Possible Alternate for Sampling	AMOCO KAYBOBS 6-31-62-21
202	100/07-26-069-23W5/00	07-26-069-23W5	26-069-23W5	69-23W5	Yes	Active Well - Possible Alternate for Sampling	CADENCE ACQ STURLKS 7-26-69-23
203	100/10-34-069-23W5/00	10-34-069-23W5	34-069-23W5	69-23W5	Yes	Active Well - Possible Alternate for Sampling	CADENCE ACQ STURLKS 10-34-69-23
Abandone	a Holes with Historic Lith	Ium Values Of Interest	00 057 10115	F7 4014/5	Mar		
204	100/04-20-057-19W5/00	04-20-057-19W5	20-057-19W5	57-19W5	Yes	Li Well - Suspended or Abandoned	AMOCO PINE 4-26-57-19
205	100/02-10-030-19W0/00	11 26 050 24145	10-058-19W5	50-19005	Tes	Li Well - Suspended or Abandoned	AMOUG PINE 2-10-58-19
200	100/07 31 061 211/5/00	07.21.061.24145	30-059-21005	59-21005	Tes	Li Well - Suspended or Abandoned	MORILIGHT ET AL HZ FIR 7-36-59-21
207	100/07-31-001-21005/00	07 11 062 220/5	31-061-21005	62 221//5	Tes	Li Well - Suspended or Abandoned	MUBILIEG TONY 7-31-61-21
200	100/07-11-002-23005/00	14 14 060 1714/5	11-062-23005	60 1714/5	Vee	Li Well - Suspended or Abandoned	UNEVRON DEEP VALLEY /-11-02-23
209	100/07-36-061-18\//5/00	07-36-061-18///5	36 061 19/0/5	61 18/0/5	Voc	Li Well - Suspended or Abandoned	
211	100/10-13-062-18\//5/00	10-13-062-18///5	13.062.18\//5	62-18\/5	Voc	Li Well - Suspended or Abandoned	CELTIC HZ EOYCK 6 12 62 19
212	100/07-27-067-22\//5/00	07-27-067-2214/5	27.067.2210/5	67.22\/5	Vac	Li Well - Suspended of Abandened	DAVI JTTLE SMOKY 7 07 67 00
616	100/01-21-001-22110/00	01-21-001-22005	21-001-22003	01-22110	105	Li Weil - Suspended of Abandoned	MAALITTLE SWORT 1-21-01-22

	TVD_m	Current_Status	Current_Operator
	2589.6	Flowing OIL	Barrick Enrg Inc
	2587.8	Drilled & Cased	Barrick Enrg Inc
		Flowing GAS	Barrick Enrg Inc
	2905.6	Flowing GAS	Barrick Enrg Inc
	2600.9	Flowing OIL	Barrick Enrg Inc
	2613.4	Pumping OIL	Barrick Enrg Inc
	2610.6	Pumping OIL	Barrick Enrg Inc
	2609.1	Flowing OIL	Barrick Enrg Inc
	2607.6	Pumping OIL	Barrick Enrg Inc
3	2582.9	Flowing GAS	Barrick Enrg Inc
	2592.3	Drilled & Cased	Barrick Enrg Inc
-	2580.5	Flowing OIL	Signalta Rsrcs Lmtd
-	2043.0	Drilled & Cased	Barrick Enrg Inc
-	2022.0	Flowing OIL	Barrick Enig Inc
-	2731.6	Pumping OIL	Barrick Enro Inc
	2512.5	Pumping OIL	Barrick Enra Inc
-	2380.0	Pumping OIL	Barrick Enro Inc
	2000.0	Drilled & Cased	Barrick Enro Inc
-	2565.8	Pumping OIL	Barrick Enro Inc
	2550.0	Pumping OIL	Barrick Enrg Inc
	2969.1	Drilled & Cased	Barrick Enrg Inc
	2580.7	Pumping OIL	Barrick Enrg Inc
	2612.0	Flowing OIL	Barrick Enrg Inc
	2589.3	Pumping OIL	Barrick Enrg Inc
	2460.0	Flowing GAS	Barrick Enrg Inc
	2518.2	Flowing OIL	Barrick Enrg Inc
4		Drilled & Cased	Barrick Enrg Inc
	3840.5	Pumping Gas	BP Cda Enrg Comp
	3309.1	Pumping Gas	ConocoPhillips Cda (BRC)
_	3365.5	Drilled & Cased	Exxonmobil Cda & Rsrcs
-	4084.3	Pumping Gas	BP Cda Enrg Comp
-	3864.3	Pumping Gas	Exxonmobil Cda & Rsrcs
-	3282.0	Pumping Gas	BP Cda Enrg Comp
-	38/0.1	Flowing CAS	BP Cda Enrg Comp
-	3100.7	Pumping OII	Colonia Corp
-	3822.5	Pumping Gas	BP Cda Enra Comp
	4007.4	Flowing GAS	BP Cda Enra Comp
	3782.6	Flowing GAS	Cdn Nat Rsrcs I mtd
	3154.7	Pumping Gas	BP Cda Enra Comp
1	3474.7	Pumping Gas	BP Cda Enrg Comp
		Commingled	Trilogy Enrg Ltd
	3357.1	Observation Well	Auriga Enrg Inc
	3003.8	Pumping Gas	Cdn Nat Rsrcs Lmtd
	3327.5	Flowing GAS	Daylight Enrg Ltd
	3251.0	Drilled & Cased	Trilogy Enrg Ltd
		Pumping Gas	Trilogy Enrg Ltd
	3159.3	Flowing GAS	Trilogy Enrg Ltd
	3278.1	Observation Well	Auriga Enrg Inc
1	3439.4	Drilled & Cased	BP Cda Enrg Comp
	2674.0	Pumping OIL	Barrick Enrg Inc
	2693.0	Flowing OIL	Barrick Enrg Inc
-	0000 -	Abardanad CAC 7	
-	3386.3	Abandoned GAS Zone	BP Cda Enrg Comp
-	3524.1	Abandoned GAS Zone	Device La Enrg Comp
-	33/2.6	Abandoned whipstock GAS	Daylight Enrg Ltd
-	35/0.7	Drilled & Abandoned	Chourson Cda Lated
-	3048.5	Drilled & Abandoned	BP Cdo Enra Comp
-	2097.5	Drilled & Abandoned	Chevron Cda Lentd
-	3173.0	Abandoned Whinstock Oll	Celtic Exol Ltd
-		Abandoned Oll	Cdn Nat Reres I mtd
_		ribuildonou ore	Con Nat Noros Lintu

