MAR 20070004: LAKE ATHABASCA NORTH SHORE

Received date: Mar 16, 2007

Public release date: Jun 06, 2008

DISCLAIMER

By accessing and using the Alberta Energy website to download or otherwise obtain a scanned mineral assessment report, you ("User") agree to be bound by the following terms and conditions:

- a) Each scanned mineral assessment report that is downloaded or otherwise obtained from Alberta Energy is provided "AS IS", with no warranties or representations of any kind whatsoever from Her Majesty the Queen in Right of Alberta, as represented by the Minister of Energy ("Minister"), expressed or implied, including, but not limited to, no warranties or other representations from the Minister, regarding the content, accuracy, reliability, use or results from the use of or the integrity, completeness, quality or legibility of each such scanned mineral assessment report;
- b) To the fullest extent permitted by applicable laws, the Minister hereby expressly disclaims, and is released from, liability and responsibility for all warranties and conditions, expressed or implied, in relation to each scanned mineral assessment report shown or displayed on the Alberta Energy website including but not limited to warranties as to the satisfactory quality of or the fitness of the scanned mineral assessment report for a particular purpose and warranties as to the non-infringement or other non-violation of the proprietary rights held by any third party in respect of the scanned mineral assessment report;
- c) To the fullest extent permitted by applicable law, the Minister, and the Minister's employees and agents, exclude and disclaim liability to the User for losses and damages of whatsoever nature and howsoever arising including, without limitation, any direct, indirect, special, consequential, punitive or incidental damages, loss of use, loss of data, loss caused by a virus, loss of income or profit, claims of third parties, even if Alberta Energy have been advised of the possibility of such damages or losses, arising out of or in connection with the use of the Alberta Energy website, including the accessing or downloading of the scanned mineral assessment report and the use for any purpose of the scanned mineral assessment report.
- d) User agrees to indemnify and hold harmless the Minister, and the Minister's employees and agents against and from any and all third party claims, losses, liabilities, demands, actions or proceedings related to the downloading, distribution, transmissions, storage, redistribution, reproduction or exploitation of each scanned mineral assessment report obtained by the User from Alberta Energy.

Alberta

Alberta Mineral Assessment Reporting System

20070004 MAR 1 6 2007

STRATHMORE MINERALS CORP.

2004 to 2006 EXPLORATION OF THE LAKE ATHABASCA NORTH SHORE PROPERTY, NORTHEAST ALBERTA

PART B

Metallic and Industrial Mineral Permit

9304110427, 9304110428, 9304110429, 9304110430, 9304110431, 9305061034, 9305061035, 9305031043, 9305031044, 9306110749, 9306110750, 9306110771 and 9306110772

Geographic Coordinates

58°43' N to 59°23' N 110°00' W to 111°11' W

NTS Sheets

74 M/01, M/02, M/07, M/08 74 L/14, L/15 and L/11

Owner and Operator:	Strathmore Minerals Corp. #700-1620 Dickson Ave. Kelowna, BC V1Y 9Y2
Consultant:	Dahrouge Geological Consulting Ltd. 18, 10509 - 81 Avenue Edmonton, Alberta T6E 1X7
Authors:	J. Dahrouge, B.Sc., P. Geol. D. Smith, M.Sc., G.I.T.
Date:	March 15, 2007

TABLE OF CONTENTS

Page

	Title Page		1
	Table of Contents	·	2
1.	Summary		4
2.	Introduction		6
3.	Location and Access		6
4.	Work Performed	· · · · · · · · · · · · · · · · · · ·	6
5.	Results	· · · · · · · · · · · · · · · · · · ·	7
6.	Conclusions		8
	Statement of Author		8

LIST OF TABLES

 Table 1.1
 Allocation of Expenditures
 5

-2-

<u>PART C</u>

-3-

LIST OF FIGURES

Fig. 3.1 Fig. 3.2	Location Map C1 Property Map C2
Fig. 4.1 Fig. 4.2 Fig. 4.3 Fig. 4.4	Sample and High Radioactivity Locations (West)
Fig. 5.1 Fig. 5.2 Fig. 5.3 Fig. 5.4 Fig. 5.5 Fig. 5.6 Fig. 5.7 Fig. 5.8 Fig. 5.9	Flight Path (Pocket) Reconstructed Total Magnetic (Pocket) Calculated Vertical Magnetic Derivative (Pocket) Measured Lateral Magnetic Gradient (Pocket) Measured Longitudinal Magnetic Gradient (Pocket) XDS VLF/EM Line Component (Pocket) XDS VLF/EM Ortho Component (Pocket) XDS VLF/EM Vertical Component (Pocket) XDS VLF/EM Vertical Component (Pocket) XDS VLF/EM Vertical Component (Pocket) VDS VLF/EM Vertical Component (Pocket)

LIST OF APPENDICES

Appendix 1:	Cost Statement of the 2006 Exploration
Appendix 2:	2006 Sample Locations and Descriptions
Appendix 3:	2006 Sample Assay Results
Appendix 4:	Locations of Anomalous Radioactivity
Appendix 5:	Radiometric Survey Locations and Radioactivity
Appendix 6:	Max-Min and IP/Resistivity Survey Interpretation Report
Appendix 7:	Terraquest VLF/Magnetic Survey Operations and Interpretation Reports

<u>Page</u>

SUMMARY

-4-

Between November 17th 2004 and June 30th 2005, Strathmore Minerals Corporation acquired nine Metallic and Industrial Minerals (MAIM) permits, totaling 81,721 ha, along the north shore of Lake Athabasca in Northern Alberta. On November 7th and 27th 2006, Strathmore Minerals Corporation acquired four additional adjacent MAIM permits totalling 36,132 ha; bringing the total North Shore holdings to 117,853 ha. The North Shore Property is situated approximately fifteen kilometres west of Fort Chipewyan and extends along the north shore of Lake Athabasca to the Alberta-Saskatchewan border. The North Shore permits include MAIM permits 9304110427, 9304110428, 9304110429, 9304110430, 9304110431, 9305061034, 9305061035, 9305031043, 9305031044, 9306110749, 9306110750, 9306110771 and 9306110772.

Between September 15th and October 2nd, 2006, Dahrouge Geological Consulting Ltd., on behalf of Strathmore Minerals Corporation, conducted a ground scintillometer prospecting and sampling program of the North Shore MAIM permits. The intent of the exploration was to locate areas of anomalous surface uranium concentrations and alteration associated with unconformity and sub-unconformity type deposits.

Exploration resulted in the identification of several areas of anomalous radioactivity with outcrop counts per second (cps) ranging from <150 to >13,500. An anomalous sandstone boulder was also discovered with radioactivity exceeding 30,000 cps. In addition, several trends of anomalous radioactivity were identified, as well as, several areas of extensive alteration. The most significant is within MAIM permit 9304110428 where autunite and pitchblende were identified within a brecciated, granitic unit. A total of 92 samples were collected throughout the property with assays to a high of $1.39 \ W_3O_8$.

Between October 15th and November 15th 2006 approximately 18 km of line was cut and followup ground Max-Min and IP/Resistivity surveys were carried out by Peter E. Walcott and Associates Ltd. with the intent of locating conductive targets. A radiometric survey was also completed along the cut lines in addition to several more days of ground prospecting resulting in 32 additional samples.

The Max-Min survey failed to locate any substantial conductors. The IP/Resistivity survey identified a weak chargibility anomaly over the area. In addition, several new locations of anomalous radioactivity were discovered during the followup ground prospecting.

Between November 15th to December 12th 2006 and January 5th to 14th 2007, Dahrouge Geological Consulting Ltd., contracted Terraquest Ltd., on behalf of Strathmore Minerals

1.

Corporation, to conduct an airborne VLF and magnetic survey over the North Shore Property. The intent of the survey was to map conductive horizons within the basement granitoids. Several conductive horizons were identified and followup work is planned for the spring.

The 2006 exploration work was authorized by David Miller, President and CEO of Strathmore Minerals Corporation.

Exploration expenditures for the North Shore permits totalled \$572,089.66 (Appendix 1). The expenditures were sufficient to maintain the entirety of the property in good standing; as such, all of the North Shore MAIM permits will be retained. Exploration expenditures have been allocated in the following manner (Table 1.1). Excess expenditures are to be applied to subsequent assessment periods.

TABLE 1.1 ALLOCATION OF EXPENDITURES*

Permit	Assessment	Expiry Date	Permit	Required	Assigned
	Period		Area (ha)	Expenditures	Expenditures
9304110427	Years 1 & 2	November 17, 2006	9216	\$ 46,080.00	\$46,080.00
9304110428	Years 1 & 2	November 17, 2006	9216	46,080.00	46,080.00
9304110429	Years 1 & 2	November 17, 2006	8991	44,955.00	44,955.00
9304110430	Years 1 & 2	November 17, 2006	9152	45,760.00	45,760.00
9304110431	Years 1 & 2	November 17, 2006	9072	45,360.00	45,360.00
9305061034	Years 1 & 2	June 30, 2007	9024	45,120.00	45,120.00
9305061035	Years 1 & 2	June 30, 2007	8832	44,160.00	44,160.00
9305031043	Years 1 & 2	March 9, 2007	9002	45,010.00	45,010.00
9305031044	Years 1 & 2	March 9, 2007	9216	46,080.00	46,080.00
9306110749	Years 1 & 2	November 7, 2008	8756	43,780.00	0.00
9306110750	Years 1 & 2	November 7, 2008	9204	46,020.00	0.00
9306110771	Years 1 & 2	November 7, 2008	8960	44,800.00	0.00
9306110772	Years 1 & 2	November 27, 2008	9216	46,080.00	0.00
9304110428	Years 3 & 4	November 17, 2008	9216	92,160.00	92,160.00
9305031043	Years 3 & 4	March 9, 2009	9002	90,020.00	36,037.33
9305031044	Years 3 & 4	March 9, 2009	9216	92,160.00	36,037.33
				Total:	\$572,089.66

* Based upon the current permit area

INTRODUCTION

The objectives of the 2006 exploration were to locate areas of anomalous surface uranium concentrations and alteration associated with unconformity and sub-unconformity type deposits; as well as, to locate conductive horizons within the basement granitics. To achieve these objectives, outcrops along the north shore of Lake Athabasca were traversed and radioactivity assessed. Followup ground EM surveys in addition to a concurrent airborne VLF and magnetic surveys were performed to isolate conductive horizons.

3.

2.

LOCATION AND ACCESS

The North Shore MAIM permits (Figs. 3.1 and 3.2) are located within National Topographic Map Sheets 74 M/01, 02, 07, 08 and 74 L/14, 15 and 11. The permit area is bounded by geographic coordinates 58°43' N to 59°23' N and 110°00' W to 111°11' W.

Fort Chipewyan is located on the northern shore of Lake Athabasca directly adjacent to the western most North Shore permits and was used as a base of operations for all of the 2006 ground work. During the summer months the settlement can only be accessed by airplane via readily scheduled daily flights by Air Mikisew. During the winter a seasonal road from Fort Mcmurray extends to the settlement providing at alternate method of access. Several dirt roads and trails extend northward from Fort Chipewyan providing limited access to portions of the permits directly adjacent. The main access to the permit area was via float plane, used for prospecting, or helicopter ,used for grid emplacement and ground EM surveys. Prospecting access was limited by lake size and subsequent ability of the float plane to safely land and take off.

Vegetation is dominated by Jack pine with Alders and Spruce common. Low lying areas are dominated by muskeg.

4.

WORK PERFORMED

Between September 15th and October 2nd, 2006, Dahrouge Geological Consulting Ltd., on behalf of Strathmore Minerals Corporation, conducted a ground scintillometer prospecting and sampling program of the North Shore MAIM permits. The intent of the prospecting was to locate areas of anomalous surface uranium concentrations and alteration associated with unconformity and sub-unconformity type deposits.

A total of 92 samples were taken and sent for analysis by the SRC Geoanalytical Laboratories (Appendix 2, 3). In addition, 84 separate locations were identified with anomalous radioactivity

recorded in counts per second (Appendix 4). A float plane was used to access lakes within the permit interiors with surrounding areas traversed and prospected by foot. Locations of samples and anomalous radioactivity are presented in Figures 4.1 to 4.3.

Between October 15th and November 15th 2006 approximately 18 km of line was cut and followup ground Max-Min and IP/Resistivity surveys were carried out by Peter E. Walcott and Associates Ltd. with the intent of locating conductive targets (Appendix 6). A radiometric survey (Appendix 5, Figure 4.4) was also completed along the cut lines in addition to several more days of ground prospecting. Access was provided via helicopter.

During the followup prospecting, 32 samples were taken and sent for analysis by the SRC Geoanalytical Laboratories (Appendix 2, 3). An additional, 19 locations were identified with anomalous radioactivity recorded in counts per second (Appendix 4).

From November 15th to December 12th 2006 and January 5th to 14th 2007, Dahrouge Geological Consulting Ltd., contracted Terraquest Ltd., on behalf of Strathmore Minerals Corporation, to conduct an airborne VLF and magnetic survey over the North Shore Property. The intent of the surveys was to map conductive horizons within the basement granitics.

A total of 8,039 line km were flown at a spacing of 200 m with tie lines every 4 km.

5.

RESULTS

The ground prospecting produced a total of 124 samples that were sent for analysis. Assay values for uranium ranged from nil to $1.39\% U_3O_8$. Sample locations and assay results can be found in Figures 4.1 to 4.3 and Appendicies 2 and 3.

Results of the radiometric ground survey completed over the grid are in Appendix 5. Survey locations and associated radioactivity are in Figure 4.4.

The results of the ground Max-Min and IP/Resistivity surveys with associated maps and interpretation are in Appendix 6.

The results of the Terraquest VLF and Magnetic survey are in Figures 5.1 to 5.9. A full interpretation, along with targets, is contained in Appendix 7.

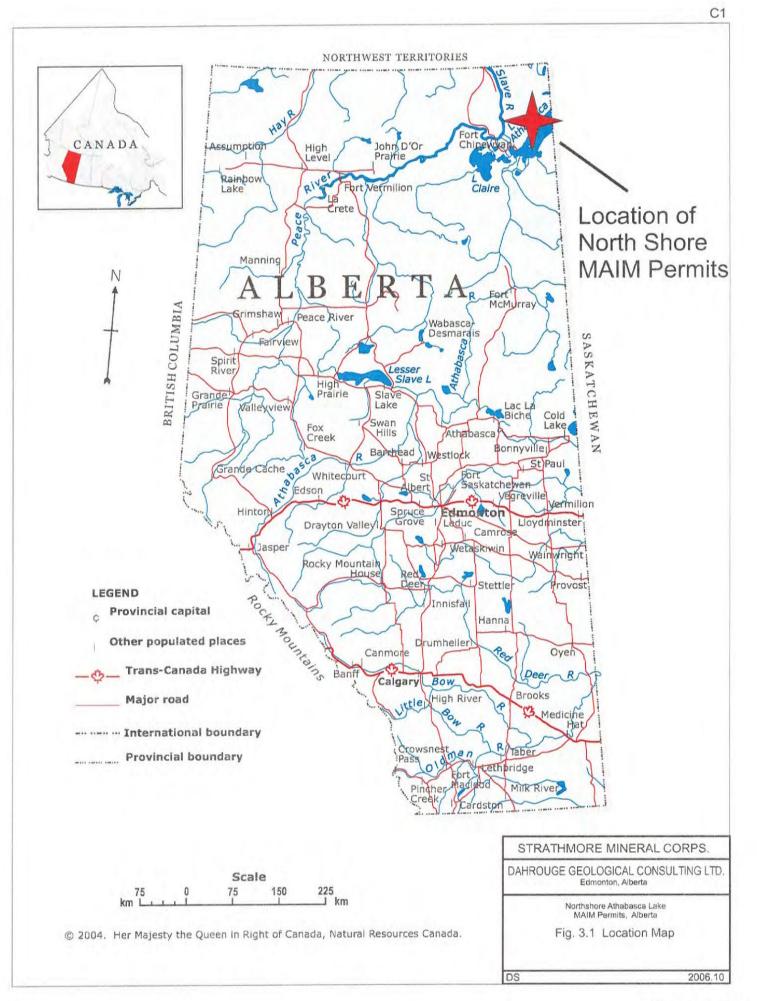
CONCLUSIONS

-8-

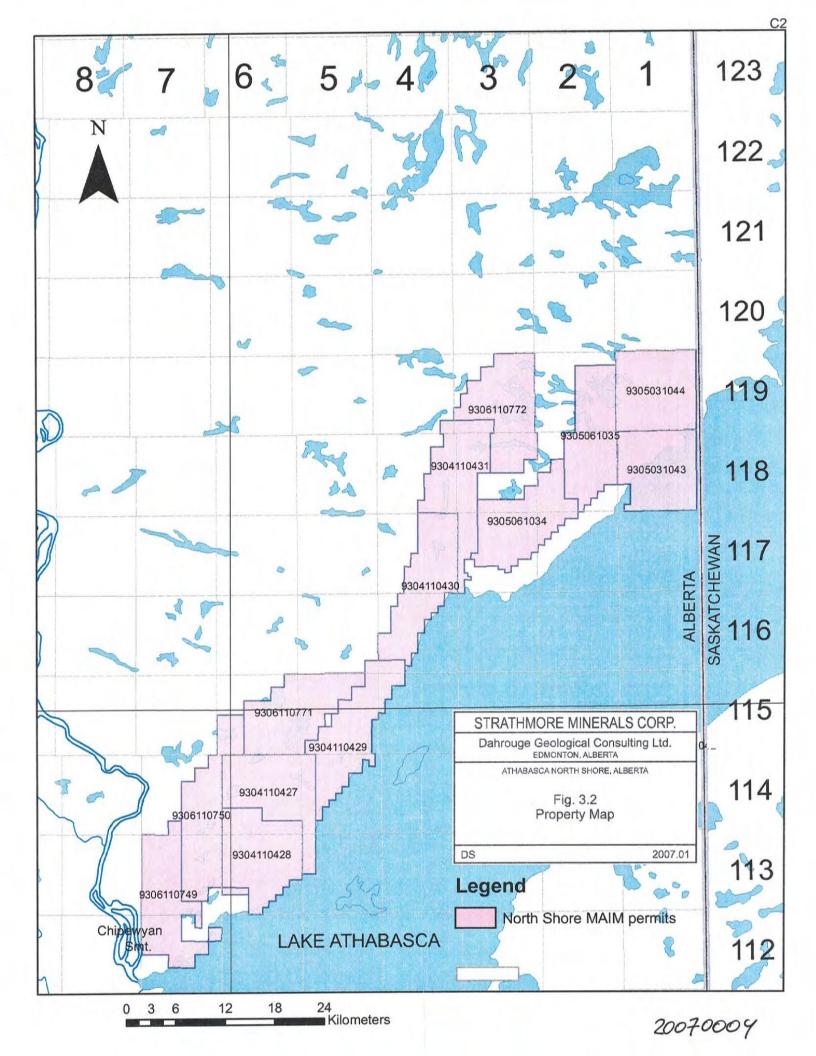
An exploration program consisting of ground radiometric prospecting, sampling, line cutting, ground Max-Min and IP/Resistivity surveys and an airborne VLF and magnetic survey were completed over the North Shore Property during the late 2006 through early 2007.

Ground exploration resulted in the location of several areas of anomalous radioactivity. The ground Max-Min and IP/Resistivity surveys identified several weak geophysical targets. The airborne VLF and magnetic survey identified several conductive targets over the property. Followup exploration of the targets identified in planned for 2007.

STATEMENT OF AUTHOR


I, Jody Dahrouge, residing at 11 Country Lane, Stony Plain, Alberta, do hereby certify that:

- I am a geologist of Dahrouge Geological Consulting Ltd., Suite 18, 10509 81 Ave, Edmonton, Alberta, T6E-1X7.
- I am a graduate of the University of Alberta, Edmonton, Alberta with a B.Sc. in Geology, 1988 and a Special Certificate (Sp.C.) in Computing Science in 1994.
- I have practised my profession as a geologist intermittently from 1988 to 1994, and continuously since 1994.
- I am a registered professional geologist with the Association of Professional Engineers, Geologists and Geophysicists of Alberta, member M48123.
- I hereby consent to the copying or reproduction of this Technical Report after the end of the one-year confidentiality period.
- I am the author of the report entitled "2004 to 2006 Exploration of the Lake Athabasca North Shore Property, Northeast Alberta" and accept responsibility for the veracity of technical data and results.



Jody Dahrouge, BSc, PGeol APEGGA M48123

6.

APPENDIX 2: 2006 SAMPLE LOCATIONS AND DESCRIPTIONS

Comple 10			000	A			
Sample ID	UTM E	UTM N	CPS	Sample Type	Rock Type	Description	Remarks
25151	498942	6518632	3210	Outcrop, Grab	Pegmatite Granite	Biotite rich	Consistantly >1000 along strike 40 - 45 deg.
25152	498942	6518632	3210	Outcrop, Grab	Pegmatite Granite	Biotite rich	Consistantly >1000 along strike 40 - 45 deg.
25153	498916	6518626	1500	Outcrop, Grab	Quartzite	Banded biotite, f.s. blue-white, w.s. brown-red	Strike of 40 - 45 deg.
25154	498916	6518601	2480	Outcrop, Grab	Pegmatite Gneiss	Bio rich with qtz vein, strongly foliated 220/50	
25155	498898	6518598	1580	Outcrop, Grab	Pegmatite Granite	Biotite rich	
25156	498924	6518628	1040	Outcrop, Grab	Pegmatite Granite	Biotite rich, fsp 0.2 - 1 cm	
25157	530118	6557903	1600	Outcrop, Grab	Granite/diorite	Plag rich, coarse-graned	Occurs within gneiss - sharp contact
25158	530161	6557905	3000	Outcrop, Grab	Pegmatite	Plag rich	Cps >1000 over 5 x 10 m area. Peg in gneiss - metamorphic origin?
25159	530943	6558046	1100	Outcrop, Grab	Granite/diorite	Plag rich, coarse-graned	Anomalous over 2 x 5 m
25160	531389	6558682	5000	Outcrop, Grab	Pegmatite	Plag rich	Cps high over 5 -10 cm, occurs in vert. fault striking 180 deg. for 20 m
25161	532516	6558254	1100	Outcrop, Grab	Pegmatite		Cps >600 over 2 x 5 m
25162	502698	6519229	1480	Outcrop, Grab	Granitic gneiss	Red - grey, k-spar rich	Cps >1000 for 1 x 6 m, strikes 45 deg.
25163	503202	6519411	900	Outcrop, Grab	Granite	K-spar rich, coarse grained	90/90 contact with gneiss. Granite BG is 400 cps
25164	503426	6519875	2200	Outcrop, Grab	Granite	Grey to pink, coarse grained	Cps >1000 over 5 m x 20 m, strikes 50 deg.
25165	497217	6517356	1400	Outcrop, Grab	Syenite	Qtz veins present, 0.2 cm black vein running along fol.	Cps >600 over 2 x 4 m, BG 200 - 300 cps
25166	499358	6519235	1500	Outcrop, Grab	Granite	K-spar rich	Cps >600 over 3 x 100 m, strikes 60 deg. Open both ends. High in fracture
25167	496957	6517108	3100	Outcrop, Grab	Granite	K-spar rich	Cps >500 over 3 x 100 m
25168	507016	6519871	1200	Outcrop, Grab	Granite	Grey,coarse-grained	Cps >500 over 5 x 30 m, strikes 280 deg.
25169	505810	6518033	1800	Outcrop, Grab	Granitoid	Grey to pink	Cps >500 over 2 x 5 m
25170	502922	6517908	5200	Outcrop, Grab	Gneiss	Brecciated, chorite	Cps >1000 over 2 x 4 m
25171	502890	6517928	8200	Outcrop, Grab	Gneiss	Coarse grained	Cps >1000 over 3 x 50 m
25172	502878	6517919	9800	Outcrop, Grab	Gneiss	Yellow mineral (Autunite?) visable	Cps >5000 over 2 x 3 m
25173	527318	6555095	3000	Outcrop, Composite	Gneiss		Samples 6 m apart along fault striking 60 deg.
25174	527201	6555400	5500	Outcrop, Grab	Gneiss	Biotite rich	Cps >1000 over 1 - 2 m x 150 m, striking 45 deg. Open both ends
25175	527332	6555753	2200	Outcrop, Grab	Gneiss	Hematitic	Cps >500 and hematite alteration are common in this area
25176	498981	6518688	1250	Outcrop, Grab	Granitoid	Qtz rich, biotite rich, hematite alteration	
25177	529882	6570965	1500	Outcrop, Grab	Diorite	Hematite alteration	Cps > 500 over at least 5 x 15 m area. Severals >1000 hits
25178	529550	6568929	850	Outcrop, Chip	Granite	Red alteration (hematite)	Cps >600, width 1 - 2 m, open both ends striking 120 deg.
25179	529374	6568504	900	Outcrop, Grab	Syenite	<5% Qtz but present, amph, minor bio	
25180	532258	6557392	1600	Outcrop, Grab	Quartzite	Biotite rich, Strong hematite alteration, yellow alteration	BG 200 cps, hits of 500 -700 cps found in area
25181	532344	6557276	5210	Outcrop, Grab	Granite	Biotite rich	BG 150 - 200 cps, hits of 500 - 700 cps in area
25182	533219	6557225	1600	Outcrop, Chip	Pegmatite Granite	Hematite alteration	Cps 500 - 600 over 20 x 20 m, hits of 1000 cps common
25183	533477	6557210	1400	Outcrop, Grab	Granite	Coarse grained, extensive hematite alteration	Associated with fractures, BG 600 cps, 1000 cps common over area
25184	533808	6557086	2700	Outcrop, Grab	Granite	Strong hem. alt, c.g., f.s red-grey, w.s. brown-red	Cps 700 - 1500 over 100 x 100 m with spots to >2000
25185	533808	6557086	2700	Outcrop, Grab	Pegmatite	Green, yellow, red alteration, black unidentified mineral	Cps 700 - 1500 over 100 x 100 m, >100 ppm U over outcrop
25186	534095	6557266	6060	Outcrop, Grab	Granite, Syenite?	C.g., chlorite, unidentified black and yellow minerals.	Cps >3000 over 1 x 1 m, associated with fractures
25187	534112	6557260	9000	Outcrop, Grab	Granite	C.g., chlorite, unidentified black and yellow minerals.	Cps 9000 over few inches and >5000 over 1 x 1 m
25188	534066	6557641	2400	Outcrop, Grab	Granite	Not homogenous, hematite alteration, folliated biotite	
25189	534097	6557649	4100	Outcrop, Chip	Granite	Strong hematite alteration	Cps 1000 - 2500 at least 100 m sg. (open at all ends)
25190	534097	6557649	7150	Outcrop, Grab	Granite	Strong hematite alteration	ope rece - Esce ariedst rod in ed. (open at an enady
25191	532448	6558282	1500	Outcrop, Chip	Gneiss	Hematite alteration, biotite rich (slightly folliated)	
25192	532754	6558613	2020	Outcrop, Grab	Pegmatite	Plag rich, abundant qtz, hematite, slight biotite foliation	Cps >1200 over 50 x 50 cm, >500 over 10's of m's
25193	533207	6558555	2020	Outcrop, Grab	Granite	Strong hematite alteration	Cps >1000 for 1 x 1 m, >1000 at several loc.over 30 x 30 m (open all ends)
25194	534144	6558280	1000	Boulder, Grab	Granite	Some hematite alteration	Size is 1 x 0.5 m, Dozens of boulders in vicinity
25195	534286	6558291	1900	Outcrop, Chip	Granitoid	Plag, f.s grey-yellow, w.s. chalky, yellow alteration	Cps >1000 over 1 x 3 m
25196	534183	6558330	2440	Outcrop, Chip	Granite	Plag rich, hematite alteration	Cps >1000 over 1 x 1 m, associated with fracture
25190	534163	6558314	350	Bouider, Grab	Granite	o	
25198	532701	6558422	1350			Yellow and green (chlorite?) abundant	Size of 1 x 1 m,
25198	501133	6558422 6519812	4750	Outcrop, Grab	Granite	Coarse granied, slight foliation, area is gneissic	Cps 800 - 900 found along 15 deg strike at m distance
25199	501133	6519812	4750	Outcrop, grab	Gneiss	Hematite ,w.s rusty, biotite rich	Cps >1000 over 1 x 1 m, strike 50-60 deg with two 2350 hits, no structure
25200				Fragment, Grab	Gneiss	w.s. rusty brown.	Fragment sitting over 25199
202/0	501105	6519798	1750	Outcrop, Chip	Gneiss	k-spar	Strike of 60 deg ,1 m wide, cps> 1750 for 1 m sq, and > 600 for 5 m

Sample ID	UTM E	UTM N	CPS	Sample Type	Rock Type	Description	Remarks
25277	501016	6520587	1400	Outcrop, Chip	Gneiss	k-spar, hematite	Cps >400 striking 215 deg (0.3 x 30 m) along fracture, spikes of 8 - 1200, BG <200 cps,
25278	501033	6520619	1160	Outcrop, Grab	Gneiss	K-spar	Cps >500 over 2 x 3 m, BG <200, associated with fracture striking 90 deg.
25279	500622	6520675	900	Outcrop, Grab	Gneiss		Associated with fracture
25280	500735	6520008	1310	Outcrop, Grab	Gneiss	Augen texture, abundant fsp	Other 400 - 800 cps within 5 m, peaks along fracture.
25281	500622	6520675	1100	Outcrop, Chip	Gneiss	Rusty, hematite, augen texture, biotite rich	Found at base/fracture of small cliff, cps 400 - 1100 for 15 m striking 100 deg.
25282	503403	6518103	930	Outcrop, Grab	Pegmatite	Plag and qtz	Anomalous over 1-2 x 25 m striking 340 deg., 930 high at intersection of two fractures.
25283	503058	6518064	1320	Outcrop, Grab	Quartzite	Qtz 60-70 %, some red, banded, minor k-spar	Cps >500 for 1 x 3 m striking 230 deg.
25284	503035	6518031	4700	Outcrop, Chip	Quartzite	Qtz 60 %, dirty, minor fsp, yellow mineral (autenite?)	Cps >1000 over 1 m sq.
25285	503025	6518029	13900	Outcrop, Grab	Granite	Qtz and bio rich	Cps >10,000 over 30 x 30 cm
25286	503025	6518029	13900	Outcrop, Grab	Granite	Qtz and bio rich	Cps >10,000 over 30 x 30 cm (top most piece easily broke off)
25287	503021	6518024	5000	Outcrop, Grab	Quartzite	Qtz rich, sugary, dirty (bio rich), minor k-spar, autenite	
25288	503024	6518028	9350	Outcrop, Grab	Granite	Qtz and bio rich	
25289	502981	6517902	4200	Outcrop, Chip	Granite	Some alteration	Fracture related, cps 700-1000 for <1 - 3 m for 50 m strike 45 deg., open all both ends
25290	503021	6517946	9780	Outcrop, Grab	Pegmatite gneiss	Plag rich, foliated bio, strong hem alt, yellow/green alt.	Occurs along fracture of 45 deg. Strike, site looks blasted out.
25291	503021	6517946	9780	Fragment, Grab	Pegmatite gneiss	Plag rich, foliated bio, strong hem alt, yellow/green alt.	Fragment sitting over 25290
25292	502896	6517929	13600	Outcrop, Grab	Gneiss	Qtz rich, purple glimmer (uranite?), mafic mins (pitchblende?)	Associated with fracture
25293	502868	6517905	13580	Outcrop, Grab	Gneiss	Plag rich, foliated bio, , hematite, autenite, pitchblende?	Associated with fracture
25294	502881	6517912	8200	Outcrop, Grab	Gneiss	Plag rich, foliated bio, , hematite, autenite, pitchblende?	Intense hematite alteration around autenite, fracture associated
25295	502906	6517900	13440	Outcrop, Grab	Gneiss	Qtz and bio rich, part of vein possibly, hematite, autenite	Associated with fracture
25295	502900 502861	6517868	5700	Outcrop, Grab	Gneiss	Plag and bio rich, hematite, autenite	Several 3500 cps hits within several 10's of m's
25290	502801	6555414	3020	Outcrop, Grab	Gneiss	Strongly foliated biotite, hematite alteration	Cps >1000 over 1 x 50 m 45 deg. Open both ends.
25297	527210 527221	6555451	4100	• •			Cps > 1000 over 1 x 50 m 45 deg. Open both ends.
				Outcrop, Grab	Gneiss	Plag and bio rich, Porphyritic plag > 4 cm, hematite alteration	
25299 25300	548581	6577883 6577883	30100	Boulder, Grab	Sandstone	Intense hematite, orange and yellow alteration, black qtz	Size 30 x 20 x 5 cm, buried 6 feet down, rounded, one side broken, a few pebbles present.
	548581		30100	Boulder, Grab	Sandstone	Intense hematite, orange and yellow alteration, black qtz	Size 50 x 40 x 10 cm, subreounded, butter yellow mineral found in addition to other yellow alt.
25301	527658	6555512	7480	Outcrop, grab	Gneiss	Qtz rich, hematite alteration,	Zone is 1 - 2 m x 6 m striking 45 deg.
25302	547188	6573884	1200	Outcrop, Composite	Quartzite	Biotite, minor k-spar	Cps >600 over 0.5 x 20 m
25303	502861	6517872	7000	Outcrop, Grab	Granite		Cps >7000 over 1 x 50 m striking 60-70 deg.
25304	490380	6517045	2500	Outcrop, Grab	Granite	coarse grained	Cps >500 over 5-10 x 80 m striking 275 deg., sandsone boulders found in vicinity
25305	491347	6516123	2520	Outcrop, Grab	Granite	Fair amount of mafic mins	Cps >500 over 1 x 30 m striking 120
25306	491392	6516077	8200	Outcrop, Grab	Gneiss	Rich in mafic minerals	Cps > 2000 over 1 x 2 m, >600 over 1 x 30 m striking 120 deg
25307	491679	6515997	1500	Outcrop, Grab	Gneiss	Rich in mafic minerals	Cps >600 over 5-8 x 40 m striking 60 deg.
25308	490897	6517059	1650	Outcrop, Grab	Gneiss	coarse grained, dark grey to pink in color	Cps >1000 over 2-3 x 20 m striking 160 deg.
25309	491090	6516970	2100	Outcrop, Grab	Biotite schist / Gneiss?	K-spar and biotite are main minerals	Cps >1000 over 3 x 6 m
25310	491455	6516092	2100	Outcrop, Grab	Gneiss	k-spar, plag, biotite, qtz	Cps >600 over 5 x 20 m striking 260 deg
25311	509500	6531161	800	Composite	Gneiss/Granite		Area is at least 100 x 100 m open on all ends
25326	502901	6517888	10200	Outcrop, Grab	Granite	Mafic/intermediate colour, qtz and biotite rich, yellow alteration	Assiciated with fracture
25327	502898	6517938		Outcrop, Composite	Gneiss, Granodiorite	Mafic/intermediate composition	Sample randomly taken over 5 x 5 m area
25328	502900	6517927		Outcrop, Composite	Gneiss, Granodiorite	Mafic/intermediate composition	Sample randomly taken over 5 x 5 m area
25329	502879	6517914		Outcrop, Composite	Gneiss, Granodiorite	Mafic/intermediate composition	Sample randomly taken over 5 x 5 m area
25330	502874	6517924		Outcrop, Composite	Gneiss, Granodiorite	Mafic/intermediate composition	Sample randomly taken over 5 x 5 m area
25476	552641	6576176	4600	Outcrop, Grab	Quartz Monzonite	Biotite rich	High cps over <10cm X 5 cm, BG 390 cps
25477	554037	6581860	1300	Outcrop, Grab	Granitoid	Qtz 40 - 50 %, biotite rich, coarse grained	High cps over <10cm X 5 cm
25478	552733	6576208	2000	Outcrop, Grab	Granitoid	Qtz 40 - 50 %, biotite rich	High cps over <10cm X 5 cm, 1100 cps 5 m away, BG 260 cps
25479	552708	6576234	3300	Outcrop, Grab	Granite		High cps over <10cm X 5 cm, 2200 cps 1 m away, be 200 cps
25480	550392	6570430	5485	Boulder, Grab	Sandstone	Hematized, yellow stain, m.g. to c.g., rounded	Size of 13 x 5 x 4 cm, found 5 m from pit and possible post-glacial source
25481	550394	6570435	3000	Boulder, Grab	Sandstone	Hematized, yellow stain, m.g. to c.g., nounded Hematized, yellow stain, m.g. to c.g., angular	one of the x of x + with tour of the north pit and possible post-gradial source
25482	558643	6592456	3250	Outcrop, grab	Granite	Hematized, yellow stain, m.g. to c.g., angular Hematized	
25482	558284	6592456 6592116	3250 1169	Outcrop, grab	Granite		
25483	558186	6592180	1870	· · +		Hematized, quartz rich	Freedows related
25485	558182	6592180 6592186	4637	Outcrop, grab	Granite	Moto biolite deb et deb	Fracture related
25485				Outcrop, grab	Granitoid	Mafic, biotite rich, qtz rich	Cps ~660 over 25 x 10 m, open both ends, Fracture related
	558142	6592379	1498	Outcrop, grab	Granitoid	Hematite, qtz rich, chlorite?	
25487	502149	6517527	1608	Outcrop, grab	Granitoid	Biotite rich, Qtz rich	Cps >750 striking 20 deg, open both ends.
25488	502537	6517356	2026	Outcrop, grab	Granite		Area over 30 cm x 20 cm
25489	502541	6517377	1607	Outcrop, grab	Gneiss	Biotite rich, f.g to m.g., dark green to green hue	
25490	502420	6517488	5100	Outcrop, grab	Granite	Qtz rich and c.g.	Cps >3000 over 0.5 x 0.4 m, anomalous over 2 x 10 m with scattered highs

Sample ID	UTM E	UTM N	CPS	Sample Type	Rock Type	Description	Remarks
25491	502420	6517488	4300	Outcrop, grab	Granitoid	Biotite and Qtz rich, chlorite? m.g to c.g.	Cps 900 - 3500 along 70 m strike, fracture associated
25492	502721	6517765	1941	Outcrop, grab	Granitoid	Qtz rich	Anomalous over 20 x 5 cm, associated with fractures
25493	504086	6519205	4867	Outcrop, grab	Granitoid	Qtz rich, yellow mineral (Autenite)	Anomalous cps over 20 x 10 m area open at both ends, associated with fractures
25494	503066	6518001	4880	Outcrop, grab	Grantioid	Biotie and Qtz rich, green to red, brownish colour, m.g. to c.g.	Massive to poorly foliated
25495	504075	6519200	2400	Outcrop, grab	Granitoid	Qtz rich	Anomaly over 10 x 10 cm
25496	504194	6519306	2100	Outcrop, grab	Granitoid	Qtz rich	Anomaly over 0.3 m x 10 cm
25497	493734	6524920	2300	Outcrop, grab	Granite	Altered	Anomaly 10 x 20 cm, associated with fractures
25498	493464	6524835	2200	Outcrop, grab	Gneiss	Qtz rich, hematite alteration, c.g.	
25499	493302	6524790	12000	Boulder, grab	Granite	Qtz poor	Size ~ 60 cm x 40 cm x 10 cm, Cps of 2200 found on adjacent boulder
25500	493325	6524993	4900	Outcrop, grab	Granite		Small area with spot high with Cps 4800 found a couple m's away
25351	493468	6525275	4257	Outcrop, grab	Gneiss	Hematite altered, c.g.	
25352	495190	6527027	3400	Outcrop, grab	Gneiss	Hematite altered, c.g.	associated with fractures
25353	495384	6527338	2600	Outcrop, grab	Granite		Anomaly over 20 x 15 cm, associated with fractures
25354	495720	6527254	7400	Outcrop, grab	Granite	Biotite rich	Anomaly over 12 x 8 cm, Cps hits of 2200 to 2800 several m's along strike of 350 deg along fractures
25355	495720	6527254	5944	Outcrop, grab	Quartz monzodiorite	Biotite rich	Cps 3000 over 50 x 20 cm
25356	495822	6527505	5900	Outcrop, grab	Grano-diorite	Biotite rich	Cps > 4000 over 1.5 x 0.5 m, associated with fractures
25357	495741	6527404	6800	Outcrop, grab	Granite	Biotite rich	Cps 1300 common in area

APPENDIX 3:

2006 SAMPLE ASSAY RESULTS

Attention: Darren Smith PO #/Project: 13050 Samples: 4

SRC Geoanalytical Laboratories

125 - 15 Innovation Blvd., Saskatoon, Saskatchewan, S7N 2X8 Tel: (306) 933-8118 Fax: (306) 933-5656 Email: geochem@src.sk.ca

ICP6.3R Partial Digestion

Report No: 06-1529 Date: December 18, 2006

Column Header Details

Silver in ppm (Ag) Arsenic in ppm (As) Bismuth in ppm (Bi) Cobalt in ppm (Co) Copper in ppm (Cu)

Germanium in ppm (Ge) Mercury in ppm (Hg) Molybdenum in ppm (Mo) Nickel in ppm (Ni) Lead in ppm (Pb)

Antimony in ppm (Sb) Selenium in ppm (Se) Tellurium in ppm (Te) Uranium in ppm (U, ICP) Vanadium in ppm (V)

Zinc in ppm (Zn) Boron by Fusion in ppm (B)

Sample Number	Ag ppm	As ppm	Bi ppm	Co ppm	Cu ppm	Ge ppm	Hg ppm	Mo ppm	Ni ppm	Pb ppm	Sb ppm	Se ppm	Te ppm	U, ICP ppm	V mqq	Zn ppm	B ppm
CG515/LS4/BM	<0.1	12.6	0.6	36.5	49.0	<0.2	<0.2	11.5	48.3	24.0	<0.2	<0.2	<0.2	32.9	99.1	194	90
25299	<0.1	71.9	<0.2	10.6	<0.1	<0.2	<0.2	22.8	18.2	188	<0.2	<0.2	<0.2	10100	7.8	2.2	65
25300	<0.1	75.7	<0.2	10.9	4.8	<0.2	<0.2	17.5	19.8	107	<0.2	<0.2	<0.2	1040	6.5	2.2	55
25299 R	<0.1	73.1	<0.2	11.1	<0.1	<0.2	<0.2	22.3	17.9	185	<0.2	<0.2	<0.2	10200	7.6	2.0	68

Partial Digestion: A 0.5 g pulp is digested with 2.25 ml of 8:1 HNO3:HCl for 1 hour at 95 C. The standard is LS4.

Boron: A 0.1 gram pulp is fused at 650 C in a mixture of Na2O2/Na2CO3. The standard is BM.

Attention: Darren Smith PO #/Project: 13050 Samples: 4

Column Header Details

Silver in ppm (Ag) Aluminum in wt % (Al2O3) Barium in ppm (Ba) Berylium in ppm (Be) Calcium in wt % (CaO)

Cadmium in ppm (Cd) Cerium in ppm (Ce) Cobalt in ppm (Co) Chromium in ppm (Cr) Copper in ppm (Cu)

Dysprnnosium in ppm (Dy) Erbium in ppm (Er) Europium in ppm (Eu) Iron in wt % (Fe2O3) Gallium in ppm (Ga)

Gadolinium in ppm (Gd) Hafnium in ppm (Hf) Holmium in ppm (Ho) Potassium in wt % (K2O) Lanthanum in ppm (La)

Lithium in ppm (Li) Magnesium in wt % (MgO) Manganese in wt % (MnO) Molybdenum in ppm (Mo) Sodium in wt % (Na2O)

Niobium in ppm (Nb) Neodymium in ppm (Nd) Nickel in ppm (Ni) Phosphorus in wt % (P2O5) Lead in ppm (Pb)

Praseodymium in ppm (Pr) Scandium in ppm (Sc) Samarium in ppm (Sm) Tin in ppm (Sn) Strontium in ppm (Sr)

Tantalum in ppm (Ta) Terbium in ppm (Tb) Thorium in ppm (Th) Titanium in wt % (TiO2) Uranium in ppm (U, ICP)

SRC Geoanalytical Laboratories

125 - 15 Innovation Blvd., Saskatoon, Saskatchewan, S7N 2X8 Tel: (306) 933-8118 Fax: (306) 933-5656 Email: geochem@src.sk.ca

ICP6.3 Total Digestion

Report No: 06-1529 Date: December 18, 2006

Attention: Darren Smith PO #/Project: 13050 Samples: 4

SRC Geoanalytical Laboratories

125 - 15 Innovation Blvd., Saskatoon, Saskatchewan, S7N 2X8 Tel: (306) 933-8118 Fax: (306) 933-5656 Email: geochem@src.sk.ca

ICP6.3 Total Digestion

Report No: 06-1529 Date: December 18, 2006

Column Header Details

Vanadium in ppm (V) Tungsten in ppm (W) Yttrium in ppm (Y) Ytterbium in ppm (Yb) Zinc in ppm (Zn)

Zirconium in ppm (Zr)

Attention: Darren Smith PO #/Project: 13050 Samples: 4

SRC Geoanalytical Laboratories

125 - 15 Innovation Blvd., Saskatoon, Saskatchewan, S7N 2X8

Tel: (306) 933-8118 Fax: (306) 933-5656 Email: geochem@src.sk.ca

Report No: 06-1529 Date: December 18, 2006

ICP6.3 Total Digestion

Sample	Aq	Al2O3	Ba	Be	CaO	Cd	Ce	Co	Cr	Cu	Dy	Er	Eu	Fe2O3	Ga	Gd	Hf
Number	ppm	wt %	ppm	ppm	wt %	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	wt %	ppm	ppm	ppm
CG515/LS4/BM	<0.2	17.8	2400	2.3	5.00	0.8	163	20	121	6	2.8	2.4	2.8	7.25	24	5.8	4.4
25299	11.9	2.60	123	1.9	0.06	<0.2	<1	13	125	12	2.5	8.2	1.5	4.36	<1	61.2	<0.5
25300	1.2	2.51	44	2.0	0.02	<0.2	19	15	198	10	2.0	1.5	1.0	4.82	1	8.4	<0.5
25299 R	11.1	2.65	121	1.9	0.06	<0.2	<1	13	128	12	2.5	7.8	1.5	4.42	<1	61.6	<0.5

Attention: Darren Smith PO #/Project: 13050 Samples: 4

SRC Geoanalytical Laboratories

125 - 15 Innovation Blvd., Saskatoon, Saskatchewan, S7N 2X8

Tel: (306) 933-8118 Fax: (306) 933-5656 Email: geochem@src.sk.ca

Report No: 06-1529 Date: December 18, 2006

ICP6.3 Total Digestion

Sample	Ho	K2O	La	Li	MgO	MnO	Mo	Na2O	Nb	Nd	Ni	P2O5	Pb	Pr	Sc	Sm	Sn
Number	ppm	wt %	ppm	ppm	wt %	wt %	ppm	wt %	ppm	ppm	ppm	wt %	ppm	ppm	ppm	ppm	ppm
CG515/LS4/BM	1.0	3.22	90	28	2.81	0.071	1	3.30	7	65	25	0.689	18	16	12	8.2	3
25299	3.1	0.059	<1	76	0.068	0.005	25	0.01	3	8	24	0.063	194	7	2	<0.5	3
25300	0.4	0.053	10	78	0.107	0.005	21	0.01	<1	11	27	0.056	125	2	2	1.6	3
25299 R	3.1	0.058	<1	79	0.068	0.005	26	0.01	3	8	26	0.064	196	7	2	<0.5	2

Attention: Darren Smith PO #/Project: 13050 Samples: 4

SRC Geoanalytical Laboratories

125 - 15 Innovation Blvd., Saskatoon, Saskatchewan, S7N 2X8 Tel: (306) 933-8118 Fax: (306) 933-5656 Email: geochem@src.sk.ca

ICP6.3 Total Digestion

Report No: 06-1529 Date: December 18, 2006

Sample	Sr	Та	Tb	Th	TiO2	U, ICP	V	W	Y	Yb	Zn	Zr
Number	ppm	ppm	ppm	ppm	wt %	ppm	ppm	ppm	ppm	ppm	ppm	ppm
CG515/LS4/BM	1140	1	0.4	12	1.13	4	136	<1	21	1.9	87	139
25299	17	2	51.3	<1	0.051	11700	20	<1	6	0.2	6	51
25300	48	1	6.0	<1	0.059	1220	. 7	3	4	0.7	7	58
25299 R	16	1	51.8	<1	0.059	11800	21	<1	5	0.2	6	52

Total Digestion: A 0.125 g pulp is gently heated in a mixture of HF/HNO3/HCIO4 until dry and the residue is dissolved in dilute HNO3. The standard is CG515.

Attention: Darren Smith PO #/Project: 13050 Samples: 11

Column Header Details

Silver in ppm (Ag) Arsenic in ppm (As) Bismuth in ppm (Bi) Cobalt in ppm (Co) Copper in ppm (Cu)

Germanium in ppm (Ge) Mercury in ppm (Hg) Molybdenum in ppm (Mo) Nickel in ppm (Ni) Lead in ppm (Pb)

Antimony in ppm (Sb) Selenium in ppm (Se) Tellurium in ppm (Te) Uranium (Fluorimetry) in ppm (U, Fl.) Vanadium in ppm (V)

Zinc in ppm (Zn) Boron by Fusion in ppm (B)

SRC Geoanalytical Laboratories

125 - 15 Innovation Blvd., Saskatoon, Saskatchewan, S7N 2X8 Tel: (306) 933-8118 Fax: (306) 933-5656 Email: geochem@src.sk.ca

ICP6.3R Partial Digestion

Report No: 06-1530 Date: December 20, 2006

Attention: Darren Smith PO #/Project: 13050 Samples: 11

SRC Geoanalytical Laboratories

125 - 15 Innovation Blvd., Saskatoon, Saskatchewan, S7N 2X8

Tel: (306) 933-8118 Fax: (306) 933-5656 Email: geochem@src.sk.ca

Report No: 06-1530 Date: December 20, 2006

ICP6.3R Partial Digestion

Sample Number	Ag ppm	As ppm	Bi ppm	Co ppm	Cu ppm	Ge ppm	Hg ppm	Mo ppm	Ni ppm	Pb ppm	Sb ppm	Se ppm	Te ppm	U, FI. ppm	V ppm	Zn ppm	B ppm
CG515/LS4/BM	<0.1	12.9	1.1	38.2	49.5	<0.2	<0.2	13.0	47.6	24.5	<0.2	<0.2	0.4	30.8	98.0	199	97
25176	<0.1	0.8	0.3	5.4	4.1	<0.2	<0.2	1.2	7.2	6.87	<0.2	<0.2	3.2	3.58	46.3	18.5	16
25178	<0.1	0.2	<0.2	0.7	1.7	<0.2	<0.2	0.7	2.9	9.77	<0.2	<0.2	0.3	25.4	2.4	13.2	17
25179	<0.1	<0.2	<0.2	8.2	11.3	<0.2	<0.2	0.6	50.8	14.8	<0.2	<0.2	3.3	10.5	33.3	32.3	21
25180	<0.1	<0.2	0.6	4.7	28.1	<0.2	<0.2	3.1	10.8	10.7	<0.2	<0.2	1.3	15.6	32.3	26.1	18
25182	<0.1	<0.2	<0.2	1.0	2.8	<0.2	<0.2	0.3	1.9	5.71	<0.2	<0.2	0.4	39.5	3.0	19.2	46
25188	<0.1	<0.2	< 0.2	1.2	26.1	0.5	<0.2	1.5	3.4	20.4	0.9	< 0.2	1.9	15.1	4.0	8.6	23
25194	<0.1	0.7	0.8	5.3	7.0	<0.2	<0.2	1.0	7.1	24.5	<0.2	<0.2	1.5	49.0	32.9	39.4	24
25196	<0.1	0.3	<0.2	1.1	2.0	<0.2	<0.2	2.4	2.4	22.6	< 0.2	<0.2	1.6	109	5.4	13.5	51
25197	<0.1	<0.2	<0.2	10.5	0.6	<0.2	<0.2	0.3	14.0	2.65	<0.2	<0.2	<0.2	3.12	34.0	92.4	2
25182 R	<0.1	0.3	<0.2	1.0	3.0	<0.2	<0.2	0.3	1.9	5.78	<0.2	<0.2	0.4	40.5	3.0	18.3	45

Partial Digestion: A 1.00 g pulp is digested with 2.25 ml of 8:1 HNO3:HCl for 1 hour at 95C.

The standard is LS4.

Boron: A 0.1 gram pulp is fused at 650 C in a mixture of Na2O2/Na2CO3.

The standards are BM and BH.

Attention: Darren Smith PO #/Project: 13050 Samples: 11

Column Header Details

Silver in ppm (Ag) Aluminum in wt % (Al2O3) Barium in ppm (Ba) Berylium in ppm (Be) Calcium in wt % (CaO)

Cadmium in ppm (Cd) Cerium in ppm (Ce) Cobalt in ppm (Co) Chromium in ppm (Cr) Copper in ppm (Cu)

Dysprnnosium in ppm (Dy) Erbium in ppm (Er) Europium in ppm (Eu) Iron in wt % (Fe2O3) Gallium in ppm (Ga)

Gadolinium in ppm (Gd) Hafnium in ppm (Hf) Holmium in ppm (Ho) Potassium in wt % (K2O) Lanthanum in ppm (La)

Lithium in ppm (Li) Magnesium in wt % (MgO) Manganese in wt % (MnO) Molybdenum in ppm (Mo) Sodium in wt % (Na2O)

Niobium in ppm (Nb) Neodymium in ppm (Nd) Nickel in ppm (Ni) Phosphorus in wt % (P2O5) Lead in ppm (Pb)

Praseodymium in ppm (Pr) Scandium in ppm (Sc) Samarium in ppm (Sm) Tin in ppm (Sn) Strontium in ppm (Sr)

Tantalum in ppm (Ta) Terbium in ppm (Tb) Thorium in ppm (Th) Titanium in wt % (TiO2) Uranium in ppm (U, ICP)

SRC Geoanalytical Laboratories

125 - 15 Innovation Blvd., Saskatoon, Saskatchewan, S7N 2X8 Tel: (306) 933-8118 Fax: (306) 933-5656 Email: geochem@src.sk.ca

ICP6.3 Total Digestion

Report No: 06-1530 Date: December 20, 2006

Attention: Darren Smith PO #/Project: 13050 Samples: 11

Column Header Details

Vanadium in ppm (V) Tungsten in ppm (W) Yttrium in ppm (Y) Ytterbium in ppm (Yb) Zinc in ppm (Zn)

Zirconium in ppm (Zr)

SRC Geoanalytical Laboratories

125 - 15 Innovation Blvd., Saskatoon, Saskatchewan, S7N 2X8 Tel: (306) 933-8118 Fax: (306) 933-5656 Email: geochem@src.sk.ca

ICP6.3 Total Digestion

Report No: 06-1530 Date: December 20, 2006

Attention: Darren Smith

PO #/Project: 13050 Samples: 11

SRC Geoanalytical Laboratories

125 - 15 Innovation Blvd., Saskatoon, Saskatchewan, S7N 2X8

Tel: (306) 933-8118 Fax: (306) 933-5656 Email: geochem@src.sk.ca

Report No: 06-1530 Date: December 20, 2006

ICP6.3 Total Digestion

Sample	Ag	Al2O3	Ba	Be	CaO	Cd	Ce	Co	Cr	Cu	Dy	Er	Eu	Fe2O3	Ga	Gd	Hf
Number	ppm	wt %	ppm	ppm	wt %	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	wt %	ppm	ppm	ppm
CG515/LS4/BM	0.3	17.6	2210	2.3	4.76	0.6	158	20	112	5	3.4	2.1	2.8	7.14	23	5.2	4.4
25176	<0.2	3.92	202	0.3	0.52	<0.2	318	4	164	6	2.4	<0.2	0.5	1.67	8	8.1	8.5
25178	<0.2	12.8	521	2.3	0.35	0.7	15	1	149	2	2.7	2.5	0.3	0.72	17	1.9	2.0
25179	0.4	12.9	7250	4.8	6.21	0.3	603	22	176	18	8.2	1.7	7.6	6.30	22	20.8	10.1
25180	<0.2	1.81	54	0.3	0.02	<0.2	7	3	206	31	0.6	<0.2	0.3	1.95	6	1.0	5.9
25182 25188 25194	0.4 <0.2 <0.2	12.0 11.7 13.9	838 936 829	1.4 1.2 3.4	0.28	0.5 0.6 0.7	52 293 62	1 1	143 140 122	5 41 11	1.8 7.8	0.2 0.6	0.9 0.7	1.11 1.24	14 16	3.7 19.9	3.9 9.7
25196 25197	<0.2 <0.2 <0.2	17.7 20.0	293 27	3.4 3.2 2.9	1.85 2.63 6.54	0.7 0.9 0.9	271 115	5 1 13	122 118 115	4	2.1 9.2 4.7	0.8 3.0 3.1	1.2 1.0 2.6	2.81 0.69 6.47	18 19 32	3.3 17.6 6.4	4.7 3.5 5.8
25182 R	<0.2	12.0	843	1.4	0.29	0.6	54	<1	144	5	2.0	0.4	0.8	1.11	14	3.9	4.0

Attention: Darren Smith

PO #/Project: 13050 Samples: 11

SRC Geoanalytical Laboratories

125 - 15 Innovation Blvd., Saskatoon, Saskatchewan, S7N 2X8

Tel: (306) 933-8118 Fax: (306) 933-5656 Email: geochem@src.sk.ca

Report No: 06-1530 Date: December 20, 2006

ICP6.3 Total Digestion

Sample Number	Ho ppm	K2O wt %	La ppm	Li ppm	MgO wt %	MnO wt %	Mo ppm	Na2O wt %	Nb ppm	Nd ppm	Ni ppm	P2O5 wt %	Pb ppm	Pr ppm	Sc	Sm	Sn ppm
Humbol	ppm	WL 70	ppin	ppm	WVL 70	WL 70	ppm	WVL /0	ppm	ppm	ppm	WVL 70	ppm	ppin	ppm	ppm	ppm
CG515/LS4/BM	0.9	3.19	87	30	2.79	0.069	1	3.17	7	62	25	0.665	20	15	12	8.6	4
25176	<0.4	0.829	169	11	1.15	0.013	<1	0.68	7	107	8	0.061	10	32	. 2	14.4	<1
25178	0.6	5.14	4	6	0.205	0.013	1	2.98	1	5	3	0.061	45	1	1	1.4	<1
25179	1.1	5.83	364	21	5.52	0.106	<1	1.67	10	226	129	1.17	34	62	14	33.6	<1
25180	<0.4	0.549	3	12	0.396	0.010	3	0.13	12	3	12	0.015	13	<1	4	0.8	2
25182	<0.4	6.80	24	26	0.517	0.019	<1	1.17	1	20	3	0.039	48	4	2	3.6	<1
25188	0.8	5.60	142	19	0.522	0.009	<1	1.70	3	125	4	0.082	63	33	2	24.8	<1
25194	0.6	4.40	32	34	1.21	0.043	<1	2.85	8	26	9	0.182	48	6	7	4.1	<1
25196	0.9	2.14	134	23	0.374	0.014	2	5.05	<1	109	3	0.101	51	29	1	20.3	<1
25197	0.9	0.162	58	21	3.00	0.061	<1	6.69	11	48	19	0.716	22	10	17	8.2	<1
25182 R	<0.4	6.89	26	26	0.530	0.019	<1	1.20	2	22	3	0.038	50	5	2	4.1	<1

Attention: Darren Smith PO #/Project: 13050 Samples: 11

SRC Geoanalytical Laboratories

125 - 15 Innovation Blvd., Saskatoon, Saskatchewan, S7N 2X8

Tel: (306) 933-8118 Fax: (306) 933-5656 Email: geochem@src.sk.ca

Report No: 06-1530 Date: December 20, 2006

ICP6.3 Total Digestion

Sample Number	Sr ppm	Ta ppm	Tb ppm	⁻ Th ppm	TiO2 wt %	U, ICP ppm	V ppm	W ppm	Y ppm	Yb ppm	Zn ppm	Zr ppm
CG515/LS4/BM	1200	1	0.7	13	1.00	3	134	<1	21	1.9	85	150
25176	38	<1	0.9	96	0.463	<2	57	<1	9	0.5	19	359
25178	138	<1	<0.3	10	0.064	34	4	<1	24	3.2	17	58
25179	1400	3	2.8	77	0.861	13	113	<1	41	2.6	133	457
25180	9	1	0.5	7	0.203	19	34	<1	4	0.6	26	177
25182	102	<1	<0.3	19	0.087	47	4	<1	9	0.6	24	129
25188	106	<1	2.2	153	0.093	14	6	<1	33	1.0	11	333
25194	366	<1	<0.3	20	0.339	45	58	<1	14	1.5	52	157
25196	298	<1	2.0	107	0.068	110	8	<1	35	1.5	17	143
25197	950	2	0.6	18	0.785	6	110	<1	32	2.5	126	181
25182 R	105	<1	<0.3	22	0.085	49	4	<1	10	0.7	24	129

Total Digestion: A 0.125 g pulp is gently heated in a mixture of HF/HNO3/HClO4 until dry and the residue is dissolved in dilute HNO3. The standard is CG515.

