MAR 19990014: WAUGH LAKE

Received date: May 17, 1999

Public release date: May 18, 2000

DISCLAIMER

By accessing and using the Alberta Energy website to download or otherwise obtain a scanned mineral assessment report, you ("User") agree to be bound by the following terms and conditions:

a) Each scanned mineral assessment report that is downloaded or otherwise obtained from Alberta Energy is provided “AS IS”, with no warranties or representations of any kind whatsoever from Her Majesty the Queen in Right of Alberta, as represented by the Minister of Energy ("Minister"), expressed or implied, including, but not limited to, no warranties or other representations from the Minister, regarding the content, accuracy, reliability, use or results from the use of or the integrity, completeness, quality or legibility of each such scanned mineral assessment report;

b) To the fullest extent permitted by applicable laws, the Minister hereby expressly disclaims, and is released from, liability and responsibility for all warranties and conditions, expressed or implied, in relation to each scanned mineral assessment report shown or displayed on the Alberta Energy website including but not limited to warranties as to the satisfactory quality of or the fitness of the scanned mineral assessment report for a particular purpose and warranties as to the non-infringement or other non-violation of the proprietary rights held by any third party in respect of the scanned mineral assessment report;

c) To the fullest extent permitted by applicable law, the Minister, and the Minister’s employees and agents, exclude and disclaim liability to the User for losses and damages of whatsoever nature and howsoever arising including, without limitation, any direct, indirect, special, consequential, punitive or incidental damages, loss of use, loss of data, loss caused by a virus, loss of income or profit, claims of third parties, even if Alberta Energy have been advised of the possibility of such damages or losses, arising out of or in connection with the use of the Alberta Energy website, including the accessing or downloading of the scanned mineral assessment report and the use for any purpose of the scanned mineral assessment report so downloaded or retrieved.

d) User agrees to indemnify and hold harmless the Minister, and the Minister’s employees and agents against and from any and all third party claims, losses, liabilities, demands, actions or proceedings related to the downloading, distribution, transmissions, storage, redistribution, reproduction or exploitation of each scanned mineral assessment report obtained by the User from Alberta Energy.
May 14, 1999

Alberta Energy
Mineral Operations
Mineral Tenure
9th Floor, North Tower
Petroleum Plaza
9945 - 108 Street
Edmonton, Alberta
T5K 2G6

Attention: Mr. Brian Hudson
Manager, Mineral Agreements

Dear Mr. Hudson:

Re: Metallic and Industrial Minerals Permit 9396110055

Kindly find enclosed a copy of a report prepared by Mr. Bruno Wiskel with respect to exploration work conducted on the captioned property, together with a statement of expenses connected with this work. Also enclosed is a copy of a map of the area provided by your department, indicating the acreage which Esmeralda has elected to drop at this time. Based on our findings and the expenditures to date, we have elected to retain ten sections of the captioned claim.

We note that this report is a preliminary one, as Mr. Wiskel has not yet had an opportunity to examine the results of sample analyses in detail.

We trust you will find this in order. Should you have any questions or require additional information, please contact the writer at your convenience.

Yours truly,

RON STEWART
President

Encls.
STATEMENT OF EXPENDITURES

WAUGH LAKE CLAIMS
ALBERTA ENERGY PERMIT NO. 9396110055
1998

Field Expenses

<table>
<thead>
<tr>
<th>Description</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bruno Wiskel, BSc., P.Geol. (Consultant)</td>
<td></td>
</tr>
<tr>
<td>Ron Stewart</td>
<td></td>
</tr>
<tr>
<td>Accommodations</td>
<td></td>
</tr>
<tr>
<td>Wiskel/Stewart, Andrew Lake Lodge</td>
<td>1,500.00</td>
</tr>
<tr>
<td>Misc. Field Expenses (Food, Equipment, Supplies, Etc.)</td>
<td>1,400.00</td>
</tr>
<tr>
<td>Transportation</td>
<td></td>
</tr>
<tr>
<td>Flights in and out of Andrew Lake</td>
<td>2,500.00</td>
</tr>
<tr>
<td>Float Plane Support during Exploration of Waugh Lake Properties</td>
<td>500.00</td>
</tr>
<tr>
<td>Ground Transportation</td>
<td>250.00</td>
</tr>
<tr>
<td>Canoe Rental</td>
<td></td>
</tr>
<tr>
<td>Sample Analysis</td>
<td></td>
</tr>
<tr>
<td>Loring Laboratories</td>
<td>500.00</td>
</tr>
<tr>
<td>Sample Preparation, Shipping Expenses</td>
<td>200.00</td>
</tr>
<tr>
<td>Report Preparation</td>
<td></td>
</tr>
<tr>
<td>Bruno Wiskel, BSc., P.Geol.</td>
<td></td>
</tr>
<tr>
<td>Research Support</td>
<td>750.00</td>
</tr>
<tr>
<td>Secretarial Services, Cartography</td>
<td>550.00</td>
</tr>
</tbody>
</table>