TABLE 2. PROSPECTIVE WELLS FOR SAMPLING - ORDERED BY OPERATOR

No	Well_ID_Long	Well_ID_Short	Section	Twp-Range	On 1st Li_Property	Target	Well_Name
Active Hol	es Recommended For San	npling					
41	100/15-01-061-22W5/02	15-01-061-22W5	01-061-22W5	61-22W5	Yes	Berland River Woodbend - Active	AURIGA ENERGY BIGSTONE 16-1-61-22
49	100/16-01-062-20W5/00	16-01-062-20W5	01-062-20W5	62-20W5	Yes	Smoke Lake Beaverhill - Active	AURIGA ENERGY KAYBOBS 16-1-62-20
30	100/06-02-061-19W5/00	06-02-061-19W5	02-061-19W5	61-19W5	Yes	Smoke Lake Beaverhill - Active	AURIGA ENERGY KAYBOBS 6-2-61-19
31	100/08-03-061-19W5/00	08-03-061-19W5	03-061-19W5	61-19W5	Yes	Smoke Lake Beaverhill - Active	AURIGA ENERGY KAYBOBS 8-3-61-19
48	100/05-06-062-19W5/00	05-06-062-19W5	06-062-19W5	62-19W5	Yes	Smoke Lake Beaverhill - Active	AURIGA ENERGY KAYBOBS 5-6-62-19
32	100/04-10-061-19W5/00	04-10-061-19W5	10-061-19W5	61-19W5	Yes	Smoke Lake Beaverhill - Active	AURIGA ENERGY KAYBOBS 4-10-61-19
33	100/10-10-061-19W5/00	10-10-061-19W5	10-061-19W5	61-19W5	Yes	Smoke Lake Beaverhill - Active	AURIGA ENERGY KAYBOBS 10-10-61-19
51	102/04-13-062-20W5/00	04-13-062-20W5	13-062-20W5	62-20W5	Yes	Smoke Lake Beaverhill - Active	AURIGA ENERGY KAYBOBS 4-13-62-20
50	100/12-13-062-20W5/00	12-13-062-20W5	13-062-20W5	62-20W5	Yes	Smoke Lake Beaverhill - Active	AURIGA ENERGY KAYBOBS 12-13-62-20
34	100/03-16-061-19W5/00	03-16-061-19W5	16-061-19W5	61-19W5	Yes	Smoke Lake Beaverhill - Active	AURIGA ENERGY KAYBOBS 3-16-61-19
35	100/14-16-061-19W5/00	14-16-061-19W5	16-061-19W5	61-19W5	Yes	Smoke Lake Beaverhill - Active	AURIGA ENERGY KAYBOBS 14-16-61-19
36	100/07-20-061-19W5/00	07-20-061-19W5	20-061-19W5	61-19W5	Yes	Smoke Lake Beaverhill - Active	AURIGA ENERGY KAYBOBS 7-20-61-19
52	100/06-23-062-20W5/00	06-23-062-20V/5	23-062-20W5	62-20W5	Yes	Smoke Lake Beaverhill - Active	AURIGA ENERGY KAYBOBS 6-23-62-20
25	100/09-29-060-21W5/00	09-29-060-21W5	29-060-21W5	60-21W5	Yes	Berland River Woodbend - Active	AURIGA ENERGY FIR 9-29-60-21
37	100/01-29-061-19W5/00	01-29-061-19005	29-061-19005	61-19975	Yes	Smoke Lake Beavernill - Active	AURIGA ENERGY KAYBOBS 1-29-61-19
38	100/10-29-061-19/05/00	10-29-061-19005	29-061-19005	61-19005	Yes	Smoke Lake Beavernill - Active	AURIGA ENERGY KAYBOBS 10-29-61-19
39	100/16-30-061-19W5/00	16-30-061-19005	30-061-19905	61-19005	Yes	Smoke Lake Beavernill - Active	AURIGA ENERGY KAYBOBS 16-30-61-19
26	100/16-31-060-21005/00	16-31-060-21005	31-060-21005	60-2100	Yes	Berland River Woodbend - Active	AURIGA ENERGY FIR 10-31-60-21
40	102/16-31-061-19/05/00	16-31-061-19005	10 060 211//5	60.2114/5	Yes	Smoke Lake Beavernill - Active	AURIGA ENERGI UZ KAYBOBS 10-31-01-19
23	100/06-19-060-21005/00	10 20 060 21/05	19-060-21005	60 21145	Vec	Berland River Woodbend - Active	AMOCO ET AL BIGSTONE 6-19-60-21
52	100/10-20-060-21005/00	04.24.062.20\/5	20-060-21005	60-21005	Ves	Smake Lake Requerbill Active	AMOCO ET AL BIGSTONE 10-20-00-21
33	100/04-24-062-20005/00	13.26.058.20105	24-062-20105	58.2011/5	Voc	Borland Diver Weedhand - Active	AMOCO ET AL DINE CREEK 13.26.58.20
2	100/15-26-058-2010/5/00	16 28 058 2010/5	28-058-20105	58.20105	Voc	Berland River Woodbend - Active	AMOCO PINENW 16 28 58 20
4	100/16-26-058-20105/00	10-20-050-201/5	20-050-20105	58 2014/5	Voc	Berland River Woodbend - Active	AMOCO PINENW 10-20-30-20
12	100/09-33-058-20005/00	09-33-050-20005	01 062 1814/5	50-20VV5	Vec	Bernham River Woodbend - Active	AMOCO PINE NORTHWEST 9-33-30-20
42	102/11-12-062-18W/5/00	11-12-062-18W5	12-062-18/0/5	62-18\//5	Vos	Raspberry Lake Woodberld - Active	CELTIC FOXCK 0-1-02-10
43	100/06-13-062-18W/5/02	06-13-062-18W5	13-062-1810/5	62-18\/5	Vos	Raspberry Lake Woodband - Active	CELTIC H7 EOXCK 6-13-62-18
44	100/13-13-062-18W/5/00	13-13-062-18\/5	13-062-18/0/5	62-18\/5	Vos	Raspherry Lake Woodbend - Active	CELTIC FOXCK 13-13-62-18
46	100/15-23-062-18W/5/03	15-23-062-18W5	23-062-18W5	62-18W/5	Yes	Raspberry Lake Woodhend - Active	CELTIC FOXCK 15-23-62-18
16	100/14-24-060-19W5/00	14-24-060-19W5	24-060-19W5	60-19W5	Yes	Smoke Lake Reaverhill - Active	AMOCO ET AL KAYBOBS 14-24-60-19
17	100/02-25-060-19W5/00	02-25-060-19W5	25-060-19W5	60-19W5	Yes	Smoke Lake Beaverhill - Active	AMOCO KAYBOBS 2-25-60-19
18	100/05-25-060-19W5/00	05-25-060-19W5	25-060-19W5	60-19W5	Yes	Smoke Lake Beaverhill - Active	AMOCO KAYBOBS 5-25-60-19
47	100/06-25-062-18W5/00	06-25-062-18W5	25-062-18W5	62-18W5	Yes	Raspherry Lake Woodbend - Active	CELTIC FOXCK 6-25-62-18
19	100/09-34-060-19W5/00	09-34-060-19W5	34-060-19W5	60-19W5	Yes	Smoke Lake Beaverhill - Active	AMOCO KAYBOBS 9-34BL-60-19
20	100/01-35-060-19W5/00	01-35-060-19W5	35-060-19W5	60-19W5	Yes	Smoke Lake Beaverhill - Active	AMOCO KAYBOBS 1-35BL-60-19
21	100/10-35-060-19W5/00	10-35-060-19W5	35-060-19W5	60-19W5	Yes	Smoke Lake Beaverhill - Active	AMOCO BHL UNIT 2 KAYBOBS 10-35-60-19
22	100/10-03-060-21W5/00	10-03-060-21W5	03-060-21W5	60-21W5	Yes	Berland River Woodbend - Active	CANHUNTER FIR 10-3-60-21
12	100/06-24-059-21W5/00	06-24-059-21W5	24-059-21W5	59-21W5	Yes	Berland River Woodbend - Active	CANHUNTER ET AL FIR 6-24-59-21
3	100/07-28-058-20W5/00	07-28-058-20W5	28-058-20W5	58-20W5	Yes	Berland River Woodbend - Active	CANHUNTER PINE 7-28-58-20
1	100/13-11-057-19W5/00	13-11-057-19W5	11-057-19W5	57-19W5	Yes	Berland River Woodbend - Active	DAYLIGHT PINE 13-11-57-19
10	100/06-19-059-20W5/00	06-19-059-20W5	19-059-20W5	59-20W5	Yes	Berland River Woodbend - Active	DAYLIGHT FIR 6-19-59-20
13	100/16-25-059-21W5/00	16-25-059-21W5	25-059-21W5	59-21W5	Yes	Berland River Woodbend - Active	DAYLIGHT FIR 16-25-59-21
14	100/07-36-059-21W5/02	07-36-059-21W5	36-059-21W5	59-21W5	Yes	Berland River Woodbend - Active	DAYLIGHT ET AL HZ FIR 7-36-59-21
15	100/07-16-060-17W5/02	07-16-060-17W5	16-060-17W5	60-17W5	Yes	Athabasca Woodbend - Active	NUMAC ET AL KAYBOBS 7-16-60-17
9	100/15-18-059-20W5/00	15-18-059-20W5	18-059-20W5	59-20W5	Yes	Berland River Woodbend - Active	KFOCC ET AL FIR 15-18-59-20
6	100/09-22-059-17W5/00	09-22-059-17W5	22-059-17W5	59-17W5	Yes	Athabasca Woodbend - Active	AMOCO ET AL KAYBOBS 9-22-59-17
8	100/07-34-059-17W5/00	07-34-059-17W5	34-059-17W5	59-17W5	Yes	Athabasca Woodbend - Active	AMOCO ET AL KAYBOB 7-34-59-17
27	100/03-24-061-18W5/00	03-24-061-18W5	24-061-18W5	61-18W5	Yes	Raspberry Lake Woodbend - Active	TRILOGY FOXCK 3-24-61-18
28	100/14-24-061-18W5/02	14-24-061-18W5	24-061-18W5	61-18W5	Yes	Raspberry Lake Woodbend - Active	TRILOGY FOXCK 14-24-61-18
7	100/11-28-059-17W5/00	11-28-059-17W5	28-059-17W5	59-17W5	Yes	Athabasca Woodbend - Active	TRILOGY KAYBOB S. 11-28-59-17
11	100/11-29-059-20W5/00	11-29-059-20W5	29-059-20W5	59-20W5	Yes	Berland River Woodbend - Active	CNRL ET AL FIR 11-29-59-20
29	100/12-35-061-18W5/00	12-35-061-18W5	35-061-18W5	61-18W5	Yes	Raspberry Lake Woodbend - Active	TRILOGY FOXCK 12-35-61-18
47	100/01-01-069-22W5/00	01-01-069-22W5	01-069-22W5	69-22W5	Yes	Valleyview North - Active	CHARIOT STURLS 1-1-69-22
48	100/08-01-069-22W5/00	08-01-069-22W5	01-069-22W5	69-22W5	Yes	Valleyview North - Active	CHARIOT STURLS 8-1-69-22
49	100/10-01-069-22W5/02	10-01-069-22W5	01-069-22W5	69-22W5	Yes	Valleyview North - Active	CHARIOT HZ STURLS 10-1-69-22
50	100/05-02-069-22W5/00	05-02-069-22W5	02-069-22W5	69-22W5	Yes	Valleyview North - Active	CADENCE ACQ STURLKS 5-2-69-22
24	100/05-04-069-21W5/00	05-04-069-21W5	04-069-21W5	69-21W5	Yes	Valleyview North - Active	CHARIOT STURLS 5-4-69-21
25	100/11-04-069-21W5/00	11-04-069-21W5	04-069-21W5	69-21W5	Yes	Valleyview North - Active	CHARIOT STURLS 11-4-69-21
51	100/03-04-069-22W5/00	03-04-069-22W5	04-069-22W5	69-22W5	Yes	Valleyview North - Active	CADENCE ACQ STURLKS 3-4-69-22
52	100/16-04-069-22W5/00	16-04-069-22W5	04-069-22W5	69-22W5	Yes	Valleyview North - Active	CADENCE ACQ STURLKS 16-4-69-22
28	103/03-05-069-21W5/00	03-05-069-21W5	05-069-21W5	69-21W5	Yes	Valleyview North - Active	CHARIOT STURLS 3-5-69-21
26	100/05-05-069-21W5/00	05-05-069-21W5	05-069-21W5	69-21W5	Yes	Valleyview North - Active	CHARIOT STURLS 5-5-69-21
27	102/06-05-069-21W5/00	06-05-069-21W5	05-069-21W5	69-21W5	Yes	Valleyview North - Active	KERECO 102 STURLS 6-5-69-21
29	103/07-05-069-21W5/00	07-05-069-21W5	05-069-21W5	69-21W5	Yes	Valleyview North - Active	CHARIOT STURLS 7-5-69-21
30	100/01-06-069-21W5/00	01-06-069-21W5	06-069-21W5	69-21W5	Yes	Valleyview North - Active	PARA STURLS 1-6-69-21
31	100/03-06-069-21W5/00	03-06-069-21W5	06-069-21W5	69-21W5	Yes	Valleyview North - Active	CHARIOT STURLS 3-6-69-21
32	100/09-06-069-21W5/00	09-06-069-21W5	06-069-21W5	69-21W5	Yes	Valleyview North - Active	CHARIOT STURLS 9-6-69-21
33	100/10-06-069-21W5/00	10-06-069-21W5	06-069-21W5	69-21W5	Yes	Valleyview North - Active	CHARIOT STURLS 10-6-69-21
34	100/11-06-069-21W5/00	11-06-069-21W5	06-069-21W5	69-21W5	Yes	Valleyview North - Active	CHARIOT STURLS 11-6-69-21
35	100/13-06-069-21W5/00	13-06-069-21W5	06-069-21W5	69-21W5	Yes	Valleyview North - Active	CHARIOT STURLS 13-6-69-21
36	100/14-06-069-21W5/00	14-06-069-21W5	06-069-21W5	69-21W5	Yes	Valleyview North - Active	CHARIOT STURLS 14-6-69-21

