MAR 20050008: NORTHWEST

Received date: May 06, 2005
Public release date: Feb 07, 2007

DISCLAIMER
By accessing and using the Alberta Energy website to download or otherwise obtain a scanned mineral assessment report, you (“User”) agree to be bound by the following terms and conditions:

a) Each scanned mineral assessment report that is downloaded or otherwise obtained from Alberta Energy is provided “AS IS”, with no warranties or representations of any kind whatsoever from Her Majesty the Queen in Right of Alberta, as represented by the Minister of Energy (“Minister”), expressed or implied, including, but not limited to, no warranties or other representations from the Minister, regarding the content, accuracy, reliability, use or results from the use of or the integrity, completeness, quality or legibility of each such scanned mineral assessment report;

b) To the fullest extent permitted by applicable laws, the Minister hereby expressly disclaims, and is released from, liability and responsibility for all warranties and conditions, expressed or implied, in relation to each scanned mineral assessment report shown or displayed on the Alberta Energy website including but not limited to warranties as to the satisfactory quality of or the fitness of the scanned mineral assessment report for a particular purpose and warranties as to the non-infringement or other non-violation of the proprietary rights held by any third party in respect of the scanned mineral assessment report;

c) To the fullest extent permitted by applicable law, the Minister, and the Minister’s employees and agents, exclude and disclaim liability to the User for losses and damages of whatsoever nature and howsoever arising including, without limitation, any direct, indirect, special, consequential, punitive or incidental damages, loss of use, loss of data, loss caused by a virus, loss of income or profit, claims of third parties, even if Alberta Energy have been advised of the possibility of such damages or losses, arising out of or in connection with the use of the Alberta Energy website, including the accessing or downloading of the scanned mineral assessment report and the use for any purpose of the scanned mineral assessment report so downloaded or retrieved.

d) User agrees to indemnify and hold harmless the Minister, and the Minister’s employees and agents against and from any and all third party claims, losses, liabilities, demands, actions or proceedings related to the downloading, distribution, transmissions, storage, redistribution, reproduction or exploitation of each scanned mineral assessment report obtained by the User from Alberta Energy.
NORTHWEST ALBERTA PROJECT

Mineral Assessment Report (Revised)

Metallic and Industrial Minerals
Permit Nos. 939701001 and 939701002
Permit Holder Alan David Lewis

Submitted by

713803 Alberta Ltd

December 6, 2006
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
<th>Tab</th>
</tr>
</thead>
<tbody>
<tr>
<td>Executive Summary</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. Introduction</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>2. Lab Scale Mineral Content Analysis</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>2.1 Al Lewis</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>2.2 Discussion of Lewis</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>Analytical Techniques and Results</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.3 Loring Laboratories</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>2.4 SGS Lakefield Research Limited</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>3. Computer Tabulation and Analysis of Test Results</td>
<td>7</td>
<td>3</td>
</tr>
<tr>
<td>4. Discussions with Other Companies</td>
<td>8</td>
<td>4</td>
</tr>
<tr>
<td>5. Summary of Expenditures</td>
<td>9</td>
<td>5</td>
</tr>
<tr>
<td>Attachments</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.1.1 Douglas Read Letter</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.1.2 Photographs of Lewis Laboratory Equipment</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.1.3 Table 2.1 Test Procedures & Values</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.1.4 Location of Ore Samples</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.1.5 Geological Interpretation Report</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.2.1 Alan Lewis Test Log Notes (Process)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.2.2 Alan Lewis Test Log Notes (Firing)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.3.1 Loring Test Analyses</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.3.2 SGS Lakefield Research Limited Test Analysis</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Executive Summary
Activities of 713803 Alberta Ltd. May 2003 to April 2005

The last mineral assessment report was submitted on May 12, 2003. Since that time the activities of 713803 Alberta Ltd. have been primarily a continuation of testing of ore pretreatment and assay analysis techniques at Mr. Lewis' home-based lab facilities.

Mr. Lewis has continued to improve and extend his facilities. Photographs of his equipment are included in this report.

Unfortunately, consistent with prior experience, none of that additional work in the period since May 2003 has been successful in establishing either the existence of significant quantities of precious metals on a widespread basis in the ore bodies or a commercially viable technique to extract those precious metals.

713803 Alberta Ltd. has maintained contact with other companies or individuals who are pursuing similar efforts to extract precious metals from similar ores to determine if any joint efforts are feasible. These discussions have not led to any joint ventures at this time.
1.0 Introduction

713803 Alberta Ltd. was incorporated in 1996 for the purpose of pursuing exploration and development of potential precious metal bearing properties in northwestern Alberta including the properties that are the subject of this report held under metallic and industrial minerals permit #9397010002 and #9397010001 in the name of Alan David Lewis, a shareholder of 713803 Alberta Ltd. (see figure 1.1 showing mineral permit location).

Previous Mineral Assessment Reports have been filed on May 14, 1999, May 17, 2001 and May 12, 2003. This report describes the further work conducted in the period from May 2003 to April 2005 which has consisted almost entirely of continuing lab analysis by Alan Lewis in his home based facilities supported by external commercial lab analysis. For completeness and ease of reference certain extracts of earlier reports are included in this report.

Some of the analytical work performed by Mr. Lewis in the current reporting period has been based on suggestions and input received from Mr. Norm Smalley, a 713803 Alberta Ltd. shareholder who is also a well experienced independent assay analyst.

Contact has been maintained with Birch Mountain Resources Ltd. to determine if there was interest in pursuing any exploration/analysis work on the subject permit lands or sample ores.

These various activities will be described in more detail in the following sections of the Report.
2. Lab Scale Mineral Content Analysis

Lab scale analyses were conducted by:

- Al Lewis (51 tests in total) at his home lab
- Loring Laboratories Ltd.
- SGS Lakefield Research Limited

Each of these series of tests will be described below.

2.1 Al Lewis

An overview of the qualifications and experience of Mr. Lewis is provided.

Mr. Lewis first became interested in gold mining in the nineteen seventies. Through reading, visits to gold mining operations in Australia and the Yukon and discussions with people active in the mining industry, Mr. Lewis developed sufficient knowledge and interest to initiate his first actual mining activity in the Yukon in 1980.

During the next seventeen years from 1980 to 1997, Mr. Lewis and his associates mined several properties in the Yukon including Bonanza Creek, Vancouver Creek, and the Mooschorn Range with varying degrees of success. In some years, 40 to 80 oz. of gold per day was successfully mined over the course of the 90 day summer Yukon mining season.

In the mid nineteen nineties, Mr. Lewis became aware of the gold potential of Northwestern Alberta and through his knowledge and experience developed a proposal that was successfully presented to 10 other investors in 1996 resulting in the formation of 713803 Alberta Ltd. These individuals, along with Mr. Lewis, remain the shareholders of 713803 Alberta Ltd. to the present day.

Mr. Lewis equipped his own testing lab using the knowledge he had gained in the seventeen years of Yukon mining experience. Supplemented by additional discussion and reading germane to the “fine gold” type of ore found in Northwestern Alberta, Mr. Lewis developed and continues to develop the analytical approaches that are being used by 713803 Alberta Ltd.

In the early years of 713803 Alberta Ltd.’s activities, confirmation of the quality of Mr. Lewis’ laboratory facilities and analysis was provided by Mr. Doug Read, President of Cantech Laboratories Inc. Mr. Read confirmed in a letter provided to 713803 Alberta Ltd. that the work performed by Mr. Lewis was reliable and consistent with established practices of commercial laboratories.

A copy of the letter provided by Mr. Read, dated September 15, 1997 was included in 713803 Alberta Ltd.’s original 1999 assessment report dated May and is again included as attachment 2.1.1 in Section 2 of this report. Since the time of writing of Mr. Read’s
letter, Mr. Lewis has continued to improve the quality of this equipment and now has in
place an additional propane-fired furnace and has an improved scale capable of resolution
to one ten thousandth of a gram. Mr. Lewis has also obtained a separate lab trailer to
house the laboratory equipment, which again improves the quality of operations from the
time of Mr. Read's assessment when the lab equipment was housed in a vehicle garage.
Photographs of Mr. Lewis' laboratory equipment are included as attachment 2.1.2 in
Section 2 of this report

Mr. Lewis and other 713803 Alberta Ltd. shareholders also met with principals of Birch
Mountain Resources Ltd., a much larger public company, which has been engaged in
research and development of "fine gold" analytical process is in the same time frame as
713803 Alberta Ltd. The purpose of the discussion was to explore analytical approaches
to Northwestern Alberta "fine gold" ore samples. The Birch Mountain personnel were
similarly supportive of the approaches and analytical techniques undertaken by Mr.
Lewis.

A chronological summary of all tests conducted by Al Lewis from April 25th of 2001 to
March 26th, 2003 is shown on Table 2.1 entitled "Test Procedures and Values", included
as Attachment 2.1.3. Column 1 shows the period of time over which the test was
conducted and Column 2 provides the test number.

Column 3 shows the type and source of ore tested and the size of the sample used in the
test in terms of the number of assay tons. Of the 51 tests, 33 of the ore samples came
from locations within the Lewis permit lands as shown on Figure 1, included as
Attachment 2.1.4. The sources of the other 18 samples are described in the notes to
Table 2.1. All of the other samples are of ore types similar to those obtained from the
Lewis permit lands and were utilized as part of the ongoing efforts to establish viable and
repeatable ore treatment and assaying technique. This is the critical knowledge that is
necessary to prove up the value of the Lewis permit lands.

The geological assessment of the Lewis permit lands, originally included in the May 14,
1999 Assessment Report is included again in this report as Attachment 2.1.5.

Column 4 describes the pre treatment and/or leaching agent used to extract precious
metals.

Column 5, entitled "Value", provides the results obtained. Where the bead obtained from
a specific test has been analyzed for precious metal content by an external laboratory, the
results obtained from the external laboratory are provided. The name and test file
number from the external laboratory are provided in Column 6. In those instances where
no external analysis has been done the value stated is that measured by Al Lewis. The
values stated will be the milligram weight of the bead obtained and that milligram weight
converted to a weight of precious metal (in fractions of an ounce) per ton of raw head ore
(OPT). This conversion of bead weight to precious metal concentration is achieved by
dividing the bead weight by the number of assay tons in the sample that was analyzed.
An assay ton (A.T.) is defined as follows:

1 ton of ore (2000 lbs.) avoirdupois weighs 29166 troy oz.

1 assay ton (A.T.) weighs 29.166 grams.

Therefore, if the ‘assay ton’ yields 1 mg. of precious metal, it follows that the 2000 lb. ton of ore has a yield of 1 troy oz. per ton of ore.

Finally, column 7 shows the hours of work performed by Mr. Lewis in conducting the test.

2.2 Discussion of Lewis Analytical Techniques and Results

As discussed in previous assessment reports (May 14, 1999, May 17, 2001 and May 12, 2003), 713803 Alberta Ltd. continues to face the challenge of developing and establishing a reliable and repeatable sample pretreatment and leaching techniques to remove and capture the precious metal content from the ore sample. Accordingly, the test analyses reported in the Table 2.1 entitled “Test Procedures and Values” in this assessment report note in Column 3, the various pretreatment and leaching and processes that were used.

The pretreatment agents included:

- H2SO4 (sulfuric acid)
- NaOH (Sodium hydroxide)
- HNO3 (nitric acid)

Differing concentrations and proportions of these pretreatment agents were used in the various tests.

Once a sample was pretreated, different leaching agents were utilized to extract the precious metals from the ore samples. These leaching agents included:

- HCl (three parts) and HNO3 (one part) (known as Aqua Regia)
- NaCl (common salt)
- NaBr (sodium bromide)
- KI (potassium iodide)

Again, different concentrations of leaching agents realized in various tests. These varying concentrations of leaching agents resulted in differing levels of PH (acid – alkalinity balance) and differing levels of ORP (oxidation reduction potential).

The leached solution was then precipitated and dried. The dried precipitates were then fired in a conventional fire assay and the resulting bead weighed. In certain instances as
noted in the table the bead precious metal content was analyzed by an external lab (Loring) to provide independent confirmation of the results that Lewis was achieving.

The specific concentrations of agents used in the various analyses are not reported in Table 2.1. This is based on the anticipation of 713803 Alberta Ltd. that once repeatable techniques are established that they would provide proprietary analytical knowledge which could be the basis of patent applications.

However, in order to provide the maximum amount of information, copies of Mr. Lewis' laboratory log notes covering Lewis test nos. 766 to 830 (redacted to exclude sensitive information) are provided as Attachment 2.2.1. For test #802 to #830 inclusive, additional log notes (Attachment 2.2.2) are provided to describe the typical information that is recorded for the firing process of each test.

As compared to the earlier assessment reports, fewer tests have been performed by Mr. Lewis, but more of the Lewis assay beads were forwarded to external labs for measurement of precious metal content in the beads.

However, the fact that we continue in a few tests to find significant values of precious metal (as confirmed by the Loring tests) provides a basis for continuing efforts to prove the existence of commercially significant levels of precious metals and to ultimately develop a repeatable and commercially viable extraction process.

2.3. Loring Laboratories

All the tests conducted by Loring were to analyze the precious metal content of beads obtained from tests conducted by Al Lewis. Twenty-one Loring test reports are included in chronological order as attachment 2.3.1. An examination of these test results shows that almost all the Loring tests showed measurable precious metal content. However, there was significant variability in precious metal content ranging from some tests where precious metal content was below the detection limits of the tests (e.g., #826 and #827), to others where the measured precious metal content was significant (e.g., #808 and #810) and represented values within possible commercial feasibility. The majority of the tests produced measurable content, but was below commercial viability.

2.4. SGS Lakefield Research Limited

In June of 2003, Mr. Lewis met with analysts at Lakefield to discuss our project and have Lakefield perform assays on four samples of raw ore, as well as on the material obtained from two Lewis tests (#772 and #774).

The results obtained by Lakefield are included as Attachment 2.3.2. Lakefield did not find any significant quantity of precious metals in the raw samples (nos. 1, 2, 3 and 6 in the Lakefield Report), nor did they find any significant quantity of precious metals in the bead obtained by Lewis in Lewis Test No. 774. The results for Lewis test No. 772 did show measurable quantities.
ATTACHMENT 2.1.1

Douglas Read Letter
CanTech Laboratories Inc.

September 15, 1997

713803 Alberta Ltd.
124 Edgehill Close N.W.
Calgary, Alberta
T3A 2X1

Attention: Mr. G.R. Walsh

Re: Assay Procedure (Alan Lewis)

Dear Sir:

At your request, I visited the home of Mr. Alan Lewis in Ponoka, Alberta on July 17, 1997 to view his assaying operation. In addition to yourself, Alan and Mr. Bob Liddle, two other gentlemen were also present, namely Messrs. Art Wilkins and Barry Luft whom I understood are also participants of this Company.

I make a few comments herewith:

Sample Preparation: The rolling ball mill in use is acceptable and appropriate for this type of operation. I did not see the cleaning of the mill after the sample was prepared; however, Alan assured me that compressed air and brushes were used between samples.

Sample Weighing: A beam balance was used for weighing both the sample and the flux charge for fire assay. A more accurate digital top-loading balance would be more suitable and accurate.

Fire Assaying: The electric furnace in use is acceptable. My only comment would be that the temperature increase is slow and difficult to maintain at the desired temperatures of 1600 F and 2000 F. This lack of temperature control could possibly have some effect on the end result.
I provided Alan with a CANMET Certified Reference Sample from Ottawa to run alongside the samples he was assaying that day. The result he obtained for this standard was certainly within the accepted range after taking into consideration the possibility of errors arising from the above comments. His result of 0.165 opt compared with the accepted value of 0.25 opt.

Overall I found the procedures for sample preparation and fire assaying carried out by Alan to be of a generally acceptable standard.

I hope this information is of assistance to you. If you have any questions, please do not hesitate to contact me.

Yours truly,
CanTech Laboratories, Inc.

C. Douglas Read
President
ATTACHMENT 2.1.2

Photographs of Lewis Laboratory Equipment
Precision Scale
Accurate to milligram

Microscope 128x to 352x

Balance—to weigh ore samples and reagents.

20x 30x 60x
To examine beads etc.
Glass enclosed fume hood containing drying grill area

Propane-fired furnace

Rt. side of hood with mixing device and hot plate for leaching

Electric Cupeling Furnace
ATTACHMENT 2.1.3

Table 2.1

Test Procedures & Values
TABLE 2.1
TEST PROCEDURES & VALUES

<table>
<thead>
<tr>
<th>DATE</th>
<th>TEST</th>
<th>ORE</th>
<th>PROCESS</th>
<th>VALUE</th>
<th>EXT. LAB</th>
<th>HOURS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apr. 19-21/03</td>
<td>#766</td>
<td>Roger 3 A.T.</td>
<td>HNO3, HCL</td>
<td>Au and PGMs</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Zinc precip.</td>
<td>.24 mg., .08 OPT</td>
<td></td>
<td>26 hrs.</td>
</tr>
<tr>
<td>May 1/03</td>
<td>#767</td>
<td>Roger 1 A.T.</td>
<td>HNO3, HNOCL</td>
<td>Not parted</td>
<td></td>
<td>16 hrs.</td>
</tr>
<tr>
<td>May 5-7/03</td>
<td>#768</td>
<td>Roger 5 A.T.</td>
<td>Chloride</td>
<td>Au, Ag and PGMs</td>
<td></td>
<td>15 hrs.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Zinc precip.</td>
<td>0.532 mg...105 OPT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>May 13/03</td>
<td>#769</td>
<td>20% from #768</td>
<td>Roasted dish</td>
<td>Not parted</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>broke</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>May 14/03</td>
<td>#770</td>
<td>20% from #768</td>
<td>Sodium Nitrite</td>
<td>Au and PGMs</td>
<td></td>
<td>10 hrs.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NaHC4</td>
<td>.22 mg...22 OPT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>May 15/03</td>
<td>#771</td>
<td>20% from #768</td>
<td>Bicarbonate</td>
<td>Au and PGMs</td>
<td></td>
<td>12 hrs.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Sodium Nitrite</td>
<td>.10 mg...10 OPT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>May 18/03</td>
<td>#772</td>
<td>Roger 5 A.T.</td>
<td>Chloride</td>
<td>Au 1.30 g/t.</td>
<td>Lakefield</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Pt. 1.45 g/t</td>
<td>#CA9457</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Pd. 0.56 g/t</td>
<td></td>
<td>11 hrs.</td>
</tr>
<tr>
<td>May 26-27/03</td>
<td>#773</td>
<td>Roger 5 A.T.</td>
<td>Chloride</td>
<td>trace Au</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>14 hrs.</td>
</tr>
<tr>
<td>Jun. 2-3/03</td>
<td>#774</td>
<td>Roger 5 A.T.</td>
<td>Chloride</td>
<td>Au. <0.0002 g/t</td>
<td>Lakefield</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Pt. 0.0007 g/t</td>
<td>#CA9457</td>
<td>15 hrs.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Pd. <0.0002 g/t</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jun. 14-15/03</td>
<td>#775</td>
<td>Roger 5 A.T.</td>
<td>NaBr, KI</td>
<td>Au, Ag and PGMs</td>
<td></td>
<td>18 hrs.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Pretreat H2SO4</td>
<td>20 mg...04 OPT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jun. 24-25/03</td>
<td>#776</td>
<td>Roger 5 A.T.</td>
<td>NaBr, KI</td>
<td>Au, and PGMs</td>
<td></td>
<td>23 hrs.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Pretreat H2SO4</td>
<td>0.21 mg...042 OPT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jul. 7-8/03</td>
<td>#777</td>
<td>Roger 5 A.T.</td>
<td>Pretreat Na OH</td>
<td>Not parted</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NaBr, KI</td>
<td>Au, Ag and PGMs</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.363 mg...073 OPT</td>
<td></td>
<td>10 hrs.</td>
</tr>
</tbody>
</table>

EXT. LAB

<table>
<thead>
<tr>
<th>DATE</th>
<th>TEST</th>
<th>ORE</th>
<th>PROCESS</th>
<th>VALUE</th>
<th>EXT. LAB</th>
<th>HOURS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jun. 2-3/03</td>
<td>#774</td>
<td>Roger 5 A.T.</td>
<td>Chloride</td>
<td>Au. <0.0002 g/t</td>
<td>Lakefield</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Pt. 0.0007 g/t</td>
<td>#CA9457</td>
<td>15 hrs.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Pd. <0.0002 g/t</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jun. 14-15/03</td>
<td>#775</td>
<td>Roger 5 A.T.</td>
<td>NaBr, KI</td>
<td>Au, Ag and PGMs</td>
<td></td>
<td>18 hrs.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Pretreat H2SO4</td>
<td>20 mg...04 OPT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jun. 24-25/03</td>
<td>#776</td>
<td>Roger 5 A.T.</td>
<td>NaBr, KI</td>
<td>Au, and PGMs</td>
<td></td>
<td>23 hrs.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Pretreat H2SO4</td>
<td>0.21 mg...042 OPT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jul. 7-8/03</td>
<td>#777</td>
<td>Roger 5 A.T.</td>
<td>Pretreat Na OH</td>
<td>Not parted</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>NaBr, KI</td>
<td>Au, Ag and PGMs</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.363 mg...073 OPT</td>
<td></td>
<td>10 hrs.</td>
</tr>
<tr>
<td>DATE</td>
<td>TEST</td>
<td>ORE</td>
<td>PROCESS</td>
<td>VALUE</td>
<td>EXT. LAB</td>
<td>HOURS</td>
</tr>
<tr>
<td>------------------</td>
<td>------</td>
<td>----------</td>
<td>---------</td>
<td>---</td>
<td>----------</td>
<td>-------</td>
</tr>
<tr>
<td>Jul. 23-25/03</td>
<td>#778</td>
<td>Roger 5 A.T.</td>
<td>NaBr</td>
<td>Not parted Au, Ag and PGMs 0.15mg., .03 OPT</td>
<td></td>
<td>33 hrs.</td>
</tr>
<tr>
<td>Jul. 31, Aug. 7-9/03</td>
<td>#779</td>
<td>Roger 5 A.T.</td>
<td>Chloride</td>
<td>Lost</td>
<td></td>
<td>29 hrs.</td>
</tr>
<tr>
<td>Aug. 14-15/03</td>
<td>#780</td>
<td>Roger 20 A.T.</td>
<td>Chloride</td>
<td>Au and PGMs, 0.82mg., .041 OPT</td>
<td></td>
<td>22 hrs.</td>
</tr>
<tr>
<td>Sept. 8-10/03</td>
<td>#781</td>
<td>Roger 5 A.T.</td>
<td>Chloride</td>
<td>Au, Ag, PGMs 0.21mg., .042 OPT</td>
<td></td>
<td>31 hrs.</td>
</tr>
<tr>
<td>Oct. 2/03</td>
<td>#782</td>
<td>Conglomerate 5 A.T.</td>
<td>HNO3 HCL</td>
<td>Au, Ag, PGMs 0.07mg., .014OPT</td>
<td></td>
<td>13 hrs.</td>
</tr>
<tr>
<td>Oct. 7/03</td>
<td>#783</td>
<td>Plant 5 A.T.</td>
<td>Aqua Regia</td>
<td>Au, Ag, PGMs 0.03mg., .006 OPT</td>
<td></td>
<td>11 hrs.</td>
</tr>
<tr>
<td>Oct. 18/03</td>
<td>#784</td>
<td>Plant 5 A.T.</td>
<td>Aqua Regia</td>
<td>Au trace</td>
<td></td>
<td>11 hrs.</td>
</tr>
<tr>
<td>Oct. 21-22/03</td>
<td>#785</td>
<td>Roger 5 A.T.</td>
<td>NaBr, KI</td>
<td>Au and PGMs .035mg., .007 OPT</td>
<td></td>
<td>16 hrs.</td>
</tr>
<tr>
<td>Nov. 4-5/03</td>
<td>#786</td>
<td>Chin. 5 A.T.</td>
<td>NaBr, KI</td>
<td>Au and PGMs 0.21mg., .044 OPT</td>
<td></td>
<td>21 hrs.</td>
</tr>
<tr>
<td>Dec. 8-11/03</td>
<td>#788</td>
<td>Roger 5 A.T.</td>
<td>NaBr, KI</td>
<td>Au .0035mg., .0007OPT</td>
<td>Loring #46193</td>
<td>36 hrs.</td>
</tr>
<tr>
<td>Dec. 20-21/03</td>
<td>#789</td>
<td>Roger 5 A.T.</td>
<td>Chloride</td>
<td>Au .0016mg., .0003 OPT</td>
<td>Loring #46257</td>
<td>22 hrs.</td>
</tr>
</tbody>
</table>