Dahrouge Geological Consulting Attention: Darren Smith PO #/Project: 13050 Samples: 80

Column Header Details

Silver in ppm (Ag) Arsenic in ppm (As) Bismuth in ppm (Bi) Cobalt in ppm (Co) Copper in ppm (Cu)

Germanium in ppm (Ge) Mercury in ppm (Hg) Molybdenum in ppm (Mo) Nickel in ppm (Ni) Lead in ppm (Pb)

Antimony in ppm (Sb) Selenium in ppm (Se) Tellurium in ppm (Te) Uranium (Fluorimetry) in ppm (U, Fl.) Vanadium in ppm (V)

Zinc in ppm (Zn) Boron by Fusion in ppm (B)

SRC Geoanalytical Laboratories

125 - 15 Innovation Blvd., Saskatoon, Saskatchewan, S7N 2X8 Tel: (306) 933-8118 Fax: (306) 933-5656 Email: geochem@src.sk.ca

ICP6.3R Partial Digestion

Report No: 06-1530 Date: December 20, 2006

Attention: Darren Smith

PO #/Project: 13050 Samples: 80

SRC Geoanalytical Laboratories

125 - 15 Innovation Blvd., Saskatoon, Saskatchewan, S7N 2X8

Tel: (306) 933-8118 Fax: (306) 933-5656 Email: geochem@src.sk.ca

Report No: 06-1530 Date: December 20, 2006

ICP6.3R Partial Digestion

Sample	Ag	As	Bi	Co	Cu	Ge	Hg	Mo	Ni	Pb	Sb	Se	Te	U, FI.	V	Zn	B
Number	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
CG515/LS4/BM	<0.1	12.3	0.6	41.0	49.9	<0.2	<0.2	12.0	48.1	21.9	<0.2	<0.2	<0.2	34.3	98.3	198	92
25151	<0.1	1.9	<0.2	17.1	5.3	<0.2	<0.2	4.4	25.5	32.4	1.9	<0.2	2.8	14.8	184	119	35
25152	<0.1	0.9	<0.2	16.5	<0.1	<0.2	<0.2	7.5	26.9	47.7	1.7	<0.2	4.3	17.9	163	119	49
25153	<0.1	0.9	<0.2	4.3	3.7	<0.2	<0.2	0.4	7.9	2.37	0.4	<0.2	0.2	1.6	24.9	40.6	28
25154	<0.1	3.1	<0.2	22.7	2.6	<0.2	<0.2	1.5	73.5	35.0	3.2	<0.2	0.5	6.5	243	173	13
25155 25156 25157 25158 25158 25159	<0.1 <0.1 <0.1 <0.1 <0.1	<0.2 1.9 <0.2 <0.2 2.2	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2	18.8 5.9 1.4 0.9 9.7	<0.1 2.6 2.0 0.4 16.8	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2	<0.2 <0.2 <0.2 <0.2 <0.2	<0.1 0.3 6.7 0.4 0.5	32.9 6.0 18.3 1.5 12.2	13.5 20.5 36.6 19.5 90.4	1.7 0.4 0.5 <0.2 0.7	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2	0.4 2.1 4.0 0.8 0.3	6.4 3.8 17.6 397 19.2	132 61.4 7.3 2.8 105	105 39.4 12.7 11.4 137	35 22 40 55 46
25160 25161 25162 25163 25164	<0.1 <0.1 <0.1 <0.1 <0.1	<0.2 <0.2 <0.2 2.5 <0.2	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2	3.5 1.1 2.4 5.0 1.4	6.4 2.1 12.9 7.7 1.3	<0.2 <0.2 <0.2 <0.2 0.5 <0.2	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2 <0.2	1.5 3.3 0.1 <0.1 0.4	3.4 3.2 7.4 22.9 1.8	32.4 6.77 8.34 66.8 36.4	0.7 0.3 <0.2 <0.2 <0.2 <0.2 <0.2	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2	3.1 0.8 0.8 <0.2 0.9	16.4 46.0 18.5 123 74.2	13.8 4.9 4.0 26.3 1.8	17.6 9.3 21.7 69.7 17.6	46 39 33 43 11 44
25165	<0.1	<0.2	<0.2	2.8	<0.1	<0.2	<0.2	2.4	4.3	23.8	0.5	<0.2	2.9	38.0	14.2	23.1	58
25166	<0.1	<0.2	<0.2	3.5	<0.1	<0.2	<0.2	1.1	2.8	30.8	0.5	<0.2	3.1	8.5	32.6	39.8	51
25167	<0.1	<0.2	<0.2	3.0	<0.1	<0.2	<0.2	42.9	5.0	69.8	0.6	<0.2	8.9	18.6	20.7	21.5	34
25168	<0.1	3.3	<0.2	13.0	<0.1	<0.2	<0.2	<0.1	5.4	28.0	1.3	<0.2	<0.2	13.9	87.1	97.8	25
25169	<0.1	<0.2	<0.2	9.7	<0.1	<0.2	<0.2	<0.1	6.4	21.0	1.2	<0.2	1.5	16.5	101	38.8	41
CG515/LS4/BH 25170 25171 25173 25174	<0.1 <0.1 <0.1 <0.1 <0.1	12.2 0.7 0.7 0.9 <0.2	0.8 <0.2 <0.2 <0.2 <0.2	40.9 3.4 3.3 5.6 7.2	50.4 6.3 0.5 43.7 <0.1	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2	12.1 71.1 2.3 1.0 2.9	48.7 5.8 4.3 3.8 4.1	21.8 93.5 55.6 13.8 77.8	<0.2 <0.2 <0.2 <0.2 1.4	<0.2 <0.2 <0.2 <0.2 <0.2	<0.2 <0.2 <0.2 1.3 7.8	34.5 679 60.0 20.7 88.2	98.4 22.3 16.8 29.1 54.5	201 47.0 45.2 30.4 96.0	892 20 25 51 87
25175	<0.1	<0.2	<0.2	7.9	57.5	0.8	<0.2	22.5	17.2	24.2	<0.2	<0.2	<0.2	80.7	69.1	61.0	54
25177	<0.1	0.6	<0.2	0.5	0.2	<0.2	<0.2	0.1	2.2	29.2	0.2	<0.2	0.7	47.5	8.1	20.2	6
25181	<0.1	<0.2	<0.2	2.1	<0.1	<0.2	<0.2	1.7	5.2	80.7	0.7	<0.2	6.9	51.6	10.4	12.1	73
25183	<0.1	<0.2	<0.2	1.7	0.9	<0.2	<0.2	0.4	1.6	25.7	<0.2	<0.2	0.7	22.3	4.2	24.8	42
25184	<0.1	<0.2	<0.2	2.9	30.4	<0.2	<0.2	1.4	10.7	21.8	<0.2	<0.2	1.1	84.9	7.6	5.5	50
25185	<0.1	<0.2	<0.2	0.5	0.6	<0.2	<0.2	0.9	1.2	7.92	<0.2	<0.2	1.2	28.3	0.9	6.9	49
25186	<0.1	<0.2	<0.2	2.8	108	<0.2	<0.2	1.1	1.7	63.9	0.9	<0.2	5.0	339	12.7	21.7	62
25187	<0.1	0.6	<0.2	2.1	0.6	<0.2	<0.2	1.9	4.2	110	<0.2	<0.2	1.2	451	9.8	38.8	45
25189	<0.1	<0.2	<0.2	0.8	4.4	<0.2	<0.2	0.1	1.0	14.2	0.4	<0.2	1.4	24.0	7.8	9.8	56
25190	<0.1	<0.2	<0.2	1.0	<0.1	<0.2	<0.2	0.3	0.4	74.2	0.3	<0.2	4.4	174	9.1	31.3	93
25191 25192 25193 25195 25191 R	<0.1 <0.1 <0.1 <0.1 <0.1	2.1 <0.2 <0.2 <0.2 2.1	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2	9.6 1.2 4.1 1.7 9.7	7.9 <0.1 6.1 0.5 7.8	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2	<0.1 0.7 0.4 1.1 <0.1	13.9 2.3 1.5 1.3 14.0	20.7 28.7 17.5 7.78 20.5	0.4 <0.2 <0.2 <0.2 0.3	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2	<0.2 2.5 0.9 1.0 <0.2	35.8 15.8 81.2 190 36.2	71.9 6.0 16.9 7.1 71.5	66.2 14.4 61.3 17.1 66.2	30 33 59 73 27

Attention: Darren Smith

PO #/Project: 13050 Samples: 80

SRC Geoanalytical Laboratories

125 - 15 Innovation Blvd., Saskatoon, Saskatchewan, S7N 2X8

Tel: (306) 933-8118 Fax: (306) 933-5656 Email: geochem@src.sk.ca

Report No: 06-1530 Date: December 20, 2006

ICP6.3R Partial Digestion

Sample Number	Ag ppm	As ppm	Bi ppm	Co ppm	Cu ppm	Ge ppm	Hg ppm	Mo ppm	Ni ppm	Pb ppm	Sb ppm	Se ppm	Te ppm	U, Fl. ppm	V ppm	Zn ppm	B
CG515/LS4/BM 25198 25199 25200 25276	0.1 <0.1 <0.1 <0.1 <0.1	12.8 <0.2 2.3 <0.2 <0.2	0.5 <0.2 <0.2 <0.2 <0.2	38.1 7.5 6.2 4.7 0.5	51.6 35.3 6.3 15.7 <0.1	<0.2 0.3 0.5 <0.2 <0.2	<0.2 <0.2 <0.2 <0.2 <0.2	12.4 0.3 9.7 102 3.5	46.9 13.1 3.9 2.6 1.2	24.3 32.7 55.0 336 29.9	<0.2 <0.2 <0.2 <0.2 <0.2	<0.2 <0.2 <0.2 <0.2 <0.2	<0.2 <0.2 <0.2 <0.2 <0.2 0.7	35.0 110 161 750 41.3	99.9 31.5 38.5 22.2 4.9	202 54.5 119 76.9 23.9	93 8 7 15 3
25277 25278 25279 25280 25281	<0.1 <0.1 <0.1 <0.1 <0.1	<0.2 <0.2 0.7 <0.2 1.8	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2	3.1 1.5 6.2 2.2 5.2	<0.1 <0.1 1.2 0.7 3.2	<0.2 <0.2 <0.2 <0.2 <0.2	<0.2 <0.2 <0.2 <0.2 <0.2	0.7 0.6 0.7 0.8 <0.1	1.7 0.8 3.8 1.6 0.8	8.34 15.0 14.6 8.52 10.3	<0.2 <0.2 0.2 <0.2 <0.2	<0.2 0.2 <0.2 <0.2 <0.2	0.7 1.4 0.6 0.3 <0.2	1.5 2.4 7.2 1.0 7.7	13.5 5.4 84.9 7.2 34.2	24.5 19.8 95.3 22.6 82.5	2 16 25 4 18
25282 25283 25284 25285 25286	<0.1 <0.1 <0.1 <0.1 <0.1	<0.2 <0.2 <0.2 <0.2 <0.2	<0.2 <0.2 <0.2 <0.2 <0.2	1.1 0.4 1.7 3.6 2.2	<0.1 1.1 53.0 32.6 32.7	<0.2 <0.2 <0.2 <0.2 <0.2	<0.2 <0.2 <0.2 <0.2 <0.2	0.4 1.6 65.4 7.7 10.0	2.2 2.3 9.6 25.9 12.3	22.0 8.95 33.7 205 201	0.2 <0.2 <0.2 <0.2 <0.2	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2	1.2 <0.2 <0.2 <0.2 <0.2 0.3	12.1 50.1 584 848 856	3.2 1.0 8.2 27.0 9.9	11.6 5.4 49.1 112 54.4	14 19 17 20 14
25287 25288 25289 25290 25292	<0.1 <0.1 <0.1 <0.1 <0.1	<0.2 <0.2 <0.2 <0.2 <0.2	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2	1.6 2.3 2.0 12.6 3.9	3.4 15.9 0.7 <0.1 4.7	<0.2 <0.2 <0.2 <0.2 0.2	<0.2 <0.2 <0.2 <0.2 <0.2	6.3 5.6 3.4 76.3 45.3	2.8 4.3 2.4 13.2 9.7	13.6 40.9 15.6 820 129	<0.2 <0.2 <0.2 0.7 <0.2	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2	<0.2 <0.2 <0.2 1.3 <0.2	49.9 165 118 1300 658	4.9 7.7 7.3 63.6 30.6	7.6 22.4 14.6 54.9 43.4	7 2 19 29 4
CG515/LS4/BH 25293 25294 25295 25296	0.1 <0.1 <0.1 <0.1 <0.1	12.8 <0.2 <0.2 <0.2 <0.2	0.6 <0.2 <0.2 <0.2 <0.2	39.5 1.9 1.3 1.6 1.1	51.7 <0.1 <0.1 <0.1 <0.1	<0.2 <0.2 <0.2 <0.2 <0.2	<0.2 <0.2 <0.2 <0.2 <0.2	12.9 4.6 3.6 1.7 122	47.6 1.8 1.2 3.3 2.5	24.5 173 529 402 371	<0.2 <0.2 <0.2 <0.2 <0.2	<0.2 <0.2 <0.2 <0.2 <0.2	<0.2 0.4 0.7 <0.2 <0.2	35.5 456 1450 1320 995	99.7 7.2 6.3 14.2 4.3	204 15.8 11.3 33.7 19.8	877 10 24 3 15
25297 25298 25301 25302 25303	<0.1 <0.1 <0.1 <0.1 <0.1	<0.2 <0.2 <0.2 <0.2 <0.2	<0.2 <0.2 <0.2 <0.2 <0.2	7.6 7.1 1.7 0.9 0.6	<0.1 10.4 45.9 3.0 <0.1	<0.2 <0.2 0.2 <0.2 <0.2	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2	5.7 2.2 0.6 0.6 59.0	3.9 5.5 0.3 2.2 2.0	44.8 53.4 153 14.6 492	0.2 0.7 <0.2 <0.2 <0.2	<0.2 <0.2 <0.2 <0.2 <0.2	1.2 2.2 <0.2 <0.2 0.4	40.1 51.1 90.7 38.4 1390	58.0 63.2 4.8 2.8 2.1	86.8 66.1 19.2 18.1 4.4	67 40 14 35 11
25304 25305 25306 25307 25308	<0.1 <0.1 <0.1 <0.1 <0.1	<0.2 <0.2 <0.2 1.1 <0.2	<0.2 <0.2 <0.2 <0.2 <0.2	3.7 6.6 27.7 6.7 7.6	4.8 4.1 219 6.9 9.6	<0.2 <0.2 3.3 <0.2 <0.2	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2	1.1 0.3 1.6 <0.1 18.2	1.4 6.7 196 8.4 4.0	31.8 29.4 21.4 12.5 29.4	<0.2 0.3 1.2 0.4 <0.2	<0.2 <0.2 <0.2 <0.2 <0.2	2.0 3.2 <0.2 <0.2 <0.2	6.5 6.6 7.3 8.7 14.9	35.2 63.5 469 38.3 62.5	138 50.9 205 64.6 81.7	4 20 3 26 30
25309 25310 25311 25326 25310 R	<0.1 <0.1 <0.1 <0.1 <0.1	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2	<0.2 <0.2 <0.2 <0.2 <0.2	16.0 8.1 1.6 3.6 8.3	63.8 <0.1 1.8 10.3 <0.1	0.3 <0.2 <0.2 <0.2 <0.2	<0.2 <0.2 <0.2 <0.2 <0.2	9.9 0.1 0.9 69.6 0.1	15.8 1.9 1.4 4.1 1.7	14.5 18.5 3.81 319 17.8	<0.2 0.3 <0.2 <0.2 0.4	<0.2 <0.2 <0.2 <0.2 <0.2	<0.2 1.2 0.2 1.7 1.5	12.2 4.9 3.8 952 4.8	148 53.7 7.6 18.0 51.8	136 50.9 14.2 21.7 49.2	10 12 8 24 14

Dahrouge Geolog	giaal Consulting			125			analytic				1 200						
Attention: Darren PO #/Project: 130	Smith	,					lvd., Sasl ix: (306) (•		ca			port No: ate: Decei		
Samples: 80						ICP	6.3R Par	tial Dige	estion								
Sample Number	Ag ppm	As ppm	Bi ppm	Co ppm	Cu ppm	Ge ppm	Hq ppm	Mo ppm	Ni ppm	Pb ppm	Sb ppm	Se ppm	Te ppm	U, Fl. ppm	V ppm	Zn ppm	B ppm
Partial Digestion: A		ed with 2.	25 ml of 8:	1 HNO3:H	ICI for 1 ho	our at 95 C) .										

The standard is LS4. Boron: A 0.1 gram pulp is fused at 650 C in a mixture of Na2O2/Na2CO3. The standards are BM and BH.

Dahrouge Geological Consulting Attention: Darren Smith PO #/Project: 13050 Samples: 80

Column Header Details

Silver in ppm (Ag) Aluminum in wt % (Al2O3) Barium in ppm (Ba) Berylium in ppm (Be) Calcium in wt % (CaO)

Cadmium in ppm (Cd) Cerium in ppm (Ce) Cobalt in ppm (Co) Chromium in ppm (Cr) Copper in ppm (Cu)

Dysprnnosium in ppm (Dy) Erbium in ppm (Er) Europium in ppm (Eu) Iron in wt % (Fe2O3) Gallium in ppm (Ga)

Gadolinium in ppm (Gd) Hafnium in ppm (Hf) Holmium in ppm (Ho) Potassium in wt % (K2O) Lanthanum in ppm (La)

Lithium in ppm (Li) Magnesium in wt % (MgO) Manganese in wt % (MnO) Molybdenum in ppm (Mo) Sodium in wt % (Na2O)

Niobium in ppm (Nb) Neodymium in ppm (Nd) Nickel in ppm (Ni) Phosphorus in wt % (P2O5) Lead in ppm (Pb)

Praseodymium in ppm (Pr) Scandium in ppm (Sc) Samarium in ppm (Sm) Tin in ppm (Sn) Strontium in ppm (Sr)

Tantalum in ppm (Ta) Terbium in ppm (Tb) Thorium in ppm (Th) Titanium in wt % (TiO2) Uranium in ppm (U, ICP)

SRC Geoanalytical Laboratories

125 - 15 Innovation Blvd., Saskatoon, Saskatchewan, S7N 2X8 Tel: (306) 933-8118 Fax: (306) 933-5656 Email: geochem@src.sk.ca

ICP6.3 Total Digestion

Report No: 06-1530 Date: December 20, 2006

Attention: Darren Smith PO #/Project: 13050 Samples: 80 SRC Geoanalytical Laboratories

125 - 15 Innovation Blvd., Saskatoon, Saskatchewan, S7N 2X8 Tel: (306) 933-8118 Fax: (306) 933-5656 Email: geochem@src.sk.ca

ICP6.3 Total Digestion

Report No: 06-1530 Date: December 20, 2006

Column Header Details

Vanadium in ppm (V) Tungsten in ppm (W) Yttrium in ppm (Y) Ytterbium in ppm (Yb) Zinc in ppm (Zn)

Zirconium in ppm (Zr)

Attention: Darren Smith PO #/Project: 13050

Samples: 80

SRC Geoanalytical Laboratories

125 - 15 Innovation Blvd., Saskatoon, Saskatchewan, S7N 2X8

Tel: (306) 933-8118 Fax: (306) 933-5656 Email: geochem@src.sk.ca

Report No: 06-1530 Date: December 20, 2006

ICP6.3 Total Digestion

Sample	Ag	AI2O3	Ba	Be	CaO	Cd	Ce	Co	Cr	Cu	Dy	Er	Eu	Fe2O3	Ga	Gd	Hf
Number	ppm	wt %	ppm	ppm	wt %	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	wt %	ppm	ppm	ppm
CG515/LS4/BM 25151 25152 25153 25154	0.3 <0.2 <0.2 <0.2 <0.2 <0.2	17.2 19.9 19.8 4.21 16.4	2060 1080 1300 69 740	2.1 1.7 1.9 0.4 1.2	4.63 3.57 3.47 0.56 3.11	0.7 0.7 0.5 <0.2 0.4	161 1960 3400 69 2050	16 17 17 5 23	111 73 68 145 192	4 20 15 4 12	2.9 15.9 29.1 0.8 18.4	2.4 10.0 16.6 0.6 10.3	2.6 2.6 3.2 0.4 1.7	7.21 7.89 7.68 2.26 10.7	21 36 38 8 36	4.9 47.1 84.2 2.3 51.7	4.9 13.6 9.1 2.4 7.9
25155	<0.2	19.5	1060	1.9	1.90	0.8	1350	19	54	7	15.2	8.8	2.2	8.29	31	39.0	15.0
25156	<0.2	16.7	2440	1.0	1.81	0.7	905	5	79	8	7.1	4.3	1.8	2.93	20	21.2	4.4
25157	<0.2	13.4	1450	1.2	0.29	0.6	909	<1	111	11	14.1	5.9	1.1	0.91	12	36.6	1.6
25158	0.8	14.4	1310	2.7	1.07	0.8	33	<1	115	2	1.4	0.8	1.2	0.38	9	4.0	9.7
25159	<0.2	16.6	583	1.5	1.31	0.8	622	9	82	28	16.6	5.9	2.0	5.69	24	32.8	3.8
25160	<0.2	14.4	1400	0.9	0.28	0.8	954	2	112	18	24.9	8.9	1.6	1.67	13	48.0	2.1
25161	0.2	14.9	1140	2.0	0.67	0.7	69	2	109	19	3.2	1.9	0.6	2.00	16	4.1	5.9
25162	<0.2	14.3	797	1.7	0.93	0.7	33	4	152	12	2.7	1.7	0.9	4.61	21	3.4	10.4
25163	<0.2	16.6	868	2.0	0.88	1.0	146	1	88	4	20.7	13.8	0.7	1.05	16	14.8	8.6
25164	0.3	8.22	331	1.1	0.69	0.3	49	1	168	3	1.9	0.8	0.7	0.74	8	3.5	2.0
25165 25166 25167 25168 25169	<0.2 <0.2 <0.2 <0.2 <0.2 0.3	12.3 18.8 11.8 22.4 21.2	1030 1540 1040 763 834	2.5 1.6 1.0 1.4 1.8	0.59 1.88 1.58 3.76 2.50	0.5 0.9 0.3 1.0 0.8	674 1200 3130 989 1110	2 2 13 8	126 54 121 61 47	25 7 15 4 9	10.6 10.9 16.5 19.0 11.6	14.0 6.8 13.6 8.5 7.5	3.5 2.1 1.7 3.1 2.8	1.82 2.51 2.28 7.85 6.84	16 23 22 32 26	20.1 30.5 44.7 38.1 36.5	55.7 2.0 16.2 2.9 4.1
CG515/LS4/BH	<0.2	17.5	2110	2.1	4.73	0.7	163	16	110	4	2.9	2.6	2.6	7.32	21	5.3	4.7
25170	1.2	10.3	551	1.5	0.89	0.3	51	2	227	13	3.6	2.7	0.6	3.26	14	7.9	<0.5
25171	<0.2	16.9	896	2.4	1.29	0.8	84	2	109	3	3.0	2.1	0.5	3.30	24	5.0	2.8
25173	<0.2	14.8	749	2.0	1.26	0.7	316	4	108	66	28.5	14.4	1.1	3.24	17	26.7	3.3
25174	<0.2	21.2	400	3.8	3.12	0.7	4990	7	63	10	94.0	31.5	3.7	6.61	41	232	12.6
25175	<0.2	12.6	139	2.0	0.29	0.3	56	8	162	98	4.6	5.5	1.3	7.97	23	5.4	46.1
25177	<0.2	20.6	771	5.2	1.91	1.0	80	<1	61	2	4.8	3.1	0.7	1.34	25	6.2	4.5
25181	<0.2	19.4	1300	3.9	1.61	1.0	2280	1	65	20	92.7	29.7	1.4	1.41	25	167	4.9
25183	<0.2	13.2	799	1.9	0.59	0.6	43	<1	140	3	3.7	2.0	0.9	1.66	14	3.8	4.7
25184	<0.2	12.3	904	2.3	1.08	0.5	58	2	97	48	3.3	1.7	0.8	0.90	12	4.6	17.8
25185	0.3	15.4	1160	1.5	0.39	0.9	46	<1	87	2	1.6	0.7	0.8	0.41	12	3.0	1.1
25186	<0.2	12.1	273	3.2	0.28	0.3	1240	2	102	167	48.2	19.5	1.7	1.15	13	86.6	76.0
25187	0.2	7.36	433	0.7	0.31	0.2	300	2	315	6	9.5	3.5	0.5	2.58	10	20.8	<0.5
25189	<0.2	12.5	904	1.4	0.31	0.7	214	<1	96	12	12.4	9.2	0.5	1.80	12	15.5	10.9
25190	<0.2	13.8	819	2.1	0.18	0.6	1200	<1	78	8	50.4	20.3	0.6	1.45	14	89.0	21.8
25191 25192 25193 25195 25191 R	<0.2 <0.2 <0.2 0.2 <0.2 <0.2	20.0 10.4 16.9 13.6 19.5	772 1520 969 572 768	1.8 0.6 2.8 1.5 1.7	2.03 0.36 0.87 1.45 2.02	0.7 0.5 0.9 0.7 0.9	359 488 345 132 363	9 <1 2 <1 9	68 113 71 88 69	16 2 12 3 16	10.9 17.8 19.1 4.3 11.0	4.5 5.0 18.9 1.9 4.5	2.0 1.1 1.5 0.8 2.0	6.42 0.83 4.99 1.17 6.33	31 9 15 13 29	20.5 32.4 21.8 8.8 20.7	5.5 0.9 5.3 1.6 5.7

Attention: Darren Smith

PO #/Project: 13050

Samples: 80

SRC Geoanalytical Laboratories

125 - 15 Innovation Blvd., Saskatoon, Saskatchewan, S7N 2X8

Tel: (306) 933-8118 Fax: (306) 933-5656 Email: geochem@src.sk.ca

Report No: 06-1530 Date: December 20, 2006

Sample	Ag	Al2O3	Ba	Be	CaO	Cd	Ce	Co	Cr	Cu	Dy	Er	Eu	Fe2O3	Ga	Gd	Hf
Number	ppm	wt %	ppm	ppm	wt %	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	wt %	ppm	ppm	ppm
CG515/LS4/BM 25198 25199 25290 25276	0.4 0.3 0.6 1.2	17.7 12.8 15.2 13.1	2250 522 610 632	2.1 4.1 2.3 1.0	4.77 1.03 3.65 2.49	0.9 0.7 0.9 0.6	173 107 164 523	16 6 4	112 143 154 97	4 48 10 32	3.0 6.7 3.4 17.1	2.3 6.7 2.6 8.6	2.7 1.5 1.6 2.0	7.39 5.05 6.39 4.43	22 17 25 16	5.4 6.5 7.8 28.5	4.2 6.7 13.1 46.9
25276	<0.2	13.4	1220	0.8	0.80	0.7	487	<1	89	8	9.8	4.8	1.2	1.62	15	20.8	7.4
25277	0.2	15.4	3030	0.7	1.68	0.8	716	3	114	5	3.7	3.0	2.0	2.72	16	9.1	12.3
25278	<0.2	15.9	2620	0.9	1.17	0.8	984	1	70	4	4.3	3.2	1.8	1.91	21	11.9	29.5
25279	<0.2	19.1	1060	1.1	2.04	1.1	676	6	58	7	7.8	3.8	1.8	4.45	28	19.3	1.8
25280	0.5	13.6	3040	0.6	0.64	0.8	284	2	93	4	1.0	0.9	1.4	1.84	14	3.3	4.3
25281	<0.2	17.9	1060	2.8	1.50	1.0	729	6	49	10	14.5	6.0	2.1	6.15	33	25.5	9.7
25282	<0.2	18.0	1630	1.8	1.09	0.9	410	1	67	1	9.2	3.5	1.4	0.69	18	20.2	3.2
25283	0.3	8.54	210	1.6	0.52	0.5	17	<1	164	3	1.5	0.8	0.5	0.48	10	1.7	5.7
25284	1.2	9.49	230	2.1	0.81	0.6	31	1	177	72	2.5	1.5	0.5	1.49	12	6.3	2.7
25285	0.9	10.2	272	1.6	0.34	0.4	237	3	87	55	11.3	6.0	1.1	3.45	14	18.2	<0.5
25286	1.1	8.92	256	1.5	0.38	0.5	212	2	98	53	11.5	5.8	0.7	1.60	8	18.2	<0.5
25287	0.4	13.7	188	1.5	0.34	0.7	70	1	122	6	2.4	1.3	0.6	1.09	16	3.8	2.3
25288	0.4	12.9	1650	1.0	0.32	0.6	51	2	86	24	2.4	1.4	0.4	1.56	14	3.9	1.5
25289	<0.2	14.3	347	2.5	0.80	0.7	166	2	102	4	5.5	2.2	0.7	1.57	19	9.5	6.3
25290	<0.2	16.2	272	2.7	1.62	0.5	1660	13	55	12	51.0	17.1	1.4	8.04	29	99.9	<0.5
25292	1.5	4.86	240	0.8	0.21	0.2	13	4	144	13	6.3	4.0	0.4	3.02	8	7.8	0.7
CG515/LS4/BH	0.2	17.6	2240	2.1	4.69	0.7	167	17	112	4	3.0	2.3	2.6	7.37	22	5.2	4.5
25293	0.3	16.0	1490	1.6	1.15	1.0	292	1	118	5	13.1	5.3	0.7	1.63	17	21.8	<0.5
25294	1.1	15.7	1390	1.7	0.85	0.9	314	1	68	12	23.6	10.6	1.1	1.35	12	33.0	<0.5
25295	1.0	1.85	48	0.2	0.06	<0.2	377	1	143	14	31.4	13.4	0.5	2.84	1	39.5	<0.5
25296 25297	1.4 <0.2	11.7 20.3	531 526	2.0 2.9	1.32 2.30	0.8	104 1870	1	130 77	5	8.1 32.8	4.4	0.7 3.5	0.98 6.96	9 38	13.3 83.1	2.8
25298 25301 25302 25303	<0.2 <0.2 <0.2 <0.2 2.1	17.0 16.5 12.7 12.0	816 2900 329 140	2.4 0.7 2.4 2.6	2.14 0.48 0.81 1.64	0.6 1.0 0.8 0.6	3530 64 72 38	7 1 <1 <1	84 91 127 141	38 65 7 5	55.7 7.1 5.0 9.0	21.8 13.4 2.1 5.0	3.0 0.8 0.7 0.7	6.74 4.28 1.12 0.52	36 36 12 16 7	139 4.0 5.9 14.6	7.2 1.1 2.0 <0.5
25304	<0.2	13.4	3450	0.8	0.70	0.6	1220	3	129	17	6.0	4.9	1.8	2.78	22	15.1	11.0
25305	0.6	20.1	1960	2.8	4.08	1.0	2330	7	86	22	9.8	8.2	3.2	4.48	35	25.2	54.9
25306	<0.2	11.4	3570	<0.2	2.30	<0.2	4140	28	1150	300	34.5	17.0	3.1	19.7	43	84.5	69.8
25307	<0.2	22.2	1040	4.2	3.68	1.2	509	7	53	16	3.5	2.7	2.0	3.97	31	11.1	8.3
25308	<0.2	23.8	694	3.2	3.99	1.2	639	8	58	23	10.7	4.7	3.1	4.96	34	23.4	19.6
25309	<0.2	19.4	1360	1.7	3.53	0.5	813	17	62	90	18.4	8.9	2.6	12.8	41	24.8	23.8
25310	<0.2	17.5	3890	1.0	2.27	0.7	1630	8	54	12	6.4	5.4	2.4	5.10	30	18.6	21.6
25311	<0.2	13.9	1200	1.3	0.72	0.8	99	1	97	5	1.8	1.3	0.9	1.86	18	2.2	5.6
25326	0.7	20.6	393	3.8	2.26	1.1	812	3	74	33	33.1	13.5	1.7	2.49	21	55.2	<0.5
25310 R	<0.2	17.2	3830	0.9	2.22	0.7	1590	7	53	12	6.2	5.4	2.4	5.02	28	17.8	20.1

Attention: Darren Smith

PO #/Project: 13050

Samples: 80

SRC Geoanalytical Laboratories

125 - 15 Innovation Blvd., Saskatoon, Saskatchewan, S7N 2X8

Tel: (306) 933-8118 Fax: (306) 933-5656 Email: geochem@src.sk.ca

Report No: 06-1530 Date: December 20, 2006

Sample	Ho	K2O	La	Li	MgO	MnO	Mo	Na2O	Nb	Nd	Ni	P2O5	Pb	Pr	Sc	Sm	Sn
Number	ppm	wt %	ppm	ppm	wt %	wt %	ppm	wt %	ppm	ppm	ppm	wt %	ppm	ppm	ppm	ppm	ppm
CG515/LS4/BM	0.9	3.05	81	29	2.91	0.067	1	3.06	7	63	23	0.663	17	14	11	8.6	<1
25151	1.4	5.36	1100	53	5.01	0.075	3	3.31	44	658	30	0.332	50	184	10	86.5	<1
25152	2.1	5.52	1940	54	4.81	0.072	6	3.03	40	1140	31	0.532	90	326	9	150	<1
25153	<0.4	1.11	33	15	1.75	0.030	<1	0.53	1	25	8	0.042	5	6	1	3.6	<1
25154	1.8	5.33	1070	58	6.26	0.086	1	1.88	70	691	76	0.327	63	191	14	92.0	<1
25155	1.7	3.60	698	89	7.15	0.086	<1	2.76	38	463	36	0.294	35	130	9	64.6	<1
25156	0.6	7.04	489	22	1.76	0.033	<1	2.53	11	300	8	0.164	46	84	3	38.8	<1
25157	0.8	7.39	432	12	0.492	0.014	7	1.79	<1	349	3	0.179	63	91	1	56.0	<1
25158	<0.4	5.52	14	21	0.412	0.015	<1	2.97	<1	13	1	0.056	48	3	<1	2.2	<1
25159	1.8	3.32	275	88	3.01	0.025	<1	3.03	17	252	16	0.156	107	64	15	43.4	<1
25160	2.2	5.85	428	22	0.872	0.012	1	2.90	3	387	5	0.208	76	98	3	64.5	<1
25161	0.7	4.35	33	16	0.828	0.027	3	4.02	1	27	9	0.060	19	6	2	4.7	<1
25162	0.9	4.89	14	47	2.25	0.058	<1	3.01	25	13	26	0.056	97	2	9	2.9	<1
25163	4.2	6.20	64	16	0.479	0.018	1	3.66	1	58	2	0.076	71	15	1	11.2	<1
25164	<0.4	1.96	21	23	0.544	0.007	4	2.16	<1	19	4	0.039	20	4	1	3.7	<1
25165	1.3	4.40	328	16	0.766	0.016	2	3.30	<1	178	4	0.039	29	51	2	25.5	<1
25166	0.9	6.52	629	25	1.19	0.050	2	3.54	10	408	4	0.253	54	114	3	54.8	<1
25167	0.8	1.78	1780	14	0.835	0.021	44	2.79	8	895	7	0.408	85	266	1	93.8	<1
25168	2.2	4.46	527	53	3.48	0.056	<1	3.94	15	372	10	0.248	48	98	16	56.4	<1
25169	0.9	2.77	552	88	4.09	0.075	<1	4.72	14	400	10	0.262	35	108	14	61.1	<1
CG515/LS4/BH	0.9	3.20	83	29	2.95	0.069	1	3.25	7	64	24	0.673	18	15	11	8.8	<1
25170	0.8	2.37	15	27	1.52	0.057	72	2.94	18	19	7	0.057	111	4	6	3.8	<1
25171	0.7	3.61	36	26	1.54	0.056	2	5.03	15	30	6	0.073	75	7	5	5.7	<1
25173	4.8	3.77	142	32	1.42	0.034	<1	3.13	4	131	5	0.126	34	31	10	25.2	<1
25174	6.5	4.42	2480	79	2.89	0.049	1	4.58	28	2010	8	0.839	158	532	11	337	<1
25175	1.3	2.09	19	32	2.54	0.045	23	2.45	17	24	21	0.070	32	4	15	4.9	<1
25177	1.0	6.96	35	14	1.18	0.027	<1	5.53	29	31	2	0.119	56	7	9	6.8	<1
25181	8.2	6.21	1040	54	0.720	0.031	<1	4.51	<1	993	6	0.381	150	252	3	197	<1
25183	0.7	6.06	20	30	0.496	0.025	<1	2.65	4	18	1	0.042	68	4	3	3.7	<1
25184	0.5	6.60	25	36	0.865	0.010	1	1.86	2	24	12	0.425	58	6	1	4.8	<1
25185	<0.4	9.04	22	12	0.237	0.013	<1	2.52	<1	18	1	0.039	62	4	<1	3.4	<1
25186	5.8	1.09	512	40	0.854	0.028	<1	6.16	<1	530	2	0.237	66	131	2	103	<1
25187	0.9	3.68	127	38	0.610	0.032	2	1.22	11	126	5	0.079	141	31	5	23.5	<1
25189	2.3	6.57	85	64	1.40	0.078	<1	1.92	<1	87	2	0.068	49	21	5	17.7	<1
25190	5.5	6.80	479	56	1.30	0.034	<1	3.21	<1	508	2	0.215	112	127	2	106	<1
25191 25192 25193 25195 25191 R	1.5 1.5 4.8 0.6 1.4	5.58 5.74 5.55 3.04 5.44	150 202 153 58 150	74 10 30 28 69	2.50 0.378 1.09 0.622 2.46	0.055 0.013 0.236 0.027 0.055	1 <1 1 1<	3.84 1.81 2.81 3.42 3.77	23 <1 <1 1 23	145 203 142 53 147	18 3 3 2 17	0.143 0.133 0.130 0.073 0.134	53 60 38 32 52	35 49 33 14 36	16 1 37 2 16	27.2 38.8 24.6 9.6 27.2	<1 <1 <1 <1 <1

Attention: Darren Smith

PO #/Project: 13050 Samples: 80

SRC Geoanalytical Laboratories

125 - 15 Innovation Blvd., Saskatoon, Saskatchewan, S7N 2X8

Tel: (306) 933-8118 Fax: (306) 933-5656 Email: geochem@src.sk.ca

Report No: 06-1530 Date: December 20, 2006

Sample	Ho	K2O	La	Li	MgO	MnO	Mo	Na2O	Nb	Nd	Ni	P2O5	Pb	Pr	Sc	Sm	Sn
Number	ppm	wt %	ppm	ppm	wt %	wt %	ppm	wt %	ppm	ppm	ppm	wt %	ppm	ppm	ppm	ppm	ppm
CG515/LS4/BM	1.0	3.19	86	29	2.93	0.071	1	3.37	7	68	23	0.686	18	16	12	9.0	<1
25198	1.9	2.03	43	26	1.84	0.089	<1	3.29	8	40	16	0.078	41	7	24	6.8	<1
25199	1.0	2.12	75	16	1.74	0.097	9	3.33	17	65	7	0.161	71	15	14	10.4	<1
25200	2.8	1.42	215	12	1.01	0.065	110	3.97	7	211	4	0.243	340	52	9	35.3	<1
25276	1.0	6.27	217	3	0.384	0.030	3	2.86	1	196	1	0.115	64	48	2	31.0	<1
25277 25278 25279 25280 25281	0.6 0.6 1.0 <0.4 2.1	6.84 5.94 5.90 6.60 5.76	415 561 307 174 332	4 9 32 3 42	0.652 0.646 2.13 0.541 1.94	0.030 0.024 0.049 0.028 0.062	1 1 1 1	3.72 3.93 3.50 2.76 3.48	3 1 21 6 68	202 272 238 79 253	2 1 5 1 3	0.183 0.237 0.151 0.093 0.243	20 28 38 18 30	55 79 64 23 67	1 1 5 1 14	19.6 26.8 32.2 7.5 38.0	<1 <1 <1 <1 <1
25282	0.8	6.89	190	10	0.506	0.020	<1	4.80	<1	162	3	0.112	39	42	1	27.5	<1
25283	<0.4	1.48	6	10	0.374	0.010	<1	3.29	<1	6	2	0.023	20	1	<1	1.3	<1
25284	0.5	0.895	14	12	0.803	0.022	67	3.69	5	14	11	0.039	41	4	3	2.9	<1
25285	1.8	1.36	108	23	1.80	0.027	7	3.73	20	93	29	0.084	207	22	7	15.8	<1
25286	1.7	0.916	92	12	0.772	0.012	11	3.75	6	88	13	0.062	204	22	3	15.5	<1
25287 25288 25289 25290 25292	0.4 0.4 0.7 5.3 1.3	0.544 6.89 1.51 1.49 1.20	33 25 76 748 1	12 9 18 52 22	0.728 0.649 0.931 4.16 1.26	0.016 0.027 0.017 0.089 0.033	6 5 4 77 47	7.11 2.78 5.89 4.70 1.13	3 6 42 18	26 19 65 660 9	3 4 2 18 10	0.045 0.051 0.069 0.305 0.030	16 69 20 830 131	6 5 17 175 1	2 3 2 12 4	4.4 3.3 11.3 118 2.8	<1 <1 <1 <1 <1
CG515/LS4/BH	1.0	3.22	84	30	2.96	0.071	1	3.35	7	66	23	0.680	18	15	12	8.9	<1
25293	1.6	3.81	128	13	0.987	0.027	3	5.66	6	122	2	0.084	177	30	2	21.8	<1
25294	3.5	4.00	130	17	0.625	0.027	3	5.86	2	133	1	0.087	540	35	2	27.0	<1
25295	4.6	0.662	149	15	0.899	0.040	1	0.15	14	160	5	0.069	414	40	5	32.8	<1
25296	1.4	1.25	46	8	0.446	0.018	130	4.73	3	44	2	0.057	380	12	1	8.1	<1
25297	2.6	5.04	885	71	2.78	0.059	6	4.53	33	736	7	0.373	63	193	12	122	<1
25298	4.2	4.34	1720	67	2.90	0.061	2	3.49	33	1350	8	0.601	115	347	13	212	<1
25301	2.9	8.19	30	29	0.650	0.148	<1	2.16	<1	26	2	0.088	186	1	46	4.0	<1
25302	0.7	4.28	32	37	0.464	0.021	<1	2.97	4	29	2	0.106	35	7	3	6.3	<1
25303	1.6	0.592	13	5	0.221	0.012	61	5.11	<1	22	1	0.046	500	6	<1	4.9	<1
25304	0.6	5.86	720	16	0.942	0.017	1	3.29	3	334	2	0.210	43	100	1	32.4	<1
25305	1.6	4.16	1510	32	1.80	0.048	<1	4.74	14	637	8	0.625	51	191	6	58.5	<1
25306	4.7	6.75	2360	60	9.21	0.092	4	0.09	54	1310	236	2.52	107	374	27	154	5
25307	0.5	4.36	283	38	2.44	0.030	1	5.26	11	162	11	0.141	23	45	6	20.9	<1
25308	1.4	3.77	331	48	2.21	0.028	19	5.96	23	230	6	0.179	52	62	7	34.5	<1
25309 25310 25311 25326 25310 R	3.5 0.8 0.4 3.9 0.8	5.95 5.95 6.05 1.84 5.90	392 1000 58 378 976	43 34 6 20 32	4.84 2.19 0.445 1.20 2.15	0.082 0.031 0.015 0.042 0.030	11 <1 70 <1	3.29 3.39 3.28 7.77 3.33	72 9 2 6 8	268 446 24 332 436	24 4 1 6 3	1.08 0.264 0.084 0.164 0.257	26 29 22 320 28	73 139 7 86 134	18 6 1 3 6	36.4 42.7 3.2 59.3 42.0	<1 <1 <1 <1 <1

Attention: Darren Smith

PO #/Project: 13050 Samples: 80

SRC Geoanalytical Laboratories

125 - 15 Innovation Blvd., Saskatoon, Saskatchewan, S7N 2X8 Tel: (306) 933-8118 Fax: (306) 933-5656 Email: geochem@src.sk.ca

ICP6.3 Total Digestion

Sample	Sr	Та	Tb	Th	TiO2	U, ICP	V	W	Y	Yb	Zn	Zr
Number	ppm	ppm	ppm	ppm	w t %	ppm	ppm	ppm	ppm	ppm	ppm	ppm
	4470		~ 4	40	4 00	•	400			4.0		400
CG515/LS4/BM	1170	<1	0.4	13	1.02	3	120	<1	20	1.9	83	139
25151	232	2	4.6	549	1.87	15	198	<1	47	1.6	142	591
25152	234	1	7.9	868	1.73	20	185	<1	80	2.0	145	364
25153	43	2	0.4	11	0.152	2	24	<1	5	0.3	47	51
25154	151	4	5.5	480	2.15	7	254	<1	54	1.7	199	247
25155	188	3	4.5	451	1.57	6	162	<1	55	2.0	125	632
25156	219	<1	1.3	227	0.727	4	74	<1	20	0.6	50	201
25157	269	<1	3.0	296	0.092	16	10	<1	36	0.6	18	46
25158	357	<1	1.7	14	0.027	416	5	<1	7	1.1	16	410
25159	212	1	3.5	176	0.885	21	143	<1	48	1.5	162	113
25160	210	<1	5.0	299	0.207	17	22	<1	76	1.8	24	67
25161	189	<1	<0.3	22	0.134	45	9	<1	17	1.7	31	178
25162	114	3	1.0	23	0.459	24	25	<1	18	1.6	87	326
25163	186	<1	2.3	64	0.107	134	2	<1	126	16.4	77	264
25164	166	<1	< 0.3	26	0.059	76	8	<1	7	0.3	19	66
23104	100		~0.3	20	0.059	70	0	~1	'	0.5	19	00
25165	156	<1	4.3	1370	0.078	40	18	<1	69	4.2	29	2210
25166	365	<1	2.1	322	0.485	9	53	<1	33	2.1	52	59
25167	289	<1	4.5	969	0.414	20	42	<1	39	1.4	30	704
25168	429	<1	3.7	266	1.01	16	113	<1	62	1.4	120	38
25169	547	1	3.0	448	0.885	17	144	<1	34	1.1	52	123
CG515/LS4/BH	1210	1	0.4	15	1.00	3	121	<1	20	1.9	84	145
25170	165	3	3.6	79	0.317	746	24	<1	21	3.1	59	51
25171	225	1	< 0.3	72	0.288	64	20	<1	15	1.2	59	71
25173	263	<1	3.9	102	0.200	24	37	<1	149	11.2	39	100
25174	414							-				
25174	414	1	24.4	1080	0.669	97	66	<1	245	4.3	118	458
25175	58	4	3.0	426	0.420	106	91	<1	33	4.6	79	1510
25177	534	<1	<0.3	47	0.298	49	12	<1	26	3.3	26	151
25181	235	<1	20.1	1010	0.113	58	12	<1	263	7.7	20	166
25183	157	<1	<0.3	38	0.136	24	5	<1	16	1.3	35	141
25184												
20184	144	<1	1.2	39	0.063	107	10	<1	15	1.8	7	618
25185	161	<1	<0.3	21	0.016	30	1	<1	6	0.3	10	33
25186	76	<1	14.5	695	0.047	340	14	<1	171	9.8	25	2840
25187	75	1	4.2	153	0.218	492	10	<1	28	0.9	47	15
25189	88	<1	2.0	130	0.026	27	9	<1	65	10.8	15	357
25190	99	1	12.0	-	0.054		9	<1		9.3		769
23190	99	1	12.0	644	0.054	204	9		174	9.5	38	709
25191	326	2	2.2	122	0.774	41	105	<1	38	1.9	84	178
25192	176	<1	3.4	151	0.093	15	11	<1	50	1.1	19	18
25193	265	1	3.2	109	0.174	85	28	<1	144	26.0	67	156
25195	194	<1	1.2	47	0.112	204	13	<1	16	1.1	25	68
25191 R	320	2				204		<1				
2013 K	320	2	2.3	124	0.774	30	102	51	37	1.9	82	178

Report No: 06-1530 Date: December 20, 2006

Attention: Darren Smith PO #/Project: 13050

Samples: 80

SRC Geoanalytical Laboratories

125 - 15 Innovation Blvd., Saskatoon, Saskatchewan, S7N 2X8

Tel: (306) 933-8118 Fax: (306) 933-5656 Email: geochem@src.sk.ca

ICP6.3 Total Digestion

Sample	Sr	Ta	Tb	Th	TiO2	U, ICP	V	W	Y	Yb	Zn	Zr
Number	ppm	ppm	ppm	ppm	wt %	ppm	ppm	mqq	ppm	ppm	ppm	ppm
CG515/LS4/BM	1150	1	0.4	13	1.01	4	130	<1	21	2.0	84	148
25198	152	<1	1.4	24	0.360	129	65	<1	54	10.4	69	232
25199	329	<1	1.9	76	0.624	184	43	<1	18	1.6	146	480
25200	323	<1	8.7	332	0.479	769	23	<1	59	5.2	90	1860
25276	216	<1	2.2	256	0.124	41	8	<1	32	1.4	32	288
25277	360	<1	0.9	178	0.447	<2	31	<1	15	0.9	31	617
25278	349	<1	2.1	203	0.325	<2	12	<1	14	1.3	27	1470
25279	376	<1	1.5	172	0.838	2	180	<1	27	1.1	124	44
25280	234	<1	<0.3	64	0.457	<2	15	<1	5	0.3	28	211
25281	242	1	3.2	181	0.776	6	49	<1	56	2.7	109	399
25282	232	<1	1.3	157	0.078	7	5	<1	29	0.7	16	114
25283	88	<1	0.3	20	0.017	52	1	<1	8	1.0	7	201
25284	113	<1	2.9	33	0.119	627	11	<1	12	1.1	62	145
25285	74	<1	5.7	280	0.323	919	31	<1	41	2.8	134	42
25286	89	<1	5.7	233	0.131	953	13	<1	41	2.8	67	46
25287	74	<1	<0.3	42	0.087	57	7	<1	11	0.8	10	69
25288	116	<1	0.5	41	0.141	174	11	<1	13	1.2	28	55
25289	203	<1	1.2	86	0.142	126	10	<1	20	1.1	19	241
25290	259	4	17.7	676	0.962	1390	90	<1	156	3.8	71	103
25292	41	1	4.1	182	0.312	702	33	<1	27	2.4	51	77
CG515/LS4/BH	1190	<1	0.3	14	1.02	4	129	<1	21	2.0	84	140
25293	223	<1	3.8	199	0.146	467	10	<1	46	2.1	19	55
25294	200	<1	9.1	374	0.115	1470	10	<1	81	4.7	16	45
25295	9	1	12.4	448	0.221	1580	16	<1	107	6.1	40	5
25296	212	<1	5.3	129	0.089	997	8	<1	34	2.4	23	223
25297	334	<1	8.6	714	0.696	37	73	<1	91	2.1	105	379
25298	316	<1	15.0	1170	0.755	59	77	<1	155	3.0	82	256
25301	265	<1	0.4	56	0.038	91	8	<1	88	26.6	28	20
25302	99	<1	0.3	22	0.078	40	5	<1	24	2.3	23	54
25303	268	<1	7.4	152	0.035	1510	5	<1	37	2.9	5	143
25304	241	<1	1.4	372	0.419	3	47	<1	19	0.9	166	549
25305	717	<1	5.4	598	1.43	12	99	<1	36	3.1	68	3170
25306	65	8	13.8	817	4.23	6	549	<1	122	6.4	279	3270
25307	557	<1	0.4	150	0.733	7	62	<1	13	0.8	89	372
25308	495	<1	2.6	221	0.909	15	89	<1	39	2.0	104	795
25309	294	4	4.9	288	2.08	13	192	<1	87	5.1	165	1050
25310	498	<1	2.4	438	1.30	2	93	<1	19	1.3	63	1160
25311	181	<1	<0.3	67	0.172	3	16	<1	10	0.8	21	227
25326	435	<1	9.9	575	0.216	973	22	<1	118	4.7	27	22
25310 R	479	<1	2.2	432	1.28	3	92	<1	18	1.3	63	1100

Report No: 06-1530 Date: December 20, 2006

Dahrouge	Geological	Consulting
2 and ougo	O COLOGICA	Consularing

Attention: Darren Smith PO #/Project: 13050 Samples: 80

SRC Geoanalytical Laboratories

125 - 15 Innovation Blvd., Saskatoon, Saskatchewan, S7N 2X8 Tel: (306) 933-8118 Fax: (306) 933-5656 Email: geochem@src.sk.ca

ICP6.3 Total Digestion

Sample	Sr	Та	Tb	Th	TiO2	U, ICP	V	W	Y	Yb	Zn	Zr
Number	ppm	ppm	ppm	ppm	wt %	ppm	ppm	ppm	ppm	ppm	ppm	ppm

Total Digestion: A 0.125 g pulp is gently heated in a mixture of HF/HNO3/HClO4 until dry and the residue is dissolved in dilute HNO3. The standard is CG515.

Report No: 06-1530 Date: December 20, 2006

Attention: Darren Smith PO #/Project: 13050 Samples: 10

SRC Geoanalytical Laboratories

125 - 15 Innovation Blvd., Saskatoon, Saskatchewan, S7N 2X8 Tel: (306) 933-8118 Fax: (306) 933-5656 Email: geochem@src.sk.ca

ICP6.3R Partial Digestion

Report No: 06-1530 Date: December 20, 2006

Column Header Details

Silver in ppm (Ag) Arsenic in ppm (As) Bismuth in ppm (Bi) Cobalt in ppm (Co) Copper in ppm (Cu)

Germanium in ppm (Ge) Mercury in ppm (Hg) Molybdenum in ppm (Mo) Nickel in ppm (Ni) Lead in ppm (Pb)

Antimony in ppm (Sb) Selenium in ppm (Se) Tellurium in ppm (Te) Uranium in ppm (U, ICP) Vanadium in ppm (V)

Zinc in ppm (Zn) Boron by Fusion in ppm (B)

Sample Number	Ag ppm	As ppm	Bi ppm	Co ppm	Cu ppm	Ge ppm	Hg ppm	Mo ppm	Ni ppm	Pb ppm	Sb ppm	Se ppm	Te ppm	U, ICP ppm	V ppm	Zn ppm	B ppm
CG515/LS4/BM 25327 25328 25329 25330	<0.1 <0.1 <0.1 <0.1 <0.1	14.6 0.6 1.1 <0.2 0.6	0.8 0.2 0.5 <0.2 <0.2	38.9 2.7 4.7 1.8 6.4	45.7 3.4 11.3 18.7 7.5	<0.2 <0.2 <0.2 <0.2 <0.2	<0.2 <0.2 <0.2 <0.2 <0.2	13.1 3.1 1.5 7.6 4.8	47.5 6.1 8.4 3.4 8.9	24.2 7.54 12.5 39.0 26.5	<0.2 <0.2 <0.2 <0.2 <0.2	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2	<0.2 0.5 0.9 1.2 1.3	34.4 56.1 15.9 209 172	97.9 11.0 31.7 8.8 18.9	200 27.5 40.7 17.0 22.8	100 18 19 12 32
25329 R CG515/LS4/BM 25172 25291 25291 R	<0.1 <0.1 <0.1 0.1 <0.1	0.2 12.6 1.8 1.8 2.0	<0.2 0.7 <0.2 <0.2 <0.2	1.9 38.4 14.4 4.5 4.7	18.5 45.4 18.5 0.5 0.6	<0.2 <0.2 <0.2 <0.2 <0.2	<0.2 <0.2 <0.2 <0.2 <0.2	7.8 12.9 26.0 56.6 56.5	3.4 46.9 7.5 6.9 6.8	38.7 23.8 1100 600 620	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2	0.6 <0.2 10.2 4.6 4.4	207 33.6 4300 2200 2250	8.9 97.0 37.1 27.9 25.3	16.0 197 47.8 23.2 24.1	11 99 51 45 47

Partial Digestion: A 0.5 g pulp is digested with 2.25 ml of 8:1 HNO3:HCl for 1 hour at 95 C. The standard is LS4. Boron: A 0.1 gram pulp is fused at 650 C in a mixture of Na2O2/Na2CO3.

The standards are BM and BH.

