MAR 19950030: PEACE RIVER

Received date: Dec 15, 1995

Public release date: Dec 16, 1996

DISCLAIMER

By accessing and using the Alberta Energy website to download or otherwise obtain a scanned mineral assessment report, you ("User") agree to be bound by the following terms and conditions:

- a) Each scanned mineral assessment report that is downloaded or otherwise obtained from Alberta Energy is provided "AS IS", with no warranties or representations of any kind whatsoever from Her Majesty the Queen in Right of Alberta, as represented by the Minister of Energy ("Minister"), expressed or implied, including, but not limited to, no warranties or other representations from the Minister, regarding the content, accuracy, reliability, use or results from the use of or the integrity, completeness, quality or legibility of each such scanned mineral assessment report;
- b) To the fullest extent permitted by applicable laws, the Minister hereby expressly disclaims, and is released from, liability and responsibility for all warranties and conditions, expressed or implied, in relation to each scanned mineral assessment report shown or displayed on the Alberta Energy website including but not limited to warranties as to the satisfactory quality of or the fitness of the scanned mineral assessment reports and warranties as to the non-infringement or other non-violation of the proprietary rights held by any third party in respect of the scanned mineral assessment report;
- c) To the fullest extent permitted by applicable law, the Minister, and the Minister's employees and agents, exclude and disclaim liability to the User for losses and damages of whatsoever nature and howsoever arising including, without limitation, any direct, indirect, special, consequential, punitive or incidental damages, loss of use, loss of data, loss caused by a virus, loss of income or profit, claims of third parties, even if Alberta Energy have been advised of the possibility of such damages or losses, arising out of or in connection with the use of the Alberta Energy website, including the accessing or downloading of the scanned mineral assessment report and the use for any purpose of the scanned mineral assessment report.
- d) User agrees to indemnify and hold harmless the Minister, and the Minister's employees and agents against and from any and all third party claims, losses, liabilities, demands, actions or proceedings related to the downloading, distribution, transmissions, storage, redistribution, reproduction or exploitation of each scanned mineral assessment report obtained by the User from Alberta Energy.

Alberta

Alberta Mineral Assessment Reporting System

ASSESSMENT REPORT DRILLING PROGRAM AND FRAC TEST ANALYSES

5

COVERING LAND HELD UNDER METALLIC & INDUSTRIAL MINERALS PERMIT NO. 9393080332 PEACE RIVER SILICA DEPOSIT

FOR

ULTRASONIC INDUSTRIAL SCIENCES LTD.

DECEMBER 7, 1995

Ultrasonic Industrial Sciences Ltd.

200, 17834 - 106A Avenue, Edmonton, Alberta T5S 1V3 Tel: (403) 448-0349 Fax: (403) 448-2160

January 23, 1996

Alberta Energy Petroleum Plaza - North Tower 9945 - 108 Street Edmonton, Alberta T5K 2G6

Attention: Brian Hudson

Dear Brain:

Re: Assessment filing on Metallic & Industrial Minerals Permit No. 939080332

As to our telephone conversation of January 16, 1996 re the aforementioned permit and further to the filing of assessment as covered in our letter dated December 15, 1995; Please find enclosed a break down of assessment dollars as filed. Also please find enclosed a break down of additional assessment dollars spent of the property. As to filing of December 15, 1995

 #2
 \$11,265.12

 #3
 \$950.16

 #4
 \$960.16

 #5
 \$6342.16

 Total
 \$19,507.60

Additional filing of the above mentioned.

#2 [`]	\$41,692.88	for a total of \$52,958.00
–	as filed	for a total of \$950.16
		for a total of \$950.16
#4	as filed	
#5	\$17,157.84	for a total of \$23,500.00

SILICA SAND MATERIALS: FIBRE OPTICS, FRAC, GLASS, CERAMICS (SILICA CHEMISTRY)

88888888 888 888

WHEI: 10 9661-52-10

Further work for filing are as follows:

Road Contractors

Mac Millan (West)	\$935.39
Herb's (West)	\$743.66
Eric's Trenching (East)	\$2779.86
Bisson Contracting (W & E)	\$10,109.90
O'Hara (W & E)	\$642.00
Total	\$15,210.81
Testing R&D Contractor	
	\$41,583.67
Travel	
Roads and Tests	<u>\$9835.30</u>
Total Assessment	<u>\$67.629.79</u>

Please fine enclosed two copies of the R&D Tests results from the R& D Contractor from Salt Lake City, Utah.

-2-

Should you have any further questions please contact the writer.

Sincerely Yours

Ultrasonic Industrial Sciences Ltd. Terry Hodgson

WASI:10 9661-52-10

INDEX

- 1. Letter covering Assessment and Area
- 2. Geological Evaluation of the Peace River Silica Sand Deposit Bertand Geological Consulting, Alberta Research Council.
- 3. Sand Analysis Report of the Peace River Silica Sand Deposit Alberta Research Council. October 17, 1994.
- 4. Sand Analysis Report of the Peace River Silica Sand Deposit Alberta Research Council. August 19, 1994.
- 5. Geological Report of the Peace River Silica Deposit Dr. John H. Lichtenbelt Report attached as Report #2

Ultrasonic Industrial Sciences Ltd.

200, 17834 - 106A Avenue, Edmonton, Alberta T5S 1V3 Tel: (403) 448-0349 Fax: (403) 448-2160

December 15, 1995

Albert Energy Petroleum Plaza - North Tower 9945 - 108 Street Edmonton, Alberta T5K 2G6

Attention: Hazel Hanson & Brian Hudson

Dear Sirs:

Re: Assessment filing on Metallic & Industrial Minerals Permit No. 939080332

In accordance with section 15(1) of the Metallic & Industrial Minerals Regulation, we hereby submit the enclosed reports for assessment filing.

As well in accordance with section 15(1) of the Metallic & Industrial Minerals Regulation, we hereby submit \$19,507.60 Assessment dollars on the property covered under the above noted Permit. The assessment dollars are distributed on 1309.84 hectares for the first two years of the assessment and on 1295.84 hectares for the next to years. The second two years assessment do not include the 14 hectares converted to Lease.

If you have any questions regarding the above, you may contact the writer.

Yours Truly

Ultrasonic Industrial Sciences Ltd. Terry Hodgson

Geological Evaluation of the Peace River Silica Sand Deposit

Prepared for:

Peace River Silica Sand Ltd.

by

BERTRAND GEOLOGICAL CONSULTING

A.J. Bertrand, P.Geol.

Alberta Geological Survey

April, 1989.

DISCLAIMER

This study was undertaken at the request of Peace River Silica Sand Ltd. and was funded jointly by Peace River Silica Sand and Alberta Energy. Every possible effort was made to insure that the work conforms to accepted scientific practice. However, neither the Alberta Research Council nor any of their employees or subcontracted personnel makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favouring by the Alberta Research Council. The views and opinions of the authors expressed herein do not necessarily state or reflect those of the Alberta Research Council.

The Alberta Research Council was engaged specifically to execute the geological component of this project and had no direct involvement in the laboratory processing, testing and evaluation of the silica sand samples for frac sand use. Those results, and the views and conclusions expressed regarding frac sand quality of the Peace River silica sand material are entirely those of the consultant, Hardy BBT Limited, and should not be construed as expressing the opinions of the Alberta Research Council.

Table of Contents

1.	INTRODUCTION	
2.0	GEOLOGY 2.1 General Geology and Stratigraphy 2.2 Structure 2.3 Topography	3 6
3.0	EXPLORATION 3.1 Pre-1989 Exploration 3.2 1989 Test Program	7
4.0	 RESOURCES 4.1 Block Descriptions 4.2 Silica Sand Resource Estimation Summary 4.2.1 Resource Estimation Methodology 4.2.2 Resource Classification Scheme 4.2.3 Base Data 	16 17 17 17 18
5.0	QUALITY 5.1 Grain Size 5.2 Chemical Analysis	

APPENDIX Handy BBT Limited, Field Investigation and Laboratory Testing Program - Silica Sand Deposit near Peace River, Alberta.

Tables (in text)

Table	3-1	1989 Test Program Sieve Analysis 1	1
Table	4-1	East Block Resource Estimate 2	0
Table	4-2	West Block Resource Estimate 2	2
Table	5-1	East Block-Grain Size Estimation2	6
Table	5-2	West Block-Grain Size Estimation 2	8

Page

Figures

		Page
Figure 1-1	Quarriable Mineral Leases	1a
Figure 4-1	Correlation Chart	

Maps

Map 4-1	Resources of Paddy Member and Total Thickness	
Map 4-2	Survey control map	(in pocket)

1.0 INTRODUCTION

The Peace River silica sand deposit is situated approximately 10 kilometres north of Peace River, Alberta. The quarriable mineral leases are located on both banks of the river and are referred to the East and West Blocks in this report.

1.

A five hole test program in the East Block was executed during March, 1989. This information has been combined with relevant data garnered from previous work to re-evaluate the resource base tonnage and the suitability of the material as a propping agent used by the petroleum industry.

Propping, or "frac" sand must be of a certain roundness and strength, as well acid resistant in order to maintain shape under high pressure in the production zones of oil and gas wells. Samples collected from the 1989 boreholes were sent to Hardy BBT Ltd. for analysis and the results are presented in the Appendix. These results indicate that the overall values meet the suggested frac sand specifications cited by the American Petroleum Institute. Laboratory analysis has been concentrated on that portion of the silica sand representing the 20-40 mesh range. The bulk of the total frac sand sales in western Canada consists of this material.

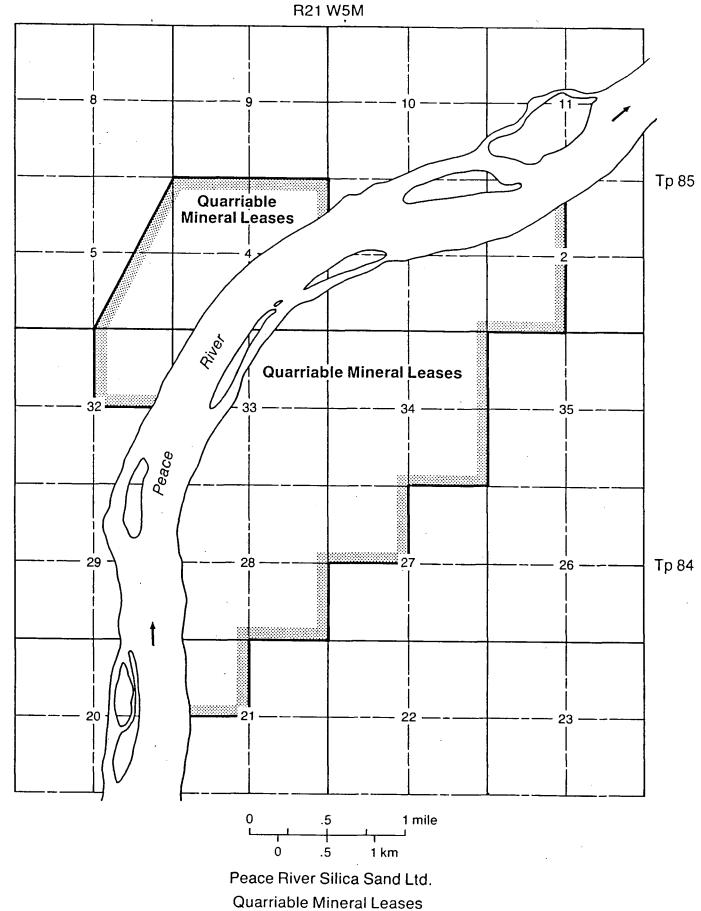


Figure 1-1

1 a

1.1 <u>SUMMARY</u>

The summary below compares the test results obtained by Hardy BBT Limited to the A.P.I. suggested requirements:

	Peace R	iver	
	<u>Silica</u> San	d <u>20/40</u>	A.P.I. Suggested
	<u>Range</u>	<u>Average</u>	<u>Standard</u>
Sphericity	0.7 - 0.8	0.7	0.6 or greater
Roundness	0.5 - 0.7	0.6	0.6 or greater
Turbidity	7.0 - 79.0	48 FTU	250 FTU or less
Crush Resistance	10.8 - 16.7%	13.6%	14% or less fines
Acid Solubility	0.53 - 1.12%	0.83%	2.0% max. wt.
· .			solubility

17 samples tested

The reassessment of resources shows the East Block to contain 22.26 million tonnes and the West Block 25.86 million tonnes of silica sand. These are tonnages for the total sand resource, of which the net frac sand grade (20-40 mesh) constitutes 9.47 million tonnes.

2.0 GEOLOGY

2.1 General Geology and Stratigraphy

The Peace River silica sands were deposited in marine and non-marine sediments of the Cretaceous Fort St. John Group which is overlain by Pleistocene deposits. The silica sand deposit within the project area straddles the Peace River. Erosion by the Peace River has removed much of the original silica sand dividing the deposit into two remnant segments on the east and west banks of the river.

The general stratigraphic sequence within the Peace River Silica Sand Ltd. lease area is given by the following table:

FORMATION AND LITHOLOGIES

Dunvegan Formation (marine sandstone & shale)

Shaftesbury Formation (marine shale)

Fort St. John Group Paddy Member non-marine sand and shale

Peace River Formation - Cadotte Member marine sandstone

- Harmon Member marine shale

A brief description of each formation follows.

PEACE RIVER FORMATION

Harmon Member

The Harmon Member is comprised of fine, then bedded, dark grey marine shales. These shales can now be observed on the west bank where recent excavation of the rail access to the Daishawa pulp mill has left them exposed.

Cadotte Member

The Cadotte sandstones form the prominent cliffs for many kilometres along the Peace River, north of Peace River town. The sandstones are fine grained, well sorted, massive, and horizontally bedded. They weather gray to dark brown with a commonly observable yellowish oxide stain near the top. The total thickness of the Cadotte Member within the property boundary has not been determined, however Crockford was able to describe the upper 15 metre portion of the Member on the west bank of the river and Lichtenbelt suggests that it is at least 34 metres thick.

Paddy Member

The Paddy Member is located above the Cadotte Member. They are at times separated by minor coal and gravel beds that can be readily used as a marker horizon during exploration. The Paddy represents a case of re-worked, non-marine sands, deposited in a fluvatile environment. It is mainly very clean and consequently it is essentially uncemented. However, locally the Member contains beds of moderately cemented argillaceous material. The sedimentary texture of the material indicates a tidal situation where the sand has been sorted into beds of larger and smaller grains. Strong cross-bedding also suggests duel wind-action above a waterline.

The grains of sand are almost entirely colorless quartz with a minor amount of smoky quartz. Silica is present also in the form of chalcedony. The occasional accessory minerals are feldspars, titanite, limonite, ilmenite and zercon.

Examination of the individual grains shows them to vary in roundness being rounded-subangular to almost spherical.

Overall, the Paddy ranges from 0 to 16.5 metres and averages 7.7 metres in thickness.

SHAFTESBURY FORMATION

The marine brown gray shales of the Shaftesbury are calcareous and contain pancake-shaped claystone beds. A thin gravel bed and a minor coal seam at the base of the formation exists on the east side of the river towards the south end of the property. The formation is at least 180 metres thick in this area.

PLEISTOCENE FLUVIAL DEPOSITS

Erosion during the Pleistocene has exposed the Peace River Formation on both banks of the river. The Peace River has deposited a 6 - 21 metre thick bed of boulders, gravel and sand on the Shaftesbury, and to a minor extent on the Paddy in the vicinity of the east bank. ъ.

2.2 Structure

Dip of the strata in the vicinity of the deposit is less than one degree to the southwest. No faults or other dislocations of the strata have been observed in any of the outcrops or interpreted by borehole. However, localized slumping of the Shaftesbury shale is evident on the West Block. 6.

2.3 Topography

The deposit is separated into the East and West Blocks by the Pleistocene to Recent Peace River erosional channel. On the east bank the elevations range from 450 metres along the upland terrain down to 300 metres along the river edge. The terrain on the west bank is that of a 5-8 degree slope starting at the 500 metre elevation and descending to the Peace River with 45 metre vertical cliffs.