TOTAL
13,700.00
The areas marked in green on the following map indicate acreage that Esmeralda Exploration International, Inc. intends to retain under Permit No. 9396110055. All acreage not so marked should be dropped from this permit.
PRELIMINARY GEOLOGICAL ASSESSMENT
OF THE
WAUGH LAKE MINERAL PROPERTY
For
ESMERALDA EXPLORATION INTERNATIONAL, INC.
By
BRUNO WISKEI, BSc, P. Geol
EVERGREEN ENVIRONMENTAL CORPORATION LTD.
Table of Contents

Introduction ... 3.

History of Exploration in the Waugh Lake Area 5.

Regional Geology .. 6.

Exploration Methodology ... 8.

Conclusions ... 13.

Recommendations .. 14.

Appendix ... 15.
Introduction

Evergreen Environmental Company Ltd. (EEC) was contacted to complete a preliminary geological assessment of Esmeralda Exploration International Inc. (Esmeralda) Waugh Lake property in the extreme north east corner of Alberta. The preliminary field investigation of Esmeralda's Waugh Lake Property commenced on August 31, 1998 following an extensive review of publications documenting prior exploration in the area. The field investigation included regional and detailed mapping, rock and sediment sampling and locating anomalous gold showings from previous exploration.

Geographical Location

The Esmeralda property consists of 92.16Ha in the Andrew Lake region of north eastern Alberta (see map 1 & 2). Accommodation was provided by the Andrew Lake Lodge, a hunting and fishing lodge on the western shores of Andrew Lake. Both the lodge and the Waugh lake properties are not accessible by road and provisions and supplies must either be flown in from Smith or from Edmonton.

The Andrew Lake / Waugh Lake area consists of rugged, glacially scoured hills (figure 1) covered by dense stands of spruce, tamarack and poplar (figure 2). Maximum relief in the area is approximately

Transportation from the lodge to the Esmeralda property consisted of float plane, motor boat and canoe after which exploration continued on foot (figures 3-6).
Scope of the Geological Assessment

Bruno Wiskel Bsc. P.Geol, and President Of EEC was responsible for the geological evaluation of Esmeralda’s Waugh Lake property. The field assessment, which took one week to complete, was divided into five separate areas of investigations listed on the following page. Results to be compiled into a summary report.

1. Review of geological maps and publications of the Waugh lake area.
2. Location and geological evaluation of the significant gold in previous exploration.
4. Regional geological evaluation
5. Geochem analysis and interpretation of rock and mineral samples collected.
History of Mineral Exploration in the Waugh Lake Area

Geological exploration in this area has been ongoing for over 100 years. The first canoe traverse along the north shore of Lake Athabasca was completed by James Tyrell in 1892 and again in 1896 followed by Alcock in 1915 and 1917 and Cameron and Hicks in 1929 and 1930.

Alcock returned in 1936 to map the area in the extreme northwest corner of Saskatchewan after gold was discovered at Goldfields. This regional reconnaissance was completed by Wilson in 1941.

In 1954, uranium exploration lead by Collins of the Alberta Research Council (ARC) located several low grade uranium prospects and in 1959, Riley of the Geological Survey of Canada (GSC) carried out regional reconnaissance of precambrian rocks north of Lake Athabasca. This work was followed by John Godfrey, who completed a paper on the “Geology of the Andrew Lake, North District” in 1961.

Hudson Bay Oil and Gas Ltd. flew a magnetic, electromagnetic and radiometric survey in 1969 which recorded 3 conductors at the north end of Waugh Lake. Trenching was completed at 4 separate locations with a significant gold showing in trench #1 along the channel connecting Waugh Lake with North Waugh Lake.