Attention: Darren Smith PO #/Project: 13050 Samples: 10

SRC Geoanalytical Laboratories

125 - 15 Innovation Blvd., Saskatoon, Saskatchewan, S7N 2X8 Tel: (306) 933-8118 Fax: (306) 933-5656 Email: geochem@src.sk.ca

ICP6.3 Total Digestion

Report No: 06-1530 Date: December 20, 2006

Column Header Details

Silver in ppm (Ag) Aluminum in wt % (Al2O3) Barium in ppm (Ba) Berylium in ppm (Be) Calcium in wt % (CaO)

Cadmium in ppm (Cd) Cerium in ppm (Ce) Cobalt in ppm (Co) Chromium in ppm (Cr) Copper in ppm (Cu)

Dysprnnosium in ppm (Dy) Erbium in ppm (Er) Europium in ppm (Eu) Iron in wt % (Fe2O3) Gallium in ppm (Ga)

Gadolinium in ppm (Gd) Hafnium in ppm (Hf) Holmium in ppm (Ho) Potassium in wt % (K2O) Lanthanum in ppm (La)

Lithium in ppm (Li) Magnesium in wt % (MgO) Manganese in wt % (MnO) Molybdenum in ppm (Mo) Sodium in wt % (Na2O)

Niobium in ppm (Nb) Neodymium in ppm (Nd) Nickel in ppm (Ni) Phosphorus in wt % (P2O5) Lead in ppm (Pb)

Praseodymium in ppm (Pr) Scandium in ppm (Sc) Samarium in ppm (Sm) Tin in ppm (Sn) Strontium in ppm (Sr)

Tantalum in ppm (Ta) Terbium in ppm (Tb) Thorium in ppm (Th) Titanium in wt % (TiO2) Uranium in ppm (U, ICP)

Attention: Darren Smith PO #/Project: 13050 Samples: 10

SRC Geoanalytical Laboratories

125 - 15 Innovation Blvd., Saskatoon, Saskatchewan, S7N 2X8 Tel: (306) 933-8118 Fax: (306) 933-5656 Email: geochem@src.sk.ca

ICP6.3 Total Digestion

Report No: 06-1530 Date: December 20, 2006

Column Header Details

Vanadium in ppm (V) Tungsten in ppm (W) Yttrium in ppm (Y) Ytterbium in ppm (Yb) Zinc in ppm (Zn)

Zirconium in ppm (Zr)

Attention: Darren Smith PO #/Project: 13050 Samples: 10

SRC Geoanalytical Laboratories

125 - 15 Innovation Blvd., Saskatoon, Saskatchewan, S7N 2X8

Tel: (306) 933-8118 Fax: (306) 933-5656 Email: geochem@src.sk.ca

Report No: 06-1530 Date: December 20, 2006

Sample	Ag	AI2O3	Ba	Be	CaO	Cd	Ce	Co	Cr	Cu	Dy	Er	Eu	Fe2O3	Ga	Gd	Hf
Number	ppm	wt %	ppm	ppm	wt %	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	wt %	ppm	ppm	ppm
CG515/LS4/BM	0.2	17.2	2280	2.2	4.81	0.8	158	20	122	4	3.1	2.4	2.6	7.16	21	5.9	4.0
25327	0.4	12.6	1060	1.2	0.73	0.8	25	3	165	3	1.1	0.9	0.4	1.70	16	1.2	3.1
25328	0.5	15.0	774	2.1	2.42	0.8	50	5	92	17	2.3	1.6	0.7	3.51	20	3.4	2.8
25329	0.2	11.7	820	1.1	0.60	0.6	67	2	104	30	3.6	2.0	0.5	1.46	13	5.5	1.4
25330	0.3	15.3	624	1.6	2.65	0.8	109	10	109	13	4.6	3.2	1.0	4.47	17	7.8	1.5
25329 R	0.5	12.0	833	1.1	0.62	0.7	70	1	105	28	3.8	2.2	0.6	1.53	14	5.7	1.3
CG515/LS4/BM	0.3	17.1	2180	2.0	4.71	0.8	157	17	123	4	2.9	2.8	2.4	7.05	20	4.7	4.2
25172	1.8	11.5	472	1.3	1.00	<0.2	2210	15	71	29	91.8	44.1	3.4	6.70	4	170	<0.5
25291	3.2	11.7	226	2.3	1.28	0.5	890	5	78	7	34.0	15.4	1.2	2.83	6	72.0	<0.5
25291 R	3.1	11.7	225	2.3	1.30	0.4	913	4	80	7	35.0	15.9	1.2	2.85	5	73.2	<0.5

Attention: Darren Smith

PO #/Project: 13050

Samples: 10

SRC Geoanalytical Laboratories

125 - 15 Innovation Blvd., Saskatoon, Saskatchewan, S7N 2X8

Tel: (306) 933-8118 Fax: (306) 933-5656 Email: geochem@src.sk.ca

Report No: 06-1530 Date: December 20, 2006

Sample	Ho	K2O	La	Li	MgO	MnO	Mo	Na2O	Nb	Nd	Ni	P2O5	Pb	Pr	Sc	Sm	Sn
Number	ppm	wt %	ppm	ppm	wt %	wt %	ppm	wt %	ppm	ppm	ppm	wt %	ppm	ppm	ppm	ppm	ppm
CG515/LS4/BM	0.9	3.12	90	32	2.91	0.072	1	3.36	9	66	25	0.662	17	16	13	9.1	3
25327	<0.4	3.71	15	17	1.11	0.036	3	3.94	5	9	12	0.047	21	2	3	1.3	<1
25328	0.6	2.58	27	19	1.47	0.053	1	4.65	7	21	12	0.105	28	4	5	3.6	<1
25329	0.6	2.24	31	10	0.740	0.020	7	4.97	3	25	5	0.048	41	6	1	4.7	<1
25330	0.8	1.83	55	18	1.81	0.070	5	5.68	4	47	16	0.129	33	11	7	8.3	<1
25329 R CG515/LS4/BM 25172 25291 25291 R	0.6 0.9 12.6 4.5 4.7	2.35 3.01 1.50 0.989 0.992	33 85 983 389 399	10 29 75 25 25	0.751 2.82 3.88 1.64 1.65	0.021 0.071 0.080 0.041 0.042	8 1 28 58 57	4.85 3.19 2.52 4.00 3.90	3 8 39 14 14	27 62 940 364 379	4 23 8 7 7	0.048 0.660 0.431 0.172 0.175	43 18 1200 630 640	7 15 246 101 103	2 12 11 4 4	4.9 8.4 176 69.3 72.3	<1 1 <1 <1

Attention: Darren Smith PO #/Project: 13050 Samples: 10

SRC Geoanalytical Laboratories

125 - 15 Innovation Blvd., Saskatoon, Saskatchewan, S7N 2X8

Tel: (306) 933-8118 Fax: (306) 933-5656 Email: geochem@src.sk.ca

Report No: 06-1530 Date: December 20, 2006

ICP6.3 Total Digestion

Sample Number	Sr ppm	Ta ppm	Tb ppm	Th ppm	TiO2 wt %	U, ICP ppm	V ppm	W ppm	Y ppm	Yb ppm	Zn ppm	Zr ppm
CG515/LS4/BM	1190	<1	0.5	13	1.05	4	132	<1	23	2.0	85	143
25327	169	<1	<0.3	12	0.165	58	14	<1	10	1.5	38	118
25328	230	<1	<0.3	23	0.458	22	53	<1	16	1.6	61	101
25329	125	<1	0.8	64	0.105	220	11	<1	16	1.0	20	67
25330	236	<1	1.2	56	0.617	180	68	<1	26	1.9	50	62
25329 R	129	<1	0.9	66	0.106	216	11	<1	18	1.1	22	69
CG515/LS4/BM	1120	<1	0.3	12	1.00	4	121	<1	21	1.9	85	148
25172	165	1	38.3	1780	0.697	4420	50	<1	351	12.5	65	114
25291	237	<1	16.5	524	0.365	2300	34	<1	119	3.7	30	20
25291 R	239	<1	16.9	540	0.367	2350	34	<1	120	3.8	32	18

Total Digestion: A 0.125 g pulp is gently heated in a mixture of HF/HNO3/HClO4 until dry and the residue is dissolved in dilute HNO3. The standard is CG515.

Attention: Darren Smith PO #/Project: 13050 Samples: 32

SRC Geoanalytical Laboratories

125 - 15 Innovation Blvd., Saskatoon, Saskatchewan, S7N 2X8 Tel: (306) 933-8118 Fax: (306) 933-5656 Email: geochem@src.sk.ca

ICP6.3R Partial Digestion

Report No: 06-1673 Date: January 17, 2007

Column Header Details

Silver in ppm (Ag) Arsenic in ppm (As) Bismuth in ppm (Bi) Cobalt in ppm (Co) Copper in ppm (Cu)

Germanium in ppm (Ge) Mercury in ppm (Hg) Molybdenum in ppm (Mo) Nickel in ppm (Ni) Lead in ppm (Pb)

Antimony in ppm (Sb) Selenium in ppm (Se) Tellurium in ppm (Te) Uranium in ppm (U, ICP) Vanadium in ppm (V)

Zinc in ppm (Zn) Boron by Fusion in ppm (B)

Attention: Darren Smith

PO #/Project: 13050

Samples: 32

SRC Geoanalytical Laboratories

125 - 15 Innovation Blvd., Saskatoon, Saskatchewan, S7N 2X8

Tel: (306) 933-8118 Fax: (306) 933-5656 Email: geochem@src.sk.ca

Report No: 06-1673 Date: January 17, 2007

ICP6.3R Partial Digestion

Sample	Ag	As	Bi	Co	Cu	Ge	Hg	Mo	Ni	Pb	Sb	Se	Te	U, ICP	V	Zn	B
Number	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	mqq	ppm	ppm
CG515/LS4/BM 25351 25352 25476 25477	<0.1 <0.1 <0.1 <0.1 <0.1	12.6 1.0 1.7 2.2 6.2	0.6 <0.2 <0.2 <0.2 <0.2	39.7 2.1 8.6 8.1 10.5	47.7 24.4 <0.1 1.5 13.2	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2	<0.2 <0.2 <0.2 <0.2 <0.2	12.6 5.7 1.4 9.8 4.3	49.1 2.6 5.3 5.4 15.6	25.6 68.6 37.6 122 18.6	<0.2 0.3 0.9 <0.2 0.8	<0.2 <0.2 <0.2 <0.2 <0.2	<0.2 4.8 5.0 <0.2 <0.2	34.2 <0.5 <0.5 680 <0.5	99.4 34.2 51.4 60.0 98.7	204 21.6 57.2 122 74.0	94 24 41 48 12
25478 25479 25482 25483 25484	<0.1 <0.1 <0.1 <0.1 <0.1	0.9 0.8 4.0 0.2 <0.2	<0.2 0.2 1.5 <0.2 0.2	3.8 2.6 2.7 0.7 0.3	1.8 15.8 2.4 3.3 1.2	<0.2 <0.2 <0.2 <0.2 <0.2	<0.2 <0.2 <0.2 <0.2 <0.2	0.8 0.6 0.4 1.7 0.7	5.3 3.3 1.8 2.5 1.7	23.7 17.9 14.6 21.6 29.5	<0.2 <0.2 <0.2 <0.2 <0.2	<0.2 <0.2 <0.2 <0.2 <0.2	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2	74.4 35.6 65.9 51.4 94.2	25.4 23.6 6.6 11.4 8.9	60.1 28.7 4.5 6.6 8.0	24 22 63 6 30
25485	<0.1	0.8	1.0	0.7	13.1	0.3	<0.2	1.1	1.9	42.7	<0.2	0.2	<0.2	622	18.9	18.6	41
25486	<0.1	0.3	<0.2	0.8	3.6	<0.2	<0.2	1.2	2.1	34.2	<0.2	<0.2	<0.2	143	15.0	12.6	22
25487	<0.1	<0.2	<0.2	0.6	1.4	<0.2	<0.2	4.4	3.0	10.1	<0.2	<0.2	<0.2	51.2	1.8	10.9	2
25488	<0.1	0.2	<0.2	1.2	13.1	<0.2	<0.2	26.1	4.2	70.9	<0.2	0.2	<0.2	180	4.6	8.7	2
25488	<0.1	1.4	<0.2	8.4	46.3	<0.2	<0.2	1.6	9.2	24.8	0.7	<0.2	0.7	1.6	54.1	49.8	14
25490 25491 25492 25493 25494	<0.1 <0.1 <0.1 <0.1 <0.1	<0.2 0.2 1.3 1.4 0.3	<0.2 <0.2 <0.2 <0.2 <0.2	0.5 1.7 3.9 2.5 2.1	0.5 2.1 2.2 1.6 10.5	<0.2 <0.2 <0.2 <0.2 <0.2	<0.2 <0.2 <0.2 <0.2 <0.2	3.8 4.1 7.3 0.9 11.9	1.3 3.4 5.6 6.1 3.5	21.1 27.8 34.3 12.0 151	<0.2 <0.2 <0.2 <0.2 <0.2	<0.2 <0.2 <0.2 <0.2 <0.2	<0.2 <0.2 <0.2 <0.2 <0.2 0.2	176 208 118 68.1 598	2.1 7.5 21.7 10.5 10.5	12.9 25.6 26.0 17.6 17.8	7 2 5 2 14
CG515/LS4/BH 25495 25496 25497 25498	<0.1 <0.1 <0.1 <0.1 <0.1	12.7 <0.2 <0.2 11.1 1.1	0.7 <0.2 <0.2 <0.2 <0.2	40.2 0.9 0.7 4.3 3.8	47.2 2.0 7.5 9.8 17.0	<0.2 <0.2 <0.2 <0.2 <0.2	<0.2 <0.2 <0.2 <0.2 <0.2 <0.2	13.0 1.8 13.7 0.7 2.4	48.4 2.7 2.0 4.5 3.5	25.7 39.3 52.2 15.1 9.58	<0.2 <0.2 <0.2 0.5 0.7	<0.2 <0.2 0.2 <0.2 <0.2	<0.2 <0.2 <0.2 1.4 1.0	34.7 246 124 <0.5 <0.5	98.6 2.8 1.4 35.0 18.9	203 10.2 4.3 11.7 11.0	850 2 7 30 88
25499	0.1	<0.2	<0.2	13.8	7.0	<0.2	<0.2	1.0	22.3	107	1.7	<0.2	7.0	<0.5	85.8	37.6	15
25500	<0.1	1.2	<0.2	9.9	15.4	<0.2	<0.2	14.1	6.0	32.3	<0.2	<0.2	0.9	304	39.3	58.4	33
25496 R	<0.1	<0.2	<0.2	0.7	7.6	<0.2	<0.2	14.2	2.1	53.1	<0.2	<0.2	<0.2	126	1.4	4.2	6
CG515/LS4/BM	<0.1	12.6	0.6	39.6	46.6	<0.2	<0.2	13.1	48.1	25.5	<0.2	<0.2	<0.2	34.2	96.9	202	101
25480	<0.1	245	1.7	27.4	17.4	<0.2	<0.2	4.3	49.9	138	<0.2	<0.2	<0.2	1320	19.9	3.6	119
25481	<0.1	577	0.9	38.0	9.9	<0.2	<0.2	19.2	66.3	108	<0.2	<0.2	<0.2	2210	13.7	1.3	88
25480 R	<0.1	249	1.7	27.4	17.5	<0.2	<0.2	4.4	50.5	141	<0.2	<0.2	<0.2	1340	20.2	3.5	121

Partial Digestion: A 0.5 g pulp is digested with 2.25 ml of 8:1 HNO3:HCl for 1 hour at 95 C.

The standard is LS4.

Boron: A 0.1 gram pulp is fused at 650 C in a mixture of Na2O2/Na2CO3.

The standards are BM and BH.

Attention: Darren Smith PO #/Project: 13050 Samples: 32

Column Header Details

Silver in ppm (Ag) Aluminum in wt % (Al2O3) Barium in ppm (Ba) Berylium in ppm (Be) Calcium in wt % (CaO)

Cadmium in ppm (Cd) Cerium in ppm (Ce) Cobalt in ppm (Co) Chromium in ppm (Cr) Copper in ppm (Cu)

Dysprnnosium in ppm (Dy) Erbium in ppm (Er) Europium in ppm (Eu) Iron in wt % (Fe2O3) Gallium in ppm (Ga)

Gadolinium in ppm (Gd) Hafnium in ppm (Hf) Holmium in ppm (Ho) Potassium in wt % (K2O) Lanthanum in ppm (La)

Lithium in ppm (Li) Magnesium in wt % (MgO) Manganese in wt % (MnO) Molybdenum in ppm (Mo) Sodium in wt % (Na2O)

Niobium in ppm (Nb) Neodymium in ppm (Nd) Nickel in ppm (Ni) Phosphorus in wt % (P2O5) Lead in ppm (Pb)

Praseodymium in ppm (Pr) Scandium in ppm (Sc) Samarium in ppm (Sm) Tin in ppm (Sn) Strontium in ppm (Sr)

Tantalum in ppm (Ta) Terbium in ppm (Tb) Thorium in ppm (Th) Titanium in wt % (TiO2) Uranium in ppm (U, ICP)

SRC Geoanalytical Laboratories

125 - 15 Innovation Blvd., Saskatoon, Saskatchewan, S7N 2X8 Tel: (306) 933-8118 Fax: (306) 933-5656 Email: geochem@src.sk.ca

ICP6.3 Total Digestion

Report No: 06-1673 Date: January 17, 2007 **Dahrouge Geological Consulting** Attention: Darren Smith PO #/Project: 13050

Samples: 32

Column Header Details

Vanadium in ppm (V) Tungsten in ppm (W) Yttrium in ppm (Y) Ytterbium in ppm (Yb) Zinc in ppm (Zn)

Zirconium in ppm (Zr)

SRC Geoanalytical Laboratories

125 - 15 Innovation Blvd., Saskatoon, Saskatchewan, S7N 2X8 Tel: (306) 933-8118 Fax: (306) 933-5656 Email: geochem@src.sk.ca

ICP6.3 Total Digestion

Report No: 06-1673 Date: January 17, 2007

Attention: Darren Smith

PO #/Project: 13050 Samples: 32

SRC Geoanalytical Laboratories

125 - 15 Innovation Blvd., Saskatoon, Saskatchewan, S7N 2X8

Tel: (306) 933-8118 Fax: (306) 933-5656 Email: geochem@src.sk.ca

Report No: 06-1673 Date: January 17, 2007

Sample	Ag	AI2O3	Ba	Be	CaO	Cd	Ce	Co	Cr	Cu	Dy	Er	Eu	Fe2O3	Ga	Gd	Hf
Number	ppm	wt %	ppm	ppm	wt %	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	wt %	ppm	ppm	ppm
CG515/LS4/BM	<0.2	17.4	2270	2.1	4.79	0.8	164	17	110	3	3.2	2.1	2.4	7.08	22	5.4	4.7
25351	<0.2	16.1	166	1.5	1.98	<0.2	2520	2	100	26	44.3	16.6	<0.2	6.29	40	88.7	6.0
25352	<0.2	17.4	534	1.9	2.01	<0.2	5360	10	65	<1	37.0	17.4	<0.2	6.45	34	107	26.2
25476	<0.2	20.8	790	4.1	2.14	0.6	598	9	73	1	38.2	19.7	1.4	6.86	41	41.6	<0.5
25477	<0.2	19.6	664	1.9	3.71	<0.2	1060	14	188	13	20.7	7.6	3.3	7.68	28	45.1	4.7
25478	<0.2	17.4	656	3.4	0.74	0.9	152	4	133	1	10.9	6.1	1.2	3.23	23	10.7	13.4
25479	<0.2	19.7	310	2.9	0.69	0.7	34	2	98	15	6.2	2.9	1.6	1.36	19	4.3	4.0
25482	<0.2	13.4	503	6.5	0.67	0.4	11	2	135	2	5.4	3.1	1.3	2.13	20	3.3	3.9
25483	<0.2	13.7	278	5.0	1.15	0.4	1	<1	197	3	2.6	1.6	0.8	2.17	18	1.9	8.2
25484	<0.2	14.3	68	7.2	1.96	0.3	3	<1	171	1	2.7	1.8	0.8	1.01	20	1.7	15.4
25485	<0.2	14.1	112	6.3	1.29	0.3	3	<1	155	12	6.9	6.5	1.0	1.89	23	3.1	40.1
25486	<0.2	14.1	419	2.2	0.52	0.5	3	<1	156	3	2.8	2.1	0.9	1.22	17	2.1	7.4
25487	<0.2	13.2	735	1.3	0.38	0.5	128	<1	197	1	3.9	1.1	0.2	0.79	16	8.5	3.9
25488	<0.2	2.64	94	0.4	0.22	<0.2	12	1	254	12	3.1	2.4	0.3	0.61	3	2.0	13.9
25489	<0.2	17.0	768	1.2	2.72	0.3	755	9	149	48	23.2	6.5	1.1	4.78	22	44.0	2.9
25490	<0.2	14.5	1190	2.0	0.48	0.8	41	<1	89	1	3.5	1.5	0.4	0.63	16	3.6	<0.5
25491	<0.2	13.8	728	2.4	0.60	0.5	101	1	144	2	5.2	2.2	0.6	1.83	20	6.9	0.8
25492	<0.2	16.1	285	2.5	2.03	0.4	34	4	151	2	3.5	2.8	0.6	2.49	24	2.2	8.9
25493	<0.2	11.5	1470	0.8	0.92	0.8	25	1	249	1	0.9	0.3	0.5	1.40	15	1.8	2.4
25494	<0.2	14.4	349	2.6	1.65	0.3	278	1	130	11	8.8	3.6	0.3	1.70	24	15.5	0.9
CG515/LS4/BH	<0.2	17.5	2290	2.1	4.73	0.9	170	18	111	2	3.3	2.2	2.5	7.13	22	5.6	4.2
25495	<0.2	12.4	1930	0.5	0.46	1.1	36	<1	214	2	2.0	1.4	0.7	0.63	12	2.4	<0.5
25496	<0.2	0.50	27	<0.2	0.02	<0.2	3	1	201	7	2.3	2.2	0.2	0.51	1	1.2	17.1
25497	<0.2	15.7	909	0.9	1.10	0.5	629	3	110	10	4.9	3.0	0.6	2.02	20	12.9	19.1
25498	<0.2	15.4	428	1.6	0.39	0.2	599	4	89	16	8.4	5.4	1.5	2.84	22	14.7	34.3
25499	0.5	17.1	266	2.1	2.43	<0.2	3670	15	92	11	21.6	10.4	<0.2	4.73	28	80.7	<0.5
25500	<0.2	19.7	2780	2.9	1.28	1.0	703	8	63	16	17.6	8.3	1.7	4.79	25	27.0	13.8
25496 R	<0.2	0.51	29	<0.2	0.02	<0.2	4	<1	210	7	2.3	2.3	0.2	0.51	1	1.2	17.6
CG515/LS4/BM	<0.2	17.4	2290	2.0	4.71	0.9	169	18	123	3	3.2	2.3	2.5	7.25	22	5.7	4.7
25480	<0.2	4.46	409	4.1	0.04	<0.2	16	34	183	19	0.2	2.4	0.4	5.12	18	<0.5	<0.5
25481	<0.2	6.28	173	2.2	0.03	0.3	78	41	143	11	0.9	3.9	0.8	1.90	20	<0.5	<0.5
25480 R	<0.2	4.31	391	3.9	0.04	<0.2	16	33	180	18	0.2	2.3	0.3	4.91	18	<0.5	<0.5

Attention: Darren Smith PO #/Project: 13050

Samples: 32

SRC Geoanalytical Laboratories

125 - 15 Innovation Blvd., Saskatoon, Saskatchewan, S7N 2X8

Tel: (306) 933-8118 Fax: (306) 933-5656 Email: geochem@src.sk.ca

Report No: 06-1673 Date: January 17, 2007

Sample	Ho	K2O	La	Li	MgO	MnO	Mo	Na2O	Nb	Nd	Ni	P2O5	Pb	Pr	Sc	Sm	Sn
Number	ppm	wt %	ppm	ppm	wt %	wt %	ppm	wt %	ppm	ppm	ppm	wt %	ppm	ppm	ppm	ppm	ppm
CG515/LS4/BM 25351 25352 25476 25477	1.6 9.4 9.7 7.3 4.7	3.08 1.23 3.16 4.55 3.70	89 1180 2840 295 526	29 11 59 98 68	2.76 0.356 2.80 3.03 2.85	0.071 0.022 0.045 0.093 0.067	<1 4 1 9 3	3.17 5.74 3.65 4.01 3.17	6 4 30 20	64 977 1810 266 463	23 4 6 7 22	0.659 0.597 0.757 0.186 0.175	18 95 119 148 57	15 231 472 59 101	12 1 7 24 21	8.7 145 212 52.9 71.8	3 <1 <1 3 <1
25478	1.7	4.72	74	58	1.46	0.047	<1	4.17	13	65	7	0.105	47	15	10	13.6	1
25479	0.7	2.94	14	26	0.972	0.027	<1	8.26	2	16	4	0.100	22	3	5	4.4	<1
25482	0.7	4.56	4	37	0.614	0.011	<1	2.52	1	6	3	0.063	27	1	1	3.4	<1
25483	<0.4	2.85	1	12	0.251	0.012	<1	4.19	<1	<1	4	0.152	34	<1	<1	1.3	<1
25484	<0.4	1.19	2	15	0.246	0.020	<1	4.78	<1	1	3	0.052	42	<1	<1	1.3	<1
25485 25486 25487 25488 25489	<0.4 <0.4 <0.4 <0.4 4.4	1.33 8.00 4.26 0.376 2.02	2 2 54 6 359	28 13 4 3 34	0.553 0.313 0.252 0.145 2.43	0.031 0.018 0.011 0.008 0.077	<1 <1 2 27 <1	4.77 2.20 3.84 0.75 3.39	1 2 4 1 13	<1 1 57 4 344	3 3 5 11	0.013 0.088 0.048 0.010 0.216	53 81 27 68 36	<1 <1 13 1 76	1 2 1 2 9	2.6 1.6 12.3 1.5 62.5	1 <1 <1 <1
25490	<0.4	4.91	19	5	0.268	0.011	4	4.09	1	16	1	0.050	41	3	<1	3.8	<1
25491	0.8	2.77	50	11	0.772	0.025	5	4.41	8	40	3	0.044	40	9	3	8.4	1
25492	0.4	1.23	19	22	0.907	0.042	8	5.44	10	10	8	0.039	48	2	4	2.4	<1
25493	<0.4	5.27	14	10	0.521	0.016	<1	1.78	7	9	7	0.036	41	2	1	2.1	<1
25494	0.8	1.57	140	20	0.726	0.023	12	4.50	10	122	5	0.055	157	26	2	22.6	<1
CG515/LS4/BH	1.6	3.11	91	29	2.78	0.071	<1	3.11	7	68	23	0.658	18	15	12	9.2	2
25495	<0.4	6.77	19	5	0.209	0.011	<1	2.23	1	15	3	0.040	65	3	1	3.1	<1
25496	<0.4	0.103	1	3	0.110	0.011	14	0.05	<1	1	4	0.002	50	<1	2	0.5	<1
25497	0.5	2.37	332	36	1.20	0.015	<1	4.24	7	214	6	0.123	21	55	5	26.1	<1
25498	0.4	4.16	293	37	1.10	0.009	2	3.06	7	220	4	0.120	11	55	11	28.5	<1
25499	7.2	0.676	1720	29	2.26	0.043	<1	6.25	18	1510	25	0.510	115	351	5	179	<1
25500	3.0	4.62	361	33	2.06	0.057	15	5.10	17	263	6	0.127	42	63	8	41.6	<1
25496 R	<0.4	0.104	2	3	0.112	0.011	16	0.06	<1	1	4	0.002	49	<1	2	0.6	<1
CG515/LS4/BM	1.6	3.09	91	29	2.78	0.071	1	3.08	7	68	24	0.666	19	15	12	9.1	3
25480	<0.4	0.584	14	72	0.168	0.005	6	0.04	1	4	66	0.051	158	<1	7	1.0	1
25481	<0.4	0.260	61	115	0.075	0.002	21	0.04	2	23	79	0.067	123	2	4	3.8	<1
25480 R	<0.4	0.561	14	70	0.160	0.005	5	0.04	<1	4	65	0.048	150	<1	7	1.0	1

Attention: Darren Smith PO #/Project: 13050

Samples: 32

SRC Geoanalytical Laboratories

125 - 15 Innovation Blvd., Saskatoon, Saskatchewan, S7N 2X8

Tel: (306) 933-8118 Fax: (306) 933-5656 Email: geochem@src.sk.ca

Report No: 06-1673 Date: January 17, 2007

ICP6.3 Total Digestion

Sample Number	Sr ppm	Ta ppm	Tb ppm	Th ppm	TiO2 wt %	U, ICP ppm	V ppm	W ppm	Y ppm	Yb ppm	Zn ppm	Zr ppm
CG515/LS4/BM	1190	<1	<0.3	12	1.03	<2	125	1	22	1.9	83	143
25351	201	<1	<0.3 16.2	896	0.570	<2	125	<1	169	4.2	37	202
25352	278	<1	21.9	1600	0.370	<2	82	<1	124	4.2 3.2	72	933
25476	298	2	6.8	173	0.738	750	84	<1	206	3.2 14.8	165	311
25477	436	<1	6.2	261	1.04	<2	127	<1	78	2.4	103	157
=0111	100		0.2	201	1.04	~2	127	~1	70	2.4	109	157
25478	298	<1	2.0	42	0.280	75	36	<1	65	6.0	76	353
25479	98	<1	1.3	17	0.066	37	28	<1	33	2.8	36	126
25482	204	<1	1.1	30	0.035	69	15	1	25	3.6	14	118
25483	260	<1	0.4	7	0.040	55	25	<1	17	2.3	14	231
25484	272	<1	0.9	6	0.024	95	11	<1	17	2.7	15	419
25485	260	<1	1.8	24	0.065	630	21	<1	39	8.1	29	1370
25486	174	<1	0.5	5	0.066	145	18	<1	22	2.5	18	236
25487	140	<1	1.8	88	0.057	51	3	<1	14	0.7	12	118
25488	60	<1	0.7	21	0.032	187	6	<1	19	2.5	12	382
25489	499	<1	7.0	266	0.528	<2	82	<1	82	2.1	67	82
25490	189	<1	0.6	28	0.050	180	3	<1	19	1.1	18	50
25491	163	<1	1.1	48	0.159	209	12	<1	25	1.4	34	106
25492	289	<1	0.5	17	0.248	118	26	<1	24	3.6	32	265
25493	123	<1	0.4	35	0.158	71	14	1	4	0.3	23	76
25494	272	<1	2.4	177	0.179	602	14	<1	30	1.2	24	262
CG515/LS4/BH	1180	<1	<0.3	40	0.070	2	400	- 4		4.0	0.4	445
25495	138	<1	<0.3 <0.3	13 30	0.976 0.037	3	126	<1	22	1.9	84	145
25495	3	<1	<0.3 0.7	30 27	0.037	250 129	4	<1 <1	12 16	1.4	13	72
25497	224	<1	3.0	201	0.009	<2	2	. 1		2.6 1.6	7	430 650
25498	110	<1	3.0 4.6	201	0.465	<2	75 44	· I 1	22 43	4.3	17 17	
20498	110		4.0	209	0.296	~2	44	I	43	4.3	17	1060
25499	310	<1	17.2	1820	0.765	<2	167	<1	46	1.0	46	85
25500	396	<1	4.9	278	0.567	310	51	<1	79	4.6	72	521
25496 R	3	<1	0.8	29	0.014	130	2	<1	16	2.6	6	436
CG515/LS4/BM	1180	<1	< 0.3	12	1.06	3	130	<1	22	1.9	85	151
25480	41	<1	<0.3	12	0.120	1400	28	2	4	0.5	7	82
20.00	- T T		~0.0	14	0.120	1400	20	2	4	0.5	. 1	02
25481	271	<1	< 0.3	17	0.193	2220	28	<1	4	0.5	4	142
25480 R	40	<1	< 0.3	12	0.084	1380	26	2	4	0.5	7	78
		•			0.001			-	•	0.0		

Total Digestion: A 0.125 g pulp is gently heated in a mixture of HF/HNO3/HCIO4 until dry and the residue is dissolved in dilute HNO3. The standard is CG515.

Attention: Jody Dahrouge PO #/Project: 13050 Samples: 7

Column Header Details

Silver in ppm (Ag) Arsenic in ppm (As) Bismuth in ppm (Bi) Cobalt in ppm (Co) Copper in ppm (Cu)

Germanium in ppm (Ge) Mercury in ppm (Hg) Molybdenum in ppm (Mo) Nickel in ppm (Ni) Lead in ppm (Pb)

Antimony in ppm (Sb) Selenium in ppm (Se) Tellurium in ppm (Te) Uranium in ppm (U, ICP) Vanadium in ppm (V)

Zinc in ppm (Zn) Boron by Fusion in ppm (B)

Sample	Ag	As	Bi	Co	Cu	Ge	Hg	Мо	Ni	Pb	Sb	Se	Te	U, ICP	V	Zn	В
Number	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
CG515/LS4/BM	0.1	11.4	0.4	39.5	47.6	<0.2	<0.2	11.7	48.3	23.8	<0.2	<0.2	<0.2	34.7	101	196	91
25353	<0.1	<0.2	0.9	4.3	4.9	<0.2	<0.2	1.7	5.2	22.0	0.9	<0.2	<0.2	<0.5	32.0	26.8	27
25354	<0.1	0.8	1.0	7.6	21.6	<0.2	<0.2	292	6.5	305	<0.2	<0.2	< 0.2	1040	40.7	90.8	36
25355	<0.1	1.3	0.5	13.3	24.3	<0.2	<0.2	112	17.4	130	<0.2	<0.2	<0.2	242	113	144	8
25356	<0.1	<0.2	1.1	17.4	18.7	<0.2	<0.2	30.2	30.1	113	<0.2	<0.2	<0.2	518	79.5	180	27
25357 25353 R	<0.1 <0.1	1.9 <0.2	0.3	17.4 4.1	42.3 4.7	<0.2 <0.2	<0.2 <0.2	322 1.9	18.5 5.4	105 21.9	<0.2 0.7	<0.2 <0.2	<0.2 <0.2	333 <0.5	169 31.3	82.7 26.3	31 31
LOOCOIN	-0.1	-0.Z	1.1	4.1	4.7	~U.Z	-0.2	1.3	0.4	21.3	0.7	-0.2	~U.Z	-0.0	51.5	20.0	51

Partial Digestion: A 1.00 g pulp is digested with 2.25 ml of 8:1 HNO3:HCl for 1 hour at 95C. The standard is LS4.

Boron: A 0.1 gram pulp is fused at 650 C in a mixture of Na2O2/Na2CO3.

The standards are BM and BH.

SRC Geoanalytical Laboratories

125 - 15 Innovation Blvd., Saskatoon, Saskatchewan, S7N 2X8 Tel: (306) 933-8118 Fax: (306) 933-5656 Email: geochem@src.sk.ca

ICP6.3R Partial Digestion

Report No: 06-1762 Date: January 18, 2007

Attention: Jody Dahrouge PO #/Project: 13050 Samples: 7

Column Header Details

- Silver in ppm (Ag) Aluminum in wt % (Al2O3) Barium in ppm (Ba) Berylium in ppm (Be) Calcium in wt % (CaO)
- Cadmium in ppm (Cd) Cerium in ppm (Ce) Cobalt in ppm (Co) Chromium in ppm (Cr) Copper in ppm (Cu)
- Dysprnnosium in ppm (Dy) Erbium in ppm (Er) Europium in ppm (Eu) Iron in wt % (Fe2O3) Gallium in ppm (Ga)
- Gadolinium in ppm (Gd) Hafnium in ppm (Hf) Holmium in ppm (Ho) Potassium in wt % (K2O) Lanthanum in ppm (La)
- Lithium in ppm (Li) Magnesium in wt % (MgO) Manganese in wt % (MnO) Molybdenum in ppm (Mo) Sodium in wt % (Na2O)

Niobium in ppm (Nb) Neodymium in ppm (Nd) Nickel in ppm (Ni) Phosphorus in wt % (P2O5) Lead in ppm (Pb)

Praseodymium in ppm (Pr) Scandium in ppm (Sc) Samarium in ppm (Sm) Tin in ppm (Sn) Strontium in ppm (Sr)

Tantalum in ppm (Ta) Terbium in ppm (Tb) Thorium in ppm (Th) Titanium in wt % (TiO2) Uranium in ppm (U, ICP)

SRC Geoanalytical Laboratories

125 - 15 Innovation Blvd., Saskatoon, Saskatchewan, S7N 2X8 Tel: (306) 933-8118 Fax: (306) 933-5656 Email: geochem@src.sk.ca

ICP6.3 Total Digestion

Report No: 06-1762 Date: January 18, 2007

Attention: Jody Dahrouge PO #/Project: 13050 Samples: 7

Column Header Details

Vanadium in ppm (V) Tungsten in ppm (W) Yttrium in ppm (Y) Ytterbium in ppm (Yb) Zinc in ppm (Zn)

Zirconium in ppm (Zr)

SRC Geoanalytical Laboratories

125 - 15 Innovation Blvd., Saskatoon, Saskatchewan, S7N 2X8 Tel: (306) 933-8118 Fax: (306) 933-5656 Email: geochem@src.sk.ca

ICP6.3 Total Digestion

Report No: 06-1762 Date: January 18, 2007

Attention: Jody Dahrouge PO #/Project: 13050

Samples: 7

SRC Geoanalytical Laboratories

125 - 15 Innovation Blvd., Saskatoon, Saskatchewan, S7N 2X8

Tel: (306) 933-8118 Fax: (306) 933-5656 Email: geochem@src.sk.ca

Report No: 06-1762 Date: January 18, 2007

Sample	Ag	Al2O3	Ba	Be	CaO	Cd	Ce	Co	Cr	Cu	Dy	Er	Eu	Fe2O3	Ga	Gd	Hf
Number	ppm	wt %	ppm	ppm	wt %	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	wt %	ppm	ppm	ppm
CG515/LS4/BM	<0.2	17.8	2420	2.1	4.76	0.9	158	20	116	4	3.3	2.1	2.4	7.32	23	5.6	3.8
25353	1.0	16.0	1270	1.6	1.27	0.6	1430	4	74	1	11.3	5.8	0.7	2.55	29	33.1	21.4
25354	<0.2	20.3	896	2.4	1.67	0.5	724	10	65	22	54.0	33.0	2.2	7.58	25	50.2	10.6
25355	<0.2	17.0	679	1.1	1.43	<0.2	1960	20	92	17	113	65.3	2.8	13.8	47	128	39.5
25356	<0.2	17.7	529	2.7	1.53	0.4	874	20	182	18	129	95.2	1.8	12.5	31	86.4	47.9
25357	<0.2	14.6	337	2.0	2.57	0.3	174	20	136	46	11.4	6.5	0.9	7.85	19	12.5	1.1
25353 R	0.9	15.9	1290	1.6	1.27	0.7	1460	4	72	1	11.5	6.0	0.7	2.51	30	33.3	20.5

Attention: Jody Dahrouge PO #/Project: 13050 Samples: 7

SRC Geoanalytical Laboratories

125 - 15 Innovation Blvd., Saskatoon, Saskatchewan, S7N 2X8

Tel: (306) 933-8118 Fax: (306) 933-5656 Email: geochem@src.sk.ca

Report No: 06-1762 Date: January 18, 2007

Sample Number	Ho ppm	K2O wt %	La ppm	Li ppm	MgO wt %	MnO wt %	Mo ppm	Na2O wt %	Nb ppm	Nd ppm	Ni ppm	P2O5 wt %	Pb ppm	Pr ppm	Sc ppm	Sm ppm	Sn ppm
CG515/LS4/BM	1.2	3.19	93	29	2.88	0.075	1	3.27	8	63	21	0.676	19	18	12	8.7	2
25353	<0.4	4.90	868	33	1.32	0.021	<1	3.65	16	464	3	0.229	37	164	3	57.9	<1
25354	10.4	5.97	400	68	2.54	0.073	329	4.26	54	285	7	0.222	311	89	20	58.3	<1
25355	17.7	5.11	1080	73	3.60	0.115	139	3.06	89	771	18	0.441	203	230	39	154	<1
25356	26.0	2.41	453	58	4.44	0.145	40	3.66	82	349	31	0.318	128	107	33	81.4	<1
25357	3.2	3.38	93	39	3.56	0.099	332	2.53	20	73	19	0.138	113	20	28	14.9	<1
25353 R	<0.4	4.88	896	33	1.31	0.020	1	3.64	16	471	3	0.235	38	167	3	58.6	<1

Attention: Jody Dahrouge PO #/Project: 13050 Samples: 7

SRC Geoanalytical Laboratories

125 - 15 Innovation Blvd., Saskatoon, Saskatchewan, S7N 2X8

Tel: (306) 933-8118 Fax: (306) 933-5656 Email: geochem@src.sk.ca

Report No: 06-1762 Date: January 18, 2007

ICP6.3 Total Digestion

Sample	Sr	Ta	Tb	Th	TiO2	U, ICP	V	W	Y	Yb	Zn	Zr
Number	ppm	ppm	ppm	ppm	wt %	ppm	ppm	mqq	ppm	ppm	ppm	ppm
CG515/LS4/BM	1210	1	0.6	12	1.04	4	128	1	22	1.8	85	154
25353	230	<1	8.4	455	0.614	<2	46	1	43	1.5	35	1070
25354	306	3	0.6	319	0.931	1050	54	<1	340	33.0	118	538
25355	189	12	26.7	801		266	136	<1	712	67.7	200	1690
25356	210	11	18.3	408	1.40	570	109	<1	936	105	219	1760
25357	166	4	<0.3	174	0.885	338	189	<1	63	5.6	102	50
25353 R	233	<1	8.4	465	0.598	<2	44	1	44	1.5	34	1010

Total Digestion: A 0.125 g pulp is gently heated in a mixture of HF/HNO3/HCIO4 until dry and the residue is dissolved in dilute HNO3. The standard is CG515.

APPENDIX 4: LOCATIONS OF ANOMALOUS RADIOACTIVITY

15	NAD 83		050			B	
ID	UTM E	UTMN	CPS	Object	Rock Type	Description	Remarks
DS01	498548	6518263	340	Outcrop	Gneiss	Coarse grained, k-spar	
DS03	529847	6571020	241	Outcrop	Granitoid	Coarse grained, 80% k-spar	the mala war for out a base
DS04	529446	6568642	500	Outcrop	Granitoid		Anomalous 5 x 8 inches
DS05	529400	6568614	600	Outcrop	Granitoid	Medium grained, k-spar	
DS06	529384	6568506	860	Outcrop	Granitoid		Anomalous 10 x 20 m (600-860), striking 220 deg.
DS07	529227	6568364	700	Outcrop	Quartzite		
DS08	528986	6567916	350	Outcrop	Grainite	Qtz rich	
DS09	532731	6557190	1680	Outcrop	Quartzite		Cps >500 about 50 x 50 m. Mini Spec assay: 60 ppm U
DS10	533001	6557222	700	Boulder	Gneiss	Sub-angular to rounded, 0.5 x 1 m	Gneiss is reading,
DS11	533162	6557274	1100	Outcrop	Peg. Gneiss	Quartzite right beside, hematitic	
DS12	533215	6557236	1100	Outcrop	Pegmatitic Granitics		Anomalyous 30 x 50 m. Mini spec assay: 72 ppm
DS13	533855	6557078	429	Fault	Granitoid	Fault	Striking 80 degree, almost vertical
DS14	533950	6556999	1320	Outcrop	Granitoid		Mini Spec: 55 ppm
DS16	533338	6557661	570	Outcrop	Pegmatite		
DS17	532478	6557554	800	Outcrop	Pegmatite		
DS18	533229	6558584	1380	Outcrop	Granitoid	Alt. , plag. Rich.	Anomalous 30m sq area of ~700 cps with >1000 hits ~, open all ends
DS19	533637	6558435	900	Outcrop	Pegmatite	Plag, qyz. Brown, yellow , red ait.	Anomalous 30m sq area of 350 to 900 cps, open all ends
DS20	533925	6558463	640	Outcrop	Pegmatitic Gneiss		Lots of SS boulders present, One conglomerate (hem), all rounded
DS21	533092	6558329	1060	Outcrop	Granitoid	Hematite alteration	
DS22	501073	6519744	560	Outcrop/boulder	Gneiss		Area of lots of SS boulders, some tan others rusty in colour
DS23	501142	6519837	2350	Outcrop	Gneiss		· · ·
DS24	501251	6520003	200	Boulder	Sandstone	Hematite cement	2 boulders 1.5 x 1.5 m in size
DS25	500947	6520558	1000	Outcrop	Gneiss	K-spar	>500 cps for ~1x3 m, associtated with fractures
DS26	500669	6520646	560	Outcrop	Geiss	Plag. rich, diorite composition	• •
DS27	500516	6520636	200	Boulder	Sandstone	Sub-rounded, strongly hematite	located along fault trace, size of 1.5 x 1.5 m
DS28	500557	6520590	200	Boulder	Sandstone	Sub-rounded, strongly hematite	1.5 x1.5 m in size
DS29	500549	6520567	200	Boulder	Sandstone	Sub-rounded, strongly hematite	1.5 x1.5 m in size
DS30	500560	6520547	910	Outcrop	Gneiss	K-spar	Anomalous ~1 m x 30 m
DS32	550667	6520260	150	Boulder	Sandstone	Sub-angular to rounded	Area of abundant SS boulders, many > 1 m sq.
DS33	504344	6517000	350	Outcrop	Gneiss	Sub-angular to rounded	Area of hundreds of SS boulders (70 x 70 m area), some fla tlying, gneiss is readin
DS34	503216	6518003	930	Outcrop	Gneiss		>400 cps over 1 x 2 m, associated with small fracture
DS35	547627	6577616	680	Outcrop	Granitoid	med. Grained	area around all <400 cps (SE shore Burstal Lake)
D\$36	548253	6577203	410	Outcrop	Granitoid	med. Grained	Nothing >410 over entire traverse
MG01	498205	6517459	400	Outcrop	Granitoid	mea. Granica	High cps area about 20 m long along the shore
MG02	498106	6517314	540	Outcrop	Granitoid	Coarse grained, k-spar	High upo area about zo Hi long along the SHUIC
MG02 MG04	529617	6569092	450	Outcrop	Granitoid	ooarse granieu, K-Spar	Anomalous 2 x 30 m, striking 100 deg.
MG04 MG05	530119	6557885	2400	Outcrop	Pegmatite	Located in gneiss	1 x 3 m area
MG05 MG06	531236	6558473	2400 870	Outcrop	-		
MG08 MG07	531230	6558387	370	•	Pegmatite	Hematitic	Highest cps in fractures
MG07 MG08	532021	6558548	370 600	Outcrop	Pegmatite	Located in gneiss	
MG08 MG09	532359 501838	6519419	400	Outcrop	Pegmatite	L la va atiki a	
MG09 MG13				Outcrop	Gneiss	Hematitic	granitic geniss, red and backbround CPS is about 400 in 1 sq km
MG13 MG14	503009	6519412	600	Outcrop	Gneiss		Edge of the basement rock
MG14 MG15	503150	6519387	400	Outcrop	Granitoid		
MG15 MG17	503543	6520165	2000	Outcrop	Granitoid		Area 20 X 50 m with CPS >600
	501381	6520698	500	Outcrop	Gneiss		North of this outcrop is flat sandy area
MG19	497699	6517707	1200	Outcrop	Granitoid		Small areas of 1000 cps

ID	UTM E	UTM N	CPS	Object	Rock Type	Description	Remarks
MG20	499405	6519279	1200	Outcrop	Granitoid		High cps area controlled by fractures.
MG21	508295	6520205	500	Outcrop	Granitoid		Anomalous area is small, SS boulders found in lower area, upto 1 x 2 m
MG23	507710	6520116	1100	Outcrop	Gneiss		Anomalous area is small
MG25	504825	6517171	1000	Outcrop	Granitoid		
MG26	502959	6517610	1400	Outcrop	Granitoid with Quarztite		
MG27	528625	6554403	600	Outcrop	Granitoid		Anomalous over 2 x 2 m
MG28	547044	6575556	610	Outcrop	Quartzite		
MG29	547586	6573440	1100	Outcrop	Granitoid	Pink, coarse grained	Anomalous over 2 x 2 m area
MG30	547264	6574952	600	Outcrop	Gneiss		Anomalous over 0.5 x 5 m area
MG31	492081	6514162	850	Outcrop	Syenite		Anomalous over 0.3 x 1 m area
MG32	492025	6514862	1000	Outcrop	Gneiss		Highest cps in fracture
MG33	492125	6515463	1000	Outcrop	Granitoid		Granitoid. 0.5 x 10 m area with CPS over 500
MG34	491251	6516552	600	Outcrop	Gneiss		Anomalous area is less than 1 m sq
MG35	490184	6517347	700	Outcrop	Granitoid with Quarztite		Cps >500 over 5 x 10 m
MG36	491948	6514155	1500	Outcrop	Gneiss		Small area with high cps
MG37	490617	6517077	1200	Outcrop	Gneiss		Anomalous over 0.3 x 1 m area
MG38	490759	6517057	1400	Outcrop	Granitoid		Cps >600 over 2-3 X 30 m striking 220 deg.
MG39	490887	6517043	1300	Outcrop	Granitoid		Cps >600 over large area
MG40	491216	6516683	1500	Outcrop	Granitoid		Anomalous over 5 x 6 m area
MG41	491408	6516137	1800	Outcrop	Granitoid	Biotite rich	Cps >600 over 3-4 x 10 m area
MG42	509161	6531778	300	Outcrop	Granitoid		S boulder found here as well, size 3 x 8 m
MG43	509571	6531801	1000	Outcrop	Granitoid	Qtz and k-spar rich	Anomalous area is 0.5 x 100 m striking 280 deg.
MG44	510371	6531962	200	Outcrop	Granitoid	· · · ·	Cps is low in pink Granitoid
MG45	509950	6531175	1200	Outcrop	Gneiss	Grey	Cps >600 over 1 x 20 m area, striking 220 deg. (still open to both sides)
MG46	508798	6531498	1400	Outcrop	Gneiss	Biotite rich	Anomalous area 1 X 20 m, striking 180 deg.
YM-18-1	552641	6576176	4600	Outcrop	Granitoid	Biotite and gtz rich	,
YM-18-2	552629	6576175	1744	Outcrop	Granitoid	Qtz rich	
YM-18-3	552787	6576178	1600	Outcrop	Granitoid	Qtz rich	
YM-18-4	554090	6581831	940	Outcrop	Granitoid	Biotite rich	
YM-18-5	554041	6581859	1300	Outcrop	Granitoid	Qtz rich and c.g.	
YM-20-8	558279	6592415	2200	Outcrop	Granitoid		
YM-23-1	503018	6518296	2400	Outcrop	Granitoid		
YM-23-2	503029	6518275	4041	Outcrop	Granitoid		
YM-OCT24-2	504635	6520123	1455	Outcrop	Granitoid	Yellow stain present	
YM-26-2	493506	6524852	1446	Outcrop	Granitoid		
YM-26-4	493339	6524860	1380	Outcrop	Granitoid		Anomalous over 2 m x 40 cm
YM-26-6	493349	6524921	1464	Outcrop	Granitoid		
YM-26-7	493315	6525004	4900	Outcrop	Granitoid		
YM-27-2	505888	6520527	880	Outcrop	Granitoid	Quartz rich	
YM-28-2	495222	6527130	1750	Outcrop	Granitoid		
YM-28-3	495329	6527310	1100	Outcrop	Granitoid		Anomaly associated with fracture
YM-28-4	495359	6527351	1954	Outcrop	Granitoid		
YM-28-6	495619	6527310	1246	Outcrop	Granitoid		
YM-28-9	495722	6527286	1462	Outcrop	Granitoid		
DDH-A1	502881	6517915	NA	Drill Hole	NA	Drill hole, AQ size, vertical	Surface cps is 200, unit - Diabase, mafic, bio, amph with minor qtz
DDH-A2	502879	6517910	NA	Drill Hole	NA	Drill hole, AQ size, vertical	surface cps is 2500, unit - Granitoid with minor foliation
DDH-A3	502897	6517890	NA	Drill Hole	NA	Drill hole, AQ size, ventical Drill hole, AQ size, angled	
	302031	0017030		Dhirriole	11/1	Drin Hole, AQ Size, anyled	angled 30 deg, striking at 330 deg, sample 25326 is 5 m away

APPENDIX 5: RADIOMETRIC SURVEY LOCATIONS AND RADIOACTIVITY

		NAD 83 ZONE 12			
Line Number	Station	UTM E	UTM N	CPS	Site
Line 000N	5+400	502008.2	6517712.4	170	Outcrop
Line 000N	5+387.5	502016.1	6517702.7	232	Outcrop
Line 000N	5+375	502024.0	6517693.0	290	Outcrop
Line 000N	5+362.5	502031.8	6517683.2	315	Outcrop
Line 000N	5+350	502039.7	6517673.5	275	Outcrop
Line 000N	5+337.5	502047.6	6517663.8	211	Outcrop
Line 000N	5+325	502055.4	6517654.1	300	Outcrop
Line 000N	5+312.5	502063.3	6517644.4	1800	Outcrop
Line 000N	5+300	502071.2	6517634.7	165	Outcrop
Line 000N	5+287.5	502079.0	6517625.0	223	Outcrop
Line 000N	5+275	502086.9	6517615.2	200	Outcrop
Line 000N	5+262.5	502094.7	6517605.5	80	Overburden
Line 000N	5+250	502102.6	6517595.8	80	Overburden
Line 000N	5+237.5	502110.5	6517586.1	84	Overburden
Line 000N	5+225	502118.3	6517576.4	150	Outcrop
Line 000N	5+212.5	502126.2	6517566.7	100	Overburden
Line 000N	5+200	502134.1	6517556.9	95	Overburden
Line 000N	5+187.5	502141.9	6517547.2	72	Overburden
Line 000N	5+175	502149.8	6517537.5	85	Overburden
Line 000N	5+162.5	502157.7	6517527.8	140	Overburden
Line 000N	5+150	502165.5	6517518.1	322	Overburden
Line 000N	5+137.5	502173.4	6517508.4	100	Overburden
Line 000N	5+125	502181.3	6517498.6	70	Overburden
Line 000N	5+112.5	502189.1	6517488.9	85	Overburden
Line 000N	5+100	502197.0	6517479.2	70	Overburden
Line 000N	5+087.5	502204.8	6517469.5	75	Overburden
Line 000N	5+075	502212.7	6517459.8	88	Overburden
Line 000N	5+062.5	502220.6	6517450.1	90	Overburden
Line 000N	5+050	502228.4	6517440.3	75	Overburden
Line 000N	5+037.5	502236.3	6517430.6	91	Overburden
Line 000N	5+025	502244.2	6517420.9	90	Overburden
Line 000N	5+012.5	502252.0	6517411.2	101	Overburden
Line 000N	5+000	502259.9	6517401.5	75	Overburden
Line 000N	4+987.5	502267.8	6517391.8	72	Overburden
Line 000N	4+975	502275.6	6517382.1	70	Overburden
Line 000N	4+962.5	502283.5	6517372.3	81	Overburden
Line 000N	4+950	502291.4	6517362.6	80	Overburden
Line 000N	4+937.5	502299.2	6517352.9	170	Overburden
Line 000N	4+925	502307.1	6517343.2	140	Overburden

Line Number	Station	UTM E	UTM N	CPS	Site
Line 000N	4+912.5	502314.9	6517333.5	291	Outcrop
Line 000N	4+900	502322.8	6517323.8	190	Overburden
Line 000N	4+887.5	502330.7	6517314.0	122	Overburden
Line 000N	4+875	502338.5	6517304.3	130	Overburden
Line 000N	4+862.5	502346.4	6517294.6	103	Overburden
Line 000N	4+850	502354.3	6517284.9	70	Overburden
Line 000N	4+837.5	502362.1	6517275.2	84	Overburden
Line 000N	4+825	502370.0	6517265.5	95	Overburden
Line 000N	4+812.5	502377.9	6517255.7	185	Outcrop
Line 000N	4+800	502385.7	6517246.0	150	Outcrop
Line 000N	4+787.5	502393.6	6517236.3	88	Overburden
Line 000N	4+775	502401.5	6517226.6	85	Overburden
Line 000N	4+762.5	502409.3	6517216.9	92	Overburden
Line 000N	4+750	502417.2	6517207.2	70	Overburden
Line 000N	4+737.5	502425.1	6517197.4	84	Overburden
Line 000N	4+725	502432.9	6517187.7	98	Overburden
Line 000N	4+712.5	502440.8	6517178.0	76	Overburden
Line 000N	4+700	502448.6	6517168.3	75	Overburden
Line 000N	4+687.5	502456.5	6517158.6	76	Overburden
Line 000N	4+675	502464.4	6517148.9	100	Overburden
Line 000N	4+662.5	502472.2	6517139.1	250	Outcrop
Line 000N	4+650	502480.1	6517129.4	90	Overburden
Line 000N	4+637.5	502488.0	6517119.7	230	Outcrop
Line 000N	4+625	502495.8	6517110.0	60	Overburden
Line 000N	4+612.5	502503.7	6517100.3	63	Overburden
Line 002N	4+600	502667.0	6517216.4	180	Outcrop
Line 002N	4+612.5	502659.1	6517226.1	230	Outcrop
Line 002N	4+625	502651.3	6517235.9	90	Overburden
Line 002N	4+637.5	502643.4	6517245.6	100	Overburden
Line 002N	4+650	502635.5	6517255.3	150	Overburden
Line 002N	4+662.5	502627.7	6517265.0	270	Outcrop
Line 002N	4+675	502619.8	6517274.7	95	Overburden
Line 002N	4+687.5	502612.0	6517284.4	532	Outcrop
Line 002N	4+700	502604.1	6517294.1	200	Outcrop
Line 002N	4+712.5	502596.2	6517303.9	155	Overburden
Line 002N	4+725	502588.4	6517313.6	300	Outcrop
Line 002N	4+737.5	502580.5	6517323.3	188	Outcrop
Line 002N	4+750	502572.6	6517333.0	200	Outcrop
Line 002N	4+762.5	502564.8	6517342.7	142	Outcrop
Line 002N	4+775	502556.9	6517352.4	136	Outcrop
Line 002N	4+787.5	502549.0	6517362.2	271	Outcrop
Line 002N	4+800	502541.2	6517371.9	210	Outcrop

Line Number	Station	UTM E	UTM N	CPS	Site
Line 002N	4+812.5	502533.3	6517381.6	790	Outcrop
Line 002N	4+825	502525.4	6517391.3	95	Overburden
Line 002N	4+837.5	502517.6	6517401.0	110	Overburden
Line 002N	4+850	502509.7	6517410.7	100	Overburden
Line 002N	4+862.5	502501.8	6517420.5	93	Overburden
Line 002N	4+875	502494.0	6517430.2	70	Overburden
Line 002N	4+887.5	502486.1	6517439.9	64	Overburden
Line 002N	4+900	502478.3	6517449.6	80	Overburden
Line 002N	4+912.5	502470.4	6517459.3	91	Overburden
Line 002N	4+925	502462.5	6517469.0	100	Overburden
Line 002N	4+937.5	502454.7	6517478.8	88	Overburden
Line 002N	4+950	502446.8	6517488.5	75	Overburden
Line 002N	4+962.5	502438.9	6517498.2	106	Overburden
Line 002N	4+975	502431.1	6517507.9	230	Overburden
Line 002N	4+987.5	502423.2	6517517.6	-	-
Line 002N	5+000	502415.3	6517527.3	95	_
Line 002N	5+012.5	502407.5	6517537.0	-	-
Line 002N	5+025	502399.6	6517546.8	90	-
Line 002N	5+037.5	502391.7	6517556.5	-	-
Line 002N	5+050	502383.9	6517566.2	80	-
Line 002N	5+062.5	502376.0	6517575.9	- ,	-
Line 002N	5+075	502368.2	6517585.6	130	-
Line 002N	5+087.5	502360.3	6517595.3	-	-
Line 002N	5+100	502352.4	6517605.1	70	-
Line 002N	5+112.5	502344.6	6517614.8	-	-
Line 002N	5+125	502336.7	6517624.5	100	-
Line 002N	5+137.5	502328.8	6517634.2	-	-
Line 002N	5+150	502321.0	6517643.9	100	-
Line 002N	5+162.5	502313.1	6517653.6	-	-
Line 002N	5+175	502305.2	6517663.4	75	-
Line 002N	5+187.5	502297.4	6517673.1	-	
Line 002N	5+200	502289.5	6517682.8	75	-
Line 002N	5+212.5	502281.6	6517692.5	-	-
Line 002N	5+225	502273.8	6517702.2	80	-
Line 002N	5+237.5	502265.9	6517711.9	193	Outcrop
Line 002N	5+250	502258.1	6517721.7	190	Outcrop
Line 002N	5+262.5	502250.2	6517731.4	140	Overburden
Line 002N	5+275	502242.3	6517741.1	200	Outcrop
Line 002N	5+287.5	502234.5	6517750.8	163	Outcrop
Line 002N	5+300	502226.6	6517760.5	190	Outcrop
Line 002N	5+312.5	502218.7	6517770.2	78	Overburden
Line 002N	5+325	502210.9	6517779.9	80	Overburden