The slope of the river valley is dissected by two creeks, one of which flows all year. One has cut a gully 30 metres or more with steep walls that generally dip around 40 degrees from the horizontal. In places some are almost vertical.

3.0 EXPLORATION

3.1 Pre - 1989 Exploration

The earliest reference to the Peace River silica sands is contained in a 1953 Geological Survey of Canada report by F.H. McLean. Between 1947 and 1949, four exposures on the west bank and one on the east bank of the Peace River within the property boundaries, were described by M. Crockford of the Alberta Research Council. Size and chemical analysis of samples collected from the three localities on the west bank first indicated that the sand could be upgraded by beneficiation, at that time for glass.

A pilot plant was established early in 1953 by Peace River Glass Syndicate under the supervision of Dr. W.F. Banfield, New York City. In 1954, Dr. Banfield collected sizable bulk samples from seven trenches on the west side of the river for testing. A comprehensive report of the work was submitted. Size analysis was carried out on all of the trench samples; three of the trenches were concluded to be representative and have been used in this report.

During 1977, C.C. Bevan obtained samples for analysis from outcrop and eight drill holes located in the vicinity of the first gravel pit at the south-east corner of the property. Various testing was carried out by Halliburton, Denver Equipment Division and Smith International for frac and glass sand purposes. This test work was followed by a feasibility study written by James Wade Company Engineering concerning the construction and operation of a plant for the production of silica sand to service the petroleum, sand blasting, ceramic and glass industries.

In years 1980 and 1981 some 46 wells were drilled with over 576 samples obtained and submitted to BBT Geotechnical Consultants Ltd. Associated Mining Consultants Ltd. retained by John Tiberio completed a prefeasibility study which was submitted to Alberta Energy and Natural Resources.

This was followed by a 1982 drill program for J. Tiberio under the geologic supervision of H. Lichtenbelt. The work was conducted on the north east portion of the property and established the existence of silica sand in that area. Unfortunately, only random samples from these boreholes were given tests to determine the quality of sand used in hydraulic fracturing operations.

3.2 <u>1989 Test Program</u>

Five test holes were drilled in March along the extent of the deposit on the east side of the Peace River, to provide Paddy silica sand samples. These holes were located in such a manner as to characterize that portion of the deposit considered to have sufficient reserves for commercial frac sand production.

A Hardy BBT Limited technician was on site to log the borehole cuttings a properly identify the samples. The holes were drilled by a Western Caisson, Becker-type rig, using a tricone bit and air system. Sample recovery was estimated to be very good in all of the holes except for the initial hole where the first 7.5 feet was lost. The strategy was to bag the samples at 2 metre intervals. However, some samples tended to be larger whenever drilling was difficult. A brief lithological summary of the test holes are as follows:

					9.
,				à	*
		Interv	al (feet	.)	# of samples
Hole	<u>Coordinates</u> (metres)	<u>To</u>	From	Des.	Collected
E-89-1	11,512.32N 9,765.45E 382.87EL	0 0.66 29.5	0.66 29.5 86.5	Topsoil Gravel, sand Shaftesbury,	
•		86.5 94 108 109	94 <u>108</u> 109 120	shale Paddy, sand Paddy, sand coal Cadotte,	- 7
E-89-2	11,062.60N 9,375.08E 387.80EL	$0 \\ 0.5 \\ 18.0 \\ 100.5 \\ 100$	$0.5 \\ 18.0 \\ 100.5 \\ \hline 130.5 \\ \hline 130.5 \\ \hline 130.2 \\ \hline 0 \\ \hline$	sandstone Topsoil gravel, sand Shaftesbury, shale Paddy, sand	15
		130.5 132.0	132.0 148.0	coal Cadotte, sandstone	6
E-89-3	10,538.20N 9,157.75E 391.47EL	0 0.66 1.0	0.66 1.0 108.0	Topsoil Sand Shaftesbury, shale	
	-	$ \begin{array}{r} 108 \\ 123.5 \\ 124.5 \end{array} $	123.5 124.5 150.5	Paddy, sand Clay Paddy sand	8
). at 150 nitation.	.5 feet	due to drill ro	bd
E - 98 - 4	9,893.17N 8,765.60E	0 0.5	0.5 44.5	Topsoil Shaftesbury, shale	
	363.63EL	45.5 48.0 51.0	48.0 51.0 52.0	Siltstone, very fine sand Gravel, sand Coal	
		$\frac{51.0}{54.0}$ 67.0 68.0	54.0 67.0 68.0 127.0	Gravel, sand Silica Sand Coal Cadotte, sand stone fine	
				grained	1

÷**, .

·,

•

E-89-5

11,223.47	0	32.0	Gravel, sand	
9,628.26	32.0	110.0	Shaftesbury	
391.01	110.0	138.0	Paddy, sand	14
1,282.80	138.0	148.0	Coal	
	148.0	150.0	Cadotte,	
			sandstone	1

Total feet drilled - 695.5 Total samples collected - 67

The Hardy BBT section of this report contains drill logs of more detail.

The majority of the laboratory test work on samples was carried out by Hardy BBT Limited. The mineralogical analysis was completed by the Alberta Research Council. These tests & procedures were in accordance with the American Petroleum Institute (API RP 56, first edition, March 1983) for testing of sand used in hydraulic fracturing operations.

Field surveying was completed by Coordinate Surveys Ltd. of Peace River.

The test and analysis of the samples are contained in the following report by Hardy BBT Limited.

Table 3-1 provides borehole grain-size data according to the percent weight of the material retained on the various sieves used during the testing.

1989 Test Program

TABLE 3.1

11

SIEVE SIZE ANALYSIS - PERCENT RETAINED

. . .

HOLB	SAMPLE NUMBER	: INTERVAL : (feet)		: ; +10	+16	: ; +20	; ; +30	: ; +40	+50	; +100 ;	+200	-200
E-89-1		86.5 - 94	; ; -	; -	N/A	; ; -	; -	-	-	-	-	-
	1	: 94 - 96	- -	-	0.1	0.4	2.5	11.0	33.0	41.3	8.7	3.0
	2	96 - 98	-	-	-	0.4	2.2	9.7	31.1	14.5	10.5	31.6
Paddy Member	3	98 - 100	- - -	-	0.2	1.4	6.0	14.1	28.8	39.0	7.4	3.1
	4	100 - 102	; -	0.1	0.4	0.9	3.6	10.4	26.5	48.5	7.3	2.6
	: : 5	102 - 104	-	0.1	0.1	0.5	:	4.2	15.2	60.3	13.3	5.1
	6	: 104 - 106	1 1 1 -	0.6	0.1	0.3	1.0	2.3	8.1	46.9	30.8	9.9
	7	: : 106 - 108	-	; ; -	0.2	0.4	 1.2	2.3	7.8	47.6	29.3	11.2
Weighted	Average	; 94 - 108 ;		; 0.1	0.2	0.6	2.6	1.1	21.5	42.5 ;	15.3	9.5

SIEVE SIZE ANALYSIS - PERCENT RETAINED

HOLE	SAMPLB NUMBER	: INTERVAL ; (feet)		; ; +10	: ; +16	: ; +20	; ; +30	: ; +40 ;	+50	+100	+200	-200
B-89-2	1	: : 100 - 102	27 5 6 1 -	-	0.7	3.0	8.9	10.4	11.8	22.5	17.6	25.1
	. 3	: 104 - 106	-	-	-	: : 0.4	2.1	7.3	12.5	20.4	27.3	30.0
	5	: : 108 - 110	; -	-	-	: 0.1	: : 0.1	1.3	19.2	59.0	13.0	7.3
Paddy Member	7	112 - 114	-	-	-	0.1	0.2	1.9	25.1	58.6	9.6	4.5
:	9	; ; 116 - 118 ;	-	0.1	-	0.1	-	0.2	1.8	29.6	49.0	19.2
:	11	: 120 - 122	-	0.2	0.1	0.1	-	0.2	0.9	27.0	48.1	23.4
	13	124 - 126	-	-	-	0.1	0.2	1.2	11.8	63.2	14.3	9.2
;		: 128 - 130	-		-	0.1	0.5	3.6	19.5	50.9	15.7	9.7
Weighted	Average	100 - 130	-	0.1	0.1	0.5	1.5	3.3	12.8	41.4	24.3	16.0
	18	132 - 134	-	-	0.1	0.1	-	0.1	0.3	11.0	61.0	27.4
Cadotte	20	136 - 141	-	0.1	0.1	-	0.3	1.0	4.9	33.5	38.5	21.6
Hember ¦	22	; ; 144 - 148 ;	-	0.1	-	0.1	0.6	2.0	4.0	17.4	32.6	43.2
Weighted {		; 132 - 134 ;								23.6		

712

SIEVE SIZE ANALYSIS - PERCENT RETAINED

HOLE	SAMPLE NUNBER	: INTBRNAL : (feet)		+10	+16	+20	; ; +30	+40	+50	+100	+200	-200
E-89-3	· 1	108 - 110	 - -	-	0.1	0.4	: : 0.8	0.8	3.4	19.6	42.8	32.1
	3	; ; 112 - 114	i 	-	0.1	0.4	0.7	0.4	0.6	17.8	46.0	34.0
	5	116 - 118	-	0.1	0.1	-	0.3	0.2	0.5	8.9	53.9	36.0
1	1	: : 120 - 122	-	0.1	-	0.1	; ; -	0.1	0.1	9.5	56.7	33.4
5 8 9 8	8	: 122 - 124	-	0.5	0.2	0.3	i 1.4	7.5	10.8	17.1	31.0	31.2
.	9	: : 124 - 126	- -	-	0.1	0.4	: : 3.4	15.9	22.3	15.9	11.8	30.2
) 4 9	10	126 - 128	; -	; -	-	0.3	0.4	26.5	44.7	15.8	5.0	7.3
Paddy Member	11	128 - 130	-	0.1	0.1	0.8	7.1	28.3	43.3	13.9	3.6	2.8
	12	: 130 - 138	; ; -	-	; - ;	0.2	4.1	22.4	33.6	30.7	4.2	4.8
1	13	138 - 140	; ; -	-	: 0.6	1.2	3.7	18.0	26.0	19.0	16.6	16.0
;	14	140 - 141	-	-	0.5	0.7	9.6	23.6	22.0	33.0	5.4	4.9
	15	: 141 - 144	-	0.1	0.1	0.4	2.4	8.6	14.2	52.6	14.6	7.0
;	16	: 144 - 147	-	-	-	-	: : 0.1	1.0	7.6	63.5	15.8	12.0
	17	147 - 150	-	-	1.0	7.1	; ; 10.8	8.2	13.1	38.4	10.6	10.8
•	18	: : 150-150.5		: : 0.1	; 2.3	20.3	: 28.2	10.0	; 8.0 ;	16.2	5.6	8.8
Weighted	Average	; 108-150.5		; 0.1	0.2	1.1	1.8	10.7	15.7	25.8	24.8	19.8

SIEVE SIZE ANALYSIS - PERCENT RETAINED

:::::::::::::::::::::::::::::::::::::::	HOLE	;		•	INTERVAI (feet)	•	+8	;	+10	 .	+16	;	+20	; ; ;	+30	:	+40	; ;	50	;	+100	: ; +	200	;	-200	
	E-89-4		1	:	54 - 56	;	-	;	-	: : :	-	: : :	0.4		8.7		18.8	:	2.2	:	45.2		2.2		2.5	
1		;	2	;	56 - 60	1	-	;	-	;	0.1	:	0.2	;	3.9	:	12.8	1	8.8	i 	54.9		5.1		4.2	i
1		i 1 1	3		60 - 65		•	;	-	;	0.5	i 	5.0	;	20.1	;	12.4	1	0.6	, , , ,	43.3		; ; 1.1		4.0	:
;		;	4	1	65 - 67	;	-	:	0.3	;	2.1	;	1.1	:	18.9	;	14.4		9.3		26.1	12	2.6	ł	8.6)
;	Weighted	:	Average	;		;	-	:	0.1	;	0.5	;	3.2	!	13.2	, ,	13.8 ;	1	4.7		44.6 ;	5	5.4 ;		4.5	ł

SIEVE SIZE ANALYSIS - PERCENT BETAINED

HOLE	SAMPLE Aumber	INTERVAL (feet)		: ; +10	; ; +16	; ; +20	; ; +30	: ; +40	: ; +50	+100	; ; +200	; ; -200
B-89-5	1	110 - 112	; -	-	; ; -	0.1	0.1	0.2	1.4	13.5	53.0	31.7
1 1 1	3	114 - 116	• -	0.1	1.2	3.4	7.5	7.8	7.5	21.4	33.3	17.8
1	4	116 - 118	; ; -	0.1	i 4.4	11.8	23.2	25.3	20.2	10.5	2.8	1.7
i 1 1	5	118 - 120	; ; -	; ; -	1.2	5.2	: 18.9	32.6	27.9	11.8	1.6	0.8
1	6	120 - 122	; -	0.1	1.5	5.7	16.9	31.5	28.7	13.3	1.6	0.7
1	7	122 - 124	-	0.1	3.4	10.3	22.2	29.9	22.5	9.4	1.6	0.6
	8	124 - 126	-	0.2	3.1	8.6	18.7	27.1	23.2	15.8	2.2	1.1
	9	126 - 128	-	-	1.0	4.4	14.0	27.4	26.7	23.0	2.9	0.6
	10	128 - 130	-	0.1	2.0	4.2	10.7	22.7	32.0	25.8	1.9	0.6
	11	130 - 132	-	0.1	1.1	3.4	9.9	22.0	36.7	24.1	2.0	0.7
	12	132 - 134	- ;	0.1	1.6	4.1	11.4	23.3	36.2	21.3	1.5	0.5
	13	134 - 136	-	-	0.9	3.8	12.4	26.2	35.9	18.5	1.6	0.7
:	14	: 136 - 138 ;	-	-	1.7	4.1 ;	9.4	: 16.6 :	; 27.8 ;	; 33.9 ;	4.2 :	2.3
Weighted {	Average :	110 - 138 ;	- ;	0.1 ;	1.6	4.9 ;	12.5 ;	20.9 ;	23.3 ;	18.3 ;	11.9 ;	6.5

15.

4.0 RESOURCES

4.1 Block Description

East Block

In dimension the East Block is 3000 metres long in the N-S direction and 1000 metres wide in the E-W direction. The west side of the Paddy silica sand deposit outcrops from 45 to 52 metres above and on the banks of the Peace River. It pinches out at the north end of the block with the east and south limits yet to be defined.

A weighted average thickness of 7.29 metres has been determined for that portion of the resource situated in the measured category. Hole E-89-3 intersected to 12.9 metres of silica sand; the maximum thickness recorded on the east bank to date.

The lithology near the top of the Paddy in the north and south portions of the deposit does not correspond. Throughout the northern half the Shaftesbury shale makes immediate contact with the underlying Paddy. In the southern portion the contact is more complex with interbedded Cretaceous gravels, coal seams and silts situated between the Shaftesbury and main Paddy body. The appended correlation chart of the 1989 test holes (figure 4-1) illustrate this feature.

The surficial boulder, gravel, and sand aggregate covering the Shaftesbury is estimated to be in the order of 15 million cubic metres (Lichtenbelt).

West Block

The West Block is approximately 3300 by 800 metres in size. Like the East Block the Paddy sands outcrops on the banks of the Peace River. The overall thickness ranges between 2 metres at the north and to 16.4 metres in hole 112 located near the center of the deposit. The weighted average thickness within the area designated measured is 8.06 metres. The possible lithologic variations of the Paddy here have not been investigated, however a minor basal coal seam was reported by Banfield.

4.2	Silica Sand Reso		
	(tonnes-m	illions)	Measured and
Location	Measured	Inferred	Inferred
East Block	13.67	8.59	22.26
West Block	<u>14.89</u>	10.97	25.86
	28.56	19.56	48.12

The detailed calculations are presented in tables 4.1 and 4.2 at the end of this chapter.

4.2.1 Resource Estimation Methodology

The resources were measured by planimetering the area between total silica sand (Paddy Member) isopach lines drawn on a 1:5000 scale plan. The thickness of the unit was derived by averaging the values of the isopachs bordering a particular area. This provided the volume, in cubic yards, of sand situated in each bank within the measured and inferred resource categories.