Note: nos 790 to 801 not used

<table>
<thead>
<tr>
<th>DATE</th>
<th>TEST</th>
<th>ORE</th>
<th>PROCESS</th>
<th>VALUE</th>
<th>EXT. LAB</th>
<th>HOURS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feb. 11/04</td>
<td>#802</td>
<td>Roger 5 A.T.</td>
<td>NaBr</td>
<td>Au .0069mg., .007 OPT Pt .001mg., .001 OPT Pd .0015mg., .0015 OPT</td>
<td>Loring #46385</td>
<td>12 hrs.</td>
</tr>
<tr>
<td>Feb. 12-13/04</td>
<td>#803</td>
<td>Roger 5 A.T.</td>
<td>NaBr, KI</td>
<td>Au .019mg., .019 OPT Pt .0025mg., .003 OPT Pd .0018mg., .0018 OPT</td>
<td>Loring #46385</td>
<td>17 hrs.</td>
</tr>
<tr>
<td>Mar. 9-10/04</td>
<td>#804</td>
<td>Far West 5 A.T.</td>
<td>NaBr, KI</td>
<td>Au .065mg., .014 OPT</td>
<td>Loring #46428</td>
<td>18 hrs.</td>
</tr>
<tr>
<td>Mar. 18-19/04</td>
<td>#805</td>
<td>6-26, 5 A.T.</td>
<td>NaBr</td>
<td>Au .0198mg., .0198 OPT</td>
<td>Loring #46466</td>
<td>18 hrs.</td>
</tr>
<tr>
<td>DATE</td>
<td>TEST</td>
<td>ORE</td>
<td>PROCESS</td>
<td>VALUE</td>
<td>EXT. LAB</td>
<td>HOURS</td>
</tr>
<tr>
<td>--------------</td>
<td>------</td>
<td>----------------</td>
<td>--------------</td>
<td>--------------------------------</td>
<td>----------</td>
<td>-------</td>
</tr>
<tr>
<td>Mar. 30, Apr. 1/04</td>
<td>#807</td>
<td>Cong. 5 A.T.</td>
<td>NaBr</td>
<td>Au .135mg , .027 OPT</td>
<td>Loring</td>
<td>21 hrs.</td>
</tr>
<tr>
<td>Apr. 17-29/04</td>
<td>#809</td>
<td>Cong. 5 A.T.</td>
<td>Aqua Regia</td>
<td>Au .032 mg, .0064 OPT</td>
<td>Loring</td>
<td>26 hrs.</td>
</tr>
<tr>
<td>May 5-7/04</td>
<td>#808</td>
<td>6-26 Plant</td>
<td>Aqua Regia</td>
<td>Au .505mg , .505 OPT</td>
<td>Loring</td>
<td>27 hrs.</td>
</tr>
<tr>
<td>May 7-10/04</td>
<td>#810</td>
<td>Far West 5 A.T.</td>
<td>Aqua Regia</td>
<td>Au .836mg , .167 OPT Pt .0059mg , .0012 OPT</td>
<td>Loring</td>
<td>31 hrs.</td>
</tr>
<tr>
<td>May 27-30/04</td>
<td>#811</td>
<td>Ron. 5 A.T.</td>
<td>Aqua Regia</td>
<td>Au .086mg , .017 OPT</td>
<td>Loring</td>
<td>42 hrs.</td>
</tr>
<tr>
<td>Jun. 14-18/04</td>
<td>#812</td>
<td>Chin. 5 A.T.</td>
<td>Aqua Regia</td>
<td>Au .022mg , .004 OPT</td>
<td>Loring</td>
<td>36 hrs.</td>
</tr>
<tr>
<td>Jun. 20-27/04</td>
<td>#813</td>
<td>Cong. 5 A.T.</td>
<td>Aqua Regia</td>
<td>Au .026mg , .005 OPT</td>
<td>Loring</td>
<td>32 hrs.</td>
</tr>
<tr>
<td>Jun 24-27/04</td>
<td>#814</td>
<td>Sand under</td>
<td>Aqua Regia</td>
<td>Au .024 Mg , .0048 OPT</td>
<td>Loring</td>
<td>30 hrs.</td>
</tr>
<tr>
<td>Jul. 6-10/04</td>
<td>#815</td>
<td>Conglomerate 5 A.T..</td>
<td>Aqua Regia</td>
<td>Au .056mg , .0012 OPT</td>
<td>Loring</td>
<td>46 hrs.</td>
</tr>
<tr>
<td>Jul. 24-27/04</td>
<td>#816</td>
<td>Far West 5 A.T.</td>
<td>NaBr</td>
<td>Au .079mg , .0158 OPT</td>
<td>Loring</td>
<td>36 hrs.</td>
</tr>
<tr>
<td>Aug. 3-6/04</td>
<td>#817</td>
<td>Reg. 5 A.T.</td>
<td>NaBr</td>
<td>Au .015mg , .003 OPT</td>
<td>Loring</td>
<td>36 hrs.</td>
</tr>
<tr>
<td>Aug. 12-15/04</td>
<td>#818</td>
<td>6-26 3.5 A.T.</td>
<td>Aqua Regia</td>
<td>Au .048mg , .0137 OPT</td>
<td>Loring</td>
<td>36 hrs.</td>
</tr>
<tr>
<td>Aug. 18-19/04</td>
<td>#819</td>
<td>Worsley 5 A.T.</td>
<td>Aqua Regia</td>
<td>Au .012 mg , .0024 OPT</td>
<td>Loring</td>
<td>32 hrs.</td>
</tr>
<tr>
<td>Aug. 30-31/04</td>
<td>#820</td>
<td>6-26, 5 A.T.</td>
<td>NaBr</td>
<td>Au .012 mg , .0024 OPT</td>
<td>Loring</td>
<td>21 hrs.</td>
</tr>
<tr>
<td>Sept. 19-21/04</td>
<td>#821</td>
<td>6-26, 5 A.T.</td>
<td>Aqua Regia</td>
<td>Au .031mg , .0062 OPT</td>
<td>Loring</td>
<td>36 hrs.</td>
</tr>
<tr>
<td>DATE</td>
<td>TEST</td>
<td>ORE</td>
<td>PROCESS</td>
<td>VALUE</td>
<td>EXT. LAB</td>
<td>HOURS</td>
</tr>
<tr>
<td>------------</td>
<td>------</td>
<td>--------------</td>
<td>---------</td>
<td>-----------------------</td>
<td>----------</td>
<td>--------</td>
</tr>
<tr>
<td>Oct. 12-13/04</td>
<td>#822</td>
<td>Reg. 10 A.T.</td>
<td>NaBr</td>
<td>Au 0.712 mg., .0712 OPT</td>
<td>Loring #47175</td>
<td>20 hrs.</td>
</tr>
<tr>
<td>Dec. 2/04</td>
<td>#823</td>
<td>Reg. 4 A.T.</td>
<td>NaBr</td>
<td>Au .012 mg., .003 OPT</td>
<td>Loring #47253</td>
<td>13 hrs.</td>
</tr>
<tr>
<td>Dec. 12-13/04</td>
<td>#824</td>
<td>Reg. 3 A.T.</td>
<td>NaBr</td>
<td>Au .015 mg., .005 OPT</td>
<td>Loring #47253</td>
<td>21 hrs.</td>
</tr>
<tr>
<td>Jan. 10/05</td>
<td>#825</td>
<td>Reg. 3 A.T.</td>
<td>NaBr KI</td>
<td>Au .003 mg., .001 OPT</td>
<td>Loring #47253</td>
<td>17 hrs.</td>
</tr>
<tr>
<td>Jan. 19-20/05</td>
<td>#826</td>
<td>Far West 3 A.T.</td>
<td>Chloride</td>
<td>trace Au</td>
<td>Loring #47350-Feb 1</td>
<td>26 hrs.</td>
</tr>
<tr>
<td>Jan. 27-30/05</td>
<td>#827</td>
<td>Far West 3 A.T.</td>
<td>Aqua Regia</td>
<td>trace Au</td>
<td>Loring #47350-Feb 1</td>
<td>24 hrs.</td>
</tr>
<tr>
<td>Feb. 10-11/05</td>
<td>#828</td>
<td>Far West 2 A.T.</td>
<td>Aqua Regia</td>
<td>Au .017 mg., .0085 OPT</td>
<td>Loring #47421</td>
<td>21 hrs.</td>
</tr>
<tr>
<td>Mar. 1-4/05</td>
<td>#829</td>
<td>Far West 4 A.T.</td>
<td>Aqua Regia</td>
<td>Au .080 mg., .020 OPT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mar. 24-25/05</td>
<td>#830</td>
<td>Ron 5 A.T.</td>
<td>Aqua Regia</td>
<td>Au .530 mg., .106 OPT</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes re: source of Ore Samples from areas other than Lewis permit lands:
All ore samples from other locations are from locations where ore has similar characteristics to ore on Lewis permit lands.

Note 1: Samples are from the vicinity of gas well and plantsite in Section 26 Twp 79 Rge 9 W6M.
Note 2: Samples are from outcrops along Chinchaga River, 160 km N.W. of Hinton, near Alta/B.C. border.
Note 3: Samples are from a location 7km southwest of Dawson Creek.
Note 4: Samples are from Worsley area, 95 km northeast of Baytree along Highway 49.
ATTACHMENT 2.1.4

Location of Ore Samples
Figure 1 - Sample Source Location

TWP 78 RGE 13 W6M

Sand - under Conglomerate

Pouce Coupe Oil Lines

Roger

Anderson Rd

Far West

- 2750 - Surface Elevation
ATTACHMENT 2.1.5

Geological Interpretation Report
Attachment 1

Geological Discussion
3. Geological Interpretation Report

The 713803 Alberta Ltd. geological interpretation of the “west” permit area, as it relates to the Bad Heart sandstone and conglomerate deposits is set out in the following report entitled “Geological Survey, November 11-12, 1997” prepared by A.A. Wilkins, P.Geol.

Also attached is a copy of a field drilling report prepared by the Manager of Drilling, Mr. B. Luft, for activity undertaken during the period March 21 through March 25, 1998 (Attachment 3.1). This report has been previously submitted to the Alberta Land and Forest Service on May 22, 1998.

1 Note that further interpretation letter reports have also been provided by Placer Dome North America (Section 5.1) and BHP Minerals Canada Ltd. (Section 5.2).
A geological Field Trip was made to the West Permits to determine the best location to capture bulk samples for analysis.

Base Camp was established at the Airport Motel in Dawson Creek on November 11, 1997. Using Alan Lewis' 4x4 Dodge Ram Extended Cap Truck and all terrain ARGO low pressure rubber tire 8 wheel vehicle Messrs. Lewis, Luft, and Wilkins carried out a two day geological field trip over 713803 Alberta Ltd.'s West Permits and adjacent lands.

Although unanimous agreement concerning the geological interpretation of the West Permits was not reached, the following summarizes the writer's observations and opinions regarding the stratigraphic nature of the Bad Heart Conglomerate and Sandstones at eight (8) locations visited during the field trip. (See Map 1).

Day 1 November 12

Site (1) NW ¼ Section 29 78 12 W6M (Not on Map)

This site, a local "gravel pit" on crown lands, sits approximately two miles east of the West Permit's eastern boundary. Access was reached by foot from a good condition provincial road. Very little sediment has been removed from a twenty foot high glacial mound of poorly sorted clays, sand, pebbles and boulders. A very poor access road, mainly ice covered, probably is the reason why only limited amounts of material have been taken from this pit. The surface elevation of the pit ranges between 2650 and 2700 feet therefore the top of the Bad Heart Sandstone has been glacially eroded. Drilling would be required to determine:

1) the surface elevation and thickness of the Bad Heart Sandstone; or
2) if it has been totally glaciated at this location
Site (2) N ½ Section 10 78 13 W6M

Access to this location was reached, from Site 1, by Lewis' 4x4 truck with the ARGO in tow. Travelling in a south and southwesterly direction the surface elevation ranged between 2650 and 2850+ feet over the eight miles traversed. Road conditions, provincial and well site, over the eastern portion of the West Permit varied from good to very poor. Timber in the area is mainly mature poplar with some spruce growing out of clayey glacial debris. The Bad Heart Sandstone was not observed to outcrop along this road traverse.

At the Site, Luft and Wilkins walked a ¼ mile South to North traverse along a cut line from an abandoned well site in the NW ¼ of section 10 to the boundary of section 15 (Anderson Road). Glacial debris caps the hill at the well site location. About 200 feet of elevation drop took place from the beginning to the end of the traverse (2793 to 2600 feet).

No outcrops of the Bad Heart Sandstone were observed, however it was evident from sediments contained in the root systems of fallen trees that the Bad Heart Sandstone lies very close, within 1 to 3 feet, of the surface at this location.

The sample collected by Luft and Lewis in this locality, during their September trip, is probably a mixture of indigenous Bad Heart Sandstone and glacial debris. Also, in close proximity to this location, a large (1 and ½ ton) bulk sample was taken by Lewis and Wilkins during the brutally cold winter of 1996. No further samples were collected from this site since Lewis has carried out numerous assays on the bulk sample sediments, as well as the material mentioned above, collected in September.
Site (3) NW ¼ Section 23 78 13 W6M

The ARGO was used to reach this location, following a quick carburetor overhaul done by Lewis with Luft's assistance. A good trail (ARGO TRAIL) about 30 feet wide, impassible in places by a 4x4, runs due north along the western boundary of section 13 and then NNW across section 23. Logging of poplar trees has occurred along this trail with preparations underway for further removal of timber during the upcoming winter.

This site was first visited in the winter of 1996 by Wilkins. Access was gained, from the west, by snowmobile operated by a local farmer/trapper who resides in the Spirit River Area. Messrs. Fonteyne, M. Frost and Lewis collected samples from this site and surrounding area this past summer. As well Luft and Lewis collected bedrock samples from this site during their September trip.

About 45 feet of Bad Heart Conglomerate outcrops at this location, forming a near vertical cliff face. Considerable spalling and slumping has taken place dislodging large, up to 40 x 40 foot blocks, of conglomerate. The sandstone has a gradual slope, about 3.0 degrees, and is covered by topsoil and vegetation. The conglomerate was observed to outcrop 50 to 75 yards to the east of the cliff face. To the SE for about 1/2 mile the conglomerate outcrops and is generally covered by a thin layer of moss. To the NW the cliff face can be seen extending almost to the Bay Tree pit.

Both the conglomerate and sandstone dip about 5 degrees to the East, although a true dip reading is not possible because of the slumping that has occurred at this location. Samples of the conglomerate and sandstone (at the contact point) were collected. It was observed that the grain size of the conglomerate pebbles increased from the base to the top of the exposed interval suggesting a shore line environment rather than channel fill.
Site (4) NW ¼ Section 14 78 13 W6M

A glaciated depression forms a draw and shallow saddle between the two major topographic highs on the West Permit. The Pouce Coupe oil pipeline right-of-way runs up the center of this draw along the northern border of section 14. Luft and Lewis collected a sample from this right-of-way during their September trip. Rounded glacial boulders, granite and quartzite, were observed at the sample collection site as well as 20 feet below such site where a large uprooted tree exposed the underlying sediments. Sufficient platy sand fragments were observed at both locations to indicate that the glacial till probably contains, in part, Bad Heart Sandstone indigenous to the area.

Day 2 November 13
Base Camp was Vacated at 8:30 a.m.
Site 5 Tree Tower Pit (Located in B.C. 3 Miles due West of Section 4 of West Permits) (Not on Map)

Site 6 NW ¼ Section 4 78 13 W6M

This site was reached by ARGO, travelling south on a cut line which runs along the eastern boundary of Section 8 and then east on a very old cut line, heavily overgrown by 2 to 3 inch poplar trees. Luft and Lewis collected random samples from this cut line near the 2700 to 2750 foot surface elevation during such trip. A short distance to the south of the cut line Wilkins observed and collected samples from Bad Heart Sandstone outcrops which were discovered at 2750, 2700 and 2675 foot surface elevations. The sandstone dips in the range of 5 to 10 degrees to the east at this location although some slumping may have taken place. The Bad Heart Conglomerate was not found at this location.
Site 7 SW ¼ Section 27 78 13 W6M

Luft and Wilkins accessed this location by foot climbing in a northeasterly direction from the Bay Tree pit. The northwestern end of the horseshoe shaped cliff escarpment was intersected about ½ mile from the Bay Tree pit. At this location, the cliff is capped by 1 foot of conglomerate underlayen by cliff forming sandstone. Total vertical thickness, "eye balled" from the top of the cliff, is estimated to be 25 to 30 feet. Samples from both the conglomerate and sandstone were carried back to the 4x4 at the Bay Tree pit.

Site 8 NW ¼ Section 25 78 13 W6M

This site, referred to as the Moxely Pit, was accessed by the Dodge 4x4 via a good provincial road. The Bad Heart Sandstone is within 1 foot of the surface at this location. The surface elevation ranges between 2750 to 2700 feet. Interbedded in the sand is 1 foot of conglomerate occurring 5 feet below the top of the sand. This conglomerate is finer grained and more friable than the cliff forming conglomerates observed at the other sites. Samples of the conglomerate and sandstone were collected.

General Topography & Stratigraphy

The thickest exposed Bad Heart conglomerate section observed was at Site 3. Pit excavations at Sites 5 & 8 expose the thickest sections of Bad Heart Sandstone. The most extensive removal of the Bad Heart formation has occurred at the Bay Tree pit which covers an area the size of a CFL football field from the pit's entrance to the eastern rim of the pit. Drilling will be required to confirm the remaining thickness of sandstone, however, a good estimation would be that about 5 feet of sand remains below the base of the pit. There is possibly an unexcavated 10 foot tier of sandstone about 50 by 30 yards remaining in the pit below the glacial till deposit which forms the topographic high (2800+ feet surface elevation) on the north side of the pit. (See schematic X Section 1).
The Bad Heart conglomerate is interpreted to be a shoreline deposit about 55 feet in thickness where it outcrops at Site 3. It occurs as a wedge in the sandstone sequence thinning to the northwest and the southeast. Based on a discussion held with a local Spirit River resident, who worked for NOVA during its pipeline construction in the area, the conglomerate extends several miles to the east. If dip readings at Site 3 are true the conglomerate will occur at increasing depths to the east. Overburden thickness will also be significantly greater in some areas. (See Schematic X Section 2).

More detailed mapping will be necessary to confirm the wedge-like nature of the conglomerate and facies change to sandstone along the horseshoe bluffs in sections 23 & 27.

The Bad Heart conglomerate is dark grey in color. Grain size of the pebbles varies form ¼ to 1 inch and all are rounded or oval in shape. The pebbles are predominantly microcrystalline quartz or chert. The cementing agent is non-calcareous, probably silica. The matrix consists of fine sandstone and silt with only minor amounts of argillaceous material typical of a shoreline deposit. Grain size orientation provides the rock with considerable strength and hardness in one direction. However, when fragments are broken away from the outcrop they become very friable.

The Bad Heart Sandstone is tan in color composed predominantly of poorly rounded and irregular clear quartz grains in a very argillaceous matrix. The rock is weakly silica cemented and rock integrity results from packing of the argillaceous matrix.

The sandstone is interpreted to be marine deposit laid down in a tectonically active basin. Diastrophism formed the Peace River Arch, an uplift which occurred throughout the depositional history of the northwestern portion of the Western Canada Sedimentary Basin. Rapid sedimentation, in the geological sense, lays down poorly sorted argillaceous sandstones which the Bad Heart sandstone typifies.
The thickness of the Bad Heart sandstone underlying the West Permits is at least 90 feet. The base of the sandstone has not been seen in outcrop, however, the base of the Bay Tree pit may be near the contact with the underlying formation which is most likely a shale deposit (Muskiki Shale).

Bedding planes have been observed in outcrop sections and pit excavations. Bed thickness varies between only a few inches to over five feet. In sections where the sand is thinly bedded (platy), the rock splits along muscovite rich bedding planes.

Summary and Conclusions

Field geology has identified 4 large areas where conglomerate and/or sandstone rock is within 1 foot of the surface. (See Map 2).

More selective analysis of the samples collected at the above sites will be necessary.

Sites 2 & 8 are the most easily accessible for bulk sample collection. Sites 3 & 7 may become more readily accessible if logging operations upgrade the roads into these sites.
TWP 78 RGE 13 W6M
MAP 2.

- 2750 - SURFACE ELEVATION
May 22, 1998

Mr. Ralph Jamieson
Exploration Technologist
Disposition Services Branch
Lands and Forest Service
Petroleum Plaza, South Tower
9914 - 108th Street,
Edmonton, Alberta
T5K 2G8

Dear Mr. Jamieson,

Re: Exploratory Drilling, Baytree, Alberta
713803 Alberta Limited
Exploration Licence #5145

Enclosed are five copies of the final report on the exploratory drilling activity undertaken by 713803 Alberta Ltd. during March 23 and 24, 1998.

Also enclosed are copies of a summary report sent by our Mr. Alan Lewis to Mr. Cory Wojtowicz, Forest Officer, Land and Forest Service, in Grande Prairie, Alberta.

The drill cutting samples, 27 in all, have been forwarded to Mr. Dixon Edwards, P. Geology, at the Alberta Geological Survey in Edmonton.

Please contact myself or Bob Liddle at (403)239-4546 if you have any questions or comments.

Thank you.

Barry Luft
for 713803 Alberta Ltd.
FIELD REPORT
Saturday March 21 - Wednesday March 25, 1998

The objective was to arrange and oversee the drilling of six test holes to define the geographical extent, overburden depth and gross thickness of the Bad Heart conglomerate zone. Cutting samples were taken at all six wells.

SATURDAY - MARCH 21

Lewis and Luft travelled to Hythe, Alberta and met with representatives of Hopper Drilling. (The principals of Hopper Drilling are located in Beaverlodge, Alberta, but their shop is in Hythe). We arranged to meet with the driller and his helper (Murray and Chad) in Pouce Coupe on Sunday, to travel to our permit area and determine the viability of the drilling program. Arrangements completed, Lewis and Luft progressed to Dawson Creek.

SUNDAY - MARCH 22

We met with drillers in Pouce Coupe at 9 A.M., then travelled to the site of the recent oil well on the 'Anderson Road' (16-9-78-13), unloaded skidoos and travelled to site of #1 proposed test hole (NE/4 - Lsd. 16-9-78-13) at the top of the hill at the junction. It was apparent that the road would have to be snow-plowed prior to bringing in the drilling rig and water truck. Al and Murray continued on the snowmobiles to reconnoiter the other potential drill sites. All required some snow-plowing of roads, trails or cut lines to provide accessibility.

We returned to Pouce Coupe and met with Herb Nodes of Nodes Construction, to arrange for snow-plowing equipment. Herb agreed to provide a D-6 caterpillar tractor for Monday morning. We arranged to meet at the 16-9 lease site before 8 A.M. The driller agreed to be there shortly after 8 A.M. It was clear that any travel with heavier equipment had to occur prior to 9 A.M. NOTE: There was a 10 A.M. to 10 P.M. road ban in effect in Alberta.

MONDAY - MARCH 23

Truck carrying the D-6 showed up at 16-9 lease at approximately 7:43 A.M., unloaded, attached dozer blade and proceeded to snow-plow the 'Anderson Road'. We reached #1 drill site at 8:55 A.M. Drilling rig and water truck arrived at the same time. Drill rigged up and started drilling at 9:25 A.M.
**** #1 NE/4 of Lsd. 16-10-78-13 Elev. 2750' TD 60'
Sample intervals 0-10, 20-30, 30-40 and 40-50.

DRILLERS COMMENTS:
- Encountered brown sand(stone?) at 4'
- Grey sand(stone?) at 7'
- Brown sand(stone?) to 17'
- 2 or 3 ft. shale lens at 17'
- Brown sandstone from 20' to 30'
- Thin shale lens at 30'
- Brown sandstone to 35'
- Sandstone and shale to 40'
- Brown sandstone to 52'
- Grey shale from 52 to 60'
- End of stand - quit drilling

Cleaned up site and filled hole (didn't have enough cuttings to completely fill hole, so returned on Tuesday and completed filling with bagged produce supplied by driller). Travelled east to gas plant, then north to pipeline right-of-way to second site, immediate north side of the right-of-way. Rigged up and started drilling #2 at 11:50 A.M.

**** #2 NW/4 of Lsd 8-14-78-13 Elev. 2760' TD 60'
Sample intervals 0-10, 10-20, 20-30, 30-40, 50-60

DRILLERS COMMENTS:
- Blue clay
- Some brown sand returns at about 5'
- Blue clay at 6'
- Blue clay all the way to 60'; odd brown SS rock
- End of stand, quit drilling

Cleaned up site, filled hole, rigged down and returned to north/south road, and proceeded north to the southwest corner of logged out area. Moved to site #3 and rigged up - started drilling at 2:40 P.M.

**** #3 NE/4 of Lsd. 13-13-78-13 Elev. 2760' TD 80'
Sample intervals 30-40, 40-50, 50-60, 60-70, 70-80.

DRILLERS COMMENTS:
- Blue clay from surface to 42'
- Conglomerate at 42'
- Hard drilling at 64' - sandstone?
- Changed bits at 64'
- Still conglomerate to 72'
- Encountered grey sandstone at 72'
- End of stand at 80' - still grey sandstone
- Quit drilling at 80' --- Time: 4:10 P.M.