Line Number	Station	UTM E	UTM N	CPS	Site
Line 002N	5+337.5	502203.0	6517789.7	123	Overburden
Line 002N	5+350	502195.1	6517799.4	180	Outcrop
Line 002N	5+362.5	502187.3	6517809.1	171	Outcrop
Line 002N	5+375	502179.4	6517818.8	240	Outcrop
Line 002N	5+387.5	502171.5	6517828.5	400	Outcrop
Line 002N	5+400	502163.7	6517838.2	280	Outcrop
Line 002N	5+412.5	502155.8	6517848.0	98	Outcrop
Line 004N	5+412.5	502311.3	6517973.8	284	Outcrop
Line 004N	5+400	502319.1	6517964.1	500	Outcrop
Line 004N	5+387.5	502327.0	6517954.4	283	Outcrop
Line 004N	5+375	502334.9	6517944.7	65	Overburden
Line 004N	5+362.5	502342.7	6517934.9	77	Outcrop
Line 004N	5+350	502350.6	6517925.2	65	Overburden
Line 004N	5+337.5	502358.4	6517915.5	70	Overburden
Line 004N	5+325	502366.3	6517905.8	75	Overburden
Line 004N	5+312.5	502374.2	6517896.1	233	Outcrop
Line 004N	5+300	502382.0	6517886.4	300	Outcrop
Line 004N	5+287.5	502389.9	6517876.7	150	Outcrop
Line 004N	5+275	502397.8	6517866.9	160	Outcrop
Line 004N	5+262.5	502405.6	6517857.2	220	Outcrop
Line 004N	5+250	502413.5	6517847.5	80	Overburden
Line 004N	5+237.5	502421.4	6517837.8	91	Overburden
Line 004N	5+225	502429.2	6517828.1	70	Overburden
Line 004N	5+212.5	502437.1	6517818.4	125	Overburden
Line 004N	5+200	502445.0	6517808.6	1000	Outcrop
Line 004N	5+187.5	502452.8	6517798.9	267	Outcrop
Line 004N	5+175	502460.7	6517789.2	200	Outcrop
Line 004N	5+162.5	502468.5	6517779.5	462	Outcrop
Line 004N	5+150	502476.4	6517769.8	110	Overburden
Line 004N	5+137.5	502484.3	6517760.1	80	Overburden
Line 004N	5+125	502492.1	6517750.3	70	Overburden
Line 004N	5+112.5	502500.0	6517740.6	70	Overburden
Line 004N	5+100	502507.9	6517730.9	70	Overburden
Line 004N	5+087.5	502515.7	6517721.2	80	Overburden
Line 004N	5+075	502523.6	6517711.5	85	Overburden
Line 004N	5+062.5	502531.5	6517701.8	240	Outcrop
Line 004N	5+050	502539.3	6517692.0	100	Overburden
Line 004N	5+037.5	502547.2	6517682.3	229	Outcrop
Line 004N	5+025	502555.1	6517672.6	1700	Outcrop
Line 004N	5+012.5	502562.9	6517662.9	211	Outcrop
Line 004N	5+000	502570.8	6517653.2	125	Outcrop
Line 004N	4+987.5	502578.6	6517643.5	186	Outcrop

Line Number	Station	UTM E	UTM N	CPS	Site
Line 004N	4+975	502586.5	6517633.7	340	Outcrop
Line 004N	4+962.5	502594.4	6517624.0	361	Outcrop
Line 004N	4+950	502602.2	6517614.3	100	Overburden
Line 004N	4+937.5	502610.1	6517604.6	232	Outcrop
Line 004N	4+925	502618.0	6517594.9	185	Outcrop
Line 004N	4+912.5	502625.8	6517585.2	195	Outcrop
Line 004N	4+900	502633.7	6517575.5	110	Overburden
Line 004N	4+887.5	502641.6	6517565.7	86	Overburden
Line 004N	4+875	502649.4	6517556.0	195	Outcrop
Line 004N	4+862.5	502657.3	6517546.3	210	Outcrop
Line 004N	4+850	502665.2	6517536.6	220	Outcrop
Line 004N	4+837.5	502673.0	6517526.9	138	Overburden
Line 004N	4+825	502680.9	6517517.2	250	Outcrop
Line 004N	4+812.5	502688.7	6517507.4	170	Outcrop
Line 004N	4+800	502696.6	6517497.7	180	Outcrop
Line 004N	4+787.5	502704.5	6517488.0	148	Outcrop
Line 004N	4+775	502712.3	6517478.3	180	Outcrop
Line 004N	4+762.5	502720.2	6517468.6	212	Outcrop
Line 004N	4+750	502728.1	6517458.9	175	Overburden
Line 004N	4+737.5	502735.9	6517449.1	233	Outcrop
Line 004N	4+725	502743.8	6517439.4	100	Overburden
Line 004N	4+712.5	502751.7	6517429.7	211	Outcrop
Line 004N	4+700	502759.5	6517420.0	400	Outcrop
Line 004N	4+687.5	502767.4	6517410.3	350	Outcrop
Line 004N	4+675	502775.3	6517400.6	70	Overburden
Line 004N	4+662.5	502783.1	6517390.8	95	Overburden
Line 004N	4+650	502791.0	6517381.1	140	Outcrop
Line 004N	4+637.5	502798.8	6517371.4	300	Outcrop
Line 004N	4+625	502806.7	6517361.7	95	Overburden
Line 004N	4+612.5	502814.6	6517352.0	241	Outcrop
Line 004N	4+600	502822.4	6517342.3	275	Outcrop
Line 004N	4+587.5	502830.3	6517332.6	206	Outcrop
Line 006N	4+587.5	502985.7	6517458.4	300	Outcrop
Line 006N	4+600	502977.9	6517468.1	180	Outcrop
Line 006N	4+612.5	502970.0	6517477.8	307	Outcrop
Line 006N	4+625	502962.2	6517487.5	100	Overburden
Line 006N	4+637.5	502954.3	6517497.3	121	Overburden
Line 006N	4+650	502946.4	6517507.0	150	Outcrop
Line 006N	4+662.5	502938.6	6517516.7	242	Outcrop
Line 006N	4+675	502930.7	6517526.4	200	Outcrop
Line 006N	4+687.5	502922.8	6517536.1	200	Outcrop
Line 006N	4+700	502915.0	6517545.8	250	Outcrop

Line Number	Station	UTME	UTM N	CPS	Site
Line 006N	4+712.5	502907.1	6517555.6	183	Outcrop
Line 006N	4+725	502899.2	6517565.3	190	Outcrop
Line 006N	4+737.5	502891.4	6517575.0	416	Outcrop
Line 006N	4+750	502883.5	6517584.7	200	Outcrop
Line 006N	4+762.5	502875.6	6517594.4	180	Outcrop
Line 006N	4+775	502867.8	6517604.1	160	Outcrop
Line 006N	4+787.5	502859.9	6517613.9	160	Outcrop
Line 006N	4+800	502852.1	6517623.6	65	Overburder
Line 006N	4+812.5	502844.2	6517633.3	260	Overburder
Line 006N	4+825	502836.3	6517643.0	85	Overburder
Line 006N	4+837.5	502828.5	6517652.7	92	Overburder
Line 006N	4+850	502820.6	6517662.4	185	Outcrop
Line 006N	4+862.5	502812.7	6517672.2	89	Overburder
Line 006N	4+875	502804.9	6517681.9	140	Outcrop
Line 006N	4+887.5	502797.0	6517691.6	65	Overburder
Line 006N	4+900	502789.1	6517701.3	80	Overburder
Line 006N	4+912.5	502781.3	6517711.0	95	Overburder
Line 006N	4+925	502773.4	6517720.7	120	Outcrop
Line 006N	4+937.5	502765.5	6517730.4	169	Overburder
Line 006N	4+950	502757.7	6517740.2	400	Outcrop
Line 006N	4+962.5	502749.8	6517749.9	287	Outcrop
Line 006N	4+975	502742.0	6517759.6	200	Outcrop
Line 006N	4+987.5	502734.1	6517769.3	161	Outcrop
Line 006N	5+000	502726.2	6517779.0	160	Outcrop
Line 006N	5+012.5	502718.4	6517788.7	330	Outcrop
Line 006N	5+025	502710.5	6517798.5	320	Outcrop
Line 006N	5+037.5	502702.6	6517808.2	179	Outcrop
Line 006N	5+050	502694.8	6517817.9	135	Overburder
Line 006N	5+062.5	502686.9	6517827.6	240	Outcrop
Line 006N	5+075	502679.0	6517837.3	130	Overburder
Line 006N	5+087.5	502671.2	6517847.0	192	Outcrop
Line 006N	5+100	502663.3	6517856.8	200	Outcrop
Line 006N	5+112.5	502655.4	6517866.5	150	Outcrop
Line 006N	5+125	502647.6	6517876.2	80	Overburden
Line 006N	5+137.5	502639.7	6517885.9	220	Outcrop
Line 006N	5+150	502631.9	6517895.6	350	Outcrop
Line 006N	5+162.5	502624.0	6517905.3	295	Outcrop
Line 006N	5+175	502616.1	6517915.1	550	Outcrop
Line 006N	5+187.5	502608.3	6517924.8	300	Outcrop
Line 006N	5+200	502600.4	6517934.5	125	Överburden
Line 006N	5+212.5	502592.5	6517944.2	119	Overburden
Line 006N	5+225	502584.7	6517953.9	250	Outcrop

Line Number	Station	UTM E	UTM N	CPS	Site
Line 006N	5+237.5	502576.8	6517963.6	660	Outcrop
Line 006N	5+250	502568.9	6517973.4	80	Overburden
Line 006N	5+262.5	502561.1	6517983.1	68	Overburden
Line 006N	5+275	502553.2	6517992.8	70	Overburden
Line 006N	5+287.5	502545.3	6518002.5	. 77	Overburden
Line 006N	5+300	502537.5	6518012.2	65	Overburder
Line 006N	5+312.5	502529.6	6518021.9	66	Overburden
Line 006N	5+325	502521.7	6518031.6	65	Overburder
Line 006N	5+337.5	502513.9	6518041.4	82	Overburder
Line 006N	5+350	502506.0	6518051.1	110	Overburder
Line 006N	5+362.5	502498.2	6518060.8	71	Overburder
Line 006N	5+375	502490.3	6518070.5	70	Overburder
Line 006N	5+387.5	502482.4	6518080.2	75	Overburder
Line 006N	5+400	502474.6	6518089.9	60	Overburder
Line 006N	5+412.5	502466.7	6518099.7	55	Overburder
Line 006N	5+425	502458.8	6518109.4	55	Overburder
Line 006N	5+437.5	502451.0	6518119.1	47	Overburder
Line 008N	5+437.5	502598.5	6518254.7	69	Overburder
Line 008N	5+425	502606.4	6518244.9	65	Overburder
Line 008N	5+412.5	502614.3	6518235.2	87	Overburder
Line 008N	5+400	502622.1	6518225.5	95	Outcrop
Line 008N	5+387.5	502630.0	6518215.8	200	Outcrop
Line 008N	5+375	502637.9	6518206.1	150	Overburder
Line 008N	5+362.5	502645.7	6518196.4	74	Overburder
Line 008N	5+350	502653.6	6518186.6	70	Overburder
Line 008N	5+337.5	502661.5	6518176.9	66	Overburder
Line 008N	5+325	502669.3	6518167.2	75	Overburder
Line 008N	5+312.5	502677.2	6518157.5	54	Overburder
Line 008N	5+300	502685.1	6518147.8	50	Overburder
Line 008N	5+287.5	502692.9	6518138.1	71	Overburder
Line 008N	5+250	502700.8	6518128.3	230	Outcrop
Line 008N	5+262.5	502708.6	6518118.6	271	Outcrop
Line 008N	5+250	502716.5	6518108.9	230	Outcrop
Line 008N	5+237.5	502724.4	6518099.2	227	Outcrop
Line 008N	5+225	502732.2	6518089.5	95	Overburder
Line 008N	5+212.5	502740.1	6518079.8	101	Overburder
Line 008N	5+200	502748.0	6518070.1	175	Outcrop
Line 008N	5+187.5	502755.8	6518060.3	109	Overburder
Line 008N	5+175	502763.7	6518050.6	80	Overburder
Line 008N	5+162.5	502771.6	6518040.9	609	Outcrop
Line 008N	5+150	502779.4	6518031.2	150	Overburder
Line 008N	5+137.5	502787.3	6518021.5	190	Outcrop

Line Number	Station	UTM E	UTM N	CPS	Site
Line 008N	5+125	502795.2	6518011.8	150	Outcrop
Line 008N	5+112.5	502803.0	6518002.0	180	Outcrop
Line 008N	5+100	502810.9	6517992.3	280	Outcrop
Line 008N	5+087.5	502818.7	6517982.6	109	Overburden
Line 008N	5+075	502826.6	6517972.9	80	Overburden
Line 008N	5+062.5	502834.5	6517963.2	77	Overburden
Line 008N	5+050	502842.3	6517953.5	80	Overburden
Line 008N	5+033.5	502850.2	6517943.7	2800	Outcrop
Line 008N	5+037.5	502858.1	6517934.0	132	Overburden
Line 008N	5+025	502865.9	6517924.3	200	Outcrop
Line 008N	5+012.5	502873.8	6517914.6	3500	Outcrop
Line 008N	5+000	502881.7	6517904.9	700	Overburden
Line 008N	4+987.5	502889.5	6517895.2	258	Outcrop
Line 008N	4+975	502897.4	6517885.4	170	Outcrop
Line 008N	4+962.5	502905.3	6517875.7	257	Outcrop
Line 008N	4+950	502913.1	6517866.0	100	Overburden
Line 008N	4+937.5	502921.0	6517856.3	100	Overburden
Line 008N	4+925	502928.9	6517846.6	90	Overburden
Line 008N	4+912.5	502936.7	6517836.9	81	Overburden
Line 008N	4+900	502944.6	6517827.2	60	Overburden
Line 008N	4+887.5	502952.4	6517817.4	78	Overburden
Line 008N	4+875	502960.3	6517807.7	200	Outcrop
Line 008N	4+862.5	502968.2	6517798.0	161	Outcrop
Line 008N	4+850	502976.0	6517788.3	65	Overburden
Line 008N	4+837.5	502983.9	6517778.6	60	Overburden
Line 008N	4+825	502991.8	6517768.9	120	Overburden
Line 008N	4+812.5	502999.6	6517759.1	113	Overburden
Line 008N	4+811.5	503007.5	6517749.4	202	Outcrop
Line 008N	4+800	503015.4	6517739.7	130	Outcrop
Line 008N	4+787.5	503023.2	6517730.0	85	Overburden
Line 008N	4+775	503031.1	6517720.3	120	Outcrop
Line 008N	4+762.5	503039.0	6517710.6	283	Outcrop
Line 008N	4+750	503046.8	6517700.8	170	Outcrop
Line 008N	4+737.5	503054.7	6517691.1	112	Overburden
Line 008N	4+735.5	503062.5	6517681.4	204	Outcrop
Line 008N	4+725	503070.4	6517671.7	150	Outcrop
Line 008N	4+712.5	503078.3	6517662.0	385	Outcrop
Line 008N	4+700	503086.1	6517652.3	250	Outcrop
Line 008N	4+687.5	503094.0	6517642.5	204	Outcrop
Line 008N	4+675	503101.9	6517632.8	175	Outcrop
Line 008N	4+662.5	503109.7	6517623.1	75	Overburden
Line 008N	4+650	503117.6	6517613.4	65	Overburden

Line Number	Station	UTM E	UTM N	CPS	Site
Line 008N	4+637.5	503125.5	6517603.7	73	Overburden
Line 008N	4+625	503133.3	6517594.0	300	Outcrop
Line 008N	4+612.5	503141.2	6517584.2	135	Outcrop
Line 008N	4+600	503149.1	6517574.5	125	Outcrop
Line 008N	4+587.5	503156.9	6517564.8	177	Outcrop
Line 010N	4+562.5	503320.2	6517681.0	200	Outcrop
Line 010N	4+575	503312.4	6517690.7	100	Overburden
Line 010N	4+587.5	503304.5	6517700.4	187	Outcrop
Line 010N	4+600	503296.6	6517710.1	80	Overburden
Line 010N	4+612.5	503288.8	6517719.8	68	Overburden
Line 010N	4+625	503280.9	6517729.5	210	Outcrop
Line 010N	4+637.5	503273.0	6517739.2	81	Overburden
Line 010N	4+650	503265.2	6517749.0	60	Overburden
Line 010N	4+662.5	503257.3	6517758.7	54	Overburden
Line 010N	4+675	503249.4	6517768.4	55	Overburden
Line 010N	4+687.5	503241.6	6517778.1	200	Outcrop
Line 010N	4+700	503233.7	6517787.8	100	Outcrop
Line 010N	4+712.5	503225.9	6517797.5	80	Overburden
Line 010N	4+725	503218.0	6517807.3	90	Overburder
Line 010N	4+737.5	503210.1	6517817.0	206	Outcrop
Line 010N	4+750	503202.3	6517826.7	200	Outcrop
Line 010N	4+762.5	503194.4	6517836.4	119	Overburder
Line 010N	4+775	503186.5	6517846.1	170	Outcrop
Line 010N	4+787.5	503178.7	6517855.8	103	Overburder
Line 010N	4+800	503170.8	6517865.6	65	Overburder
Line 010N	4+812.5	503162.9	6517875.3	172	Outcrop
Line 010N	4+825	503155.1	6517885.0	320	Outcrop
Line 010N	4+837.5	503147.2	6517894.7	194	Outcrop
Line 010N	4+850	503139.3	6517904.4	150	Outcrop
Line 010N	4+862.5	503131.5	6517914.1	81	Overburden
Line 010N	4+875	503123.6	6517923.9	160	Outcrop
Line 010N	4+887.5	503115.7	6517933.6	81	Overburden
Line 010N	4+900	503107.9	6517943.3	90	Overburden
Line 010N	4+912.5	503100.0	6517953.0	319	Overburder
Line 010N	4+925	503092.2	6517962.7	170	Outcrop
Line 010N	4+937.5	503084.3	6517972.4	134	Overburder
Line 010N	4+940.5	503076.4	6517982.1	1426	Outcrop
Line 010N	4+950	503068.6	6517991.9	1000	Outcrop
Line 010N	4+962.6	503060.7	6518001.6	4883	Outcrop
Line 010N	4+975	503052.8	6518011.3	350	Overburder
Line 010N	4+987.5	503045.0	6518021.0	170	Outcrop
Line 010N	5+000	503037.1	6518030.7	1200	Outcrop

Line Number	Station	UTM E	UTM N	CPS	Site
Line 010N	5+012.5	503029.2	6518040.4	163	Outcrop
Line 010N	5+025	503021.4	6518050.2	170	Overburden
Line 010N	5+037.5	503013.5	6518059.9	173	Outcrop
Line 010N	5+050	503005.6	6518069.6	140	Outcrop
Line 010N	5+062.5	502997.8	6518079.3	140	Outcrop
Line 010N	5+075	502989.9	6518089.0	190	Outcrop
Line 010N	5+087.5	502982.1	6518098.7	187	Outcrop
Line 010N	5+100	502974.2	6518108.5	140	Overburden
Line 010N	5+112.5	502966.3	6518118.2	175	Overburden
Line 010N	5+125	502958.5	6518127.9	200	Outcrop
Line 010N	5+137.5	502950.6	6518137.6	165	Outcrop
Line 010N	5+150	502942.7	6518147.3	190	Outcrop
Line 010N	5+162.5	502934.9	6518157.0	171	Overburden
Line 010N	5+175	502927.0	6518166.8	160	Outcrop
Line 010N	5+187.5	502919.1	6518176.5	466	Outcrop
Line 010N	5+185.5	502911.3	6518186.2	600	Outcrop
Line 010N	5+200	502903.4	6518195.9	180	Outcrop
Line 010N	5+212.5	502895.5	6518205.6	255	Outcrop
Line 010N	5+225	502887.7	6518215.3	1300	Outcrop
Line 010N	5+237.5	502879.8	6518225.0	172	Outcrop
Line 010N	5+250	502872.0	6518234.8	140	Outcrop
Line 010N	5+262.5	502864.1	6518244.5	243	Outcrop
Line 010N	5+275	502856.2	6518254.2	500	Outcrop
Line 010N	5+287.5	502848.4	6518263.9	100	Overburden
Line 010N	5+300	502840.5	6518273.6	65	Outcrop
Line 010N	5+312.5	502832.6	6518283.3	59	Overburden
Line 010N	5+325	502824.8	6518293.1	50	Overburden
Line 010N	5+337.5	502816.9	6518302.8	68	Overburden
Line 010N	5+350	502809.0	6518312.5	60	Overburden
Line 010N	5+362.5	502801.2	6518322.2	70	Overburden
Line 010N	5+375	502793.3	6518331.9	140	Overburden
Line 010N	5+387.5	502785.4	6518341.6	208	Overburden
Line 010N	5+400	502777.6	6518351.4	80	Overburden
Line 010N	5+412.5	502769.7	6518361.1	212	Outcrop
Line 012N	4+637.5	503428.5	6517865.1	186	Outcrop
Line 012N	4+650	503420.6	6517874.8	180	Outcrop
Line 012N	4+662.5	503412.8	6517884.5	100	Overburden
Line 012N	4+675	503404.9	6517894.2	100	Overburden
Line 012N	4+687.5	503397.0	6517904.0	110	Outcrop
Line 012N	4+700	503389.2	6517913.7	55	Overburden
Line 012N	4+712.5	503381.3	6517923.4	77	Overburden
Line 012N	4+725	503373.4	6517933.1	50	Overburden

Line Number	Station	UTM E	UTM N	CPS	Site
Line 012N	4+737.5	503365.6	6517942.8	60	Overburden
Line 012N	4+750	503357.7	6517952.5	60	Overburden
Line 012N	4+762.5	503349.8	6517962.3	147	Outcrop
Line 012N	4+775	503342.0	6517972.0	140	Outcrop
Line 012N	4+787.5	503334.1	6517981.7	200	Outcrop
Line 012N	4+800	503326.2	6517991.4	80	Outcrop
Line 012N	4+811.5	503318.4	6518001.1	111	Outcrop
Line 012N	4+812.5	503310.5	6518010.8	90	Overburden
Line 012N	4+825	503302.6	6518020.6	110	Outcrop
Line 012N	4+837.5	503294.8	6518030.3	135	Outcrop
Line 012N	4+850	503286.9	6518040.0	90	Overburden
Line 012N	4+862.5	503279.1	6518049.7	122	Outcrop
Line 012N	4+875	503271.2	6518059.4	95	Outcrop
Line 012N	4+887.5	503263.3	6518069.1	115	Outcrop
Line 012N	4+900	503255.5	6518078.8	60	Overburden
Line 012N	4+912.5	503247.6	6518088.6	65	Overburden
Line 012N	4+925	503239.7	6518098.3	130	Overburden
Line 012N	4+937.5	503231.9	6518108.0	82	Overburden
Line 012N	4+950	503224.0	6518117.7	60	Overburden
Line 012N	4+962.5	503216.1	6518127.4	231	Outcrop
Line 012N	4+975	503208.3	6518137.1	100	Overburden
Line 012N	4+987.5	503200.4	6518146.9	163	Outcrop
Line 012N	5+000	503192.5	6518156.6	70	Overburden
Line 012N	5+012.5	503184.7	6518166.3	98	Overburden
Line 012N	5+025	503176.8	6518176.0	140	Overburden
Line 012N	5+027	503169.0	6518185.7	546	Outcrop
Line 012N	5+037.5	503161.1	6518195.4	97	Overburden
Line 012N	5+050	503153.2	6518205.2	200	Outcrop
Line 012N	5+062.5	503145.4	6518214.9	305	Outcrop
Line 012N	5+067.5	503137.5	6518224.6	970	Outcrop
Line 012N	5+075	503129.6	6518234.3	500	Outcrop
Line 012N	5+087.5	503121.8	6518244.0	313	Outcrop
Line 012N	5+100	503113.9	6518253.7	170	Overburden
Line 012N	5+112.5	503106.0	6518263.5	273	Overburden
Line 012N	5+125	503098.2	6518273.2	200	Outcrop
Line 012N	5+137.5	503090.3	6518282.9	290	Outcrop
Line 012N	5+150	503082.4	6518292.6	240	Overburden
Line 012N	5+162.5	503074.6	6518302.3	113	Overburden
Line 012N	5+175	503066.7	6518312.0	240	Outcrop
Line 012N	5+187.5	503058.9	6518321.8	121	Overburden
Line 012N	5+200	503051.0	6518331.5	195	Overburden
Line 012N	5+212.5	503043.1	6518341.2	357	Outcrop

Line 012N 5+213.5 503035.3 6518350.9 1282 Outcrop Line 012N 5+225 503027.4 6518370.3 744 Outcrop Line 012N 5+228 503011.7 6518370.3 744 Outcrop Line 012N 5+228 503011.7 6518380.0 1265 Outcrop Line 012N 5+226.5 502995.9 6518399.5 750 Outcrop Line 012N 5+262.5 502988.2 6518438.3 90 Overburden Line 012N 5+287.5 502946.5 6518438.3 90 Overburden Line 012N 5+325 502946.8 6518438.3 90 Overburden Line 012N 5+325 502940.9 6518467.8 500 Outcrop Line 019N 5+287.5 503540.0 6518840.0 64 Overburden Line 019N 5+226.5 503557.7 6518801.1 238 Overburden	Line Number	Station	UTM E	UTM N	CPS	Site
Line 012N 5+227 503019.5 6518370.3 744 Outcrop Line 012N 5+228 503011.7 6518380.0 1265 Outcrop Line 012N 5+226 502995.9 6518399.5 750 Outcrop Line 012N 5+262.5 502980.2 6518418.9 465 Overburden Line 012N 5+275 502902.3 6518438.3 90 Overburden Line 012N 5+300 502966.6 6518438.3 90 Overburden Line 012N 5+325 502940.9 6518467.5 461 Overburden Line 019N 5+287.5 503547.8 651880.2 50 Overburden Line 019N 5+287.5 503557.7 6518820.5 84 Overburden Line 019N 5+225 503577.4 651871.8 75 Overburden Line 019N 5+225 503577.2 651871.7 235 Outcrop	Line 012N	5+213.5	503035.3	6518350.9	1282	Outcrop
Line 012N 5+228 503011.7 6518380.0 1265 Outcrop Line 012N 5+237.5 503003.8 6518389.8 1956 Outcrop Line 012N 5+262.5 502995.9 6518399.5 750 Outcrop Line 012N 5+262.5 502988.1 6518409.2 293 Overburden Line 012N 5+267.5 502972.3 6518428.6 160 Overburden Line 012N 5+300 502964.5 6518438.3 90 Overburden Line 012N 5+312.5 502956.6 6518448.1 96 Overburden Line 012N 5+325 502940.9 6518467.8 500 Outcrop Line 012N 5+325 502940.9 6518467.5 461 Overburden Line 012N 5+327.5 503540.0 6518840.0 64 Overburden Line 019N 5+267.5 503540.0 6518840.0 64 Overburden Line 019N 5+262.5 503540.0 6518840.0 64 Overburden Line 019N 5+262.5 503557. 651880.2 50 Overburden Line 019N 5+262.5 503553.6 6518810.8 75 Overburden Line 019N 5+225 503563.6 6518810.8 75 Overburden Line 019N 5+225 503579.3 651871.4 95 Overburden Line 019N 5+225 503595.0 651871.9 623 Outcrop Line 019N 5+212.5 503587.2 6518781.7 235 Outcrop Line 019N 5+215.5 50361.8 651871.7 9623 Outcrop Line 019N 5+215.5 50361.8 651871.9 623 Outcrop Line 019N 5+215.5 50361.8 651871.9 623 Outcrop Line 019N 5+215.5 50361.8 651877.1 9623 Outcrop Line 019N 5+215.5 50361.8 651877.1 9623 Outcrop Line 019N 5+167.5 50361.8 651873.1 95 Overburden Line 019N 5+175 503626.5 651873.1 95 Overburden Line 019N 5+162.5 503657.9 651873.1 95 Overburden Line 019N 5+162.5 503657.9 6518694.2 60 Overburden Line 019N 5+162.5 503657.9 6518694.2 60 Overburden Line 019N 5+162.5 503657.9 6518694.2 60 Overburden Line 019N 5+162.5 503665.8 6518694.2 60 Overburden Line 019N 5+150 503662.5 6518653.1 60 Overburden Line 019N 5+150 503665.8 6518694.2 60 Overburden Line 019N 5+162.5 503667.9 6518655.3 50 Overburden Line 019N 5+162.5 503667.9 6518655.1 60 Overburden Line 019N 5+162.5 503687.3 6518655.1 60 Overburden Line 019N 5+162.5 503687.3 6518655.1 60 Overburden Line 019N 5+162.5 503765.1 6518655.3 50 Overburden Line 019N 5+005	Line 012N	5+225	503027.4	6518360.6	650	Outcrop
Line 012N 5+237.5 503003.8 6518389.8 1956 Outcrop Line 012N 5+250 502995.9 6518399.5 750 Outcrop Line 012N 5+262.5 502988.1 6518409.2 293 Overburden Line 012N 5+267.5 502972.3 6518418.9 465 Overburden Line 012N 5+287.5 502972.3 6518418.9 465 Overburden Line 012N 5+325 502956.6 6518448.1 96 Overburden Line 012N 5+312.5 502956.6 6518448.1 96 Overburden Line 012N 5+325 502946.8 65184457.8 500 Outcrop Line 012N 5+325 502940.9 6518467.5 461 Overburden Line 019N 5+275 503547.8 6518840.0 64 Overburden Line 019N 5+262.5 503557.6 518820.2 50 Overburden Line 019N 5+262.5 503553.6 6518810.8 75 Overburden Line 019N 5+255 503563.6 6518810.8 75 Overburden Line 019N 5+255 503571.4 6518820.1 238 Overburden Line 019N 5+255 503563.6 6518810.8 75 Overburden Line 019N 5+255 503563.6 651871.1 238 Overburden Line 019N 5+225 503579.3 6518791.4 95 Overburden Line 019N 5+226 503587.2 6518781.7 255 Outcrop Line 019N 5+212.5 503595.0 6518771.9 623 Outcrop Line 019N 5+215 503595.0 6518771.9 623 Outcrop Line 019N 5+215 503618.6 6518762.2 968 Outcrop Line 019N 5+215 503618.6 6518762.2 968 Outcrop Line 019N 5+215 503618.6 6518742.8 125 Overburden Line 019N 5+215 503618.6 6518742.8 125 Overburden Line 019N 5+167.5 503618.6 6518723.4 98 Overburden Line 019N 5+167.5 503618.6 6518723.4 98 Overburden Line 019N 5+167.5 503636.1 651873.1 95 Overburden Line 019N 5+167.5 503636.1 651873.1 95 Overburden Line 019N 5+167.5 503665.8 651873.1 95 Overburden Line 019N 5+167.5 503684.4 6518723.4 98 Overburden Line 019N 5+167.5 503684.4 651873.8 55 Overburden Line 019N 5+167.5 503684.5 6518665.1 60 Overburden Line 019N 5+167.5 503684.6 6518665.3 50 Overburden Line 019N 5+167.5 503684.6 6518665.3 50 Overburden Line 019N 5+167.5 503684.6 6518665.3 50 Overburden Line 019N 5+067.5 503687.4 6518665.3 50 Overburden Line 019N 5+067.5 503687.4 6518665.5 6518674.8 55 Overburden Line 019N 5+067.5 503705.1 6518635.9 50 Overburden Line 019N 5+067.5 503705.1 6518635.9 50 Overburden Line 019N 5+067.5 503728.7 6518606.8 52 Overburden Line 019N 5+067.5 503745.5 6518673.3 49	Line 012N	5+227	503019.5	6518370.3	744	Outcrop
Line 012N 5+250 502995.9 6518399.5 750 Outcrop Line 012N 5+262.5 502980.1 6518409.2 293 Overburden Line 012N 5+267.5 502980.2 6518418.9 465 Overburden Line 012N 5+267.5 502972.3 6518428.6 160 Overburden Line 012N 5+300 502964.5 6518438.3 90 Overburden Line 012N 5+312.5 502956.6 6518438.3 90 Overburden Line 012N 5+312.5 502940.8 6518467.8 500 Outcrop Line 012N 5+327.5 502940.9 6518467.5 461 Overburden Line 019N 5+262.5 503540.0 6518840.0 64 Overburden Line 019N 5+262.5 503555.7 6518820.5 84 Overburden Line 019N 5+255 503579.3 6518701.4 95 Overburden Line 019N 5+225 503579.3 651871.4 95 Overburden Line 019N 5+225 503579.3 651871.7 235 Outcrop Line 019N 5+220 503602.9 6518762.2 968 Outcrop Line 019N 5+200 503618.6 6518752.5 1300 Outcrop Line 019N 5+200 503618.6 6518752.5 1300 Outcrop Line 019N 5+200 503618.6 6518752.5 1300 Outcrop Line 019N 5+205 503657.9 6518771.9 623 Outcrop Line 019N 5+205 503651.6 6518773.1 95 Overburden Line 019N 5+205 503634.4 6518752.5 1300 Outcrop Line 019N 5+165 503634.4 6518723.4 98 Overburden Line 019N 5+165 503634.4 651873.1 95 Overburden Line 019N 5+165 503634.4 651873.1 95 Overburden Line 019N 5+165 503634.4 651873.1 95 Overburden Line 019N 5+165 503634.4 651873.4 98 Overburden Line 019N 5+165 503642.2 6518713.6 65 Overburden Line 019N 5+165 503642.4 651873.6 65 Overburden Line 019N 5+165 503642.4 6518763.9 72 Overburden Line 019N 5+165 503645.8 6518664.5 64 Overburden Line 019N 5+165 503647.9 6518664.5 64 Overburden Line 019N 5+165 503687.9 6518664.5 64 Overburden Line 019N 5+165 503697.0 6518674.8 55 Overburden Line 019N 5+105 503745.7 6518665.3 50 Overburden Line 019N 5+065 503705.1 6518673.8 6518665.5 60 Overburden Line 019N 5+065 503705.1 6518675.8 50 Overburden Line 019N 5+065 503762.7 6518606.8 52 Overburden Line 019N 5+065 503762.7 6518606.8 52 Overburden Line 019N 5+065 503745.5 6518677.6 50 Overburden Line 019N 5+005 503745	Line 012N	5+228	503011.7	6518380.0	1265	Outcrop
Line 012N 5+262.5 502988.1 6518409.2 293 Overburden Line 012N 5+275 502980.2 6518418.9 465 Overburden Line 012N 5+300 502964.5 6518438.3 90 Overburden Line 012N 5+312.5 502956.6 6518448.1 96 Overburden Line 012N 5+312.5 502948.8 6518457.8 500 Outcrop Line 012N 5+325 502948.8 6518457.8 500 Overburden Line 012N 5+325 502948.8 6518457.8 500 Overburden Line 019N 5+287.5 503540.0 6518467.5 461 Overburden Line 019N 5+275 503547.8 6518830.2 50 Overburden Line 019N 5+262.5 503555.7 6518820.5 84 Overburden Line 019N 5+262.5 503555.7 6518820.5 84 Overburden Line 019N 5+262.5 503557.3 6518810.8 75 Overburden Line 019N 5+225 503571.4 6518801.1 238 Overburden Line 019N 5+225 503572 6518781.7 235 Outcrop Line 019N 5+225 503572 6518781.7 235 Outcrop Line 019N 5+225 503567.2 6518781.7 235 Outcrop Line 019N 5+220 503602.9 6518762.2 968 Outcrop Line 019N 5+200 503601.8 6518771.9 623 Outcrop Line 019N 5+200 503618.6 6518725.1 300 Outcrop Line 019N 5+200 503618.6 6518724.8 125 Overburden Line 019N 5+210 503618.6 6518742.8 125 Overburden Line 019N 5+187.5 503618.6 6518742.8 125 Overburden Line 019N 5+162.5 503634.4 6518723.4 98 Overburden Line 019N 5+162.5 503634.4 6518733.1 95 Overburden Line 019N 5+112.5 503657.9 6518664.2 60 Overburden Line 019N 5+112.5 503657.9 6518664.2 60 Overburden Line 019N 5+112.5 503657.9 6518654.2 60 Overburden Line 019N 5+112.5 503657.9 6518664.2 60 Overburden Line 019N 5+112.5 503657.9 6518664.2 60 Overburden Line 019N 5+112.5 503657.9 6518665.1 60 Overburden Line 019N 5+112.5 503657.9 6518665.1 60 Overburden Line 019N 5+100 503673.7 6518674.8 55 Overburden Line 019N 5+105 503642.4 6518763.5 50 Overburden Line 019N 5+105 503642.6 518665.3 50 Overburden Line 019N 5+105 503745.5 618665.3 50 Overburden Line 019N 5+005 503705.1 6518655.3 50 Overburden Line 019N 5+005 503705.1 6518655.3 50 Overburden Line 019N 5+005 503705.1 6518635.9 50 Overburden Line 019N 5+005 503705.1 6518655.3 50 Overburden Line 019N 5+005 503762.7 6518665.6 68 Overburden Line 019N 5+005 503765.1 6518657.0 45 Overburden Line 019N 5+00	Line 012N	5+237.5	503003.8	6518389.8	1956	Outcrop
Line 012N 5+275 502980.2 6518418.9 465 Overburden Line 012N 5+287.5 502972.3 6518428.6 160 Overburden Line 012N 5+300 502964.5 6518438.3 90 Overburden Line 012N 5+325 502946.8 6518438.1 96 Overburden Line 012N 5+325 502946.8 6518448.1 96 Overburden Line 012N 5+325 502940.9 6518467.5 461 Overburden Line 019N 5+287.5 503540.0 6518840.0 64 Overburden Line 019N 5+275 503547.8 6518820.5 84 Overburden Line 019N 5+262.5 503555.7 6518820.5 84 Overburden Line 019N 5+262.5 503555.7 6518820.5 84 Overburden Line 019N 5+250 503563.6 6518810.8 75 Overburden Line 019N 5+225 503571.4 6518801.1 238 Overburden Line 019N 5+225 503579.3 651871.4 95 Overburden Line 019N 5+21.5 503587.2 6518781.7 235 Outcrop Line 019N 5+21.5 503560.6 6518771.9 623 Outcrop Line 019N 5+21.5 503660.9 6518762.2 968 Outcrop Line 019N 5+200 503610.8 6518762.2 968 Outcrop Line 019N 5+215 503662.5 6518733.1 95 Overburden Line 019N 5+175 503662.5 6518733.1 95 Overburden Line 019N 5+162.5 503657.9 6518733.1 95 Overburden Line 019N 5+162.5 503663.4 6518733.1 95 Overburden Line 019N 5+162.5 503663.4 6518733.1 95 Overburden Line 019N 5+150 503642.2 6518713.6 65 Overburden Line 019N 5+150 503642.2 6518733.1 95 Overburden Line 019N 5+150 503642.2 6518733.1 95 Overburden Line 019N 5+150 503645.7 6518674.8 55 Overburden Line 019N 5+150 503665.8 6518694.5 64 Overburden Line 019N 5+150 503665.8 6518694.5 64 Overburden Line 019N 5+150 503665.8 6518664.5 64 Overburden Line 019N 5+150 503668.8 6518664.5 64 Overburden Line 019N 5+005 503673.7 6518674.8 55 Overburden Line 019N 5+005 503673.7 6518674.8 55 Overburden Line 019N 5+005 503705.1 6518654.5 658 Overburden Line 019N 5+005 503705.1 6518654.5 50 Overburden Line 019N 5+005 503705.1 6518664.5 50 Overburden Line 019N 5+005 503705.1 6518664.5 50 Overburden Line 019N 5+025 503720.9 6518616.5 50 Overburden Line 019N 5+025 503720.9	Line 012N	5+250	502995.9	6518399.5	750	Outcrop
Line 012N 5+287.5 502972.3 6518428.6 160 Overburden Line 012N 5+300 502964.5 6518488.3 90 Overburden Line 012N 5+312.5 502966.6 6518448.1 96 Overburden Line 012N 5+337.5 502940.9 6518467.5 461 Overburden Line 019N 5+287.5 503540.0 6518840.0 64 Overburden Line 019N 5+287.5 503547.8 6518830.2 50 Overburden Line 019N 5+262.5 503555.7 6518820.5 84 Overburden Line 019N 5+260 503563.6 6518810.8 75 Overburden Line 019N 5+250 503563.6 6518810.8 75 Overburden Line 019N 5+250 503567.3 651870.1 238 Overburden Line 019N 5+250 503567.2 6518781.7 235 Outcrop Line 019N 5+225 503579.3 6518771.9 623 Outcrop Line 019N 5+229 503662.9 6518771.9 623 Outcrop Line 019N 5+209 503602.9 6518762.2 968 Outcrop Line 019N 5+209 503625.5 6518762.5 1300 Outcrop Line 019N 5+12.5 503681.6 6518742.8 125 Overburden Line 019N 5+215 503681.6 6518733.1 95 Overburden Line 019N 5+162.5 503662.5 6518733.1 95 Overburden Line 019N 5+162.5 503662.5 6518733.1 95 Overburden Line 019N 5+162.5 503663.4 6518733.1 95 Overburden Line 019N 5+162.5 503663.4 6518733.1 95 Overburden Line 019N 5+162.5 503665.8 6518733.1 95 Overburden Line 019N 5+162.5 503665.1 6518733.1 95 Overburden Line 019N 5+162.5 503665.1 6518733.1 95 Overburden Line 019N 5+162.5 503665.1 6518733.1 95 Overburden Line 019N 5+162.5 503667.9 6518674.8 65 Overburden Line 019N 5+162.5 503667.9 6518645.5 64 Overburden Line 019N 5+162.5 503667.9 6518684.5 64 Overburden Line 019N 5+162.5 503667.9 6518665.1 60 Overburden Line 019N 5+100 50367.3 6518665.3 50 Overburden Line 019N 5+005 503681.5 6518665.1 60 Overburden Line 019N 5+005 50367.9 6518665.1 60 Overburden Line 019N 5+005 503705.1 6518655.3 50 Overburden Line 019N 5+005 503705.1 6518665.8 50 Overburden Line 019N 5+025 503720.9 6518616.5 50 Overburden Line 019N 5+025 503720.9 6518616.5 50 Overburden Line 019N 5+055 503720.9 6518616.5 50 Overburden Line 019N 5+055 503720.9 6518616.5 50 Overburden Line 019	Line 012N	5+262.5	502988.1	6518409.2	293	Overburden
Line 012N 5+300 502964.5 6518438.3 90 Overburden Line 012N 5+312.5 502956.6 6518448.1 96 Overburden Line 012N 5+325 502948.8 6518457.8 500 Outcrop Line 012N 5+337.5 502940.9 6518467.5 461 Overburden Line 019N 5+287.5 503540.0 6518840.0 64 Overburden Line 019N 5+287.5 503547.8 6518830.2 50 Overburden Line 019N 5+262.5 503555.7 6518820.5 84 Overburden Line 019N 5+250 503563.6 6518810.8 75 Overburden Line 019N 5+225 503571.4 6518801.1 238 Overburden Line 019N 5+225 503577.3 6518701.4 95 Overburden Line 019N 5+225 503579.3 6518791.4 95 Overburden Line 019N 5+212.5 503587.2 6518781.7 235 Outcrop Line 019N 5+211.5 503595.0 6518771.9 623 Outcrop Line 019N 5+211.5 503602.9 6518762.2 968 Outcrop Line 019N 5+200 503610.8 6518752.5 1300 Outcrop Line 019N 5+187.5 50362.6 6518733.1 95 Overburden Line 019N 5+187.5 50362.6 6518733.1 95 Overburden Line 019N 5+187.5 50362.6 6518733.1 95 Overburden Line 019N 5+187.5 503662.6 6518733.1 95 Overburden Line 019N 5+162.5 503634.4 6518723.4 98 Overburden Line 019N 5+150 503642.2 6518713.6 65 Overburden Line 019N 5+125 503657.9 6518674.8 125 Overburden Line 019N 5+125 503667.9 6518674.8 60 Overburden Line 019N 5+125 503667.9 6518674.8 55 Overburden Line 019N 5+125 503681.5 651865.1 60 Overburden Line 019N 5+125 503667.9 651864.5 64 Overburden Line 019N 5+125 503667.9 6518665.1 60 Overburden Line 019N 5+125 503667.9 6518665.1 60 Overburden Line 019N 5+125 503667.9 6518665.1 60 Overburden Line 019N 5+050 50370.5 6518665.1 60 Overburden Line 019N 5+050 50370.5 6518665.3 50 Overburden Line 019N 5+050 50370.5 6518616.5 50 Overburden Line 019N 5+050 50372.8 6518616.5 50 Overburden Line 019N 5+025 50372.8 6518616.5 50 Overburden Line 019N 5+025 50372.3 6518616.5 50 Overburden Line 019N 4+987.5 503752.3 6518577	Line 012N	5+275	502980.2	6518418.9	465	Overburden
Line 012N 5+312.5 502956.6 6518448.1 96 Overburden Line 012N 5+325 502948.8 6518457.8 500 Outcrop Line 012N 5+337.5 502940.9 6518467.5 461 Overburden Line 019N 5+287.5 503540.0 6518840.0 64 Overburden Line 019N 5+262.5 503555.7 6518820.2 50 Overburden Line 019N 5+262.5 503555.7 6518820.2 58 44 Overburden Line 019N 5+262.5 503555.7 6518820.5 84 Overburden Line 019N 5+250 503563.6 6518810.8 75 Overburden Line 019N 5+225 503579.3 6518791.4 95 Overburden Line 019N 5+225 503579.3 6518791.4 95 Overburden Line 019N 5+212.5 503587.2 6518781.7 235 Outcrop Line 019N 5+212.5 503595.0 6518771.9 623 Outcrop Line 019N 5+209 503602.9 6518762.2 968 Outcrop Line 019N 5+200 503610.8 6518752.5 1300 Outcrop Line 019N 5+175 503626.5 6518733.1 95 Overburden Line 019N 5+187.5 503618.6 6518742.8 125 Overburden Line 019N 5+162.5 503634.4 6518723.4 98 Overburden Line 019N 5+162.5 503634.4 6518723.4 98 Overburden Line 019N 5+162.5 503657.9 6518713.6 65 Overburden Line 019N 5+162.5 503657.9 6518731.95 Overburden Line 019N 5+162.5 503665.8 651873.1 95 Overburden Line 019N 5+162.5 503634.4 6518723.4 98 Overburden Line 019N 5+162.5 503665.1 651873.9 72 Overburden Line 019N 5+162.5 503665.8 6518673.9 72 Overburden Line 019N 5+162.5 503665.8 6518674.8 55 Overburden Line 019N 5+162.5 503665.8 651864.5 64 Overburden Line 019N 5+100 503673.7 6518664.5 64 Overburden Line 019N 5+102.5 503689.4 6518654.5 64 Overburden Line 019N 5+082.5 503689.3 6518665.1 60 Overburden Line 019N 5+085.5 503689.4 6518654.5 50 Overburden Line 019N 5+085.5 503689.4 6518655.1 50 Overburden Line 019N 5+085.5 503689.3 6518665.1 50 Overburden Line 019N 5+085.5 503689.3 6518665.1 50 Overburden Line 019N 5+085.5 503689.3 6518665.1 50 Overburden Line 019N 5+085.5 50370.9 6518616.5 50 Overburden Line 019N 5+085.5 50370.9 6518616.5 50 Overburden Line 019N 5+085.5 50370.9 6518616.5 50 Overburden Line 019N 5+085.5 503720.9 6518616.5 50 Overburden Line 019N 5+000 503736.6 6518597.3 49 Overburden Line 019N 5+025 503728.7 6518606.8 52 Overburden Line 019N 4+987.5 50374.5 6518587.3 49	Line 012N	5+287.5	502972.3	6518428.6	160	Overburden
Line 012N 5+325 502948.8 6518457.8 500 Outcrop Line 019N 5+337.5 502940.9 6518467.5 461 Overburden Line 019N 5+287.5 503540.0 6518840.0 64 Overburden Line 019N 5+262.5 503557.7 6518820.5 84 Overburden Line 019N 5+260 503563.6 6518810.8 75 Overburden Line 019N 5+225 503579.3 651871.4 95 Overburden Line 019N 5+221.5 503587.2 651871.7 235 Outcrop Line 019N 5+212.5 503595.0 651871.7 235 Outcrop Line 019N 5+211.5 503595.0 651871.7 235 Outcrop Line 019N 5+209 503602.9 651872.5 1300 Outcrop Line 019N 5+187.5 50362.5 6518733.1 95 Overburden Line 019N 5+187.5 503662.5 6518733.1 95 Overburden	Line 012N	5+300	502964.5	6518438.3	90	Overburden
Line 012N 5+337.5 502940.9 6518467.5 461 Overburden Line 019N 5+287.5 503540.0 6518840.0 64 Overburden Line 019N 5+275 503555.7 6518820.5 84 Overburden Line 019N 5+262.5 503563.6 6518810.8 75 Overburden Line 019N 5+237.5 503571.4 6518801.1 238 Overburden Line 019N 5+225 503579.3 6518791.4 95 Overburden Line 019N 5+212.5 503595.0 6518761.7 235 Outcrop Line 019N 5+215.5 503602.9 6518762.2 968 Outcrop Line 019N 5+200 503610.8 6518723.1 95 Overburden Line 019N 5+175 503626.5 6518733.1 95 Overburden Line 019N 5+175 503657.9 6518673.3 98 Overburden Line 019N 5+137.5 503657.9 6518703.9 72 Overburden	Line 012N	5+312.5	502956.6	6518448.1	96	Overburden
Line 019N 5+287.5 503540.0 6518840.0 64 Overburden Line 019N 5+275 503547.8 6518830.2 50 Overburden Line 019N 5+262.5 503563.6 6518820.5 84 Overburden Line 019N 5+237.5 503571.4 6518801.8 75 Overburden Line 019N 5+225 503579.3 6518791.4 95 Overburden Line 019N 5+212.5 503579.3 6518781.7 235 Outcrop Line 019N 5+215.5 503595.0 6518771.9 623 Outcrop Line 019N 5+209 503602.9 6518762.2 968 Outcrop Line 019N 5+187.5 503663.6 6518733.1 95 Overburden Line 019N 5+187.5 503663.4 6518733.1 95 Overburden Line 019N 5+137.5 503663.1 6518703.9 72 Overburden Line 019N 5+137.5 503665.8 6518684.5 64 Overburden	Line 012N	5+325	502948.8	6518457.8	500	Outcrop
Line 019N 5+275 503547.8 6518830.2 50 Overburden Line 019N 5+262.5 503555.7 6518820.5 84 Overburden Line 019N 5+250 503563.6 6518810.8 75 Overburden Line 019N 5+237.5 503571.4 6518801.1 238 Overburden Line 019N 5+225 503579.3 6518791.4 95 Overburden Line 019N 5+212.5 503587.2 6518781.7 235 Outcrop Line 019N 5+219 503602.9 6518762.2 968 Outcrop Line 019N 5+200 503610.8 651872.5 1300 Outcrop Line 019N 5+175 503626.5 6518733.1 95 Overburden Line 019N 5+162.5 503634.4 6518703.9 72 Overburden Line 019N 5+112.5 503657.9 6518694.2 60 Overburden Line 019N 5+112.5 503657.9 6518684.5 64 Overburden <td>Line 012N</td> <td>5+337.5</td> <td>502940.9</td> <td>6518467.5</td> <td>461</td> <td>Overburden</td>	Line 012N	5+337.5	502940.9	6518467.5	461	Overburden
Line 019N 5+262.5 503555.7 6518820.5 84 Overburden Line 019N 5+250 503563.6 6518810.8 75 Overburden Line 019N 5+237.5 503571.4 6518801.1 238 Overburden Line 019N 5+225 503579.3 6518791.4 95 Overburden Line 019N 5+212.5 503587.2 6518761.7 235 Outcrop Line 019N 5+211.5 503595.0 6518771.9 623 Outcrop Line 019N 5+209 503602.9 6518762.2 968 Outcrop Line 019N 5+187.5 503610.8 651872.5 1300 Outcrop Line 019N 5+187.5 503626.5 6518733.1 95 Overburden Line 019N 5+187.5 503626.5 651873.1 98 Overburden Line 019N 5+150 50364.4 651873.9 72 Overburden Line 019N 5+137.5 503650.1 6518694.2 60 Overburden <td>Line 019N</td> <td>5+287.5</td> <td>503540.0</td> <td>6518840.0</td> <td>64</td> <td>Overburden</td>	Line 019N	5+287.5	503540.0	6518840.0	64	Overburden
Line 019N 5+250 503563.6 6518810.8 75 Overburden Line 019N 5+237.5 503571.4 6518801.1 238 Overburden Line 019N 5+225 503579.3 6518791.4 95 Overburden Line 019N 5+212.5 503587.2 6518781.7 235 Outcrop Line 019N 5+211.5 503595.0 6518762.2 968 Outcrop Line 019N 5+209 503602.9 6518752.5 1300 Outcrop Line 019N 5+175 503618.6 6518733.1 95 Overburden Line 019N 5+175 503626.5 6518733.1 95 Overburden Line 019N 5+175 503626.5 6518733.1 95 Overburden Line 019N 5+175 503642.2 651873.9 72 Overburden Line 019N 5+137.5 503657.9 6518694.2 60 Overburden Line 019N 5+112.5 503657.3 6518684.5 64 Overburden	Line 019N	5+275	503547.8	6518830.2	50	Overburden
Line 019N5+237.5503571.46518801.1238OverburdenLine 019N5+225503579.36518791.495OverburdenLine 019N5+212.5503587.26518781.7235OutcropLine 019N5+211.5503595.06518771.9623OutcropLine 019N5+209503602.96518762.2968OutcropLine 019N5+200503618.66518752.51300OutcropLine 019N5+187.5503626.56518733.195OverburdenLine 019N5+162.5503634.46518723.498OverburdenLine 019N5+150503642.26518713.665OverburdenLine 019N5+137.5503657.96518694.260OverburdenLine 019N5+125503665.86518645.564OverburdenLine 019N5+125503665.86518645.564OverburdenLine 019N5+125503667.36518654.564OverburdenLine 019N5+075503681.56518665.160OverburdenLine 019N5+087.5503697.36518655.350OverburdenLine 019N5+087.5503697.36518655.350OverburdenLine 019N5+050503705.16518635.950OverburdenLine 019N5+025503720.96518616.550OverburdenLine 019N5+025503728.76518606.852OverburdenLine 0	Line 019N	5+262.5	503555.7	6518820.5	84	Overburden
Line 019N5+225503579.36518791.495OverburdenLine 019N5+212.5503587.26518781.7235OutcropLine 019N5+211.5503595.06518771.9623OutcropLine 019N5+209503602.96518762.2968OutcropLine 019N5+200503610.86518752.51300OutcropLine 019N5+187.5503626.56518733.195OverburdenLine 019N5+162.5503634.46518723.498OverburdenLine 019N5+150503642.26518713.665OverburdenLine 019N5+137.5503657.96518694.260OverburdenLine 019N5+125503665.86518694.260OverburdenLine 019N5+100503673.76518645.564OverburdenLine 019N5+105503681.56518665.160OverburdenLine 019N5+075503681.56518665.350OverburdenLine 019N5+075503697.36518645.658OverburdenLine 019N5+075503697.36518635.950OverburdenLine 019N5+025503705.16518635.950OverburdenLine 019N5+025503720.96518616.550OverburdenLine 019N5+025503728.76518606.852OverburdenLine 019N5+025503728.76518606.852OverburdenLine 019N <td>Line 019N</td> <td>5+250</td> <td>503563.6</td> <td>6518810.8</td> <td>75</td> <td>Overburden</td>	Line 019N	5+250	503563.6	6518810.8	75	Overburden
Line 019N5+212.5503587.26518781.7235.OutcropLine 019N5+211.5503595.06518771.9623OutcropLine 019N5+209503602.96518762.2968OutcropLine 019N5+200503610.86518752.51300OutcropLine 019N5+187.5503618.66518742.8125OverburdenLine 019N5+175503626.56518733.195OverburdenLine 019N5+162.5503634.46518723.498OverburdenLine 019N5+150503642.26518713.665OverburdenLine 019N5+137.5503650.16518703.972OverburdenLine 019N5+125503657.96518694.260OverburdenLine 019N5+125503665.8651864.564OverburdenLine 019N5+100503673.76518674.855OverburdenLine 019N5+075503689.46518655.350OverburdenLine 019N5+050503705.16518635.950OverburdenLine 019N5+050503705.16518666.259OverburdenLine 019N5+025503720.96518616.550OverburdenLine 019N5+025503720.96518616.550OverburdenLine 019N5+025503728.76518606.852OverburdenLine 019N5+025503726.66518597.045OverburdenLine 019N <td>Line 019N</td> <td>5+237.5</td> <td>503571.4</td> <td>6518801.1</td> <td>238</td> <td>Overburden</td>	Line 019N	5+237.5	503571.4	6518801.1	238	Overburden
Line 019N5+211.5503595.06518771.9623OutcropLine 019N5+209503602.96518762.2968OutcropLine 019N5+200503610.86518752.51300OutcropLine 019N5+187.5503618.66518742.8125OverburdenLine 019N5+175503626.56518733.195OverburdenLine 019N5+162.5503634.46518723.498OverburdenLine 019N5+150503642.26518713.665OverburdenLine 019N5+137.5503657.96518694.260OverburdenLine 019N5+125503665.86518684.564OverburdenLine 019N5+112.5503665.86518665.160OverburdenLine 019N5+100503673.76518674.855OverburdenLine 019N5+087.5503689.46518655.350OverburdenLine 019N5+062.5503697.36518645.658OverburdenLine 019N5+050503705.16518635.950OverburdenLine 019N5+025503720.96518616.550OverburdenLine 019N5+025503728.76518606.852OverburdenLine 019N5+012.5503728.76518606.852OverburdenLine 019N5+000503736.66518597.045OverburdenLine 019N5+000503736.66518587.349OverburdenLine	Line 019N	5+225	503579.3	6518791.4	95	Overburden
Line 019N5+209503602.96518762.2968OutcropLine 019N5+200503610.86518752.51300OutcropLine 019N5+187.5503618.66518742.8125OverburdenLine 019N5+162.5503626.56518733.195OverburdenLine 019N5+162.5503634.46518723.498OverburdenLine 019N5+150503642.26518713.665OverburdenLine 019N5+137.5503650.16518703.972OverburdenLine 019N5+125503657.96518694.260OverburdenLine 019N5+125503665.86518684.564OverburdenLine 019N5+100503673.76518665.160OverburdenLine 019N5+075503689.46518655.350OverburdenLine 019N5+062.5503697.36518645.658OverburdenLine 019N5+050503705.16518635.950OverburdenLine 019N5+025503720.96518616.550OverburdenLine 019N5+025503728.76518606.852OverburdenLine 019N5+012.5503728.76518606.852OverburdenLine 019N5+025503728.76518606.852OverburdenLine 019N5+025503728.76518606.852OverburdenLine 019N5+000503736.66518587.349OverburdenLine 0	Line 019N	5+212.5	503587.2	6518781.7	235	Outcrop
Line 019N5+200503610.86518752.51300OutcropLine 019N5+187.5503618.66518742.8125OverburdenLine 019N5+175503626.56518733.195OverburdenLine 019N5+162.5503634.46518723.498OverburdenLine 019N5+15050364.26518713.665OverburdenLine 019N5+137.5503650.16518703.972OverburdenLine 019N5+125503657.96518694.260OverburdenLine 019N5+125503657.96518645.564OverburdenLine 019N5+12.5503657.76518674.855OverburdenLine 019N5+100503673.76518674.855OverburdenLine 019N5+087.5503681.56518655.350OverburdenLine 019N5+062.5503697.36518655.350OverburdenLine 019N5+050503705.16518635.950OverburdenLine 019N5+025503720.96518616.550OverburdenLine 019N5+012.5503728.76518606.852OverburdenLine 019N5+000503736.66518597.045OverburdenLine 019N5+000503762.36518587.349OverburdenLine 019N4+987.5503728.76518587.349OverburdenLine 019N4+975503728.76518587.349Overburden </td <td>Line 019N</td> <td>5+211.5</td> <td>503595.0</td> <td>6518771.9</td> <td>623</td> <td>Outcrop</td>	Line 019N	5+211.5	503595.0	6518771.9	623	Outcrop
Line 019N5+187.5503618.66518742.8125OverburdenLine 019N5+175503626.56518733.195OverburdenLine 019N5+162.5503634.46518723.498OverburdenLine 019N5+150503642.26518713.665OverburdenLine 019N5+137.5503650.16518703.972OverburdenLine 019N5+125503657.96518694.260OverburdenLine 019N5+112.5503665.86518684.564OverburdenLine 019N5+100503673.76518674.855OverburdenLine 019N5+075503681.56518665.160OverburdenLine 019N5+075503689.46518655.350OverburdenLine 019N5+062.5503705.16518635.950OverburdenLine 019N5+050503705.16518626.259OverburdenLine 019N5+025503720.96518616.550OverburdenLine 019N5+025503728.76518606.852OverburdenLine 019N5+012.5503728.76518606.852OverburdenLine 019N5+012.5503744.56518597.045OverburdenLine 019N4+987.5503752.36518577.650Overburden	Line 019N	5+209	503602.9	6518762.2	968	Outcrop
Line 019N5+175503626.56518733.195OverburdenLine 019N5+162.5503634.46518723.498OverburdenLine 019N5+150503642.26518713.665OverburdenLine 019N5+137.5503650.16518703.972OverburdenLine 019N5+125503657.96518694.260OverburdenLine 019N5+112.5503665.86518684.564OverburdenLine 019N5+100503673.76518674.855OverburdenLine 019N5+087.5503681.56518665.160OverburdenLine 019N5+075503689.46518655.350OverburdenLine 019N5+062.5503697.36518645.658OverburdenLine 019N5+050503705.16518635.950OverburdenLine 019N5+025503720.96518616.550OverburdenLine 019N5+012.5503728.76518606.852OverburdenLine 019N5+012.5503728.76518606.852OverburdenLine 019N5+012.5503748.56518597.045OverburdenLine 019N4+987.5503744.56518587.349OverburdenLine 019N4+975503752.36518577.650Overburden	Line 019N	5+200	503610.8	6518752.5	1300	Outcrop
Line 019N5+162.5503634.46518723.498OverburdenLine 019N5+150503642.26518713.665OverburdenLine 019N5+137.5503650.16518703.972OverburdenLine 019N5+125503657.96518694.260OverburdenLine 019N5+112.5503665.86518684.564OverburdenLine 019N5+100503673.76518674.855OverburdenLine 019N5+087.5503681.56518665.160OverburdenLine 019N5+075503689.46518655.350OverburdenLine 019N5+062.5503697.36518645.658OverburdenLine 019N5+050503705.16518635.950OverburdenLine 019N5+025503720.96518616.550OverburdenLine 019N5+012.5503728.76518606.852OverburdenLine 019N5+012.5503736.66518597.045OverburdenLine 019N5+025503728.76518606.852OverburdenLine 019N5+012.5503736.66518597.045OverburdenLine 019N4+987.5503744.56518587.349OverburdenLine 019N4+975503752.36518577.650Overburden	Line 019N	5+187.5	503618.6	6518742.8	125	Overburden
Line 019N5+150503642.26518713.665OverburdenLine 019N5+137.5503650.16518703.972OverburdenLine 019N5+125503657.96518694.260OverburdenLine 019N5+112.5503665.86518684.564OverburdenLine 019N5+100503673.76518674.855OverburdenLine 019N5+087.5503681.56518665.160OverburdenLine 019N5+087.5503689.46518655.350OverburdenLine 019N5+062.5503697.36518645.658OverburdenLine 019N5+050503705.16518635.950OverburdenLine 019N5+025503720.96518616.550OverburdenLine 019N5+025503728.76518606.852OverburdenLine 019N5+000503736.66518597.045OverburdenLine 019N4+987.5503744.56518587.349OverburdenLine 019N4+975503752.36518577.650Overburden	Line 019N	5+175	503626.5	6518733.1	95	Overburden
Line 019N5+137.5503650.16518703.972OverburdenLine 019N5+125503657.96518694.260OverburdenLine 019N5+112.5503665.86518684.564OverburdenLine 019N5+100503673.76518674.855OverburdenLine 019N5+087.5503681.56518665.160OverburdenLine 019N5+075503689.46518655.350OverburdenLine 019N5+075503697.36518645.658OverburdenLine 019N5+062.5503705.16518635.950OverburdenLine 019N5+037.5503713.06518626.259OverburdenLine 019N5+025503720.96518616.550OverburdenLine 019N5+012.5503728.76518606.852OverburdenLine 019N5+012.5503736.66518597.045OverburdenLine 019N4+987.5503744.56518587.349OverburdenLine 019N4+975503752.36518577.650Overburden	Line 019N	5+162.5	503634.4	6518723.4	98	Overburden
Line 019N5+125503657.96518694.260OverburdenLine 019N5+112.5503665.86518684.564OverburdenLine 019N5+100503673.76518674.855OverburdenLine 019N5+087.5503681.56518665.160OverburdenLine 019N5+075503689.46518655.350OverburdenLine 019N5+062.5503697.36518645.658OverburdenLine 019N5+050503705.16518635.950OverburdenLine 019N5+037.5503713.06518626.259OverburdenLine 019N5+025503720.96518616.550OverburdenLine 019N5+012.5503728.76518606.852OverburdenLine 019N5+000503736.66518597.045OverburdenLine 019N4+987.5503744.56518587.349OverburdenLine 019N4+975503752.36518577.650Overburden	Line 019N	5+150	503642.2	6518713.6	65	Overburden
Line 019N5+112.5503665.86518684.564OverburdenLine 019N5+100503673.76518674.855OverburdenLine 019N5+087.5503681.56518665.160OverburdenLine 019N5+075503689.46518655.350OverburdenLine 019N5+062.5503697.36518645.658OverburdenLine 019N5+050503705.16518635.950OverburdenLine 019N5+037.5503713.06518626.259OverburdenLine 019N5+025503720.96518616.550OverburdenLine 019N5+012.5503728.76518606.852OverburdenLine 019N5+000503736.66518597.045OverburdenLine 019N4+987.5503744.56518587.349OverburdenLine 019N4+975503752.36518577.650Overburden	Line 019N	5+137.5	503650.1	6518703.9	72	Overburden
Line 019N5+100503673.76518674.855OverburdenLine 019N5+087.5503681.56518665.160OverburdenLine 019N5+075503689.46518655.350OverburdenLine 019N5+062.5503697.36518645.658OverburdenLine 019N5+050503705.16518635.950OverburdenLine 019N5+037.5503713.06518626.259OverburdenLine 019N5+025503720.96518616.550OverburdenLine 019N5+012.5503728.76518606.852OverburdenLine 019N5+000503736.66518597.045OverburdenLine 019N4+987.5503744.56518587.349OverburdenLine 019N4+975503752.36518577.650Overburden	Line 019N	5+125	503657.9	6518694.2	60	Overburden
Line 019N5+087.5503681.56518665.160OverburdenLine 019N5+075503689.46518655.350OverburdenLine 019N5+062.5503697.36518645.658OverburdenLine 019N5+050503705.16518635.950OverburdenLine 019N5+037.5503713.06518626.259OverburdenLine 019N5+025503720.96518616.550OverburdenLine 019N5+012.5503728.76518606.852OverburdenLine 019N5+000503736.66518597.045OverburdenLine 019N4+987.5503744.56518587.349OverburdenLine 019N4+975503752.36518577.650Overburden	Line 019N	5+112.5	503665.8	6518684.5	64	Overburden
Line 019N5+075503689.46518655.350OverburdenLine 019N5+062.5503697.36518645.658OverburdenLine 019N5+050503705.16518635.950OverburdenLine 019N5+037.5503713.06518626.259OverburdenLine 019N5+025503720.96518616.550OverburdenLine 019N5+012.5503728.76518606.852OverburdenLine 019N5+000503736.66518597.045OverburdenLine 019N4+987.5503744.56518587.349OverburdenLine 019N4+975503752.36518577.650Overburden	Line 019N	5+100	503673.7	6518674.8	55	Overburden
Line 019N5+062.5503697.36518645.658OverburdenLine 019N5+050503705.16518635.950OverburdenLine 019N5+037.5503713.06518626.259OverburdenLine 019N5+025503720.96518616.550OverburdenLine 019N5+012.5503728.76518606.852OverburdenLine 019N5+000503736.66518597.045OverburdenLine 019N4+987.5503744.56518587.349OverburdenLine 019N4+975503752.36518577.650Overburden	Line 019N	5+087.5	503681.5	6518665.1	60	Overburden
Line 019N5+050503705.16518635.950OverburdenLine 019N5+037.5503713.06518626.259OverburdenLine 019N5+025503720.96518616.550OverburdenLine 019N5+012.5503728.76518606.852OverburdenLine 019N5+000503736.66518597.045OverburdenLine 019N4+987.5503744.56518587.349OverburdenLine 019N4+975503752.36518577.650Overburden	Line 019N	5+075	503689.4	6518655.3	50	Overburden
Line 019N5+037.5503713.06518626.259OverburdenLine 019N5+025503720.96518616.550OverburdenLine 019N5+012.5503728.76518606.852OverburdenLine 019N5+000503736.66518597.045OverburdenLine 019N4+987.5503744.56518587.349OverburdenLine 019N4+975503752.36518577.650Overburden	Line 019N	5+062.5	503697.3	6518645.6	58	Overburden
Line 019N5+025503720.96518616.550OverburdenLine 019N5+012.5503728.76518606.852OverburdenLine 019N5+000503736.66518597.045OverburdenLine 019N4+987.5503744.56518587.349OverburdenLine 019N4+975503752.36518577.650Overburden	Line 019N	5+050	503705.1	6518635.9	50	Overburden
Line 019N5+012.5503728.76518606.852OverburdenLine 019N5+000503736.66518597.045OverburdenLine 019N4+987.5503744.56518587.349OverburdenLine 019N4+975503752.36518577.650Overburden	Line 019N	5+037.5	503713.0	6518626.2	59	Overburden
Line 019N5+000503736.66518597.045OverburdenLine 019N4+987.5503744.56518587.349OverburdenLine 019N4+975503752.36518577.650Overburden	Line 019N	5+025	503720.9	6518616.5	50	Overburden
Line 019N4+987.5503744.56518587.349OverburdenLine 019N4+975503752.36518577.650Overburden	Line 019N	5+012.5	503728.7	6518606.8	52	Overburden
Line 019N 4+975 503752.3 6518577.6 50 Overburden	Line 019N	5+000	503736.6	6518597.0	45	Overburden
	Line 019N	4+987.5	503744.5	6518587.3	49	Overburden
Line 019N 4+962.5 503760.2 6518567.9 79 Overburden	Line 019N	4+975	503752.3	6518577.6	50	Overburden
	Line 019N	4+962.5	503760.2	6518567.9	79	Overburden