The tonnages (2000 lb short tons) were determined on a "dry" sand basis because commercial specifications are referred to as a "dry" product. Densities of 1.35

tons/cubic yard for the west bank sand and that of 1.31 tons/cubic yard for the east bank sand were used to compute short tons. The variation in densities is a reflection of the average grain size in each of the resource blocks. The short ton values were subsequently converted to metric meters.

4.2.2 Resource Classification Scheme

The degree of confidence in the estimated quantities of resource in the silica sand deposit is designated by the terms "measured" and "inferred".

<u>Measured resources</u> - are tonnages computed from data revealed in outcrops, trenches and boreholes for which the density and quality of points of observation are sufficient to allow a reliable estimate of sand unit thickness.

<u>Inferred resources</u> - estimates are computed by projection of thickness, sample and geologic data from outcrops, trenches and drill holes for a 250 metre distances. There are no sample measurements or inspection sites in the inferred resource area.

4.2.3 Base Data

A thorough review of the existing files was carried out to compile data base for the resource and quality estimations of the deposit. Regrettably, a portion of the records were found to be sketchy or missing and had to be excluded. Geological work completed by Crockford 1947, Banfield 1953, and Lichtenbelt 1982, was considered the

most acceptable as these individuals provided the necessary geologic control and descriptions. A summary of the number of data points used in each of the reserve blocks is as follows.

East Block

Number of boreholes	-	48
West Block		
Number of boreholes	-	10
Trenches	· - ·	7
Outcrop localities	-	5

Map sheet No. 4.1 illustrates the total thickness of the Paddy silica sand unit, borehole distribution, trenches and outcrop localities.

TABLE 4.1

EAST BLOCK RESOURCE ESTIMATE

Measured Category

AREA DESIGNATION	AREA SQUARE FEET	THICKNESS FEET	CUBIC YARDS
E1.1 E1.2 E1.3 E1.4 E1.5 E1.6 E1.7 E1.8 E1.9 E1.10 E2.1 E2.2 E2.3 E2.4 E2.5 E2.6 E2.7 E2.8 E2.9 E2.10 E2.11 E2.12			
E2.13 E2.14 E2.15 E2.16 E2.17	1,220,377 944,520 928,813 293,309 <u>322,989</u> 12,985,920	$ \begin{array}{r} 22.5 \\ 17.5 \\ 12.5 \\ \overline{} \\ \underline{} \\ \underline{} \\ 25 \\ \overline{} \\ \overline{} \\ \overline{} \\ \overline{} \\ \overline{} \\ \overline{} \\ \overline{} \\ \overline{} \\ \overline{} \\ \overline{} \\ \overline{} \\ \overline{} \\ \overline{} \\ \overline{} \\ \overline{} \\ $	$ \begin{array}{r} 1,018,980\\ 612,193\\ 430,006\\ 81,475\\ \underline{29,906}\\ 11,502,105\end{array} $

Silica Sand (dry tons) = 1.31* x 11,502,105 = 15,067,757

(or 13,669,168 metric tonnes)

* Density = 1.31 tons per cubic yard

Weighted average thickness of silica sand unit within the East Block measured category is 23.91 feet or 7.29 metres.

EA	THICKNESS	CUBIC YARDS
180	2.5	22,147
695	7.5	65,471
,100	13.5	783,050
495	13.5	372,747
530	17.5	198,029
143	22.5	480,119
.6 66	27.5	793,085
792	31.25	470,824
350	12.5	44,838
,789	17.5	43,289
719	22.5	130,599
140	27.5	200,078
. 30,6	30.0	917,562
6 86	27.5	352,087
5 69	22.5	293,890
, i 7 9	30.0	616,310
,232	27.5	736,625
6 <u>07</u>	22.5	705,506
84	21.6	7,225,256

HICKNESS	CUBIC
FEET	YARDS
26.45	8,289,186
8.5	665,416
22.8	8,954,602

4,602 = 12,088,713 6,638 metric tonnes) s and unit within the feet or 6.95 metres.

 $1.31 \times 7,226,256 = 9,466,395$

(or 8,587,724 metric tonnes)

of silica sand unit in East is 21.6 feet or 6.58 metres.

5.0 <u>QUALITY</u>

5.1 <u>Grain Size</u>

In the East Block, 200 Paddy Member silica sand samples collected from 21 boreholes were used to estimate the grain size average percentages. In the West Block, 105 samples from 7 boreholes were combined with the results from 3 bulk trench samples to estimate the average grain size of the sand.

Tables 5.1 and 5.2 illustrate the database used in the calculation. It is apparent that there is significant variation in the distribution of grain size throughout the deposit.

The following U.S. Standard Sieve Size ranges on a percent basis <u>indicated</u> within the deposit are:

<u>U.S. Sieve</u>	<u>East Block</u>	<u>West</u> <u>Block</u>
0- 12	1.0	0.2
12- 20	2.8	6.2
20- 40	16.4	22.5
40- 60	20.2	30.5
60-100	31.4	21.3
100-200	14.4	14.9
Minus 200	13.8	4.4
	100%	100%

The total estimated silica sand resources so far defined in the East and West Blocks are 22.26 and 25.86 million tonnes, respectively. Portioning the resource into the various sieve size ranges amounts to the <u>possible</u> tonnages listed below:

	<u>Block</u>		Total East &
<u>U.S.</u> <u>Sieve</u>	<u>East</u>	<u>West</u>	West Blocks
	•	(million to	nnes)
0- 12	0.22	0.05	0.27
12- 20	0.63	1.60	2.23
20- 40	3.65	5.82	9.47
40~ 60	4.50	7.89	12.39
60-100	6.99	5.51	12.50
100-200	3.20	3.85	7.05
Minus	3.07	1.14	4.21
		·	
	26.26 Mt.	25.86 Mt.	48.12 Mt.

.

÷

•

EAST BLOCK GRAIN-SIZE ESTIMATION

EAST BLOCK SOUTH END (TOTAL UNIT)

HOLB	NUMBER OP	thickness		SIZE - % ; +10	RETAINED ¦ +20 ¦	+40	+60	+100	+200	-200
63A	10	20	-	1.1	7.1	12.0	5.5	14.7	48.5	10.8
64	: 10	20	0.4	1.5	3.8	11.0	7.9	19.6	39.1	16.1
66	; · 14	28	-	0.9	3.2	4.9	7.1	37.1	39.1	7.5
67	¦ 11	22	0.8	2.4	6.7	9.8	7.1	: 20.9	38.7	13.1
68	: 12	24	¦ ¦ -	; 0.4	6.9	17.8	15.6	; 34.2	18.6	6.4
73	: 6	12	, , , –	-	0.7	7.8	29.6	¦ 55.3	5.1	1.4
74	: 14	28	: ; 0.1	¦ ¦ 1.2	6.1	17.8	14.1	45.6	10.7	4.1
75	: ; 15	30	¦ . ¦ -	0.6	; 3.7	8.9	13.7	50.9	16.0	8.4
17	: : 4	¦ ¦ 8	; -	0.70	10.8	19.2	10.3	: 12.0	30.6	13.0
78	¦ ¦ 3	6	 -	5.7		25.3	8.3	12.3	22.8	11.3
1 79	6	12	 -	4.8	6.2	- 14 . 3	6.3	15.2	26.2	27.1
; 87	¦ ¦ 7	: ; 14	¦ ¦ -	1.1	3.4	15.9	28.8	28.2		11.4
92	; ; 10	20	-	1.0	 	20.2	18.5	33.8	12.2	8.9
94	 13	26	: ; -	0.2	3.0	8.0	17.8	53.8	12.6	4.5
E-89-4	; ; 4	13	-	: : 0.1	3.7	27.6	-	-	5.4	4.5
Weighted Average		• • • • • • • • • • • • • • • • • • •	; 0.1	1.2	5.1	13.1	13.3	34.4	22.7	10.1
15 holes	;	· · ·	1 1	1	;		}) 1		1

TABLE 3.1

EAST BLOCK - NORTH END (TOTAL UNIT)

	HOPE	: NUMBER OP : SAMPLES	: thickness	+8	;	+10	; ;	+16	;	+20	;	+30	; ; +	40	: : +50	:	+100	; ; +200	; ; 	-200
	E-89-1	7	21.5	-	1	0.1	:	0.2	:	0.6		2.6	:	1.1	: 21,.5	;	42.5	15.3		9.5
	E-89-2	8	30	-	;	0.1	i 	0.1	i 	0.5	1	1.5	i 1 1	3.3	12.8		41.4	24.3		16.0
	E-89-3	15	42.5	-		0.1	i 	0.2	;	1.1	;	1.8	1	0.7	15.7	i 	25.8	24.8		19.8
:	E-89-5	13	28	-	;	0.1		1.6		4.9		12.5	: 2	0.9	; ; 23.3	;	18.3	11.9	1	6.5
;	E-81-1	8	: : N/A	-		0.1		2.6	;	1.7		9.6	; ; 1	8.0	: : 30.2	:	-	-	;	-
:	E-81-2	: 10	: N/A	: : 0.1	;	0.1	: 4	4.9	;	3.2	;	8.4	; ; 1	2.3	; ; 27.3	:	-	-	1	-
;	•••••		•••••• ! !	; 0.1		0.1	:	1.3		1.9	;	5.4	1	1.6	: 20.20	;	32.1	12.7	:	14.6

AVERAGE GRAIN SIZE EAST BLOCK

MESH BANGE

	WEIGHTING	+10	10-20	20-40	40-100	100-200	-200
SOUTH END	173	1.3	5.1	13.1	47.7	22.7	10.1
NORTH BND	831	0.2	3.2	17.0	52.3	12.7	14.6
	100	3.5	3.5	16.4	51.6	14.4	13.8

WEST BLOCK-GRAIN SIZE ESTIMATION

TABLE 5.2

WEST BLOCK NORTH END (TOTAL UNIT)

 	HOLE	:	NUMBER OF SAMPLE	 !s:	FEBT THICKNESS		+4	;	+10			SIZE - : +40					;	+200	÷	-200
				 !		 !		 !		 !		 !			 !		 !		• !	
	102		11 -	Ì	22	;	-	;	0.55		8.5	32.8		34.1		18.0	ł	3.9	;	1.7
	109	;	24	; ;	48	;	-		0.10	;	4.8	32.0		30.6	-i 	16.25	i	3.9	;	1.6
	111	i 	11	i 	22	i 	-	1	0.6	i 	1.4	6.2		43.8		33.0	1	12.1	;	2.8
	112	; ; ;	28	i 1 1	56	;	-	;		i 	3.1	32.0	;	39.3	;	14.9	i	7.3	;	2.2
	113	1	19	i 	38	;	-	;	-	i 	4.7	17.1		29.3		26.7		8.0	; ; ;	4.2
	114		1	1	14	i 	-	1	-		1.6	11.3	1	43.1	1	28.4	1	12.0	i 	3.6
	116	1	5	;	10	i 	-	1	-	i 1 1	1.2	5.8	1	37.2	; ; 4	2.4	;	10.7	; ; ;	2.7
ſ	RENCH 1	;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;			17.5	:		• • • • •		• • •		35.71		36.18	; ; ;	6.33			* * *	
ĩ	RENCH 2	1		;	20	:						33.35		34.76	: : 1	9.14			:	
ſ	RENCH 3				16	:		;		:	:	47.18	:	35.86	: : 1	0.08	:	i	, , ,	
	EIGHTED VBRAGE	;		:				:	0.1	; (5.3 ;	27.1	;	35.8	: 2	0.6	 ! !	7.3		2.7

28.

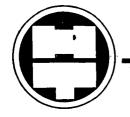
WEST BLOCK - SOUTH END (TOTAL UNIT)

1	HOLE				THICKNBSS (feet)	•	+4	;	+10	;	+20	;	+40 ;	+60	:	+100 ;	+200	!	-200
:	117	;	· 13	1	26	;		 	0.4	;	5.2	;	; 8.5 ;	24.6	;	; 31.5 ;	23.9	;	7.5
;	119		10	:	20		-	:	2.0		7.9		23.3	13.6		18.8	28.9		6.2
:	120	;	11	1	22	;	-	;	0.2	;	6.0		23.8	35.2	•	13.8 ;	15.3	:	4.8
; -		;		1		;	-	;	0.3	!	6.2	;	17.8 ;	24.9	·	22.1 ;	22.5	;	6.2

AVEBAGE GRAIN SIZE - WEST BLOCK MESH RANGE

	WEIGHTING					100-200 -20	
SOUTH END	50%	0.3	6.2	17.8	47.0	22.5 6.2	!
NOBTH END	50%	0.1	6.3	27.2	56.4	7.3 2.7	
		0.2	6.2	22.5	51.7	14.9 4.4	

29.


5.2 <u>Chemical Analysis</u>

A limited number of chemical analyses were carried out in the past, but no detailed conclusions can be reached from these results since the small number of samples cannot be considered representative of the whole deposit. General indications are that the sand is sufficiently clean for frac sand and that it can be treated to obtain glass quality sand.

A simple arithmetic average of the available chemical analysis of sand from the Paddy Member is as follows:

	East Block	<u>West</u> <u>Block</u>
	%	z
SiO ₂	98.20	98.36
Fe0 ₂	0.478	0.153
A1203	0.127	0.782
Ti0 ₂	0.08	0.257
CaO	0.16	0.04
Mg0	0.007	Trace
Na ₂ 0	0.009	0.162
K ₂ 0	0.89	0.23
Mn0	0.0039	
		<u> </u>
Total	99.955%	99.984%

30.

Hardy **BBT** Limited

CONSULTING ENGINEERING & PROFESSIONAL SERVICES

Our Project No. Your Reference No.

April 24, 1989

Peace River Silica Sand Ltd. 14010 - 128 Avenue EDMONTON, Alberta T5L 4M8

Attention: Mr. Joe M. Grguras, President

Subject: Field Investigation and Laboratory Testing Program Silica Sand Deposit Near Peace River, Alberta

Gentlemen:

1.0 INTRODUCTION

As requested, a field and laboratory test program was recently undertaken in accordance with your letter of authorization dated February 20, 1989. The work scope undertaken was in general conformance with the Hardy BBT Limited proposal for the subject project dated January 10, 1989. The program involved advancing five boreholes, recovering selected sand samples, and conducting a series of tests utilizing the American Petroleum Institute, Recommended Practices, for Testing Sand Used in Hydraulic Fracturing Operations, API RP56, First Edition, March, 1983.

The field work portion of the study was completed in March, 1989 and although the laboratory work is nearly complete, the results and findings compiled to-date are presented in this letter-report. The laboratory work scope still underway consists of the sand mineralogical analyses (x-ray differention tests) which are being conducted by the Alberta Research Council. This phase of the study is expected to be completed and available by the end of May, 1989.

2.0 FIELD EXPLORATION

The field work portion of the investigation, including site reconnaissance, borehole drilling, and soil sampling, was conducted during the time period of March 5 to 12, 1989. A total of five boreholes were drilled to depths ranging from 127 feet to 150.5 feet below the existing ground surface elevations. The boreholes were advanced at locations determined and surveyed by representatives of, or acting on behalf of, Peace River Silica Sand Ltd. The locations of the boreholes are shown on the

4810 - 93 STREET, P.O. BOX 746, EDMONTON, ALBERTA T5J 2L4 TELEPHONE (403) 436-2152 TELEX 037-3750 FAX: (403) 435-8425 GEOTECHNICAL AND MATERIALS ENGINEERING — ENVIRONMENTAL. MATERIALS AND CHEMICAL SCIENCES BONNYVILLE CALGARY EDMONTON FORT MCMURRAY KAMLOOPS LETHBRIDGE LLOYDMINSTER MEDICINE HAT PEACE RIVER PRINCE ALBERT PRINCE GEORGE RED DEER REGINA SASKATOON VANCOUVER

- 2 -

attached site plan, Drawing No. EA11423-1. Continuous logs of the subsurface conditions, as encountered in the boreholes, were recorded at the time of drilling and are presented on the attached borehole logs, Drawing Nos. EA11423-2 to -6. Drilling was accomplished with a truck mounted Becker drill rig utilizing a combination of casing and hammer, and tri-cone drilling.