Cleaned up site and filled hole - rigged down and moved east along the cutline towards #4 site.
TUESDAY - MARCH 24

**** #4 NE/4 of Lsd. 16-13-78-13 Elev. 2770' TD 20'
Samples taken 0-10, 10-20 and bottom.

DRILLERS COMMENTS:
Loose conglomerate gravel at surface
3 feet of brown sand at 4 or 5'
Clay from 8' to 20'
End of stand; quit drilling.

Tidy up site and fill hole; progress south down cutine
to pipeline right-of-way --rig up and drill #5.

**** #5 NE/4 of Lsd. 7-13-78-13 Elev. 2780' TD 20'
Sample taken at 20'.

Clay from surface to end of stand 20'
Quit drilling.

Filled hole, rigged down and travelled west to north/south
road, went north to site #6, rigged up and started drilling
at 12:35 P.M.

**** #6 NE/4 of Lsd. 1-23-78-13 Elev. 1740' TD 80'
Samples 0-10, 10-20, 20-30, 30-40, 40-50, 50-60, 60-70
and 70-80.

DRILLERS COMMENTS:
Conglomerate at 1 or 2'
Sandy conglomerate to 15'
'Pure' conglomerate from 15' to 58'
Grey sandstone from 58' to 80'
End of stand, quit drilling at 2:50 P.M.

Fill hole, tidy up site.

WEDNESDAY - MARCH 25

Lewis and Luft travelled to Grande Prairie; tried to meet
with Cory at the Alberta Forestry and Environment, as a
follow-up to Al's attempts to contact him last week. Cory
was out of the office but Al reached him on his cellular
and recapped our activities. Lewis and Luft then to south
Grande Prairie to visit with Weyerhauser Canada Ltd.
Weyerhauser owns the timber rights in the area of our
interest.
NOTE:

Our original plan included the drilling of some test holes to the north of holes 3, 4 and 6. However, because the 'rim trail' is in the protected area where no equipment is allowed and the cutlines north of site #4 encounter considerable stretches of muskeg, we were unable to drill in that general area. More field work should be done in the area between the conglomerate outcrop rim and the Moxnes pit (where conglomerate is visible) to determine thickness of the Bad Heart conglomerate at various locations.

**** Locations and elevations are taken from small scale surface and topographic maps and should be read as approximate.
Two snow machines were used on March 22, 1998, to assess the project, but the depth of the snow in the area made it very difficult.

The snowplowing and drilling started March 23, 1998, and it was all finished March 24, 1998. One tandem drill truck, one tandem water truck, one 4 x 4 ½ ton and one D6 Caterpillar - this was the equipment used.

The access to the drilling (see accompanying map) is the shaded in road from highway 49, ½ mile East of the county road on Anderson Road, at the new oil well drill site approach, the road had to be plowed to all 6 test holes. All the plowing and drilling was done on existing trails and cutlines.

End Report,
ATTENTION: Cory Woytowicz
COMPANION MAP OF DRILL REPORT
7/3603 Alberta Ltd
Licence 85/143
ATTACHMENT 2.2.1

Alan Lewis Test Log Notes (Process)
GENERAL INFORMATION

1. The crucibles used are refractory clay (usually 40 gm.)
2. The cupels are bone ash.
3. The firing is done in a propane-fired furnace @ 2050’ F.- 2200’ F.
4. The cupeling is done in an electric furnace at usually 1700’ F.

How the "assay ton" (A.T.) is arrived at:

1 ton of ore (2000 lbs.) avoirdupois weighs 29166 troy oz.
1 assay ton (A.T.) weighs 29.166 grams.

Therefore, if the 'assay ton' yields 1 mg. of precious metal - the 2000 lb. ton of ore has a yield of 1 troy oz. per ton.

FIRING LEGEND

Below is the order the reagents are listed in all the fire assays.

Ag. 20 - 45 - 10 - 25 - 30
#1 - #2 - #3 - #4 - #5

#1 - soda ash #4 - borax
#2 - litharge #5 - granulated lead
#3 - silica
April 19/03 Set #766

Ore: Roger Fine 3AT

HNO₃ - 100 ml,
H₂SO₄ - 100 ml
H₂O - 100 ml

11:00 Started cycle
Temp 125°F
ORP 975

2:40 Added H₂SO₄ 500
4:30 Stopped ORP 925

Sun. Settled all night

2:30

Added Ammonium Hydroxide to pH 10, set for 1hr
Then added Ziegler and after 1hr added H₂SO₄ to pH 9.5, let sit all night, then expel off dark liquid. Added more to decolor & H₂SO₄, until visibly decolor. Let stand to dark green then let settle.

Mon. Took dark liquid from over night settling pH 3.57

3:30

Test:

Thur. Let Pea Coffee

1st RWH #1 - Beg - 1/3 (IA?) of residual liquid from 2nd RWH #1
2nd RWH #3 - 1/3 (IA?) of liquid from 1st RWH #1 - small
2nd RWH #4 - small

1/3 (IA?) of total liquid drained

26hrs.
Wed. May 1/03 Tent 4 767

4:45 Start

1 A.T. Roof
100 ml H2O
9 ml HNO3
30 ml H2O2

Thurs.
1:15
Fri.
1:00

Result 0

16 hrs
Mon May 5/03 Total 4.768

Ox 5AT, Roger
1500 ml H2O
170 ml HNO3
300 ml HCl
50 ml Sodium Hydroxide

1:30 Started batch pH 4.6 ORP 1050
2:45

3:45 Added 75 ml NaOH

6:00 Added NaOH & 1 tsp Bio D. ORP 945 pH 4.1

1:00 Added H2O & 1 tsp Bio D. ORP 945 pH 4.1

1:30 Started

11:30 Stopped in 3 hrs filters off liquid

Lit - Ozarks

12-1/4#2 5AT age 9.5
12-1/4#2 5AT age 6.5
14-1/4#2 5AT age 7.1

2.1 hrs

532 5AT = 0.106 mg protein

1Ag 17.97 PGME
Ink 13/03 Test H769

5 of H769 liquid dried to dust, then
reported at 4000°F, lack breaker 50%
unreacted, fired in r.c. (92%)

Wed May 14/03 Test 170
Dried to dust, then added H₂O,
acid to 1. The final 2 of 3 cases.

Thur May 15/03 Test 171
 olid H₂O then
Carbonate to 7.5 PH, added
sodium nitrite, then H₂O + H₂SO₄, added
given after process added HCl to PH 1.31.

Fri. Tot 1- Cruce
 1 - 1/4 of 1/17 - 23 mg.
 2 - Big Nk Bencophet - added twice 3/4 of 1/17
 3 - 1/17 - added twice 1/17 - 23 mg.

Total from #769, 710 & 771 - Part 0
 0.22
 0.10
 0.32 oz. per Core + P.F. No.
May 18/03 Test #772

- Ore 5 at Morgan
 - 1500 gal H2O
 - 225 gal NaCl
 - 170 gal HNO3
 - 8 - 1.5% H2CO3
 - Tank 125°F

pH = 6.23 ORP / 0.20

2:15 Start time of leach

9:30 Stopped leach PH 2.5 ORP 975

Nov

1:00 Started

PH to 3.6 with 30% solution of KOH

4:00 Stopped

Raised PH from 4.20 to 9.30 with NaOH & NaOH3

1:30

Table

<table>
<thead>
<tr>
<th>No.</th>
<th>Load</th>
<th>Creek</th>
</tr>
</thead>
<tbody>
<tr>
<td>#1</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>#2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>#3</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>#4</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>#5</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>#6</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

Zinc precip

1.68% - Sodium Thiosulphate 2.05 AT

1 shell

1.5 AT - 120C 1 precip ½

2 small - 1.45 AT precip ½

2 small - 2.0 AT to precip 1.5 AT

Lylefield Chemical Ltd.

Cu. = 1.30 g/l
Pt. = 1.45 g/l
Pd. = 0.56 g/l
Nov. 26/03 Test 773
One Bag 547
1500 lb. H 2 O
250 lb. Na 2 S
120 lb. HNO 3
10:45 Start lead
Added two H 2 SO 4
ORP 1025 pH 0.00
Temp. 125°F
Stopped in three days; let set all night.
20th day ORP 942 pH 0.28

Traci Clark
June 3/03 Ser 9 771
1500 H2O
120 ml HNO3
300 ml Sulf
Temp 125°F
9:00 Stabilized
10:20 added 1 photo boro D ORP 1050 PH 0.00
Set sit a/e night.

Reduced PH to 3.25 with acetic acid.
1:00 Stabilized

Sun
10:15 Stabilized

Wld Stabilize 10:25

Stabilized rodmill 8:30

<0.0002 Au, Pt, Pd
June 14/03

Fuels: H₂S04 3 to 1 at 150°F for 4 hrs.

One Regen 5 A.T. (Sine)
1250 ml H₂O
200 ml Sodium Hydrosulfite
12.5 ml 0.05 N HCl

Temp. 150°F
ORP 825 PH 6.00

1:30 Added 18 tsp total Acid D
2:30 Added HCl to 5.87 PH

ORP went from 7.75 to 8.50

8:30 Stopped. ORP 750 PH 5.01

3:30 Started.

Mon. 10/19/03

H₂ - H₂ - Z ex solution
H₂ - H₂ - 1
H₃ - H₃ -
H₄ - H₄ - Filter red 2 from H₁

04 Am. 7.4 PH O.K.
June 24/03 Test 176

Ore Roger (from) 5 A T
H₂SO₄ 0.05 Molar, 2.5:1
Temp 190 °F

3:00 Started leach
1250 ml H₂O
100 gm Reber 30 mg KI
200 ml Sodium Hypochlorite
-added 5 ml KOH
OR Potted 720 - 615, PH 7.25

7:00 Sampled NH₄, 2.15
-added 2 tsp Bio D - OR P at 191

(10:00) Stopped ORP 730 PH 2.70

10:00 Thursday, 86 hrs, added 200 ml Hypochlorite, added HCl
ORP 800 PH 2.64

Fifty 11:00 After 50 hrs ORP 815 PH 2.29

4:00
6:00 Stopped on 2.25

May 11 2:45
PH 4.55 with H₂SO₄ dose from 19.75

For 0.02 molar

\[\frac{21}{5AT} = 0.042 \text{ ORP mEquiv} \]
Nov.
July 7/03 Test #777

One Roget (Time) 5 1/2
1250 H2O
2a 0.5% 1/2 tsp
Temp. 150°F
11:00 Start, time date
Stopped 3 1/2 hrs.

Feb. July 9
1:00 am 16
50 ppm K, 5
Temp. 125°F
1:15 Start time
1:30 Started
Stopped

Stopped lunch 8 hrs. ORP 706 PH 7.00

6:00 Started

Test Queue
1 4
2 2
3 3

Second percent
1 1 6 - 10 ppm lead
2 2 - 10 ppm lead
3 4 - 20 ppm lead

Feb 5:10

363 mg ft5 = 0.73
not reported
Dec. 14 - 2 PE line
July 23/03

Test # 778
Oro Pepe 45 AT.
20.5' little H & D
3.3' I'd
10' S to top 3.4' D
Temp 100°
ORP 825 PH 4.00
2:00 Stock tone

Stopped circulate in 18' heel ORP 775 PH 6.53

Thurs.
1:00 started
7:30
9:00
10:00
11:00 started
6:30 Stopped 8.5 hrs

July 24 - Mon.
10:00 started
ORP read 850 added NaHCO3
ORP read 6.50 PH 9.00

9:00
July 25 - Tues.
Stopped in 9' heel

July 25 10:30
at half way mark
3' heel

03' OP not gated
Air: 0.4 cubic ft
Mon. Sept 8 1971

5 A.M. C.S.P.

350 ml H2O

150 ml H2SO4

Temp 150°F

10:15 Start time placed continually

stopped 2 hrs. sphere off to level with time put to

hand

10:00 Started break

150 ml 100% H2O (ball)

150 ml HNO3

Temp 125°F

10:30 After 3 hrs. UFP 285 added 10.25 lbs. UFP 1105

20 ml added 2 tsp. alumina.

10:00 stopped break this. UFP 990 pH off scale

stopped

Wed.

10:30 Start

Thurs:

Lat 15th 11th 4

9 - 8 - 7 - 7

047 O.P. not painted
Oct 2/03 Temp = 78F

Thurs. 10/2 Foggy. Fine. SAT

10:15 Stopped
180 ml HzO
64 oz Total

11:00 Started back

11:30 Started and put net into 5:15 on paddle

5:15 Started back on agitation again

Stopped in 3 hrs.

Yesterday off liquid added NH4 Cl to include Hz.
Fri. Changed pH to 2.20
4:30 Stopped

pH 4.0 O.P.T. 0.14 pB 2.22
Sunday, Oct 11, 83

Lact. 783

Ore 5 AT (Plant)

360 ml HCl

180 ml HNO₃

180 ml H₂O

11:15 Started reaction at 125° - 150°F

Saturday, Oct 18, 83

Lact. 784 (5AT Plant)

250 ml HNO₃

750 ml H₂O

11:00 Start time

Time 1:30

Stopped in 5 hrs.

Put on hot plate overnight

Memo:

Lot 6507

<table>
<thead>
<tr>
<th>#</th>
<th>Cruise</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>9</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Filter

- 1 Filtered
- 27 gms

- 3' 1"
- 26 gms + other solids

- 2 Liquid dried
- 30 gms

007 OPT

U2 P Bms
Tue. Oct 21/03 Tank F 785 (Reg. 5A1)

170 pm KBr
20 pm KI
1900 pm H2O
12:45 Start time

Stopped 9:30 8 hr flow
Temp. 140°F 5 hr use at PH 3.5 ORP 750-850

Wed

11:45

Stopped 3 hr

Recipitated liquid with NH4 OH
Dried to fixed

Put liquid to syphon

4:00 - start tons

007-0P1

Ave. P/I
May 4 / June 3 / Sept 786

Lose dish

50 gms Lutetia

5 gms lead only plus loss of floor (56)

Why 3 gms were so poor doesn't answer size

Second firing

1 dish ground and placed into 14

1 disk of the large flat fabric (used lead)

1, 2 + 4 all the same size

Third firing

Dish

1 - 1 lot 31

2 - 2 lot 29

4 no mark lot 29

Cylinders

181

4th firing

All 29

Fourth all 29
Dec. 8/03 Lab. # 788

One flaker 5 A.
120 Gram NaCl
30 Gram KI
1500 ml H2O
Temp 125°F
660 ml 910 ORP pH 1.70

Stated time 11:00 stopped in 10 hrs.

Add 1. Zine then died over night.

Add 15 ml 1. H2O + H2SO4 to bird vials:
1500 ml H2O
100 ml H2SO4

Solving 46/93

Oct. 007, 1995
Sat. Dec. 20/03 - Last flt 1-789

One Roger SAT
1500 ml Hep. 0.0% Lact. 0.375 ml to 1500 ml Hep.
150 ml HX 0.0%
Temp. 125°F

DH off core to CP at 15.D 10:42

5:30

8:30 - Stopped core

Secand flinger at 1-2 - conditioned and set up

5:00 - Stopped core

Lowered pH to 275 ppm (Circulated)

11:00 - Circulated

4:00 - 22.mg. garten saying 31.
Feb. 11/04 - Last # 802

One 5 AT Roger line Longing # 8385
170 Vrms x 26k
30 psig. K1
1500 mm H2O

3:30 Start time
Stopped in 8 hrs. 17 hrs.

4:40 Started
1:30 Started

Stopped in 3 hrs.

1:00 Started aque Regis, stopped in 2 hrs.

9:00 Started

Lost 1st 11:20
Lost 2nd 12:20
Lost 3rd

Load 1
Load 2
Load 3
Load 4
Load 5

17 hrs.
March 9/04 - Test # 804

5 AT - Poor Heat - Lorinc 46429

90 gms 285°C
1250 ml H2O

10:30 Start time
2pm: ORP 815 PH 6.00
Temp 125-150 °F

2:30 Added HC1 6 1.50 ORP 845 Temp 175°F
Stopped in 8 ½ hr ORP 760 PH 2.75
Stopped

11:30 Started Agar began to harden (stopped in 4 hrs)
12:30 Started

18 hrs

1 - 2trays 14.5 gms and place filter and pump frame
 Lime added for color check.

2 - Lime added from Agar Reice back
microscope didn't look on back one after later check.

3 - Looked good

Taken to Lorinc March 16/04
March 18/04 Test # 805 (SAT C-26)

Test time 11:30

1:00 ORP 875, PH 5.85

2:10 ORP 750, PH 6.55

5:00 Added HCl to PH 2.60, ORP 855

2:30 Stopped, (2 1/2 hrs after adding HCl)

Fri.

10:15 Started

4:45 - stopped in 4 1/2 hrs. ORP (minus 865), PH 9.45

Lost #1

Test #2

Crec

#1

4.2

2.3

Aqua Regia on dead oil

2:45 Start

600 ml HCl

200 ml HNO3

170 ml H2O

Stalled #1 - 162

2 - 3

3 - 2

Stopped 8:20 pH - 3

Stalled 3 hrs (Copied 2/23)
Tuesday March 30 1964 \(7 \text{AM} \) 80°F

5AT Compliment (Fine)

90 gms pectin

1200 ml \(H_2O \)

Bio-D 2 tsp 830 ORP 600 pH

00 Start time

Jarma 135°F

1:00 Added HCl. pH went from 6.0 to 2.50

ORP went from 780 to 835

7:30 Stopper mixing, put on plastic ice for 10 to 15 minutes

ORP 840 pH 350

Thursday April 1

10:45

11:38

1:45 Stopped

Let 4 hours

Cupels 5 sprouted lit #3 0.093

Cupels 3 no salt #3 goldish color #1.032

Laigees scored regular small goldish color #2.010
April 5/04 Test A 808
One (625 Plant) SAT

200 ml HNO₃
600 ml H₂O #1 - Residue from solid filters
600 ml HCl #2
600 ml H₂O #3

Temp 175 F #4 - Unknown red material on drying deck

2:30 Start time. Chaged on hot plate
ORP 980, added one ORP went to 950, added 4 beakers 0.5 ORP went to 970

5:00

8:30 Stopped milling and put in hot plate till AM
ORP 870 PH 4
Juice Added Were 400 ml (twice HNO₃)

12:00

5:30 Stopped dried to powder
added Zinc then

5:45

Left

5:50

11:30

Ceramic with peracetic acid

1:15

First filtration left 3 cases
2nd and 3rd 2 cases with about 1 liter left with added

2 cases less added

2
Sat.
April 17/04 Lot #809

-5AT Conc. (Fine) #162-
HNO₃ 200 mL H₃- (2 in.)
H₂O 600 mL pH - Zine precip from residue
HCl 600 mL pH - 15 ppm salicylate

10:30 Started conc. added 2 tsp. into D

Temp 135°F

0:15 ORP = 925
Lossing 46,548 oz. 0.064 ppm total

0:55 Started
1:00 Stopped
20.5 hrs. Total
Added Kio D ORP went from 760 to 920

Thirsty. Drained off liquid twice then filtered. Added 400 mL
3% NaOCl to kill HNO₃ then added NaOH 0.01 M to get
pH to 2.00

1:00

9:15 Stopped
1:30 Started

10:30 AM Stopped

0:00
8:30 Started
9:00

Stopped pump for overnight
stopped pump for overnight

Wednesday
10:06.
Fri 7/04 Fri 7/04 Sat 810 SAT For Wat

HNO₃ 200 ml
HCl 600 ml
H₂O 400 ml
Temp 135°F

05:30 Start time

ORP 910 -Rich D

200 ORP 910

Sat 1:00, ment all night

Sun

Stopped at 10:00 next day.

2:10

Stopped at 5:00

Cu 0.019 #1 - Re-mix 8 g partial 22 grams
Cu 0.015 #2 - 20 grams
Cu 0.002 #3 - Zinc Precip all liquid
Aug 27/04 Test H 811 - "Ron" SAT

<table>
<thead>
<tr>
<th>Chemical</th>
<th>Quantity</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>HNO₃</td>
<td>200 ml</td>
<td></td>
</tr>
<tr>
<td>HCl</td>
<td>600 ml</td>
<td>1st firing #1 A, B, C</td>
</tr>
<tr>
<td>H₂O₂</td>
<td>400 ml</td>
<td>2nd firing H₂, D, 5B</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3rd firing 1 & 2</td>
</tr>
</tbody>
</table>

Temp 135°F

Start time 030
ORP 930

After 30 minutes added Bio-D 1 tsp. ORP ~ 917 after ten
2:00 added 1 tsp Bio-D
3:00 1 tsp Bio-D ORP 910
7:00 stopped heating ORP 925

Mix set on hot plate for overnight

Stopped Tuesday 23 hrs total
Sunday 1:00

Wednesday

Stopped Wed AM 20 hrs
pH 2.64 when starting
Stopped 800 pH 3.0 total

- pH 1.5 4/29

stopped in 220 hrs
Used lime on all liquid left.

Second firing 3:45
Sat.
July 24/04, Test #816, For West (i.e. Br)

7:30 Start
12:50 H2O
12:00 Gift Baked
Bite D to 8900R P 17 0.00
5500 Sand

Temperature 175°F

7:30 Started
Stopped 9:30, put on hot plate.
From
1:00 Started

Sun.
Start 8:45
Stopped 11:45
Start 12:00
Stopped 2:50
Start 3:00
Stopped 6:15
Start 6:30

Monday Aug
110:30
10:30, Topped in 6 hrs
Face Air 5.
Stopped 1:30
Free Start 1:45
Stopped at 7:00 15 hrs.
Fed START.
June 14/04 Test #8 12.5 API fin change fine

H+O3 - 200 mL
HCl - 600 mL
H2O - 400 mL
Temp 135°F

10:30 Start time
ORP 973
After 2 hrs 950
After 5 hrs 820, added 2 types B60, D ORP 950
3:00 Stopped ORP 830, put on heat plate for next night

Filtered off liquid

June 15/04

Fed 11:30
Thru 1:45

20/hr total

Fri. 12:50 Start
PH 8.239
Stopped after 9.5 hrs.

#1 ferment

Lot #1 Grace #1 Feb
Lot #2 Grace #2 Feb
Lot #3 Grace #4 Mar
Lot #4 Grace #5 Mar

mixed manual mix

Lot #1 mixed with ingredients in grinder 3
Lot #2, mixed in grinder, then 2+ mixed in grinder with ingredients #4 manual mix

Grind with ingredients #4 manual mix

File to Calgary on Friday
June 20/04 Test #813, Sandtender Corp.

SAT (free)

HN04 - 200 mL
HF1 - 600 mL
H2O - 400 mL

Loiing 46.745

0.05 g protein

Start
9:45

June 135°

Added Bio-D Histag, ORP 815

Stopped in 7 hrs.

Went - filtered off protein, added 400 mL urea

11:00

9:00 PM

9:15 Start again

June

Stopped

Start

7Ld - dried 12 hr

10:00 Start

Stopped in 10 hrs, dried then was 3 hrs.

32 hrs

SAT
200 ml HNO₃
600 ml H₂O
400 ml H₂O

Start time
1:00

Test B-D ORP 760 added B-D to 9.00 ORP
Temp. 15° F

Stopped 10:00. 10 hrs total. Read ORP 8.30.

Friday

12:30 AM. Let.

1:00

Stopped 10:00. 12.5 hrs total.
12:30 AM. Started.
Stopped after 6 1/2 hrs.

Monday

Start 1:45.

Stopped in 7 hrs.

Let. Cru 1. Top.
813 L H 1
814 L H 2
Res. 814 H 3
6

Commits - all heads absorv O₂.

6 was open & flat, lots of
stir on the head & in the cuvet.
July 4/04 Test 4.815 "long 8' from bottom" Back End

400 ml H2O
200 ml HNO3
600 ml HE

Volume 4677.4

11:30 Start time

1:30 Stopped

ORP 940, added Bio-D 2 type. ORP Unit is 1125

8:30 Stopped, back ORP 925

Drained off liquid twice, filtered remainder, added 400 ml

3:30 Started

2:30 Started

7:30 Started

8:00 Started 8 1/2 hrs

8:00 AM started

added 17.50 Hz. pH from 2.50 to 1.30

(Showing a lot of metallics)

2:00

3:30 Started

9:00

9:15

7:30

8:00 Started

2:15 Started

5:15 Stopped in 7 hrs.
Aug 3/04 Test # 817 "Reg"

Dr. D.