	Current_Status	Current_Operator
	Flowing GAS	Auriga Enrg Inc
-	Flowing GAS	Auriga Enrg Inc
	Flowing GAS	Auriga Enrg Inc
-	Flowing GAS	Auriga Enrg Inc
-	Flowing GAS	Auriga Enrg Inc
-	Flowing GAS	Auriga Enrg Inc
	Flowing GAS	Auriga Enrg Inc
-	Flowing GAS	Auriga Enrg Inc
-	Flowing GAS	Auriga Enrg Inc
	Flowing GAS	Auriga Enrg Inc
	Flowing GAS	Auriga Enro Inc
	Flowing GAS	Auriga Enrg Inc
1	Flowing GAS	Auriga Enrg Inc
	Flowing GAS	Auriga Enrg Inc
	Flowing GAS	Auriga Enrg Inc
	Flowing GAS	Auriga Enrg Inc
	Flowing GAS	Auriga Enrg Inc
	Flowing GAS	Auriga Enrg Inc
	Pumping Gas	BP Cda Enrg Comp
	Flowing GAS	BP Cda Enrg Comp
	Pumping Gas	BP Cda Enrg Comp
_	Eleving CAS	BP Cda Enrg Comp
	Drilled & Cased	BP Cda Enrg Comp
	Pumping Oll	Coltic Expl. Ltd
-	Flowing OIL	Celtic Expl Ltd
	Pumping OIL	Celtic Expl Ltd
	Pumping OIL	Celtic Expl Ltd
-	Pumping OIL	Celtic Expl Ltd
	Flowing GAS	Celtic Expl Ltd
	Flowing GAS	Celtic Expl Ltd
	Flowing GAS	Celtic Expl Ltd
	Flowing OIL	Celtic Expl Ltd
	Flowing GAS	Celtic Expl Ltd
	Flowing GAS	Celtic Expl Ltd
	Flowing GAS	Celtic Expl Ltd
_	Pumping Gas	ConocoPhillips Cda (BRC)
	Flowing GAS	ConocoPhillips Cda (BRC)
	Pumping Gas	ConocoPhillips Cda (BRC)
-	Flowing GAS	Daylight Enrg Ltd
-	Flowing GAS	Daylight Enro Ltd
-	Flowing GAS	Daylight Enro Ltd
	Flowing GAS	Devon Cda Corn
	Drilled & Cased	Enermark Inc
	Pumping Gas	Talisman Enrg Inc
	Pumping Gas	Talisman Enrg Inc
	Drilled & Cased	Trilogy Enrg Ltd
	Pumping Gas	Trilogy Enrg Ltd
1	Pumping Gas	Trilogy Enrg Ltd
	Flowing GAS	Trilogy Enrg Ltd
	Flowing GAS	Trilogy Enrg Ltd
	Pumping OIL	Barrick Enrg Inc
-		Barrick Enrg Inc
-	Pumping OIL	Barrick Enrg Inc
-	Pumping OIL	Barrick Enra Inc
-	Pumping OIL	Barrick Enro Inc
	Pumping OIL	Barrick Enro Inc
	Pumping OIL	Barrick Enro Inc
-	Pumping OIL	Barrick Enrg Inc
	Pumping OIL	Barrick Enrg Inc
	Pumping OIL	Barrick Enrg Inc
	Pumping OIL	Barrick Enrg Inc
	Pumping OIL	Barrick Enrg Inc
-	Pumping OIL	Barrick Enrg Inc
	Pumping OIL	Barrick Enrg Inc
	Pumping OIL	Barrick Enrg Inc
-	Pumping OIL	Barrick Enrg Inc
-	Flowing OIL	Barrick Enrg Inc
	Flowing OIL	Barrick Enrg Inc