Soil sampling consisted of recovering disturbed soil samples from the drill cuttings at selected depths in all of the boreholes. Additionally, two sand samples were recovered from sand deposits within the area, at locations identified by representatives of Peace River Silica Sand Ltd. All soil samples recovered in the field were sealed to prevent moisture loss and were taken to the Edmonton laboratory for testing and analysis.

3.0 <u>LABORATORY TESTING</u>

Selected sand samples were tested in the laboratory to determine certain physical properties of the material relative to the use of the sand for use in hydraulic fracturing operations. Grain size analyses were conducted on a majority of the recovered sand samples to determine the particle size distributions. On the basis of the grain size distributions, a limited number of sand samples were selected for additional testing. The samples were prepared for this phase of the testing by washing and sieving in order to achieve a grain size analysis for each sample which satisfied the 20/40 fractured sand size designation as given in Table 4.1 - API RP 56, First Edition, March, 1983. Subsequent to the processing, the individual samples were tested to determine sphericity and roundness, solubility in acid, turbidity, and crush resistance determinations. All of the above tests were conducted in accordance with the recommended practices of the American Petroleum Institute, API RP 56, First Edition, March, 1983.

The test data and supplementary notes are presented on the attached Table Nos. 1 to 10. Test results which indicated compliance or non-compliance of materials with the American Petroleum Institute recommended criterion are identified.

- 3 -

If there are any questions please contact this office.

Respectfully submitted

Hardy BBT Limited

D.F. Cox, P.Eng. Senior Engineer Materials Engineering

DFC/jh/EA11423LDFC

Distribution: (12) Addressee

Enclosures: Table Nos. 1 to 10 Drawing Nos. EA11423-1 to -6

GRADATION ANALYSES CONDUCTED ON SAND DEPOSITS BOREHOLE NO. E89-1

Total Percent Passing (By Mass)

Sieve	Sample No.	1	2	3	4	5	6	7
Designation*	Depth (feet)	94-96	96-98	98-100	100-102	102-104	104-106	106-108
8 10 16 20 30 40 50 100 200		100 100 99.9 99.5 97.0 86.0 53.0 11.7 3.0	100 100 99.6 97.4 87.7 56.6 15.1 4.6	100 100 99.8 98.4 92.4 78.3 49.5 10.5 3.1	100 99.9 99.6 98.7 95.1 84.7 58.2 10.0 2.7	100 99.9 99.8 99.3 97.8 93.6 78.4 18.4 5.1	100 99.4 99.3 99.0 98.0 95.7 87.6 40.7 9.9	100 100 99.8 99.4 98.2 95.9 88.1 40.5 11.2

* U.S.A. Sieve Series (ASTM E 11-81)

EA11423L.DFC

GRADATION ANALYSES CONDUCTED ON SAND DEPOSITS BOREHOLE NO. E89-2

Total Percent Passing (By Mass)

	Sample No. Depth (feet)	1 100- 102	3 104- 106	5 108- 110	7 112- 114	9 116- 118	11 120- 122	13 124- 126	15 128- 130	18 132- 134	20 136- 141	22 144- 148
Sieve Designation*												-
8		100	100	100	100	100	100	100	100	100	100	100
10		100	100	100	100	99.9	99.8	100	100	100	99.9	99.9
16		99.3	100	100	100	99.9	99.7	100	100	99.9	99.8	99.9
20		96.3	99.6	99.9	99.9	99.8	99.6	99.9	99.9	99.8	99.8	99.8
30		87.4	97.5	99.8	99.7	99.8	99.6	99.7	99.4	99.8	99.5	99.2
40		77.0	90.2	98.5	97.8	99.6	99. 4	98.5	95.8	99.7	98.5	97.2
50		65.2	77.7	79.3	72.7	97.8	98.5	86.7	76.3	99.4	93.6	93.2
100		42.7	57.3	20.3	14.1	68.2	71.5	23.5	25.4	88.4	60.1	75.8
200		25.1	30.0	7.3	4.5	19.2	23.4	9.2	9.7	27.4	21.6	43.2

* U.S.A. Sieve Series (ASTM E 11-81)

EA11423L.DFC

GRADATION ANALYSES CONDUCTED ON SAND DEPOSITS BOREHOLE NO. E89-3

Total Percent Passing (By Mass)

Sample No. Depth (feet		3 112- 114	5 116- 118	7 120- 122	8 122- 124	9 124- 126	10 126- 128	11 128- 130	12 130- 138	13 138- 140	14 140- 141	15 141- 144	16 144- 147	17 147- 150	18 150- 150.5
Sieve Designation*															-
8	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100
10	100	100	99.9	99.9	99.5	100	100	<u>99.9</u>	100	100	100	99.9	100	100	99.9
16	99.9	99.9	99.8	99.9	99.3	99.9	100	99.8	100	99.4	99.5	99.8	100	99.0	97.6
20	99.5	99.5	99.8	99.8	99.0	99.5	99.7	99.0	99.8	98.2	98.8	99.4	100	91.9	76.8
30	98.7	98.8	99.5	99.8	97.6	96.1	99.3	91.9	95.7	88.3	89.2	97.0	99.9	81.1	48.6
40	97.9	98.4	99.3	99.7	90.1	80.2	72.8	63.6	73.3	63.3	65.6	88.4	98.9	72.9	38.6
50	94.5	97.8	98.8	99.6	79.3	57.9	28.1	20.3	39.7	36.2	43.6	74.2	91.3	59.8	30.6
100	74.9	80.0	89.9	90.1	62.2	42.0	12.3	6.4	9.0	6.1	10.3	21.6	27.8	21.4	14.4
200	32.1	34.0	36.2	33.4	31.2	30.2	7.3	2.8	4.8	2.4	4.9	7.0	12.0	10.8	8.8

* U.S.A. Sieve Series (ASTM E 11-81)

GRADATION ANALYSES CONDUCTED ON SAND DEPOSITS BOREHOLE NO. E89-4

Total Percent Passing (By Mass)

	Sample No. Depth (feet)	1 54-56	2 56-60	3 60-65	4 65-67	5 112-114
Sieve Designation*						
8		100	100	100	100	100
10		100	100	100	9 9. 7	100
16		100	99.9	99.5	97.6	99.9
20		99.6	99.7	94.5	89.9	99.8
30		90.9	95.8	74.4	71.0	99.2
40		72.1	83.0	62.0	56.6	98.2
50		49.9	64.2	51.4	47.3	96.6
100		4.7	9.3	8.1	21.2	93.2
200		2.5	4.2	4.0	8.6	29.1

* U.S.A. Sieve Series (ASTM E 11-81)

GRADATION ANALYSES CONDUCTED ON SAND DEPOSITS BOREHOLE NO. E89-5

Total Percent Passing (By Mass)

Sample No. Depth (feet)	1 110- 112	3 114- 116	4 116- 118	5 118- 120	6 120- 122	7 122- 124	8 124- 126	9 126- 128	10 128- 130	11 130- 132	12 132- 134	13 134- 136	14 136- 138
Sieve Designation*													
8	100	100	100	100	100	100	100	100	100	100	100	100	100
10	100	99.9	99.9	100	99.9	99.9	99.8	100	99.9	99.9	99.9	100	100
16	100	98.7	95.5	98.8	98.4	96.5	96.7	99.0	97.9	98.8	98.3	99.1	98.3
20	99.9	95.3	83.7	93.6	92.7	86.2	88.1	94.6	93.7	95.4	94.2	95.3	94.2
30	99.8	87.8	60.5	74.7	75.8	64.0	69.4	80.6	83.0	85.5	82.8	82.9	84.8
40	99.6	80.0	35.2	42.1	44.3	34.1	42.3	53.2	60.3	63.5	59.5	56.7	68.2
50	98.2	72.5	15.0	14.2	15.6	11.6	19.1	26.5	28.3	26.8	23.3	20.8	40.4
100	84.7	51.1	4.5	2.4	2.3	2.2	3.3	3.5	2.5	2.7	2.0	2.3	6.5
200	31.7	17.8	1.7	0.8	0.7	0.6	1.1	0.6	0.6	0.7	0.5	0.7	2.3

* U.S.A. Sieve Series (ASTM E 11-81)

GRADATION ANALYSES CONDUCTED ON SAND DEPOSITS MISCELLANEOUS LOCATIONS

Total Percent Passing (By Mass)

Location	West Bank Trench #4	West Bank Dynamite Blast		
Sieve Designation*		•		
8	100	100		
10	99.2	100		
16	95.8	99.9		
20	85.8	99.9		
30	69.1	99.8		
40	53.0	99.8		
50	30.2	99.7		
100	3.5	94.5		
200	0.9	18.3		

* U.S.A. Sieve Series (ASTM E 11-81)

EA11423L.DFC

CONSULTING ENGINEERING & PROFESSIONAL SERVICES

Ï

TABLE NO. 7

FRAC SAND SPHERICITY AND ROUNDNESS

Borehole	Sample <u>No.</u>	Depth (feet)	Average Sphericity*	Average Roundness**
		7	<u>opnononj</u>	Rounditoss
E89-1	3	98-100	0.7	(0.5)
E89-3	9	124-126	0.7	0.6
E89-3	10	126-128	0.8	0.6
E89-3	11	128-130	0.7	0.6
E89-3	13	138-140	0.7	0.6
E89-3	14	140-141	0.7	0.6
E89-3	18	150-150.5	0.7	(0.5)
E89-4	3	60-65	0.8	(0.5)
E89-4	4	65-67	0.7	(0.5)
E89-5	4	116-118	0.7	0.6
E89-5	5	118-120	0.7	0.6
E89-5	6	120-122	0.7	0.6
E89-5	7	122-124	0.7	0.6
E89-5	8	124-126	0.8	0.7
E89-5	. 9	126-128	0.8	0.7
E89-5	10	128-130	0.7	0.7
E89-5	12	132-134	0.7	0.7
West Bank	Trench #4		0.6	0.6

* API RP 56, First Edition, March, 1983, Section 5.2 ** API RP 56, First Edition, March, 1983, Section 5.3 () Less than the recommended minimum value of 0.6

TABLE NO. 8

SAND SOLUBILITY IN ACID

Borehole <u>No.</u>	Sample <u>No.</u>	Depth (feet)	Solubility* (% by Weight)
E89-1	3	98-100	0.84
E89-3	9	124-126	0.80
E89-3	10	126-128	0.79
E89-3	11	128-130	0.84
E89-3	13	138-140	0.93
E89-3	14	140-141	0.84
E89-3	18	150-150.5	0.86
E89-4	3	60-65	0.53
E89-4	4	65-67	0.81
E89-5	4	116-118	0.74
E89-5	5	118-120	1.12
E89-5	6	120-122	0.82
E89-5	7	122-124	0.81
E89-5	8	124-126	0.84
E89-5	9	126-128	0.81
E89-5	10	128-130	1.01
E89-5	12	132-134	0.81

* API RP 56, First Edition, March, 1983, Section 6 () Greater than the recommended maximum value of 2.0 percent by weight

EA11423L.DFC

TABLE NO. 9

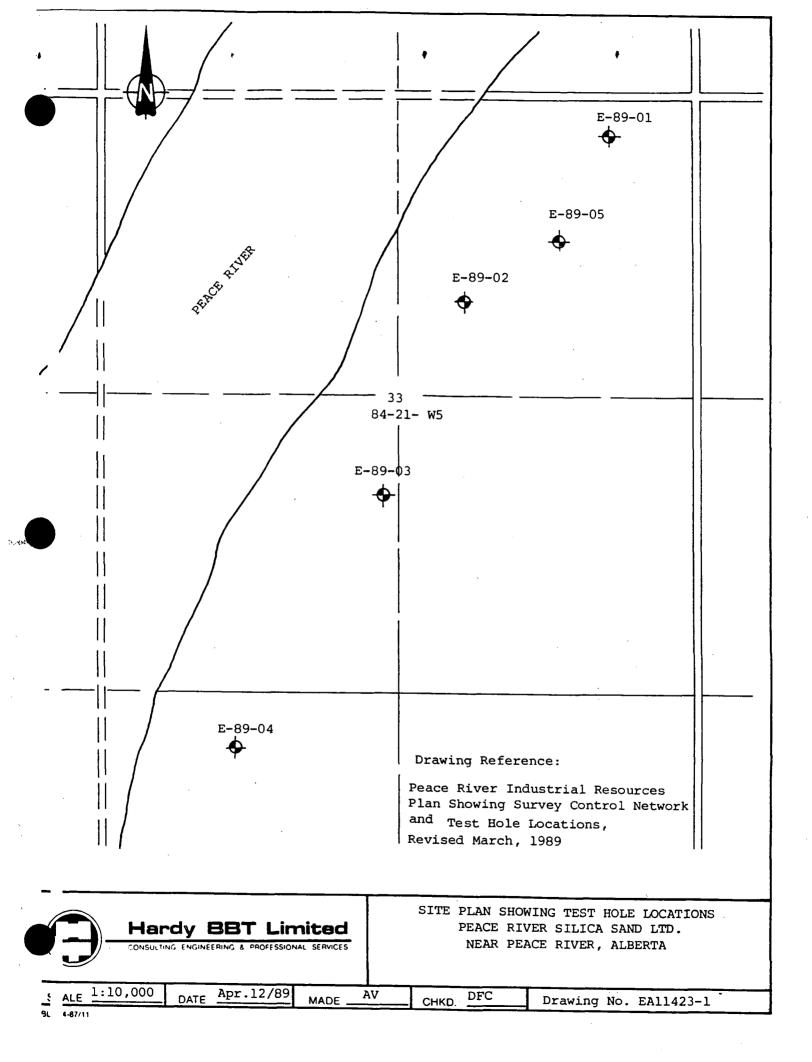
1

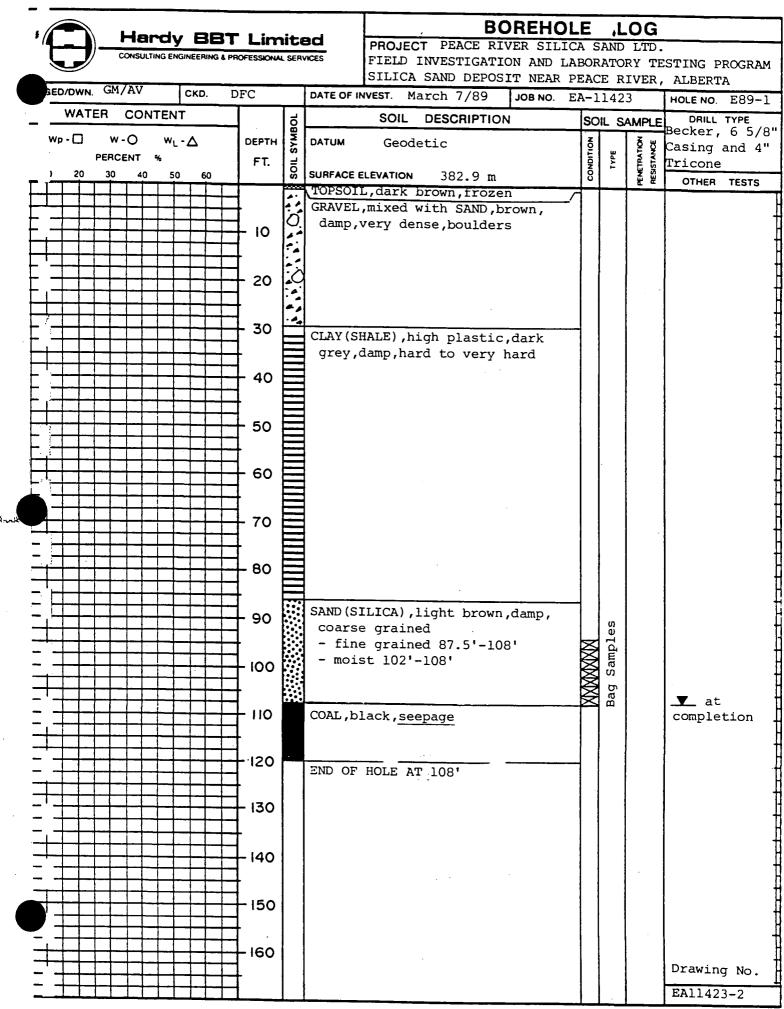
TURBIDITY MEASUREMENT OF SILT AND CLAY SIZE PARTICULATE MATTER