Line Number	Station	UTM E		CPS	Site
ine 019N	4+950	503768.0	6518558.2	70	Overburden
ine 019N	4+939	503775.9	6518548.5	400	Overburden
ine 019N	4+937.5	503783.8	6518538.8	200	Overburden
ine 019N	4+925	503791.6	6518529.0	150	Outcrop
ine 019N	4+912.5	503799.5	6518519.3	71	Overburden
_ine 019N	4+900	503807.4	6518509.6	65	Overburden
_ine 019N	4+887.5	503815.2	6518499.9	66	Overburden
ine 019N	4+875	503823.1	6518490.2	70	Overburden
_ine 019N	4+862.5	503831.0	6518480.5	222	Outcrop
ine 019N	4+850	503838.8	6518470.7	200	Outcrop
ine 019N	4+837.5	503846.7	6518461.0	261	Outcrop
ine 019N	4+828	503854.6	6518451.3	602	Outcrop
_ine 019N	4+825	503862.4	6518441.6	280	Outcrop
_ine 019N	4+822	503870.3	6518431.9	484	Outcrop
_ine 019N	4+812.5	503878.2	6518422.2	143	Outcrop
ine 019N	4+800	503886.0	6518412.4	120	Outcrop
_ine 019N	4+787.5	503893.9	6518402.7	53	Overburden
ine 019N	4+775	503901.7	6518393.0	60	Outcrop
ine 019N	4+762.5	503909.6	6518383.3	49	Overburden
ine 019N	4+750	503917.5	6518373.6	40	Overburden
ine 019N	4+737.5	503925.3	6518363.9	41	Overburden
ine 019N	4+725	503933.2	6518354.1	35	Overburden
ine 019N	4+712.5	503941.1	6518344.4	32	Overburden
ine 019N	4+700	503948.9	6518334.7	30	Overburden
ine 019N	4+687.5	503956.8	6518325.0	26	Overburden
ine 019N	4+675	503964.7	6518315.3	30	Overburden
ine 019N	4+662.5	503972.5	6518305.6	32	Overburden
ine 019N	4+650	503980.4	6518295.9	30	Overburden
ine 019N	4+637.5	503988.3	6518286.1	34	Overburden
ine 021N	4+587.5	504151.6	6518402.3	54	Overburden
ine 021N	4+600	504143.7	6518412.0	45	Overburden
ine 021N	4+612.5	504135.8	6518421.7	50	Overburden
ine 021N	4+625	504128.0	6518431.4	50	Overburden
_ine 021N	4+637.5	504120.1	6518441.1	48	Overburden
ine 021N	4+650	504112.2	6518450.8	40	Overburden
_ine 021N	4+662.5	504104.4	6518460.6	41	Overburden
Line 021N	4+675	504096.5	6518470.3	40	Overburden
ine 021N	4+687.5	504088.6	6518480.0	49	Overburden
ine 021N	4+700	504080.8	6518489.7	40	Overburden
Line 021N	4+712.5	504072.9	6518499.4	35	Overburden
Line 021N	4+725	504065.0	6518509.1	35	Overburden
ine 021N	4+725 4+737.5	504057.2	6518518.9	36	Overburden

Line Number	Station	UTME	UTM N	CPS	Site
ine 021N	4+750	504049.3	6518528.6	35	Overburden
ine 021N	4+762.5	504041.5	6518538.3	36	Overburden
ine 021N	4+775	504033.6	6518548.0	30	Overburden
ine 021N	4+787.5	504025.7	6518557.7	30	Overburden
ine 021N	4+800	504017.9	6518567.4	35	Overburden
ine 021N	4+812.5	504010.0	6518577.2	31	Overburden
ine 021N	4+825	504002.1	6518586.9	30	Overburden
ine 021N	4+837.5	503994.3	6518596.6	28	Overburden
ine 021N	4+850	503986.4	6518606.3	35	Overburden
ine 021N	4+862.5	503978.5	6518616.0	39	Overburden
ine 021N	4+875	503970.7	6518625.7	40	Overburden
ine 021N	4+887.5	503962.8	6518635.5	36	Overburden
ine 021N	4+900	503954.9	6518645.2	40	Overburden
ine 021N	4+912.5	503947.1	6518654.9	39	Overburden
ine 021N	4+925	503939.2	6518664.6	40	Overburden
ine 021N	4+937.5	503931.4	6518674.3	45	Overburden
ine 021N	4+950	503923.5	6518684.0	45	Overburden
ine 021N	4+962.5	503915.6	6518693.7	46	Overburden
ine 021N	4+975	503907.8	6518703.5	40	Overburden
ine 021N	4+987.5	503899.9	6518713.2	42	Overburden
ine 021N	5+000	503892.0	6518722.9	45	Overburden
ine 021N	5+012.5	503884.2	6518732.6	45	Overburden
ine 021N	5+025	503876.3	6518742.3	45	Overburden
ine 021N	5+037.5	503868.4	6518752.0	51	Overburden
ine 021N	5+050	503860.6	6518761.8	45	Overburden
ine 021N	5+062.5	503852.7	6518771.5	45	Overburden
ine 021N	5+075	503844.8	6518781.2	45	Overburden
ine 021N	5+087.5	503837.0	6518790.9	43	Overburden
ine 021N	5+100	503829.1	6518800.6	35	Overburden
ine 021N	5+112.5	503821.3	6518810.3	39	Overburden
ine 021N	5+125	503813.4	6518820.1	30	Overburden
ine 021N	5+137.5	503805.5	6518829.8	38	Overburden
ine 021N	5+150	503797.7	6518839.5	40	Overburden
ine 021N	5+162.5	503789.8	6518849.2	44	Overburden
ine 021N	5+175	503781.9	6518858.9	45	Overburden
ine 021N	5+187.5	503774.1	6518868.6	44	Overburden
ine 021N	5+200	503766.2	6518878.4	50	Overburden
ine 021N	5+208	503758.3	6518888.1	500	Outcrop
ine 021N	5+212.5	503750.5	6518897.8	55	Overburden
ine 021N	5+237.5	503742.6	6518907.5	71	Overburden
ine 021N	5+250	503734.7	6518917.2	65	Overburden
ine 021N	5+262.5	503726.9	6518926.9	93	Overburden

Line Number	Station	UTME	UTM N	CPS	Site
Line 021N	5+275	503719.0	6518936.7	110	Outcrop
Line 021N	5+287.5	503711.2	6518946.4	59	Overburden
Line 021N	5+300	503703.3	6518956.1	50	Overburden
Line 021N	5+312.5	503695.4	6518965.8	51	Overburden
Line 021N	5+325	503687.6	6518975.5	40	Overburden
Line 021N	5+337.5	503679.7	6518985.2	44	Overburden
Line 021N	5+350	503671.8	6518994.9	40	Overburden
Line 021N	5+362.5	503664.0	6519004.7	45	Overburden
Line 021N	5+375	503656.1	6519014.4	45	Overburden
Line 021N	5+387.5	503648.2	6519024.1	32	Overburden
Line 021N	5+400	503640.4	6519033.8	35	Overburden
Line 021N	5+412.5	503632.5	6519043.5	37	Overburden
Line 023N	5+412.5	503788.0	6519169.4	46	Overburden
Line 023N	5+400	503795.8	6519159.7	45	Overburden
Line 023N	5+387.5	503803.7	6519149.9	42	Overburden
Line 023N	5+375	503811.5	6519140.2	45	Overburden
Line 023N	5+362.5	503819.4	6519130.5	43	Overburden
Line 023N	5+350	503827.3	6519120.8	40	Overburden
Line 023N	5+337.5	503835.1	6519111.1	30	Overburden
Line 023N	5+325	503843.0	6519101.4	40	Overburden
Line 023N	5+312.5	503850.9	6519091.6	36	Overburden
Line 023N	5+300	503858.7	6519081.9	40	Overburden
Line 023N	5+287.5	503866.6	6519072.2	44	Overburden
Line 023N	5+275	503874.5	6519062.5	40	Overburden
Line 023N	5+262.5	503882.3	6519052.8	40	Overburden
Line 023N	5+250	503890.2	6519043.1	40	Overburden
Line 023N	5+237.5	503898.1	6519033.4	37	Overburden
Line 023N	5+225	503905.9	6519023.6	40	Overburden
Line 023N	5+212.5	503913.8	6519013.9	39	Overburden
Line 023N	5+200	503921.6	6519004.2	45	Overburden
Line 023N	5+187.5	503929.5	6518994.5	36	Overburden
Line 023N	5+175	503937.4	6518984.8	45	Overburden
Line 023N	5+162.5	503945.2	6518975.1	46	Overburden
Line 023N	5+150	503953.1	6518965.3	40	Overburden
Line 023N	5+137.5	503961.0	6518955.6	49	Overburden
Line 023N	5+125	503968.8	6518945.9	45	Overburden
Line 023N	5+112.5	503976.7	6518936.2	48	Overburden
Line 023N	5+100	503984.6	6518926.5	50	Overburden
Line 023N	5+087.5	503992.4	6518916.8	50	Overburden
Line 023N	5+075	504000.3	6518907.0	50	Overburden
Line 023N	5+062.5	504008.2	6518897.3	57	Overburden
Line 023N	5+050	504016.0	6518887.6	65	Overburden

Line Number	Station	UTM E	UTM N	CPS	Site
Line 023N	5+037.5	504023.9	6518877.9	188	Outcrop
Line 023N	5+025	504031.7	6518868.2	110	Outcrop
Line 023N	5+012.5	504039.6	6518858.5	57	Overburden
Line 023N	5+000	504047.5	6518848.7	150	Outcrop
Line 023N	4+987.5	504055.3	6518839.0	160	Outcrop
Line 023N	4+975	504063.2	6518829.3	100	Outcrop
Line 023N	4+962.5	504071.1	6518819.6	274	Outcrop
Line 023N	4+950	504078.9	6518809.9	380	Outcrop
Line 023N	4+937.5	504086.8	6518800.2	564	Outcrop
Line 023N	4+935.2	504094.7	6518790.5	1200	Outcrop
Line 023N	4+925	504102.5	6518780.7	75	Overburden
Line 023N	4+912.5	504110.4	6518771.0	46	Overburden
Line 023N	4+900	504118.3	6518761.3	40	Overburden
Line 023N	4+887.5	504126.1	6518751.6	50	Overburden
Line 023N	4+875	504134.0	6518741.9	45	Overburden
Line 023N	4+862.5	504141.8	6518732.2	49	Overburden
Line 023N	4+850	504149.7	6518722.4	40	Overburden
Line 023N	4+837.5	504157.6	6518712.7	47	Overburden
Line 023N	4+825	504165.4	6518703.0	45	Overburden
Line 023N	4+812.5	504173.3	6518693.3	53	Overburden
Line 023N	4+804	504181.2	6518683.6	93	Outcrop
Line 023N	4+800	504189.0	6518673.9	85	Outcrop
Line 023N	4+787.5	504196.9	6518664.1	135	Outcrop
Line 023N	4+775	504204.8	6518654.4	40	Overburden
Line 023N	4+762.5	504212.6	6518644.7	44	Overburden
Line 023N	4+750	504220.5	6518635.0	45	Overburden
Line 023N	4+737.5	504228.4	6518625.3	48	Overburden
Line 023N	4+725	504236.2	6518615.6	50	Overburden
Line 023N	4+712.5	504244.1	6518605.8	44	Overburden
Line 023N	4+700	504251.9	6518596.1	50	Overburden
Line 023N	4+687.5	504259.8	6518586.4	40	Overburden
Line 023N	4+675	504267.7	6518576.7	50	Overburden
Line 023N	4+662.5	504275.5	6518567.0	43	Overburden
Line 023N	4+650	504283.4	6518557.3	55	Overburden
Line 023N	4+637.5	504291.3	6518547.5	60	Overburden
Line 023N	4+625	504299.1	6518537.8	60	Overburden
Line 023N	4+612.5	504307.0	6518528.1	61	Overburden
Line 023N	4+600	504314.9	6518518.4	110	Overburden
Line 023N	4+587.5	504322.7	6518508.7	152	Outcrop
Line 025N	4+562.5	504486.0	6518624.8	54	Overburden
Line 025N	4+575	504478.2	6518634.5	45	Overburden
Line 025N	4+587.5	504470.3	6518644.3	41	Overburden

Line Number	Station	UTM E	UTM N	CPS	Site
Line 025N	4+600	504462.4	6518654.0	50	Overburden
Line 025N	4+612.5	504454.6	6518663.7	49	Overburden
Line 025N	4+625	504446.7	6518673.4	55	Overburden
Line 025N	4+637.5	504438.8	6518683.1	42	Overburden
Line 025N	4+650	504431.0	6518692.8	55	Overburden
Line 025N	4+662.5	504423.1	6518702.5	56	Overburden
Line 025N	4+675	504415.3	6518712.3	50	Overburden
Line 025N	4+687.5	504407.4	6518722.0	147	Outcrop
Line 025N	4+700	504399.5	6518731.7	75	Outcrop
Line 025N	4+710.5	504391.7	6518741.4	71	Overburden
Line 025N	4+712.5	504383.8	6518751.1	64	Overburden
Line 025N	4+725	504375.9	6518760.8	70	Overburden
Line 025N	4+737.5	504368.1	6518770.6	54	Overburden
Line 025N	4+750	504360.2	6518780.3	60	Overburden
Line 025N	4+762.5	504352.3	6518790.0	56	Overburden
Line 025N	4+775	504344.5	6518799.7	50	Overburden
Line 025N	4+787.5	504336.6	6518809.4	56	Overburden
Line 025N	4+800	504328.7	6518819.1	70	Overburden
Line 025N	4+812.5	504320.9	6518828.9	61	Overburden
Line 025N	4+825	504313.0	6518838.6	100	Outcrop
Line 025N	4+837.5	504305.2	6518848.3	79	Overburden
Line 025N	4+850	504297.3	6518858.0	75	Outcrop
Line 025N	4+862.5	504289.4	6518867.7	134	Overburden
Line 025N	4+875	504281.6	6518877.4	40	Overburden
Line 025N	4+887.5	504273.7	6518887.2	27	Overburden
Line 025N	4+900	504265.8	6518896.9	30	Overburden
Line 025N	4+912.5	504258.0	6518906.6	28	Overburden
Line 025N	4+925	504250.1	6518916.3	15	Overburden
Line 025N	4+937.5	504242.2	6518926.0	19	Overburden
Line 025N	4+950	504234.4	6518935.7	20	Overburden
Line 025N	4+962.5	504226.5	6518945.4	22	Overburden
Line 025N	4+975	504218.6	6518955.2	20	Overburden
Line 025N	4+987.5	504210.8	6518964.9	19	Overburden
Line 025N	5+000	504202.9	6518974.6	20	Overburden
Line 025N	5+012.5	504195.1	6518984.3	16	Overburden
Line 025N	5+025	504187.2	6518994.0	20	Overburden
Line 025N	5+037.5	504179.3	6519003.7	24	Overburden
Line 025N	5+050	504171.5	6519013.5	20	Overburden
Line 025N	5+062.5	504163.6	6519023.2	23	Overburden
Line 025N	5+075	504155.7	6519032.9	20	Overburden
Line 025N	5+087.5	504147.9	6519042.6	24	Overburden
Line 025N	5+100	504140.0	6519052.3	22	Overburden

Line Number	Station	UTM E	UTM N	CPS	Site
Line 025N	5+112.5	504132.1	6519062.0	19	Overburden
Line 025N	5+125	504124.3	6519071.8	20	Overburden
Line 025N	5+137.5	504116.4	6519081.5	21	Overburden
Line 025N	5+150	504108.5	6519091.2	22	Overburden
Line 025N	5+162.5	504100.7	6519100.9	22	Overburden
Line 025N	5+175	504092.8	6519110.6	29	Overburden
Line 025N	5+187.5	504085.0	6519120.3	30	Overburden
Line 025N	5+200	504077.1	6519130.1	30	Overburden
Line 025N	5+212.5	504069.2	6519139.8	32	Overburden
Line 025N	5+225	504061.4	6519149.5	40	Overburden
Line 025N	5+237.5	504053.5	6519159.2	55	Overburden
Line 025N	5+250	504045.6	6519168.9	180	Overburden
Line 025N	5+262.5	504037.8	6519178.6	62	Overburden
Line 025N	5+275	504029.9	6519188.3	60	Overburden
Line 025N	5+287.5	504022.0	6519198.1	44	Overburden
Line 025N	5+300	504014.2	6519207.8	85	Overburden
Line 025N	5+312.5	504006.3	6519217.5	59	Overburden
Line 025N	5+325	503998.4	6519227.2	65	Overburden
Line 025N	5+337.5	503990.6	6519236.9	348	Outcrop
Line 025N	5+350	503982.7	6519246.6	170	Overburden
Line 025N	5+362.5	503974.8	6519256.4	110	Overburden
Line 025N	5+375	503967.0	6519266.1	300	Outcrop
Line 025N	5+387.5	503959.1	6519275.8	590	Overburden
Line 025N	5+400	503951.3	6519285.5	50	Overburden
Line 025N	5+412.5	503943.4	6519295.2	50	Overburden
Line 027N	5+412.5	504083.1	6519440.5	79	Overburden
Line 027N	5+400	504091.0	6519430.8	50	Overburden
Line 027N	5+387.5	504098.8	6519421.1	150	Overburden
Line 027N	5+375	504106.7	6519411.4	150	Overburden
Line 027N	5+362.5	504114.6	6519401.6	80	Overburden
Line 027N	5+350	504122.4	6519391.9	45	Overburden
Line 027N	5+337.5	504130.3	6519382.2	38	Overburden
Line 027N	5+325	504138.2	6519372.5	50	Overburden
Line 027N	5+312.5	504146.0	6519362.8	60	Overburden
Line 027N	5+300	504153.9	6519353.1	65	Overburden
Line 027N	5+287.5	504161.7	6519343.3	222	Overburden
Line 027N	5+275	504169.6	6519333.6	120	Outcrop
Line 027N	5+262.5	504177.5	6519323.9	193	Overburden
Line 027N	5+261.5	504185.3	6519314.2	2000	Overburden
Line 027N	5+250	504193.2	6519304.5	50	Overburden
Line 027N	5+237.5	504201.1	6519294.8	44	Overburden
Line 027N	5+225	504208.9	6519285.1	40	Overburden

Line Number	Station	UTM E	UTM N	CPS	Site
Line 027N	5+212.5	504216.8	6519275.3	44	Overburden
Line 027N	5+200	504224.7	6519265.6	55	Overburden
Line 027N	5+195.5	504232.5	6519255.9	469	Overburden
Line 027N	5+187.5	504240.4	6519246.2	58	Overburden
Line 027N	5+175	504248.3	6519236.5	35	Overburden
Line 027N	5+162.5	504256.1	6519226.8	31	Overburden
Line 027N	5+150	504264.0	6519217.0	30	Overburden
Line 027N	5+137.5	504271.8	6519207.3	26	Overburden
Line 027N	5+125	504279.7	6519197.6	30	Overburden
Line 027N	5+112.5	504287.6	6519187.9	35	Overburden
Line 027N	5+100	504295.4	6519178.2	30	Overburden
Line 027N	5+087.5	504303.3	6519168.5	27	Overburden
Line 027N	5+075	504311.2	6519158.7	25	Overburden
Line 027N	5+062.5	504319.0	6519149.0	58	Overburden
Line 027N	5+050	504326.9	6519139.3	40	Overburden
Line 027N	5+037.5	504334.8	6519129.6	. 44	Overburden
Line 027N	5+025	504342.6	6519119.9	40	Outcrop
Line 027N	5+012.5	504350.5	6519110.2	39	Overburden
Line 027N	5+000	504358.4	6519100.4	45	Overburden
Line 027N	4+987.5	504366.2	6519090.7	36	Overburden
Line 027N	4+975	504374.1	6519081.0	45	Overburden
Line 027N	4+962.5	504382.0	6519071.3	46	Overburden
Line 027N	4+950	504389.8	6519061.6	45	Overburden
ine 027N	4+937.5	504397.7	6519051.9	38	Overburden
_ine 027N	4+925	504405.5	6519042.1	45	Overburden
_ine 027N	4+912.5	504413.4	6519032.4	47	Overburden
_ine 027N	4+900	504421.3	6519022.7	45	Overburden
_ine 027N	4+887.5	504429.1	6519013.0	58	Overburden
_ine 027N	4+875	504437.0	6519003.3	50	Overburden
_ine 027N	4+862.5	504444.9	6518993.6	42	Overburden
_ine 027N	4+850	504452.7	6518983.9	45	Overburden
_ine 027N	4+837.5	504460.6	6518974.1	45	Overburden
_ine 027N	4+825	504468.5	6518964.4	50	Overburden
_ine 027N	4+812.5	504476.3	6518954.7	40	Overburden
_ine 027N	4+800	504484.2	6518945.0	50	Overburden
_ine 027N	4+787.5	504492.1	6518935.3	38	Overburden
_ine 027N	4+775	504499.9	6518925.6	50	Overburden
_ine 027N	4+762.5	504507.8	6518915.8	59	Overburden
_ine 027N	4+750	504515.6	6518906.1	65	Overburden
ine 027N	4+737.5	504523.5	6518896.4	139	Outcrop
ine 027N	4+725	504531.4	6518886.7	110	Outcrop
ine 027N	4+712.5	504539.2	6518877.0	69	Overburden

Line Number	Station	UTM E	UTM N	CPS	Site
Line 027N	4+700	504547.1	6518867.3	80	Overburden
Line 027N	4+687.5	504555.0	6518857.5	200	Outcrop
Line 027N	4+675	504562.8	6518847.8	130	Outcrop
Line 027N	4+662.5	504570.7	6518838.1	143	Outcrop
Line 027N	4+650	504578.6	6518828.4	110	Outcrop
Line 027N	4+637.5	504586.4	6518818.7	154	Outcrop
Line 027N	4+625	504594.3	6518809.0	80	Outcrop
Line 027N	4+620	504602.2	6518799.2	72	Overburden
Line 027N	4+616	504610.0	6518789.5	80	Overburden
Line 027N	4+612.5	504617.9	6518779.8	78	Overburden
Line 027N	4+600	504625.7	6518770.1	70	Overburden
Line 027N	4+587.5	504633.6	6518760.4	153	Outcrop
Line 029N	4+562.5	504789.1	6518886.2	55	Overburden
Line 029N	4+575	504781.2	6518895.9	55	Overburden
Line 029N	4+587.5	504773.3	6518905.7	50	Overburden
Line 029N	4+600	504765.5	6518915.4	60	Overburden
Line 029N	4+612.5	504757.6	6518925.1	135	Outcrop
Line 029N	4+625	504749.7	6518934.8	160	Outcrop
Line 029N	4+637.5	504741.9	6518944.5	145	Outcrop
Line 029N	4+650	504734.0	6518954.2	115	Outcrop
Line 029N	4+662.5	504726.1	6518964.0	147	Outcrop
Line 029N	4+675	504718.3	6518973.7	200	Outcrop
Line 029N	4+687.5	504710.4	6518983.4	173	Outcrop
Line 029N	4+700	504702.5	6518993.1	724	Outcrop
Line 029N	4+712.5	504694.7	6519002.8	343	Outcrop
Line 029N	4+725	504686.8	6519012.5	50	Overburden
Line 029N	4+737.5	504679.0	6519022.3	54	Overburden
Line 029N	4+750	504671.1	6519032.0	45	Overburden
Line 029N	4+762.5	504663.2	6519041.7	40	Overburden
Line 029N	4+775	504655.4	6519051.4	50	Overburden
Line 029N	4+787.5	504647.5	6519061.1	46	Overburden
Line 029N	4+800	504639.6	6519070.8	40	Overburden
Line 029N	4+812.5	504631.8	6519080.6	38	Overburden
Line 029N	4+825	504623.9	6519090.3	40	Overburden
Line 029N	4+837.5	504616.0	6519100.0	47	Overburden
Line 029N	4+850	504608.2	6519109.7	45	Overburden
Line 029N	4+862.5	504600.3	6519119.4	37	Overburden
Line 029N	4+875	504592.4	6519129.1	45	Overburden
Line 029N	4+887.5	504584.6	6519138.8	41	Overburden
Line 029N	4+900	504576.7	6519148.6	70	Overburden
Line 029N	4+912.5	504568.8	6519158.3	46	Overburden
Line 029N	4+925	504561.0	6519168.0	40	Overburden

Line Number	Station			CPS	Site
Line 029N	4+937.5	504553.1	6519177.7	47	Overburden
Line 029N	4+950	504545.3	6519187.4	45	Overburden
Line 029N	4+962.5	504537.4	6519197.1	42	Overburden
Line 029N	4+975	504529.5	6519206.9	45	Overburden
Line 029N	4+987.5	504521.7	6519216.6	41	Overburden
Line 029N	5+000	504513.8	6519226.3	40	Overburden
Line 029N	5+012.5	504505.9	6519236.0	46	Overburden
Line 029N	5+025	504498.1	6519245.7	40	Overburden
Line 029N	5+037.5	504490.2	6519255.4	44	Overburden
Line 029N	5+050	504482.3	6519265.2	40	Overburden
Line 029N	5+062.5	504474.5	6519274.9	47	Overburden
Line 029N	5+075	504466.6	6519284.6	40	Overburden
Line 029N	5+087.5	504458.7	6519294.3	35	Overburden
Line 029N	5+100	504450.9	6519304.0	40	Overburden
Line 029N	5+112.5	504443.0	6519313.7	44	Overburden
Line 029N	5+125	504435.2	6519323.5	45	Overburden
Line 029N	5+137.5	504427.3	6519333.2	44	Overburden
Line 029N	5+150	504419.4	6519342.9	40	Overburden
Line 029N	5+162.5	504411.6	6519352.6	54	Overburden
Line 029N	5+175	504403.7	6519362.3	45	Overburden
Line 029N	5+187.5	504395.8	6519372.0	37	Overburden
Line 029N	5+200	504388.0	6519381.8	40	Overburden
Line 029N	5+212.5	504380.1	6519391.5	47	Overburden
Line 029N	5+225	504372.2	6519401.2	40	Overburden
Line 029N	5+237.5	504364.4	6519410.9	34	Overburden
Line 029N	5+250	504356.5	6519420.6	40	Overburden
Line 029N	5+262.5	504348.6	6519430.3	41	Overburden
Line 029N	5+275	504340.8	6519440.0	45	Overburden
Line 029N	5+287.5	504332.9	6519449.8	40	Overburden
Line 029N	5+300	504325.1	6519459.5	40	Overburden
_ine 029N	5+312.5	504317.2	6519469.2	49	Overburden
Line 029N	5+325	504309.3	6519478.9	45	Overburden
Line 029N	5+337.5	504301.5	6519488.6	45	Overburden
_ine 029N	5+350	504293.6	6519498.3	50	Overburden
Line 029N	5+362.5	504285.7	6519508.1	40	Overburden
Line 029N	5+375	504277.9	6519517.8	40	Overburden
Line 029N	5+387.5	504270.0	6519527.5	42	Overburden
Line 023N	5+412.5	504378.3	6519711.6	44	Overburden
Line 031N	5+400	504386.1	6519701.9	45	Overburden
Line 031N	5+387.5	504394.0	6519692.2	37	Overburden
Line 031N	5+375	504394.0	6519682.5	35	Overburden
Line 031N	5+362.5	504401.9	6519672.8	39	Overburden

Line Number	Station	UTM E	UTM N	CPS	Site
Line 031N	5+350	504417.6	6519663.1	40	Overburden
Line 031N	5+337.5	504425.4	6519653.3	35	Overburden
Line 031N	5+325	504433.3	6519643.6	45	Overburden
Line 031N	5+312.5	504441.2	6519633.9	110	Overburden
Line 031N	5+310	504449.0	6519624.2	124	Outcrop
Line 031N	5+300	504456.9	6519614.5	45	Overburden
Line 031N	5+287.5	504464.8	6519604.8	56	Overburden
Line 031N	5+275	504472.6	6519595.0	50	Overburden
Line 031N	5+262.5	504480.5	6519585.3	50	Overburden
Line 031N	5+250	504488.4	6519575.6	50	Overburden
Line 031N	5+237.5	504496.2	6519565.9	50	Overburden
Line 031N	5+225	504504.1	6519556.2	80	Overburden
Line 031N	5+214.5	504512.0	6519546.5	320	Outcrop
Line 031N	5+212.5	504519.8	6519536.7	305	Outcrop
Line 031N	5+200	504527.7	6519527.0	55	Overburden
Line 031N	5+187.5	504535.5	6519517.3	37	Overburden
Line 031N	5+175	504543.4	6519507.6	40	Overburden
Line 031N	5+162.5	504551.3	6519497.9	38	Overburden
_ine 031N	5+150	504559.1	6519488.2	45	Overburden
Line 031N	5+137.5	504567.0	6519478.5	45	Overburden
Line 031N	5+125	504574.9	6519468.7	45	Overburden
Line 031N	5+112.5	504582.7	6519459.0	63	Overburden
Line 031N	5+100	504590.6	6519449.3	65	Overburden
Line 031N	5+089.5	504598.5	6519439.6	223	Outcrop
Line 031N	5+087.5	504606.3	6519429.9	111	Overburden
Line 031N	5+075	504614.2	6519420.2	120	Overburden
Line 031N	5+062.5	504622.1	6519410.4	226	Overburden
Line 031N	5+061	504629.9	6519400.7	202	Outcrop
Line 031N	5+050	504637.8	6519391.0	55	Overburden
Line 031N	5+037.5	504645.6	6519381.3	58	Overburden
Line 031N	5+025	504653.5	6519371.6	50	Overburden
_ine 031N	5+012.5	504661.4	6519361.9	38	Overburden
Line 031N	5+000	504669.2	6519352.1	40	Overburden
Line 031N	4+987.5	504677.1	6519342.4	50	Overburden
Line 031N	4+975	504685.0	6519332.7	45	Overburden
Line 031N	4+962.5	504692.8	6519323.0	48	Overburden
Line 031N	4+950	504700.7	6519313.3	40	Overburden
Line 031N	4+937.5	504708.6	6519303.6	41	Overburden
Line 031N	4+925	504716.4	6519293.8	50	Overburden
Line 031N	4+912.5	504724.3	6519284.1	35	Overburden
Line 031N	4+900	504732.2	6519274.4	45	Overburden
Line 031N	4+887.5	504740.0	6519264.7	42	Overburden

Line Number	Station	UTM E	UTM N	CPS	Site
Line 031N	4+875	504747.9	6519255.0	45	Overburden
Line 031N	4+862.5	504755.7	6519245.3	38	Overburden
Line 031N	4+850	504763.6	6519235.6	49	Overburden
Line 031N	4+837.5	504771.5	6519225.8	42	Overburden
Line 031N	4+825	504779.3	6519216.1	45	Overburden
Line 031N	4+812.5	504787.2	6519206.4	42	Overburden
Line 031N	4+800	504795.1	6519196.7	40	Overburden
Line 031N	4+787.5	504802.9	6519187.0	47	Overburden
Line 031N	4+775	504810.8	6519177.3	45	Overburden
Line 031N	4+762.5	504818.7	6519167.5	32	Overburden
Line 031N	4+750	504826.5	6519157.8	40	Overburden
Line 031N	4+737.5	504834.4	6519148.1	39	Overburden
Line 031N	4+725	504842.3	6519138.4	45	Overburden
Line 031N	4+712.5	504850.1	6519128.7	45	Overburden
Line 031N	4+700	504858.0	6519119.0	45	Overburden
Line 031N	4+687.5	504865.8	6519109.2	37	Overburden
Line 031N	4+675	504873.7	6519099.5	45	Overburden
Line 031N	4+662.5	504881.6	6519089.8	37	Overburden
Line 031N	4+650	504889.4	6519080.1	57	Overburden
Line 031N	4+637.5	504897.3	6519070.4	48	Overburden
Line 031N	4+625	504905.2	6519060.7	45	Overburden
Line 031N	4+612.5	504913.0	6519050.9	49	Overburden
Line 033N	4+587.5	505084.2	6519157.4	48	Overburden
Line 033N	4+600	505076.3	6519167.1	45	Overburden
Line 033N	4+612.5	505068.5	6519176.8	46	Overburden
Line 033N	4+625	505060.6	6519186.5	50	Overburden
Line 033N	4+637.5	505052.7	6519196.2	39	Overburden
Line 033N	4+650	505044.9	6519205.9	40	Overburden
Line 033N	4+662.5	505037.0	6519215.7	41	Overburden
Line 033N	4+675	505029.2	6519225.4	40	Overburden
Line 033N	4+687.5	505021.3	6519235.1	44	Overburden
Line 033N	4+700	505013.4	6519244.8	50	Overburden
Line 033N	4+712.5	505005.6	6519254.5	47	Overburden
Line 033N	4+725	504997.7	6519264.2	40	Overburden
Line 033N	4+737.5	504989.8	6519274.0	33	Overburden
Line 033N	4+750	504982.0	6519283.7	30	Overburden
Line 033N	4+762.5	504974.1	6519293.4	38	Overburden
Line 033N	4+775	504966.2	6519303.1	40	Overburden
Line 033N	4+787.5	504958.4	6519312.8	32	Overburden
Line 033N	4+800	504950.5	6519322.5	35	Overburden
Line 033N	4+812.5	504942.6	6519332.3	33	Overburden
	4+825	504934.8	6519342.0	40	Overburden
Line 033N					

Line Number	Station	UTM E	UTM N	CPS	Site
Line 033N	4+837.5	504926.9	6519351.7	41	Overburden
Line 033N	4+850	504919.1	6519361.4	35	Overburden
Line 033N	4+862.5	504911.2	6519371.1	30	Overburden
Line 033N	4+875	504903.3	6519380.8	35	Overburden
Line 033N	4+887.5	504895.5	6519390.5	40	Overburden
Line 033N	4+900	504887.6	6519400.3	40	Overburden
Line 033N	4+912.5	504879.7	6519410.0	46	Overburden
Line 033N	4+925	504871.9	6519419.7	30	Overburden
Line 033N	4+937.5	504864.0	6519429.4	32	Overburden
_ine 033N	4+950	504856.1	6519439.1	35	Overburden
_ine 033N	4+962.5	504848.3	6519448.8	36	Overburden
_ine 033N	4+975	504840.4	6519458.6	35	Overburden
_ine 033N	4+987.5	504832.5	6519468.3	47	Overburden
_ine 033N	5+000	504824.7	6519478.0	45	Overburden
_ine 033N	5+012.5	504816.8	6519487.7	56	Overburden
_ine 033N	5+014	504809.0	6519497.4	904	Outcrop
_ine 033N	5+025	504801.1	6519507.1	130	Outcrop
Line 033N	5+037.5	504793.2	6519516.9	140	Outcrop
_ine 033N	5+050	504785.4	6519526.6	95	Outcrop
_ine 033N	5+062.5	504777.5	6519536.3	43	Outcrop
_ine 033N	5+075	504769.6	6519546.0	40	Overburden
Line 033N	5+087.5	504761.8	6519555.7	42	Overburden
_ine 033N	5+100	504753.9	6519565.4	45	Overburden
_ine 033N	5+112.5	504746.0	6519575.2	57	Overburden
_ine 033N	5+125	504738.2	6519584.9	160	Outcrop
_ine 033N	5+137.5	504730.3	6519594.6	49	Overburden
_ine 033N	5+150	504722.4	6519604.3	40	Overburden
_ine 033N	5+162.5	504714.6	6519614.0	32	Overburden
_ine 033N	5+175	504706.7	6519623.7	25	Overburden
Line 033N	5+187.5	504698.9	6519633.4	32	Overburden
Line 033N	5+200	504691.0	6519643.2	30	Overburden
Line 033N	5+212.5	504683.1	6519652.9	35	Overburden
_ine 033N	5+225	504675.3	6519662.6	25	Overburden
Line 033N	5+237.5	504667.4	6519672.3	25	Overburden
Line 033N	5+250	504659.5	6519682.0	25	Overburden
Line 033N	5+262.5	504651.7	6519691.7	27	Overburden
Line 033N	5+275	504643.8	6519701.5	30	Overburden
Line 033N	5+287.5	504635.9	6519711.2	84	Overburden
Line 033N	5+290	504628.1	6519720.9	887	Outcrop
Line 033N	5+300	504620.2	6519730.6	700	Outcrop
Line 033N	5+312.5	504612.3	6519740.3	59	Overburden
Line 033N	5+325	504604.5	6519750.0	55	Overburden

Line Number	Station	UTM E	UTM N	CPS	Site
Line 033N	5+337.5	504596.6	6519759.8	49	Overburden
Line 033N	5+350	504588.8	6519769.5	50	Overburden
Line 033N	5+362.5	504580.9	6519779.2	44	Overburden
Line 033N	5+375	504573.0	6519788.9	45	Overburden
Line 033N	5+387.5	504565.2	6519798.6	44	Overburder
Line 035N	5+387.5	504728.5	6519914.8	42	Overburder
Line 035N	5+375	504736.3	6519905.0	45	Overburder
Line 035N	5+362.5	504744.2	6519895.3	32	Overburder
Line 035N	5+350	504752.1	6519885.6	45	Overburder
Line 035N	5+337.5	504759.9	6519875.9	50	Overburder
Line 035N	5+325	504767.8	6519866.2	40	Overburder
Line 035N	5+312.5	504775.6	6519856.5	47	Overburder
Line 035N	5+300	504783.5	6519846.7	60	Overburder
Line 035N	5+287.5	504791.4	6519837.0	69	Overburder
Line 035N	5+275	504799.2	6519827.3	550	Outcrop
Line 035N	5+264.5	504807.1	6519817.6	1200	
Line 035N	5+262.5	504815.0	6519807.9	153	Overburder
Line 035N	5+250	504822.8	6519798.2	70	Overburder
Line 035N	5+237.5	504830.7	6519788.4	38	Overburder
Line 035N	5+225	504838.6	6519778.7	35	Overburder
Line 035N	5+212.5	504846.4	6519769.0	34	Overburder
Line 035N	5+200	504854.3	6519759.3	40	Overburder
Line 035N	5+187.5	504862.2	6519749.6	32	Overburder
Line 035N	5+175	504870.0	6519739.9	40	Overburder
Line 035N	5+162.5	504877.9	6519730.1	38	Overburder
Line 035N	5+150	504885.8	6519720.4	40	Overburder
Line 035N	5+137.5	504893.6	6519710.7	35	Overburder
Line 035N	5+125	504901.5	6519701.0	35	Overburder
Line 035N	5+112.5	504909.3	6519691.3	46	Overburder
Line 035N	5+100	504917.2	6519681.6	155	Outcrop
Line 035N	5+087.5	504925.1	6519671.9	57	Overburder
Line 035N	5+075	504932.9	6519662.1	35	Overburder
Line 035N	5+062.5	504940.8	6519652.4	36	Overburder
Line 035N	5+050	504948.7	6519642.7	35	Overburder
Line 035N	5+037.5	504956.5	6519633.0	38	Overburder
Line 035N	5+025	504964.4	6519623.3	40	Overburder
Line 035N	5+012.5	504972.3	6519613.6	38	Overburder
Line 035N	5+000	504980.1	6519603.8	40	Overburder
Line 035N	4+987.5	504988.0	6519594.1	30	Overburder
Line 035N	4+975	504995.9	6519584.4	35	Overburder
Line 035N	4+962.5	505003.7	6519574.7	36	Overburden
Line 035N	4+950	505011.6	6519565.0	35	Overburden

Line Number	Station	UTM E	UTM N	CPS	Site
Line 035N	4+937.5	505019.4	6519555.3	38	Overburde
Line 035N	4+925	505027.3	6519545.5	30	Overburde
Line 035N	4+912.5	505035.2	6519535.8	33	Overburde
Line 035N	4+900	505043.0	6519526.1	35	Overburde
Line 035N	4+887.5	505050.9	6519516.4	39	Overburde
Line 035N	4+875	505058.8	6519506.7	40	Overburde
Line 035N	4+862.5	505066.6	6519497.0	35	Overburde
Line 035N	4+850	505074.5	6519487.2	35	Overburde
Line 035N	4+837.5	505082.4	6519477.5	35	Overburde
Line 035N	4+825	505090.2	6519467.8	35	Overburde
Line 035N	4+812.5	505098.1	6519458.1	37	Overburde
Line 035N	4+800	505106.0	6519448.4	30	Overburde
Line 035N	4+787.5	505113.8	6519438.7	37	Overburde
Line 035N	4+775	505121.7	6519429.0	35	Overburde
Line 035N	4+762.5	505129.5	6519419.2	28	Overburde
Line 035N	4+750	505137.4	6519409.5	35	Overburde
Line 035N	4+737.5	505145.3	6519399.8	38	Overburde
Line 035N	4+725	505153.1	6519390.1	35	Overburde
Line 035N	4+712.5	505161.0	6519380.4	38	Overburde
Line 035N	4+700	505168.9	6519370.7	40	Overburde
Line 035N	4+687.5	505176.7	6519360.9	44	Overburde
Line 035N	4+675	505184.6	6519351.2	40	Overburde
Line 035N	4+662.5	505192.5	6519341.5	42	Overburde
Line 035N	4+650	505200.3	6519331.8	45	Overburde
Line 035N	4+637.5	505208.2	6519322.1	45	Overburde
Line 035N	4+625	505216.1	6519312.4	45	Overburde
Line 035N	4+612.5	505223.9	6519302.6	51	Overburde
Line 035N	4+600	505231.8	6519292.9	50	Overburde
Line 035N	4+587.5	505239.6	6519283.2	53	Overburde
Line 035N	4+575	505247.5	6519273.5	50	Overburde
Line 035N	4+562.5	505255.4	6519263.8	63	Overburde
Line 037N	4+587.5	505395.1	6519409.1	47	Overburde
Line 037N	4+600	505387.2	6519418.8	45	Overburde
Line 037N	4+612.5	505379.4	6519428.5	43	Overburde
Line 037N	4+625	505371.5	6519438.2	40	Overburde
Line 037N	4+637.5	505363.6	6519447.9	30	Overburde
Line 037N	4+650	505355.8	6519457.6	40	Overburde
Line 037N	4+662.5	505347.9	6519467.4	44	Overburde
Line 037N	4+675	505340.0	6519477.1	40	Overburde
Line 037N	4+687.5	505332.2	6519486.8	38	Overburde
Line 037N	4+700	505324.3	6519496.5	40	Overburde
Line 037N	4+712.5	505316.4	6519506.2	41	Overburde

Line Number	Station	UTM E	UTM N	CPS	Site
Line 037N	4+725	505308.6	6519515.9	40	Overburden
Line 037N	4+737.5	505300.7	6519525.7	36	Overburden
Line 037N	4+750	505292.9	6519535.4	40	Overburden
Line 037N	4+762.5	505285.0	6519545.1	42	Overburden
Line 037N	4+775	505277.1	6519554.8	45	Overburden
Line 037N	4+787.5	505269.3	6519564.5	49	Overburden
Line 037N	4+800	505261.4	6519574.2	40	Overburden
Line 037N	4+812.5	505253.5	6519583.9	40	Overburden
Line 037N	4+825	505245.7	6519593.7	35	Overburden
Line 037N	4+837.5	505237.8	6519603.4	41	Overburden
Line 037N	4+850	505229.9	6519613.1	40	Overburden
Line 037N	4+862.5	505222.1	6519622.8	31	Overburden
Line 037N	4+875	505214.2	6519632.5	40	Overburden
Line 037N	4+887.5	505206.3	6519642.2	38	Overburden
Line 037N	4+900	505198.5	6519652.0	40	Overburden
Line 037N	4+912.5	505190.6	6519661.7	40	Overburden
Line 037N	4+925	505182.8	6519671.4	50	Overburden
Line 037N	4+937.5	505174.9	6519681.1	30	Overburden
Line 037N	4+950	505167.0	6519690.8	40	Overburden
Line 037N	4+962.5	505159.2	6519700.5	41	Overburden
Line 037N	4+975	505151.3	6519710.3	40	Overburden
Line 037N	4+987.5	505143.4	6519720.0	44	Overburden
Line 037N	5+000	505135.6	6519729.7	35	Overburden
Line 037N	5+012.5	505127.7	6519739.4	37	Overburden
Line 037N	5+025	505119.8	6519749.1	40	Overburden
Line 037N	5+037.5	505112.0	6519758.8	39	Overburden
Line 037N	5+050	505104.1	6519768.6	40	Overburden
Line 037N	5+062.5	505096.2	6519778.3	35	Overburden
Line 037N	5+075	505088.4	6519788.0	40	Overburden
Line 037N	5+087.5	505080.5	6519797.7	39	Overburden
Line 037N	5+100	505072.6	6519807.4	40	Overburden
Line 037N	5+112.5	505064.8	6519817.1	43	Overburden
Line 037N	5+125	505056.9	6519826.9	35	Overburden
Line 037N	5+137.5	505049.1	6519836.6	38	Overburden
Line 037N	5+150	505041.2	6519846.3	40	Overburden
Line 037N	5+162.5	505033.3	6519856.0	45	Overburden
Line 037N	5+175	505025.5	6519865.7	35	Overburden
Line 037N	5+187.5	505017.6	6519875.4	42	Overburden
Line 037N	5+200	505009.7	6519885.1	35	Overburden
Line 037N	5+212.5	505001.9	6519894.9	44	Overburden
Line 037N	5+225	504994.0	6519904.6	35	Overburden
Line 037N	5+237.5	504986.1	6519914.3	51	Overburden

Line Number	Station	UTM E	UTM N	CPS	Site
Line 037N	5+250	504978.3	6519924.0	40	Overburder
Line 037N	5+262.5	504970.4	6519933.7	36	Overburder
Line 037N	5+275	504962.5	6519943.4	35	Overburder
Line 037N	5+287.5	504954.7	6519953.2	45	Overburder
Line 037N	5+300	504946.8	6519962.9	40	Overburder
Line 037N	5+312.5	504939.0	6519972.6	40	Overburder
Line 037N	5+325	504931.1	6519982.3	40	Overburder
Line 037N	5+337.5	504923.2	6519992.0	39	Overburder
Line 037N	5+350	504915.4	6520001.7	35	Overburder
Line 037N	5+362.5	504907.5	6520011.5	36	Overburder
Line 037N	5+375	504899.6	6520021.2	40	Overburder
Line 037N	5+387.5	504891.8	6520030.9	39	Overburder
Line 037N	5+400	504883.9	6520040.6	35	Overburder
Line 037N	5+412.5	504876.0	6520050.3	37	Overburder
Line 039N	5+412.5	505031.5	6520176.2	41	Overburder
Line 039N	5+400	505039.3	6520166.5	35	Overburder
Line 039N	5+387.5	505047.2	6520156.7	43	Overburder
Line 039N	5+375	505055.1	6520147.0	35	Overburder
Line 039N	5+362.5	505062.9	6520137.3	35	Overburder
Line 039N	5+350	505070.8	6520127.6	40	Overburder
Line 039N	5+337.5	505078.7	6520117.9	32	Overburder
Line 039N	5+325	505086.5	6520108.2	35	Overburder
Line 039N	5+312.5	505094.4	6520098.4	31	Overburder
Line 039N	5+300	505102.3	6520088.7	35	Overburder
Line 039N	5+287.5	505110.1	6520079.0	40	Overburder
Line 039N	5+275	505118.0	6520069.3	40	Overburder
Line 039N	5+262.5	505125.9	6520059.6	45	Overburder
Line 039N	5+250	505133.7	6520049.9	45	Overburder
Line 039N	5+237.5	505141.6	6520040.1	37	Overburder
Line 039N	5+225	505149.4	6520030.4	40	Overburder
Line 039N	5+212.5	505157.3	6520020.7	33	Overburder
Line 039N	5+200	505165.2	6520011.0	35	Overburder
Line 039N	5+187.5	505173.0	6520001.3	39	Overburder
Line 039N	5+175	505180.9	6519991.6	40	Overburder
Line 039N	5+162.5	505188.8	6519981.8	37	Overburder
Line 039N	5+150	505196.6	6519972.1	35	Overburder
Line 039N	5+137.5	505204.5	6519962.4	43	Overburder
Line 039N	5+125	505212.4	6519952.7	40	Overburder
Line 039N	5+112.5	505220.2	6519943.0	44	Overburder
Line 039N	5+100	505228.1	6519933.3	40	Overburder
Line 039N	5+087.5	505236.0	6519923.6	35	Overburder
Line 039N	5+075	505243.8	6519913.8	45	Overburder