TABLE 2. PROSPECTIVE WELLS FOR SAMPLING - ORDERED BY OPERATOR

No	Well_ID_Long	Well_ID_Short	Section	Twp-Range	On 1st Li_Property	Target	Well_Name
37	100/15-06-069-21W5/00	15-06-069-21W5	06-069-21W5	69-21W5	Yes	Valleyview North - Active	CHARIOT STURLS 15-6-69-21
39	103/04-07-069-21W5/00	04-07-069-21W5	07-069-21W5	69-21W5	Yes	Valleyview North - Active	CHARIOT STURLS 4-7-69-21
38	100/05-07-069-21W5/00	05-07-069-21W5	07-069-21W5	69-21W5	Yes	Valleyview North - Active	CHARIOT STURLS 5-7-69-21
40	100/08-08-069-21W5/00	08-08-069-21W5	08-069-21W5	69-21W5	Yes	Valleyview North - Active	CHARIOT STURLS 8-8-69-21
53	100/13-09-069-21/05/00	13-09-069-22W5	09-069-21//5	69-21/05	Ves	Vallevview North - Active	CADENCE ACO STURIKS 13 0 60 22
42	100/04-10-069-21W5/00	04-10-069-21W5	10-069-21W5	69-21W5	Yes	Valleyview North - Active	CHARIOT STURIS 4-10-69-21
43	100/05-10-069-21W5/00	05-10-069-21W5	10-069-21W5	69-21W5	Yes	Vallevview North - Active	CHARIOT STURI \$ 5-10-69-21
54	102/16-10-069-22W5/00	16-10-069-22W5	10-069-22W5	69-22W5	Yes	Valleyview North - Active	CADENCE ACQ STURLKS 16-10-69-22
45	102/06-11-069-21W5/02	06-11-069-21W5	11-069-21W5	69-21W5	Yes	Valleyview North - Active	ANKERTON HOLD STURLS 4-11-69-21
46	102/10-11-069-21W5/00	10-11-069-21W5	11-069-21W5	69-21W5	Yes	Valleyview North - Active	ANKERTON HOLD STURLS 10-11-69-21
44	100/12-11-069-21W5/00	12-11-069-21W5	11-069-21W5	69-21W5	Yes	Valleyview North - Active	KERECO STURLKS 12-11-69-21
55	100/07-11-069-22W5/00	07-11-069-22W5	11-069-22W5	69-22W5	Yes	Valleyview North - Active	CADENCE ACQ STURLKS 7-11-69-22
56	100/08-11-069-22W5/00	08-11-069-22W5	11-069-22W5	69-22W5	Yes	Valleyview North - Active	DAYLIGHT ET AL HZ STURLS 8-11-69-22
61	104/01-12-069-22/05/02	01-12-069-22/05	12-069-22005	69-22005	Voc	Valleyview North - Active	DAYLIGHT 102 HZ STURLS 6-11-69-22
58	100/03-12-069-22W5/00	03-12-069-22W5	12-069-22W5	69-22W5	Yes	Vallevview North - Active	CADENICE ACO STURI KS 3-12-69-22
59	100/04-12-069-22W5/02	04-12-069-22W5	12-069-22W5	69-22W5	Yes	Valleyview North - Active	CADENCE ACO STURLKS 13-1-69-22
60	102/07-12-069-22W5/00	07-12-069-22W5	12-069-22W5	69-22W5	Yes	Valleyview North - Active	CHARIOT STURLS 7-12-69-22
62	100/05-15-069-22W5/00	05-15-069-22W5	15-069-22W5	69-22W5	Yes	Valleyview North - Active	CADENCE ACQ STURLKS 5-15-69-22
64	100/07-19-069-22W5/00	07-19-069-22W5	19-069-22W5	69-22W5	Yes	Valleyview North - Active	CADENCE ACQ STURLKS 7-19-69-22
65	100/12-19-069-22W5/03	12-19-069-22W5	19-069-22W5	69-22W5	Yes	Valleyview North - Active	CADENCE ACQ STURLKS 0-0-0-0
69	102/01-20-069-22W5/02	01-20-069-22W5	20-069-22W5	69-22W5	Yes	Valleyview North - Active	CADENCE ACQ STURLKS 16-17-69-22
66	100/02-20-069-22W5/00	02-20-069-22W5	20-069-22W5	69-22W5	Yes	Valleyview North - Active	CADENCE ACQ STURLKS 2-20-69-22
68	100/04-20-069-22005/03	05-20-069-22/05	20-069-22005	69-22005	Yes	Valleyview North - Active	CADENCE ACQ STURLKS 3-20-69-22
15	100/09-24-068-22W5/00	09-24-068-22W5	24-068-22/05	68-22/05	Ves	Vallevview North - Active	CADENCE ACQ STURLKS 5-20-09-22
16	100/01-25-068-22W5/00	01-25-068-22W5	25-068-22W5	68-22W5	Yes	Valleyview North - Active	CHARIOT STURIS 1-25-68-22
17	100/05-25-068-22W5/00	05-25-068-22W5	25-068-22W5	68-22W5	Yes	Vallevview North - Active	CHARIOT STURLS 5-25-68-22
18	100/13-27-068-22W5/00	13-27-068-22W5	27-068-22W5	68-22W5	Yes	Valleyview North - Active	CHARIOT STURLS 13-27-68-22
6	100/11-30-068-21W5/00	11-30-068-21W5	30-068-21W5	68-21W5	Yes	Valleyview North - Active	CHARIOT STURLS 11-30-68-21
7	100/15-30-068-21W5/00	15-30-068-21W5	30-068-21W5	68-21W5	Yes	Valleyview North - Active	CHARIOT STURLS 15-30-68-21
8	100/02-31-068-21W5/00	02-31-068-21W5	31-068-21W5	68-21W5	Yes	Valleyview North - Active	CHARIOT STURLS 2-31-68-21
9	100/08-31-068-21W5/00	08-31-068-21W5	31-068-21W5	68-21W5	Yes	Valleyview North - Active	CHARIOT STURLS 8-31-68-21
10	100/15-31-068-21W5/00	15-31-068-21005	31-068-21005	68-21VV5	Yes	Valleyview North - Active	CHARIOT STURLS 13-31-68-21
12	100/16-31-068-21W5/00	16-31-068-21W5	31-068-21W5	68-211/5	Vec	Valleyview North - Active	CHARIOT STURES 15-31-66-21
14	1W0/12-32-068-21W5/00	12-32-068-21W5	32-068-21W5	68-21W5	Yes	Vallevview North - Active	CHARIOT 102 STURI S 12-32-68-21
13	100/13-32-068-21W5/00	13-32-068-21W5	32-068-21W5	68-21W5	Yes	Valleyview North - Active	CHARIOT STURLS 13-32-68-21
19	100/08-34-068-22W5/02	08-34-068-22W5	34-068-22W5	68-22W5	Yes	Valleyview North - Active	CADENCE ACQ STURLKS 0-0-0-0
20	100/14-34-068-22W5/00	14-34-068-22W5	34-068-22W5	68-22W5	Yes	Valleyview North - Active	CADENCE ACQ STURLKS 14-34-68-22
23	102/06-36-068-22W5/00	06-36-068-22W5	36-068-22W5	68-22W5	Yes	Valleyview North - Active	KERECO 102 STURLKS 6-36-68-22
21	100/08-36-068-22W5/00	08-36-068-22W5	36-068-22W5	68-22W5	Yes	Valleyview North - Active	KERECO STURLKS 8-36-68-22
22	100/11-36-068-22W5/00	11-36-068-22W5	36-068-22W5	68-22W5	Yes	Valleyview North - Active	CHARIOT STURLS 11-36-68-22
2	102/15-08-067-22005/00	15-08-067-22005	16 067 22005	67 2210/5	Yes	Valleyview South - Active	PARA ET AL LSMOKY 15-8-67-22
3	100/11-21-067-22W5/00	11-21-067-22//5	21-067-22/05	67-22/05	Ves	Valleyview South - Active	PARA ET AL LSMORY 0-10-07-22
4	100/06-26-067-22W5/00	06-26-067-22W5	26-067-22W5	67-22W5	Yes	Vallevview South - Active	PARA ET AL LSMOKY 6-26-67-22
5	100/06-28-067-22W5/00	06-28-067-22W5	28-067-22W5	67-22W5	Yes	Vallevview South - Active	PARA ET AL LSMOKY 6-28-67-22
63	102/09-16-069-22W5/04	09-16-069-22W5	16-069-22W5	69-22W5	Yes	Valleyview North - Active	KINWEST ET AL STURLS 9-16-69-22
Possible /	Active Holes For Sampling	- Check Status as Listed a	as Active and eit	her Suspended	or Abandoned		
21	100/16-20-061-19W5/02	16-20-061-19W5	20-061-19W5	61-19W5	Yes	Smoke Lake Beaverhill - Listed as Active and Suspended or Abandoned	AURIGA ENERGY RE KAYBOBS 16-20-61-
20	100/14-29-061-19W5/02	14-29-061-19W5	29-061-19W5	61-19W5	Yes	Smoke Lake Beaverhill - Listed as Active and Suspended or Abandoned	AURIGA ENERGY KAYBOBS 14-29-61-19
5	100/09-03-058-19W5/02	10-03-058-19W5	03-058-19W5	58-19W5	Yes	Berland River Woodbend - Listed as Active and Suspended or Abandoned	AMOCO PINE CREEK 9-3-58-19
11	100/10-04-037-19W5/02	07-07-059-2014/5	07-059-2014/5	59-201/5	Ves	Berland River Woodbend - Listed as Active and Suspended or Abandoned	ANIOCO PINE 10-4-57-19
22	100/05-08-061-22W5/02	05-08-061-22W5	08-061-22W5	61-22W5	Yes	Berland River Woodbend - Listed as Active and Suspended or Abandoned	PAN AM B-1 GRIZZI Y 5-8-61-22
3	100/10-10-057-19W5/02	10-10-057-19W5	10-057-19W5	57-19W5	Yes	Berland River Woodbend - Listed as Active and Suspended or Abandoned	AMOCO PINE 10-10-57-19
7	100/11-15-058-20W5/02	11-15-058-20W5	15-058-20W5	58-20W5	Yes	Berland River Woodbend - Listed as Active and Suspended or Abandoned	AMOCO PINE NW 11-15-58-20
19	100/09-19-061-19W5/03	09-19-061-19W5	19-061-19W5	61-19W5	Yes	Smoke Lake Beaverhill - Listed as Active and Suspended or Abandoned	AMOCO KAYBOBS 9-19-61-19
4	100/11-26-057-19W5/02	11-26-057-19W5	26-057-19W5	57-19W5	Yes	Berland River Woodbend - Listed as Active and Suspended or Abandoned	AMOCO PINE 11-26-57-19
8	100/12-26-058-20W5/02	12-26-058-20W5	26-058-20W5	58-20W5	Yes	Berland River Woodbend - Listed as Active and Suspended or Abandoned	AMOCO PINE NW 12-26-58-20
26	100/10-28-062-20W5/02	10-28-062-20W5	28-062-20W5	62-20W5	Yes	Smoke Lake Beaverhill - Listed as Active and Suspended or Abandoned	AMOCO KAYBOBS 10-28CM-62-20
16	100/15-29-060-21W5/02	15-29-060-21W5	29-060-21W5	57 10145	Yes	Berland River Woodbend - Listed as Active and Suspended or Abandoned	AMOCO ET AL BIGSTONE 15-29-60-21
18	100/10-13-061-19/05/02	10-13-061-18/0/5	13-061-19005	61-181/5	Vos	Basehorry Lake Woodhond - Listed as Active and Suspended or Abandoned	ANIOCO PINE 6-35-5/-19
14	100/10-26-060-19W/5/02	10-26-060-19W5	26-060-19\/5	60-19W5	Yes	Smoke Lake Reaverhill - Listed as Active and Suspended or Abandoned	BP KAYBOBS 10-26-60-19
9	100/13-21-058-20W5/02	13-21-058-20W5	21-058-20W5	58-20W5	Yes	Berland River Woodbend - Listed as Active and Suspended or Abandoned	CANHUNTER PINE CREEK 13-21-58-20
6	100/16-02-058-19W5/02	16-02-058-19W5	02-058-19W5	58-19W5	Yes	Berland River Woodbend - Listed as Active and Suspended or Abandoned	DAYLIGHT PINE 16-2-58-19
15	100/11-02-060-21W5/03	11-02-060-21W5	02-060-21W5	60-21W5	Yes	Berland River Woodbend - Listed as Active and Suspended or Abandoned	DAYLIGHT FIR 11-2-60-21
10	100/16-27-058-20W5/02	16-27-058-20W5	27-058-20W5	58-20W5	Yes	Berland River Woodbend - Listed as Active and Suspended or Abandoned	DAYLIGHT PINE 16-27-58-20
27	100/14-23-062-20W5/02	14-23-062-20W5	23-062-20W5	62-20W5	Yes	Smoke Lake Beaverhill - Listed as Active and Suspended or Abandoned	HUSKY KAYBOBS 14-23-62-20
12	100/07-13-060-19W5/03	07-13-060-19W5	13-060-19W5	60-19W5	Yes	Smoke Lake Beaverhill - Listed as Active and Suspended or Abandoned	AMOCO KAYBOBS 7-13BL-60-19