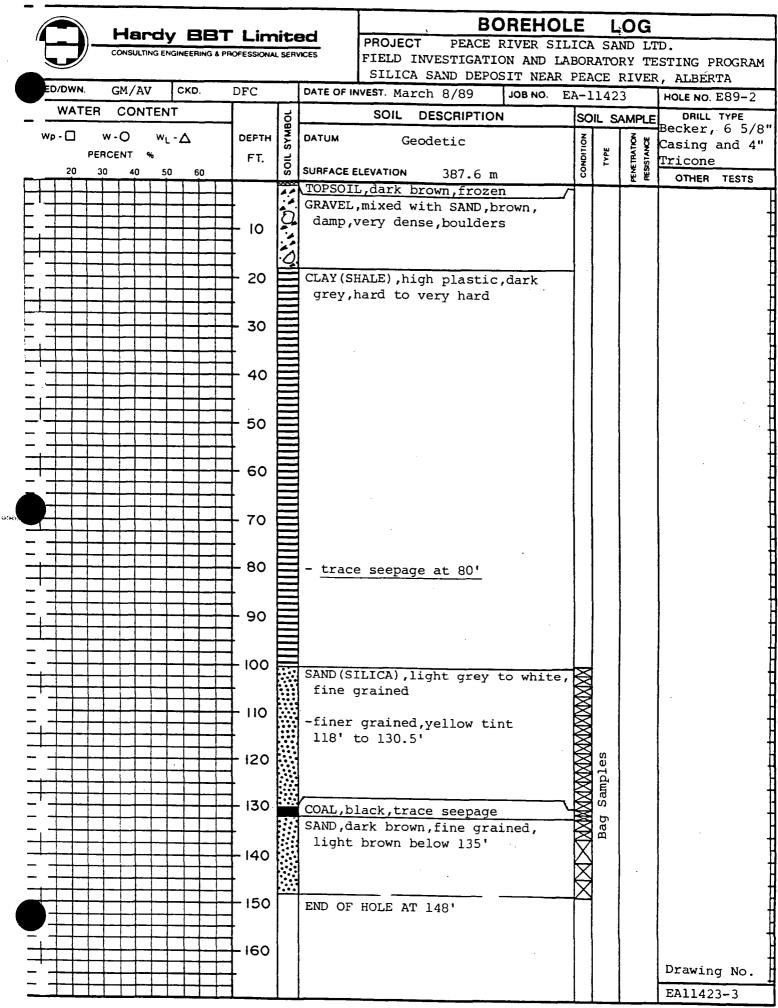
Borehole <u>No.</u>	Sample <u>No.</u>	Depth (feet)	Turbidity* (FTU)
E89-1	3	98-100	79
E89-3	9	124-126	46
E89-3	10	126-128	63
E89-3	11	128-130	60
E89-3	13	138-140	54
E89-3	14	140-141	56
E89-3	18	150-150.5	54
E89-4	3	60-65	7
E89-4	4	65-67	54
E89-5	4	116-118	44
E89-5	5	118-120	33
E89-5	6	120-122	74
E89-5	7	122-124	36
E89-5	8	124-126	37
E89-5	9	126-128	47
E89-5	10	128-130	21
E89-5	12	132-134	54

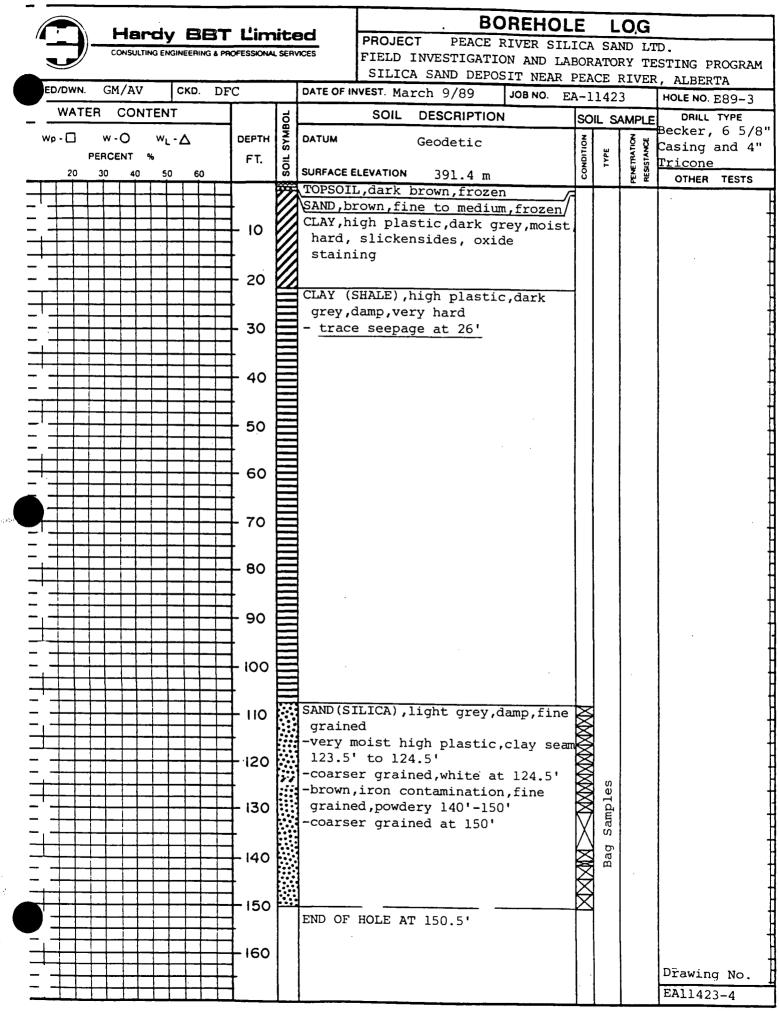
* API RP 56, First Edition, March, 1983, Section 7, Method I () Greater than the recommended frac sand turbidity value of 250 FTU