12:30 to 14:00
12:00 p.m.
Bis-D 2 tsp. 1350F

11:00 Start lunch
2:30 Start
ORP 870

Thursday
Start elect 11:00
12:30

Friday
9:45 Start
3:30 Stopped
3:00

7:00 Stopped elect.
Sat: 9:00 Start
Stopped in 3 hrs.
1:30 Start

Sunday

12:30 Start
8:00 Stopped
6:30 start
Stopped 10:10

Ph 3.6

Ph 3.8

Ph 3.0

36 hrs
Thursday
Aug 13/84
Test # 818
6-26
Time 1.5 AT
Foamed once and lost at last
1.5 AT Total leak 3.5 AT

10:00
Started feed
10:50
Stopped
ORP 963 at start time. Foamed over 3.5 AT left.
5:00
Stopped feed. Added 3 Tbsp Bio D in first 2 hrs.
PH 6.8 ORP was 983 when feed was stopped. Put on
heat plate ended morning.

0:30
Started

9:30
Stopped in 4 hrs. PH 1.8

10:00

11:30

2:00

3:15

Lunch

10:08
Filter off liquid.

Liquid
Added H2SO4 to PH 1.8 from 4.2

2:00

9:30 AM Monday (Lipid)
11:00
Book all remaining liquid and added Zinc
First added NaOH to PH 6.6 raised to 105°F
then added zinc after 30 minutes added H2SO4 to PH 5.6

36 hrs
Wed.
Aug 18/04 Fart = 819 Woeley 'Em Fine' SAT

400 H2O
600 HCl

Add 200 HNO3
10:30 started leach

11:30 added 2 tsp Kio-D PH went from 8.80 to 9.32
Temp 135°F

12:30 added 1 tsp Kio-D PH 8.83 rose to 9.15

2:30 added 1 tsp Kio-D PH 8.63 " " 9.17

5:30 added 2 tsp Kio-D PH 8.53 " " 9.53

7:30 stopped leach OR 9:00 th. 1.9
Let on hot plate until morning.

Thursday
12:10

1:50

2:00 Started

4:00 Stopped 4 hrs Total

Lowered PH from .03 to 1.7

5:00 Started

7:30 Stopped

9:50 Started

9:00 Stopped. 11 hrs Total

4:30 Fri. treat all liquid with Zine

3 hrs
Aug 30/04 Test 1840 626" 20 A.T

One 20 A.T mixed with magnetic paper
50.00 mL H2O
1200 mL H2SO4

Start:

1:15 Start

10:00 Start lead: 5 A.T (% of total liquid)

ORP 750

17:30 Added Bio-9, ORP 873 155°F

4:00 ORP 907, temp. 150°F

7:20 Stopped ORP 873, temp 150°/200° on tire load.

130 Start

14:45

Died to lead & cancelled 1400°F

The put in pH 1 - H2SO4 all right to remove oxygen.

Set = Green

Set #1 = 1

Set #2 = 2

213°C
Sept 19/04 Test II 621 (Rate of 835 - 54T)
H2O - 400 ml
HCl - 600 ml
HNO3 - 200 ml

11:00 Start PH [-5] ORP 1183
12:30 ORP 1163 Temp 135°F (no air in)
4:00 ORP 1187
7:30 Stopped ORP 1167 - pH 01

Test liquid off
Added 400 ml Urea, pH 01 ORP 1000

Sunday
Added 240 H2O, pH 00
10:15 Started
3:00 Fired furnace, lost 3 hrs on 10/15
Stopped
7:00 Stopped

of copper in bottom of plastic container
Dried 2 dyes, copper & sulfuric acid @ 50°F 1-5:20a
2:00 Stopped

pH 07

Thursday - Tired H2504 in copper crucible to no avail
Tried sample with HNO3 1-1, took all copper, so going to try the next.

36 hrs
<table>
<thead>
<tr>
<th>Date</th>
<th>Actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Sept 04</td>
<td>300 gram 10 AT Resp, 170 g Resp, 3 L load, ORP 17475</td>
</tr>
<tr>
<td>8</td>
<td>1500 MeH2O, added 3 L pH D, added 2 L pH 6.4 PH</td>
</tr>
<tr>
<td>15</td>
<td>1000 L, ORP went from 1450 to 510, kept adding H2O, ORP went from 410 to 6.15</td>
</tr>
<tr>
<td>16</td>
<td>Added 2 L pH 8.1, ORP went to 6.15</td>
</tr>
<tr>
<td>17</td>
<td>Added HCl to pH 3 from 8.3, ORP rose to 850 from 4.90</td>
</tr>
<tr>
<td>29</td>
<td>Work started</td>
</tr>
<tr>
<td>1:30</td>
<td>Work started</td>
</tr>
</tbody>
</table>

JUNE 2004
Monday, Nov 28/84

Sample # 823 (4 AT Ref)

400 ml H2O
200 ml HNO3
600 ml HCl

Temp. 135°F

1:45 Start time

Steppe in 6 1/2 hrs. Add 400 ml HCl

10:00 Start sol.

2:00

Steppe in 6 1/2 hrs.

Thur. 10:45 Start sol.

pH 1.2

2:30

2:45 Stops

Steppe at 8:15 5 1/2 hrs

1:30 Stops

Steppe 20 hrs later

Zinc precip 21-1 mmbr H20 & H2SO4, pH 1.5, ended up 0.5

Lot

Cue.

Dep.
Friday
Dec 3, 1994 Test # 824 “SAT Reg.”
1.750 ml H2O
100 g Heparin
25 g NaCl
Sorin 47253

11:00 Started leach
9:10 Stopped putting hot plate till morning ORP 750
PH 2.05

11:45 Stopped

Stopped 1:45

4:30 Stopped
PH 1.5

1:00 Stopped
These Stopped

Black Zion

Lot # 1 2 3 4
Cyan: Cupel
Jan 7/65 Test 8.25 "B" 3AT
10002ad H2O
50 gram FeCl3
10 gram KI
Time 135
1100 Started needle
11:30 CPR 805 Pit 202 - Fell back towards off set
Start
10:15

Jan 19/65 Test 8.26 (3AT for 200)
200 ml H2SO4
1250 ml H2O
Time 135°F
160 ml HNO3
11:30 Started needle
CPR 860 pH (-1.0) tops off 100 ml
4:00 Started

Sunday
11:12 Started

[Table]

<table>
<thead>
<tr>
<th>Test</th>
<th>Crew</th>
<th>Column</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>#1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>#2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>#3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>#4</td>
<td></td>
</tr>
</tbody>
</table>

J. Wilson
Jan 27/05 10C + B (For Unit 3A1)

H₂O - 1300
20% - 200 ml
H₂SO₄ - 100 ml pH - 1.4

Put ice on top Biobin 0 pH was down to 1.1
Added 20 ml HNO₃ pH - 1.3

10:30 Start time temp. 135°F
Stopped 8:30
ORP - 9.20

8:30 Stirred

Lit - Added 200 ml pH to 9.5
Added 200 ml 20% Zine, 10H 6.5
Let all night drain liquid off of zine residue
See 11:45 start

1:00 Stirred

3:00 Stirred

Added 200 ml 7 H₂SO₄, pH 2.2

2:50 Stirred

4:00 Stirred

H₂O to H₂SO₄, pH 0.5 of the residue

4:45 Stirred
ATTACHMENT 2.2.2

Alan Lewis Test Log Notes (Firing)
GENERAL INFORMATION

1. The crucibles used are refractory clay (usually 40 gm.)

2. The cupels are bone ash.

3. The firing is done in a propane-fired furnace @ 2050’ F.- 2200’ F.

4. The cupeling is done in an electric furnace at usually 1700’ F.

How the “assay ton” (A.T.) is arrived at:

1 ton of ore (2000 lbs.) avoirdupois weighs 29166 troy oz.

1 assay ton (A.T.) weighs 29.166 grams.

Therefore, if the ‘assay ton’ yields 1 mg. of precious metal - the 2000 lb. ton of ore has a yield of 1 troy oz. per ton.

FIRING LEGEND
Below is the order the reagents are listed in all the fire assays.

Ag. 20 - 45 - 10 - 25 - 30
#1 - #2 - #3 - #4 - #5

#1 - soda ash
#2 - litharge
#3 - silica
#4 - borax
#5 - granulated lead
Feb. 18 Test # 802

F1 - 3 gms

apogel phlegme silica florisate

F3 - 12 gms.

Flower base on top

Residue from

F4 - 20 - 40 - 15 - 15 - 1 tsp. F - 20 lead - uptake add, add

F5 - 12 gms.

same as F4

F6 - 20 - 40 - 15 - 15 - 1 tsp. F - 20 lead - uptake add, add

same as F4, phlegme, silica, flower floor

Feb. 26/04 Test # 803 (in dore of # 802 after

Agua, Regia z 1% on # 802 before.

1 - 50 in percip

F1 - 24 gms.

F2 - 20 - 40 - 15 - 20 - 1 tsp. F - 20 lead (uptake add, add, force cover)

F3 - 20 - 40 - 15 - 20 - 1 tsp. F - 20 lead (uptake add, add, force cover)

F4 -

20 - 40 - 15 F 10% F 20 lead (uptake add, add, force cover)

F5 - 10 - 15 - 20 - 1 tsp. F - 20 lead (same or other)

F6 - H N O H

34 gms.

same 11+ tsp. each

20 - 45 - 20 - 25 - 1 tsp. F 20 lead (same or other)
10/05 Test #818 for Unit 21T
Dissolved 6.5 gms nickel in aqueous phase 180°F
Leach 21T in aqueous phase 165°F

10:40 Start
12:40 Closed plate

#3 70 gms formate
220 ml HCl 4M pH 7.5
Dried residue after filtering out water,
Dried residue weighed 195 gms
Put half residue in oven at 1200°F

Sweep 47.420

Lot #1 Lot #2
#1 #1
#2 #3
#3 #4
#4 #5
#5 #3

9/1/92
March 17, 1972 - Test # 879 (Fairbrook H.A.

8 grams deuterated nickel
100 ml HNO3 added to what was left of aqua regia
300 ml HCl that deflected the nickel efluent 100 ml

11:15 Started leach. (550° F. for half the time)
Slippery agitation at 3:45. Put on hot plate overnight.

1:45 Started

P.H. 2.6

Fri.

1:15 Started.

3:50 P.H. 5.0. 0.5 added H2SO4
9:00 Stopped.

2:00 Started.
9:00 Stopped.

Test residue from:
cut and dried all night in a large flask and filter (after trimming) and residue in a furnace at 1200° F. for 30 minutes or more.
Cool the ground residue added H2SO4 30:1
and put on a griddle to burning.

Saw:
Drained liquid off of residue and put on hot plate
to dry with bicarbonate to 6.5 pH.

12:00 Started
9:00 Stopped.

Sunday.
1:00 Started.
9:30 Stopped.

Pot 47 47 47

Copel 2 2 2 4
March 24 Lot # 830 (Lot 5AT)

Oxalic acid
300 ml aqua stiga
300 ml HCL
100 ml HNO3
100 ml H2O

1:00 Started glycol (circulated on hot plate)
7:00 Stopped back, put on grill overnight
12:30 Started

Added N2O4 to pH 8, added 2 hrs.

10:00 Started
7:00 Stopped
12:40 Started

Ice
lot #3
lot #3

Crv
ly head
no mark

.53 mg/5 = .106 g per ton
All.
March 15/04 Test 22504 For Dist

1. EDT: reduce Zn in front bay
2. ZnO: 15 gms, with filter aid
 20-45-20-20-20-20 bed, 1/2 of bed | top settled

20-45-20-20-20-20 bed, 1/2 of bed, | top settled

Residue: Zn + Ag + Raps - head ore after ZnI back

ZnO: 15 gms, with filter aid 2 gms

20-40-15-20-30-20 bed | 1/2 top settled

AgI added

15-40-10-15-20 bed | 1/2 top settled

AgI added.
March 23/04 Test #805 (625 Plant)

| #1 | 7 gms. | 20-40-15-20-20-20, ½ tsp salt mixed ½ tsp flour 2 oz. (on top) | 4 oz. in total |
| #2 | 90 gms = 18 gms per acre, 5 crucible | 25-50-20-20-20-20, ½ tsp flour top, ½ tsp salt mixed | 4 oz. |

To Calgary #1-6 leads.

March 30/04 Test #806 A Acana Potio Leads

| #1 | 1-18 gms each 2 crucible, 1 crucible | 25-50-20-20-20-20, 1 tsp salt mixed, 1 tsp flour top | 4 oz. in total |
| #2 | 1-18 gms each 2 crucible, 1 crucible | 25-50-20-20-20-20, 1 tsp salt mixed, 1 tsp flour top | 4 oz. in total |

To Calgary #1-6 leads.

March 31/04 Test #807 A Acana Potio Leads

| #6 | 2-17 gms each 1 crucible, 1 crucible | 20-40-15-20-20-20, ½ tsp salt mixed, ½ tsp flour top | 4 oz. in total |
| #7 | 2-17 gms each 1 crucible | 20-40-15-20-20-20, ½ tsp salt mixed, ½ tsp flour top | 4 oz. in total |

To Calgary #2, 4 leads.

#7 - 1 + 3 - 4 leads.

Acana Potio after No. 10 leads.
May 4/04 Test # 807 Congrats.

#1

Hygm. 20-45-15-20-20 bad 1/2 flor. Instable on top instant.

Hygm. 20-45-15-20-20 bad 1st flor. no all down on top Agil
<table>
<thead>
<tr>
<th>Date</th>
<th>Test</th>
<th>Plant</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>April 12/04</td>
<td>Test</td>
<td>803</td>
<td>625 Plant</td>
</tr>
<tr>
<td>#1</td>
<td>Residue filtrate</td>
<td>68gms</td>
<td>41% 17gms. 25-50-20-10-20 lost salt, lost in tap water</td>
</tr>
<tr>
<td>#2</td>
<td>Residue filtrate</td>
<td>9gms</td>
<td>25-50-20-20-20 salt & AgCl</td>
</tr>
<tr>
<td>#3</td>
<td>19gms</td>
<td>6.3gms</td>
<td>in 1cm. 20-45-15-20-20+1.26 AgCl</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>6.3gms secured 30-60-1 ftp flour AgCl</td>
</tr>
<tr>
<td>#4</td>
<td>7gms.</td>
<td>Zinc precip of total liquid left</td>
<td>20-45-15-26-20-20-20 AgCl</td>
</tr>
</tbody>
</table>
April 26/04 1809 Condemnated (final)

1. Sacrification
 15 gms -
 25 gms lead mixed
 25 gms on top
 Need to add borax

 Ended up with 1.32 mg lead, didn't add borax.

2. - 15 gms -
 25-40-26-20-20 gms lead on top of all melting
 1 tsp salt mixed, another on top of horse cake

3. 2 dr. of 16 gms each.
 25-40-20-20-30 gms lead on top after melt
 (will add Ag addel) 1 tsp salt mixed (top on top with borax

4. 2 dr. of Zine procur that reside
 (small Ag addel)
 25-40-20-20-70 gms lead on top of melt

5. - Lead as after horse
 15 gms
 25-40-20-20-30 come on #4 through out Ag addel
Fri - May 14/84 Test #810 (Far West)

1. Residue of filter aid 12 gms.
 25 - 40 - 20 - 10 - 30 load on top of furnace.
 5 topsheet, not mixed in. Top 2 at 1
 Y added on top.

2. 10 gms.
 2 x 0.5 (10 gms each)
 25 - 40 - 10 - 20 - 30 load on top of furnace.
 The rest is the same as #1.

3. Zinc pyrite 4.5 gms.
 Y added, top of furnace melted, top mixed
 1/2 top x 0.5 in two hour.
June 8/04 Tent to 811 (Ron)

1. 27 gms in three

2. 2 - 1/4 in. pieces 2.2 gms each total

3. 25 - 40 - 20 - 20 - 30 lead put in melt 1 tsp salt mix into melt

4. 58 (25 - 40 - 20 - 20 - 30) with .5 tsp flour added 1 tsp salt + 2 tsp

5. 3 - 1/4 in. pieces 17 gms from dried lead salt let

6. 1/4 - 20 - 20 - 20 - 30 with .5 tsp flour added 1 tsp salt + 2 tsp

7. 25 - 45 - 20 - 20 - 30 lead mixed 3 tsp on

8. 8.5 per box

9. Top No. 2 mixed, tsp salt on top, 1 tsp flour

10. 20 - 20 - 20 - 30 gms lead in all

11. 25 gms of wood (5 gms of wood) with block of wood

12. The 1 tsp salt and flour is part on top.

1st firing:

3 gms. A - lead added 6 - mixed

4. - mixed E - wood

2nd firing - 1st 2 in. 2 tbsp 2 gms. B - lead added

3rd firing - lead + 1 - lead 2 - mixed

1, 6, 7/4/51
June 20/04 Test #813 (Chin Chong)

1. First settling 9:00 am
2. 750-50-20-20-30-1 tsp. kelp, 1 tsp. flour, all mixed then top 1 cup on top & deep

June 25/04 Test #813 (Sand Under Corp.)

1. 1 tsp. am
2. 750-50-20-20-30-1 tsp. kelp, 1 tsp. flour and mixed, all mixed then top 1 cup on top & deep

June 30/04 (Corr. 8 from bottom) #914

1. Residue with 750-50-20-20-30-1 tsp. kelp, mixed then top with 1 tsp. flour & Ag added

June 30/04 (Corr. 8 from bottom) #914

1. 2 cups @ 14 gram each
2. 750-50-20-20-30 - Same as #1

#6

20 grams
25-45-20-20-30 - Same as above
July 20/04 # 815 continued

1 - 2 Ercx, 15 gms each

Find:

2 in. precip from total liquid, 49 gms

Total liquid, retracted at 1600°F, reduced from 16 to 56

25-40-20-20-30

Step 5 (gig. 5) solidified (25) of total

2 - 2 Ercx, 15 gms each. 5 (A1) of total

Liquid after 2 in. precip. Dried to dust then

Reacted at 1600°F, total ash from 231 gms to

121 gms.

Same as # 1.
<table>
<thead>
<tr>
<th>Date</th>
<th>Test # 816 (Far West - 2 gal)</th>
<th>Test # 817</th>
<th>Test # 818</th>
</tr>
</thead>
<tbody>
<tr>
<td>July 23/64</td>
<td>38 gms. 3 hrs. 3 hrs. Total weight 34 gms.</td>
<td>2 hrs. 17 gms. each.</td>
<td>5 - 40 - 20 - 20 - 30 - Ag. Top salt mixed 1 tsp with 1 tsp flour.</td>
</tr>
<tr>
<td>H1</td>
<td>2 hrs. 3 hrs. sessions 19 gms.</td>
<td>2 hrs. 9.5 gms. each.</td>
<td>25 - 40 - 20 - 20 - 30 - Ag. Top salt mixed 1 tsp with 1 tsp flour</td>
</tr>
<tr>
<td>H2</td>
<td>10 gms.</td>
<td>25 - 40 - 20 - 20 - 30 - O. Same as #2</td>
<td></td>
</tr>
<tr>
<td>Aug 5/64</td>
<td>More of #816</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aug 11/64</td>
<td>Test # 817 "Reg"</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H1</td>
<td>2 hrs. 17 gms. each.</td>
<td>30 - 45 - 20 - 20 - 30 - 1/2 tsp flour. Top salt mixed 1 tsp salt on top with less Ag.</td>
<td></td>
</tr>
<tr>
<td>H2</td>
<td>38 gms. 3 hrs. (12 - 6 gms)</td>
<td>25 - 40 - 20 - 20 - 30 - 1/2 tsp salt mixed 1 tsp salt on top with less Ag. 1 tsp flour.</td>
<td></td>
</tr>
<tr>
<td>H3</td>
<td>25 - 40 - 20 - 20 - 30 - same as above.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H4</td>
<td>25 - 40 - 20 - 20 - 30 - 1 tsp salt mixed 1 tsp.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Aug 17/04 Text # 818 "6-26" 3.5 A.T.

1st - 1st
14 gms.
25-45-20-20-30 1/2 tsp black mold + tsp on top
1 tsp flour, with one tsp
2nd - 2nd and third 3.5. last 15 gms.
25-45-20-20-30 - same as #1

#3 - Filter each rotate, 14.5 gms in 2 cruc.
25-45-20-20-30 - same as #1 (no flour)

Aug 17/04 Text # 819 "Worley"

1st #1
9 gms.
20-40-20-20-30 - tsp flour, tsp salt
2nd #1
25-45-20-20-30 - tsp flour, tsp salt or tsp with juice

#2 - Zinc precip. 11 gms.
20-40-20-20-30 - same as #1
Aug 30/64 Test # 820 "626"

#1 - with ore present. 5 gms.
20-40-20-20-20 1/2 tsp salt mixed, 3/4 tsp flour 1/2" on top with bore.

#2 - will ore present 7 gms.

Same as #1

Sept 17/64 all mixed together, 29 gms.
2 ccs. of 1/4 tsp each.
#1 - with 1 level of Ag added.
45-45-10-120-30-30 1/2 tsp salt mixed 1/2" flour 1/2" on top with bore.

#2 - same as #1 except no Ag added.

Sept 26/64 Batch of #820 - SAT called "821"

#1 - First 1/2-1 1/2 A.T. () 5 gms.
20-40-20-20-30 1/2 tsp salt mixed 1/2" flour 1/2" on top with bore - Ag mixed

#2 - Second 1/2-1 1/2 A.T. () 7.5 gms.
20-40-20-20-30 1/2 tsp salt mixed 1/2" flour 1/2" on top with bore.

#3 - Silver residue after dissolving copper. (0 gms)
20-40-20-20-30 1/2 tsp salt mixed 1/2" flour 1/2" on top with bore.
<table>
<thead>
<tr>
<th>No.</th>
<th>Date</th>
<th>Lot</th>
<th>Creek</th>
<th>Color</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>#1</td>
<td>Nov. 15/04</td>
<td>Int. #22</td>
<td>Reg. 10 A-T</td>
<td>-</td>
<td>2 tins 21 gram each. 30-15-20-20-30-Cr, top salt with 1 tpb. of Ag on top</td>
</tr>
<tr>
<td>#2</td>
<td>1st + 2nd</td>
<td>-</td>
<td>10 grams</td>
<td>20-40-20-20-30-Cr, same as #1</td>
<td></td>
</tr>
<tr>
<td>#3</td>
<td>-</td>
<td>Purple</td>
<td>-</td>
<td>9 grams</td>
<td>20-40-20-20-30-Cr, same as #1</td>
</tr>
<tr>
<td>#4</td>
<td>-</td>
<td>-</td>
<td>10 grams</td>
<td>20-40-20-20-30-Cr, same as #1</td>
<td></td>
</tr>
<tr>
<td>#5</td>
<td>-</td>
<td>Lime green, Romanos</td>
<td>-</td>
<td>15-30-15-35-30-Cr, same as #1</td>
<td></td>
</tr>
</tbody>
</table>

Lot # Creek #1

1st firing | 3 |
2 |
3 |
6 |
4 |
4 |
5 |
6 |

First firing: Nov. 17

1st | Lot #1 - 2 heads.
2nd | Lot #3 - purple.
3rd | Lot #4, #5, #5.
Dec. 2/04 Test # 823 (mg. 431)

1 - 2nd
-17 ppm. ½ tsp. flour
20-45-20-20-30-20 Ag. ½ tsp. neat for tub

2 - Zinc precip. 15 ppm.
20-45-20-20-30-20 Ag. ½ tsp. neat for tub

Dec. 12/04 Test # 824 Reg. 3A1

1 - 1st tier 2nd – 5 ppm.
15-20-15-15-30-20 Ag. ½ tsp. neat mixed
½ tsp. "output box"

2 - 3rd
20 ppm. ½ tsp.
20-40-20-20-30-20 Ag. same as #1

3 - Zinc residue. 13 ppm. Liquid.
20-45-20-20-30-20 Ag. same as #1

Monday Jan. 10/05 Test # 825

1 - Zinc 7 ppm.
20-40-20-20-30 Ag. added the salt moist
½ tsp. on top plus two drops
Jan 25/05 Test #826 (CAT 30°C)

#1 - Zinc pruse (25cc + 30 gms each)

Sub: 30 - 50 - 20 - 20 - 30 - Ag. 1st level mixed

1st output: Ready.

24 hr plate: 15 gms.

25 - 45 - 20 - 20 - 30 - Ag. 1st salt mixed

1/2 tsp salt on top of sauce

4th floor.

#4 Feeders: 15 gms. (after lunch)

20 - 40 - 20 - 20 - 30 - Ag. 1/2 tsp salt mixed

1/2 tsp on top of sauce

4th floor.

#5

Forgot to put it in with first feeding.