	Current_Status	Current_Operator
	Pumping OIL	Barrick Enrg Inc
	Drilled & Cased	Barrick Enrg Inc
	Pumping OIL	Barrick Enrg Inc
-	Pumping OIL	Barrick Enrg Inc
	Pumping OIL	Barrick Enrg Inc
	Pumping OIL	Barrick Enrg Inc
	Pumping OIL	Barrick Enrg Inc
	Pumping OIL	Barrick Enrg Inc
2	Pumping OIL	Barrick Enrg Inc
	Pumping OIL	Barrick Enrg Inc
	Drilled & Cased	Barrick Enrg Inc
	Pumping OIL	Barrick Enrg Inc
	Pumping OIL	Barrick Enrg Inc
	Pumping OIL	Barrick Enrg Inc
	Drilled & Cased	Barrick Enrg Inc
	Pumping OIL	Barrick Enro Inc
	Pumping OIL	Barrick Enro Inc
	Pumping OIL	Barrick Enro Inc
	Pumping OIL	Barrick Enro Inc
	Pumping OIL	Barrick Enro Inc
	Pumping OIL	Barrick Enro Inc
	Flowing OII	Barrick Enro Inc
	Pumping Oil	Barrick Enra Inc
	Pumping Oll	Barrick Enro Inc
	Pumping OIL	Barrick Enra Inc
	Pumping OIL	Barrick Enra Inc
	Pumping OIL	Barrick Enig Inc
	Pumping OIL	Barrick Enrg Inc
-	Pumping OIL	Barrick Enrg Inc
	Drilled & Cased	Barrick Enrg Inc
	Pumping OIL	Barrick Enrg Inc
	Pumping OIL	Barrick Enrg Inc
-	Pumping OIL	Barrick Enrg Inc
	Pumping OIL	Barrick Enrg Inc
	Pumping OIL	Barrick Enrg Inc
	Pumping OIL	Barrick Enrg Inc
	Pumping OIL	Barrick Enrg Inc
	Pumping OIL	Barrick Enrg Inc
	Pumping OIL	Barrick Enrg Inc
-	Pumping OIL	Barrick Enrg Inc
	Flowing OIL	Barrick Enrg Inc
	Pumping OIL	Barrick Enrg Inc
	Pumping OIL	Barrick Enrg Inc
	Pumping OIL	Barrick Enrg Inc
3.57	Pumping OIL	Barrick Enrg Inc
	Pumping OIL	Paramount Rsrcs Ltd
	Flowing GAS	Paramount Rsrcs Ltd
	Drilled & Cased	Paramount Rsrcs Ltd
	Flowing GAS	Paramount Rsrcs Ltd
	Flowing GAS	Paramount Rsrcs Ltd
	Drilled & Cased	Penn West Petri Ltd
		- on those of Ltd
19	Flowing GAS	Auriga Epro Inc
-	Flowing GAS	Auriga Enro Inc
	Flowing GAS	BP Cda Enra Comp
	Pumping Gas	BP Cda Enra Comp
	Pumping Gas	BP Cda Enrg Comp
	Drillod & Cased	BP Cda Enrg Comp
	Flowing CAS	BP Cda Enrg Comp
	Flowing CAS	BP Cda Enrg Comp
	Flowing GAS	BP Cda Enrg Comp
	Drilled & Cased	BP Cda Enrg Comp
	Flowing GAS	BP Cda Enrg Comp
	Drilled & Cased	BP Cda Enrg Comp
-	Pumping Gas	BP Cda Enrg Comp
	Flowing GAS	BP Cda Enrg Comp
	Flowing GAS	BP Cda Enrg Comp
	Drilled & Cased	Celtic Expl Ltd
	Flowing GAS	Celtic Expl Ltd
	Pumping Gas	ConocoPhillips Cda (BRC)
	Drilled & Cased	Daylight Enrg Ltd
	Flowing GAS	Daylight Enrg Ltd
	Flowing GAS	Daylight Enrg Ltd
	Flowing GAS	Husky Oil Oprtns Ltd
	Flowing GAS	Orleans Enro Ltd
-		