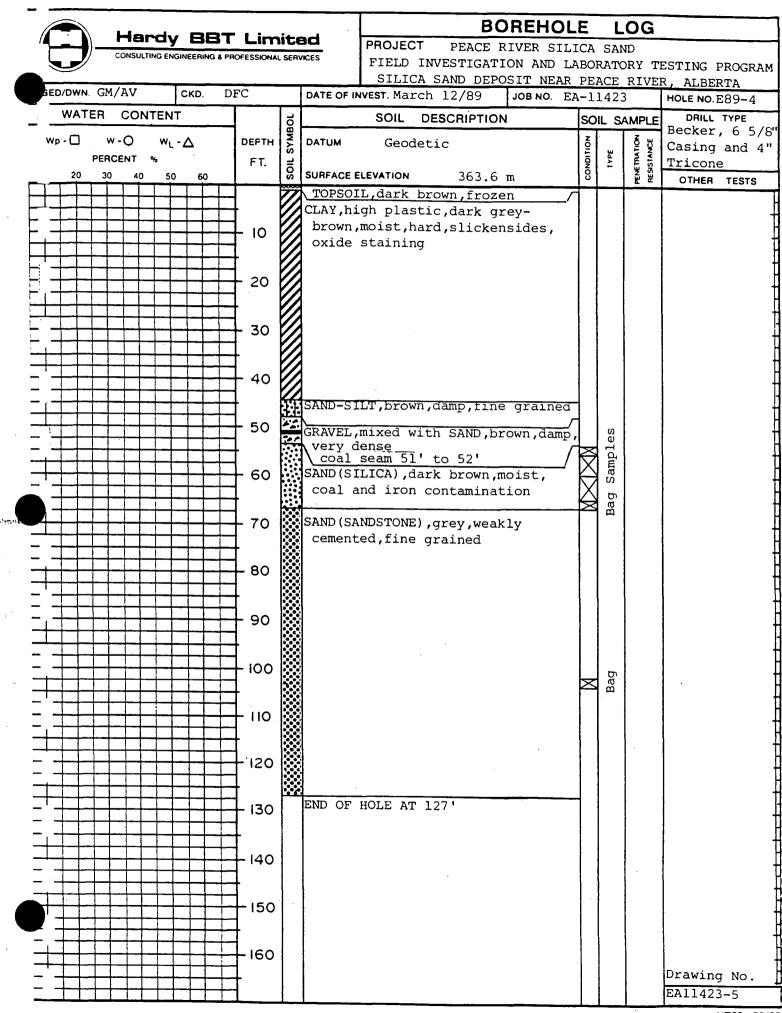
EA11423L.DFC

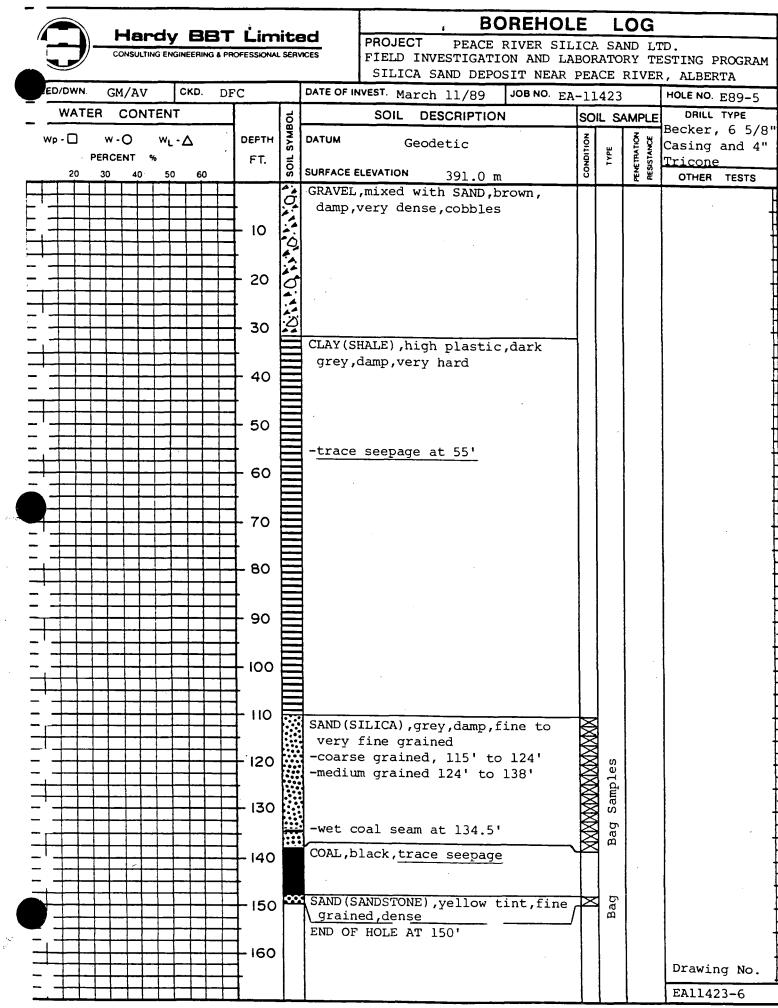

TABLE NO. 10

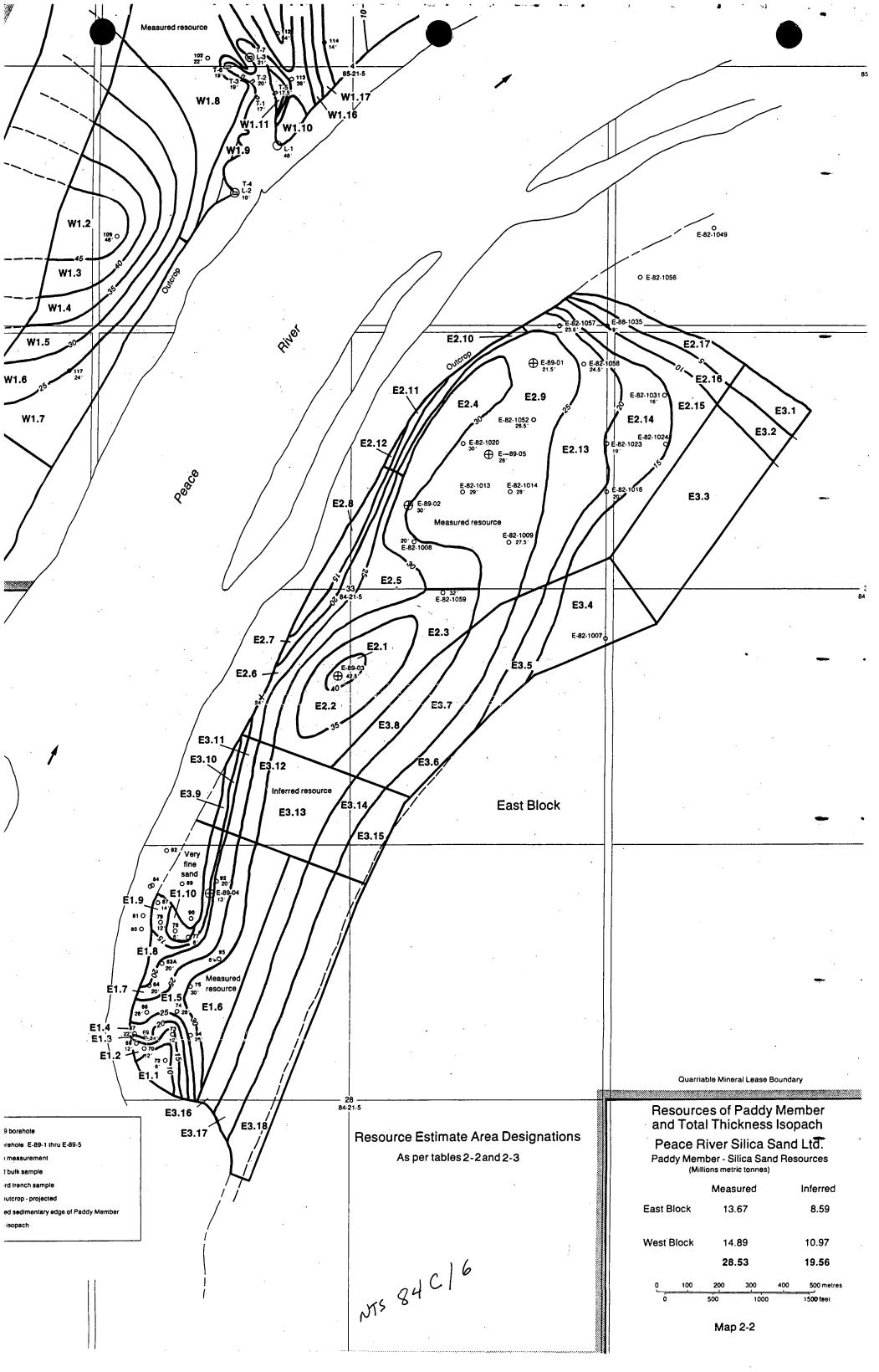

FRAC SAND CRUSH RESISTANCE

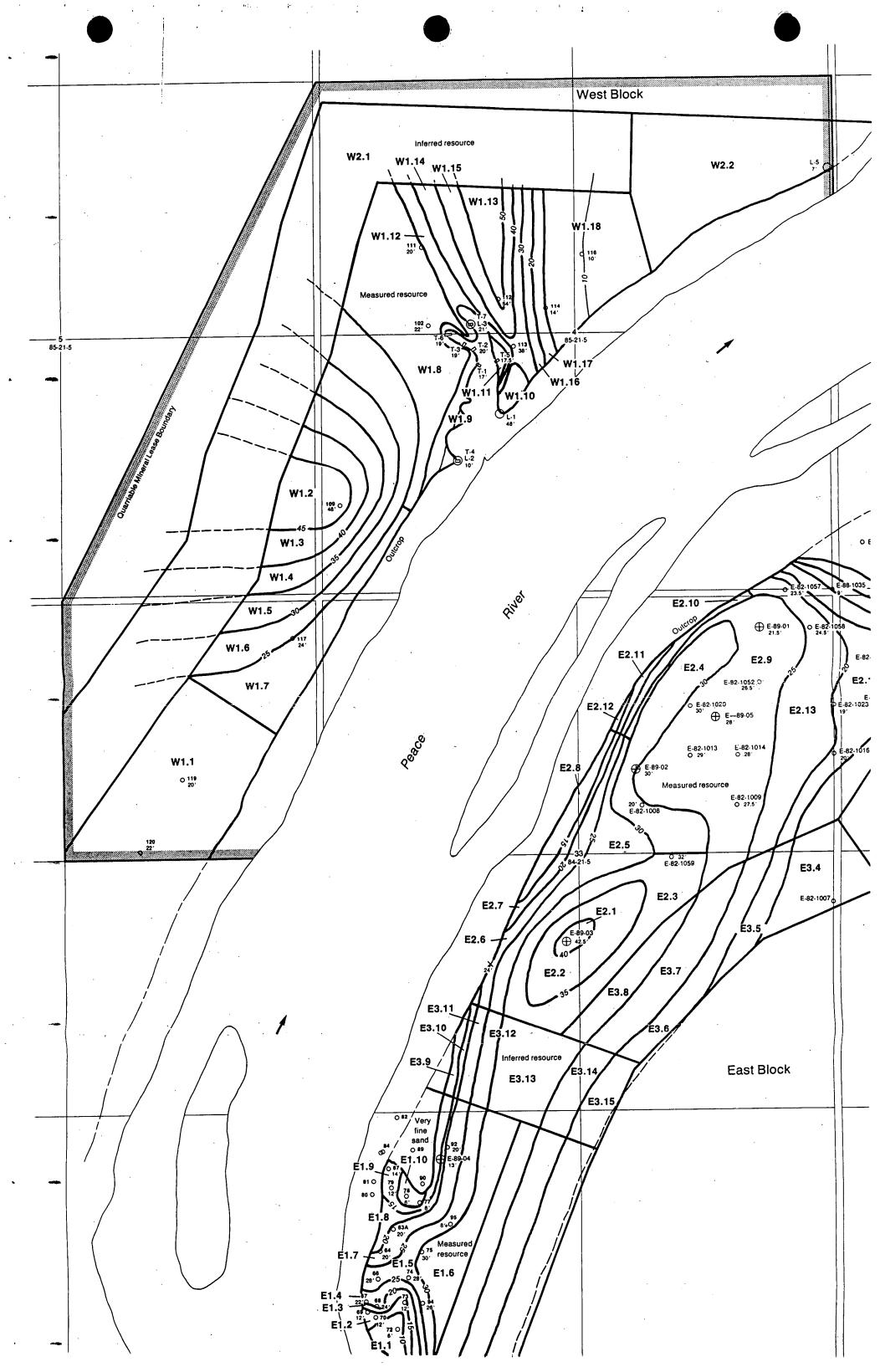

Borehole Sample Depth Crush Resistance* No. <u>No.</u> (feet) (% Fines by Weight) E89-1 3 98-100 13.9 9 E89-3 124-126 10.8 E89-3 10 126-128 (15.6)E89-3 11 128-130 12.5 E89-3 13 138-140 12.1 E89-3 14 140-141 11.7 E89-3 18 150-150.5 13.7 E89-4 3 60-65 13.0 E89-4 4 65-67 (14.7)E89-5 4 116-118 12.9 5 E89-5 118-120 11.9 E89-5 6 120-122 13.9 E89-5 7 122-124 (14.0)E89-5 8 124-126 (15.2)E89-5 9 126-128 (14.8)E89-5 10 128-130 (16.7)E89-5 12 132-134 (15.0)West Bank Trench #4 --(14.6)


* API RP 56, First Edition, March, 1983, Section 8


() Greater than or equal to the recommended maximum fines value of 14 percent by weight.







ANAYLTICAL SERVICES

Manufacturing Technologies Department

Client:

Ultrasonic Industrial Sciences Ltd. Edmonton, Alberta

RE: Sand analysis report's appendix 1 and 2

Analyst: Date: Wendy Wade October 17,1994

Lithium Metaborate Analysis Procedure

The analytical procedure used to completely dissolve the sand samples uses lithium metaborate as the decomposition reagent. The salts formed during the fusion are dissolved in a weak acid solution to give a clear solution. The solution is analyzed by Inductively Coupled Plasma-Atomic Emission Spectroscopy (ICP).

Procedure:

Step 1	The sample is ground to a fine power in a Shatterbox.
Step 2	The ground sample is weighed into a platinum crucible along with the lithium metaborate.
Step 3	The crucible is heated over a propane flame until the fusion is completed. The resulting molten material is poured into a solution of nitric acid and water.
Step 4	The solution is stirred until the fused sample is completely dissolved at which time it is diluted to a known volume.
Step 5	The resulting solution is analyzed by ICP (Inductively Coupled Plasma-Atomic Emission Spectroscopy)
Step 6	The results from the ICP are reported as the detected minor elements and as the calculated oxides from the major elements.
Step 7	A loss on ignition analysis was conducted on all samples. (at 1000°C)

Note:

This method is used to analyze bulk samples for major and minor elements.

Appendix 2 Individual Analysis Reports

See the following 12 pages

REPORT OF ANALYLSIS

IDENTFICATION OF SAMPLE AS RECIEVED #1

Lab ID: Ultra 1

Method of analysis : Lithiummetaborat Fusion and ICP Analysis

Major Elements

Symbol	ULTRA 1
	ug/gm
. .	as detected by ICP
Ti	315
Al	2050
Fe	2443
Mn	<50
Mg	<50
Ca	<50
Na	<50
ĸ	1355
Р	<50
S	<50
	Ti Al Fe Mn Mg Ca Na K P

Component	Symbol	ULTRA 1 %(gm/100gm) Calculated as oxide
Titanium Dioxide	TiO ₂	0.05
Aluminum Oxide	Al ₂ O ₃	0.39
Ferric Oxide	Fe ₂ O ₃	0.35
Manganosite	MnO	<0.01
Magnesium Oxide	MgO	<0.01
Calcium Oxide	CaO	<0.01
Sodium Oxide	Na ₂ O	<0.01
Potassium Oxide	K ₂ O	0.16
Phosphorus Pentoxide	P ₂ O ₅	<0.01
Sulfur	s	<0.01
Lost on Ignition at 1000 C	L.O.I.	0.30
Silicon Dioxide ***	SiO ₂	98.74

***Note : Silicon Dioxide % was calulated by difference .

The % L.O.I was included in the final silicon dioxide calculation.

Minor Elements

Element Name	Symbol	ULTRA 1
		ug/gm
		as detected by ICP
Barium	Ba	59
Molybdenum	Мо	<50
Zinc	Zn	<50
Antimony	Sb	<50
Lead	Pb	<50
Cobait	Co	<50
Strontium	Sr	<50
Chromium	Cr	<50
Vanadium	V	<50
Selenium	Se	92
Cadmium	Cd	<50
Nickel	Ni	<50
Tungsten	w	<50

Analyst: Wendy Wade

REPORT OF ANALYLSIS

IDENTFICATION OF SAMPLE AS RECIEVED #2

Lab ID: Ultra 2

Method of analysis : Lithiummetaborat Fusion and ICP Analysis

Major Elements

Element Name	Symbol	ULTRA 2
		ug/gm
		as detected by ICP
Titanium	Ti	101
Aluminum	Al	715
Iron	Fe	2494
Manganese	Mn	<50
Magnesium	Mg	<50
Calcium	Ca	<50
Sodium	Na	<50
Potassium	К	76
Phosphorus	Р	<50
Sulfur	S	<50

Component	Symbol	ULTRA 2 %(gm/100gm) Calculated as oxide
Titanium Dioxide	TiO ₂	0.02
Aluminum Oxide	Al ₂ O ₃	0.14
Ferric Oxide	Fe ₂ O ₃	0.36
Manganosite	MnO	<0.01
Magnesium Oxide	MgO	<0.01
Calcium Oxide	CaO	<0.01
Sodium Oxide	Na ₂ O	<0.01
Potassium Oxide	K ₂ O	<0.01
Phosphorus Pentoxide	P ₂ O ₅	<0.01
Sulfur	S	<0.01
Lost on Ignition at 1000 C	L.O.I.	<0.1
Silicon Dioxide ***	SiO ₂	99.48

***Note : Silicon Dioxide % was calculated by difference .

The % L.O.I was included in the final silicon dioxide calculation.

Minor Elements

Element Name	Symbol	ULTRA 2
× .		ug/gm
		as detected by ICP
Barium	Ba	<50
Molybdenum	Мо	<50
Zinc	Zn	<50
Antimony	Sb	<50
Lead	Pb	<50
Cobalt	Co	<50
Strontium	Sr	<50
Chromium	Cr	<50
Vanadium	V	<50
Selenium	Se	66
Cadmium	Cd	<50
Nickel	Ni	<50
Tungsten	w	<50

Analyst: Wendy Wade

Manufacturing Technologies Department

REPORT OF ANALYLSIS

IDENTFICATION OF SAMPLE AS RECIEVED #3

Lab ID: Ultra 3

Method of analysis : Lithiummetaborat Fusion and ICP Analysis

Major Elements

Element Name	Symbol	ULTRA 3
		ug/gm
		as detected by ICP
Titanium	Ti	200
Aluminum	Al	2271
Iron	Fe	2729
Manganese	Mn	<50
Magnesium	Mg	<50
Calcium	Ca	<50
Sodium	Na	<50
Potassium	ĸ	1564
Phosphorus	Р	<50
Sulfur	S	<50

Component	Symbol	ULTRA 3 %(gm/100gm) Calculated as oxide
Titanium Dioxide	TiO ₂	0.03
Aluminum Oxide	Al ₂ O ₃	0.43
Ferric Oxide	Fe ₂ O ₃	0.39
Manganosite	MnO	<0.01
Magnesium Oxide	MgO	<0.01
Calcium Oxide	CaO	<0.01
Sodium Oxide	Na ₂ O	<0.01
Potassium Oxide	K ₂ O	0.19
Phosphorus Pentoxide	P ₂ O ₅	<0.01
Sulfur	S	<0.01
Lost on Ignition at 1000 C	L.O.I.	0.40
Silicon Dioxide ***	SiO ₂	98.56

***Note : Silicon Dioxide % was calculated by difference .

The % L.O.I was included in the final silicon dioxide calculation.

Minor Elements

Element Name	Symbol	ULTRA 3
		ug/gm
		as detected by ICP
Barium	Ba	72
Molybdenum	Мо	<50
Zinc	Zn	<50
Antimony	Sb	<50
Lead	Pb	<50
Cobalt	Co	<50
Strontium	Sr	<50
Chromium	Cr	<50
Vanadium	V	<50
Selenium	Se	97
Cadmium	Cd	<50
Nickel	Ni	<50
Tungsten	W	<50

Analyst: Wendy Wade

REPORT OF ANALYLSIS

IDENTFICATION OF SAMPLE AS RECIEVED #4

Lab ID: Ultra 4

Method of analysis : Lithiummetaborat Fusion and ICP Analysis

Major Elements

Element Name	Symbol	ULTRA 4
		ug/gm
		as detected by ICP
Titanium	Ti	85
Aluminum	Al	697
Iron	Fe	1743
Manganese	Mn	<50
Magnesium	Mg	<50
Calcium	Ca	<50
Sodium	Na	<50
Potassium	к	59
Phosphorus	Р	<50
Sulfur	S	80

Component	Symbol	ULTRA 4 %(gm/100gm) Calculated as oxide
Titanium Dioxide	TiO ₂	0.01
Aluminum Oxide	Al ₂ O ₃	0.13
Ferric Oxide	Fe ₂ O ₃	0.25
Manganosite	MnO	<0.01
Magnesium Oxide	MgO	<0.01
Calcium Oxide	CaO	<0.01
Sodium Oxide	Na ₂ O	<0.01
Potassium Oxide	K ₂ O	<0.01
Phosphorus Pentoxide	P ₂ O ₅	<0.01
Sulfur	S	<0.01
Lost on Ignition at 1000 C	L.O.I.	0.20
Silicon Dioxide ***	SiO ₂	99.40

***Note : Silicon Dioxide % was calculated by difference .

The % L.O.I was included in the final silicon dioxide calculation.

Minor Elements

Element Name	Symbol	ULTRA 4
		ug/gm
		as detected by ICP
Barium	Ba	<50
Molybdenum	Мо	<50
Zinc	Zn	<50
Antimony	Sb	<50
Lead	Pb	<50
Cobalt	Co	<50
Strontium	Sr	<50
Chromium	Cr	<50
Vanadium	v	<50
Selenium	Se	106
Cadmium	Cd	<50
Nickel	Ni	<50
Tungsten	W	<50

Analyst: Wendy Wade

ALBERTA RESEARCH COUNCIL

REPORT OF ANALYLSIS

IDENTFICATION OF SAMPLE AS RECIEVED #5

Lab ID: Ultra 5

Method of analysis : Lithiummetaborat Fusion and ICP Analysis

Major Elements

Element Name	Symbol	ULTRA
		ug/gm
		as detected by ICP
Titanium	Ti	89
Aluminum	AI	1028
Iron	Fe	2924
Manganese	Mn	<50
Magnesium	Mg	<50
Calcium	Ca	<50
Sodium	Na	<50
Potassium	к	364
Phosphorus	Р	<50
Sulfur	S	<50

Component	Symbol	ULTRA %(gm/100gm) Calculated as oxide
Titanium Dioxide	TiO ₂	0.01
Aluminum Oxide	Al ₂ O ₃	0.19
Ferric Oxide	Fe ₂ O ₃	0.42
Manganosite	MnO	<0.01
Magnesium Oxide	MgO	<0.01
Calcium Oxide	CaO	<0.01
Sodium Oxide	Na ₂ O	<0.01
Potassium Oxide	K₂O	0.04
Phosphorus Pentoxide	P ₂ O ₅	<0.01
Sulfur	S	<0.01
Lost on Ignition at 1000 C	L.O.I.	0.30
Silicon Dioxide ***	SiO ₂	99.02

***Note : Silicon Dioxide % was calculated by difference .

The % L.O.I was included in the final silicon dioxide calculation.

Minor Elements

Element Name	Symbol	ULTRA 1
		ug/gm
		as detected by ICP
Barium	Ba	<50
Molybdenum	Мо	<50
Zinc	Zn	<50
Antimony	Sb	<50
Lead	Pb	<50
Cobalt	Co	<50
Strontium	Sr	<50
Chromium	Cr	<50
Vanadium	V	<50
Selenium	Se	67
Cadmium	Cd	<50
Nickel	Ni	<50
Tungsten	W	<50

Analyst:

Wendy Wade

Analytical Services

Manufacturing Technologies Department

REPORT OF ANALYLSIS

IDENTFICATION OF SAMPLE AS RECIEVED #6

Lab ID: Ultra 6

Method of analysis : Lithiummetaborat Fusion and ICP Analysis

Major Elements

Element Name	Symbol	ULTRA 6
		ug/gm
		as detected by ICP
Titanium	Ti	689
Aluminum	Al	3405
Iron	Fe	6748
Manganese	Mn	50
Magnesium	Mg	<50
Calcium	Ca	<50
Sodium	Na	<50
Potassium	К	2550
Phosphorus	Р	<50
Sulfur	S	<50

Component	Symbol	ULTRA 6 %(gm/100gm) Calculated as oxide
Titanium Dioxide	TiO ₂	0.11
Aluminum Oxide	Al ₂ O ₃	0.64
Ferric Oxide	Fe ₂ O ₃	0.96
Manganosite	MnO	<0.01
Magnesium Oxide	MgO	<0.01
Calcium Oxide	CaO	<0.01
Sodium Oxide	Na ₂ O	<0.01
Potassium Oxide	K ₂ O	0.31
Phosphorus Pentoxide	P ₂ O ₅	<0.01
Sulfur	S	<0.01
Lost on Ignition at 1000 C	L.O.I.	0.50
Silicon Dioxide ***	SiO ₂	97.46

***Note : Silicon Dioxide % was calculated by difference .

The % L.O.I was included in the final silicon dioxide calculation.