15 - 30 - 10 - 15 - 30 - Ag. 1/2 tsp salt mixed

1/2 tsp on top of sauce
Feb. 5/05 Test #827 (FarWest 3AT)

1.
- 9 gms.
20-40-20-20-30-Cg. ½ tsp. well mixed
½ tsp. on top & grass

2. Zinc 10 gms.
20-40-20-20-30-Cg. ½ tsp. well mixed ½ tsp. on top & grass

3. Raindeer 20 gms.
25-45-20-20-30-Cg. ½ tsp. well mixed
¼ tsp. on top & grass

Feb. 19/05 Test #828 (FarWest 3AT)

1.
1, 2, 3 5 gms.
20-40-20-20-30-Cg. usual salt

2. Annaled ½ 16 gms.
25-45-20-20-30-Cg. usual salt

2. ½ annaled (like # 2) 16 gms.
Same as # 2

4. 2nd half H 80 of 30:1 9 gms.
20-40-20-20-30-Cg. usual salt

5. 2 iv. 7 gms.
20-40-20-20-30-Cg. usual salt.
March 10/35 Test #829 (For Test 447)

1. Residue from 17.5 gms put in furnace at 1200°C for 30 minutes
25-45-20-20-30 lead into flask
By adding / Top salt mixed / Top half out top
with chopped

2. Same as #1 - 17.5 gms

3. 1st + 2nd.
10 gms
20-40-20-20-30 Ag, flour, 1/2 tsp. 2% milk
& grape

4. 3rd + 4th + 5th.
12 gms
20-40-20-20-30 Ag, flour, 3 tsp salt mixed
& grape + Cope
March 31/05 Inv # 830 (Fat Box)

Total of 108 gms. 6 parts 18 gms each.

#1 - 18 gms
20-45-20-20-30- ½ tsp flour, ½ tsp salt, milk (no egg) ½ tsp water with 1 tsp

#2 - 18 gms
Same as #1

#3 - 18 gms
Same as #1
ATTACHMENT 2.3.1

Loring Test Analyses
Loring Laboratories Ltd.
629 Bannerview Road N.E.,
Calgary Alberta T2K 4W7
Tel 274-2777 Fax 275-0541

TO: ALAN LEWIS
R.R.1, Site 13, Box 18
Punoks, Alberta
T4J 1R1

DATE: December 19, 2003

PGM ANALYSIS

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Au (ug)</th>
<th>Pt (ug)</th>
<th>Pd (ug)</th>
<th>Rh (ug)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lewis #1</td>
<td>3.50</td>
<td><0.01</td>
<td><0.01</td>
<td><0.01</td>
</tr>
</tbody>
</table>

Beads dissolved in aqua regia and analyzed by ICP.

788

Certified by: [Signature]
TO: ALAN LEWIS
R.R.1, Site 13, Box 13
 Ponoka, Alberta
T4J 1R1

FILE: 48257
DATE: January 16, 2004

PGM ANALYSIS

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Au</th>
<th>Pt</th>
<th>Pd</th>
<th>Rh</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lewis #1</td>
<td>1.60 ± 0.016 mg</td>
<td><0.01</td>
<td><0.01</td>
<td><0.01</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>0.003</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Beads dissolved in aquapreca and analyzed by ICP.

Certified by: [Signature]
TO: ALAN LEWIS
R.R.1, Site 13, Box18
Ponoka, Alberta
T4J 1R1

FILE: 46385
DATE: March 8, 2004

Loring Laboratories Ltd.
629 Bowerwand Road N.E.
Calgary Alberta T2K 4W7
Tel: 274-2777 Fax: 275-3541

PGM ANALYSIS

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Au ug</th>
<th>Pt ug</th>
<th>Pd ug</th>
<th>Rh ug</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lewis #1</td>
<td>T1802</td>
<td>6.85</td>
<td>1.00</td>
<td>1.50</td>
</tr>
<tr>
<td></td>
<td>0.007 opt</td>
<td></td>
<td>0.001 opt</td>
<td>0.005 opt</td>
</tr>
<tr>
<td>Lewis #3</td>
<td>T1807</td>
<td>19.46</td>
<td>2.52</td>
<td>1.77</td>
</tr>
<tr>
<td></td>
<td>0.019 opt</td>
<td></td>
<td>0.009 opt</td>
<td>0.018 opt</td>
</tr>
</tbody>
</table>

Beads dissolved in aqua regia and analyzed by ICP.
Loring Laboratories Ltd.
829 Beamond Road N.E.
Calgary Alberta T2K 4W7
Tel: 274-2777 Fax: 275-0541

TO: ALAN LEWIS
R.R.1, Site 13, Box13
Ponoka, Alberta
T4J 1R1

FILE:46428
DATE:March 22, 2004

PGM ANALYSIS

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Au ug</th>
<th>Pt ug</th>
<th>Pd ug</th>
<th>Rh ug</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lewis #1</td>
<td>18.85</td>
<td><0.01</td>
<td><0.01</td>
<td><0.01</td>
</tr>
<tr>
<td>Lewis #2</td>
<td>27.20</td>
<td><0.01</td>
<td><0.01</td>
<td><0.01</td>
</tr>
<tr>
<td>Lewis #3</td>
<td>19.45</td>
<td><0.01</td>
<td><0.01</td>
<td><0.01</td>
</tr>
</tbody>
</table>

6550 / 5 = 0.014 ppm max

Seeds dissolved in aqua regia and analyzed by ICP.

Certified by: [Signature]
PGM ANALYSIS

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Au (mg)</th>
<th>Pt (ug)</th>
<th>Pd (ug)</th>
<th>Rh (ug)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bead #1</td>
<td>0.047</td>
<td>3.03</td>
<td>2.16</td>
<td><0.01</td>
</tr>
<tr>
<td>Bead #2</td>
<td>0.034</td>
<td><0.01</td>
<td><0.01</td>
<td><0.01</td>
</tr>
<tr>
<td>Bead #3</td>
<td>0.018</td>
<td><0.01</td>
<td><0.01</td>
<td><0.01</td>
</tr>
</tbody>
</table>

\[
\frac{0.018}{5} = 0.0036 \text{ OPT}
\]

Beads dissolved in aqua regia and analyzed by ICP.

11.03 per ton

Certified by:

805
<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Au mg</th>
<th>Pd ug</th>
<th>Pt ug</th>
<th>Rh ug</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bead #1</td>
<td>0.032</td>
<td>< 0.10</td>
<td>< 0.10</td>
<td>< 0.10</td>
</tr>
<tr>
<td>Bead #2</td>
<td>0.010</td>
<td>< 0.10</td>
<td>< 0.10</td>
<td>< 0.10</td>
</tr>
<tr>
<td>Bead #3</td>
<td>0.093</td>
<td>< 0.10</td>
<td>< 0.10</td>
<td>< 0.10</td>
</tr>
</tbody>
</table>

\[
0.135 \div 5 = 0.027 \text{ Pt}
\]

NOTE: Due to high silver content of beads, samples had to be diluted to a higher volume to be analyzed. Therefore detection limits for Pt, Pd and Rh are higher.

I HEREBY CERTIFY that the above results are those assays made by me upon the herein described samples:

[Signature]

Receivets and purus are retained for one month unless specific arrangements are made in advance.
TO: ALAN LEWIS
R.R.1, Site 13, Box 18
Ponoka, Alberta
T4J 1R1

FILE: 46549
DATE: April 25, 2004

Loring Laboratories Ltd.
629 Beaverdam Road N.E.,
Calgary Alberta T2K 4W7
Tel: 274-2777 Fax: 275-0541

PGM ANALYSIS

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Au mg</th>
<th>Pt ug</th>
<th>Pd ug</th>
<th>Rh ug</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lewis #1</td>
<td>0.055</td>
<td><0.05</td>
<td><0.05</td>
<td><0.01</td>
</tr>
<tr>
<td>Lewis #2</td>
<td>0.380</td>
<td><0.10</td>
<td><0.10</td>
<td><0.10</td>
</tr>
<tr>
<td>Lewis #3</td>
<td>(\frac{2.090}{2.525 + 0.5} = \frac{5.050}{0.20} \lt 0.20)</td>
<td><0.20</td>
<td><0.20</td>
<td></td>
</tr>
<tr>
<td>Lewis #4</td>
<td><0.001</td>
<td><0.01</td>
<td><0.01</td>
<td><0.01</td>
</tr>
</tbody>
</table>

Samples #2+3 had to be diluted 10 fold to obtain gold concentrations. As a result, PGM detection limits have been compromised.

Beads dissolved in aqua regia and analyzed by ICP.

Certified by: [Signature]

Foot # 808
Loring Laboratories Ltd.
629 Benviervan Road N.E.,
Calgary, Alberta T2K 4W7
Tel. 274-2777 Fax 275-0541

TO: ALAN LEWIS
R.R.1, Site 13, Box 18
Ponoka, Alberta
TAJ 1R1

DATE: May 5, 2004

FILE: 46543

PGM ANALYSIS

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Au (mg)</th>
<th>Pt (ug)</th>
<th>Pd (ug)</th>
<th>Rh (ug)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beads #1+2</td>
<td>0.010</td>
<td>0.95</td>
<td>1.35</td>
<td><0.01</td>
</tr>
<tr>
<td>Beads #3</td>
<td>0.014</td>
<td>1.53</td>
<td>2.02</td>
<td><0.01</td>
</tr>
<tr>
<td>Beads #4</td>
<td>0.006</td>
<td>0.36</td>
<td><0.01</td>
<td><0.01</td>
</tr>
<tr>
<td>Beads #6</td>
<td>0.002</td>
<td><0.01</td>
<td><0.01</td>
<td><0.01</td>
</tr>
</tbody>
</table>

\[\frac{0.002}{5} = 0.0004 \text{ g Au per liter} \]

A 809

Beads dissolved in aqua regia and analyzed by ICP.

Certified by: [Redacted]
Loring Laboratories Ltd.

839 Beeverdam Road N.E.,
Calgary Alberta T2K 4W7
Tel: 274-2777 Fax: 275-0541

TO: ALAN LEWIS
R.R.1. Site 13, Box 18
Ponoka, Alberta
T4J 1R1

FILE: 46616
DATE: May 21, 2004

PGM ANALYSIS

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Au</th>
<th>Pt</th>
<th>Pd</th>
<th>Rh</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beads #1</td>
<td>0.019 - 0.019</td>
<td>2.24</td>
<td><0.01</td>
<td><0.01</td>
</tr>
<tr>
<td>Beads #2</td>
<td>0.813- 0.815</td>
<td>2.97</td>
<td>0.27</td>
<td><0.01</td>
</tr>
<tr>
<td>Beads #3</td>
<td>0.002 - (0.002/0.836)</td>
<td>2.28</td>
<td><0.01</td>
<td></td>
</tr>
</tbody>
</table>

Beads dissolved in aqua regia and analyzed by ICP.

May 21/04 836 x 274 = 22,670

\[540 \times 836 \times 274 = 90,280 \text{ ppm} \]
PGM ANALYSIS

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Au (mg)</th>
<th>Pt (ug)</th>
<th>Pd (ug)</th>
<th>Rh (ug)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bead #1</td>
<td>0.008</td>
<td>0.45</td>
<td><0.01</td>
<td><0.01</td>
</tr>
<tr>
<td>Bead #2</td>
<td>0.007</td>
<td>0.30</td>
<td>0.25</td>
<td><0.01</td>
</tr>
<tr>
<td>Bead #3</td>
<td>0.031</td>
<td>3.62</td>
<td>1.11</td>
<td><0.01</td>
</tr>
<tr>
<td>Bead #4</td>
<td>0.003</td>
<td>0.56</td>
<td>0.40</td>
<td><0.01</td>
</tr>
<tr>
<td>Bead #5</td>
<td>0.004</td>
<td>0.81</td>
<td>0.35</td>
<td><0.01</td>
</tr>
<tr>
<td>Bead #6</td>
<td>0.033</td>
<td>5.70</td>
<td>1.04</td>
<td><0.01</td>
</tr>
</tbody>
</table>

Beads dissolved in aqua regia and analyzed by ICP.

Certified by: [Signature]

File: 46672
Date: June 15, 2004
Loring Laboratories Ltd.

609 Bowesmore Road N.E.,
Calgary Alberta T2K 4W7
Tel: 274-2777 Fax: 275-2541

TO: ALAN LEWIS
R.R.1, Site 13, Box 18
Ponoka, Alberta
T4J 1R1

FILE: 46745
CATE: July 9, 2004

PGM ANALYSIS

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Au (mg)</th>
<th>Pt (ug)</th>
<th>Pa (ug)</th>
<th>Rh (ug)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vial #1</td>
<td>0.003</td>
<td><0.01</td>
<td><0.01</td>
<td><0.01</td>
</tr>
<tr>
<td>Vial #2</td>
<td>0.014</td>
<td>2.66</td>
<td>1.28</td>
<td><0.01</td>
</tr>
<tr>
<td>Vial #3</td>
<td>0.005</td>
<td>0.15</td>
<td>1.02</td>
<td><0.01</td>
</tr>
<tr>
<td>Vial #4</td>
<td>0.022</td>
<td>0.02</td>
<td>0.006</td>
<td>0.102</td>
</tr>
<tr>
<td>Vial #5</td>
<td>0.013</td>
<td>0.13</td>
<td>0.006</td>
<td>0.027</td>
</tr>
<tr>
<td>Vial #6</td>
<td>0.006</td>
<td>0.56</td>
<td>0.006</td>
<td>0.024</td>
</tr>
<tr>
<td>Vial #7</td>
<td>0.006</td>
<td>0.56</td>
<td>0.006</td>
<td>0.024</td>
</tr>
<tr>
<td>Vial #9</td>
<td>0.029</td>
<td>3.42</td>
<td>1.32</td>
<td><0.01</td>
</tr>
</tbody>
</table>

Beads dissolved in aqua regia and analyzed by ICP.

8/12 - 0.004 g Pt to Au.
8/13 - 0.026 ÷ 5 = 0.005 g Pt to Au.
8/14 - 0.024 ÷ 5 = 0.0048 g Pt to Au.
TO: ALAN LEWIS
R.R.1, Site 13, Box18
Ponoka, Alberta
T4J 1R1

FILE:46774
DATE:July 22, 2004

Loring Laboratories Ltd.
629 Beaverdam Road N.E.,
Calgary Alberta T2K 4W7
Tel: 274-2777 Fax: 275-0541

PGM ANALYSIS

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Au mg</th>
<th>Pt ug</th>
<th>Pd ug</th>
<th>Rh ug</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vial #1</td>
<td>0.023</td>
<td>1.24</td>
<td><0.01</td>
<td><0.01</td>
</tr>
<tr>
<td>Vial #2</td>
<td>0.008</td>
<td>2.41</td>
<td>2.75</td>
<td><0.01</td>
</tr>
<tr>
<td>Vial #3</td>
<td>0.008</td>
<td>13.04</td>
<td>5.53</td>
<td><0.01</td>
</tr>
<tr>
<td>Vial #4</td>
<td>0.012</td>
<td>1.28</td>
<td>1.39</td>
<td><0.01</td>
</tr>
<tr>
<td>Vial #5</td>
<td>0.005</td>
<td><0.01</td>
<td>0.50</td>
<td><0.01</td>
</tr>
</tbody>
</table>

Beads dissolved in aqua regia and analyzed by ICP.

Certified by: [Redacted]

[Handwritten note: Test # 815]

[Handwritten note: 0.056 ÷ 5 = 0.0112 g per ton Au]
TO: ALAN LEWIS
R.R.1, Site 13, Box 18
Ponoka, Alberta
T4J 1R1

FILE: 46803
DATE: July 30, 2004

PGM ANALYSIS

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Au (mg)</th>
<th>Pt (ug)</th>
<th>Pd (ug)</th>
<th>Rh (ug)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vial #1</td>
<td>0.034</td>
<td>1.45</td>
<td><0.01</td>
<td><0.01</td>
</tr>
<tr>
<td>Vial #2</td>
<td>0.027</td>
<td><0.01</td>
<td><0.01</td>
<td><0.01</td>
</tr>
<tr>
<td>Vial #3</td>
<td>0.018</td>
<td><0.01</td>
<td><0.01</td>
<td><0.01</td>
</tr>
</tbody>
</table>

Beads dissolved in aqua regia and analyzed by ICP.

Certified by:

7816

4815
CH # 122
Aug 13/04
Loring Laboratories Ltd.
629 Beaver Dam Road NE,
Calgary, Alberta T2E 4X7
Tel: 274-2977 Fax: 279-0541

TO: ALAN LEWIS
R.R.1, Site 13, Box 18
Parona, Alberta
T4J 1R1

FILE: 46881
DATE: August 27, 2004

PGM ANALYSIS

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Au</th>
<th>Pt</th>
<th>Pc</th>
<th>Rh</th>
</tr>
</thead>
<tbody>
<tr>
<td>#1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Beads dissolved in aqua regia and analyzed by ICP.

Certified by: [Signature]
Loring Laboratories Ltd.
529 Beaverdam Road N.E.,
Calgary Alberta T2K 4V7
Tel: 274-2777 Fax: 275-0541

TO: ALAN LEWIS
R.R.1, Site 13, Box 18
Ponoka, Alberta
T4J 1R1

 FILE:47013
DATE:October 8, 2004

PGM ANALYSIS

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Au mg</th>
<th>Pt ug</th>
<th>Pd ug</th>
<th>Rh ug</th>
</tr>
</thead>
<tbody>
<tr>
<td>#1A</td>
<td>0.002</td>
<td>1.50</td>
<td>1.34</td>
<td><0.01</td>
</tr>
<tr>
<td>#2A</td>
<td>0.010</td>
<td>1.65</td>
<td>1.50</td>
<td><0.01</td>
</tr>
<tr>
<td>#1</td>
<td>0.021</td>
<td>0.27</td>
<td><0.01</td>
<td><0.01</td>
</tr>
<tr>
<td>#2</td>
<td>0.008</td>
<td><0.01</td>
<td><0.01</td>
<td><0.01</td>
</tr>
<tr>
<td>#3</td>
<td>0.002</td>
<td><0.01</td>
<td><0.01</td>
<td><0.01</td>
</tr>
</tbody>
</table>

Beads dissolved in aqua regia and analyzed by ICP.

Certified by: [Signature]

[Signature]
PGM ANALYSIS

<table>
<thead>
<tr>
<th>Sample No</th>
<th>Au (mg)</th>
<th>Pt (ug)</th>
<th>Pd (ug)</th>
<th>Rh (ug)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bead #1</td>
<td>0.072</td>
<td>0.54</td>
<td>1.54</td>
<td><0.01</td>
</tr>
<tr>
<td>Bead #2</td>
<td>0.608</td>
<td>0.35</td>
<td>0.53</td>
<td><0.01</td>
</tr>
<tr>
<td>Bead #3</td>
<td>0.032</td>
<td>0.83</td>
<td>0.84</td>
<td><0.01</td>
</tr>
</tbody>
</table>

\[
0.712 \div 10 = 0.0712 \text{ mg}
\]

Beads dissolved in aqua regia and analyzed by ICP.

822

Certified by: ________________________
To: ALAN LEWIS
R.R.1, Site 13, Box 18
Ponoka, Alberta
T4J 1R1

From:
Loring Laboratories Ltd.
629 Beaverdam Road N.E.,
Calgary Alberta T2K 4W7
Tel: 274-2777 Fax: 275-0541

File: 47253
Date: Dec. 23, 2004

PGM ANALYSIS

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Au mg</th>
<th>Pt ug</th>
<th>Pd ug</th>
<th>Rh ug</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lewis #1</td>
<td>0.008</td>
<td>0.18</td>
<td><0.01</td>
<td><0.01</td>
</tr>
<tr>
<td>Lewis #2</td>
<td>0.002</td>
<td>0.34</td>
<td><0.01</td>
<td><0.01</td>
</tr>
<tr>
<td>Lewis #3</td>
<td>0.005</td>
<td>0.15</td>
<td>0.12</td>
<td><0.01</td>
</tr>
<tr>
<td>Vial A</td>
<td>0.004</td>
<td>0.45</td>
<td><0.01</td>
<td><0.01</td>
</tr>
<tr>
<td>Vial B</td>
<td>0.008</td>
<td>0.96</td>
<td>1.99</td>
<td><0.01</td>
</tr>
</tbody>
</table>

Beads dissolved in aqua regia and analyzed by ICP.

Certified by: [Signature]

18

Loring Laboratories Ltd.
629 Beavertail Road N.B.
Calgary Alberta T2K 4W7
Tel: 274-2777 Fax: 775-541

TO: ALAN LEWIS
R.R.1, Site 13, Box 18
Ponoka, Alberta
T0J 1R1

FILE: 47253-1
DATE: Jan. 13, 2005

PGM ANALYSIS

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Au (mg)</th>
<th>Pt (ug)</th>
<th>Pd (ug)</th>
<th>Rh (ug)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lewis #1</td>
<td>0.003</td>
<td>0.001</td>
<td><0.01</td>
<td><0.01</td>
</tr>
</tbody>
</table>

Beads dissolved in aqua regia and analyzed by ICP.

Certified by: [Signature]
Loring Laboratories Ltd.
629 Beavertail Road N.E.,
Calgary Alberta T2K 4W7
Tel: 274-2777 Fax: 275-0541

TO: ALAN LEWIS
R.R.1, Site 13, Box18
Ponoka, Alberta
T4J 1R1

FILE: 47350
DATE: Feb. 1, 2005

PGM ANALYSIS

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Au (mg)</th>
<th>Pt (ug)</th>
<th>Pd (ug)</th>
<th>Rh (ug)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lewis #1</td>
<td>0.001</td>
<td><0.01</td>
<td><0.01</td>
<td><0.01</td>
</tr>
<tr>
<td>Lewis #2</td>
<td><0.001</td>
<td><0.01</td>
<td><0.01</td>
<td><0.01</td>
</tr>
<tr>
<td>Lewis #3</td>
<td>0.001</td>
<td><0.01</td>
<td><0.01</td>
<td><0.01</td>
</tr>
</tbody>
</table>

Beads dissolved in aquarea and analyzed by ICP.

826

Certified by:
Loring Laboratories Ltd.
529 Beaverdam Road N.E.,
Calgary Alberta T2K 4W7
Tel: 274-2777 Fax: 275-0541

TO: ALAN LEWIS
R.R.1, Site 13, Box18
Ponoka, Alberta
T4J 1R1

FILE: 47350
DATE: Feb. 11, 2005

PGM ANALYSIS

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Au mg</th>
<th>Pt ug</th>
<th>Pd ug</th>
<th>Rh ug</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lewis #1</td>
<td><0.001</td>
<td><0.01</td>
<td><0.01</td>
<td><0.01</td>
</tr>
<tr>
<td>Lewis #2</td>
<td><0.001</td>
<td><0.01</td>
<td><0.01</td>
<td><0.01</td>
</tr>
<tr>
<td>Lewis #3</td>
<td><0.001</td>
<td><0.01</td>
<td><0.01</td>
<td><0.01</td>
</tr>
</tbody>
</table>

Beads dissolved in aquaregia and analyzed by ICP.

Certified by: [Redacted]
PGM ANALYSIS

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Au mg</th>
<th>Pt ug</th>
<th>Pd ug</th>
<th>Rh g</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lewis #1</td>
<td>0.003</td>
<td>0.20</td>
<td><0.01</td>
<td><0.01</td>
</tr>
<tr>
<td>Lewis #2</td>
<td>0.005</td>
<td>0.50</td>
<td><0.01</td>
<td><0.01</td>
</tr>
<tr>
<td>Lewis #3</td>
<td>0.004</td>
<td>0.13</td>
<td><0.01</td>
<td><0.01</td>
</tr>
<tr>
<td>Lewis #4</td>
<td>0.004</td>
<td>0.23</td>
<td><0.01</td>
<td></td>
</tr>
<tr>
<td>Lewis #5</td>
<td>0.001</td>
<td>0.18</td>
<td><0.01</td>
<td></td>
</tr>
</tbody>
</table>

Beads dissolved in aqua regia and analyzed by ICP.
ATTACHMENT 2.3.2

SGS Lakefield Research Limited
Test Analysis
CERTIFICATE OF ANALYSIS

Lakefield Research Limited - Final Report

<table>
<thead>
<tr>
<th>Sample ID</th>
<th>Au</th>
<th>Pt</th>
<th>Pd</th>
<th>Au</th>
<th>Pt</th>
<th>Pd</th>
</tr>
</thead>
<tbody>
<tr>
<td>1: Sandstone (fine ground)</td>
<td><0.02</td>
<td><0.02</td>
<td><0.02</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>2: Sandstone (semi-fine ground)</td>
<td><0.02</td>
<td><0.02</td>
<td><0.02</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>3: Conglomerate (fine ground)</td>
<td><0.02</td>
<td><0.02</td>
<td><0.02</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>4: A Lewis #1</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td><0.0002</td>
<td>0.0007</td>
<td><0.0002</td>
</tr>
<tr>
<td>5: A Lewis #2</td>
<td>1.30</td>
<td>1.45</td>
<td>0.56</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>6-DUP: Sandstone (fine ground)</td>
<td><0.02</td>
<td><0.02</td>
<td><0.02</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
</tbody>
</table>

Sample "A Lewis #1" was a bead weighing 0.0601g.