Line Number	Station	UTM E	UTM N	CPS	Site
Line 039N	5+062.5	505251.7	6519904.1	46	Overburden
Line 039N	5+050	505259.5	6519894.4	40	Overburden
Line 039N	5+037.5	505267.4	6519884.7	42	Overburden
Line 039N	5+025	505275.3	6519875.0	40	Overburden
Line 039N	5+012.5	505283.1	6519865.3	37	Overburden
Line 039N	5+000	505291.0	6519855.5	35	Overburden
Line 039N	4+987.5	505298.9	6519845.8	40	Overburden
Line 039N	4+975	505306.7	6519836.1	35	Overburden
Line 039N	4+962.5	505314.6	6519826.4	36	Overburden
Line 039N	4+950	505322.5	6519816.7	35	Overburden
Line 039N	4+937.5	505330.3	6519807.0	38	Overburden
Line 039N	4+925	505338.2	6519797.2	40	Overburden
Line 039N	4+912.5	505346.1	6519787.5	54	Overburden
Line 039N	4+900	505353.9	6519777.8	45	Overburden
Line 039N	4+887.5	505361.8	6519768.1	39	Overburden
Line 039N	4+875	505369.6	6519758.4	55	Overburden
Line 039N	4+862.5	505377.5	6519748.7	41	Overburden
Line 039N	4+850	505385.4	6519738.9	50	Overburden
Line 039N	4+837.5	505393.2	6519729.2	55	Overburden
Line 039N	4+825	505401.1	6519719.5	45	Overburden
Line 039N	4+812.5	505409.0	6519709.8	41	Overburden
Line 039N	4+803	505416.8	6519700.1	59	Overburden
Line 039N	4+800	505424.7	6519690.4	45	Overburden
Line 039N	4+787.5	505432.6	6519680.7	48	Overburden
Line 039N	4+775	505440.4	6519670.9	50	Overburden
Line 039N	4+762.5	505448.3	6519661.2	55	Overburden
Line 039N	4+750	505456.2	6519651.5	65	Overburden
Line 039N	4+737.5	505464.0	6519641.8	56	Overburden
Line 039N	4+725	505471.9	6519632.1	60	Overburden
Line 039N	4+712.5	505479.8	6519622.4	54	Overburden
Line 039N	4+700	505487.6	6519612.6	55	Overburden
Line 039N	4+687.5	505495.5	6519602.9	35	Overburden
Line 039N	4+675	505503.3	6519593.2	55	Overburden
Line 039N	4+662.5	505511.2	6519583.5	55	Overburden
Line 039N	4+650	505519.1	6519573.8	50	Overburden
Line 039N	4+637.5	505526.9	6519564.1	57	Overburden
Line 039N	4+625	505534.8	6519554.3	50	Overburden
Line 039N	4+612.5	505542.7	6519544.6	48	Overburden
Line 039N	4+600	505550.5	6519534.9	45	Overburden
Line 039N	4+587.5	505558.4	6519525.2	46	Overburden
Line 041N	4+612.5	505690.2	6519680.2	69	Overburden
Line 041N	4+625	505682.4	6519689.9	75	Overburden

Line Number	Station	UTM E	UTM N	CPS	Site
Line 041N	4+637.5	505674.5	6519699.6	59	Overburden
Line 041N	4+650	505666.6	6519709.3	45	Overburden
Line 041N	4+662.5	505658.8	6519719.1	76	Overburden
Line 041N	4+675	505650.9	6519728.8	50	Overburden
Line 041N	4+687.5	505643.1	6519738.5	44	Overburden
Line 041N	4+700	505635.2	6519748.2	70	Overburden
Line 041N	4+712.5	505627.3	6519757.9	58	Overburden
Line 041N	4+725	505619.5	6519767.6	55	Overburden
Line 041N	4+737.5	505611.6	6519777.4	72	Overburden
Line 041N	4+750	505603.7	6519787.1	70	Overburden
Line 041N	4+762.5	505595.9	6519796.8	66	Overburden
Line 041N	4+775	505588.0	6519806.5	50	Overburden
Line 041N	4+787.5	505580.1	6519816.2	54	Overburden
Line 041N	4+800	505572.3	6519825.9	55	Overburden
Line 041N	4+812.5	505564.4	6519835.6	53	Overburden
Line 041N	4+825	505556.5	6519845.4	55	Overburden
Line 041N	4+837.5	505548.7	6519855.1	54	Overburden
Line 041N	4+850	505540.8	6519864.8	55	Overburden
Line 041N	4+862.5	505533.0	6519874.5	56	Overburden
Line 041N	4+875	505525.1	6519884.2	55	Overburden
Line 041N	4+887.5	505517.2	6519893.9	53	Overburden
Line 041N	4+900	505509.4	6519903.7	55	Overburden
Line 041N	4+912.5	505501.5	6519913.4	63	Overburden
Line 041N	4+925	505493.6	6519923.1	65	Overburden
Line 041N	4+937.5	505485.8	6519932.8	60	Overburden
Line 041N	4+950	505477.9	6519942.5	60	Overburden
Line 041N	4+962.5	505470.0	6519952.2	50	Overburden
Line 041N	4+975	505462.2	6519962.0	55	Overburden
Line 041N	4+987.5	505454.3	6519971.7	55	Overburden
Line 041N	5+000	505446.4	6519981.4	50	Overburden
Line 041N	5+012.5	505438.6	6519991.1	50	Overburden
Line 041N	5+025	505430.7	6520000.8	55	Overburden
Line 041N	5+037.5	505422.9	6520010.5	58	Overburden
Line 041N	5+050	505415.0	6520020.3	55	Overburden
Line 041N	5+062.5	505407.1	6520030.0	41	Overburden
Line 041N	5+075	505399.3	6520039.7	50	Overburden
Line 041N	5+087.5	505391.4	6520049.4	47	Overburden
Line 041N	5+100	505383.5	6520059.1	45	Overburden
Line 041N	5+112.5	505375.7	6520068.8	49	Overburden
Line 041N	5+125	505367.8	6520078.5	45	Overburden
Line 041N	5+137.5	505359.9	6520088.3	54	Overburden
Line 041N	5+150	505352.1	6520098.0	50	Overburden

Line Number	Station	UTM E	UTM N	CPS	Site
Line 041N	5+162.5	505344.2	6520107.7	49	Overburden
Line 041N	5+175	505336.3	6520117.4	45	Overburden
Line 041N	5+187.5	505328.5	6520127.1	57	Overburden
Line 041N	5+200	505320.6	6520136.8	50	Overburden
Line 041N	5+212.5	505312.8	6520146.6	52	Overburden
Line 041N	5+225	505304.9	6520156.3	55	Overburden
Line 041N	5+237.5	505297.0	6520166.0	67	Overburden
Line 041N	5+250	505289.2	6520175.7	170	Overburden
Line 041N	5+262.5	505281.3	6520185.4	76	Overburden
Line 041N	5+275	505273.4	6520195.1	65	Overburden
Line 041N	5+287.5	505265.6	6520204.9	55	Overburden
Line 041N	5+300	505257.7	6520214.6	45	Overburden
Line 041N	5+312.5	505249.8	6520224.3	46	Overburden
Line 041N	5+325	505242.0	6520234.0	45	Overburden
Line 041N	5+337.5	505234.1	6520243.7	41	Overburden
Line 041N	5+350	505226.2	6520253.4	45	Overburden
Line 041N	5+362.5	505218.4	6520263.2	42	Overburden
Line 041N	5+375	505210.5	6520272.9	45	Overburden
Line 041N	5+387.5	505202.7	6520282.6	43	Overburden
Line 041N	5+400	505194.8	6520292.3	50	Overburden
Line 041N	5+412.5	505186.9	6520302.0	47	Overburden
Line 043N	5+412.5	505342.4	6520427.9	52	Overburden
Line 043N	5+400	505350.2	6520418.2	55	Overburden
Line 043N	5+387.5	505358.1	6520408.4	64	Overburden
Line 043N	5+375	505366.0	6520398.7	60	Overburden
Line 043N	5+362.5	505373.8	6520389.0	49	Overburden
Line 043N	5+350	505381.7	6520379.3	60	Overburden
Line 043N	5+337.5	505389.5	6520369.6	54	Overburden
Line 043N	5+325	505397.4	6520359.9	55	Overburden
Line 043N	5+312.5	505405.3	6520350.1	53	Overburden
Line 043N	5+300	505413.1	6520340.4	60	Overburden
Line 043N	5+287.5	505421.0	6520330.7	58	Overburden
Line 043N	5+275	505428.9	6520321.0	60	Overburden
Line 043N	5+262.5	505436.7	6520311.3	52	Overburden
Line 043N	5+202.5 5+250	505444.6	6520301.6	60	Overburden
Line 043N	5+237.5	505452.5	6520291.8	60	Overburden
Line 043N	5+225	505460.3	6520282.1	60	Overburden
Line 043N	5+225 5+212.5	505468.2	6520272.4	69	Overburden
Line 043N	5+212.5	505476.1	6520262.7	65	Overburden
Line 043N		505478.1	6520253.0	61	Overburden
	5+187.5 5+175		6520243.3	60	Overburden
Line 043N	5+175 5+162 5	505491.8			
Line 043N	5+162.5	505499.7	6520233.5	56	Overburden

Line Number	Station	UTM E	UTM N	CPS	Site
_ine 043N	5+150	505507.5	6520223.8	50	Overburden
Line 043N	5+137.5	505515.4	6520214.1	63	Overburden
Line 043N	5+125	505523.2	6520204.4	60	Overburden
Line 043N	5+112.5	505531.1	6520194.7	62	Overburden
Line 043N	5+100	505539.0	6520185.0	60	Overburden
Line 043N	5+087.5	505546.8	6520175.2	57	Overburden
Line 043N	5+075	505554.7	6520165.5	65	Overburden
Line 043N	5+062.5	505562.6	6520155.8	56	Overburden
Line 043N	5+050	505570.4	6520146.1	75	Overburden
Line 043N	5+037.5	505578.3	6520136.4	75	Overburden
Line 043N	5+025	505586.2	6520126.7	75	Overburden
Line 043N	5+012.5	505594.0	6520117.0	74	Overburden
Line 043N	5+000	505601.9	6520107.2	80	Overburden
Line 043N	4+987.5	505609.8	6520097.5	63	Overburden
Line 043N	4+975	505617.6	6520087.8	75	Overburden
Line 043N	4+962.5	505625.5	6520078.1	89	Overburden
Line 043N	4+950	505633.3	6520068.4	70	Overburden
Line 043N	4+937.5	505641.2	6520058.7	76	Overburden
Line 043N	4+925	505649.1	6520048.9	70	Overburden
Line 043N	4+912.5	505656.9	6520039.2	72	Overburden
Line 043N	4+900	505664.8	6520029.5	65	Overburden
Line 043N	4+887.5	505672.7	6520019.8	80	Overburden
Line 043N	4+875	505680.5	6520010.1	85	Overburden
Line 043N	4+862.5	505688.4	6520000.4	89	Overburden
Line 043N	4+850	505696.3	6519990.6	70	Overburden
Line 043N	4+837.5	505704.1	6519980.9	67	Overburden
Line 043N	4+825	505712.0	6519971.2	55	Overburden
Line 043N	4+812.5	505719.9	6519961.5	49	Overburden
Line 043N	4+800	505727.7	6519951.8	55	Overburden
Line 043N	4+787.5	505735.6	6519942.1	61	Overburden
Line 043N	4+775	505743.4	6519932.3	60	Overburden
Line 043N	4+762.5	505751.3	6519922.6	53	Overburden
Line 043N	4+750	505759.2	6519912.9	55	Overburden
Line 043N	4+737.5	505767.0	6519903.2	48	Overburden
Line 043N	4+738.5	505774.9	6519893.5	50	Overburden
Line 043N	4+725	505782.8	6519883.8	60	Overburden
Line 043N	4+712.5	505790.6	6519874.1	53	Overburden
Line 043N	4+700	505798.5	6519864.3	60	Overburden
Line 043N	4+687.5	505806.4	6519854.6	68	Overburden
Line 043N	4+675	505814.2	6519844.9	50	Overburden
Line 043N	4+662.5	505822.1	6519835.2	53	Overburden
Line 043N	4+650	505830.0	6519825.5	50	Overburden

Line Number	Station	UTM E	UTM N	CPS	Site
Line 043N	4+637.5	505837.8	6519815.8	46	Overburden
Line 043N	4+625	505845.7	6519806.0	60	Overburden
Line 043N	4+612.5	505853.5	6519796.3	67	Overburden
Line 043N	4+600	505861.4	6519786.6	55	Overburden
Line 043N	4+587.5	505869.3	6519776.9	50	Overburden
Line 045N	4+587.5	506016.9	6519912.5	49	Overburden
Line 045N	4+600	506009.0	6519922.2	75	Overburden
Line 045N	4+612.5	506001.1	6519931.9	77	Overburden
Line 045N	4+625	505993.3	6519941.6	75	Overburden
Line 045N	4+637.5	505985.4	6519951.3	72	Overburden
Line 045N	4+650	505977.5	6519961.0	65	Overburden
Line 045N	4+662.5	505969.7	6519970.8	85	Overburden
Line 045N	4+675	505961.8	6519980.5	65	Overburden
Line 045N	4+687.5	505953.9	6519990.2	93	Overburden
Line 045N	4+700	505946.1	6519999.9	75	Overburden
Line 045N	4+712.5	505938.2	6520009.6	82	Overburden
Line 045N	4+725	505930.3	6520019.3	90	Overburden
Line 045N	4+737.5	505922.5	6520029.0	80	Overburden
Line 045N	4+750	505914.6	6520038.8	70	Overburden
Line 045N	4+762.5	505906.8	6520048.5	230	Overburden
Line 045N	4+775	505898.9	6520058.2	75	Overburden
Line 045N	4+787.5	505891.0	6520067.9	87	Overburden
Line 045N	4+800	505883.2	6520077.6	60	Overburden
Line 045N	4+812.5	505875.3	6520087.3	69	Overburden
Line 045N	4+825	505867.4	6520097.1	60	Overburden
Line 045N	4+837.5	505859.6	6520106.8	89	Overburden
Line 045N	4+850	505851.7	6520116.5	75	Overburden
Line 045N	4+862.5	505843.8	6520126.2	59	Overburden
Line 045N	4+875	505836.0	6520135.9	55	Overburden
Line 045N	4+887.5	505828.1	6520145.6	58	Overburden
Line 045N	4+900	505820.2	6520155.4	55	Overburden
Line 045N	4+912.5	505812.4	6520165.1	57	Overburden
Line 045N	4+925	505804.5	6520174.8	70	Overburden
Line 045N	4+937.5	505796.7	6520184.5	60	Overburden
Line 045N	4+950	505788.8	6520194.2	60	Overburden
Line 045N	4+962.5	505780.9	6520203.9	57	Overburden
Line 045N	4+975	505773.1	6520213.7	55	Overburden
Line 045N	4+987.5	505765.2	6520223.4	70	Overburden
Line 045N	5+000	505757.3	6520233.1	55	Overburden
Line 045N	5+012.5	505749.5	6520242.8	51	Overburden
Line 045N	5+025	505741.6	6520252.5	55	Overburden
Line 045N	5+037.5	505733.7	6520262.2	82	Overburden

Line Number	Station	UTM E	UTM N	CPS	Site
Line 045N	5+050	505725.9	6520272.0	55	Overburden
Line 045N	5+062.5	505718.0	6520281.7	59	Overburden
Line 045N	5+075	505710.1	6520291.4	80	Overburden
Line 045N	5+087.5	505702.3	6520301.1	63	Overburden
Line 045N	5+100	505694.4	6520310.8	55	Overburden
Line 045N	5+112.5	505686.6	6520320.5	60	Overburden
Line 045N	5+125	505678.7	6520330.2	55	Overburden
Line 045N	5+137.5	505670.8	6520340.0	55	Overburden
Line 045N	5+150	505663.0	6520349.7	65	Overburden
Line 045N	5+162.5	505655.1	6520359.4	61	Overburden
Line 045N	5+175	505647.2	6520369.1	60	Overburden
Line 045N	5+187.5	505639.4	6520378.8	55	Overburden
Line 045N	5+200	505631.5	6520388.5	110	Overburden
Line 045N	5+212.5	505623.6	6520398.3	69	Overburden
Line 045N	5+225	505615.8	6520408.0	80	Overburden
Line 045N	5+237.5	505607.9	6520417.7	65	Overburden
Line 045N	5+250	505600.0	6520427.4	70	Overburden
Line 045N	5+262.5	505592.2	6520437.1	61	Overburden
Line 045N	5+275	505584.3	6520446.8	70	Overburden
Line 045N	5+287.5	505576.4	6520456.6	66	Overburden
Line 045N	5+300	505568.6	6520466.3	70	Overburden
Line 045N	5+312.5	505560.7	6520476.0	62	Overburden
Line 045N	5+325	505552.9	6520485.7	60	Overburden
Line 045N	5+337.5	505545.0	6520495.4	67	Overburden
Line 045N	5+350	505537.1	6520505.1	55	Overburden
Line 045N	5+362.5	505529.3	6520514.9	60	Overburden
Line 045N	5+375	505521.4	6520524.6	75	Overburden
Line 045N	5+387.5	505513.5	6520534.3	73	Overburden
Line 045N	5+400	505505.7	6520544.0	65	Overburden
Line 045N	5+412.5	505497.8	6520553.7	75	Overburden
Line 047N	5+387.5	505669.0	6520660.1	69	Overburden
Line 047N	5+375	505676.8	6520650.4	60	Overburden
Line 047N	5+362.5	505684.7	6520640.7	57	Overburden
Line 047N	5+350	505692.6	6520631.0	55	Overburden
Line 047N	5+337.5	505700.4	6520621.3	48	Overburden
Line 047N	5+325	505708.3	6520611.6	65	Overburden
Line 047N	5+312.5	505716.2	6520601.8	63	Overburden
Line 047N	5+300	505724.0	6520592.1	60	Overburden
Line 047N	5+287.5	505731.9	6520582.4	61	Overburden
Line 047N	5+275	505739.8	6520572.7	55	Overburden
Line 047N	5+262.5	505747.6	6520563.0	86	Overburden
Line 047N	5+250	505755.5	6520553.3	60	Overburden

Line Number	Station	UTME	UTM N	CPS	Site
Line 047N	5+237.5	505763.3	6520543.5	55	Overburder
Line 047N	5+225	505771.2	6520533.8	50	Overburder
Line 047N	5+212.5	505779.1	6520524.1	67	Overburder
Line 047N	5+200	505786.9	6520514.4	70	Overburder
Line 047N	5+187.5	505794.8	6520504.7	54	Overburder
Line 047N	5+175	505802.7	6520495.0	70	Overburder
Line 047N	5+162.5	505810.5	6520485.2	60	Overburder
Line 047N	5+150	505818.4	6520475.5	60	Overburder
Line 047N	5+137.5	505826.3	6520465.8	81	Overburder
Line 047N	5+125	505834.1	6520456.1	55	Overburder
Line 047N	5+112.5	505842.0	6520446.4	57	Overburder
Line 047N	5+100	505849.9	6520436.7	70	Overburder
Line 047N	5+087.5	505857.7	6520426.9	80	Overburder
Line 047N	5+075	505865.6	6520417.2	45	Overburder
Line 047N	5+062.5	505873.4	6520407.5	55	Overburder
Line 047N	5+050	505881.3	6520397.8	80	Overburder
Line 047N	5+037.5	505889.2	6520388.1	56	Overburder
Line 047N	5+025	505897.0	6520378.4	55	Overburder
Line 047N	5+012.5	505904.9	6520368.7	53	Overburder
Line 047N	5+000	505912.8	6520358.9	55	Overburder
Line 047N	4+987.5	505920.6	6520349.2	52	Overburder
Line 047N	4+975	505928.5	6520339.5	60	Overburder
Line 047N	4+962.5	505936.4	6520329.8	50	Overburder
Line 047N	4+950	505944.2	6520320.1	65	Overburder
Line 047N	4+937.5	505952.1	6520310.4	86	Overburder
Line 047N	4+925	505960.0	6520300.6	50	Overburder
Line 047N	4+912.5	505967.8	6520290.9	58	Overburder
Line 047N	4+900	505975.7	6520281.2	45	Overburder
Line 047N	4+887.5	505983.6	6520271.5	55	Overburder
Line 047N	4+875	505991.4	6520261.8	40	Overburder
Line 047N	4+862.5	505999.3	6520252.1	44	Overburder
Line 047N	4+850	506007.1	6520242.3	35	Overburder
Line 047N	4+837.5	506015.0	6520232.6	46	Overburder
Line 047N	4+825	506022.9	6520222.9	35	Overburder
Line 047N	4+812.5	506030.7	6520213.2	30	Overburder
Line 047N	4+800	506038.6	6520203.5	30	Overburder
Line 047N	4+787.5	506046.5	6520193.8	35	Overburder
Line 047N	4+775	506054.3	6520184.0	35	Overburder
Line 047N	4+762.5	506062.2	6520174.3	58	Overburder
Line 047N	4+750	506070.1	6520164.6	35	Overburder
Line 047N	4+737.5	506077.9	6520154.9	35	Overburder
Line 047N	4+725	506085.8	6520145.2	35	Overburder

Line Number	Station	UTM E	UTM N	CPS	Site
Line 047N	4+712.5	506093.7	6520135.5	49	Overburden
Line 047N	4+700	506101.5	6520125.8	40	Overburden
Line 047N	4+687.5	506109.4	6520116.0	35	Overburden
Line 047N	4+675	506117.2	6520106.3	40	Overburden
Line 047N	4+662.5	506125.1	6520096.6	43	Overburden
Line 047N	4+650	506133.0	6520086.9	45	Overburden
Line 047N	4+637.5	506140.8	6520077.2	45	Overburden
Line 047N	4+625	506148.7	6520067.5	40	Overburden
Line 047N	4+612.5	506156.6	6520057.7	30	Overburden
Line 047N	4+600	506164.4	6520048.0	35	Overburden
Line 047N	4+587.5	506172.3	6520038.3	36	Overburden
Line 049N	4+612.5	506312.0	6520183.6	27	Overburden
Line 049N	4+625	506304.1	6520193.3	25	Overburden
Line 049N	4+637.5	506296.3	6520203.0	29	Overburden
Line 049N	4+650	506288.4	6520212.7	30	Overburden
Line 049N	4+662.5	506280.6	6520222.5	18	Overburden
Line 049N	4+675	506272.7	6520232.2	30	Overburden
Line 049N	4+687.5	506264.8	6520241.9	23	Overburden
Line 049N	4+700	506257.0	6520251.6	35	Overburden
Line 049N	4+712.5	506249.1	6520261.3	44	Overburden
Line 049N	4+725	506241.2	6520271.0	35	Overburden
Line 049N	4+737.5	506233.4	6520280.7	39	Overburden
Line 049N	4+750	506225.5	6520290.5	40	Overburden
Line 049N	4+762.5	506217.6	6520300.2	34	Overburden
Line 049N	4+775	506209.8	6520309.9	40	Overburden
Line 049N	4+787.5	506201.9	6520319.6	38	Overburden
Line 049N	4+800	506194.0	6520329.3	40	Overburden
Line 049N	4+812.5	506186.2	6520339.0	48	Overburden
Line 049N	4+825	506178.3	6520348.8	45	Overburden
Line 049N	4+837.5	506170.4	6520358.5	44	Overburden
Line 049N	4+850	506162.6	6520368.2	45	Overburden
Line 049N	4+862.5	506154.7	6520377.9	38	Overburden
Line 049N	4+875	506146.9	6520387.6	45	Overburden
Line 049N	4+887.5	506139.0	6520397.3	38	Overburden
Line 049N	4+900	506131.1	6520407.1	45	Overburden
Line 049N	4+912.5	506123.3	6520416.8	39	Overburden
Line 049N	4+925	506115.4	6520426.5	50	Overburden
Line 049N	4+937.5	506107.5	6520436.2	44	Overburden
Line 049N	4+950	506099.7	6520445.9	55	Overburden
Line 049N	4+962.5	506091.8	6520455.6	47	Overburden
Line 049N	4+975	506083.9	6520465.4	55	Overburden
Line 049N	4+987.5	506076.1	6520475.1	61	Overburden

Line Number	Station	UTM E	UTM N	CPS	Site
Line 049N	5+000	506068.2	6520484.8	45	Overburden
Line 049N	5+012.5	506060.3	6520494.5	42	Overburden
Line 049N	5+025	506052.5	6520504.2	50	Overburden
Line 049N	5+037.5	506044.6	6520513.9	30	Overburden
Line 049N	5+050	506036.8	6520523.6	40	Overburden
Line 049N	5+062.5	506028.9	6520533.4	37	Overburden
Line 049N	5+075	506021.0	6520543.1	45	Overburden
Line 049N	5+087.5	506013.2	6520552.8	53	Overburden
Line 049N	5+100	506005.3	6520562.5	40	Overburden
Line 049N	5+112.5	505997.4	6520572.2	49	Overburden
Line 049N	5+125	505989.6	6520581.9	40	Overburden
Line 049N	5+137.5	505981.7	6520591.7	41	Overburden
Line 049N	5+150	505973.8	6520601.4	35	Overburden
Line 049N	5+162.5	505966.0	6520611.1	25	Overburden
Line 049N	5+175	505958.1	6520620.8	35	Overburden
Line 049N	5+187.5	505950.2	6520630.5	37	Overburden
Line 049N	5+200	505942.4	6520640.2	35	Overburden
Line 049N	5+212.5	505934.5	6520650.0	36	Overburden
Line 049N	5+225	505926.7	6520659.7	35	Overburden
Line 049N	5+237.5	505918.8	6520669.4	35	Overburden
Line 049N	5+250	505910.9	6520679.1	35	Overburden
Line 049N	5+262.5	505903.1	6520688.8	44	Overburden
Line 049N	5+275	505895.2	6520698.5	40	Overburden
Line 049N	5+287.5	505887.3	6520708.3	34	Overburden
Line 049N	5+300	505879.5	6520718.0	35	Overburden
Line 049N	5+312.5	505871.6	6520727.7	50	Overburden
Line 049N	5+325	505863.7	6520737.4	40	Overburden
Line 049N	5+337.5	505855.9	6520747.1	35	Overburden
Line 049N	5+350	505848.0	6520756.8	40	Overburden
Line 049N	5+362.5	505840.1	6520766.6	33	Overburden
Line 049N	5+375	505832.3	6520776.3	40	Overburden
Line 049N	5+387.5	505824.4	6520786.0	44	Overburden
Line 049N	5+389	505816.6	6520795.7	46	Overburden
Line 049N	5+400	505808.7	6520805.4	40	Overburden
Line 049N	5+412.5	505800.8	6520815.1	48	Overburden

APPENDIX 6:

Max-Min and IP/Resistivity Survey Interpretation Report

A GEOPHYSICAL REPORT

<u>ON</u>

ELECTROMAGNETIC & INDUCED POLARIZATION SURVEYING

North Shore Property , Lake Athabasca, Northeastern Alberta 59° 05'N, 110° 35'W N.T.S. 74L15

FOR

STRATHMORE MINERALS CORP.

Kelowna, British Columbia

By

PETER E. WALCOTT & ASSOCIATES LTD.

Vancouver, B.C.

MARCH 2007

TABLE OF CONTENTS

INTRODUCTION	3
PROPERTY , LOCATION & ACCESS	4
PURPOSE	5
SURVEY SPECIFICATIONS	6
DISCUSSION OF RESULTS	8
SUMMARY, CONCLUSIONS & RECOMMENDATIONS	10

APPENDIX I

PERSONNEL EMPLOYED ON SURVEY

CERTIFICATION

GRID ON TOPOGRAPHY

ACCOMPANYING MAPS	MAP POCKET
Profiles of Inphase & Quadrature	1:5,000
I.P. Pseudo sections Lines 600, 800, 1000, 1200, 1900, 2100, 2300 2500, 2700, 2900, 3100, 3500, 3700 & 4100E	1:2,000
Contours of Apparent Resistivity n = 4	1:5,000
Contours of Apparent Chargeability $n = 4$	1:5,000

Peter E. Walcott & Assoc. Limited. Geophysical Services

INTRODUCTION.

Between October 25h and November 1st, 2006 Peter E. Walcott & Associates Limited undertook horizontal loop electromagnetic surveying (EM) over a grid on the North Shore property of Strathmore Minerals Corp., located in the northern shores of Lake Athabasca.

The survey was carried out over a small grid, the lines of which were run at an azimuth of 141°, established by line cutters, hired by Strathmore, over and around a pitchblende showing in a brecciated granitic unit, discovered on an earlier prospecting programme.

Measurements of inphase and quadrature were made every 25 metres along the picket lines using a Max-Min 1-10 system operating at frequencies of 880, 1760, 3520 and 7040 Hz. with a 200 metre coil separation.

After less than favourable responses were obtained on the EM survey induced polarization surveying was conducted in an effort to locate conductive targets and to examine the response of the showing.

Measurements – first to sixth separation – of apparent resistivity and chargeability – the I.P. response parameter – were made every 25 metres along the 200 metre spaced lines using a 25 metre dipole.

The results of the EM survey are presented as profiles on a plan map of the grid, whereas those of the I.P. survey are presented as individual pseudo-sections of the lines traversed.

The progress of the survey was somewhat hampered by inclement weather, where icing, fog and snow showers caused the helicopter to be grounded on several occasions.

Peter E. Walcott & Assoc. Limited. Geophysical Services

PROPERTY, LOCATION & ACCESS.

The property is located on the north shore of Lake Athabasca in the province of Alberta.

It is situated some 15 kilometres west of Fort Chipewyan, Alberta.

Access for the survey was obtained using a helicopter from Fort Chipewyan where the survey crew lodged for the duration of the survey.

Peter E. Walcott & Assoc. Limited. Geophysical Services

PURPOSE.

The purpose of the EM survey was to see if any conductive material was associated with the pitchblende showing, thought to be somewhat graphitic, with an eye to using this response to define other conductive areas on the property in the underlying granitoids.

That of the I.P. survey – resistivity and chargeability – was also to examine the conductivity associated with the showing, and to search for other areas of lower conductivity, that might be indicative of alteration, known to be associated with unconformity and sub-unconformity type uranium deposits.

Peter E. Walcott & Assoc. Limited. Geophysical Services

SURVEY SPECIFICATIONS.

Electromagnetic survey.

The basic principle of any electromagnetic survey is that when conductors are subjected to primary alternating fields secondary magnetic fields are induced in them. Measurements of these secondary fields give indications as to the size, shape and conductivity of conductors. In the absence of conductors no secondary fields are obtained.

The survey was carried out using a Max-Min 1-10 electromagnetic unit manufactured by Apex Parametrics of Metropolitan Toronto, Ontario.

Readings of the in phase and quadrature components of the secondary field were made with the coils in the coplanar mode, i.e. maximum coupled, every 25 metres along the picket lines at frequencies of 880, 1760, 3520 & 7040 Hz. using a coil separation of 200 metres.

Corrections for topography were made using the % slope between each 25 metre station measured by the receiver operator using a handheld clinometer.

In all some 13.2 kilometres of traversing were completing using this method.

Induced Polarization Surveying.

The resistivity survey was conducted using a pulse type system, the principal components of which are manufactured by GDD Instrumentation of Quebec City, Canada and Iris Instruments of Orleans, France.

The system consists basically of three units, a receiver (Iris), transmitter (GDD) and a motor generator (Honda). The transmitter, which provides a maximum of 3.6 kw d.c. to the ground, obtains its power from a 6.5 kw single phase alternator driven by Honda 13 h.p. gasoline engine. The cycling rate of the transmitter is 2 seconds "current-on" and 2 seconds "current-off" with the pulses reversing continuously in polarity. The data recorded in the field consists of careful measurements of the current (I) in amperes flowing through the current electrodes C_1

Peter E. Walcott & Assoc. Limited. Geophysical Services

SURVEY SPECIFICATIONS cont'd

and C_2 , the primary voltages (V) appearing between any potential electrodes, P_1 through P_7 , and the apparent chargeability, (M_a) presented as a direct readout in millivolts per volt using a 200 millisecond delay and a 1000 millisecond sample window by the receiver, a digital receiver controlled by a micro processor – the sample window is actually the total of ten individual windows of 100 millisecond widths.

The apparent resistivity (f_a) in ohm metres is proportional to the ratio of the primary voltage and the measured current, the proportionality factor depending on the geometry of the array used. The resistivity is called apparent as it is a value which that portion of the earth sampled would have if it were homogeneous. As the earth sampled is usually inhomogeneous the calculated apparent resistivity is a function of the actual resistivity of the rocks.

The survey was carried out using the "pole-dipole" method of surveying. In this method the current electrode, C_1 , and the potential electrodes, P_1 through P_7 , are moved in unison along the survey lines at a spacing of "a" (the dipole) apart, while the second current, C_2 , is kept constant at "infinity". The distance, "na" between C_1 and the nearest potential electrode generally controls the depth to be explored by the particular separation, "n", traverse.

On this survey a 25 metre dipole was employed and first to sixth separation readings were obtained. In all some 12.0 kilometers of resistivity and chargeability traversing were completed.

Data Presentation.

The EM data are presented as profiles of the in phase and quadrature components of the respective frequencies on plan maps of the lines surveyed.

The I.P. data are presented as individual pseudo section plots of apparent resistivity and chargeability at a scale of 1:2000. Plots of the 21 point moving filter – illustrated on the pseudo-section – for the above are also displayed in the top window to better shoe the location of the anomalous zones.

In addition contour plots of the fourth separation -n=4 – of resistivity and chargeability are shown on plan maps of the grid at 1:5000.

Peter E. Walcott & Assoc. Limited. Geophysical Services

DISCUSSION OF RESULTS.

The grid can essentially be divided into two with a 600 metre gap between them caused by swamp and open water as can be seen on the outline of the grid on the topographic map.

No E.M. response was obtained over the showing on Line 800E.

A very weak conductor – only quadrature response – can be seen striking across the lines from 2900E to 4100E between 4800 and 5000N.

Some conductivity responses – undefined – can be seen at the southern extremities of Lines 4700 & 4900E.

Some in phase responses are also noted on Lines 0 and 200E as seen by the complex pattern there. These would have to be investigated with a shorter coil spacing for better resolution of the causative sources.

No resistivity low indicative of higher conductivity was observed over the showing on Line 800E. In fact the showing is located in an area of very high resistivity indicative of unfractured unaltered rocks – resistivities in the order of 50,000 ohm metres.

However a small low amplitude shallow chargeability response is noted here. This may be traced from Line 600E to 1200E by studying the respective pseudo sections but it does not show on the plan maps of the fourth separation contoured results.

The resistivities were very high over the entire grid(s) as could be expected from the sub outcropping basement rocks.

A narrow resistivity low can be send trending across the western grid from 5275 N on Line 600E to 5300N plus on Line 1200E – not defined here – indicated by the typical pant-leg pattern with the pulldown towards the pole on the respective pseudo sections. This can also be seen on the plan map of apparent resistivity, and is probably representative of a fault and/or shear zone. Higher chargeabilities appear to be associated with it.

There does not appear to be much line to line correlation of any feature on Lines 1900, 2100 & 2300E as seen on the respective pseudo sections. This would suggest that the lines here could be paralleling the geology as illustrated on the contoured plan maps.

Peter E. Walcott & Assoc. Limited. Geophysical Services

DISCUSSION OF RESULTS cont'd

An area of lower resistivity can be seen trending across the grid between 2500E and 3500E as shown on the plan map of the contoured resistivity. This zone has a stronger response on the narrower separations and is somewhat coincident with the weak EM response previously discussed. No chargeability responses are directly related to it.

Lines 3700 and 4100E show a similar resistivity pattern with higher resistivities overlying lower ones on the southern portion of the lines.

Overall the chargeability pattern is one of single or two dipole highs with limited line to line correlation on the eastern grid. However a zone of higher chargeability undefined to the north is clearly discernible at the northern end of Lines 2500 to 2900E as illustrated on the respective pseudo sections and the contoured plan of apparent chargeability.

Peter E. Walcott & Assoc. Limited. Geophysical Services

SUMMARY, CONCLUSIONS & RECOMMENDATIONS.

Between October 25th and November 16th, 2006, Peter E. Walcott & Associates Limited conducted electromagnetic and induced polarization surveying over a part of the North Shore property of Strathmore Minerals Corp., located on the north shore of Lake Athabasca.

The surveys were carried out on a grid established over a recently discovered pitchblende showing on the property.

No E.M. response was obtained over the showing. In fact no E.M. response indicative of well defined conductive features was observed on the grid.

No resistivity response that could be related to the showing was observed. However a weak chargeability response was obtained.

Several resistivity and generally unrelated chargeability responses were seen on the lines traversed. These could be compared with the spectrometer survey results and with those obtained from the sampling survey to see if the aforementioned responses warrant further work.

Respectfully submitted,

PETER E. WALCOTT & ASSOCIATES LIMITED

Peter E. Walcott, P.Eng. Geophysicist

Vancouver, B.C. March 2007

Peter E. Walcott & Assoc. Limited. Geophysical Services

<u>APPENDIX I</u>

Peter E. Walcott & Assoc. Limited. Geophysical Services

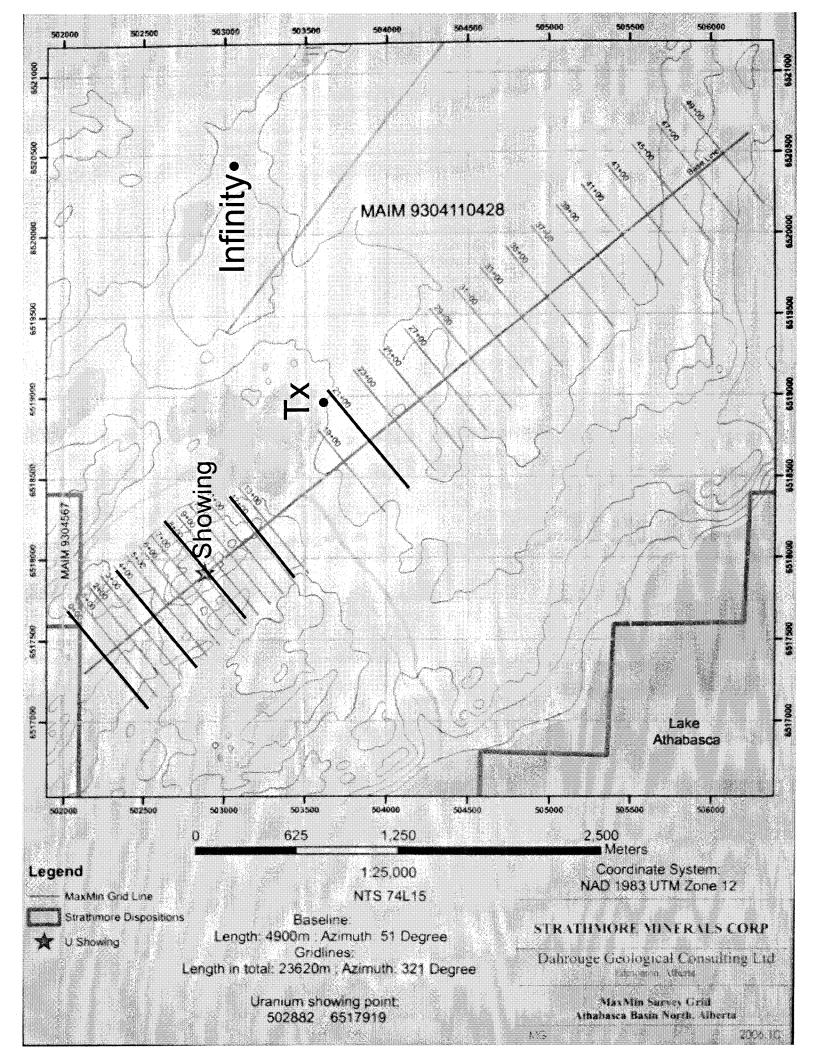
Name	Occupation	Address	Dates
Peter E. Walcott	Geophysicist	Peter E. Walcott & . Associates Limited 506-1529 W, 6 th Ave. Vancouver, B.C.	Oct. 25 th – 29th st , 2006 Feb. 20 th , 07 Mar. 13 th , 2007
Alexander Walcott	"	"	Nov. 18-24 th , 06
M. Welz	"	"	Oct. 25 ^{th-} Nov. 16 th , 2006
A. Stegner	Geophysical Operator	دد	"
J. Wiech	"	"	Nov. $1^{st} - 16^{th}$ 2006
J. Walcott	Report preparation	۲۵	March 14 th , 2007

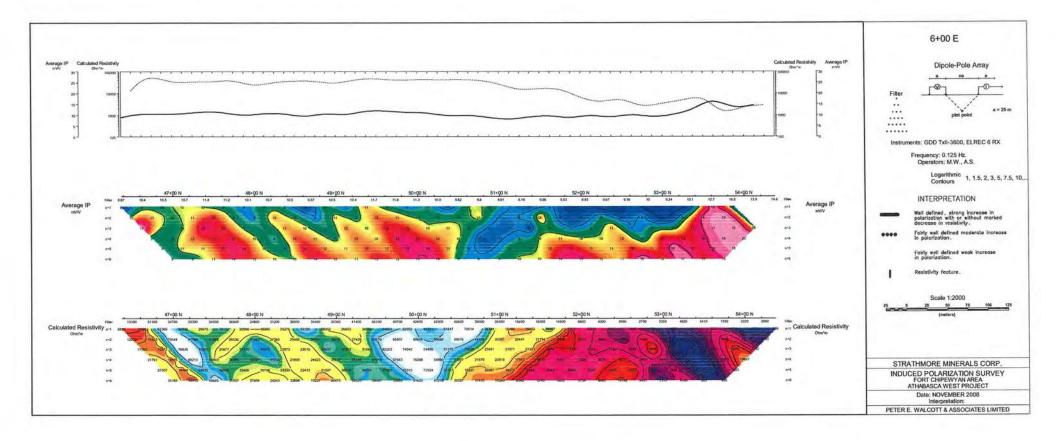
PERSONNEL EMPLOYED ON SURVEY.

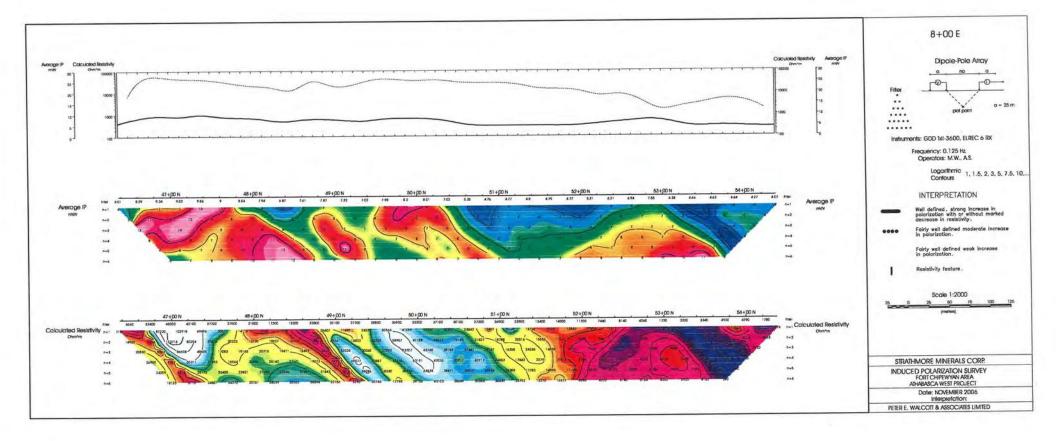
Peter E. Walcott & Assoc. Limited. Geophysical Services

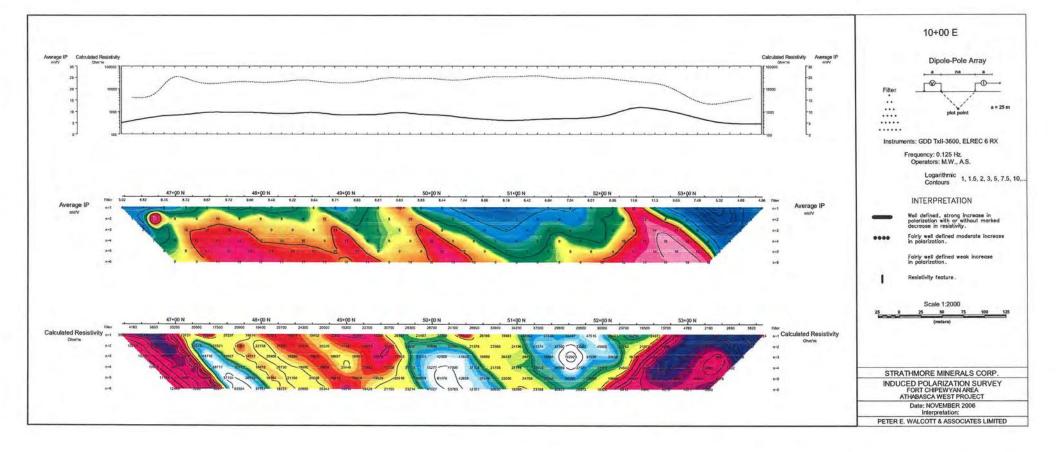
CERTIFICATION.

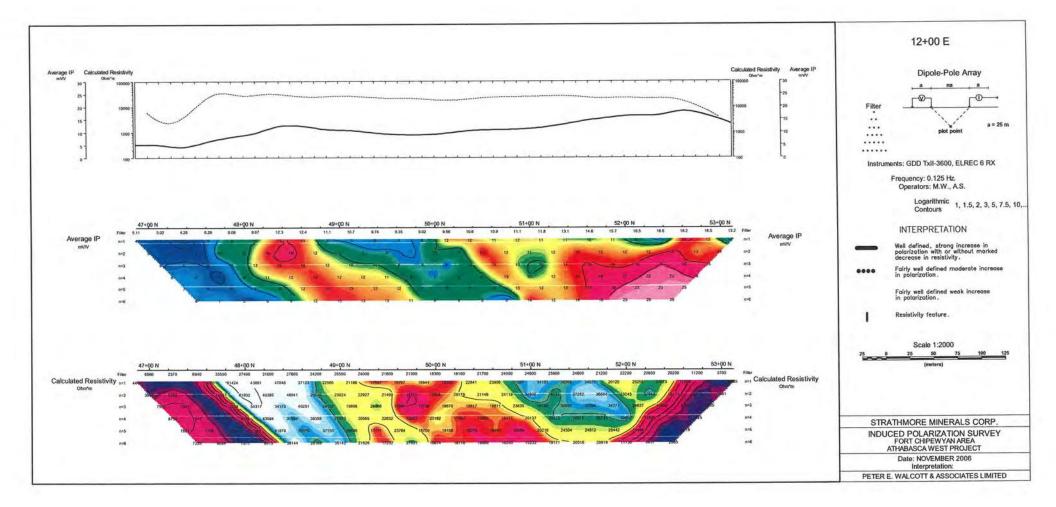
I. Peter E. Walcott, of 605 Rutland Court, Coquitlam, British Columbia, Canada, hereby certify that:

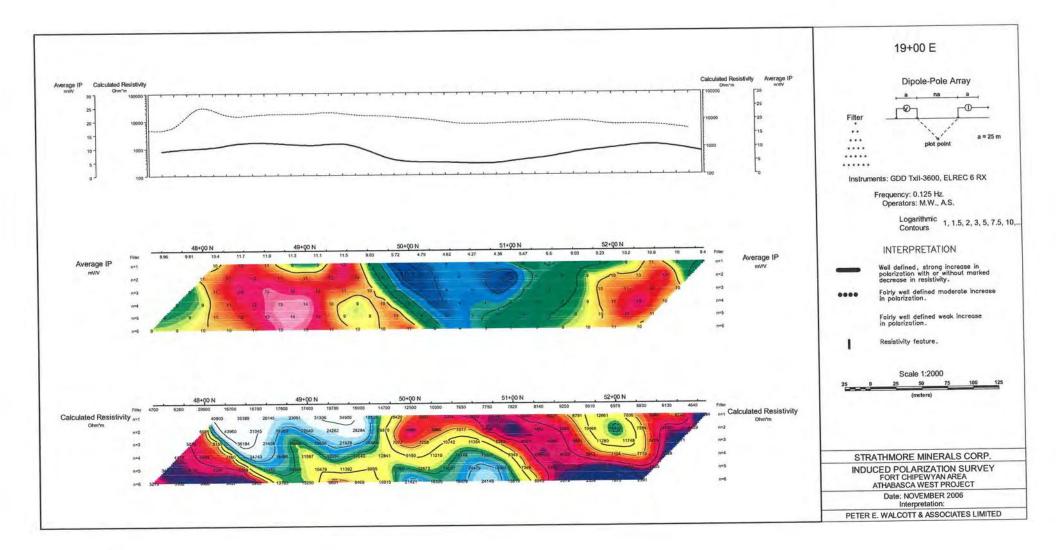

- 1. I am graduate of the University of Toronto in 1962 with a B.A.Sc. in Engineering Physics, Geophysics Option.
- 2. I have been practicing my profession for the last forty four years.
- 3. I am a member of the Association of Professional Engineers of British Columbia and Ontario.
- 4. I hold no interest, direct or indirect in Strathmore Minerals Corp., nor do I expect to receive any.

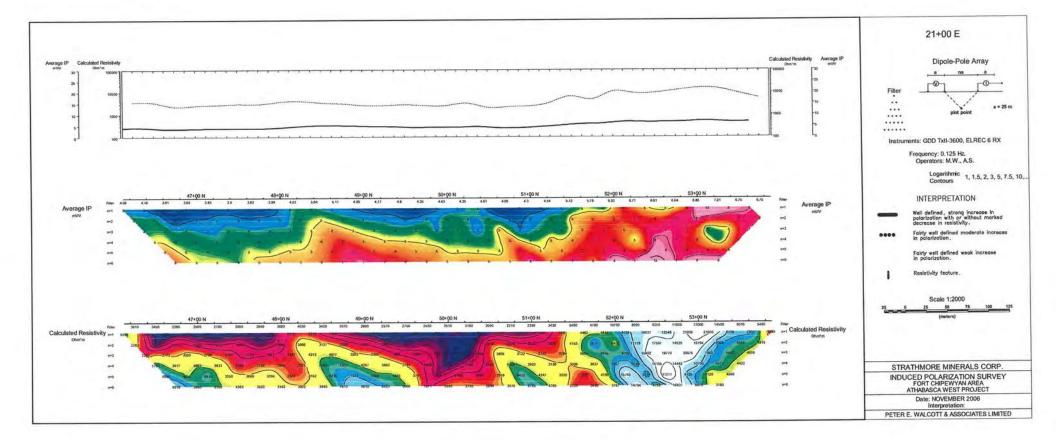

Peter E.Walcott, P.Eng.

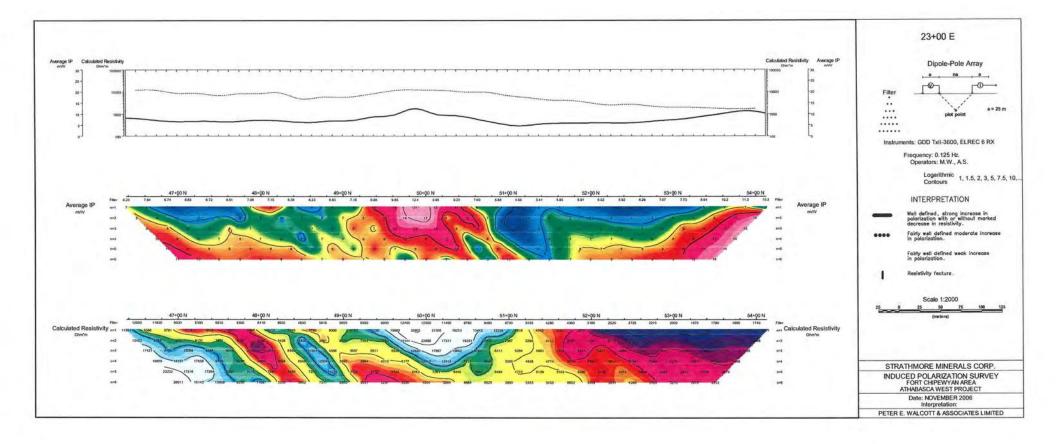

Vancouver, B.C.