Minor Elements

Element Name	Symbol	ULTRA 6
		ug/gm
		as detected by ICP
Barium	Ba	113
Molybdenum	Mo	<50
Zinc	Zn	<50
Antimony	Sb	<50
Lead	Pb	<50
Cobalt	Co	<50
Strontium	Sr	<50
Chromium	Cr	<50
Vanadium	V	<50
Selenium	Se	101
Cadmium	Cd	<50
Nickel	Ni	<50
Tungsten	W	<50

Analyst: Wendy Wade

Analytical Services

Manufacturing Technologies Department

REPORT OF ANALYLSIS

IDENTFICATION OF SAMPLE AS RECIEVED #7

Lab ID: Ultra 7

Method of analysis : Lithiummetaborat Fusion and ICP Analysis.

Major Elements

Element Name	Symbol	ULTRA 7
		ug/gm
		as detected by ICP
Titanium	Ti	290 ·
Aluminum	Al	1377
Iron	Fe	2557
Manganese	Mn	<50
Magnesium	Mg	<50
Calcium	Ca	59
Sodium	Na	<50
Potassium	К	603
Phosphorus	Р	<50
Sulfur	S	65

Component	Symbol	ULTRA 7 %(gm/100gm) Calculated as oxide
Titanium Dioxide	TiO ₂	0.05
Aluminum Oxide	Al ₂ O ₃	0.26
Ferric Oxide	Fe ₂ O ₃	0.37
Manganosite	MnO	<0.01
Magnesium Oxide	MgO	<0.01
Calcium Oxide	CaO	<0.01
Sodium Oxide	Na ₂ O	<0.01
Potassium Oxide	K ₂ O	0.07
Phosphorus Pentoxide	P ₂ O ₅	<0.01
Sulfur	S	<0.01
Lost on Ignition at 1000 C	L.O.I.	0.20
Silicon Dioxide ***	SiO ₂	99.04

***Note : Silicon Dioxide % was calculated by difference .

The % L.O.I was included in the final silicon dioxide calculation.

Minor Elements

Element Name	Symbol	ULTRA 7
		ug/gm
		as detected by ICP
Barium	Ba	<50
Molybdenum	Мо	<50
Zinc	Zn	<50
Antimony	Sb	<50
Lead	Pb	<50
Cobalt	Co	<50
Strontium	Sr	<50
Chromium	Cr	<50
Vanadium	V	<50
Selenium	Se	117
Cadmium	Cd	<50
Nickel	Ni	<50
Tungsten	W	<50

Analyst: Wendy Wade

REPORT OF ANALYLSIS

IDENTFICATION OF SAMPLE AS RECIEVED #8

Lab ID: Ultra 8

Method of analysis : Lithiummetaborat Fusion and ICP Analysis

Major Elements

Element Name	Symbol	ULTRA 8
		ug/gm
		as detected by ICP
Titanium	Ti	135
Aluminum	Al	734
Iron	Fe	2163
Manganese	Mn	<50
Magnesium	Mg	<50
Calcium	Ca	<50
Sodium	Na	<50
Potassium	К	422
Phosphorus	Р	<50
ulfur	S	103

Component	Symbol	ULTRA 8 %(gm/100gm) Calculated as oxide
Titanium Dioxide	TiO ₂	0.02
Aluminum Oxide	Al ₂ O ₃	0.14
Ferric Oxide	Fe ₂ O ₃	0.31
Manganosite	MnO	<0.01
Magnesium Oxide	MgO	<0.01
Calcium Oxide	CaO	<0.01
Sodium Oxide	Na ₂ O	<0.01
Potassium Oxide	K₂O	0.05
Phosphorus Pentoxide	P ₂ O ₅	<0.01
Sulfur	S	0.01
Lost on Ignition at 1000 C	L.O.I.	0.20
Silicon Dioxide ***	SiO ₂	99.27

***Note : Silicon Dioxide % was calculated by difference .

The % L.O.I was included in the final silicon dioxide calculation.

Minor Elements

Element Name	Symbol	ULTRA 8
		ug/gm
		as detected by ICP
Barium	Ba	<50
Molybdenum	Мо	<50
Zinc	Zn	<50
Antimony	Sb	<50
Lead	Pb	<50
Cobalt	Co	<50
Strontium	Sr	<50
Chromium	Cr	<50
Vanadium	V	<50
Selenium	Se	101
Cadmium	Cd	<50
Nickel	Ni	<50
Tungsten	W	<50

Analyst: Wendy Wade

Analytical Services

Manufacturing Technologies Department

REPORT OF ANALYLSIS

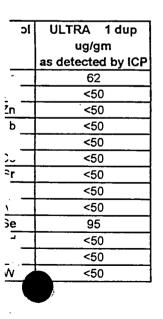
ICATION OF SAMPLE AS RECIEVED #1 (Duplicate of sample #1)

A 5 dup n/100gm) ted as oxide

0.01 0.19 0.42 <0.01 <0.01 <0.01 <0.01 0.04 <0.01 <0.01 <0.01 0.04 <0.01 0.04 <0.01 0.04 <0.01 0.03 <0.01 0.04 <0.01 0.00

9.03

, D


Lithiummetaborat Fusion and ICP Analysis

101	ULTRA 1 dup
	ug/gm
	as detected by ICP
1	335
AI	2071
	2375
Å	<50
Лg	<50
	<50
1	<50
ĸ	1331
	<50
17	<50

Component	Symbol	ULTRA 1 dup %(gm/100gm) Calculated as oxide
Titanium Dioxide	TiO ₂	0.06
Aluminum Oxide	Al ₂ O ₃	0.39
Ferric Oxide	Fe ₂ O ₃	0.34
Manganosite	MnO	<0.01
Magnesium Oxide	MgO	<0.01
Calcium Oxide	CaO	<0.01
Sodium Oxide	Na ₂ O	<0.01
Potassium Oxide	K₂O	0.16
Phosphorus Pentoxide	P ₂ O ₅	<0.01
Sulfur	S	<0.01
Lost on Ignition at 1000 C	L.O.I.	0.30
Silicon Dioxide ***	SiO ₂	98.75

***Note : Silicon Dioxide % was calculated by difference .

The % L.O.I was included in the final silicon dioxide calculation.

Analyst: Wendy Wade

ndy Wade

REPORT OF ANALYLSIS

IDENTFICATION OF SAMPLE AS RECIEVED #9

Lab ID: Ultra 9

Method of analysis : Lithiummetaborat Fusion and ICP Analysis

Analyst: Wendy Wade **Major Elements**

Element Name	Symbol	ULTRA 9
		ug/gm
		as detected by ICP
Titanium	Ti	802
Aluminum	AI	18319
iron	Fe	74889
Manganese	Mn	299
Magnesium	Mg	1819
Calcium	Ca	1549
Sodium	Na	207
Potassium	K	6280
Phosphorus	Р	835
Sulfur	S	246

Component	Symbol	ULTRA 9 %(gm/100gm) Calculated as oxide
Titanium Dioxide	TiO ₂	0.13
Aluminum Oxide	Al ₂ O ₃	3.46
Ferric Oxide	Fe ₂ O ₃	10.70
Manganosite	MnO	0.04
Magnesium Oxide	MgO	0.30
Calcium Oxide	CaO	0.22
Sodium Oxide	Na ₂ O	0.03
Potassium Oxide	K₂O	0.76
Phosphorus Pentoxide	P ₂ O ₅	0.19
Sulfur	S	0.02
Lost on Ignition at 1000 C	L .O.I.	4.30
Silicon Dioxide ***	SiO ₂	79.85

***Note : Silicon Dioxide % was calculated by difference .

The % L.D.I was included in the final silicon dioxide calculation.

Minor Elements

Element Name	Symbol	ULTRA 9
		ug/gm
		as detected by ICP
Barium	Ba	446
Molybdenum	Мо	<50
Zinc	Zn	334
Antimony	Sb	<50
Lead	Pb	81
Cobalt	Co	<50
Strontium	Sr	66
Chromium	Cr	<50
Vanadium	V	501
Selenium	Se	242
Cadmium	Cď	<50
Nickel	Ni	55
Tungsten	W	<50
Silver	Ag	<50
Gold	Au	107

Aňalyst: Wendy Wade

REPORT OF ANALYLSIS

IDENTFICATION OF SAMPLE AS RECIEVED #10

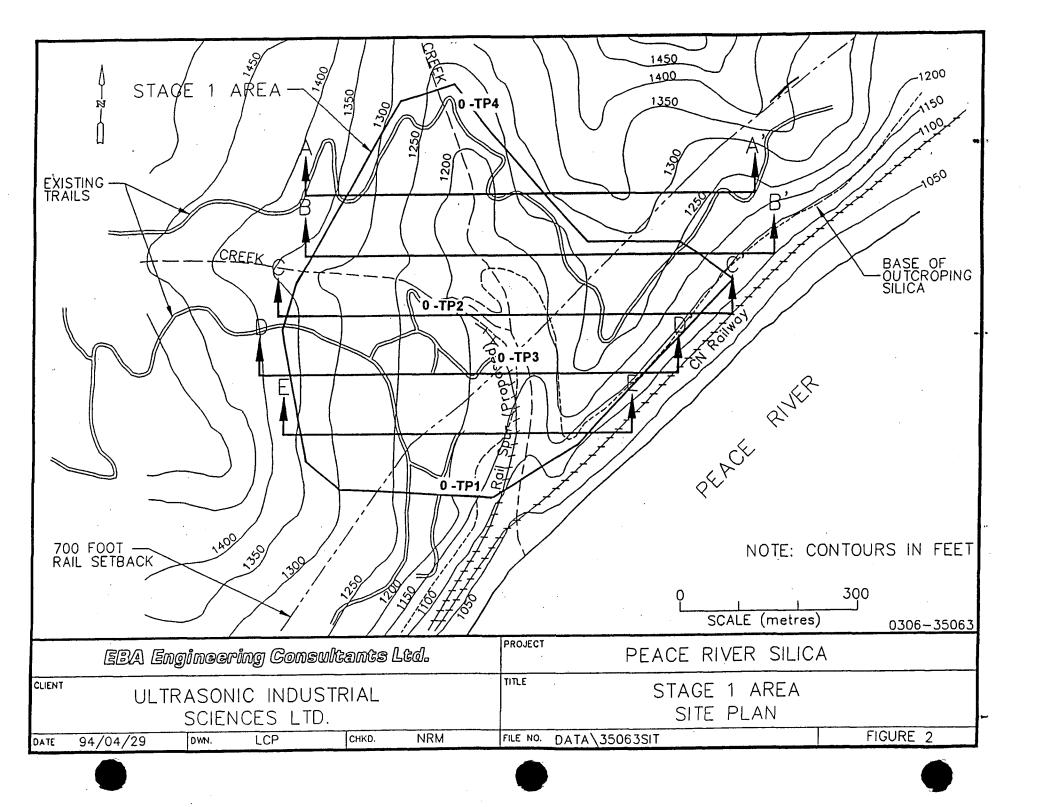
Lab ID: Ultra 10

Method of analysis : Lithiummetaborat Fusion and ICP Analysis

Major Elements

Element Name	Symbol	ULTRA 10
		ug/gm
		as detected by ICP
Titanium	Ti	715
Aluminum	Al	9069
Iron	Fe	20857
Manganese	Mn	<50
Magnesium	Mg	449
Calcium	Ca	750
Sodium	Na	159
Potassium	к	3921
Phosphorus	Р	1154
Sulfur	S	2809

Component	Symbol	ULTRA 10 %(gm/100gm) Calculated as oxide
Titanium Dioxide	TiO ₂	0.12
Aluminum Oxide	Al ₂ O ₃	1.71
Ferric Oxide	Fe ₂ O ₃	2.98
Manganosite	MnO	<0.01
Magnesium Oxide	MgO	0.07
Calcium Oxide	CaO	0.10
Sodium Oxide	Na ₂ O	0.02
Potassium Oxide	K ₂ O	0.47
Phosphorus Pentoxide	P ₂ O ₅	0.26
Sulfur	S	0.28
Lost on Ignition at 1000 C	L.O.I.	3.00
Silicon Dioxide ***	SiO ₂	90.97


***Note : Silicon Dioxide % was calculated by difference .

The % L.O.I was included in the final silicon dioxide calculation.

Minor Elements

Element Name	Symbol	ULTRA 10
		ug/gm
		as detected by ICP
Barium	Ba	319
Molybdenum	Мо	<50
Zinc	Zn	<50
Antimony	Sb	<50
Lead	Pb	<50
Cobalt	Co	<50
Strontium	Sr	77
Chromium	Cr	<50
Vanadium	V	160
Selenium	Se	149
Cadmium	Cd	<50
Nickel	Ni	<50
Tungsten	W	<50
Silver	Ag	<50
Gold	Au	79

Analyst: Wendy Wade

ALBERTA RESEARCH COUNCIL Manufacturing Technologies

September 15,1994

Ultrasonic Industrial Sciences Ltd. Suite 200 17834 106A Ave Edmonton, Alberta T5S 1V3

Dear Mr. Christensen,

RE: Sand analysis.

Enclosed are the metal analyses of the sand samples submitted on August 5,1994. Also enclosed is the trace metal analysis of the water sample submitted on August 10, 1994. These reports were send by FAX earlier to you. If you have any questions about the analysis, please call me, Wendy Wade, at 450-5433.

Yours truly.

Wendy Wade Analytical Chemistry Manufacturing Technologies

PO Box 8330 Edmonton, Alberta Canada T6H 5X2

Mailing address • 250 Karl Clark Road Edmonton, Alberta **a** 403/450-5400 fax 403/450-5477

1021 Hayter Road Hwy 16É and 17 Street Edmonton, Alberta

Terrace Plaza 4445 Calgary Trail South Edmonton, Alberta

1 Oil Patch Drive Devon, Alberta

3rd Floor, Digital Building 6815 - 8 Street NE Calgary, Alberta

Appendix 1

Lithium Metaborate Analysis Procedure

The analytical procedure used to completely dissolve the sand samples uses lithium metaborate as the decomposition reagent. The salts formed during the fusion are dissolved in a weak acid solution to give a clear solution. The solution is analyzed by Inductively Coupled Plasma-Atomic Emission Spectroscopy (ICP).

Procedure:

Step 1	The sample is ground to a fine power in a Shatterbox.
Step 2	The ground sample is weighed into a platinum crucible along with the lithium metaborate.
Step 3	The crucible is heated over a propane flame until the fusion is completed. The resulting molten material is poured into a solution of nitric acid and water.
Step 4	The solution is stirred until the fused sample is completely dissolved at which time it is diluted to a known volume.
Step 5	The resulting solution is analyzed by ICP (Inductively Coupled Plasma-Atomic Emission Spectroscopy)
Step 6	The results from the ICP are reported as the detected minor elements and as the calculated oxides from the major elements.
Step 7	A loss on ignition analysis was conducted on all samples. (at 1000°C)

Note:

This method is used to analyze bulk samples for major and minor elements.

ANALYTICAL SERVICES

Manufacturing Technolgies Department

Client :

B. Christensen Ultrasonic Industrial Sciences Ltd Edmonton Alberta

Analyst : Date : Wendy Wade August 19,1994

Requested Analysis :

Analysis for elements in sand samples

Major Elements

Concentration units % ie:(gm/100gm)

Name	Symbol	ULTRA 1	ULTRA 2	ULTRA 3	ULTRA 4	ULTRA 5
Silicon Dioxide ***	Si02	98.74	99.48	98.56	99.40	99.02
Titanium Dioxide	Ti02	0.05	0.02	0.03	0.01	0.01
Aluminum Oxide	AI203	0.39	0.14	0.43	0.13	0.19
Ferric Oxide	Fe203	0.35	0.36	0.39	0.25	0.42
Manganosite	MnO	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Magnesium Oxide	MgO	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Calcium Oxide	CaO	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Sodium Oxide	Na20	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Potassium Oxide	K20	0.16	< 0.01	0.19	< 0.01	0.04
Lose on Ignition at 1000 C	L.O.I.	0.30	< 0.1	0.40	0.20	0.30
Phosphorus Pentoxide	P205	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Sulfur	S	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Total recovered %		100.00	99.99	100.00	99.99	100.00

***Note :

Silicon Dioxide % was determined by difference .