Nicole Mozola, B.Sc. (Eng)
Project Coordinator
Mineral Services, Analytical
3.0 Computer Tabulation and Analysis of Test results

Dr. Walter Haessel, a shareholder and director of 713803 Alberta Ltd., has undertaken a tabulation and computer analysis of the Al Lewis test results to determine if any discernible patterns exist relative to location of sample sources, type of pretreatment/analysis used, etc., to correlate the relative quality of test results. This work is still in its early stages.
4.0 Discussions with Other Companies

Contact has also been maintained with Birch Mountain Ltd., who is a public company that has been active for several years in pursuing Alberta gold and platinum prospects. Birch Mountain Resources Ltd. is currently concentrating their efforts on developing a limestone quarry to serve the aggregate and quicklime requirements of the Ft. McMurray oil sands industry. However, they have not abandoned their precious metals project and have encouraged us to maintain contact with a view to eventually establishing some form of cooperative effort.
5.0 **Summary of Expenditures**

The majority of the expenditures incurred by 713803 Alberta Ltd. in the period covered by this report (May 2003 to April 2005) are represented by contributed labor of Al Lewis. Small amounts of contributed labor were provided by Dr. Walter Haessel and Robert Liddle.

The value of contributed labor plus other expenditures are summarized below:

5.1 **Contributed Labor**

(a) Alan Lewis

(i) Travel June 8-11/03 from Ponoka to Lakefield, Ontario to observe SGS Lakefield Research Limited procedures of assaying samples and to leave samples with them for assay

 4 days $[Redacted] $[Redacted]

(ii) Travel December 3 – 6, 2003 from Ponoka to Langley, B.C. to meet with Mr. Norm Smalley re assay and extraction processes, etc.

 4 days $[Redacted] $[Redacted]

(iii) Lab Analysis and testing in home lab over the period April, 2003 to March, 2005

 $[Redacted] $[Redacted]

(b) Dr. Walter Haessel

Tabulation and computer analysis of Al Lewis test results

Walter Haessel $[Redacted] $[Redacted]

5.2 **Materials, Services and Travel Expenses**

Al Lewis $[Redacted] $[Redacted]

5.3 **Report Preparation**

Al Lewis $[Redacted] $[Redacted]

Robert Liddle $[Redacted] $[Redacted]

Grand Total Costs $68,696.00
NORTHWEST ALBERTA PROJECT

Supplementary Information re

Mineral Assessment Report
Dated May 17, 2005

Metallic and Industrial Minerals
Permit Nos. 939701001 and 939701002
Permit Holder Alan David Lewis

Submitted by

713803 Alberta Ltd

October 13, 2006
Introduction

For the last several years, the work undertaken by 713803 Alberta Ltd. has focused entirely on the work being performed by Alan Lewis to try and establish a reliable and repeatable ore pretreatment and leaching processes that will in turn result in positive precious metal assay analysis. Accordingly there has been no new work in certain of the areas addressed in your request for supplemental information. However to be responsive to your request we have provided copies of relevant work or information that had been previously submitted in earlier assessment reports.

Discussion of Geology and Formations over Permitted Lands

The geological interpretation of the permitted lands was provided by 713803 Alberta Ltd under Tab 3 of its original assessment report dated May 14, 1999. For convenience, a copy of the that material is provided as Attachment 1 to this supplemental report. No further geological analysis has been done since that time.

Sample Location

All of the sample ore material analysed during the April 2003 to March 2005 period was obtained from the bulk ore sample(approximately 20 cu yds.in total collected on July 18, 2000 which was delivered to and stored by Mr. Lewis near his home based lab) This sample was collected from Area 1 shown on the attached Map entitled attachment 2. This bulk sample collection was described and discussed in the assessment report dated May 17,2001.

Discussion of Test Results

As discussed in previous assessment reports (May 14, 1999, May 17, 2001 and May 12,2003) 713803 Alberta Ltd continues to face the challenge of developing and establishing a reliable and repeatable sample pretreatment and leaching techniques to remove and capture the precious metal content from the ore sample. Accordingly the test analyses reported under tab 2 of the May 7, 2005 assessment report describe the various pretreatment and leaching and processes that were used and covering the period reported (April 2003 to March 2005) in this assessment report .

The pretreatment agents included:

H2SO4 (sulfuric acid)
NaOH (Sodium hydroxide)
HN03 (nitric acid)

Differing concentrations and proportions of these pretreatment agents were used in the various tests.

Once a sample was pretreated, different leaching agents were utilized to extract the precious metals from the ore samples . These leaching agents included:
HCl (three parts) and HNO3 (one part) (known as Aqua Regia)
NaCl (common salt)
NaBr (sodium bromide)
KI (potassium iodide)

Again, different concentrations of leaching agents realized in various tests. These varying concentrations of leaching agents resulted in differing levels of pH (acid – alkalinity balance) and differing levels of ORP (oxidation reduction potential).

The leached solution was then precipitated and dried. The dried precipitates were then fired in a conventional fire assay and the resulting bead weighed. In certain instances as noted in the table the bead precious metal content was analyzed by an external lab (Loring) to provide independent confirmation of the results that Lewis was achieving.

The specific concentrations of agents used in the various analyses are not reported in the table. This is based on the anticipation of 713803 Alberta Limited that once repeatable techniques are established that they would provide proprietary analytical knowledge which could be the basis of patent applications.

Qualifications and Experience of Alan Lewis

Mr. Lewis first became interested in gold mining in the nineteen seventies. Through reading, visits to gold mining operations in Australia and the Yukon and discussions with people active in the mining industry, Mr. Lewis developed sufficient knowledge and interest to initiate his first actual mining activity in the Yukon in 1980.

During the next seventeen years from 1980 to 1997, Mr. Lewis and his associates mined several properties in the Yukon including Bonanza Creek, Vancouver Creek, and the Moosehorn Range with varying degrees of success. In some years 40 to 80oz. of gold per day were successfully mined over the course of the 90 day summer Yukon mining season.

In the mid nineteen nineties, Mr. Lewis became aware of the gold potential of Northwestern Alberta and through his knowledge and experience developed a proposal that was successfully presented to ten other investors in 1996 resulting in the formation of 713803 Alberta Ltd. These individuals, along with Mr. Lewis remain the shareholders of 713803 Alberta Ltd to the present day.

Mr. Lewis equipped his own testing lab based the knowledge he had gained in the seventeen years of Yukon mining experience. Supplemented by additional discussion and reading germane to the “fine gold” type of ore found in Northwestern Alberta, Mr. Lewis developed and continues to develop the analytical approaches that are being used by 713803 Alberta Ltd.
In the early years of the 713803 Alberta Ltd’s activities, confirmation of the quality of Mr. Lewis’ laboratory facilities and analysis was provided by Mr. Doug Read, President of Cantech Laboratories Inc. Mr. Read confirmed in a letter provided to 713803 Alberta Ltd. that the work performed by Mr. Lewis was reliable and consistent with established practices of commercial laboratories.

A copy of the letter provided by Mr. Read was included in 713803 Alberta Ltd.’s original assessment report dated May and is included as attachment 3 to this supplementary report. Since the time of writing of Mr. Read’s letter, Mr. Lewis has continued to improve the quality of these equipment and now has in place an additional propane fired furnace and has an improved scale capable of resolution to one ten thousandth of a gram. Mr. Lewis has also obtained a separate lab trailer to house the laboratory equipment which again improves the quality of operations from the time of Mr. Read’s assessment when the lab equipment was housed in a vehicle garage.

Mr. Lewis and other 713803 Alberta Ltd shareholders also met with principals of Birch Mountain Resources Ltd, a much larger public company which has been engaged in research and development of “fine gold” analytical process is in the same time frame as 713803 Alberta Ltd. The purpose of the discussion was to explore analytical approaches to Northwestern Alberta “fine gold” ore samples. The Birch Mountain personnel were similarly supportive of the approaches and analytical techniques undertaken by Mr. Lewis.

Discussion of Results from Computer Analysis of Lab Data

The work performed to date has been to enter data into computer data files, but no analysis of that data has been undertaken yet.

Revised Expenditure Statement

713803 Alberta Ltd. believes that the expenditures submitted in the original expenditure statement remain valid. 713803 Alberta Ltd. is not requesting any additional expenditure allowance for the time expended in preparing this supplemental report.
Attachment 1

Geological Discussion
3. Geological Interpretation Report

The 713803 Alberta Ltd. geological interpretation of the "west" permit area, as it relates to the Bad Heart sandstone and conglomerate deposits is set out in the following report entitled "Geological Survey, November 11-12, 1997" prepared by A.A. Wilkins, P.Geol.¹

Also attached is a copy of a field drilling report prepared by the Manager of Drilling, Mr. B. Luft, for activity undertaken during the period March 21 through March 25, 1998 (Attachment 3.1). This report has been previously submitted to the Alberta Land and Forest Service on May 22, 1998.

¹ Note that further interpretation letter reports have also been provided by Placer Dome North America (Section 5.1) and BHP Minerals Canada Ltd. (Section 5.2).
A geological Field Trip was made to the West Permits to determine the best location to capture bulk samples for analysis.

Base Camp was established at the Airport Motel in Dawson Creek on November 11, 1997. Using Alan Lewis’ 4x4 Dodge Ram Extended Cap Truck and all terrain ARGO low pressure rubber tire 8 wheel vehicle Messrs. Lewis, Luft, and Wilkins carried out a two day geological field trip over 713803 Alberta Ltd.’s West Permits and adjacent lands.

Although unanimous agreement concerning the geological interpretation of the West Permits was not reached, the following summarizes the writer’s observations and opinions regarding the stratigraphic nature of the Bad Heart Conglomerate and Sandstones at eight (8) locations visited during the field trip. (See Map 1).

Day 1 November 12

Site (1) NW ¼ Section 29 78 12 W6M (Not on Map)

This site, a local “gravel pit” on crown lands, sits approximately two miles east of the West Permit’s eastern boundary. Access was reached by foot from a good condition provincial road. Very little sediment has been removed from a twenty foot high glacial mound of poorly sorted clays, sand, pebbles and boulders. A very poor access road, mainly ice covered, probably is the reason why only limited amounts of material have been taken from this pit. The surface elevation of the pit ranges between 2650 and 2700 feet therefore the top of the Bad Heart Sandstone has been glacially eroded. Drilling would be required to determine:

1) the surface elevation and thickness of the Bad Heart Sandstone; or
2) if it has been totally glaciated at this location
Access to this location was reached, from Site 1, by Lewis' 4x4 truck with the ARGO in tow. Travelling in a south and southwesterly direction the surface elevation ranged between 2650 and 2850+ feet over the eight miles traversed. Road conditions, provincial and well site, over the eastern portion of the West Permit varied from good to very poor. Timber in the area is mainly mature poplar with some spruce growing out of clayey glacial debris. The Bad Heart Sandstone was not observed to outcrop along this road traverse.

At the Site, Luft and Wilkins walked a ¼ mile South to North traverse along a cut line from an abandoned well site in the NW ¼ of section 10 to the boundary of section 15 (Anderson Road). Glacial debris caps the hill at the well site location. About 200 feet of elevation drop took place from the beginning to the end of the traverse (2793 to 2600 feet).

No outcrops of the Bad Heart Sandstone were observed, however it was evident from sediments contained in the root systems of fallen trees that the Bad Heart Sandstone lies very close, within 1 to 3 feet, of the surface at this location.

The sample collected by Luft and Lewis in this locality, during their September trip, is probably a mixture of indigenous Bad Heart Sandstone and glacial debris. Also, in close proximity to this location, a large (1 and ½ ton) bulk sample was taken by Lewis and Wilkins during the brutally cold winter of 1996. No further samples were collected from this site since Lewis has carried out numerous assays on the bulk sample sediments, as well as the material mentioned above, collected in September.
Site (3) NW ¼ Section 23 78 13 W6M

The ARGO was used to reach this location, following a quick carburetor overhaul done by Lewis with Luft’s assistance. A good trail (ARGO TRAIL) about 30 feet wide, impassible in places by a 4x4, runs due north along the western boundary of section 13 and then NNW across section 23. Logging of poplar trees has occurred along this trail with preparations underway for further removal of timber during the upcoming winter.

This site was first visited in the winter of 1996 by Wilkins. Access was gained, from the west, by snowmobile operated by a local farmer/trapper who resides in the Spirit River Area. Messrs. Fonteyne, M. Frost and Lewis collected samples from this site and surrounding area this past summer. As well Luft and Lewis collected bed rock samples from this site during their September trip.

About 45 feet of Bad Heart Conglomerate outcrops at this location, forming a near vertical cliff face. Considerable spalling and slumping has taken place dislodging large, up to 40 x 40 foot blocks, of conglomerate. The sandstone has a gradual slope, about 3.0 degrees, and is covered by topsoil and vegetation. The conglomerate was observed to outcrop 50 to 75 yards to the east of the cliff face. To the SE for about 1/2 mile the conglomerate outcrops and is generally covered by a thin layer of moss. To the NW the cliff face can be seen extending almost to the Bay Tree pit.

Both the conglomerate and sandstone dip about 5 degrees to the East, although a true dip reading is not possible because of the slumping that has occurred at this location. Samples of the conglomerate and sandstone (at the contact point) were collected. It was observed that the grain size of the conglomerate pebbles increased from the base to the top of the exposed interval suggesting a shore line environment rather than channel fill.
Site (4) NW ¼ Section 14 78 13 W6M

A glaciated depression forms a draw and shallow saddle between the two major topographic highs on the West Permit. The Pouce Coupe oil pipeline right-of-way runs up the center of this draw along the northern border of section 14. Luft and Lewis collected a sample from this right-of-way during their September trip. Rounded glacial boulders, granite and quartzite, were observed at the sample collection site as well as 20 feet below such site where a large uprooted tree exposed the underlying sediments. Sufficient platy sand fragments were observed at both locations to indicate that the glacial till probably contains, in part, Bad Heart Sandstone indigenous to the area.

Day 2 November 13
Base Camp was Vacated at 8:30 a.m.
Site 5 Tree Tower Pit (Located in B.C. 3 Miles due West of Section 4 of West Permits)
(Not on Map)

Site 6 NW ¼ Section 4 78 13 W6M

This site was reached by ARGO, travelling south on a cut line which runs along the eastern boundary of Section 8 and then east on a very old cut line, heavily overgrown by 2 to 3 inch poplar trees. Luft and Lewis collected random samples from this cut line near the 2700 to 2750 foot surface elevation during such trip. A short distance to the south of the cut line Wilkins observed and collected samples from Bad Heart Sandstone outcrops which were discovered at 2750, 2700 and 2675 foot surface elevations. The sandstone dips in the range of 5 to 10 degrees to the east at this location although some slumping may have taken place. The Bad Heart Conglomerate was not found at this location.
Site 7 SW ¼ Section 27 78 13 W6M

Luft and Wilkins accessed this location by foot climbing in a northeasterly direction from the Bay Tree pit. The northwestern end of the horseshoe shaped cliff escarpment was intersected about ½ mile from the Bay Tree pit. At this location, the cliff is capped by 1 foot of conglomerate underlayen by cliff forming sandstone. Total vertical thickness, "eye balled" from the top of the cliff, is estimated to be 25 to 30 feet. Samples from both the conglomerate and sandstone were carried back to the 4x4 at the Bay Tree pit.

Site 8 NW ¼ Section 25 78 13 W6M

This site, referred to as the Moxely Pit, was accessed by the Dodge 4x4 via a good provincial road. The Bad Heart Sandstone is within 1 foot of the surface at this location. The surface elevation ranges between 2750 to 2700 feet. Interbedded in the sand is 1 foot of conglomerate occurring 5 feet below the top of the sand. This conglomerate is finer grained and more friable than the cliff forming conglomerates observed at the other sites. Samples of the conglomerate and sandstone were collected.

General Topography & Stratigraphy

The thickest exposed Bad Heart conglomerate section observed was at Site 3. Pit excavations at Sites 5 & 8 expose the thickest sections of Bad Heart Sandstone. The most extensive removal of the Bad Heart formation has occurred at the Bay Tree pit which covers an area the size of a CFL football field from the pit's entrance to the eastern rim of the pit. Drilling will be required to confirm the remaining thickness of sandstone, however, a good estimation would be that about 5 feet of sand remains below the base of the pit. There is possibly an unexcavated 10 foot tier of sandstone about 50 by 30 yards remaining in the pit below the glacial till deposit which forms the topographic high (2800+ feet surface elevation) on the north side of the pit. (See schematic X Section 1).
The Bad Heart conglomerate is interpreted to be a shoreline deposit about 55 feet in thickness where it outcrops at Site 3. It occurs as a wedge in the sandstone sequence thinning to the northwest and the southeast. Based on a discussion held with a local Spirit River resident, who worked for NOVA during its pipeline construction in the area, the conglomerate extends several miles to the east. If dip readings at Site 3 are true the conglomerate will occur at increasing depths to the east. Overburden thickness will also be significantly greater in some areas. (See Schematic X Section 2).

More detailed mapping will be necessary to confirm the wedge-like nature of the conglomerate and facies change to sandstone along the horseshoe bluffs in sections 23 & 27.

The Bad Heart conglomerate is dark grey in color. Grain size of the pebbles varies from ¼ to 1 inch and all are rounded or oval in shape. The pebbles are predominantly microcrystalline quartz or chert. The cementing agent is non-calcareous, probably silica. The matrix consists of fine sandstone and silt with only minor amounts of argillaceous material typical of a shoreline deposit. Grain size orientation provides the rock with considerable strength and hardness in one direction. However, when fragments are broken away from the outcrop they become very friable.

The Bad Heart Sandstone is tan in color composed predominantly of poorly rounded and irregular clear quartz grains in a very argillaceous matrix. The rock is weakly silica cemented and rock integrity results from packing of the argillaceous matrix.

The sandstone is interpreted to be marine deposit laid down in a tectonically active basin. Diastrophism formed the Peace River Arch, an uplift which occurred throughout the depositional history of the northwestern portion of the Western Canada Sedimentary Basin. Rapid sedimentation, in the geological sense, lays down poorly sorted argillaceous sandstones which the Bad Heart sandstone typifies.
The thickness of the Bad Heart sandstone underlying the West Permits is at least 90 feet. The base of the sandstone has not been seen in outcrop, however, the base of the Bay Tree pit may be near the contact with the underlying formation which is most likely a shale deposit (Muskiki Shale).

Bedding planes have been observed in outcrop sections and pit excavations. Bed thickness varies between only a few inches to over five feet. In sections where the sand is thinly bedded (platy), the rock splits along muscovite rich bedding planes.

Summary and Conclusions

Field geology has identified 4 large areas where conglomerate and/or sandstone rock is within 1 foot of the surface. (See Map 2).

More selective analysis of the samples collected at the above sites will be necessary.

Sites 2 & 8 are the most easily accessible for bulk sample collection. Sites 3 & 7 may become more readily accessible if logging operations upgrade the roads into these sites.
May 22, 1998

Mr. Ralph Jamieson
Exploration Technologist
Disposition Services Branch
Lands and Forest Service
Petroleum Plaza, South Tower
9914 - 108th Street,
Edmonton, Alberta
T5K 2G8

Dear Mr. Jamieson,

Re: Exploratory Drilling, Baytree, Alberta
713803 Alberta Limited
Exploration Licence #5145

Enclosed are five copies of the final report on the exploratory drilling activity undertaken by 713803 Alberta Ltd. during March 23 and 24, 1998.

Also enclosed are copies of a summary report sent by our Mr. Alan Lewis to Mr. Cory Wojtowicz, Forest Officer, Land and Forest Service, in Grande Prairie, Alberta.

The drill cutting samples, 27 in all, have been forwarded to Mr. Dixon Edwards, P. Geology, at the Alberta Geological Survey in Edmonton.

Please contact myself or Bob Liddle at (403)239-4546 if you have any questions or comments.

Thank you.

Barry Luft
for 713803 Alberta Ltd.
FIELD REPORT
Saturday March 21 - Wednesday March 25, 1998

The objective was to arrange and oversee the drilling of six test holes to define the geographical extent, overburden depth and gross thickness of the Bad Heart conglomerate zone. Cutting samples were taken at all six wells.

SATURDAY - MARCH 21

Lewis and Luft travelled to Hythe, Alberta and met with representatives of Hopper Drilling. (The principals of Hopper Drilling are located in Beaverlodge, Alberta, but their shop is in Hythe). We arranged to meet with the driller and his helper (Murray and Chad) in Pouce Coupe on Sunday, to travel to our permit area and determine the viability of the drilling program. Arrangements completed, Lewis and Luft progressed to Dawson Creek.

SUNDAY - MARCH 22

We met with drillers in Pouce Coupe at 9 A.M., then travelled to the site of the recent oil well on the 'Anderson Road' (16-9-78-13), unloaded skidoos and travelled to site of #1 proposed test hole (NE/4 - Lsd. 16-9-78-13) at the top of the hill at the junction. It was apparent that the road would have to be snow-plowed prior to bringing in the drilling rig and water truck. Al and Murray continued on the snowmobiles to reconnoiter the other potential drill sites. All required some snow-plowing of roads, trails or cut lines to provide accessibility. We returned to Pouce Coupe and met with Herb Nodes of Nodes Construcion, to arrange for snow-plowing equipment. Herb agreed to provide a D-6 caterpillar tractor for Monday morning. We arranged to meet at the 16-9 lease site before 8 A.M. The driller agreed to be there shortly after 8 A.M. It was clear that any travel with heavier equipment had to occur prior to 9 A.M. NOTE: There was a 10 A.M. to 10 P.M. road ban in effect in Alberta.

MONDAY - MARCH 23

Truck carrying the D-6 showed up at 16-9 lease at approximately 7:43 A.M., unloaded, attached dozer blade and proceeded to snow-plow the 'Anderson Road'. We reached #1 drill site at 8:55 A.M. Drilling rig and water truck arrived at the same time. Drill rigged up and started drilling at 9:25 A.M.
**** #1 NE/4 of Lsd. 16-10-78-13 Elev. 2750' TD 60'
Sample intervals 0-10, 20-30, 30-40 and 40-50.

DRILLERS COMMENTS:
- Encountered brown sand(stone?) at 4'
- Grey sand(stone?) at 7'
- Brown sand(stone?) to 17'
- 2 or 3 ft. shale lens at 17'
- Brown sandstone from 20' to 30'
- Thin shale lens at 30'
- Brown sandstone to 35'
- Sandstone and shale to 40'
- Brown sandstone to 52'
- Grey shale from 52 to 60'
- End of stand - quit drilling

Cleaned up site and filled hole (didn't have enough cuttings to completely fill hole, so returned on Tuesday and completed filling with bagged produce supplied by driller). Travelled east to gas plant, then north to pipeline right-of-way to second site, immediate north side of the right-of-way. Rigged up and started drilling #2 at 11:50 A.M.

**** #2 NW/4 of Lsd 8-14-78-13 Elev. 2760' TD 60'
Sample intervals 0-10, 10-20, 20-30, 30-40, 50-60

DRILLERS COMMENTS:
- Blue clay
- Some brown sand returns at about 5'
- Blue clay at 6'
- Blue clay all the way to 60'; odd brown SS rock
- End of stand, quit drilling

Cleaned up site, filled hole, riged down and returned to north/south road, and proceeded north to the southwest corner of logged out area. Moved to site #3 and rigged up - started drilling at 2:40 P.M.

**** #3 NE/4 of Lsd. 13-13-78-13 Elev. 2760' TD 80'
Sample intervals 30-40, 40-50, 50-60, 60-70, 70-80.

DRILLERS COMMENTS:
- Blue clay from surface to 42'
- Conglomerate at 42'
- Hard drilling at 64' - sandstone?
- Changed bits at 64'
- Still conglomerate to 72'
- Encountered grey sandstone at 72'
- End of stand at 80' - still grey sandstone
- Quit drilling at 80' --- Time: 4:10 P.M.

Cleaned up site and filled hole - riged down and moved east along the cutline towards #4 site.
TUESDAY - MARCH 24

**** #4 NE/4 of Lsd. 16-13-78-13 Elev. 2770' TD 20'
Samples taken 0-10, 10-20 and bottom.

DRILLERS COMMENTS:
Loose conglomerate gravel at surface
3 feet of brown sand at 4 or 5'
Clay from 8' to 20'
End of stand; quit drilling.

Tidy up site and fill hole; progress south down cutline
to pipeline right-of-way -- rig up and drill #5.

**** #5 NE/4 of Lsd. 7-13-78-13 Elev. 2780' TD 20'
Sample taken at 20'.
Clay from surface to end of stand 20'
Quit drilling.

Filled hole, rigged down and travelled west to north/south road, went north to site #6, rigged up and started drilling at 12:35 P.M.

**** #6 NE/4 of Lsd. 1-23-78-13 Elev. 1740' TD 80'
Samples 0-10, 10-20, 20-30, 30-40, 40-50, 50-60, 60-70 and 70-80.

DRILLERS COMMENTS:
Conglomerate at 1 or 2'
Sandy conglomerate to 15'
'Pure' conglomerate from 15' to 58'
Grey sandstone from 58' to 80'
End of stand, quit drilling at 2:50 P.M.

Fill hole, tidy up site.