TABLE 2. PROSPECTIVE WELLS FOR SAMPLING - ORDERED BY OPERATOR

No	Well ID Long	Well ID Short	Section	Twp-Range	On 1st Li_Property	Target	Well_Name
28	102/09-22-062-20W5/02	09-22-062-20W5	22-062-20W5	62-20W5	Yes	Smoke Lake Beaverhill - Listed as Active and Suspended or Abandoned	SECURE KAYBOBS 9-22-62-20
23	102/11-09-061-22W5/03	11-09-061-22W5	09-061-22W5	61-22W5	Yes	Berland River Woodbend - Listed as Active and Suspended or Abandoned	TALISMAN BIGSTONE 11-9-61-22
13	100/07-25-060-19W5/02	07-25-060-19W5	25-060-19W5	60-19W5	Yes	Smoke Lake Beaverhill - Listed as Active and Suspended or Abandoned	BP CDN-SUP KAYBOBS 7-25-60-19
17	100/07-13-061-18W5/02	07-13-061-18W5	13-061-18W5	61-18W5	Yes	Raspberry Lake Woodbend - Listed as Active and Suspended or Abandoned	TRILOGY FOXCK 7-13-61-18
24	100/07-14-062-18W5/02	07-14-062-18W5	14-062-18W5	62-18W5	Yes	Raspberry Lake Woodbend - Listed as Active and Suspended or Abandoned	TRILOGY ET AL FOX CREEK 7-14-62-18
25	100/11-14-062-18W5/02	11-14-062-18W5	14-062-18W5	62-18W5	Yes	Raspberry Lake Woodbend - Listed as Active and Suspended or Abandoned	TRILOGY FOXCK 11-14-62-18
19	100/07-01-069-22W5/04	07-01-069-22W5	01-069-22W5	69-22W5	Yes	Valleyview North - Listed as Active and Suspended or Abandoned	CHARIOT STURLS 7-1-69-22
20	100/09-01-069-22W5/02	09-01-069-22W5	01-069-22W5	69-22W5	Yes	Valleyview North - Listed as Active and Suspended or Abandoned	CHARIOT STURLS 9-1-69-22
21	100/16-01-069-22W5/02	16-01-069-22W5	01-069-22W5	69-22W5	Yes	Valleyview North - Listed as Active and Suspended or Abandoned	CHARIOT STURLS 16-1-69-22
16	100/13-03-069-21W5/02	13-03-069-21W5	03-069-21W5	69-21W5	Yes	Valleyview North - Listed as Active and Suspended or Abandoned	CHARIOT STURLS 13-3-69-21
14	100/06-05-069-21W5/04	06-05-069-21W5	05-069-21W5	69-21W5	Yes	Valleyview North - Listed as Active and Suspended or Abandoned	CHARIOT REN STURLS 6-5-69-21
18	105/07-05-069-21W5/00	07-05-069-21W5	05-069-21W5	69-21W5	Yes	Valleyview North - Listed as Active and Suspended or Abandoned	CHARIOT STURLS 7-5-69-21
17	102/10-05-069-21W5/03	10-05-069-21W5	05-069-21W5	69-21W5	Yes	Valleyview North - Listed as Active and Suspended or Abandoned	CHARIOT STURLS 10-5-69-21
13	100/04-07-069-21W5/03	04-07-069-21W5	07-069-21W5	69-21W5	Yes	Valleyview North - Listed as Active and Suspended or Abandoned	CHARIOT STURLS 4-7-69-21
15	100/08-09-069-21W5/02	08-09-069-21W5	09-069-21W5	69-21W5	Yes	Valleyview North - Listed as Active and Suspended or Abandoned	CHARIOT STURLS 8-9-69-21
22	100/01-12-069-22W5/02	01-12-069-22W5	12-069-22W5	69-22W5	Yes	Valleyview North - Listed as Active and Suspended or Abandoned	CHARIOT STURLS 1-12-69-22
23	100/02-12-069-22W5/02	02-12-069-22W5	12-069-22W5	69-22W5	Yes	Valleyview North - Listed as Active and Suspended or Abandoned	CHARIOT STURLS 2-12-69-22
26	103/05-12-069-22W5/05	05-12-069-22W5	12-069-22W5	69-22W5	Yes	Valleyview North - Listed as Active and Suspended or Abandoned	CADENCE ACQ STURLKS 5-12-69-22
27	102/05-12-069-22W5/05	05-12-069-22W5	12-069-22W5	69-22W5	Yes	Valleyview North - Listed as Active and Suspended or Abandoned	DAYLIGHT ET AL STURLS 5-12-69-22
24	100/06-12-069-22W5/03	06-12-069-22W5	12-069-22W5	69-22W5	Yes	Valleyview North - Listed as Active and Suspended or Abandoned	CADENCE ACQ STURLKS 6-12-69-22
25	100/07-12-069-22W5/02	07-12-069-22W5	12-069-22W5	69-22W5	Yes	Valleyview North - Listed as Active and Suspended or Abandoned	CHARIOT STURLS 7-12-69-22
28	100/07-20-069-22W5/02	07-20-069-22W5	20-069-22W5	69-22W5	Yes	Valleyview North - Listed as Active and Suspended or Abandoned	CADENCE ACQ STURLKS 7-20-69-22
6	100/09-23-068-22W5/02	09-23-068-22W5	23-068-22W5	68-22W5	Yes	Valleyview North - Listed as Active and Suspended or Abandoned	CHARIOT STURLS 9-23-68-22
8	100/13-24-068-22W5/02	13-24-068-22W5	24-068-22W5	68-22W5	Yes	Valleyview North - Listed as Active and Suspended or Abandoned	CHARIOT STURLS 13-24-68-22
9	100/15-24-068-22W5/02	15-24-068-22W5	24-068-22W5	68-22W5	Yes	Valleyview North - Listed as Active and Suspended or Abandoned	CHARIOT STURLS 15-24-68-22
4	100/02-25-068-22W5/03	02-25-068-22W5	25-068-22W5	68-22W5	Yes	Valleyview North - Listed as Active and Suspended or Abandoned	CHARIOT STURES 2-25-68-22
5	100/03-25-068-22W5/03	03-25-068-22W5	25-068-22W5	68-22W5	Yes	Valleyview North - Listed as Active and Suspended or Abandoned	CHARIOT STURLS 3-25-68-22
7	100/11-25-068-22W5/02	11-25-068-22W5	25-068-22W5	68-22W5	Yes	Valleyview North - Listed as Active and Suspended or Abandoned	CHARIOT STURLS 11-25-68-22
10	100/15-25-068-22W5/02	15-25-068-22W5	25-068-22W5	68-22W5	Yes	Valleyview North - Listed as Active and Suspended or Abandoned	POCO STURLS 15-25-68-22
1	100/01-31-068-21W5/02	01-31-068-21W5	31-068-21W5	68-21W5	Yes	Valleyview North - Listed as Active and Suspended or Abandoned	CHARIOT STURES 1-31-68-21
2	100/09-31-068-21W5/02	09-31-068-21W5	31-068-21W5	68-21W5	Yes	Valleyview North - Listed as Active and Suspended or Abandoned	CHARIOT STURES 9-31-68-21
3	100/14-31-068-21W5/02	14-31-068-21W5	31-068-21W5	68-21005	Yes	Valleyview North - Listed as Active and Suspended or Abandoned	CHARIOT STURES 14-31-00-21