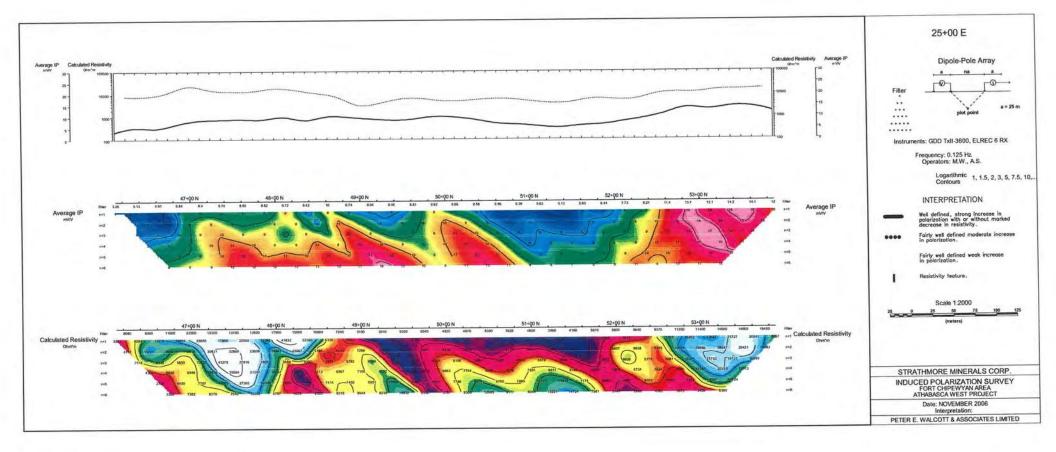

March 2007

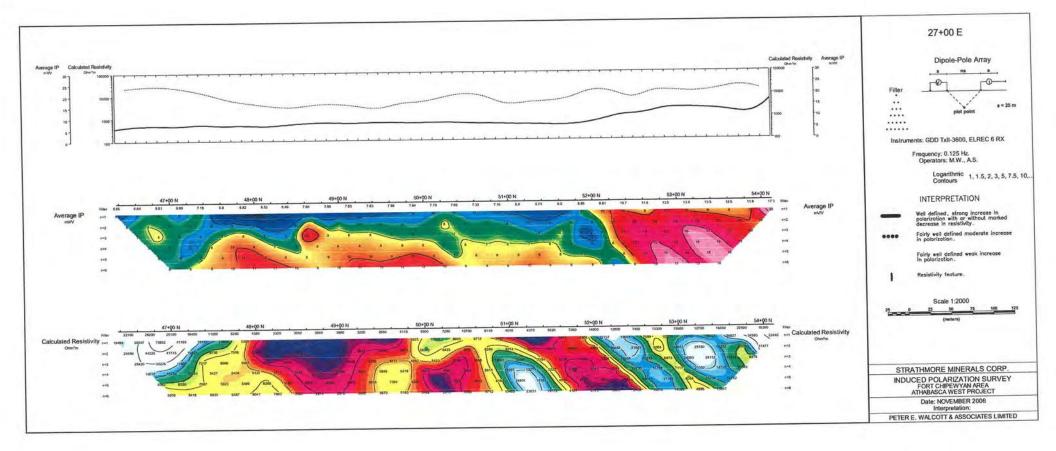

Peter E. Walcott & Assoc. Limited. Geophysical Services

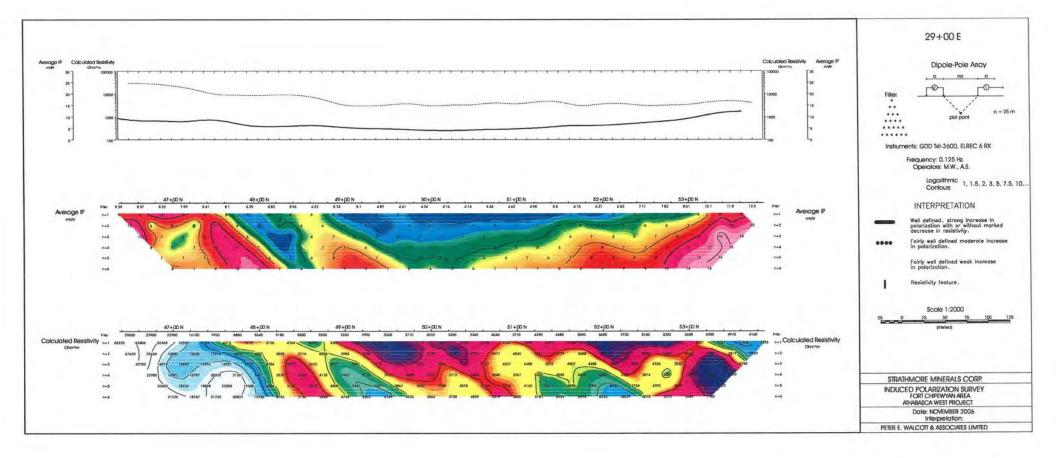


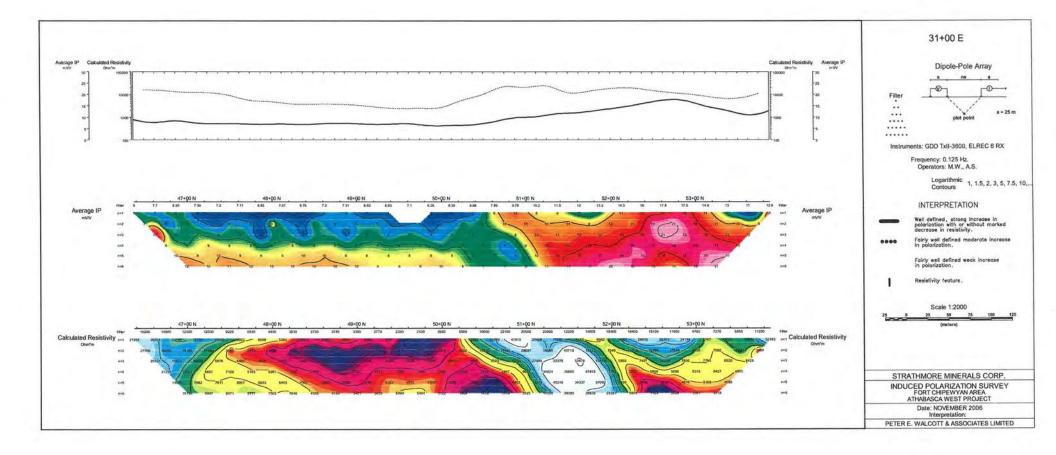


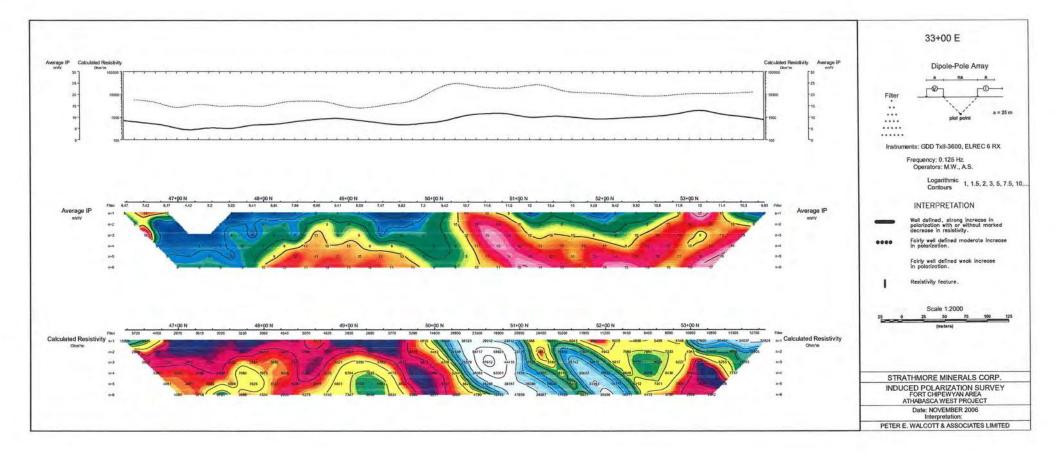


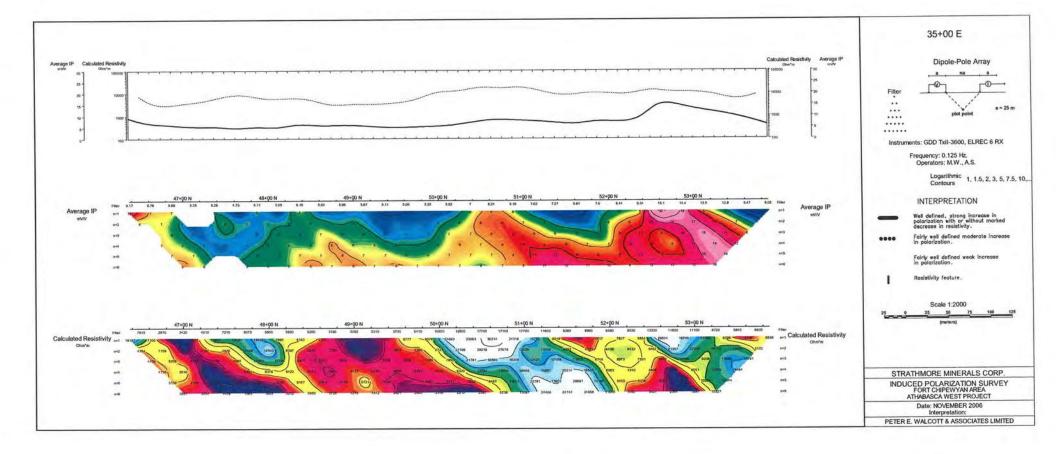


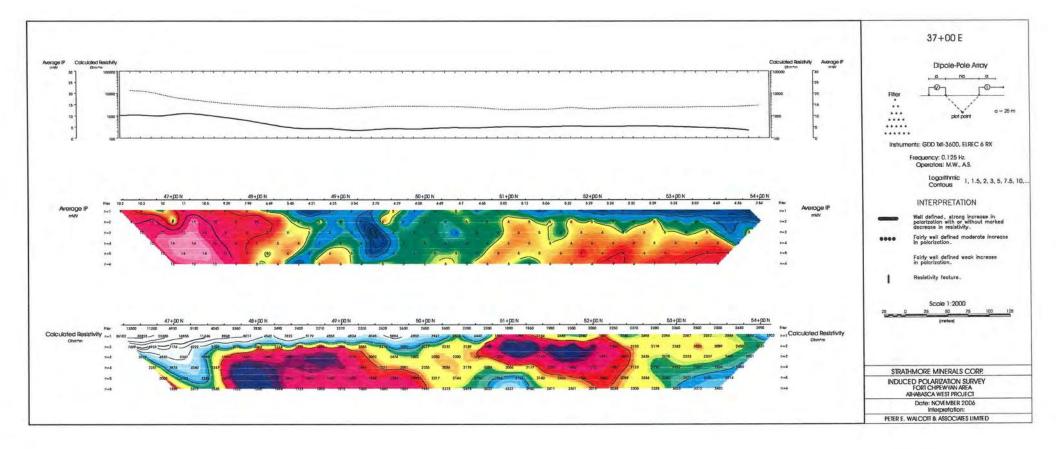


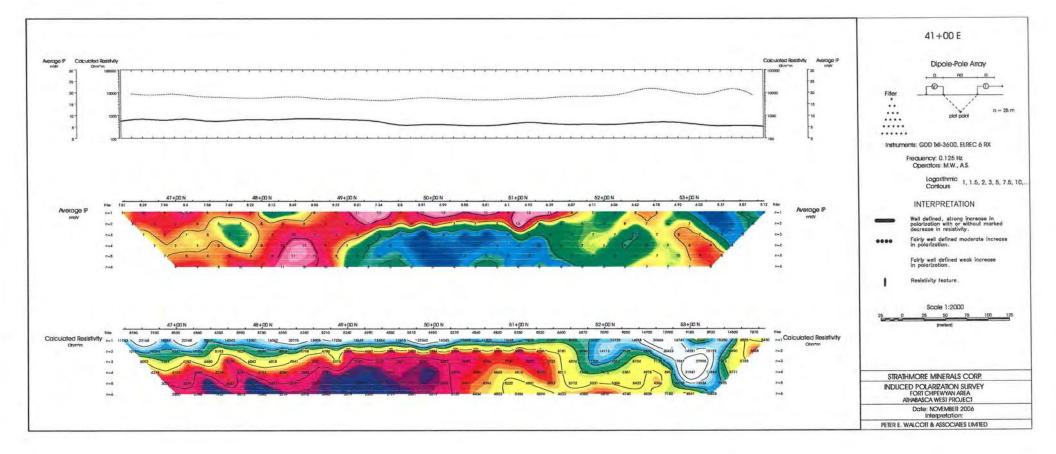


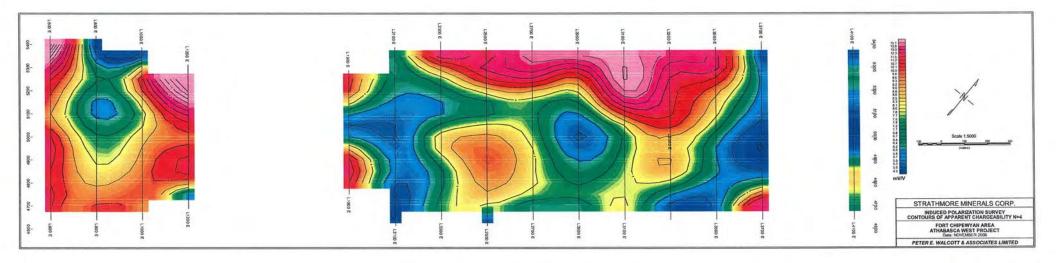


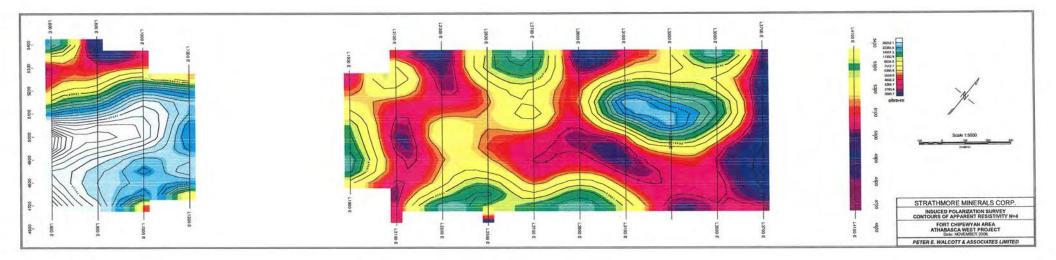


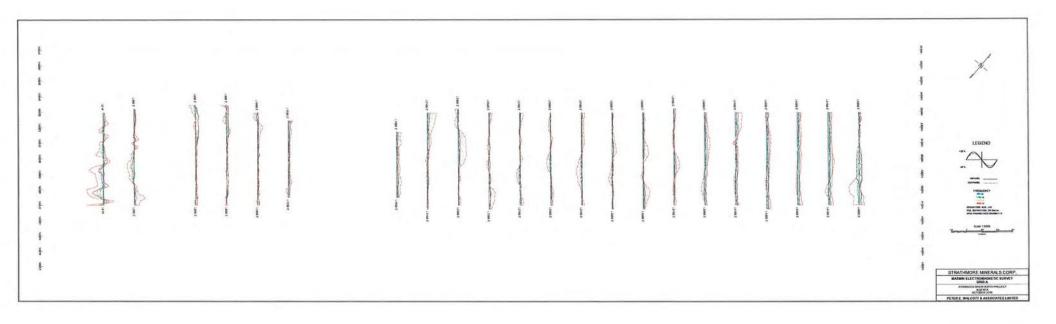












APPENDIX 7:

Terraquest VLF/Magnetic Survey Operations and Interpretation Reports

TERRAQUEST LTD.

Operations Report for STRATHMORE MINERALS CORP.

High Resolution Horizontal Magnetic Gradient & XDS-VLF-EM Airborne Survey Athabasca North Project Fort Chipewyan, Alberta

March 7, 2007

Report #: B-207

Requested by: Mr. Jody Dahrouge Dahrouge Geological Consulting Ltd.

> Prepared by: Charles Barrie, Managing Partner **Terraquest Ltd.**

Terraquest Ltd., Airborne Geophysical Surveys. - Contract B-192 2007-03-07

Table of Contents

2. SURVEY SPECIFICATIONS	2
2.1. LOCATION	
이는 것같은 것이 잘 하는 것을 하는 것을 수 있는 것을 수 있는 것을 하는 것을 수 있는 것이 같이	5
	6
· 영양한 것	
CDS Data	0
	6
2.7. NAVIGATION AND RECOVERY	
3. AIRBORNE GEOPHYSICAL EQUIPMENT	7
3.1. SURVEY AIRCRAFT	
A A FOURD (ENT OVERVIEW	
CEONINGICAL FOULMENT SPECIFICATIONS	
1 Manufan	
2 Monumentar Counter	
2 VDS VIE EM Sustem	
1 Tri-Arial Flurgate Magnetic Sensor	
5 Analog Processor	
6 Data Acquisition System	
7 Boal Time Correction GPS Receiver	
9 Navigation System	
0 Padar Altimeter	
10 Berometric Altimeter	
11 Video Comara	
12. Video CD Recorder	
4. BASE STATION EQUIPMENT	
4.1. BASE STATION MAGNETOMETER	
5. TESTS AND CALIBRATIONS	
5.1. MAGNETIC FIGURE OF MERIT	15
5.2. MAGNETIC LAG TEST	15

-11

6.	LOGISTICS
6.1.	PERSONNEL
6.2.	FIELD OPERATIONS16
6.3.	BASE OF OPERATIONS
6.4.	ACCOMMODATION17
6.5.	FUEL
7.	DATA PROCESSING
7.1.	DATA QUALITY CONTROL
7.2.	FINAL MAGNETIC DATA PROCESSING
7.3.	FINAL VLF-EM DATA PROCESSING
7.4.	LIST OF FINAL PRODUCTS
8.	SUMMARY
9.	APPENDICES
9.1.	CERTIFICATE OF QUALIFICATION
9.2.	DAILY LOG

Ī

1. INTRODUCTION

This report describes the specifications and parameters of an airborne geophysical survey carried out for:

STRATHMORE MINERALS CORP.

810 – 1708 Dolphin Ave., Kelowna, BC V1Y 9S4

Attention: Mr. Patrick Groening, CFO Phone: 250-868-8445 Fax: 250-868-8493 Email: info@strathmoreminerals.com

The survey was performed by:

TERRAQUEST LTD.,

2-2800 John Street, Markham, ON, Canada L3R 0E2 Ph: 905-477-2800 ext. 22 howard@terraquest.ca.

The purpose of the survey of this type is to collect geophysical data that can be used to prospect directly for anomalous magnetic and conductive areas in the earth's crust which may be caused by or related to economic minerals. Secondly, the geophysical patterns can be used indirectly for exploration by mapping the geology in detail, including faults shear zones, folding, alteration zones and other structures.

To obtain this data, the area was systematically traversed by aircraft carrying geophysical equipment along parallel flight lines spaced at even intervals and oriented so as to intersect the geology and structure in a way as to provide optimum contour patterns of the geophysical data.

2. SURVEY SPECIFICATIONS

2.1. LOCATION

The general survey area is located in northeastern Alberta along the western shore of Lake Athabasca, immediately north of the settlement of Fort Chipewyan. It is irregular in shape with a long axis of approximately 110 kilometres southwest to northeast. The centre of the block is located at approximately 59 degrees 10 minutes north and 110 degrees 30 minutes west.

Wrig	lley NOI Lac la	RTHWEST	A CONTRACTOR OF A STATE	Thelon Game, Sanctuary	76. 3
	Martre	Rae Yellowkni	fe Relia	nce	Padlei
Fort Simpson	Mills Lake	CAN	Lutselk'e	A Engl	NUNAVUT
Fort Liar	d Hay River Enterprise	Buffalo River			Ennadai
Toad River Post Summit Lake	Linner H	n Cabins lay River		SHORE PROJECT	print
Fontas Sikanni	High L Fort Vermilion	PL 4	Chipewyan mbarras ortage	Wollaston Lake Post	Brochet
BRITISH COLUMBIA Fort St. John	Peace River ALB	Bitumount Fort MacKay	1945	Cree Lake Sandy Lake SKATCHEWAN	Kinoosao Lynn Lake Thompson
Chetwynd Eagl McLeod Lake	esham A High Prairie Jou	tikameg ssard Conklin	Dillon Buffalo Narrows	Irnor Lake Pelican La Ronge Narrows	Pukatawagan
Prince George	Drairie	ftpile Plamondon Mea	adow Lake	Molanosa Narrows	Flin Flon Cranberry Portage

2.2. LINE SPECIFICATIONS

Parameter	Specification	Instrument Precision
Sampling Interval	6m (10Hz)	
Survey Line Interval / Direction	200m / 90-270 degrees	+/- 3m
Control Line Interval / Direction	4 km / 000-180 degrees	+/- 3m
Aircraft MTC Block East	70 metres	+/- 5m

2.3. SURVEY KILOMETRAGE

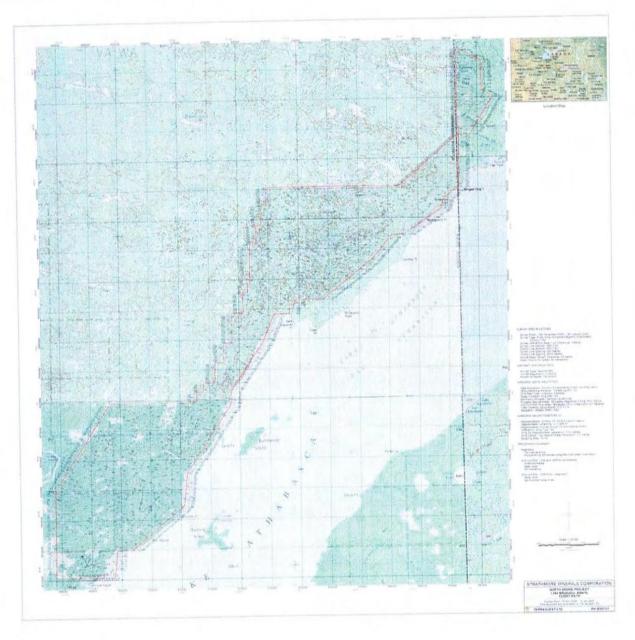
Survey Kilometers:	
Survey Lines	7,649 km
Control Lines	390 km
Total	8,039 km

2.4. NAVIGATION SPECIFICATIONS

The following is the navigation file showing map projection, corner coordinates and line parameters. (WGS84, zone 12)

```
0
  B207-L
1
   Z 12
2
    489071.64 6510344.15
                                AREA CORNER 01
               6524986.81
2
     489030.40
                                 AREA CORNER 02
2
    498269.71 6539546.97
                                AREA CORNER 03
2
    501569.46 6539505.72
                                AREA CORNER 04
2
     511716.20 6539505.72
                                AREA CORNER 05
    511716.20 6539794.45
                               AREA CORNER 06
2
2
    512829.87
               6539835.70
                                AREA CORNER 07
2
    512788.62
               6541320.59
                               AREA CORNER 08
2
    513902.29
               6541361.83
                                AREA CORNER 09
2
    513943.53
               6542846.72
                                AREA CORNER 10
2
    515882.14
               6542846.72
                                AREA CORNER 11
2
               6546187.72
                                 AREA CORNER 12
    515923.39
2
     517367.03
               6546228.97
                                AREA CORNER 13
2
    517367.03
                6549446.23
                                AREA CORNER 14
2
                                AREA CORNER 15
    518769.42
                6549446.23
2
    518769.42 6554437.10
                                AREA CORNER 16
2
    520790.52 6554395.86
                                AREA CORNER 17
2
    520625.53 6557819.35
                                AREA CORNER 18
2
    521491.72 6557819.35
                                AREA CORNER 19
2
    521532.97 6559221.75
                                AREA CORNER 20
2
    521862.94 6559221.75
                                 AREA CORNER 21
```

Terraquest Ltd., Airborne Geophysical Surveys Contract: B-207 2007-03-07


Operations Report for Strathmore Miner	rals Corp.:
Aeromagnetic & XDS VLF-EM Survey,	Athabasca North Survey, Alberta

2	521904.19	6565780.01	AREA CORNER 22
	523017.86		AREA CORNER 23
2		6569038.51	AREA CORNER 24
2		6569079.76	AREA CORNER 25
2	523801.55	6572462.01	AREA CORNER 26
2	524708.98		AREA CORNER 27
2	524708.98	6575390.54	AREA CORNER 28
2	526018 07	6575431.78	AREA CORNER 29
2	536310.07	6597952.60	AREA CORNER 30
2	556592.84		AREA CORNER 31
2	556592.04	6583804.91	AREA CORNER 32
2	556592.04	6583846.16	AREA CORNER 33
2	556840.35	6505040.10	AREA CORNER 34
2	556/99.08	6575184.30 6573121.96	AREA CORNER 35
2	554159.28	6573121.90 6573554 57	AREA CORNER 35
2	553870.55	6571554.57	AREA CORNER 37
2	547601.02	6567223.65	AREA CORNER 37
2	545621.17		AREA CORNER 38
2 2	542238.92	6563140.20	AREA CORNER 39
2	533989.54	6556540.70	AREA CORNER 40
2	529246.14	6556540.70	AREA CORNER 41
2	529287.39	6555674.51	AREA CORNER 42
2	528379.95	6555757.01	AREA CORNER 43
2	528379.95	6554230.87	AREA CORNER 44
2	525781.40	6554230.87 6554189.62	AREA CORNER 45
			AREA CORNER 46
2	521862.94		AREA CORNER 47
2	518563.19	6541403.08	AREA CORNER 48
2	518563.19	6539258.24	AREA CORNER 49
2	511097.50	6527750.35	AREA CORNER 50
2	510561.29	6522347.00	AREA CORNER 51
2	501734.45		AREA CORNER 52
2	499259.63	6514963.81	AREA CORNER 53
2	498805.92	6510426.65	AREA CORNER 54
3	541560.0	5475250.0 SW	WAYPOINTS 1
4	326		NUMBER OF LINES
5	200.0		SPACING, m.
6		6510579.00	MASTER LINE BL
		6510579.00	MASTER LINE TL
8	75		MAX CROSS TRACK, m.
9	0 0		DELTA X/Y/Z
10			LOG FPR EVERY 1 SECS
11	0.9996000000	0.0	0.0 KO, X/Y SHIFT
14			LINES EXTENDED BEYOND AREA
	10		
17	501794 00	6514979 00 270	.00 MASTER POINT, HEADING
20	WGS-84	6378137.0 298.	257223563 22 ELLIPSOID
21	0	05/015/10 2001	NO EQUATORIAL CROSSING
	20		RS-232 PORT 2 INCOMING FORMAT
30			RS-232 PORT 1 OUTGOING FORMAT
31			METRIC SYSTEM
38			RACE TRACK
39			SYSTEM LAG, Sec.
41			
80			PLANNED ALTITUDE, units
-			GPS ALTITUDE FOR VERTICAL BAR
83			
85	0 100 2 UTM		MAX VERTICAL BAR SCALE UTM X/Y SCALE

Terraquest Ltd., Airborne Geophysical Surveys Contract: B-207

2007-03-07

2.5. FLIGHT PLAN

2.6. TOLERANCES

1. Traverse Line Interval

Reflights would take place if the final corrected flight path was greater than 30 m. from the intended flight path over a distance greater than 1 kilometre.

2. Terrain Clearance:

The aircraft mean terrain clearance was 70 metres MTC +/- 10 metres.

3. Diurnal:

Diurnal activity was limited to 5 nT deviation from 60 sec. chord.

4. GPS Data:

GPS data shall include at least four satellites for accurate navigation and flight path recovery. There shall be no significant gaps in any of the digital data including GPS and magnetic data.

2.7. NAVIGATION AND RECOVERY

The satellite navigation system was used to ferry to the survey sites and to survey along each line. The survey coordinates were measured from the claim map and were used to establish the survey boundaries and the flight lines.

The flight path guidance accuracy is variable depending upon the number and condition (health) of the satellites employed. The selective availability normally imposed by the military was at a minimum during this period and consequently the accuracy was for the most part better than 10 metres. Real-time correction using the Trimble receiver and Omnistar broadcast services improves the accuracy to about 3 metres or less in the horizontal plane and 4-5 metres in the vertical direction.

A video camera recorded the ground image along the flight path with CD-ROM media. A video display screen in the cockpit enabled the operator to monitor the flight path during the survey.

The video flight path is in a new format as it is recorded directly onto CD's. In order to record the immense volume of video data in a given time period, the image was compressed in real time as it was recorded using software by the name of DVIX. Windows Media Player cannot play these images without the appropriate driver; this can be done easily by downloading DVIX Player at no cost from www.DVIX .com and once installed one can use either DVIX or, better yet Windows Media Player (which has controls for focusing the image).

3. AIRBORNE GEOPHYSICAL EQUIPMENT

3.1. SURVEY AIRCRAFT

The survey aircraft was a Cessna U206, registration C-GGLS, owned and operated by Terraquest Ltd. under full Canadian Ministry of Transport approval and certification for specialty flying including airborne geophysical surveys. The aircraft is maintained at base operations by a regulatory AMO facility, Leggat Aviation Inc.

The aircraft has been specifically modified with long-range fuel cells to provide up to 7 hours of range, outboard tanks, tundra tires, cargo door, and avionics as well as an array of sensors to carry out airborne geophysical surveys. The cost of the fuel has been included in the line rate km.

Cessna U206 configured with Horizontal Gradiometer

3.2. EQUIPMENT OVERVIEW

The primary airborne geophysical equipment includes three high sensitivity cesium vapour magnetometers and an XDS VLF-EM system. Ancillary support equipment includes a tri-axial fluxgate magnetometer, video camera with CD recorder, radar altimeter, barometric altimeter, GPS receiver with a real-time correction service, and a navigation system. The navigation system comprises a left/right indicator for the pilot and a screen showing the survey area, planned flight lines, and the real time flight path. All data were collected and stored by the data acquisition system. The following is a summary of the equipment specifications:

Aircraft	Cessna U206 / C-GGLS	
Equipment:		
Magnetometers	CS-2&3 Cesium Vapour	
3-axis Magnetometer	TFM100-LN	
VLF-EM	XDS-VLF-EM	
GPS Receiver	Trimble AgGPS132	
Radar Altimeter	King KRA 10A	
Barometric Altimeter	Sensym LX18001AN	
Navigation	P2001	
Tracking Camera	Sanyo VCC5774 (Colour)	
Specifications:		
Lateral Sensor separation	13.5 metres	
Longitudinal Sensor separation	7.2 metres	
FOM	<1.5 nT	
Sensitivity	0.001 nT	

The 13.75 volts aircraft power is converted to 27.5 volts DC for the geophysical equipment by an ABS power supply.

3.3. GEOPHYSICAL EQUIMENT SPECIFICATIONS

1. Magnetics:

Three high-resolution cesium vapour magnetometers, manufactured by Scintrex, were mounted in a tail stinger and two wing tips extensions; the transverse separation was 13.5 metres and the longitudinal separation was 7.2 metres.

Cesium Vapour Magnetometer Sensor	(mounted in tail stinger and wing tip extensions)
Manufacturer	Scintrex
Models	CS-2, CS-3
Resolution	0.001 nT counting at 0.1 per second
Sensitivity	+/- 0.005 nT
Dynamic Range	15,000 to 100,000 nT
Fourth Difference	0.02 nT

2. Magnetometer Counter

Magnetometer Processor	(Stand Alone Unit)
Model	KMAG
Manufacturer	KROUM VS Instruments Ltd.
Input Range	3 ms – 10,000 ms
Input	Four decouplers, four counters, GPS, pps signal
Sampling	10ms to 1,000ms
Bandwidth	No filtering
Resolution	0.005 nT
Ports	Two RS232 ports, one to GPS receiver, one to DAS instrument time, GPS, and up to 4 magnetic fields in pT
Output	Instrument time, GPS, and up to 4 magnetic fields in pT

3. XDS VLF-EM System

The XDS VLF-EM System is a recently developed VLF system. It uses 3 orthogonal coils mounted in the pod of the tail stinger, and coupled with a receiver-console, tuned to a bandwidth of 22-26 kHz which includes both Cutler Maine NAA frequency 24 kHz and Seattle, WA NLK frequency 24.8 kHz. Recorded parameters are the separate X, Y and Z coils.

VLF / EM	
Model	XDS
Manufacturer	Terraquest Ltd.
Primary Source	Magnetic field component radiated from government VLF radio transmitter
Parameters Measured	X, Y and Z components, absolute field
Frequency Range	22.0 - 26.0 kHz
Gain	Constant gain setting
Filtering	No filtering

4. Tri-Axial Fluxgate Magnetic Sensor

The fluxgate tri-axial magnetometer was mounted in the rear of the aircraft cabin to monitor aircraft manoeuvre and magnetic interference. This was used to post-flight compensate the high sensitivity data.

Tri-Axial Fluxgate Magnetic Sensor	(for compensation, mounted in mid-section of tail stinger)
Model	TFM100-LN
Manufacturer	Billingsley Magnetics
Description	Low noise miniature triaxial fluxgate magnetometer
Axial Alignment	> Orthogonality > +/- 0.5 degree
Accuracy	< +/- 0.75% of full scale (0.5% typical)
Field Measurement	+/- 100,000 nanotesla
Linearity	< +/- 0.0035% of full scale
Sensitivity	100 microvolt/nanotesla
Noise	< 14 picotesla RMS/–Hz @ 1 Hz

5. Analog Processor

Model	KANA8 (stand alone unit)
Manufacturer	KROUM VS Instruments Ltd
Analog Processor Set-up	Two KANA8's (total 16 differential analog channels) 24 bit capability, sample at 10Hz, resolution set to 1mV, also provides video overlay showing GPS time and lat/longitude

6. Data Acquisition System

Data Acquisition System	Records digital data from all sensors (including GPS, MAG, and altimeter)
Model	iPAQ 2410 Pocket PC
Manufacturer	HP
Serial Number	071-1114-00
Operating System	Microsoft Windows Pocket 2003
Processor	Samsung(2410) 203 Mhz processor
Memory	32 MB SDRAM, 32 MB ROM including iPAQ file store to protect critical data and files
I/O Slots	Built in SDIO slot
Software	SDAS by Kroum VS Instruments Ltd.
Display	3.5" transflective QVGA TFT colour display
Graphic Display	Scrolling analog chart with 4 windows operator selectable. Data is recorded in parallel for backup on Avertec laptop using hyper-terminal

7. Real-Time Correction GPS Receiver

The GPS receiver receives data from both the normal suite of navigational satellites to calculate the position of the aircraft, plus a specific beam from the Omnistar satellite which provides a real-time correction service (annual service subscription). This correction is applied to the positional information in real-time and improves the positional accuracy from approximately 10 metres to less than 3 metres.

GPS Differential Receiver	
Model	AgGPS132
Manufacturer	Trimble
Serial Number	02240-02249
Output	NMEA string, PPS
Channels	12 Channel DPGS, internal L-band
Position Update	0.5 second for navigation
Correction Service	Real time correction service subscription – Omnistar
Sample Rate	Up to 10hz, set at 5 hz
Broadcast Services	Omnistar Correction Service (AMSC) L band Broadcast (1556.8250 Mhz satellite band)

8. Navigation System

Navigation System	
Model	PNAV 2001
Supported by	AGNAV Inc.
Operating System	MSDOS
Microprocessor	CPU Pentium based
Ports	PCMIA for data storage and retrieval, COM ports for data input
Graphic Display	LCF TFT color display, sun readable touch screen controls
Pilot Display	position, left/right, pilot indicator
Data Inputs	Real Time processing of GPS output data

9. Radar Altimeter

Radar Altimeter	
Model	KRA-10A
Manufacturer	King
Serial Number	071-1114-00
Accuracy	5% up to 2,500 feet
Calibrate Accuracy	1%
Output	Analog for pilot, converted to digital for data acquisition

10. Barometric Altimeter

Barometric Altimeter	
Model	LX18001AN
Manufacturer	Sensym
Source	Coupled to aircraft barometric system

11. Video Camera

Video Camera	(mounted in belly of aircraft)
Model	DFW-VCC-5774
Manufacturer	Sanyo
Serial Number	58760177
Specifications	¹ / ₂ ", 1.3LX, 12 VDC, C/CS, EI/ES, backlit compensation
Lens	Rainbow 2/3", 1.3-3.6mm, auto iris

12. Video CD Recorder

Model	PV330 portable digital video recorder			
Manufacturer	Taiwan			
Media	Analog video goes to digital Averatec laptop with 20 GB HD using Avermedia USB capture device and Dr. Divx live compression at 640X640 resolution			
Serial Number	PV3800(0)2040700008			

Terraquest Ltd., Airborne Geophysical Surveys Contract: B-207 2007-03-07

4. Base Station Equipment

4.1. BASE STATION MAGNETOMETER

High sensitivity magnetic base station data was provided by a cesium vapour magnetometer logging onto a computer and with time synchronization from the GPS base station receiver.

The magnetometer is the same as used in the aircraft, a CS-2 magnetometer manufactured by Scintrex. The processor counter (KMAG) and the data acquisition system (HP iPAQ PDA) are also the same as used in the aircraft. The counter is powered by a 10VAC 50/60hz to 30VDC 3.0 amp power supply with an internal 12VDC fan. The logging software SDAS-1, by Kroum VS Instrument Ltd., is written specifically for the pocket pc hardware. It supports real time graphics with selectable windows (use two user selectable scales, coarse and fine). Time recorded is taken from the base GPS receiver. Magnetic data is logged at 2Hz. Data collection is by RS232 recording ASCII string and stored on flash card.

Ground Magnetometer	
Model	CS – 2 Cesium Vapour
Manufacturer	Scintrex
Sensitivity	0.01 nT
Noise Envelope	0.05 nT
Sampling Interval	1 second
Minimum Range	50 -3,500 ft

4.2. BASE STATION GPS RECIEVER

Model	12 channel GPS		
Manufacturer Deluo			
Туре	L1, C/A code		
Antenna	Built in patch		
Logging Rate	1 per second		
Power	5 VCD taken from iPAQ power supply		

5. TESTS AND CALIBRATIONS

5.1. MAGNETIC FIGURE OF MERIT

Compensation calibration tests were undertaken to determine the magnetic influence of aircraft maneuvers and the effectiveness of the aircraft compensation method. The aircraft flew a square pattern in the four survey directions at a high altitude over a magnetically quiet area and perform pitches (\pm 5°), rolls (\pm 10°) and yaws (\pm 5°). The sum of the maximum peak-to-peak residual noise amplitudes in the total compensated signal resulting from the twelve maneuvers is referred to as the Figure of Merit (FOM) index. The FOM index for the Tail Stinger sensor should be less than 1.2 nT. The Magnetic Figure of Merit test could have been repeated if any major component of the data acquisition system or aircraft was modified or replaced during the course of field operations.

The recent FOM values for this aircraft were:

Left Magnetometer	0.94 nT
Right Magnetometer	1.03 nT
Tail Magnetometer	0.76 nT

5.2. MAGNETIC LAG TEST

A lag test was performed to verify directional parallax in the acquired magnetic readings. The test will consist of precise flying over a distinct magnetic anomaly (or group of anomalies) in reciprocal directions. A lag factor is then determined based on apparent positional shift in the two directions.

6. LOGISTICS

6.1. PERSONNEL

The contractor supplied the following properly qualified and experienced personnel to carry out the survey and to process, compile and report on the data:

Field C-GGLS:	Pilot Operator	Brian Knapp Tim Kavanaugh, Phil Mikkonen Gabe Genier	
Office:	Senior Geophysicist Manager	Allen Duffy Charles Barrie	

6.2. FIELD OPERATIONS

The crew arrived in Fort Chipewyan November 15, 2006 and set up the base station. The survey was flown successfully in 15 flights over a total of 37 days from November 16th to December 12th and from January 5th to 14th. Operations were severely hindered by weather conditions loosing 20 complete days to poor weather; in addition poor weather generally restricted operations on most flyable days. Nevertheless, the total actual field days was within one day of the planned days for this survey and consequently there were no chargeable standby days.

On the first few flights the XDS VLF-EM system was inadvertently left off. Due to time constraints, the flight planning at that time called for flying every other line, and the intervening lines were flown later in the survey period. Consequently the XDS VLF-EM data in this area have a line interval of 400 metres. The data are of sufficient quality with good line-to-line correlation that any reflights solely for VLF were not required.

6.3. BASE OF OPERATIONS

The main base of operations was in Fort Chipewyan, Alberta. The base station (combined high sensitivity magnetic and GPS) was set up at the airport well away from cultural interference.

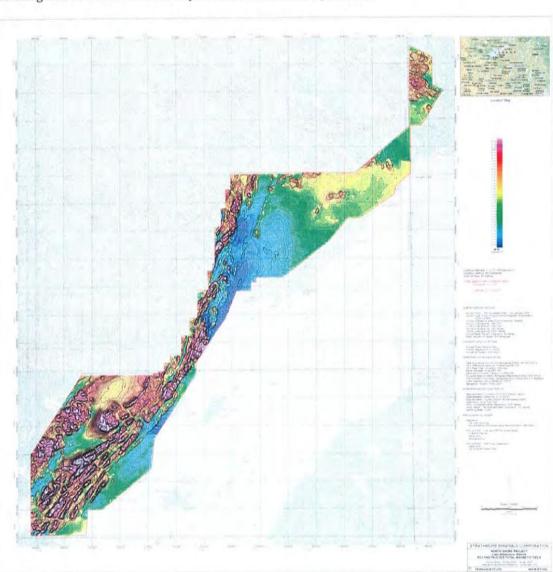
6.4. ACCOMMODATION

Accommodations for the crew were the responsibility and cost of Terraquest. The crew was housed at the Adventure Lodge telephone 780-697-3679. Internet was available as dial-up.

6.5. FUEL

Fuel through Universal Aviation Services and fuel positioning through McMurray Aviation (3 trips) for the entire survey was the responsibility and cost of Terraquest.

7. DATA PROCESSING


7.1. DATA QUALITY CONTROL

The data were examined for quality control and tolerances on all channels. This included any corrections to the flight path, making flight path plots, importing the base station data, creating a database on a flight-by-flight basis, and posting the data. All data were checked for continuity and integrity. Any errors or omission or data beyond tolerances were flagged for re-flight and the crew was notified immediately. Preliminary processed data were sent by FTP to the office for final processing.

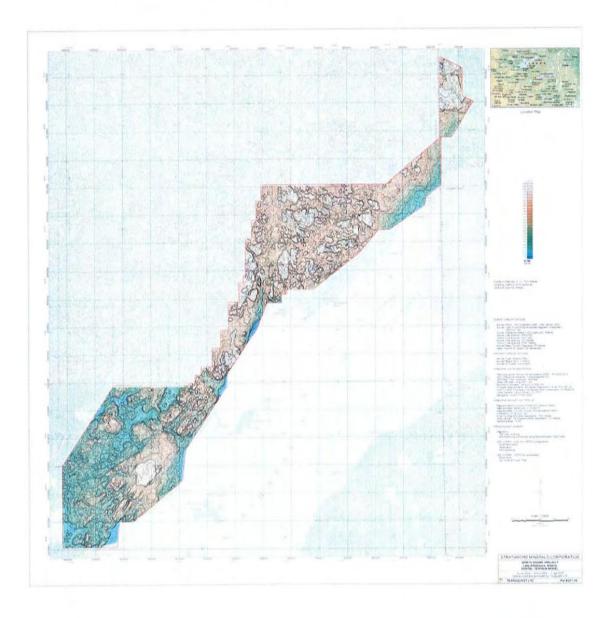
7.2. FINAL MAGNETIC DATA PROCESSING

In the first step the raw magnetic data was compensated for aircraft motion effects using data from the fluxgate sensors. Then the lateral magnetic gradient was calculated by subtracting the left wing sensor reading from the right wing sensor reading and dividing the resulting value by the tip-to-tip separation, yielding the measurement expressed as nT/m. The longitudinal gradient was similarly calculated by subtracting the tail sensor measurement from the average of the wing-tip values normalized by the wing-centre to tail sensor separation. Both gradients were "DC shifted" by subtracting the median value on a line-by-line basis and converted from aircraft-centric to survey grid orientation by selectively inverting (multiplying by -1) in the south and westbound directions. The gradient data was subsequently verified by generating a Reconstructed Total Field (RTF) grid using the Lateral and Longitudinal data grids as input.

The final processing involved tie line leveling in the standard manner by tying the survey lines to the tie lines using GEOSOFT software. The total field was gridded and micro-leveled in the Fourier domain (generally less than 1 nT corrections) to reduce any linear noise along the flight path without degrading the geologic signal. The vertical magnetic gradient was calculated from the final processed total magnetic field gridded data. The final leveled datasets were gridded and were contoured.

7.3. FINAL VLF-EM DATA PROCESSING

The Terraquest XDS system produced good resolution and consistent results. Note that the first few flights which were spaced at 400 metre line interval did not have VLF-EM data (see Section 6.2); however fill-in lines showed good line-to-line correlation. The Terraquest XDS VLF-EM system is currently in the developmental stage and as such only basic processing has been performed on this data. The x, y and z components of the XDS VLF-EM data in the range of 22.0 to 26.0 kHz (which include Cutler and Seattle transmitter signals), were rescaled (where required), low pass filtered, DC shift corrected and levelled. The data were presented as contour plots of the a) Line Field (Vcx) coil, b) Ortho Field (Vcp) coil and c) Vertical Field (Hcp) coil.


7.4. LIST OF FINAL PRODUCTS

Two colour copies of all nine parameters are plotted on paper with flight path, digital topographic image and both lat/lon and UTM coordinates. The following maps were plotted:

- Map of Flight Path
- Map of Total Magnetic Intensity (TMI) Contoured Image
- Map of First Vertical Derivative of TMI
- Map of Measured Transverse Magnetic Gradient
- Map of Measured Longitudinal Magnetic Gradient
- Map of XDS VLF-EM Contoured Image of Line Coil
- Map of XDS VLF-EM Contoured Image of Ortho Coil

2007-03-07

- Map of XDS VLF-EM Contoured Image of Vertical Coil Map of Digital Terrain Model .
- .

8. SUMMARY

An airborne tri-sensor, high sensitivity magnetic and passive XDS VLF-EM survey was performed at 70 metre mean terrain clearance, 200 metre survey line intervals with 090 degree azimuth, 4 kilometre control line interval with 000 degrees azimuth, and with data sample points at 8 metres along the flight lines. A high sensitivity magnetic and a GPS base station located in Fort Chipewyan, Alberta recorded the diurnal magnetic activity and reference GPS time during the survey for adherence to survey tolerances.

The data were subjected to final processing to produce 2 colour copies, including flight path, digital topographic image and both lat/lon and UTM coordinates of the following nine parameters:

- a) **Magnetics**: total magnetic intensity of tail sensor and first vertical derivative plus measured transverse and longitudinal gradients
- b) XDS VLF-EM: x, y and z fields
- c) Flight Path and Digital Terrain Model

Respectfully Submitted,

Charles Barrie, M.Sc. Vice President Terraquest Ltd.

9. APPENDICES

9.1. CERTIFICATE OF QUALIFICATION

I, Charles Barrie, certify that I:

- 1) am registered as a Fellow with the Geological Association of Canada and work professionally as a geologist,
- hold an Honours degree in Geology from McMaster University, Canada, obtained in 1977,
- hold an M.Sc. in Geology from Dalhousie University, Canada, obtained in 1980,
- 4) am a member of the Prospectors and Developers Association of Canada,
- 5) am a member of the Canadian Institute of Mining, Metallurgy and Petroleum,
- 6) have worked as a geologist for over twenty five years,
- 7) am employed by and am an owner of Terraquest Ltd., specializing in high sensitivity airborne geophysical surveys, and
- 8) have prepared this operations and specifications report pertaining to airborne data collected by Terraquest Ltd..

Markham, Ontario, Canada

Signed

Charles Q. Barrie, M.Sc. Vice President, Terraquest Ltd.

9.2. DAILY LOG

Project B207

Date: Weather: Flight numbers: Lines Flown: Notes:

November 17, 2006 Flyable **GLS883** 3400 Too 3700 Inclusive FOM Completed

Date:

November 18, 2006

Weather: Flight numbers: Lines Flown: Notes:

Flyable **GLS884** 20 Too 1000 Inclusive

Date:

November 19, 2006

Weather: Flight numbers: Lines Flown: Notes:

Flight numbers: Lines Flown:

not flyable

Date:

Weather:

November 20, 2006 not flyable

Notes:

November 21, 2006

Date: Weather: Flight numbers: Lines Flown: Notes:

Flyable In Morning **GLS885** 1020 Too 1260 Inclusive Flight aborted due to inclement weather

Date:

November 22, 2006

Weather: Flight numbers: Lines Flown: Notes:

Flyable GLS886 1260 Too 2280

Date:

November 23, 2006 not flyable

Weather: Flight numbers:

Terraquest Ltd., Airborne Geophysical Surveys Contract: B-207

2007-03-07

Lines Flown: Notes:

Date:	November 24, 2006
Weather:	not flyable
Flight numbers:	
Lines Flown:	Operator Tim left Fort Chip
Notes:	Operator Thin left Fort Chip
Date:	November 25, 2006
Weather:	
Flight numbers:	
Lines Flown:	
Notes:	No operator
Date:	November 26, 2006
Weather:	
Flight numbers:	
Lines Flown:	
Notes:	No operator
Date:	November 27, 2006
Weather:	en triger son and the part of the second
Flight numbers:	
Lines Flown:	
Notes:	Phil arrived in Fort Chip
Date:	November 28, 2006
Weather:	Flyable
Flight numbers:	
Lines Flown:	
Notes:	Breaker popped shutting down Tanis and cabin heaters
Date:	November 29, 2006
Weather:	Flyable
Flight numbers:	GLS887
Lines Flown:	2780 Too 3380 Inclusive
Notes:	Airborne SDAS software malfunctioned due too cold
1101001	Base SDAS did not log data
Date:	November 30, 2006
Weather:	Forecasted snow
Flight numbers:	
Lines Flown:	

Terraquest Ltd., Airborne Geophysical Surveys Contract: B-207

Notes:

Date: Weather: Flight numbers: Lines Flown: Notes:	December 1, 2006 Flyable GLS888 Lines 2300 Too 2760 Inclusive Ties 10060 Too10170 Inclusive Airborne IPAC malfunctioned due too cold Base IPAC malfunctioned
Date: Weather: Flight numbers: Lines Flown: Notes:	December 2, 2006 Flyable GLS889 Ties 10010 Too 10050 Inclusive Logistics caused delayed start RAT completed
Date: Weather: Flight numbers: Lines Flown: Notes:	December 3, 2006 Low ceiling and poor visibility
Date: Weather: Flight numbers: Lines Flown: Notes:	December 4, 2006 Freezing Rain over grid
Date: Weather: Flight numbers: Lines Flown: Notes:	December 5, 2006 Poor weather
Date: Weather: Flight numbers: Lines Flown: Notes:	December 6, 2006 Flyable GLS890 Flight aborted due to weather
Date: Weather: Flight numbers: Lines Flown: Notes:	December 7, 2006 Flyable GLS891

Terraquest Ltd., Airborne Geophysical Surveys Contract: B-207

2007-03-07

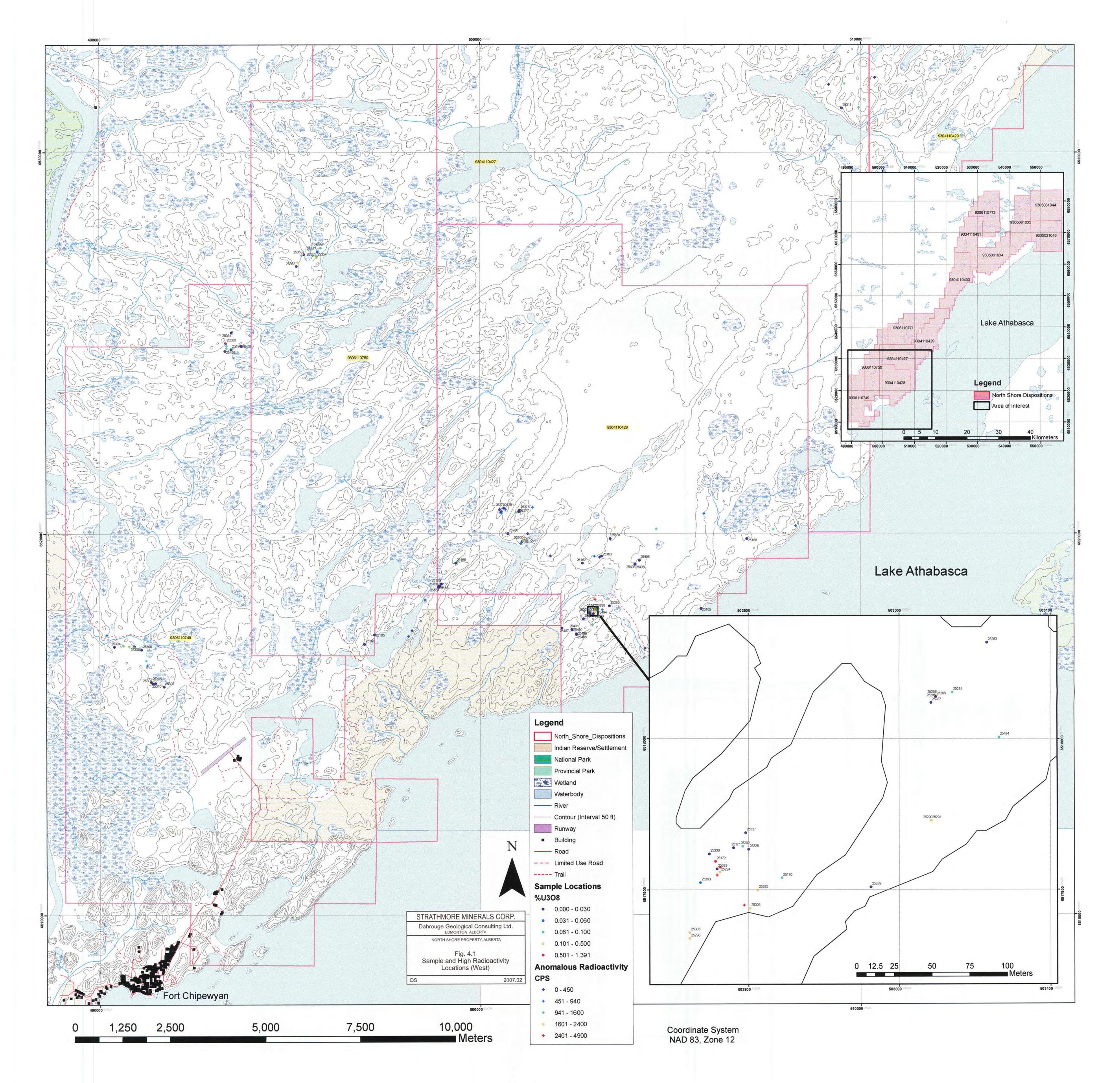
Date:	December 8, 2006
Weather:	Poor weather
Flight numbers:	
Lines Flown:	
Notes:	
Date:	December 9, 2006
Weather:	Poor weather
Flight numbers:	
Lines Flown:	
Notes:	
Date:	December 10, 2006
Weather:	Poor weather
Flight numbers:	
Lines Flown:	
Notes:	
Date:	December 11, 2006
Weather:	Flyable
Flight numbers:	GLS892
Lines Flown:	
Notes:	
Date:	December 12, 2006
Weather:	
Flight numbers:	
Lines Flown:	
Notes:	Re-positioning aircraft for 50 hour scheduled maintenance. Crew leave for Christmas break

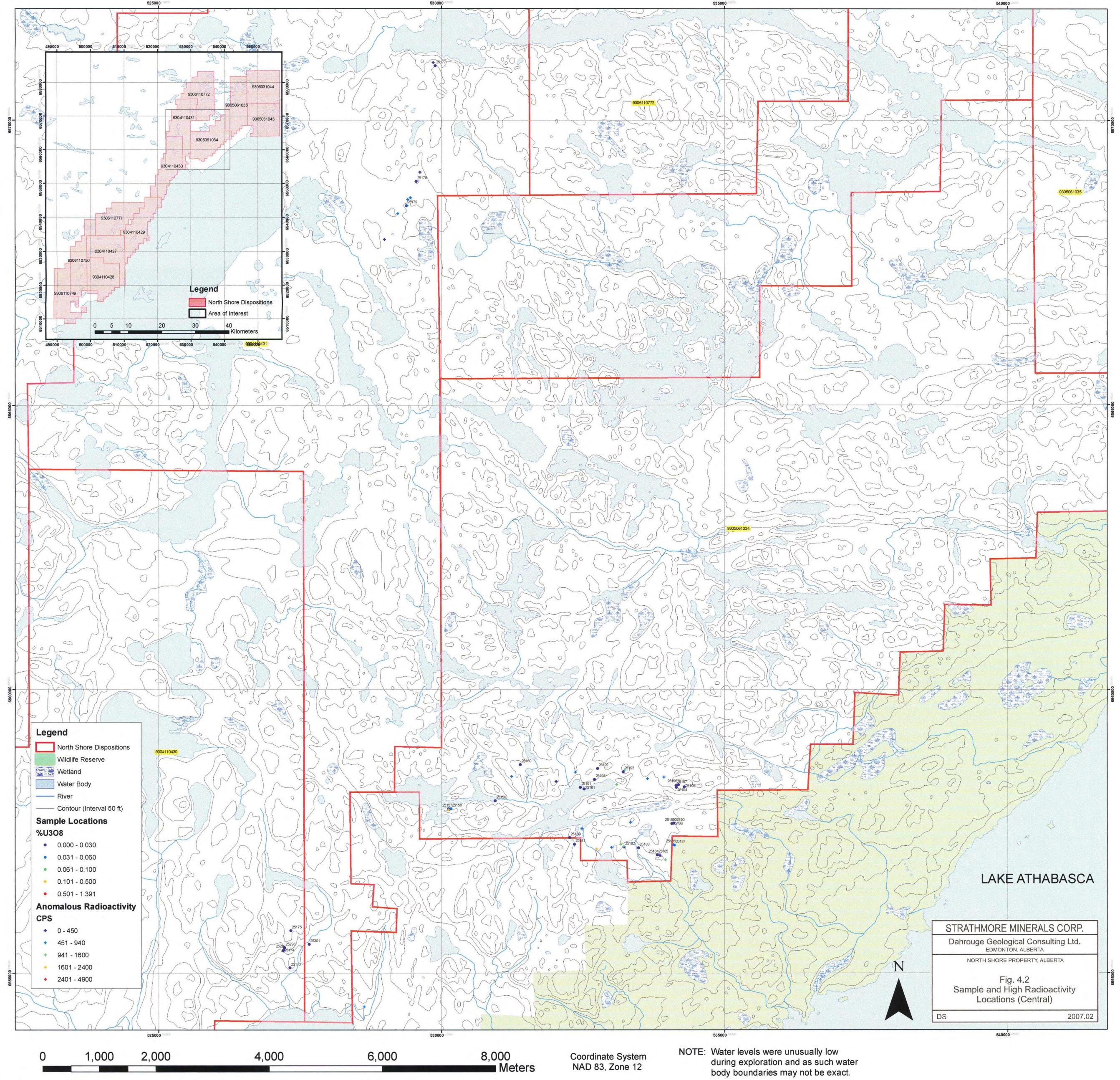
Date: Weather: Flight numbers: Lines Flown: Notes:

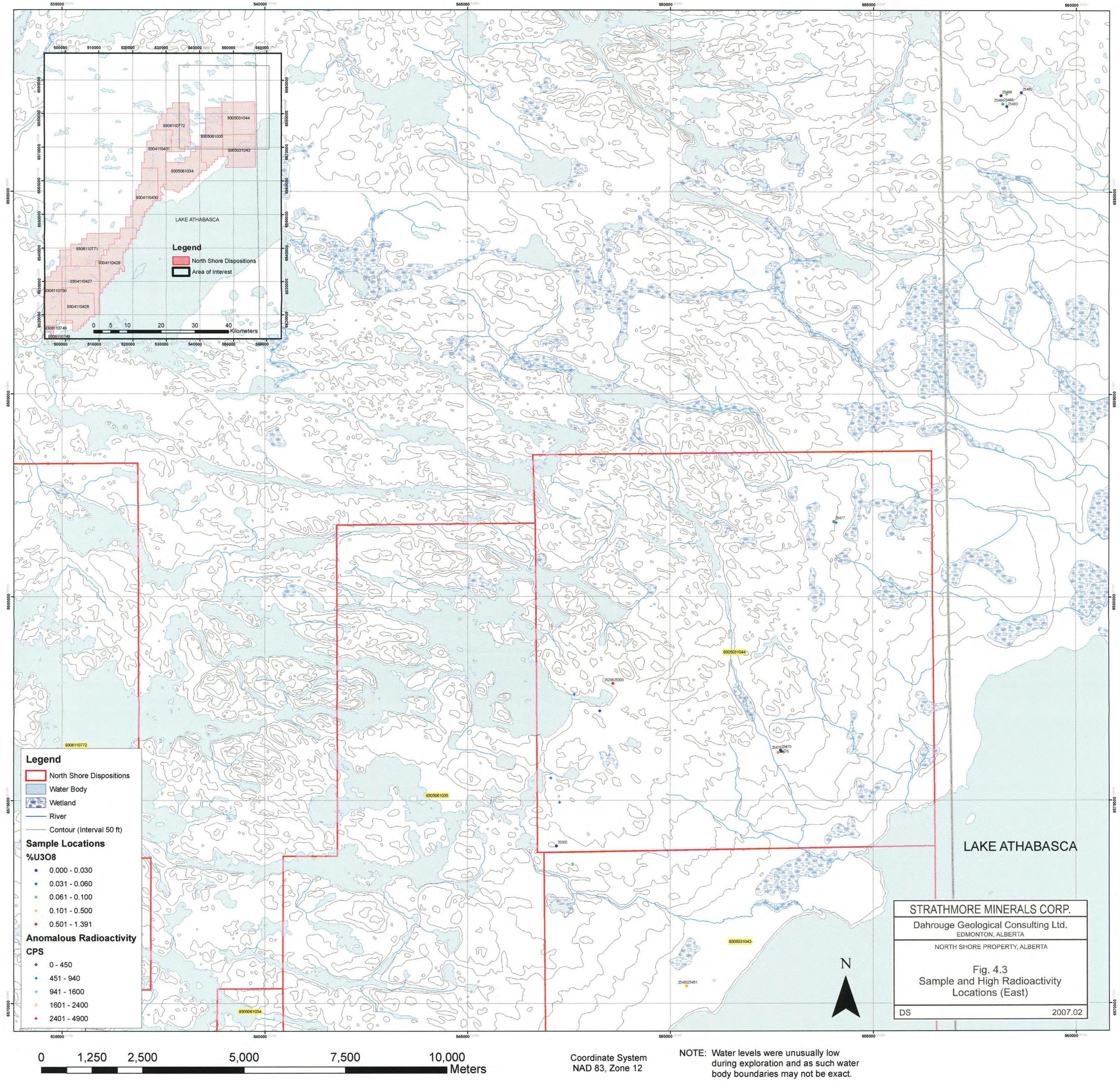
Jan 4, 2007

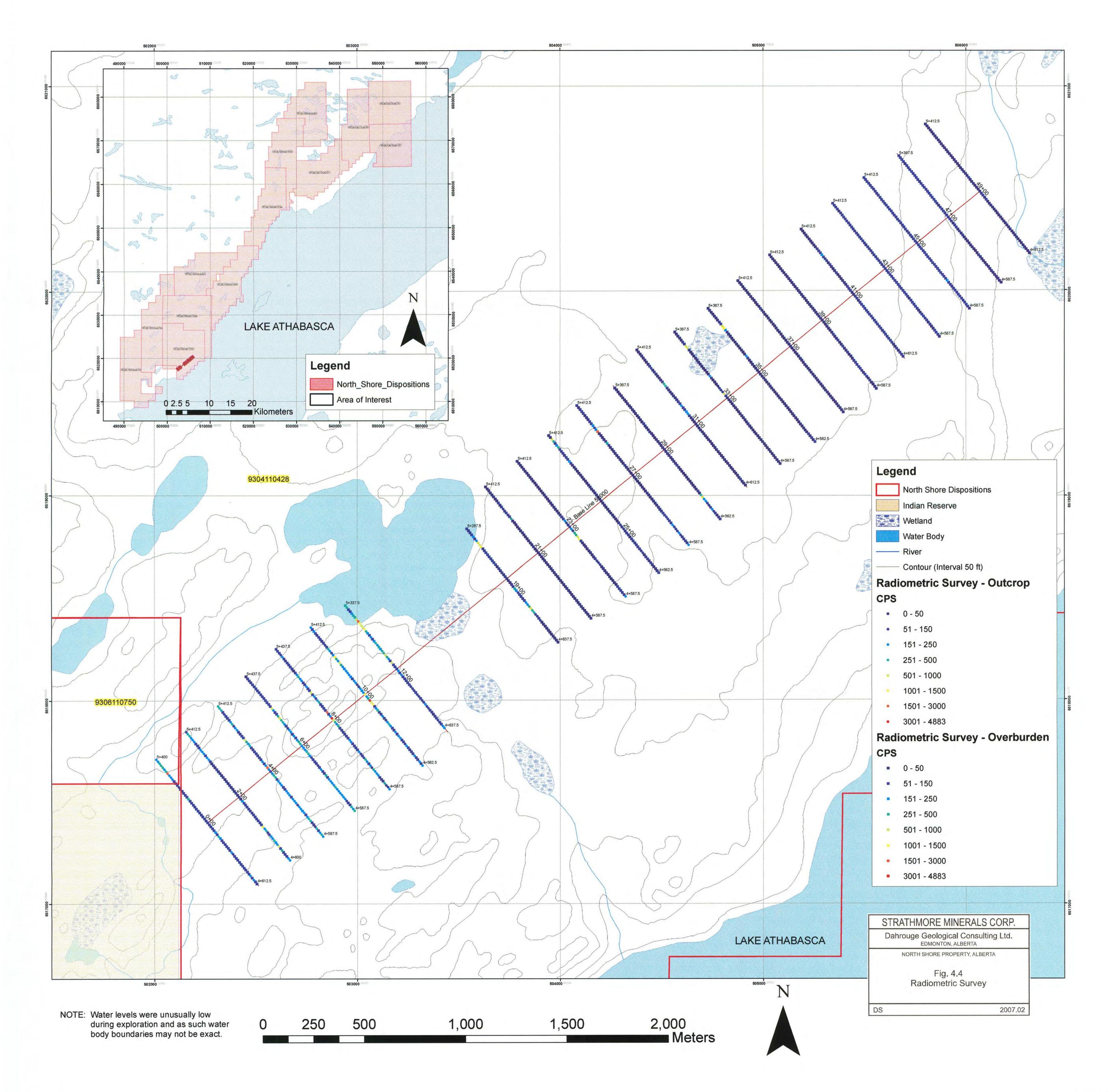
Aircraft maintenance completed and signed out