WEDNESDAY - MARCH 25

Lewis and Luft travelled to Grande Prairie; tried to meet with Cory at the Alberta Forestry and Environment, as a follow-up to Al's attempts to contact him last week. Cory was out of the office but Al reached him on his cellular and recapped our activities. Lewis and Luft then to south Grande Prairie to visit with Weyerhauser Canada Ltd. Weyerhauser owns the timber rights in the area of our interest.
NOTE:

Our original plan included the drilling of some test holes to the north of holes 3, 4, and 6. However, because the 'rim trail' is in the protected area where no equipment is allowed and the cutlines north of site #4 encounter considerable stretches of muskeg, we were unable to drill in that general area. More field work should be done in the area between the conglomerate outcrop rim and the Moxnes pit (where conglomerate is visible) to determine thickness of the Bad Heart conglomerate at various locations.

*** Locations and elevations are taken from small scale surface and topographic maps and should be read as approximate.
Government of Alberta,
Lands & Forests,
Grande Prairie, Alberta.

Attention: Cory Woytowicz,
Re: MME - 971273.

EXPLORATION SOUTH OF BAYTREE, ALBERTA,
713803 ALBERTA LTD.,
EXPLORATION LICENSE NO. 5145.

Two snow machines were used on March 22, 1998, to assess the project, but the depth of the snow in the area made it very difficult.

The snowplowing and drilling started March 23, 1998, and it was all finished March 24, 1998. One tandem drill truck, one tandem water truck, one 4 x 4 2/3 ton and one D6 Caterpillar - this was the equipment used.

The access to the drilling (see accompanying map) is the shaded - in road from highway 49. 1/2 mile East of the county road on Anderson Road, at the new oil well drill site approach, the road had to be plowed to all 6 test holes. All the plowing and drilling was done on existing trails and cutlines.

End Report.

ALAN LEWIS.
04/02/98
Attachment 2

Location of Ore Samples
Figure 1

Blueberry Iron Ore and Precious Metals Project

Location of Excavation Area:

Rge. 13 W6M
Attachment 3

Letter from Mr. Dave Read

President, Cantech Laboratories Inc.
September 15, 1997

713803 Alberta Ltd.
124 Edgehill Close N.W.
Calgary, Alberta
T3A 2X1

Attention: Mr. G.R. Walsh

Re: Assay Procedure (Alan Lewis)

Dear Sir:

At your request, I visited the home of Mr. Alan Lewis in Ponoka, Alberta on July 17, 1997 to view his assaying operation. In addition to yourself, Alan and Mr. Bob Liddle, two other gentlemen were also present, namely Messrs. Art Wilkins and Barry Luft whom I understood are also participants of this Company.

I make a few comments herewith:

Sample Preparation: The rolling ball mill in use is acceptable and appropriate for this type of operation. I did not see the cleaning of the mill after the sample was prepared; however, Alan assured me that compressed air and brushes were used between samples.

Sample Weighing: A beam balance was used for weighing both the sample and the flux charge for fire assay. A more accurate digital top-loading balance would be more suitable and accurate.

Fire Assaying: The electric furnace in use is acceptable. My only comment would be that the temperature increase is slow and difficult to maintain at the desired temperatures of 1600 F and 2000 F. This lack of temperature control could possibly have some effect on the end result.
I provided Alan with a CANMET Certified Reference Sample from Ottawa to run alongside the samples he was assaying that day. The result he obtained for this standard was certainly within the accepted range after taking into consideration the possibility of errors arising from the above comments. His result of 0.165 opt compared with the accepted value of 0.25 opt.

Overall I found the procedures for sample preparation and fire assaying carried out by Alan to be of a generally acceptable standard.

I hope this information is of assistance to you. If you have any questions, please do not hesitate to contact me.

Yours truly,
CanTech Laboratories, Inc.

C. Douglas Read
President
NORTHWEST ALBERTA PROJECT
MINERAL ASSESSMENT REPORT

Metallic and Industrial Minerals
Permit Nos. 9397010001 and 9397010002

Permit Holder Alan David Lewis

Submitted by

713803 Alberta Ltd.

May 7, 2005
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Executive Summary</td>
<td>1</td>
</tr>
<tr>
<td>1. Introduction</td>
<td>2</td>
</tr>
<tr>
<td>2. Lab Scale Mineral Content Analysis</td>
<td>3</td>
</tr>
<tr>
<td>2.1 Alan Lewis</td>
<td>2</td>
</tr>
<tr>
<td>2.2 Commercial Laboratories</td>
<td>2</td>
</tr>
<tr>
<td>2.2.1 Loring Laboratories</td>
<td></td>
</tr>
<tr>
<td>2.2.2 SGS Lakefield Research Limited</td>
<td></td>
</tr>
<tr>
<td>3. Computer Tabulation and Analysis Of Test Results</td>
<td>5</td>
</tr>
<tr>
<td>4. Discussions with Other Companies</td>
<td>6</td>
</tr>
<tr>
<td>5. Summary of Expenditures</td>
<td>7</td>
</tr>
</tbody>
</table>
Executive Summary

Activities of 713803 Alberta Ltd. May 2003 to April 2005

The last mineral assessment report was submitted on May 12, 2003. Since that time the activities of 713803 Alberta Ltd. have been primarily a continuation of testing of ore pretreatment and assay analysis techniques at Mr. Lewis' home-based lab facilities. Unfortunately, consistent with prior experience, none of that additional work in the period since May 2003 has been successful in establishing either the existence of significant quantities of precious metals on a widespread basis in the ore bodies or a commercially viable technique to extract those precious metals.

713803 Alberta Ltd. has maintained contact with other companies or individuals who are pursuing similar efforts to extract precious metals from similar ores to determine if any joint efforts are feasible. These discussions have not led to any joint ventures at this time.
1.0 Introduction

713803 Alberta Ltd. was incorporated in 1996 for the purpose of pursuing exploration and development of potential precious metal bearing properties in northwestern Alberta including the properties that are the subject of this report held under metallic and industrial minerals permit #9397010002 and #9397010001 in the name of Alan David Lewis, a shareholder of 713803 Alberta Ltd. (see figure 1.1 showing mineral permit location).

Previous Mineral Assessment Reports have been filed on May 14, 1999, May 17, 2001 and May 12, 2003. This report describes the further work conducted in the period from May 2003 to April 2005 which has consisted almost entirely of continuing lab analysis by Alan Lewis in his home based facilities supported by external commercial lab analysis.

Some of the analytical work performed by Mr. Lewis in the current reporting period has been based on suggestions and input received from Mr. Norm Smalley, a 713803 Alberta Ltd. shareholder who is also a well experienced independent assay analyst.

Contact has been maintained with Birch Mountain Resources Ltd. to determine if there was interest in pursuing any exploration/analysis work on the subject permit lands or sample ores.

These various activities will be described in more detail in the following sections of the Report.
Permit No. 9397010001
Permit No. 9397010002
Licensed to: Gec-Energy Ventures Ltd.
Date: 1999/06/02
Project: untitled

Location of Alan D. Lewis Permits
713803 Alberta Ltd.
2. Lab Scale Mineral Content Analysis

Lab scale analyses were conducted by:
- Al Lewis (51 tests in total) at his home lab
- Loring Laboratories Ltd.
- SGS Lakefield Research Limited

Each of these series of tests will be described below.

2.1 Al Lewis

A chronological summary of all tests conducted by Al Lewis from April 25th of 2001 to March 26th, 2003 is included as attachment 2.1. Columns 1 and 2 show the date when the test commenced and the test # respectively.

Column 3 shows the type and source of ore tested and the size of the sample used in the test in terms of the number of assay tons.

Column 4 describes the pre treatment and/or leaching agent used to extract precious metals.

Column 5 provides the results obtained. Where the bead obtained has been tested for precious metal content by an external laboratory the results obtained from the external laboratory are referenced. In those instances where no external analysis has been done the value stated is that measured by Al Lewis. Unless otherwise noted the value stated will be the milligram weight of the bead obtained.

As compared to the earlier reports, fewer tests have been performed by Mr. Lewis, but more of the Lewis assay beads were forwarded to external labs for measurement of precious metal content in the beads. As was reported in the 1999, 2001 and 2003 mineral assessment reports, consistency and repeatability of results continues to be a problem.

However, the fact that we continue in a few tests to find significant values of precious metal are (as confirmed by the Loring tests) provides a basis for continuing efforts to prove the existence of commercially significant levels of precious metals and to ultimately develop a repeatable and commercially viable extraction process.

Column (6) records the hours of labor required by Mr. Lewis to conduct the tests.

2.2 Commercial Laboratories

2.2.1 Loring Laboratories
All the tests conducted by Loring were to analyze the precious metal content of beads obtained from tests conducted by Al Lewis. Twenty-one Loring test reports are included in chronological order as attachment 2.2. An examination of these test results shows that almost all the Loring tests showed measurable precious metal content. However, there was significant variability in precious metal content ranging from some tests where precious metal content was below the detection limits of the tests (e.g. #826 and #827) to others where the measured precious metal content was significant (e.g. #808 and #810) and represented values within possible commercial feasibility. The majority of the tests produced measurable content but below commercial viability.

2.2.2 SGS Lakefield Research Limited

In June of 2003, Mr. Lewis met with analysts at Lakefield to discuss our project and have Lakefield perform assays on four samples of raw ore as well as on the material obtained from two Lewis tests (#772 and #774).

The results obtained by Lakefield are included as Attachment 2.2. Lakefield did not find any significant quantity of precious metals in the raw samples (nos. 1, 2, 3 and 6 in the Lakefield Report) nor did they find any significant quantity of precious metals in the bead obtained by Lewis in Lewis Test No. 774. The results for Lewis test No. 772 did show measurable quantities.
1.0 Introduction

713803 Alberta Ltd. was incorporated in 1996 for the purpose of pursuing exploration and development of potential precious metal bearing properties in northwestern Alberta including the properties that are the subject of this report held under metallic and industrial minerals permit #9397010002 and #9397010001 in the name of Alan David Lewis, a shareholder of 713803 Alberta Ltd. (see figure 1.1 showing mineral permit location).

Previous Mineral Assessment Reports have been filed on May 14, 1999, May 17, 2001 and May 12, 2003. This report describes the further work conducted in the period from May 2003 to April 2005 which has consisted almost entirely of continuing lab analysis by Alan Lewis in his home based facilities supported by external commercial lab analysis.

Some of the analytical work performed by Mr Lewis in the current reporting period has been based on suggestions and input received from Mr. Norm Smalley, a 713803 Alberta Ltd. shareholder who is also a well experienced independent assay analyst.

Contact has been maintained with Birch Mountain Resources Ltd. to determine if there was interest in pursuing any exploration/analysis work on the subject permit lands or sample ores.

These various activities will be described in more detail in the following sections of the Report.
ATTACHMENT 2.1
<table>
<thead>
<tr>
<th>DATE</th>
<th>TEST</th>
<th>ORE</th>
<th>PROCESS</th>
<th>VALUE</th>
<th>HOURS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apr. 19-21/03</td>
<td>#766</td>
<td>Roger 3 A.T.</td>
<td>HNO3, HCL Zinc precip.</td>
<td>.24 mg.</td>
<td>26 hrs.</td>
</tr>
<tr>
<td>May 1/03</td>
<td>#767</td>
<td>Roger 1 A.T.</td>
<td>HNO3, HNOCL</td>
<td>0</td>
<td>16 hrs.</td>
</tr>
<tr>
<td>May 5-7/03</td>
<td>#768</td>
<td>Roger 5 A.T.</td>
<td>Chloride Zinc precip.</td>
<td>0.532 mg. not parted</td>
<td>15 hrs.</td>
</tr>
<tr>
<td>May 13/03</td>
<td>#769</td>
<td>20% from #768</td>
<td>Roasted dish broke</td>
<td>0</td>
<td>12 hrs.</td>
</tr>
<tr>
<td>May 14/03</td>
<td>#770</td>
<td>20% from #768</td>
<td>Sodium Nitrite NaHO4</td>
<td>.22 mg Au.</td>
<td>10 hrs.</td>
</tr>
<tr>
<td>May 15/03</td>
<td>#771</td>
<td>20% from #768</td>
<td>Bicarbonate Sodium Nitrite</td>
<td>.10 mg.</td>
<td>12 hrs.</td>
</tr>
<tr>
<td>May 18/03</td>
<td>#772</td>
<td>Roger 5 A.T.</td>
<td>Chloride Lakefield</td>
<td>trace</td>
<td>11 hrs.</td>
</tr>
<tr>
<td>May 26-27/03</td>
<td>#773</td>
<td>Roger 5 A.T.</td>
<td>Chloride Lakefield</td>
<td>0</td>
<td>14 hrs.</td>
</tr>
<tr>
<td>Jun. 2-3/03</td>
<td>#774</td>
<td>Roger 5 A.T.</td>
<td>Chloride Lakefield</td>
<td>0</td>
<td>15 hrs.</td>
</tr>
<tr>
<td>Jun. 24-25/03</td>
<td>#776</td>
<td>Roger 5 A.T.</td>
<td>Pretreat H2SO4 NaBr., KI</td>
<td>0.21 mg</td>
<td>23 hrs.</td>
</tr>
<tr>
<td>Jul. 7-8/03</td>
<td>#777</td>
<td>Roger 5 A.T.</td>
<td>Pretreat Na OH NaBr.Ki</td>
<td>3.63 mg not parted</td>
<td>10 hrs.</td>
</tr>
<tr>
<td>Jul. 23-25/03</td>
<td>#778</td>
<td>Roger 5 A.T.</td>
<td>NaBr</td>
<td>$15.60 per ton</td>
<td>33 hrs.</td>
</tr>
<tr>
<td>Jul. 31, Aug. 7-9/03</td>
<td>#779</td>
<td>Roger 5 A.T.</td>
<td>Chloride</td>
<td>Lost</td>
<td>29 hrs.</td>
</tr>
<tr>
<td>Aug. 14-15/03</td>
<td>#780</td>
<td>Roger 20 A.T.</td>
<td>Chloride</td>
<td>$12.00 per ton</td>
<td>22 hrs.</td>
</tr>
<tr>
<td>Sept. 8-10/03</td>
<td>#781</td>
<td>Roger 5 A.T.</td>
<td>Chloride</td>
<td>$27.00 per ton</td>
<td>31 hrs.</td>
</tr>
<tr>
<td>Oct. 2/03</td>
<td>#782</td>
<td>Conglomerate 5 AT</td>
<td>HNO3 HCL</td>
<td>$7.50 per ton</td>
<td>13 hrs.</td>
</tr>
<tr>
<td>Oct. 7/03</td>
<td>#783</td>
<td>Plant 5 A.T.</td>
<td>Aqua Regia</td>
<td>$3.75 per ton</td>
<td>11 hrs.</td>
</tr>
<tr>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
<td>(5)</td>
<td>(6)</td>
</tr>
<tr>
<td>-----</td>
<td>-----</td>
<td>-----------</td>
<td>--------------</td>
<td>--------</td>
<td>-------</td>
</tr>
<tr>
<td>DATE</td>
<td>TEST</td>
<td>ORE</td>
<td>PROCESS</td>
<td>VALUE</td>
<td>HOURS</td>
</tr>
<tr>
<td>Oct. 18/03</td>
<td>#784</td>
<td>Plant 5 A.T.</td>
<td>Aqua Regia</td>
<td>trace</td>
<td>11 hrs.</td>
</tr>
<tr>
<td>Oct. 21-22/03</td>
<td>#785</td>
<td>Reg 5 A.T.</td>
<td>NaBr, KI</td>
<td>$4.50/ton</td>
<td>16 hrs.</td>
</tr>
<tr>
<td>Nov. 4-5/03</td>
<td>#786</td>
<td>Chin. 5 A.T.</td>
<td>NaBr, KI</td>
<td>$23.00 per ton</td>
<td>21 hrs.</td>
</tr>
<tr>
<td>Dec. 8-11/03</td>
<td>#788</td>
<td>Roger 5 A.T.</td>
<td>NaBr, KI</td>
<td>Loring #46193</td>
<td>36 hrs.</td>
</tr>
<tr>
<td>Dec. 20-21/03</td>
<td>#789</td>
<td>Roger 5 A.T.</td>
<td>Chloride</td>
<td>Loring #46257</td>
<td>22 hrs.</td>
</tr>
<tr>
<td>Feb. 11/04</td>
<td>#802</td>
<td>Roger 5 A.T.</td>
<td>NaBr, KI</td>
<td>Loring #46385</td>
<td>12 hrs.</td>
</tr>
<tr>
<td>Feb. 12-13/04</td>
<td>#803</td>
<td>Roger 5 A.T.</td>
<td>NaBr, KI</td>
<td>Loring #46428</td>
<td>18 hrs.</td>
</tr>
<tr>
<td>Mar. 9-10/04</td>
<td>#804</td>
<td>Far West 5 A.T.</td>
<td>NaBr</td>
<td>Loring #46466</td>
<td>18 hrs.</td>
</tr>
<tr>
<td>Mar. 18-19/04</td>
<td>#805</td>
<td>6-26, 5 A.T.</td>
<td>NaBr</td>
<td>Loring #46436</td>
<td>21 hrs.</td>
</tr>
<tr>
<td>Mar. 30, Apr. 1/04</td>
<td>#807</td>
<td>Cong. 5 A.T.</td>
<td>NaBr</td>
<td>Loring #46548</td>
<td>26 hrs.</td>
</tr>
<tr>
<td>Apr. 17-29/04</td>
<td>#809</td>
<td>Cong. 5 A.T.</td>
<td>Aqua Regia</td>
<td>Loring #46549</td>
<td>27 hrs.</td>
</tr>
<tr>
<td>May 5-7/04</td>
<td>#808</td>
<td>6-26 Plant</td>
<td>Aqua Regia</td>
<td>Loring #46618</td>
<td>31 hrs.</td>
</tr>
<tr>
<td>May 7-10/04</td>
<td>#810</td>
<td>Far West 5 A.T.</td>
<td>Aqua Regia</td>
<td>Loring #46672</td>
<td>42 hrs.</td>
</tr>
<tr>
<td>May 27-30/04</td>
<td>#811</td>
<td>Ron. 5 A.T.</td>
<td>Aqua Regia</td>
<td>Loring #46745</td>
<td>36 hrs.</td>
</tr>
<tr>
<td>Jun. 24-27/04</td>
<td>#813</td>
<td>Cong. 5 A.T.</td>
<td>Aqua Regia</td>
<td>Loring #46774</td>
<td>46 hrs.</td>
</tr>
<tr>
<td>Jun. 24-27/04</td>
<td>#814</td>
<td>Sand under Cong. 5 A.T.</td>
<td>Aqua Regia</td>
<td>Loring #46803</td>
<td>36 hrs.</td>
</tr>
<tr>
<td>DATE</td>
<td>TEST</td>
<td>ORE</td>
<td>PROCESS</td>
<td>VALUE</td>
<td>HOURS</td>
</tr>
<tr>
<td>-------------</td>
<td>------</td>
<td>-----------</td>
<td>-------------</td>
<td>----------------</td>
<td>-------</td>
</tr>
<tr>
<td>Aug. 3-6/04</td>
<td>#817</td>
<td>Reg 5 A.T.</td>
<td>NaBr</td>
<td>Loring #46881</td>
<td>36 hrs.</td>
</tr>
<tr>
<td>Aug. 12-15/04</td>
<td>#818</td>
<td>6-26</td>
<td>Aqua Regia</td>
<td>Loring #46881</td>
<td>36 hrs.</td>
</tr>
<tr>
<td>Aug. 18-19/04</td>
<td>#819</td>
<td>Worsley 5 A.T.</td>
<td>Aqua Regia</td>
<td>Loring #46881</td>
<td>32 hrs.</td>
</tr>
<tr>
<td>Aug. 30-31/04</td>
<td>#820</td>
<td>6-26, 5 A.T.</td>
<td>NaBr</td>
<td>Loring #47013</td>
<td>21 hrs.</td>
</tr>
<tr>
<td>Sept. 19-21/04</td>
<td>#821</td>
<td>6-26, 5 A.T.</td>
<td>Aqua Regia</td>
<td>Loring #47013</td>
<td>36 hrs.</td>
</tr>
<tr>
<td>Dec. 2/04</td>
<td>#823</td>
<td>Reg 4 A.T.</td>
<td>NaBr</td>
<td>Loring #47253</td>
<td>13 hrs.</td>
</tr>
<tr>
<td>Dec. 12-13/04</td>
<td>#824</td>
<td>Reg 3 A.T.</td>
<td>NaBr</td>
<td>Loring #47253</td>
<td>21 hrs.</td>
</tr>
<tr>
<td>Jan. 10/05</td>
<td>#825</td>
<td>Reg 3 A.T.</td>
<td>NaBr, KI</td>
<td>Loring #47253-1</td>
<td>17 hrs.</td>
</tr>
<tr>
<td>Jan. 19-20/05</td>
<td>#826</td>
<td>Far West 3 A.T.</td>
<td>Chloride</td>
<td>Loring #47350</td>
<td>26 hrs.</td>
</tr>
<tr>
<td>Jan. 27-30/05</td>
<td>#827</td>
<td>Far West 3 A.T.</td>
<td>Aqua Regia</td>
<td>Loring #47350</td>
<td>24 hrs.</td>
</tr>
<tr>
<td>Feb. 10-11/05</td>
<td>#828</td>
<td>Far West 2 A.T.</td>
<td>Aqua Regia</td>
<td>Loring #47421</td>
<td>21 hrs.</td>
</tr>
<tr>
<td>Mar. 1-4/05</td>
<td>#829</td>
<td>Far West 4 A.T.</td>
<td>Aqua Regia</td>
<td>$12.50/ton</td>
<td>33 hrs.</td>
</tr>
<tr>
<td>Mar. 24-25/05</td>
<td>#830</td>
<td>Ron 5 A.T.</td>
<td>Aqua Regia</td>
<td>.53 mg. Au</td>
<td>28 hrs.</td>
</tr>
</tbody>
</table>
ATTACHMENT 2.2
TO: ALAN LEWIS
R.R. 1, Site 13, Box 18
Ponoka, Alberta
T4J 1R1

Loring Laboratories Ltd.
629 Bowden Road N.E.
Calgary Alberta T2K 4W7
Tel 274-2777 Fax 275-0541

DATE: December 13, 2003

FILE: 48163

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Au ug</th>
<th>Pt ug</th>
<th>Pd ug</th>
<th>Rh ug</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lewis #1</td>
<td>0.50</td>
<td><0.01</td>
<td><0.01</td>
<td><0.01</td>
</tr>
</tbody>
</table>

Beads dissolved in aqua regia and analyzed by ICP.

Certified by: [Redacted]
Loring Laboratories Ltd.

TO: ALAN LEWIS
R R.1. Site 13, Box 18
Ponoka, Alberta
TJW 1R1

FILE: 48257

DATE: January 16, 2004

PGM ANALYSIS

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Au</th>
<th>Pt</th>
<th>Pd</th>
<th>Rh</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lewis #1</td>
<td>1.60</td>
<td><0.01</td>
<td><0.01</td>
<td><0.01</td>
</tr>
</tbody>
</table>

Beads dissolved in aqua regia and analyzed by ICP.

Certified by:

#789
TO: ALAN LEWIS
R.R.1, Site 13, Box 18
Ponoka, Alberta
T4J 1R1

FILE:48385
DATE:March 8, 2004

PGM ANALYSIS

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Au ug</th>
<th>Pt ug</th>
<th>Pd ug</th>
<th>Rh ug</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lewis #1</td>
<td>2.85</td>
<td>1.00</td>
<td>1.50</td>
<td><0.01</td>
</tr>
<tr>
<td>Lewis #3</td>
<td>19.45</td>
<td>2.62</td>
<td>1.77</td>
<td><0.01</td>
</tr>
</tbody>
</table>

Beads dissolved in aqua regia and analyzed by ICP.

Certified by: [Signature]

Loring Laboratories Ltd.
529 Beaverdam Road N.E.
Calgary Alberta T2K 4W7
Tel: 274-2777 Fax 275-0841
PGM Analysis

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Au (ug)</th>
<th>Pt (ug)</th>
<th>Pd (ug)</th>
<th>Rh (ug)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lewis #1</td>
<td>18.85</td>
<td><0.01</td>
<td><0.01</td>
<td><0.01</td>
</tr>
<tr>
<td>Lewis #2</td>
<td>27.20</td>
<td><0.01</td>
<td><0.01</td>
<td><0.01</td>
</tr>
<tr>
<td>Lewis #3</td>
<td>19.46</td>
<td><0.01</td>
<td><0.01</td>
<td><0.01</td>
</tr>
</tbody>
</table>

Beads dissolved in aqua regia and analyzed by ICP.

Certified by: [Signature]
Loring Laboratories Ltd.