11	100/15-35-068-22W5/02	15-35-068-22W5	35-068-22W5	68-22W5	Yes	Valleyview North - Listed as Active and Suspended or Abandoned	CADENCE ACQ STUREKS 15-35-66-22
12	102/14-14-068-22005/02	14-14-068-22005	14-068-22005	68-22005	res	valleyview North - Listed as Active and Suspended or Abandoned	SIGNALIA STURERS 14-14-00-22
Possible /	Alternative Holes For Sam	D1 22 062 20W/5	22.062.2010/5	62.20\1/5	Voc	Active Well - Possible Alternate for Sampling	AURICA ENERGY KAVBOBS 1-22-62-20
22	100/01-22-062-20005/00	07.20.064.40W/5	22-062-20005	62-20005	Ves	Active Well - Possible Alternate for Sampling	AURICA ENERGY KAYBOBS 7-30-61-19
16	100/07-30-061-19W5/00	07-30-061-19005	30-061-19005	60 2214/5	Vec	Active Well - Possible Alternate for Sampling	CADENCE ACO STURIKS 7-26-69-23
24	100/07-26-069-23W5/00	10 34 060 23/05	20-009-23005	69-2311/5	Vos	Active Well - Possible Alternate for Sampling	CADENCE ACO STURIKS 10-34-69-23
25	100/10-34-069-23W5/00	11 11 057 201/5	11.057.201/5	57-20\/5	Voe	Active Well - Possible Alternate for Sampling	AMOCO HB FINA FIR 11-11-57-20
4	100/11-11-057-20W5/00	05 11 058 211/5	11.059.211/5	58-211//5	Vos	Active Well - Possible Alternate for Sampling	CANHUNTER PCP FIR 5-11-58-21
0	100/05-11-058-21W5/00	16.10.057.10\/5	10-057-10//5	57-19\/5	Vos	Active Well - Possible Alternate for Sampling	AMOCO PINE 16-19-57-19
11	100/16 20 059 21105/00	16 20 059 21/0/5	20.059.211/05	59-211//5	Vos	Active Well - Possible Alternate for Sampling	AMOCO ET AL L-1 FIR 16-20-59-21
11	100/16-20-059-21W5/00	11-25-060-20\/5	25-060-201/5	60-20\/5	Vos	Active Well - Possible Alternate for Sampling	PERI ET AL PASS 11-25-60-20
14	100/11-23-060-2000/0/00	11.27.059.19\/5	27-059-19//5	59-19\/5	Vos	Active Well - Possible Alternate for Sampling	AMOCO PRESI EY 11-27-59-19
23	100/06-31-062-21/05/00	06-31-062-211//5	31-062-211//5	62-21\/5	Vos	Active Well - Possible Alternate for Sampling	AMOCO KAYBOBS 6-31-62-21
13	100/07-33-060-19\//5/00	07-33-060-19\/5	33-060-1910/5	60-191/5	Yes	Active Well - Possible Alternate for Sampling	AMOCO KAYBOBS 7-33-60-19
7	100/06-36-058-21W5/00	06-36-058-21W/5	36-058-21W5	58-21W5	Yes	Active Well - Possible Alternate for Sampling	AMOCO ET AL FIR 6-36-58-21
12	100/06-08-060-19\/5/00	06-08-060-19W/5	08-060-19W5	60-19W5	Yes	Active Well - Possible Alternate for Sampling	CNRL KAYBOBS 6-8-60-19
17	100/10-13-061-20W5/00	10-13-061-20W5	13-061-20W5	61-20W5	Yes	Active Well - Possible Alternate for Sampling	CNRL KAYBOBS 10-13-61-20
9	100/13-23-058-21W5/00	13-23-058-21W5	23-058-21W5	58-21W5	Yes	Active Well - Possible Alternate for Sampling	PAM FIR 13-23-58-21
2	102/16-19-057-19W5/00	16-19-057-19W5	19-057-19W5	57-19W5	Yes	Active Well - Possible Alternate for Sampling	CANHUNTER 102 PINE CREEK 16-19-57-19
8	100/07-23-058-21W5/00	07-23-058-21W5	23-058-21W5	58-21W5	Yes	Active Well - Possible Alternate for Sampling	CANHUNTER FIR 7-23-58-21
18	100/10-21-061-20W5/00	10-21-061-20W5	21-061-20W5	61-20W5	Yes	Active Well - Possible Alternate for Sampling	DAYLIGHT KAYBOBS 10-21-61-20
5	100/06-14-057-21W5/00	06-14-057-21W5	14-057-21W5	57-21W5	Yes	Active Well - Possible Alternate for Sampling	AMOCO ET AL FIR 6-14-57-21
3	100/03-20-057-20W5/00	03-20-057-20W5	20-057-20W5	57-20W5	Yes	Active Well - Possible Alternate for Sampling	EMC PINE CREEK 3-20-57-20
19	100/07-07-062-18W5/00	07-07-062-18W5	07-062-18W5	62-18W5	Yes	Active Well - Possible Alternate for Sampling	TRILOGY FOXCK 7-7-62-18
21	100/10-09-062-18W5/00	10-09-062-18W5	09-062-18W5	62-18W5	Yes	Active Well - Possible Alternate for Sampling	TRILOGY FOX CREEK 10-9-62-18
15	100/14-24-061-18W5/00	14-24-061-18W5	24-061-18W5	61-18W5	Yes	Active Well - Possible Alternate for Sampling	TRILOGY FOXCK 14-24-61-18
20	100/09-28-062-18W5/00	09-28-062-18W5	28-062-18W5	62-18W5	Yes	Active Well - Possible Alternate for Sampling	TRILOGY FOX CREEK 9-28-62-18
Abandon	ed Holes With Historic Lith	nium Values Of Interest	C				
2	100/02-10-058-19W5/00	02-10-058-19W5	10-058-19W5	58-19W5	Yes	Li Well - Suspended or Abandoned	AMOCO PINE 2-10-58-19
6	100/14-14-060-17W5/00	14-14-060-17W5	14-060-17W5	60-17W5	Yes	Li Well - Suspended or Abandoned	AMOCO HB W WIND 14-14-60-17
1	100/04-26-057-19W5/00	04-26-057-19W5	26-057-19W5	57-19W5	Yes	Li Well - Suspended or Abandoned	AMOCO PINE 4-26-57-19
9	100/07-27-067-22W5/00	07-27-067-22W5	27-067-22W5	67-22W5	Yes	Li Well - Suspended or Abandoned	RAX LITTLE SMOKY 7-27-67-22
8	100/10-13-062-18W5/00	10-13-062-18W5	13-062-18W5	62-18W5	Yes	Li Well - Suspended or Abandoned	CELTIC HZ FOXCK 6-13-62-18
5	100/07-11-062-23W5/00	07-11-062-23W5	11-062-23W5	62-23W5	Yes	Li Well - Suspended or Abandoned	CHEVRON DEEP VALLEY 7-11-62-23
7	100/07-36-061-18W5/00	07-36-061-18W5	36-061-18W5	61-18W5	Yes	Li Well - Suspended or Abandoned	CHEVRON GULF PASS CREEK 7-36-61-18
3	102/11-36-059-21W5/00	11-36-059-21W5	36-059-21W5	59-21W5	Yes	Li Well - Suspended or Abandoned	DAYLIGHT ET AL HZ FIR 7-36-59-21
4	100/07-31-061-21W5/00	07-31-061-21W5	31-061-21W5	61-21W5	Yes	Li Well - Suspended or Abandoned	MOBIL ICG TONY 7-31-61-21