Regional Geology

The Waugh Lake area represents both a sedimentary and a structural basin as is composed of sheared and faulted precambrian igneous, metamorphic and sedimentary rocks which have been collectively called the Waugh Lake Group (see map 3). Contained in the Waugh Lake group are intrusions of the Colin Lake Granites.

The Waugh Lake Group has an estimated thickness of over 11 kilometers and consists of two megacycles of metasedimentary rocks grading into metavocanics. These two sequences are subsequently divided into five rock units as outline (see table 1, from Iannelli et. al. 1995).

The basal assemblage of the lower megacycle is referred to as the Martyn Lake formation and is comprised of bedded turbidites, overlain by the Doze Lake sedimentary / volcanic assemblage containing conglomerates, sandstones intermixed with mafic tuffs and flows.

The Martyn Lake Formation hosts a shear zone which synchronous with a 6 km electromagnetic anomaly (see map 4). Trenches cut in the shear zone indicate the presence of sulfide mineralization with gold assays of 340 ppb (see map 5).

The basal volcanic - sedimentary sequence of the upper megacycle is the S~nderholm Lake formation which contains amphibole bearing arkoses, subarkoses and sublitharenites with lenses of intermediate tuff and fine crystalline mafic flows.

Conformably overlaying the Senderholm Lake formation is the Johnson Lake formation which represents a sedimentary dominated assemblage with minor volcanioclastic sequences.

The Niggli Lake formation is a series of mafic volcanics which caps the Waugh lake group. These cliff forming volcanics outcrop on the north shore at the extreme western end of Waugh Lake (see figure 6).
Table 1: Waugh Lake Group Table of Formations

From Iannelli et al. 1995

<table>
<thead>
<tr>
<th>Table 1: Table of formations, Waugh Lake Group.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Niggli Lake Fm (thk = 128+): Mafic to intermediate flows, tuffs and pyroclastic breccia (includes mainly basalt and andesite); minor interlayers of reworked tuff and medium-grained to pebbly sublitharenite.</td>
</tr>
<tr>
<td>Johnson Lake Formation (thk = 238m to 452m):</td>
</tr>
<tr>
<td>JL.U Member (thk = 46m to 268m): Interlayered felsic, less commonly intermediate, tuffs, flows, and lapilli tuffs with minor horizons (up to 30m thick) of medium-grained to pebbly subarkose to sublitharenite and polymictic pebble conglomerate.</td>
</tr>
<tr>
<td>JL.L Member (thk = 184m to 343m): Planar-bedded to trough-crossbedded medium-grained to pebbly sublitharenite to subarkose, with variably interlayered polymictic pebble conglomerate horizons; locally with minor felsic tuff and reworked tuff horizons; thins to the north and northeast.</td>
</tr>
<tr>
<td>Sederholm Lake Formation (thk = 7m to 91m): Actinolite- and biotite-bearing, planar-bedded to trough-crossbedded, fine-grained to pebbly subarkosic-wacke to sublitharenite with minor interlayers of polymictic orthoconglomerate and mafic to intermediate tuff.</td>
</tr>
<tr>
<td>Doze Lake Formation (thk = 200m to 330 m):</td>
</tr>
<tr>
<td>DL.U Member (thk = 102m to 118m): Felsic, less commonly intermediate, flows and tuffs with minor interlayered horizons of reworked felsic to intermediate tuffs; includes rhyolitic to dacitic flows and tuffs.</td>
</tr>
<tr>
<td>DL.L sw Member (thk = 95m to 220m): Medium-grained to pebbly subarkose to sublitharenite with minor interbeds of polymictic conglomerate; planar-bedded to trough-crossbedded.</td>
</tr>
<tr>
<td>DL.L NE Member (thk = 27m to 119m): Massive pebble to boulder polymictic orthoconglomerate; spheroidal to discoidal quartzite, quartz, granite, and sandstone clasts in a sublitharenite matrix.</td>
</tr>
<tr>
<td>DL.L TR Member (thk = 4m to 11m): Interlayered quartzarenite lenses, phyllite - siltstone - sandstone and pebbly subarkose.</td>
</tr>
<tr>
<td>DL.B Member (thk = 29m+): Mafic to intermediate flows and pyroclastic breccia.</td>
</tr>
<tr>
<td>Martyn Lake Formation (thk = 200m+): Interlayered thin- to medium-bedded, fine- to coarse-grained quartzarenite to subarkose and rhythmically bedded mudstone (includes phyllite and biotite-sericite schist) - siltstone - fine grained quartzarenite; strata contain turbidites and graded bedding.</td>
</tr>
<tr>
<td>Basement Unknown</td>
</tr>
</tbody>
</table>
The Colin Lake granite is composed of very coarse to pegmatitic leucogranite which outcrops extensively on the western fringes of the Waugh Lake group (see figure 7). Inclusions of the granite are common but decrease to the east away from the main stock.