629 Berwdeam Road N.E.,
Calgary Alberta T2K 4W7
Tel: 774-7777 Fax: 775-0541

TO: ALAN LEWIS
R.R.1, Site 13, Box 18
Poroka, Alberta
T4J 1R1

FILE: 46466

DATE: April 2, 2004

PGM ANALYSIS

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Au (mg)</th>
<th>Pt (ug)</th>
<th>Pd (ug)</th>
<th>Rh (ug)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bead #1</td>
<td>0.047</td>
<td>3.03</td>
<td>2.18</td>
<td><0.01</td>
</tr>
<tr>
<td>Bead #2</td>
<td>0.034</td>
<td><0.01</td>
<td><0.01</td>
<td><0.01</td>
</tr>
<tr>
<td>Bead #3</td>
<td>0.018</td>
<td><0.01</td>
<td><0.01</td>
<td><0.01</td>
</tr>
</tbody>
</table>

Beads dissolved in aqua regia and analyzed by ICP.

11.08 ppm ton Certified by: __________
#805
<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Au mg</th>
<th>Pd ug</th>
<th>Pt ug</th>
<th>Rh ug</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bead # 1</td>
<td>0.032</td>
<td><0.10</td>
<td><0.10</td>
<td><0.10</td>
</tr>
<tr>
<td>Bead # 2</td>
<td>0.010</td>
<td><0.10</td>
<td><0.10</td>
<td><0.10</td>
</tr>
<tr>
<td>Bead # 3</td>
<td>0.093</td>
<td><0.10</td>
<td><0.10</td>
<td><0.10</td>
</tr>
</tbody>
</table>

NOTE: Due to high silver content of beads, samples had to be diluted to a higher volume to be analyzed. Therefore detection limits for Pt, Pd and Rh are higher.

I HEREBY CERTIFY that the above results are those assays made by me upon the herein described samples:

Reactants and pulps are retained for one month unless specific arrangements are made in advance.
TO: ALAN LEWIS
R.R.1, Site 13, Box 18
Ponoka, Alberta
T4J 1R1

FILE: 46549
DATE: April 25, 2004

Loring Laboratories Ltd.
629 Beaverdam Road N.E.,
Calgary Alberta T2K 4W7
Tel: 274-2777 Fax: 275-0541

PGM ANALYSIS

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Au mg</th>
<th>Pt ug</th>
<th>Pd ug</th>
<th>Rh ug</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lewis #1</td>
<td>0.055</td>
<td><0.05</td>
<td><0.05</td>
<td><0.01</td>
</tr>
<tr>
<td>Lewis #2</td>
<td>0.380</td>
<td><0.10</td>
<td><0.10</td>
<td><0.10</td>
</tr>
<tr>
<td>Lewis #3</td>
<td>2.090</td>
<td><0.20</td>
<td><0.20</td>
<td><0.20</td>
</tr>
<tr>
<td>Lewis #4</td>
<td><0.001</td>
<td><0.01</td>
<td><0.01</td>
<td><0.01</td>
</tr>
</tbody>
</table>

Samples #2+#3 had to be diluted 10 fold to obtain gold concentrations. As a result, PGM detection limits have been compromised.

Beads dissolved in aqua regia and analyzed by ICP.

Certified by:
PGM Analysis

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Au mg</th>
<th>Pt ug</th>
<th>Pd ug</th>
<th>Rh ug</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beads #1+2</td>
<td>0.010</td>
<td>0.95</td>
<td>1.35</td>
<td><0.01</td>
</tr>
<tr>
<td>Beads #3</td>
<td>0.014</td>
<td>1.35</td>
<td>2.62</td>
<td><0.01</td>
</tr>
<tr>
<td>Beads #4</td>
<td>0.006</td>
<td>0.35</td>
<td><0.01</td>
<td><0.01</td>
</tr>
<tr>
<td>Beads #5</td>
<td>0.002</td>
<td><0.01</td>
<td><0.01</td>
<td><0.01</td>
</tr>
</tbody>
</table>

Beads dissolved in aqua regia and analyzed by ICP.

Certified by: [Signature]
PGM Analysis

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Au (mg)</th>
<th>Pt (ug)</th>
<th>Pd (ug)</th>
<th>Rh (ug)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beads #1</td>
<td>0.019 - 0.019</td>
<td>2.24</td>
<td><0.01</td>
<td><0.01</td>
</tr>
<tr>
<td>Beads #2</td>
<td>0.013 - 0.15</td>
<td>2.97</td>
<td>0.27</td>
<td><0.01</td>
</tr>
<tr>
<td>Beads #3</td>
<td>0.002 - 0.002</td>
<td>0.65</td>
<td>2.28</td>
<td><0.01</td>
</tr>
</tbody>
</table>

Beads dissolved in aqua regia and analyzed by ICP.

Certified by:

May 21/04 Rec. 540 End. Lb $5,360

540 x 836 = 454,440 $90,282.82 per ton
Loring Laboratories Ltd.

629 Beaverdam Road N.E.,
Calgary Alberta T2K 4W7
Tel: 274-2777 Fax: 275-0541

TO: ALAN LEWIS
R.R.1, Site 13, Box18
Ponoka, Alberta
T4J 1R1

FILE:46672
DATE:June 15, 2004

PGM ANALYSIS

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Au mg</th>
<th>Pt ug</th>
<th>Pd ug</th>
<th>Rh ug</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bead #1</td>
<td>0.008</td>
<td>0.45</td>
<td><0.01</td>
<td><0.01</td>
</tr>
<tr>
<td>Bead #2</td>
<td>0.007</td>
<td>0.30</td>
<td>0.25</td>
<td><0.01</td>
</tr>
<tr>
<td>Bead #3</td>
<td>0.031</td>
<td>3.62</td>
<td>1.11</td>
<td><0.01</td>
</tr>
<tr>
<td>Bead #4</td>
<td>0.003</td>
<td>0.56</td>
<td>0.40</td>
<td><0.01</td>
</tr>
<tr>
<td>Bead #5</td>
<td>0.004</td>
<td>0.81</td>
<td>0.35</td>
<td><0.01</td>
</tr>
<tr>
<td>Bead #6</td>
<td>0.033</td>
<td>5.70</td>
<td>1.04</td>
<td><0.01</td>
</tr>
</tbody>
</table>

Beads dissolved in aqua regia and analyzed by ICP.

Certified by: [Signature]

File #: 193
Date: 06/30/04
Valid: 07/30/04.
TO: ALAN LEWIS
R.R.1, Site 13, Box 18
Ponoka, Alberta
T4J 1R1

FILE: 46745
DATE: July 9, 2004

PGM ANALYSIS

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Au mg</th>
<th>Pt ug</th>
<th>Pd ug</th>
<th>Rh ug</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vial #1</td>
<td>0.003</td>
<td><0.01</td>
<td><0.01</td>
<td><0.01</td>
</tr>
<tr>
<td>Vial #2</td>
<td>0.014</td>
<td>2.66</td>
<td>1.26</td>
<td><0.01</td>
</tr>
<tr>
<td>Vial #3</td>
<td>0.005</td>
<td>0.15</td>
<td>1.02</td>
<td><0.01</td>
</tr>
<tr>
<td>Vial #4</td>
<td>0.022</td>
<td>0.28</td>
<td>2.23</td>
<td><0.01</td>
</tr>
<tr>
<td>Vial #5</td>
<td>0.006</td>
<td>3.07</td>
<td>4.09</td>
<td><0.01</td>
</tr>
<tr>
<td>Vial #6</td>
<td>0.013</td>
<td>3.93</td>
<td>3.08</td>
<td><0.01</td>
</tr>
<tr>
<td>Vial #7</td>
<td>0.005</td>
<td>0.25</td>
<td>0.41</td>
<td><0.01</td>
</tr>
<tr>
<td>Vial #8</td>
<td>0.006</td>
<td>0.56</td>
<td><0.01</td>
<td><0.01</td>
</tr>
<tr>
<td>Vial #9</td>
<td>0.029</td>
<td>3.42</td>
<td>1.92</td>
<td><0.01</td>
</tr>
</tbody>
</table>

Beads dissolved in aquaregia and analyzed by ICP.
TO: ALAN LEWIS
R.R.1, Site 13, Box 18
Ponoka, Alberta
T4J 1R1

FILE: 46774
DATE: July 22, 2004

PGM ANALYSIS

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Au mg</th>
<th>Pt ug</th>
<th>Pd ug</th>
<th>Rh ug</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vial #1</td>
<td>0.023</td>
<td>1.24</td>
<td><0.01</td>
<td><0.01</td>
</tr>
<tr>
<td>Vial #2</td>
<td>0.008</td>
<td>2.41</td>
<td>2.75</td>
<td><0.01</td>
</tr>
<tr>
<td>Vial #3</td>
<td>0.008</td>
<td>13.04</td>
<td>5.53</td>
<td><0.01</td>
</tr>
<tr>
<td>Vial #4</td>
<td>0.012</td>
<td>1.28</td>
<td>1.39</td>
<td><0.01</td>
</tr>
<tr>
<td>Vial #5</td>
<td>0.005</td>
<td><0.01</td>
<td>0.50</td>
<td><0.01</td>
</tr>
</tbody>
</table>

Beads dissolved in aquaregia and analyzed by ICP.

Certified by: [Redacted]

File #: 815
15.6 g portion

[Redacted]
TO: ALAN LEWIS
R.R.1, Site 13, Box 18
Ponoka, Alberta
T4J 1R1

FILE: 46803
DATE: July 30, 2004

Loring Laboratories Ltd.
629 Beaverdam Road N.E.,
Calgary Alberta T2K 4W7
Tel: 274-2777 Fax: 275-0541

PGM ANALYSIS

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Au (mg)</th>
<th>Pt (ug)</th>
<th>Pd (ug)</th>
<th>Rh (ug)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vial #1</td>
<td>0.034</td>
<td>1.45</td>
<td><0.01</td>
<td><0.01</td>
</tr>
<tr>
<td>Vial #2</td>
<td>0.027</td>
<td><0.0.1</td>
<td><0.01</td>
<td><0.01</td>
</tr>
<tr>
<td>Vial #3</td>
<td>0.018</td>
<td><0.01</td>
<td><0.01</td>
<td><0.01</td>
</tr>
</tbody>
</table>

Beads dissolved in aquaregia and analyzed by ICP.

Certified by: [Signature]

FILE: 46803
DATE: July 30, 2004

Beads dissolved in aquaregia and analyzed by ICP.
PGM ANALYSIS

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Au mg</th>
<th>Pt ug</th>
<th>Pd ug</th>
<th>Rh ug</th>
</tr>
</thead>
<tbody>
<tr>
<td>#1</td>
<td>0.006</td>
<td><0.01</td>
<td><0.01</td>
<td><0.01</td>
</tr>
<tr>
<td>#2</td>
<td>0.006</td>
<td><0.01</td>
<td><0.01</td>
<td><0.01</td>
</tr>
<tr>
<td>#3</td>
<td>0.003</td>
<td><0.01</td>
<td><0.01</td>
<td><0.01</td>
</tr>
<tr>
<td>#4</td>
<td>0.003</td>
<td><0.01</td>
<td><0.01</td>
<td><0.01</td>
</tr>
<tr>
<td>#5</td>
<td>0.006</td>
<td><0.01</td>
<td><0.01</td>
<td><0.01</td>
</tr>
<tr>
<td>#6</td>
<td>0.003</td>
<td><0.01</td>
<td><0.01</td>
<td><0.01</td>
</tr>
<tr>
<td>#7</td>
<td>0.033</td>
<td>0.04</td>
<td>0.02</td>
<td><0.01</td>
</tr>
<tr>
<td>#8</td>
<td>0.007</td>
<td><0.01</td>
<td><0.01</td>
<td><0.01</td>
</tr>
<tr>
<td>#9</td>
<td>0.005</td>
<td><0.01</td>
<td><0.01</td>
<td><0.01</td>
</tr>
</tbody>
</table>

Samples dissolved in aqua regia and analyzed by ICP.

Certified by: [Signature]

Loring Laboratories Ltd.
929 Beaverlodge Rd, N.E.
Calgary, Alberta T2K 7W7
Tel: 274-2777 Fax: 279-0241

TO: ALAN LEWIS
R.R.1, Site 13, Box 18
Ponoka, Alberta
TJ 1R1

DATE: August 27, 2004

FILE: 46081
Loring Laboratories Ltd.
S29 Beaverdam Road N.E.
Calgary Alberta T2K 4W7
Tel: 274-2777 Fax: 278-0541

TO: ALAN LEWIS
R.R. 1, Site 13, Box 18
Ponoka, Alberta
T4J 1R1

FILE: 47013
DATE: October 8, 2004

PGM ANALYSIS

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Au</th>
<th>Pt</th>
<th>Pd</th>
<th>Rh</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>mg</td>
<td>ug</td>
<td>ug</td>
<td>ug</td>
</tr>
<tr>
<td>#1A</td>
<td>0.002</td>
<td>1.60</td>
<td>1.34</td>
<td><0.01</td>
</tr>
<tr>
<td>#2A</td>
<td>0.010</td>
<td>1.66</td>
<td>1.50</td>
<td><0.01</td>
</tr>
<tr>
<td>#1</td>
<td>0.021</td>
<td>0.27</td>
<td><0.01</td>
<td><0.01</td>
</tr>
<tr>
<td>#2</td>
<td>0.008</td>
<td><0.01</td>
<td><0.01</td>
<td><0.01</td>
</tr>
<tr>
<td>#3</td>
<td>0.002</td>
<td><0.01</td>
<td><0.01</td>
<td><0.01</td>
</tr>
</tbody>
</table>

Beads dissolved in aqua regia and analyzed by ICP.

Certified by: [signature]

10/07/2004 08:33 03-2750541 LORING LABORATORIES PAGE 01
Loring Laboratories Ltd.
529 Beaverdam Road N.E.,
Calgary Alberta T2K 4W7
Tel: 274-2777 Fax: 275-0541

FILE: 47175
DATE: Nov. 30, 2004

TO: ALAN LEWIS
R.R.1, Site 13, Box 18
Ponoka, Alberta
T4J 1R1

PGM ANALYSIS

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Au mg</th>
<th>Pt ug</th>
<th>Pd ug</th>
<th>Rh ug</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bead #1</td>
<td>0.072</td>
<td>0.54</td>
<td>1.54</td>
<td><0.01</td>
</tr>
<tr>
<td>Bead #2</td>
<td>0.608</td>
<td>0.53</td>
<td>0.53</td>
<td><0.01</td>
</tr>
<tr>
<td>Bead #3</td>
<td>0.032</td>
<td>0.63</td>
<td>0.84</td>
<td><0.01</td>
</tr>
<tr>
<td></td>
<td>0.712</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Beads dissolved in aqua regia and analyzed by ICP.

Certified by: ____________________

#022
<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Au (mg)</th>
<th>Pt (ug)</th>
<th>Pd (ug)</th>
<th>Rh (ug)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lewis #1</td>
<td>0.008</td>
<td>0.18</td>
<td><0.01</td>
<td><0.01</td>
</tr>
<tr>
<td>Lewis #2</td>
<td>0.002</td>
<td>0.34</td>
<td><0.01</td>
<td><0.01</td>
</tr>
<tr>
<td>Lewis #3</td>
<td>0.005</td>
<td>0.15</td>
<td>0.12</td>
<td><0.01</td>
</tr>
<tr>
<td>Vial A</td>
<td>0.004</td>
<td>0.45</td>
<td><0.01</td>
<td><0.01</td>
</tr>
<tr>
<td>Vial B</td>
<td>0.008</td>
<td>0.96</td>
<td>1.99</td>
<td><0.01</td>
</tr>
</tbody>
</table>

Beads dissolved in aqua regia and analyzed by ICP.
Loring Laboratories Ltd.
629 Beverlinam Road N.E.,
Calgary Alberta T2K 4W7
Tel: 274-2777 Fax: 275-6541

TO: ALAN LEWIS
R.R.1, Site 13, Box 18
Ponoka, Alberta
T4J 1R1

DATE: Jan. 13, 2005

FILE: 47253-1

PGM ANALYSIS

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Au (mg)</th>
<th>Pt (ug)</th>
<th>Pd (ug)</th>
<th>Rh (ug)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lewis #1</td>
<td>0.003</td>
<td><0.01</td>
<td><0.01</td>
<td><0.01</td>
</tr>
</tbody>
</table>

Beads dissolved in aqua regia and analyzed by ICP.

Certified by: [Redacted]
Loring Laboratories Ltd.
629 Beaverdam Road N.E.,
Calgary Alberta T2K 4W7
Tel: 274-2777 Fax: 275-0541

TO: ALAN LEWIS
R.R.1, Site 13, Box 18
Ponoka, Alberta
T4J 1R1

FILE: 47350
DATE: Feb. 1, 2005

PGM ANALYSIS

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Au (mg)</th>
<th>Pt (ug)</th>
<th>Pd (ug)</th>
<th>Rh (ug)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lewis #1</td>
<td>0.001</td>
<td><0.01</td>
<td><0.01</td>
<td><0.01</td>
</tr>
<tr>
<td>Lewis #2</td>
<td><0.001</td>
<td><0.01</td>
<td><0.01</td>
<td><0.01</td>
</tr>
<tr>
<td>Lewis #3</td>
<td>0.001</td>
<td><0.01</td>
<td><0.01</td>
<td><0.01</td>
</tr>
</tbody>
</table>

Beads dissolved in aqua regia and analyzed by ICP.
Loring Laboratories Ltd.
629 Beaverdam Road N.E.,
Calgary Alberta T2K 4W7
Tel: 274-2777 Fax: 275-0541

TO: ALAN LEWIS
R.R.1, Site 13, Box 18
Ponoka, Alberta
T4J 1R1

FILE: 47350
DATE: Feb. 11, 2005

PGM ANALYSIS

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Au mg</th>
<th>Pt ug</th>
<th>Pd ug</th>
<th>Rh ug</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lewis #1</td>
<td><0.001</td>
<td><0.01</td>
<td><0.01</td>
<td><0.01</td>
</tr>
<tr>
<td>Lewis #2</td>
<td><0.001</td>
<td><0.01</td>
<td><0.01</td>
<td><0.01</td>
</tr>
<tr>
<td>Lewis #3</td>
<td><0.001</td>
<td><0.01</td>
<td><0.01</td>
<td><0.01</td>
</tr>
</tbody>
</table>

Beads dissolved in aqua regia and analyzed by ICP.

Certified by: [Redacted]
Loring Laboratories Ltd.

629 Beaverdam Road N.E.
Calgary Alberta T2K 4W7
Tel: 274-2777 Fax: 275-0541

TO: ALAN LEWIS
R.R. 1, Site 13, Box 18
Ponoka, Alberta
T4J 1R1

FILE: 4742

DATE: March 2, 2005

PGM ANALYSIS

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Au mg</th>
<th>Pt ug</th>
<th>Pd ug</th>
<th>Ich</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lewis #1</td>
<td>0.003</td>
<td>0.20</td>
<td><0.01</td>
<td><0.01</td>
</tr>
<tr>
<td>Lewis #2</td>
<td>0.005</td>
<td>0.50</td>
<td><0.01</td>
<td><0.01</td>
</tr>
<tr>
<td>Lewis #3</td>
<td>0.004</td>
<td>0.13</td>
<td><0.01</td>
<td><0.01</td>
</tr>
<tr>
<td>Lewis #4</td>
<td>0.004</td>
<td>0.23</td>
<td><0.01</td>
<td></td>
</tr>
<tr>
<td>Lewis #5</td>
<td>0.002</td>
<td>0.18</td>
<td><0.01</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- Beads dissolved in aqua regia and analyzed by ICP.
- 9.09 0.74
- Certified by: [Signature]

ATTACHMENT 2.3
CERTIFICATE OF ANALYSIS

Lakefield Research Limited - Final Report

<table>
<thead>
<tr>
<th>Sample ID</th>
<th>Au g/t</th>
<th>Pt g/t</th>
<th>Pd g/t</th>
<th>Au mg</th>
<th>Pt mg</th>
<th>Pd mg</th>
</tr>
</thead>
<tbody>
<tr>
<td>1: Sandstone (fine ground)</td>
<td><0.02</td>
<td><0.02</td>
<td><0.02</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>2: Sandstone (semi-fine ground)</td>
<td><0.02</td>
<td><0.02</td>
<td><0.02</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>3: Conglomerate (fine ground)</td>
<td><0.02</td>
<td><0.02</td>
<td><0.02</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Let 774</td>
<td>A Lewis #1</td>
<td><0.002</td>
<td>0.0007</td>
<td><0.002</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Let 772</td>
<td>A Lewis #2</td>
<td>1.30</td>
<td>1.46</td>
<td>0.56</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5-DUP: Sandstone (fine ground)</td>
<td><0.02</td>
<td><0.02</td>
<td><0.02</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
</tbody>
</table>

Sample "A Lewis #1" was a bead weighing 0.0601 g.

Nicole Mazza, B.Sc. (Eng)
Project Coordinator
Mineral Services, Analytical
3.0 Computer Tabulation and Analysis of Test results

Dr. Walter Haessel, a shareholder and director of 713803 Alberta Ltd. has undertaken a tabulation and computer analysis of the Al Lewis test results to determine if any discernible patterns exist relative to location of sample sources, type of pretreatment/analysis used, etc. to correlate the relative quality of test results. This work is still in progress and is expected to be complete later this year.
4.0 Discussions with Other Companies

Contact has also been maintained with Birch Mountain Ltd., who are a public company that has been active for several years in pursuing Alberta gold and platinum prospects. Birch Mountain Resources Ltd are currently concentrating their efforts on developing a limestone quarry to serve the aggregate and quicklime requirements of the Ft. McMurray oil sands industry. However, they have not abandoned their precious metals project and have encouraged us to maintain contact with a view to eventually establishing some form of cooperative effort.
5.0 Summary of Expenditures

The majority of the expenditures incurred by 713803 Alberta Ltd. in the period covered by this report (May 2003 to April 2005) are represented by contributed labor of Al Lewis. Small amounts of contributed labor were provided by Dr. Walter Haessel and Robert Liddle.

The value of contributed labor plus other expenditures are summarized below:

5.1 Contributed Labor

(a) Alan Lewis

(i) Travel June 8-11/03 from Ponoka to Lakefield, Ontario to observe SGS Lakefield Research Limited procedures of assaying samples and to leave samples with them for assay 4 days

(ii) Travel December 3 – 6, 2003 from Ponoka to Langley, B.C. to meet with Mr. Norm Smalley re assay and extraction processes, etc.

4 days

(iii) Lab Analysis and testing in home lab over the period April 2003 to March 2005

(b) Dr. Walter Haessel

Tabulation and computer analysis of Al Lewis test results

Walter Haessel

Sub total
5.2 Materials, Services and Travel Expenses

Al Lewis

5.3 Report Preparation

Al Lewis
Robert Liddle

Sub total

Grand Total Costs $70,796.00
STATUTORY DECLARATION

CANADA
PROVINCE OF ALBERTA
TO WIT:

I, Robert T. Liddle, of the City of Calgary, in the Province of Alberta,

DO SOLEMNLY DECLARE THAT:

1. I am the President of 713803 Alberta Ltd. and as such have a personal knowledge of the matters hereinafter deposed to.

2. The expenditures totalling $70,796.00 as summarized on "Summary of Expenditures", attached hereto as Schedule "A", were all incurred for the purposes of exploration for and determination of mineral content on lands included in Metallic and Industrial Minerals Permit Numbers 9397010001 and 9397010002 held in the name of Alan D. Lewis.

AND I MAKE THIS SOLEMN DECLARATION CONSCIENTIOUSLY BELIEVING THE SAME TO BE TRUE, AND KNOWING IT IS OF THE SAME FORCE AND EFFECT AS IF MADE UNDER OATH.

DECLARED at the City of Calgary, in the Province of Alberta, this 4th day of May, 2005.

[Signature]

A Commissioner for Oaths in and for the Province of Alberta

My Commission expires

[Stamp]

W. MURRAY SMITH
BARRISTER & SOLICITOR

ROBERT T. LIDDLE
Schedule A

5.0 Summary of Expenditures

The majority of the expenditures incurred by 713803 Alberta Ltd. in the period covered by this report (May 2003 to April 2005) are represented by contributed labor of Al Lewis. Small amounts of contributed labor were provided by Dr. Walter Haessel and Robert Liddle.

The value of contributed labor plus other expenditures are summarized below:

5.1 Contributed Labor

(a) Alan Lewis

(i) Travel June 8-11/03 from Ponoka to Lakefield, Ontario to observe SGS Lakefield Research Limited procedures of assaying samples and to leave samples with them for assay 4 days

(ii) Travel December 3 – 6, 2003 from Ponoka to Langley, B.C. to meet with Mr. Norm Smalley re assay and extraction processes, etc.
4 days

(iii) Lab Analysis and testing in home lab over the period April 2003 to March 2005

Sub Total

(b) Dr. Walter Haessel

Tabulation and computer analysis of Al Lewis test results

Walter Haessel

Sub total
5.2 Materials, Services and Travel Expenses

Al Lewis

5.3 Report Preparation

Al Lewis
Robert Liddle

Sub total

Grand Total Costs $70,796.00