-	Current Status	Current Operator
-	Dilled & Oreed	Content_Operator
-	Drilled & Cased	Secure Enrg Srvcs Inc
	Flowing GAS	Talisman Enrg Inc
	Pumping Gas	Talisman Enrg Inc
	Flowing GAS	Trilogy Enra Ltd
	Drilled & Cased	Trilogy Enra Ltd
-	Elevine Q4Q	Trilogy Enig Etd
	Flowing GAS	Trilogy Enrg Lta
	Drilled & Cased	Barrick Enrg Inc
	Pumping OIL	Barrick Enrg Inc
	Pumping Oll	Barrick Enro Inc
-	Pumping Oll	Porrick Enra Inc
	Fumping OIL	barrick Enig Inc
	Pumping OIL	Barrick Enrg Inc
	Pumping OIL	Barrick Enrg Inc
	Pumping OIL	Barrick Enrg Inc
	Drillod & Casod	Barrick Enro Inc
	Elization of	Darrick Ering Inc
	Flowing OIL	Barrick Enrg Inc
	Drilled & Cased	Barrick Enrg Inc
	Pumping OIL	Barrick Enrg Inc
	Flowing GAS	Barrick Enro Inc
-	Flowing Oll	Barrick Enra Inc
	Flowing OIL	Darrick Enig Inc
	Flowing OIL	Barrick Enrg Inc
	Pumping OIL	Barrick Enrg Inc
	Drilled & Cased	Barrick Enrg Inc
	Pumping Oll	Barrick Enro Inc
-	Flowing OIL	Parriak Enra las
	Flowing OIL	barrick Enig Inc
	Pumping OIL	Barrick Enrg Inc
	Flowing GAS	Barrick Enrg Inc
	Flowing Oll	Barrick Enro Inc
	Dumping Oll	Parriak Envalue
	Fumping OIL	Barrick Enig Inc
1	Flowing GAS	Barrick Enrg Inc
	Flowing OIL	Barrick Enrg Inc
-	Drilled & Cased	Barrick Enro Inc
	Flowing CAS	Barrick Enra Inc
	Dille 12 Oceand	Darrick English
	Drilled & Cased	Barrick Enrg Inc
	Flowing OIL	Signalta Rsrcs Lmtd
	Observation Well	Auriga Enro Inc
	Observation Wall	Auriga Enra Ina
	Observation weil	Auliga Enirg Inc
	Pumping OIL	Barrick Enrg Inc
	Flowing OIL	Barrick Enrg Inc
	Pumping Gas	BP Cda Enrg Comp
	Pumping Gas	BP Cda Enra Comp
	Pumping Cas	BD Cdo Eng Comp
	Pumping Gas	BP Cda Enrg Comp
	Flowing GAS	BP Cda Enrg Comp
	Pumping Gas	BP Cda Enrg Comp
	Pumping Gas	BP Cda Enro Comp
	Drilled & Cased	BP Cda Enra Como
	Dumping Cos	PD Cde Ener Com
	Fumping Gas	DF Cda Enrg Comp
	Pumping Gas	BP Cda Enrg Comp
	Flowing GAS	Cdn Nat Rsrcs Lmtd
	Pumping Gas	Cdn Nat Rsrcs I mtd
-	Pumping Oll	Colonia Corp
	Pumping Gas	ConocoPhillips Cda (BRC)
	Flowing GAS	ConocoPhillips Cda (BRC)
	Flowing GAS	Daylight Enrg Ltd
	Pumping Gas	Exxonmobil Cda & Reros
	Drilled & Cased	Evyapmabil Cda ² Deres
-		
	Drilled & Cased	Trilogy Enrg Ltd
	Flowing GAS	Trilogy Enrg Ltd
	Commingled	Trilogy Enrg Ltd
	Pumping Gas	Trilogy Enra Ltd
-	I withing out	ring Lu
-	10107	
	Abandoned GAS Zone	BP Cda Enrg Comp
	Drilled & Abandoned	BP Cda Enrg Comp
	Abandoned GAS Zone	BP Cda Enro Comp
-	Abandoned Oll	Cdn Nat Rerce I mtd
-		Colline Fredhild
-	Abandoned whipstock OIL	Ceitic Expl Ltd
	Drilled & Abandoned	Chevron Cda Lmtd
	Drilled & Abandoned	Chevron Cda Lmtd
	Abandoned Whipstock GAS	Davlight Enro Ltd
	Drilled & Abandoned	Evyonmobil Cdo Ltd
_	Drilled & Abarldoned	

APPENDIX 3

*Analytical and well locational data are pending

Assessment Report For First Lithium

Page 39

APPENDIX 4

Assessment Report For First Lithium

I

Page 40

2010 Field 2009 Sampling & ITEM Compilation Met Work TOTAL No. 1. First Lithium Detailed Costs - 2009 - 2010 Days Rate Field & Management Costs - Craig Naughty (First Lihtium) Field & Management Costs - Alex Walsh (First Lihtium) Field Costs Sampling - Maxxam Environmental Services \$1,600.00 16 \$25,600.00 Office Costs Geological Compilation - APEX Geoscience Ltd \$7,617.50 Field Costs; Supervision & Sampling - APEX Geoscience Ltd 12 \$750.00 \$9,000.00 Analytical Costs Maxxam Laboratories Pending TOTAL FIRST LITHIUM 2009 - 2010 COSTS \$47,717.50 \$7,617.50 \$40,100.00 2. Allowable Administration Costs 10% Allowable Administration Cost \$4,771.75 TOTAL 2009-2010 VALLEYVIEW ASSESSMENT EXPENSE \$52,489.25

APPENDIX 4. First Lithium Resources Inc. Valleyview Lithium Property - Exploration Expenditures 2009 - 2010 By Category