The Colin Lake granite contains frequent quartz - tourmaline veining systems (see figure 8). The veins are frequently host to rare elements such as tungsten, gold and silver.

Exploration Methodology

Day 1 was spent in verification of assay results of previous exploration programs beginning with trench #1 (see map 6) which show a gold assay of 340 ppb.

The trench was located along the east shore of Waugh Lake. The trench was both sampled and mapped in detail from the west to east (moving up in the section). The trench was sampled in one foot sampling units (SU) which were bagged and assayed.

The description of the trench is listed below.

<table>
<thead>
<tr>
<th>Length (in inches)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 - 4</td>
<td>Argillaceous shale</td>
</tr>
<tr>
<td>4 - 13</td>
<td>Graphic schist, strike 350° dip 80° west</td>
</tr>
<tr>
<td>13 - 24</td>
<td>quartz vein</td>
</tr>
<tr>
<td>24 - 36</td>
<td>Graphitic schist, quartz inclusions</td>
</tr>
<tr>
<td>36 - 44</td>
<td>Graphitic schist, minor quartz veining, vein of arsenopyrite 44 inches</td>
</tr>
<tr>
<td>44 - 65</td>
<td>Graphitic schist, elongated quartz cobbles. Strike 15°, dip 80° west.</td>
</tr>
<tr>
<td>65 - 72</td>
<td>Graphitic schist, contorted, minor elongated quartz pebbles, minor quartz veining.</td>
</tr>
</tbody>
</table>
72 - 80 Graphic schist, dark, contorted
80 - 96 massive, arenaceous
96 - 120 Covered interval no photo no sample
120 - 132 Phyllite, silky sheen on cleavage surfaces, quartz veining
132 - 144 Phyllite, iron staining, quartz veining
144 - 158 Massive quartzite, minor pyrite flecks. End of section.

Geological Interpretation of Trench Section

The graphitic schists and phyllites represent the metamorphic phase of sediments that probably originated as mudstones. The quartzite is likely representative of a sandstone unit and the stretched pebbles and cobble bands were originally a conglomerate.

The large discrepancy in grain size between the bedded mudstone, sandstone and conglomerate units occurring in this section indicate a turbidite sequence in a mid to outer submarine fan and basin plain environments.

The contorted graphitic schist and the presence of stretched pebbles indicate shearing occurred synchronous with the regional low grade metamorphism. The shear zone has a surface expression as a low trench trending in a north / south direction.

The quartz veining and deposition of sulphide mineralization occurred as a result of hydrothermal fluids discharged during the intrusion of the Colin Lake granites.

The trench assay results are listed in table #2
Day 2 was spent gathering rock stream and sediment samples around Andrew Lake to confirm regional geology. (Location of rock and sediment samples are located on map 8)

<table>
<thead>
<tr>
<th>SAMPLE</th>
<th>ROCK DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>AL 301</td>
<td>Nondescript pink granite gneiss</td>
</tr>
<tr>
<td>AL 302</td>
<td>Pink granite gneiss, quartz pods</td>
</tr>
<tr>
<td>AL 303</td>
<td>Mica - hornblende Granite (Colin Lake granite)</td>
</tr>
<tr>
<td>AL 304</td>
<td>Sediment Sample, unnamed creek</td>
</tr>
<tr>
<td>AL 305</td>
<td>Sediment Sample, Senderholm Lake Creek</td>
</tr>
<tr>
<td>AL 306</td>
<td>Sediment Sample unnamed creek</td>
</tr>
<tr>
<td>AL 307</td>
<td>Massive granite gneiss, orange/pink minor biotite, hornblende</td>
</tr>
<tr>
<td>AL 308</td>
<td>Biotite - hornblende granite</td>
</tr>
</tbody>
</table>
Day 3 was spent gathering rock stream and sediment samples around Waugh Lake to confirm regional geology. (Location of rock and sediment samples are located on map 9)