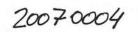
Date: Weather: Flight numbers: Lines Flown: Jan 5rd 2007

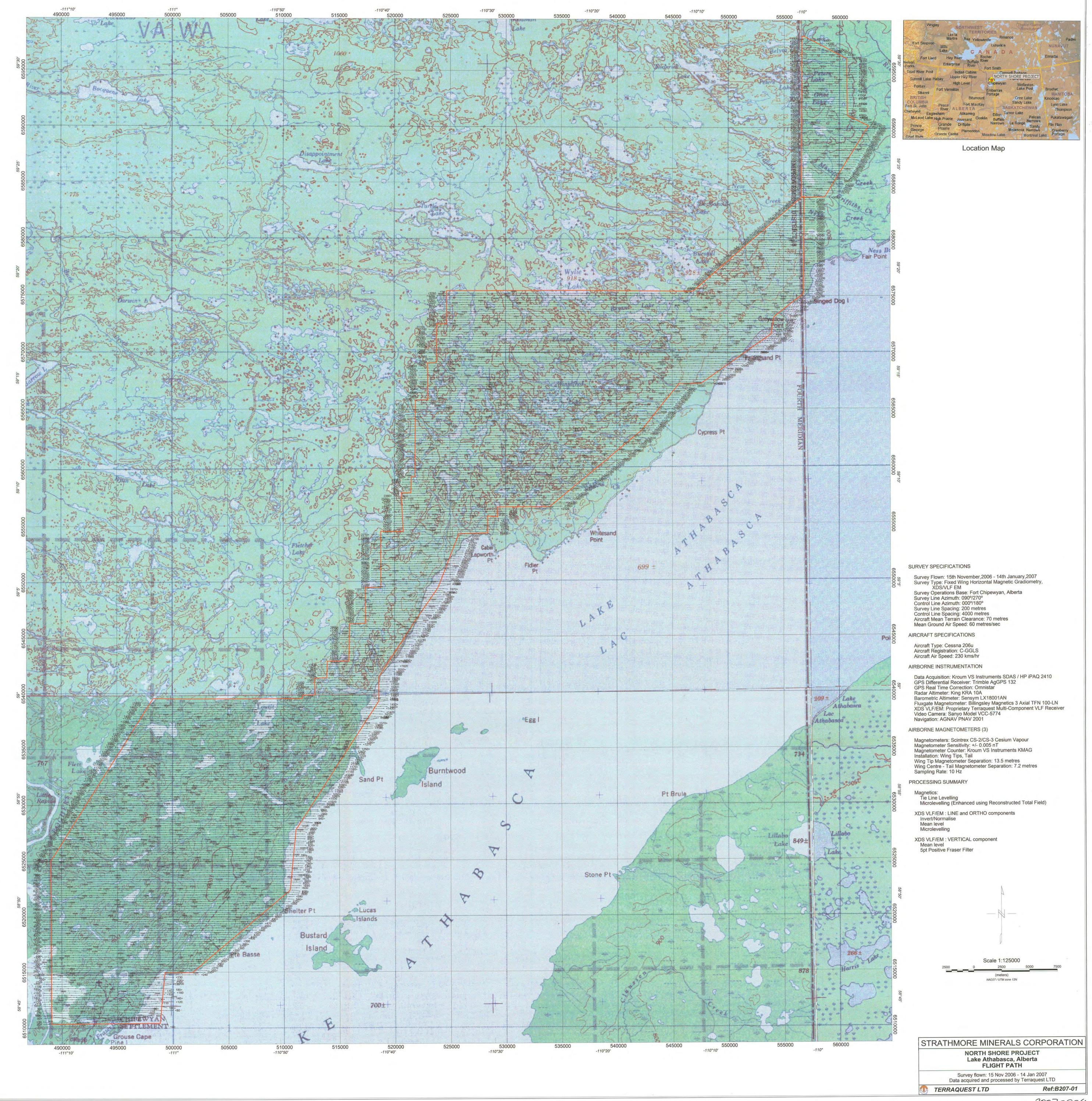

Terraquest Ltd., Airborne Geophysical Surveys Contract: B-207

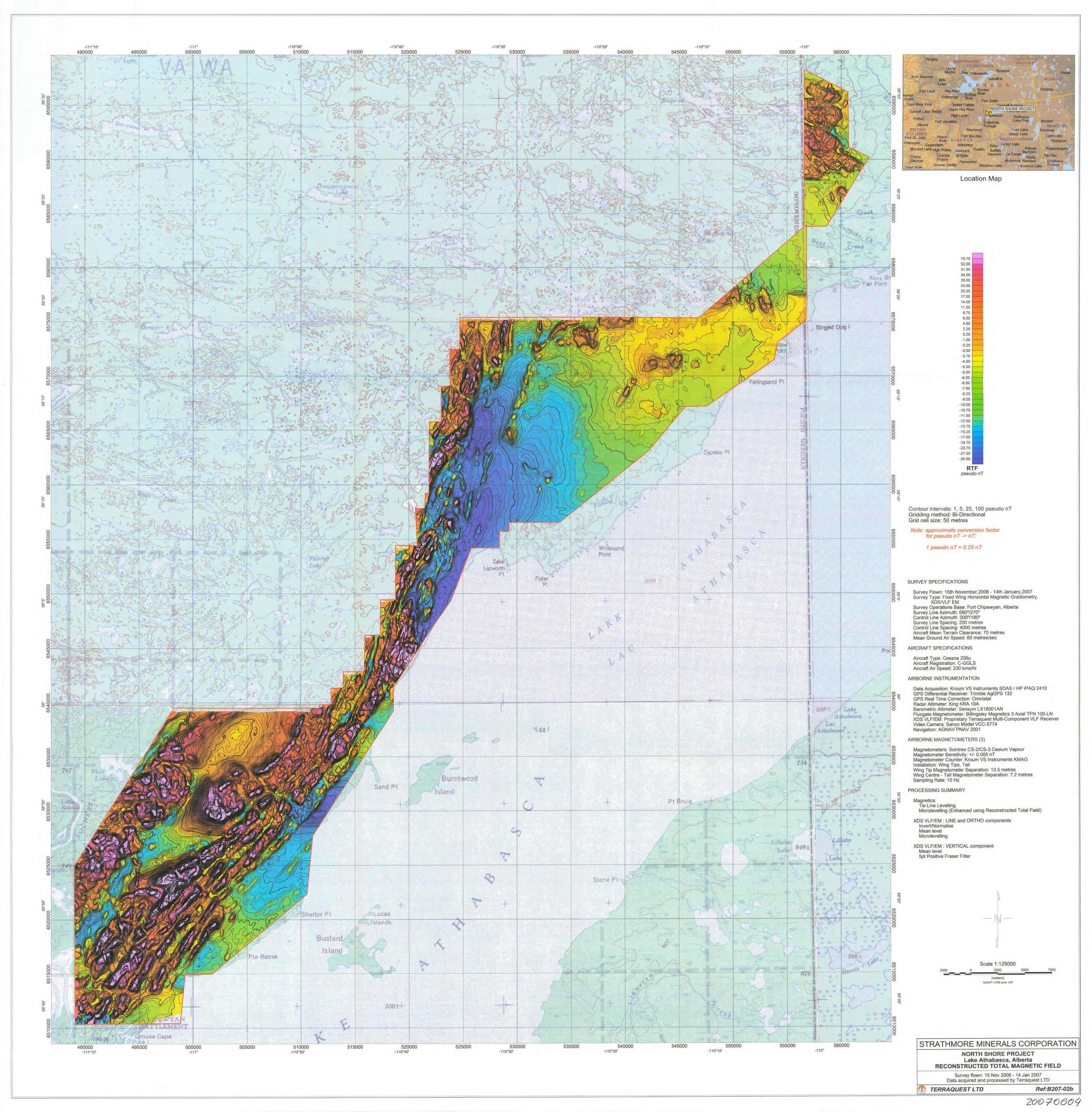

2007-03-07

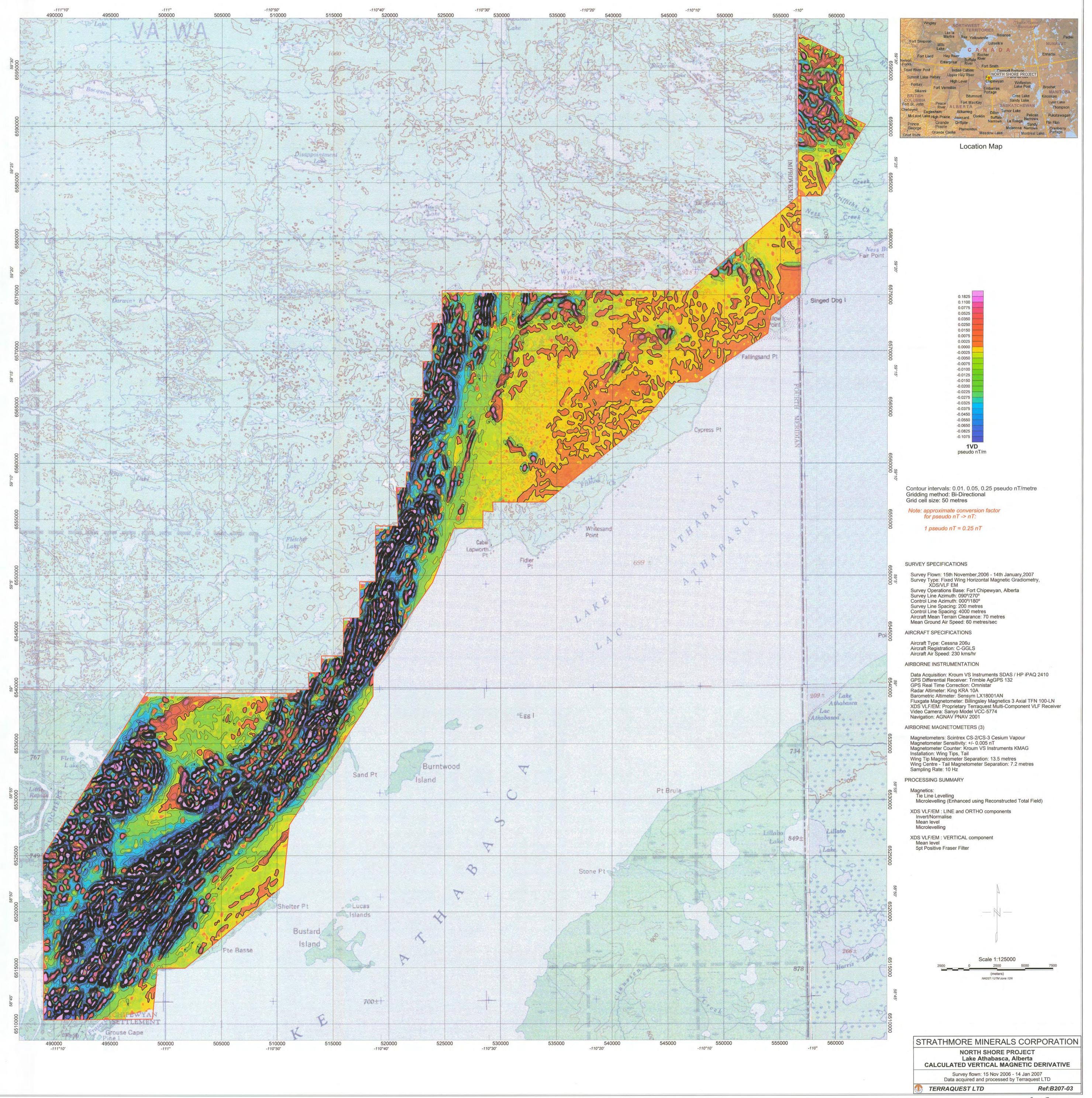

Nataa	Re-position aircraft and crew to Fort Chip. Also got a rental
Notes:	vehicle
Date:	Jan 6 rd 2007
Weather:	Not flyable
Flight numbers:	
Lines Flown:	
Notes:	
Date:	Jan 7th 2007
Weather:	flyable
Flight numbers:	Gls 893
Lines Flown:	1870 to 2970
Notes:	Great day. Set everything up and everything was working fine.
Date:	Jan 8th 2007
Weather:	flyable
Flight numbers:	Gls 894
Lines Flown:	2990 to 3690
Notes:	Fid kept resetting so I will change the battery tomorrow
Date:	Jan 9th 2007
Weather:	flyable
Flight numbers:	Gls 895
Lines Flown:	4400 to 4080
Notes:	
Date:	Jan 10th 2007
Weather:	Not flyable
Flight numbers:	
Lines Flown:	
Notes:	Didn't fly cause it was too cold
Date:	Jan 11th 2007
Weather:	Not flyable
Flight numbers:	
Lines Flown:	
Notes:	Didn't fly cause it was too cold
Date:	Jan 12th 2007
Weather:	Not flyable
Flight numbers:	
Lines Flown:	
Notes:	Didn't fly cause it was too cold and snow in the afternoon
Date:	Jan 13th 2007

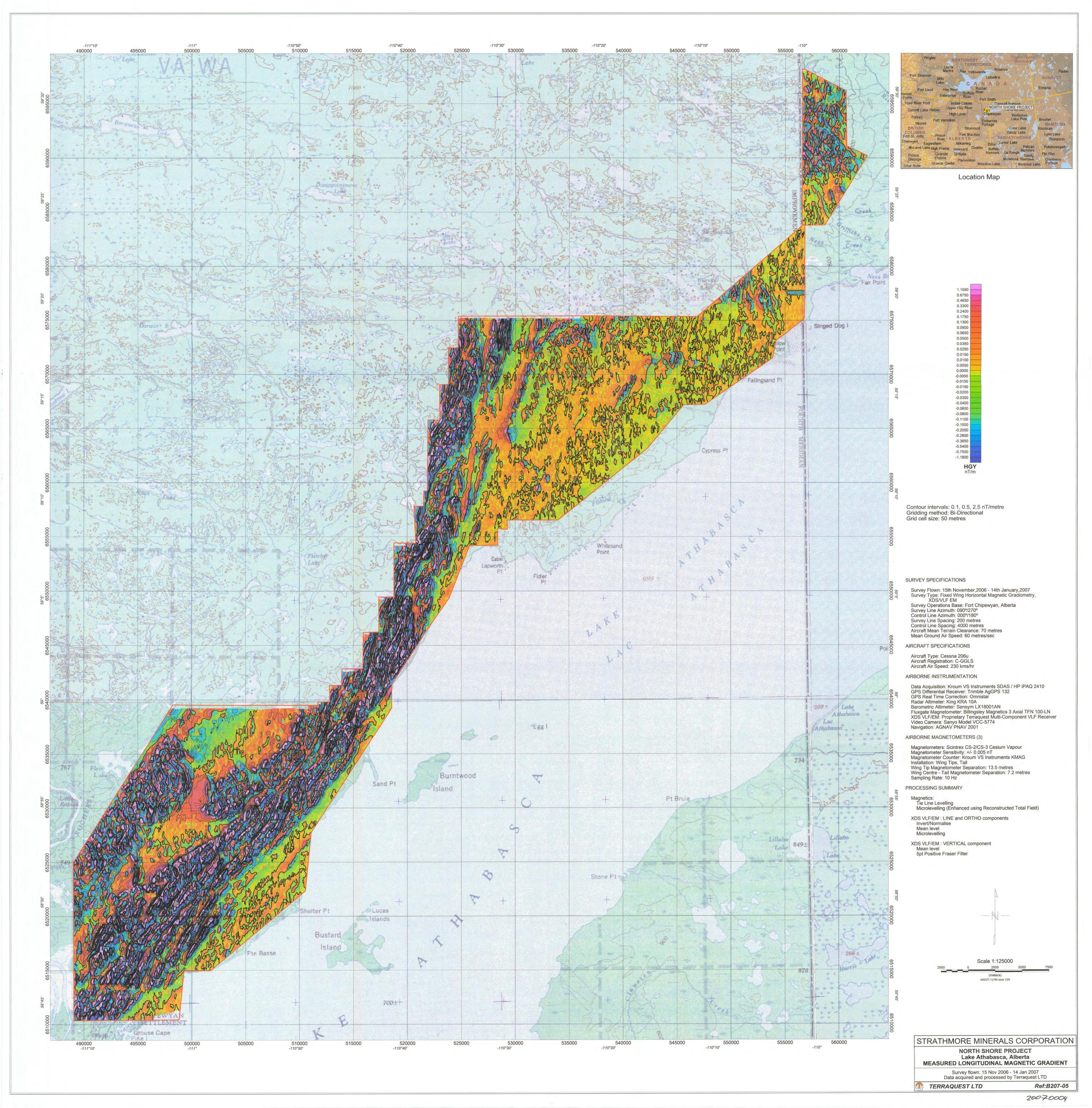

Weather: Flight numbers: Lines Flown: Notes: flyable Gls896 4070 to 3710 and 5190 and 5200

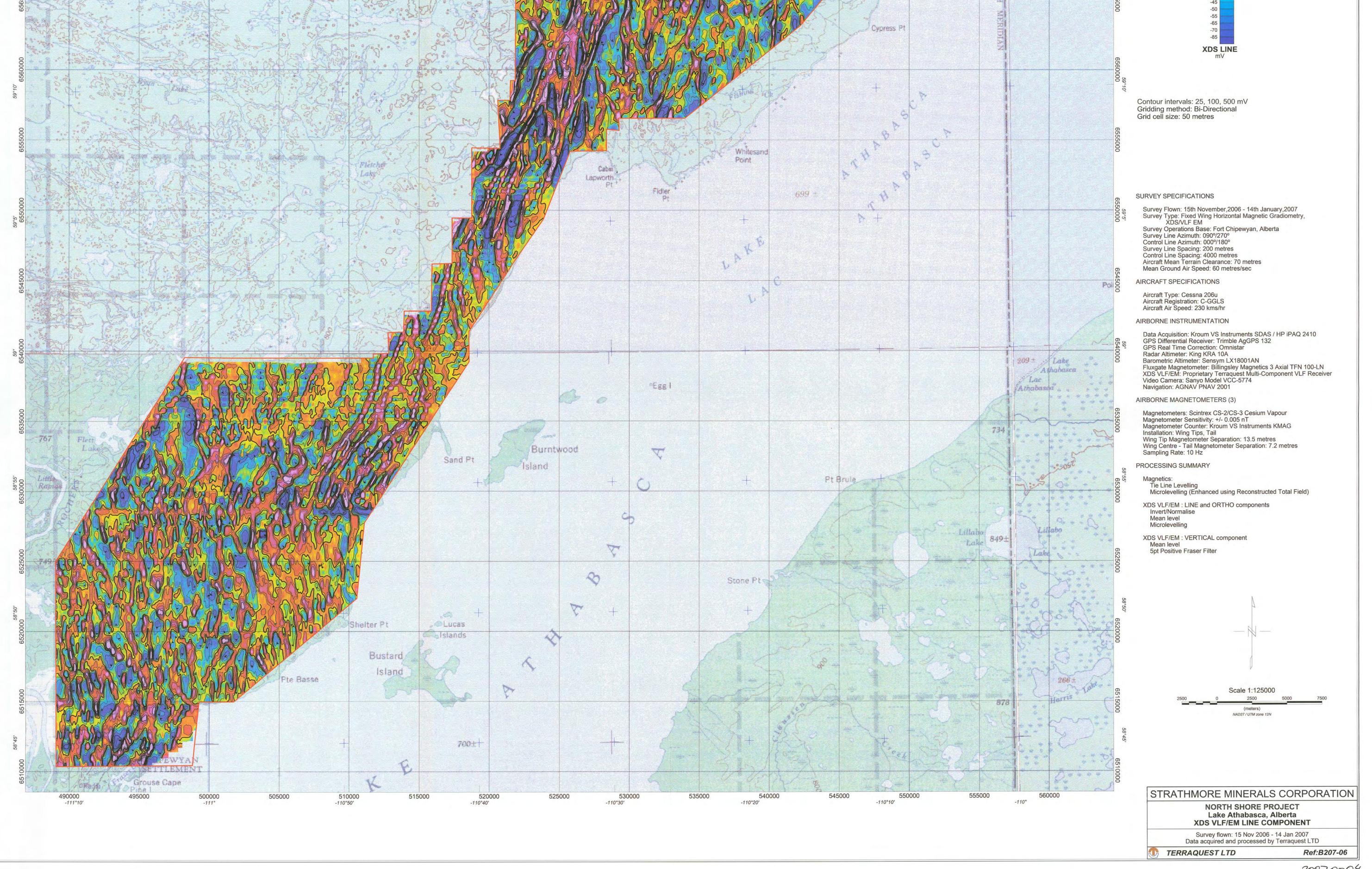

Date: Weather: Flight numbers: Lines Flown: Notes: Jan 14th 2007 flyable Gls897 1000,990,980,870,960,940,920 and radar altitude test Survey complete

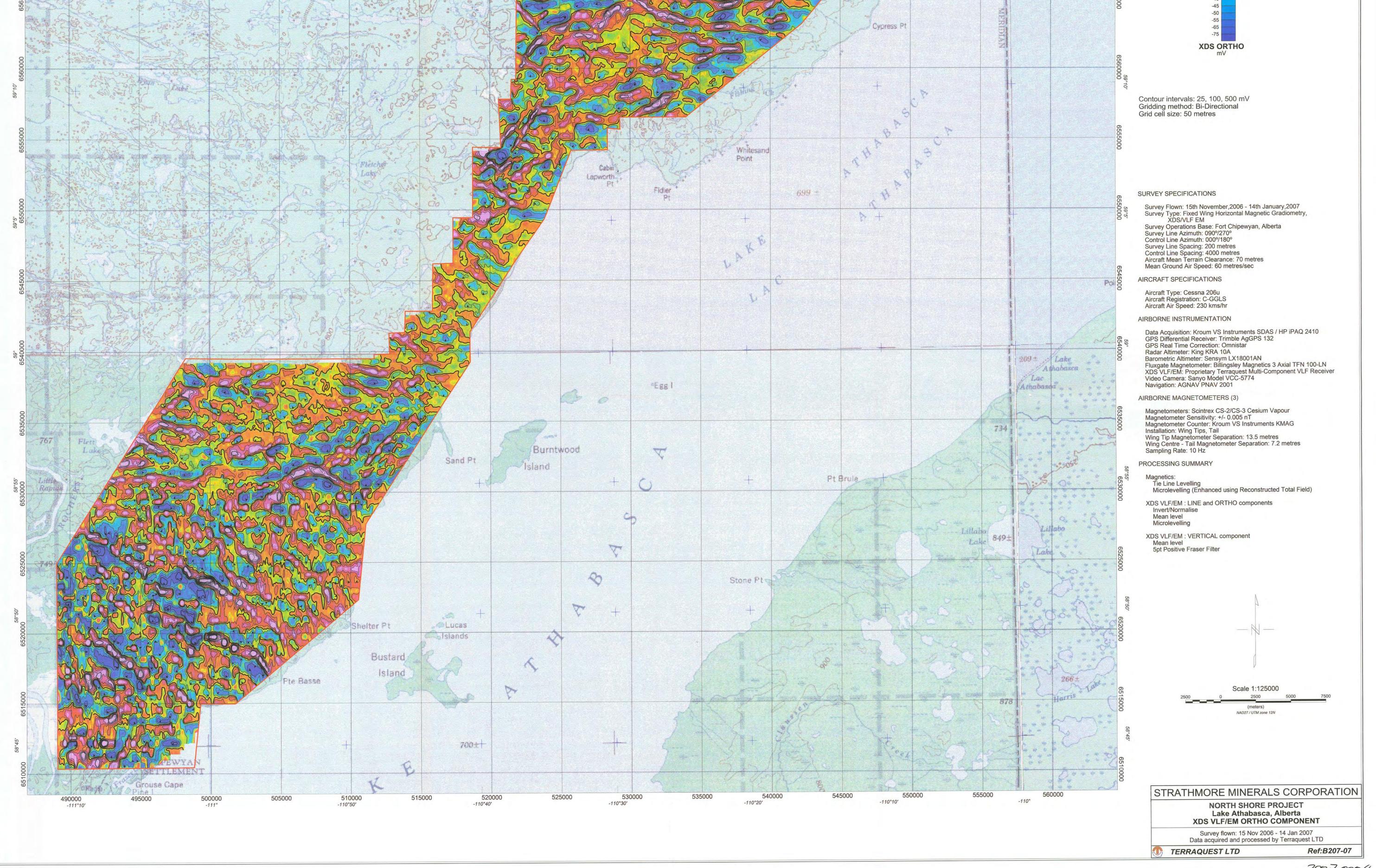


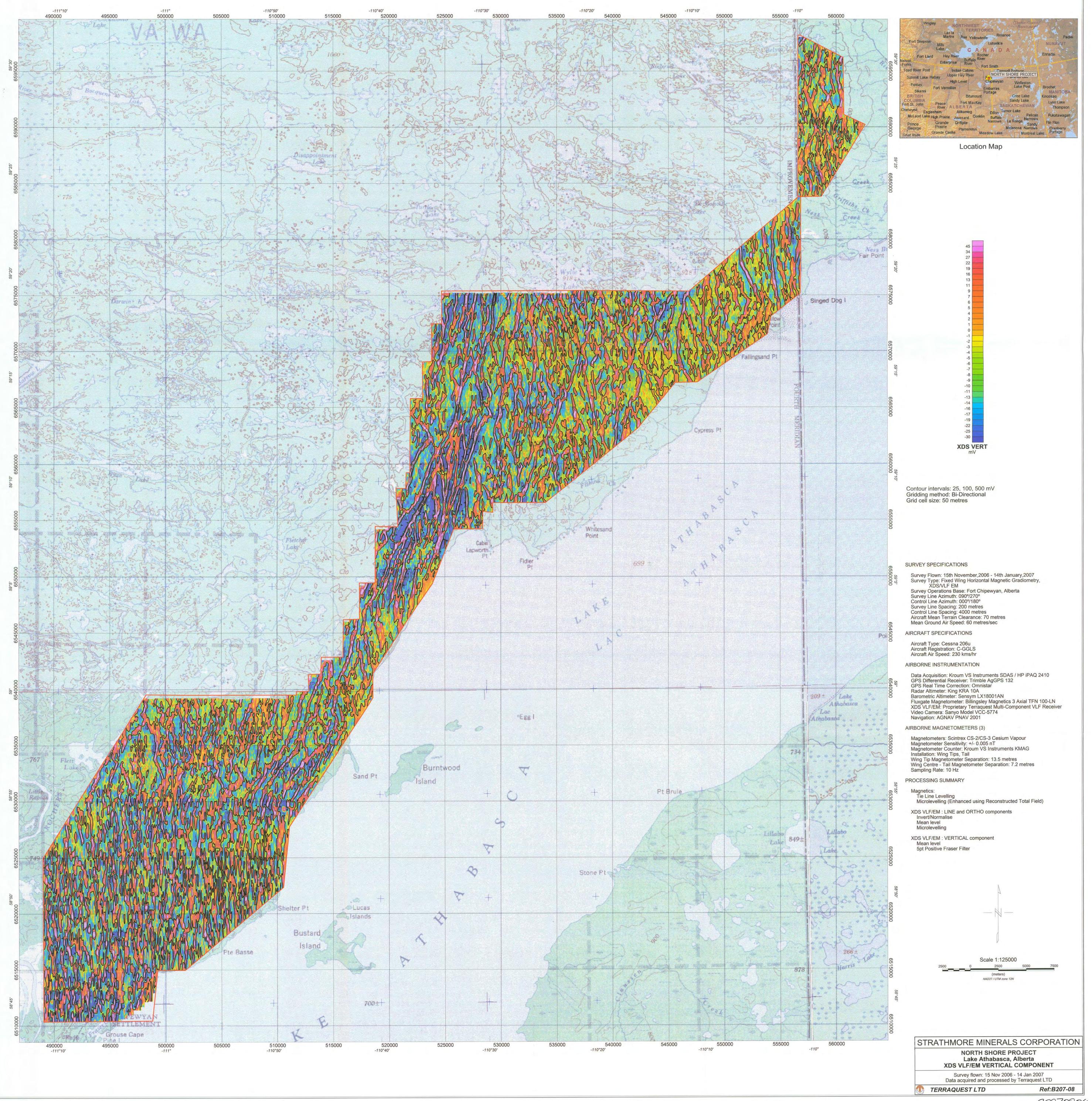


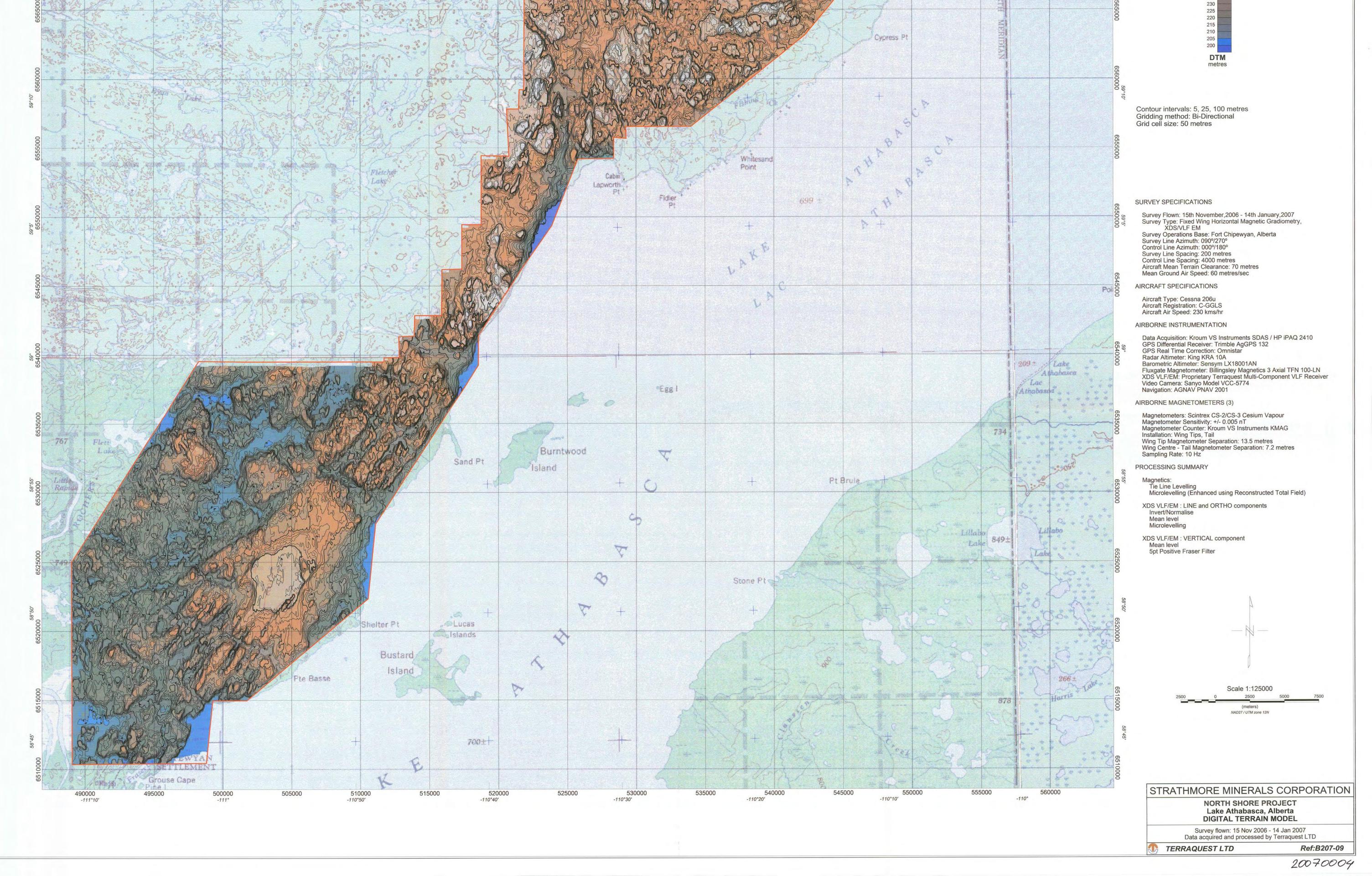









-111°10' -111° 490000 495000 500000 50	- <i>110°50' -110°40'</i> 5000 510000 515000 520000	- <i>110°30'</i> 525000 530000 53	-110°20' -110°	10' -110°	
Lake A HAA				550000 555000 560000	VVrigley NORTHWEST Lac la Martre Rae Yellowknife Reliance Padlei Fort Simpson Milts Lake CANADA Fort Liard Hay River Rocher Nelson Enterprise Buffalo River Fort Smith
Buconues and a second s		And a second and a second as a			Open Summit Lake Habay Upper Hay River High Level Camsell Portage Fontas Fort Vermilion Embarras Lake Post Sikanni Fort Vermilion Embarras Lake Post BRITISH Bitumount Cree Lake Kinoosao COLUMBIA Peace Fort MacKay Sandy Lake Lynn Lake Chetwynd Eaglesham Atikameg Dillon Turnor Lake McLeod Lake High Prairie Joussard Conklin Buffalo Pelican Prince Grande Drittolle Narrows La Ronge Fin Flon
	Disappointment				George Prairie Plamondon Meadow Lake Molanosa Narrows Cranberry Portage Gnat River Grande Cache Location Mag
					55000 65
			9 8 9 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		80000 59°20 6 120 95
Dorwin* h				Singed Dog 1	575000 55 45 40 40 35 30 25 20 15
				Fallingsand Pt	59°15' 59°15' 59°15' 59°15' 59°15' 59°15' 50 50 50 50 50 50 50 50 50 50 50 50 50


- <i>111°10'</i> 490000 495000	-111° -1 500000 505000	110°50' -110°40' 510000 515000 520000	- <i>110°30'</i> 525000 530000	-110°20' 535000 540000 54500	- <i>110°10' -110°</i> 000 550000 555000 56	60000
Sold Sold A	HWGA St	Deres Color	Sand San Lake			Wrigley NORTHWEST TERRITORIES Sanctuary Lac la Martre Rae Yellowknife Reliance Padlei
		1060 · · · · · · · · · · · · · · · · · ·	S BAT - FRA	The Asis and	A CONTRACT OF A	Mills CANADA % Fort Liard % Fort Liard Hay River Rocher Buffalo River Forts Enterprise % Fort Smith
6590 GE		C- Can Card Do Frank	Shing and the			Open Sile Toad River Post Indian Cabins Camsell Portage Summit Lake Habay Upper Hay River NORTH SHORE PROJECT Fontas Fort Vermilion Chipewyan Sikanni Sikanni Portage
	and and the		and the state of t	A Star Brand		BRITISH Bitumount Cree Lake Kinoosao COLUMBIA Peace Fort MacKay SASKATCHEWAN Chetwynd Eaglesham Atikameg McLeod Lake High Prairie Joussard Conklin Buffalo Pelican Pukatawagan
659000	A - Million		State State	Topan Service		Prince Grande Driftpile Narrows La Konge Sandy Flin Flon George Prairie Plamondon Gnat River Grande Cache Meadow Lake Montreal Lake Portage
		Disappointment Lane				59°25' 6
0000 9282000 775	Star 2 sale			A Contraction of the contraction	And	585000
	Prove to the		Contraction of the second seco		A State	Creek C
esence and the second s			Start Start		CR-SSE	Ness B Fair Point
			AS AS	Wy/w + + 0	928	59°20' 65
e21200	Reserve	A REAL PROPERTY			Singed	Dog 1 100 75 65 50 50 50 50 50 50 50 50 50 50 50 50 50
					Contraction of the second seco	
657000					Fallingsand Pt	570000 59° 59°
		the second of the second				5 -10 -15 -20 -25
	ASTRA S	8- 80			5	-30 -35 -35 -40

20070004

-111°10' -111° 490000 495000 500000 505000	- <i>110°50' -110°40'</i> 510000 515000 520000	- <i>110°30'</i> 525000 530000 535000	-110°10' 540000 545000 555000 555000	-110° 560000
ST THE YAY MA	A BERTHERE	tate		Wrigley NORTHWEST THelon Game/ Lac la Martre Rae Yellowknife Reliance Padlei
	a for the second		Fall Read and the second	Solution Solution Content Content Content Ennadai Solution Solution Fort Liard Hay River Rocher Rocher Ennadai Solution Solution Enterprise Buffalo River Fort Smith Ennadai
Bacqueres Contraction of the second	2 - Salar as as as	Tolar at the second		Open Sile Fort Vermilion Indian Cabins Camsell Portage Summit Lake Habay Upper Hay River NORTH SHORE PROJECT Fontas Fort Vermilion Embarras Sikanni Sikanni Portage
		Received in Bell		BRITISH Bitumount Cree Lake Kinoosao COLLIMBIA Fort St. John Peace Fort MacKay SASKATCHEWAN Thompson Chetwynd Eaglesham Atikameg Dillon Turnor Lake Pelican Pukatawagan McLeod Lake High Prairie Joussard Conklin Buffalo Pelican Pukatawagan
		Res Willing and	Service - Se - States	Prince Grande Driftpile Nations La Ronge Sandy George Prairie Plamondon Gnat River Grande Cache Meadow Lake Montreal Lake Portage Location Map
	Disappointment			59°25'
		A CAR		5585000
En son of the second	2. 2		Right States and States	N Ness Crown
		Selection of the select		S580000
		in the main and and		S9°20
000222000		STO CARDON CHANGE TO		Singed Dog 1 00 325 320
			Contraction of the second of t	315 310 305 300 295
2000	ABBR CALL		Fallingsand Pt	657000 285 280 275
59-12. 65	A BORNET A		Contraction of the second seco	59°75 260 260 255 250
	STATE STATE		U Bacher Mars	245 240 235 230

REPORT ON AIRBORNE GEOPHYSICAL DATA FOR THE NORTH SHORE PROPERTY ALBERTA, CANADA

PREPARED FOR STRATHMORE MINERALS LTD.

Jeremy S. Brett, M.Sc., P.Geo. MPH Consulting Limited

August 12, 2007

SUMMARY

A total of 8039 line-km of airborne horizontal gradient magnetic and XDS-VLF electromagnetic data, acquired by Terraquest Limited, was examined for the Athabasca North Property of Strathmore Minerals Corp., situated near Fort Chipewyan, Alberta. The data exhibited hundreds of responses, interpreted to be possible basement structures, several of which are coincident with known uranium mineralization.

A total of 25 priority uranium targets were identified, out of hundreds of discrete magnetic, XDS-VLF electromagnetic and topographic anomalies. These priority targets are highly recommended, even in the absence of radiometric data coverage, for follow-up via geological prospecting and mapping during the 2007 summer field season. The targets conform to an idealized model for structurally controlled Athabasca basement-hosted type uranium mineralization. An airborne radiometric survey is also highly recommended over the property, to provide another qualifier on target prioritization, as well as other methods such as lake sediment geochemistry and enzyme leach geochemical sampling.

GEOLOGICAL SETTING

The property is located to the northwest of the edge of the Athabasca basin in Alberta. Sedimentary rocks of the Athabasca sequence have been completely eroded, except for two possible outliers in the NE and SW portions of the property. Basement units are exposed, including granites, granitoid gneiss, mylonites, metavolcanics and metasediments.

DEPOSIT TYPES

Given the absence of overlying sediments, the best uranium mineralization model for the property probably involves basement-hosted structurally controlled mineralization, such as that seen at Beaver Lodge or Eagle Point. This style of mineralization would be controlled by structures or shear zones, possibly elucidated in magnetic or electromagnetic data, as well as from satellite images or digital terrain models. Further, there may be associated small 100m – scale magnetic lows or resistivity lows that may be due to alterations zones along these structures, which could be related to mineralization systems.

Large km-scale magnetic lows in the Athabasca Basin are generally considered to be associated with basement metasediments, associated horizontal unconformity regolith formation and the creation of uranium rich fluid conduits and traps. The setting of the Athabasca North Project appears to be one where the overlying Athabasca sandstone sequence has eroded, possibly exposing fault or shear-zone hosted uranium mineralization, but probably removing any unconformity style mineralization. As such, km-scale magnetic lows may not play a role in identifying zones prospective for uranium targets, and all structures elucidated from the magnetic or XDS-VLF data will be equally prospective. None of the known uranium mineralization occurrences are coincident with magnetic highs, and lie in finer-scale magnetic lows or at the edges of magnetic highs. Further, small ~100m scale (200-500m) magnetic lows may be indicative of discrete alteration zones, associated with uranium mineralization.

MINERALIZATION

Mineralization is known on the property, in the form of uranium occurrences. The locations have been provided by Dahrouge Geological Consultants and the details of these occurrences are not presented here.

A total of 34 uranium occurrences were plotted over top of the magnetic and XDS-VLF data. Of these, 11 (\sim 33%) were coincident with structures identified in the XDS-VLF interpretation.

Aside from the obvious need to compile and field check / sample all known historical uranium showings on this property, it would be appropriate to identify the structural

contexts of these showings in the field and incorporate these data back into the geophysical interpretation to characterize the geophysical causes of the various interpreted structures.

The association of mineralization with inferred structures of varying XDS-VLF signal intensity should also be examined, to attempt to categorize various XDS-VLF responses in terms of the inferred size/width/porosity of the causative structures.

DATA VERIFICATION

Horizontal magnetic gradient and XDS-VLF data were provided for the survey area by direct chain of custody to this author by Terraquest Limited, and the data integrity and quality was deemed to be excellent. The magnetic data on inspection appears to fully meet industry standards for mineral exploration, in terms of the quality of data leveling, data range and frequency content. The XDS-VLF data is proprietary to Terraquest and is reported by them to be an innovative enhancement of the integrity, quality and applicability of VLF data to mineral exploration. The XDS-VLF data appears to map the conductivity changes associated with faults and structures on the property.

INTERPRETATION AND CONCLUSIONS

The magnetic data exhibited numerous discontinuities/patterns which are interpreted to indicate structures. In addition, some mapping of inferred rock types is possible based on the amplitude of the measured magnetic field. Magnetic highs are interpreted to be indicative of metavolcanic(?) or granitic rocks with elevated magnetite content. Magnetic lows are interpreted to indicate possible metasedimentary basement units, and /or faulted/sheared contexts or alteration zones that may be prospective for uranium mineralization. The use of known outcrops should be incorporated into this interpretation, to characterize the geophysical characteristics of known lithological units.

The amplitudes of magnetic anomalies are not used as a diagnostic element in this interpretation, save for several discrete magnetic lows (NS19 through NS25). Structural elements are emphasized instead, with linear magnetic lows between magnetic highs, and the edges of highs, identified as being significant.

The XDS-VLF data exhibited hundreds of linear responses which infer structural features (faults, shear zones and contacts). Though the magnetic, electromagnetic (XDS-VLF) and digital terrain model (DTM) all roughly show the same complex pattern of inferred structures, the XDS-VLF responses were more numerous and are probably a more comprehensive documentation of the structures on the property. These have been presented as a black and white digitization of the maximum responses of the XDS-VLF signal, which forms a lattice of intersecting inferred structures. (These will need to be digitized to AutoCad or ArcView vectors.)

The magnetic and XDS-VLF data appear to effectively map known faults on the property, as provided via ArcView shape files by Dahrouge Consulting, as indicated with red and green lines on the interpretation maps. These comprise about 10% of the structures inferred from the geophysical data.

Fault offsets are not immediately evident from the data on inspection, possibly indicating a predominantly dilational strain regime for the property which could be highly favourable for the creation of space within structures that could facilitate the flow of uraniferous fluids. (Cross-cutting and truncating). The examination of the inferred structural patterns by a structural geologist is highly recommended for the identification of dilational zones.

Priority targets have been identified at this early stage in four categories and include: (i) uranium and structural coincidences (NS1 through NS11), (ii) pressure shadows (NS12, NS13), flexures (NS14 through NS18) and magnetic lows (NS19 through NS25). All of these may be associated with space-making and the conduction of uraniferous fluids.

The main faults/structures evident from the geophysical data on the property are as follows (in degrees azimuth): 00, 005, 015, 020, 025, 045, 050, 110, 120, 135, 155, 160, Attention should be paid to the relationship between the various faults and mineralization styles during geological follow-up, in that certain structural orientations may have provided a coincidence of dilational events with the flow of uraniferous fluids, and thus been preferable for uranium mineralization.

Secondary constraints are required to refine prioritizations on all targets and generate new ones along the hundreds of structures elucidated from the geophysics. An airborne radiometric survey and lake sediment geochemistry are highly recommended. Enzyme leach geochemical methods should also be considered as a direct test method for specific inferred structures and target zones.

RECOMMENDATIONS

It is recommended that structures inferred from the Terraquest magnetic and XDS-VLF data, which are coincident with known mineralization showings be followed-up in the field for uranium.

The 25 identified targets are recommended for field follow-up during the late 2007 summer field season. The targets should be assessed on the ground by geological teams equipped with hand-held scintilometers or spectrometers and structural measurements/mapping should also be performed. The prospecting of areas within a ~750m radius of the target centres is recommended, with attention paid to possible uraniferous boulders, or outcrop, especially along-strike with interpreted structures. Mapping, scintillometer /spectrometer prospecting, sampling and assaying of prospective rocks is highly encouraged, and the integration of this data back into the geophysical

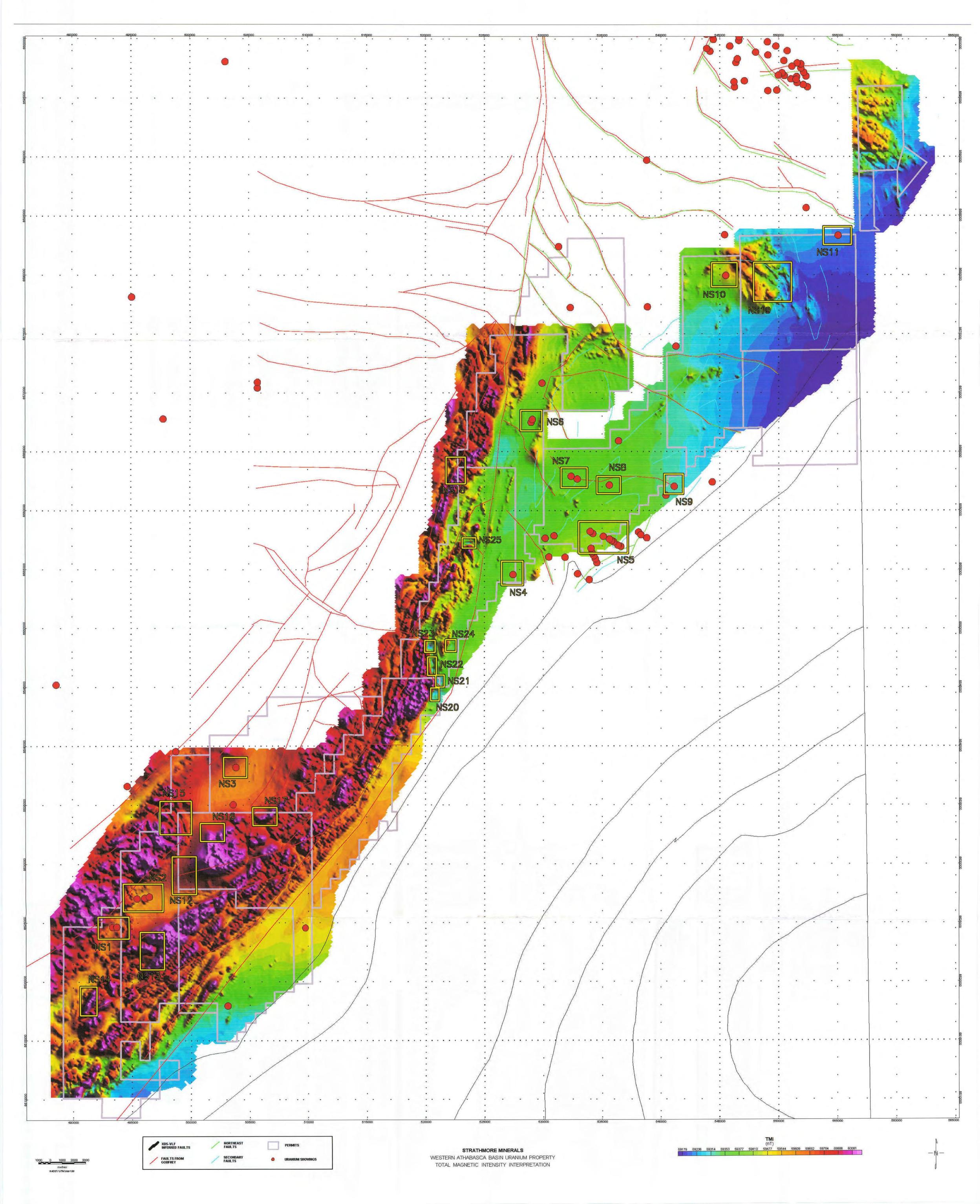
interpretation, post-field season, is highly recommended to refine the geophysical interpretation and assign ranks to more targets/structures.

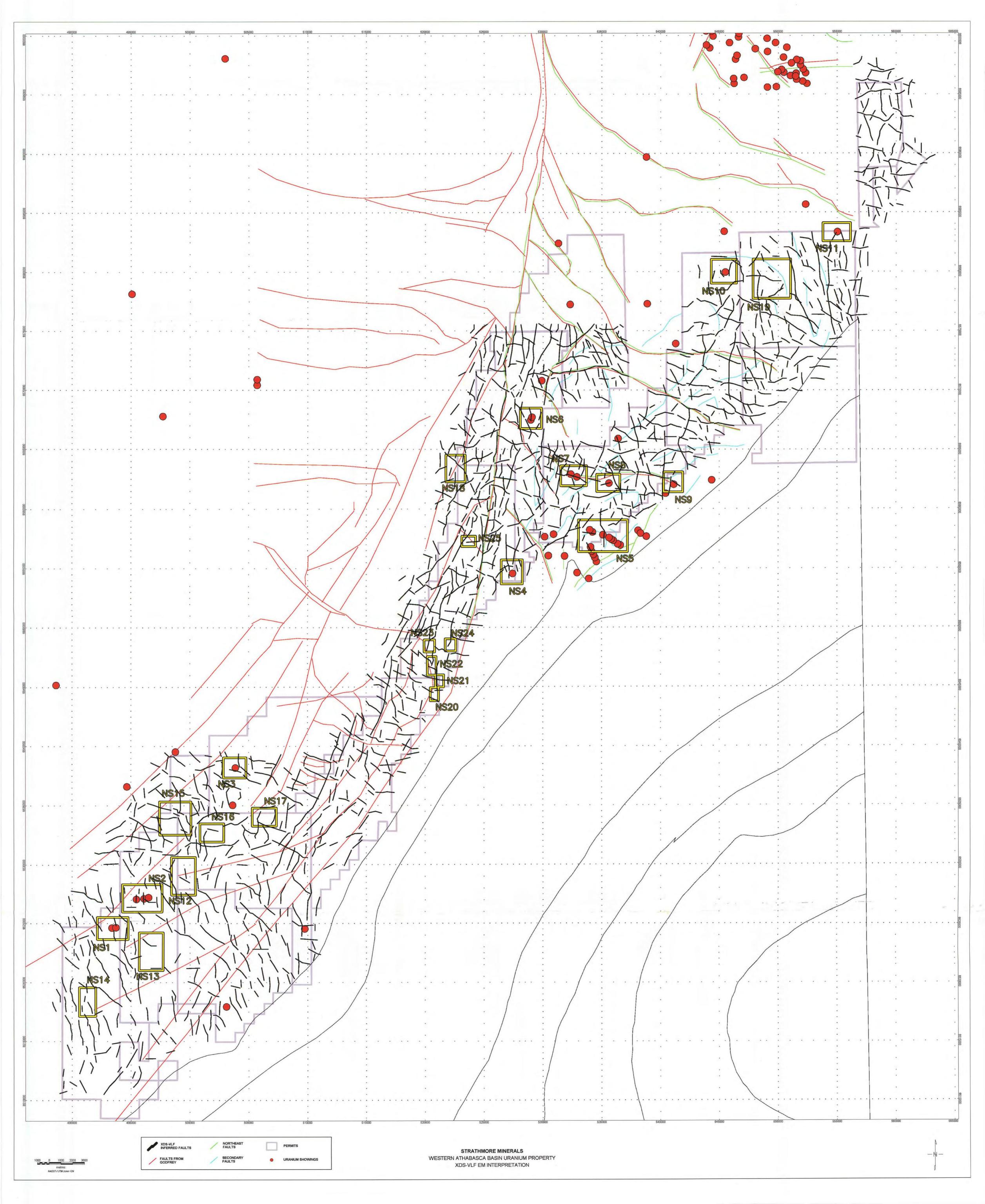
Secondary follow-up methods such as airborne radiometrics, lake sediment geochemistry and enzyme leach geochemical methods are highly recommended. The acquisition of modern state of the art airborne radiometric data is the most highly recommended for the correlation with historical uranium showing and the rapid assessment of all structures elucidated from the current Terraquest survey.

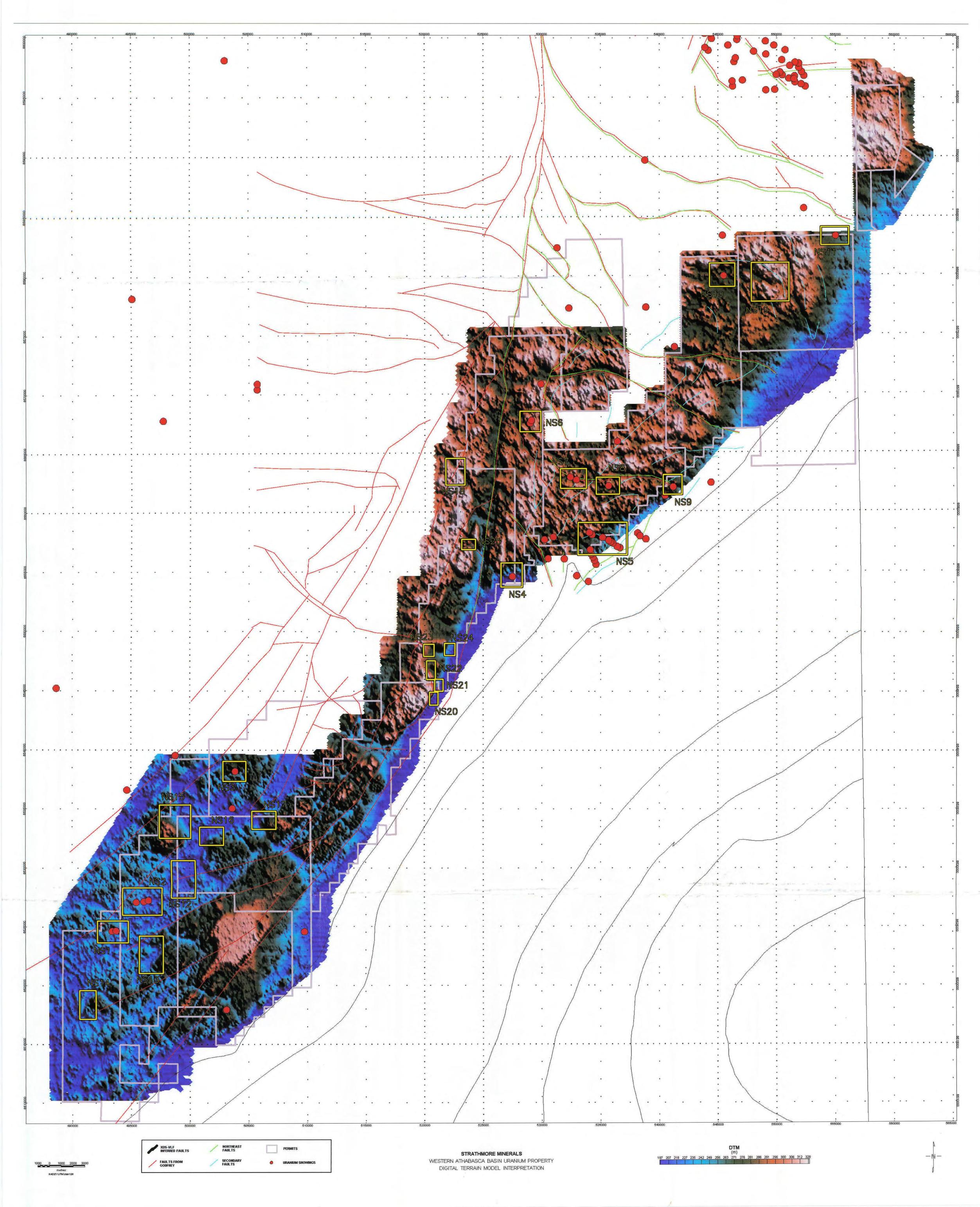
The possible sedimentary outliers in the NE and SW portions of the property should be field verified, as the boundaries and interiors of these may be prospective for unconformity-style mineralization.

The association of mineralization and field observations with inferred structures of varying XDS-VLF signal intensity should also be examined, to attempt to categorize various XDS-VLF responses in terms of the inferred size/width/porosity of the causative structures.

Respectfully submitted, MPH Consulting Limited


Jeremy S. Brett, M.Sc., P.Geo. Senior Geophysical Consultant


REFERENCES


Operations Report for STRATHMORE MINERALS CORP., High Resolution Horizontal Magnetic Gradient & XDS-VLF-EM Airborne Survey, Athabasca North Project, Fort Chipewyan, Alberta, March 7, 2007, Terraquest Limited (Report #: B-207)

Advances in Integrated Exploration for Unconformity Uranium Deposits in Western Canada, Integrated Exploration Case Histories Paper 130, R. Mathews, R. Koch, M. Leppin, Proceedings of Exploration 97, 1997

Unconformity Associated Uranium Deposits, C.W. Jefferson, D.J. Thomas, S.S. Ghandi, P.Ramaekers, G.Delaney, D.Brisbin, C. Cutts, P. Portella and R.A.Olson