<table>
<thead>
<tr>
<th>SAMPLE</th>
<th>ROCK DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>WL 401</td>
<td>Soil Sample</td>
</tr>
<tr>
<td>WL 402a</td>
<td>Black fine grained, iron stained, Metavolcanics</td>
</tr>
<tr>
<td>WL 402b</td>
<td>As above</td>
</tr>
<tr>
<td>WL 403</td>
<td>Graphitic schist, dark gray, shiny cleavage planes</td>
</tr>
<tr>
<td>WL 404a</td>
<td>Granitic gneiss, 25 cm granite zenoliths</td>
</tr>
<tr>
<td>WL 404b</td>
<td>Sediment Sample, Stream flowing on fault line</td>
</tr>
<tr>
<td>WL 405</td>
<td>Quartz - tourmaline vein see figure 8</td>
</tr>
<tr>
<td>WL 406</td>
<td>Quartz - tourmaline vein</td>
</tr>
<tr>
<td>WL 407</td>
<td>As above</td>
</tr>
<tr>
<td>WL 408</td>
<td>As above</td>
</tr>
<tr>
<td>WL 409</td>
<td>As above</td>
</tr>
<tr>
<td>WL 410</td>
<td>As above</td>
</tr>
</tbody>
</table>
Table 2. Rock, Soil and Sediment Sample Assay Results

NOTE: These results were not available as of the date of this report, and will be appended at a later date.
Conclusions

The Esmeralda Waugh Lake Properties have a number of attributes that make it an exceptionally good exploration prospect.

1. The properties lie in an area where there are a number of good gold showings and sulphide mineralization.

2. The quartz-tourmaline vein systems found at Esmeralda’s Waugh Lake properties is similar to ores mined at the gold mines in Yellowknife.

3. A number of large electromagnetic anomalies lie on or adjacent to the Esmeralda Waugh Lake Properties.

4. This preliminary study of Esmeralda’s Waugh Lake properties is insufficient to determine gold grade and ore volume estimates.
Recommendations

It is my opinion that Esmeralda’s Waugh Lake properties represent an excellent exploration target and that further exploration is necessary to delineate ore bodies. An exploration plan is listed below.

1) Using explosives to elongate and deepen Trench #1 to determine if sulfide mineralization is continuous laterally and at depth. Map and sample.

2) Blast two similar trenches 100 meters north and south of trench #1 along strike of the shear zone. Map and sample.

3) Map and sample the quartz - tourmaline vein systems on and around the Esmeralda properties.

4) Conduct regional reconnaissance from the air to determine lateral extent of quartz tourmaline vein and other geological anomalies followed by ground reconnaissance.

Sincerely,

Bruno Wiskel BSc. P.Geol.
MAP 1 - REGIONAL LOCATION OF ESMERALDA'S WAUGH LAKE PROPERTY
MAP 2 - CLAIM MAP OF ESMERALDA'S
WAUGH LAKE PROPERTY

METALLIC & INDUSTRIAL
MINERALS PERMIT APPL.
NO. 94-398

TOTAL AREA 9216 ha.
MAP 3 - METASEDIMENTARY BANDS IN THE WAUGH LAKE AREA

LEGEND

Metasedimentary band
Geological boundaries (approximate)
Mineralization locality
Radioactivity
Fault (known, assumed)

WEST OF FOURTH MERIDIAN

Scale 1 Inch to 1 Mile
MAP 4 - GEOLOGICAL MAP OF WAUGH LAKE AREA

HELKIAN

ATHABASCA GROUP: hematite-stained, flaggy to rubbly bedded wacke with pebble bands. Locally includes rubble. South of Lake Athabasca, well indurated, medium-grained sublitharenite, locally pebbly, planar crossbedded and quartz overgrowth cemented.

WAUGH LAKE GROUP (low-grade metavolcanic rocks): greenstone and amphibolite derived from basalt, gabbro and possibly tuff.

WAUGH LAKE GROUP (low-grade metasedimentary rocks): quartzite with subordinate biotite chlorite schist, phyllite, phyllonite; locally ferruginous, garnetiferous, graphitic, with quartz-tourmaline veins.

COLIN LAKE GRANITOIDS: lithologies in this group range from granite to quartz diorite and are gradational in character. Feldspar megacryst (ranging from 3 to 10 to 15 to 40 mm long) are in a biotite-rich, well-foliated, quartz-feldspar matrix. Minor apophycematite masses accompany all of the lithologies.
MAP 5 - DETAILED GEOLOGICAL MAP OF THE WAUGH LAKE AREA
(From Iannellie et al.)

- Andrew Lake Granite
- Colin Lake Granite
- Diorite
- Waugh Lake Granite
- Niggli Lake Fm
- Johnson Lake Fm
- Sederholm Lake Fm
- Doze Lake Fm
- Martyn Lake Fm
- Shear Zone
- Fault
- Thrust Fault
- Mineral Occurrence
- Gold Showing
MAP 6 - GEOPHYSICAL MAP OF THE WAUGH LAKE GOLD SHOWING

<table>
<thead>
<tr>
<th>Sample no. (M.O. no.)</th>
<th>Location</th>
<th>Cu</th>
<th>Ni</th>
<th>Au</th>
<th>Ag</th>
</tr>
</thead>
<tbody>
<tr>
<td>1516 (8) (50)</td>
<td>Trench no. 1</td>
<td>0.004</td>
<td>n.a.</td>
<td>n.d.</td>
<td>n.d.</td>
</tr>
<tr>
<td>1517 (9) (50)</td>
<td>Trench no. 1</td>
<td>0.002</td>
<td>0.017</td>
<td>0.34</td>
<td>20.4</td>
</tr>
<tr>
<td>1518 (10) (50)</td>
<td>Trench no. 1</td>
<td>0.005</td>
<td>n.a.</td>
<td>n.d.</td>
<td>n.d.</td>
</tr>
<tr>
<td>1521 (composite) (39)</td>
<td>Trench no. 2</td>
<td>0.010</td>
<td>0.010</td>
<td>n.d.</td>
<td>n.d.</td>
</tr>
<tr>
<td>1520 (6) (52)</td>
<td>Trench no. 4</td>
<td>0.004</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
</tr>
</tbody>
</table>

n.a. = not analysed for.
n.d. = not detected.
WAUGH LAKE GROUP

- Metasedimentary Rocks
- Basic Rocks

COLIN LAKE GRANITOIDS

- Blotite microgranite
- Blotite Granite C
- Blotite Granite - Feldspar Megacrystic
- Sheared Leucocratic Granite
- Amphibolite
- Fault

Tourmaline occurrence examined but not sampled

0 500 Metres

(Geology after Godfrey, 1961)

★ Denotes location of quartz - tourmaline veining
MAP 8 - LOCATION OF ROCK AND SEDIMENT SAMPLES AROUND ANDREW LAKE

CINDERELLA LAKE

AL 308 AL 307 AL 306

AL 305 AL 304 AL 303

AL 301 AL 302
MAP 9 - LOCATIONS OF ROCK AND SEDIMENT SAMPLES AROUND WAUGH LAKE
FIGURE 1 - TOPOGRAPHY OF THE WAUGH LAKE AREA

FIGURE 2 - VEGETATION OF THE WAUGH LAKE AREA
FIGURES 3 & 4 - TRANSPORTATION
FIGURE 5 - DIFFICULT TRAVEL
FIGURE 6 - BASIC ROCKS OF THE NIGGLI LAKE FORMATION
FIGURE 7 - COLIN LAKE GRANITE

FIGURE 8 - QUARTZ - TOURMALINE VEINING IN COLIN LAKE GRANITE
FIGURE 9 - TRENCH #1 (MAP 6)
FIGURES 10 - 21 SAMPLE UNITS OF TRENCH #1 (MAP 6)

FIGURE 10 SAMPLE UNIT (SU) #1

FIGURE 11 SU #2
FIGURE 20 SU #11

PHOTO UNAVAILABLE

FIGURE 21 SU #12