The % L.O.I was included in the final silicon dioxide calculation.

Minor Elements

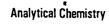
Concentration units ug/gm ie:ppm

Name	Symbol	ULTRA 1	ULTRA 2	ULTRA 3	ULTRA 4	ULTRA 5
Barium	Ba	59	< 50	72	< 50	<50
Molybdenum	Mo	<50	<50	< 50	< 50	<50
Zinc	Zn	<50	< 50	< 50	< 50	< 50
Antimony	Sb	< 50	<50	< 50	< 50	< 50
Lead	Pb	< 50	< 50	< 50	< 50	< 50
Cobalt	Co	< 50	< 50	< 50	< 50	< 50
Strontium	Sr	< 50	< 50	< 50	< 50	< 50
Chromium	Cr	< 50	<50	< 50	< 50	< 50
Vanadium	V	< 50	<50	< 50	< 50	< 50
Selenium	Se	92	66	97	106	67
Cadmium	Cd	< 50	<50	< 50	< 50	< 50
Nickel	Ni	< 50	< 50	< 50	< 50	< 50
Tungsten	W	< 50	<50	< 50	< 50	< 50

Major Elements

Concentration units % ie:(gm/100gm)

Name	Symbol	ULTRA 6	ULTRA 7	ULTRA 8	ULTRA 1 DUP	ULTRA 5 DUP
Silicon Dioxide***	SiO2	97.46	99.04	99.27	98.75	99.03
Titanium Dioxide	Ti02	0.11	0.05	0.02	0.06	0.01
Aluminum Oxide	AI203	0.64	0.26	0.14	0.39	0.19
Ferric Oxide	Fe203	0.96	0.37	0.31	0.34	0.42
Manganosite	MnO	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Magnesium Oxide	MgO	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Calcium Oxide	Ca0	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Sodium Oxide	Na20	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Potassium Oxide	K20	0.31	0.07	0.05	0.16	0.04
Lose on Ignition at 1000 C	L.O.I	0.50	0.20	0.20	0.30	0.30
Phosphorus Pentoxide	P205	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01
Sulfur	S	< 0.01	< 0.01	0.01	< 0.01	< 0.01
Total recovered %		99.99	99.99	100.00	100.00	99.99


Minor Elements

Concentration units ug/gm ie:ppm

Name	Symbol	ULTRA 6	ULTRA 7	ULTRA 8	ULTRA 1 DUP	ULTRA 5 DUP
Barium	Ba	113	<50	< 50	62	< 50
Molybdenum	Мо	< 50	< 50	<50	< 50	< 50
Zinc	Zn	< 50	<50	< 50	< 50	< 50
Antimony	Sb	< 50	< 50	< 50	< 50	< 50
Lead	Pb	< 50	< 50	< 50	< 50	< 50
Cobalt	Co	< 50	< 50	< 50	< 50	< 50
Strontium	Sr	<50	<50	< 50	< 50	< 50
Chromium	Cr	< 50	< 50	< 50	< 50	< 50
Vanadium	V	< 50	< 50	< 50	< 50	< 50
Selenium	Se	101	117	101	95	94
Cadmium	Cd	< 50	< 50	<50	< 50	< 50
Nickel	Ni	< 50	< 50	<50	< 50	< 50
Tungsten	W	< 50	<50	< 50	< 50	< 50

Note

Samples # 1 and # 5 were duplicated and are seen as Ultra 1 DUP and Ultra 5 DUP

Major Elements

Concentration units % ie:(gm/100gm)

Name	Symbol	ULTRA 9	ULTRA 10
Silicon Dioxide***	SiO2	79.85	90.97
Titanium Dioxide	TiO2	0.13	0.12
Aluminum Oxide	A1203	3.46	1.71
Ferric Oxide	Fe203	10.70	2.98
Manganosite	MnO	0.04	< 0.01
Magnesium Oxide	MgO	0.30	0.07
Calcium Oxide	CaO	0.22	0.10
Sodium Oxide	Na20	0.03	0.02
Potassium Oxide	K20	0.76	0.47
Lose on Ignition at 1000 C	L.O.I	4.30	3.00
Phosphorus Pentoxide	P205	0.19	0.26
Sulfur	S	0.02	0.28
Total recovered %		100.00	100.00

Minor Elements

Concentration units ug/gm ie:ppm

Name	Symbol	ULTRA 9	ULTRA 10
Barium	Ba	446	319
Molybdenum	Mo	< 50	< 50
Zinc	Zn	334	< 50
Antimony	Sb	< 50	< 50
Lead	РЪ	81	<50
Cobalt	Co	< 50	< 50
Strontuim	Sr	66	77
Chromium	Cr	<50	< 50
Vanadium	V	501	160
Selenium	Se	242	149
Cadmium	Cd	< 50	< 50
Nickel	Ni	55	< 50
Tungsten	W	< 50	< 50
Silver .	Ag	< 50	< 50
Gold	Au	107	79

;

GEOLOGICAL REPORT

on

PEACE RIVER INDUSTRIAL SANDS PROJECT

1982

Prepared for:

PEACE RIVER INDUSTRIAL RESOURCES LTD.

By:

DRS. JOHN H. LICHTENBELT

Prof. Geol.

TIME-STATIGRAPHIC CORRELATIONS LTD. 128 Scarboro Avenue South West, CALGARY, Alberta, T3C 2H1 CANADA

Telephone: (403) 244-8721

TABLE OF CONTENTS	
	PAGE NO.
I INTRODUCTION	. 1
II GEOLOGY:	
Definition of Formations and members involved	2
1. <u>CRETACEOUS</u> :	
a) Harmon member	· 2
b) Cadotte member	2 & 3
c) Paddy member Fig 1	3, 4 & 5
d) Shaftesbury Formation	6
2. PLEISTOCENE: Fluvial deposits	6 & 7
III DRILLING:	
a) Previous	8, 9, 10 & 11
b) Present	12
IV COMMENTS ON MAPS	13,14,15 & 16
V RESERVES:	16 & 17
a) Cadotte	
b) Total Paddy Sand	
c) Net Paddy Sand	
d) Shaftesbury Shale (overburden)	
e) Gravel and Sand	
Tables 1, 2 and 3	18, 19 & 20
VI ABSTRACT OF TEST RESULTS OF INDUSTRIAL SAND	21, 22 & 23
VII CONCLUSIONS	23 & 24
MAPS:	SCALE
No. 8 Topographic Map	1:5000
No. 7 Isopach Map: Pleistocene Gravel & No. 6 Contour Map: Shaftesbury Shale	1:5000
No. 5 Isopach Map: Shaftesbury Shale No. 4 Contour Map: Paddy Sand	1:5000 1:5000
No. 3 Isopach Map: Net Paddy Sand No. 2 Isopach Map: Total Paddy Sand	1:5000 1:5000
No. 1 Contour Map: Top Cadotte	1:5000
· ·	

APPENDIX:

۴,

Ι ΙI

Data of previously drilled wells Lithological symbols used in this report Stratigraphic Logs of wells drilled in 1982 Daily drilling reports of wells drilled in 1982 Samples of Pleistocene Sand, Shaftesbury Shales, Paddy Sand and Cadotte Sand ΙΙΙ IV V

INTRODUCTION

This report, prepared for PEACE RIVER INDUSTRIAL RESOURCES LTD., describes the geology of the Cretaceous Peace River Formation, the overlying Shaftesbury Formation and the overlying Pleistocene gravels and sands.

The purpose of this report is to clarify the geological setting leading to the deposition of sands, which are of commercial and industrial importance.

The occurrence of sands of apparent industrial interest in the Peace River Area was known since 1918, when F. H. McLean (GSC) investigated the site and wrote a report.

Investigations since then have suffered from lapses in time and quality of work undertaken. A good example is the drilling of 61 wells since 1977. A total of some 4,940 feet of hole was drilled with very sketchy sample descriptions, uncertain location determinations and often no elevation values. Poor administrative control made the acquired information unreliable.

In order to obtain factual information, a drilling program was designed and executed from August 24th to September 14th, 1982 in an area 10 miles N.E. of the Peace River Town. The area is in Sections 28 and 33 of Township 84, Range 21, West of the 5th Meridian, and the exploration area is covered by SML Licence No. 4288.

A total of 17 wells with a footage of 2,179.5 feet were drilled. The results of this drilling are expressed on the eight maps accompanying this report.

This drilling and the mapping allowed for the calculation of reserves of total sand deposits and net sand reserves, both proven and inferred additional reserves. II GEOLOGY

Definition of Formations and members involved

The Cretaceous beds involved are in descending order:

SHAFTESBURY FORMATION	Shales, dark grey brown,	
PEACE RIVER FORMATION	calcareous (Paddy member: Sand	Marine non-Marine
or equiv. Viking Formation	(<u>Cadotte mbr</u> : Sandstones (<u>Harmon mbr</u> : Shales dark	Marine

1 CRETACEOUS

a) HARMON MEMBER:

The Harmon shales consist of fine thin-bedded dark gray marine shales. The type locality is found on the East bank of the Peace River in Section 21, Township 84, Range 21, West of the 5th Meridian, which is only one mile South of the exploration area.

The Harmon Shales have not been observed in the exploration area itself and have not been reached by drilling in the subject area.

b) CADOTTE MEMBER

The Cadotte sandstones form prominent cliffs on both sides of the Peace River. The sandstones weather gray and dark brown with, near the top, a crust of a bright yellow mineral, which has not been analyzed yet.

The sandstones consist of grains of even size, and are horizontally bedded, which indicates a marine and calm deposition. The beds are massive. b) CADOTTE MEMBER Continued:

The important observation is that rounded milky (agate) and smoke quartz grains are absent. This is in sharp contrast to the Paddy where these sand grains are abundant.

c) PADDY MEMBER:

After the deposition of the Cadotte member, the sea retreated partially.

The particular clarity of the sands of the Paddy member in the exploration area are the result of this partial regression.

The zero edge of the Paddy sands as shown on Map No. 3 indicates the position of the tidewater edge during Paddy times.

On the tidewater edge and in slightly deeper water to the Southwest the sedimentary material was agitated by wave action.

The harder material consisted of clear quartz crystals, agate and smoke quartz.

These were rounded and depending on the speed and strength of the currents, sorted in beds with larger and smaller grains.

Quick lateral and vertical changes in grain size occur.

The wave action also affected the underlying Cadotte which, being not yet diagenetically hardened, was slightly eroded. Bays and current channels were carved out in gentle and shallow shapes. c) <u>PADDY MEMBER</u> Continued:

When the deposition started, allochthonous and probably some autochthonous plant material was deposited on the edge of the transgressive Paddy sea.

This material was converted to coal in subsequent times.

These coal seams, together with reworked Cadotte sands (dark brown because of weathering) and sometimes interbedded shale layers indicate the beginning of the non marine Paddy member <u>or the end of</u> the Cadotte marine cycle.

In fact, in this particular case, the sea did not evacuate the area completely and only converted from marine saltwater to shallow fresh water deposits.

For practical reasons we place the coal and associated brown sands and the shales into the Cadotte. The coal is a good sample marker and marks the boundary between clear Paddy sands above and the contaminated and weathered sands immediately below.

The Paddy sands were not only laid down on the water edge and below; sometimes sand was piled up by wind action in low dunes above the waterline. These sands show strong cross bedding.

On the West side of the Peace River, the Paddy sand zero edge is exposed. (See figure 1)

c) PADDY MEMBER Continued:

A curious phenomenon is the occurrence of round clusters of calcareous sandstone with coal or shale inclusions. These were formed when shale or coal particles rolled over the bottom probably in a gentle rocking motion because of wave action. Ground-up shells supplied the material which glued the sand grains together around the inclusions.

SHAFTESBURY SHALE CADOTTE MEMBER

Fig 1

In general, we find the coarsest sands, which are also usually the best rounded, close to the zero edge, near the bottom and near the top of the Paddy sands.

The cleanest sands are found in the middle section. The most evenly graded in sizes are found where the section is thickest and farthest from the zero edge.

d) SHAFTESBURY FORMATION

The sea level rose rapidly and a new marine cycle started.

The Shaftesbury shales were seemingly deposited conformably on the Paddy sands.

In reality there is an angular discomformity. Evidence for this is that the thickness of the total Peace River formation in the exploration area is in the order of 130 feet. In the Gulf Peace River 16-35-85-21-W5M well only 67 feet are left.

The loss of 65 feet of section over a distance of 10 miles or 7 feet per mile is so small (1 ft./754 ft) that the angle can not be observed.

The disconformity (but not the angularity) is also expressed by the fact that NE of the Paddy zero edge, the Shaftesbury is overlying the Cadotte member directly.

The marine brown gray shales of the Shaftesbury are calcareous and contain pancake shaped claystone concretions and thin calcareous siltstone beds.

A very thin fine gravel/shale bed at the base of the formation is indicative of its transgressive nature.

2. PLEISTOCENE FLUVIAL DEPOSITS

In post-glacial times the Peace River cut a valley through the Upper Cretaceous and Lower Cretaceous beds, including the upper part of the Shaftesbury.

2. PLEISTOCENE FLUVIAL DEPOSITS Continued:

When there was a lull in the erosional cycle, the Peace River valley was wide and the river meandered.

In the exploration area the river cut sideways into the East bank (or right bank) into the lower part of the Shaftesbury formation, ca 70 feet above the base of the formation.

Subsequently the river deposited a 20-70 foot thick bed of gravel and sand on the remaining Shaftesbury Shale.

A new phase of erosion deepened the river bed, eroding through the rest of the Shaftesbury, and the Paddy Sand to the level of the top of the Cadotte member.

The river again cut sideways and removed the Paddy sand in the area of the gravel pit, replacing it with a deposit of gravel and sand.

Renewed erosion deepened the valley floor to a level some 30 feet below the top of the Cadotte. Sideways cutting removed the upper part of the Cadotte just north of the gravel pit.

When a new erosional period started, the river vacated this meander without leaving behind a deposit of gravel and sand.

At the level of the base of the Cadotte a wide meander removed the Cadotte Sandstone over a large area just south of the gravel pit.

III DRILLING:

a) <u>Previous</u>:

A number of drilling campaigns were conducted in the general exploration area:

October - November, 1977: 7 wells

These wells were drilled before the gravel pit was established: (See report by Trigg-Woollett Consulting Ltd. 1978).

We now have a better understanding of the geology and the information obtained by the drilling was re-correlated:

			ELEVATION	PLEISTOCENE GRAVEL & SAND	SHAFTESBURY	PADDY	CADOTTE
Loc.4	Hole	1	1170	0-37	37-82	absent	82 - 90 ⁻
	Hole	2	1170	0-35	absent	35-40	40-74
	Hole	3	1168	0-28	absent	28-39	39-74
	Hole	4	1178	0-50	absent	50-70	70-84
	Hole	5	1178	0 - 4 5	absent	absent	45-80
Loc.6	Hole	1	1254	0-21	² 1 - 77	77-98	98-126
	Hole	2	1230	0-25	25-76	76-98	not- reached
					<u>Total Foot</u>	age: <u>6</u>	». 26'

Holes 1 - 5 of Location 4 are in the gravel pit area. We know now that only a few feet of Paddy Sand were spared by the fluvial erosion.

Hole 5 is located in the slide area. The surface is already below the top of the Cadotte although this is not expressed in the KB elevation given in the drilling report.

The accuracy of the given KB elevations seems to be in doubt.

See page 8, paragraph 4 of the Trigg report:

"The elevation of the collars and the location of the drill holes were determined by Banks Well Servicing Ltd. Their plots may be subject to revision and consequently the position and the elevation of the drill holes relative to each other may not be accurate."

Trigg mentions the absence of silica sand in some locations and suggests that this absence may be attributed to erosion prior to the deposition of the Shaftesbury formation, or that the Shaftesbury slumped into an erosional channel.

We believe that the reason is a little bit more complex and we re-capitulate here what was described in Chapter 2 in length:

> Sideways erosion removed the Paddy and overlying Shaftesbury shale in the gravel pit area. The bottom levels of this erosion was a few feet above the base of the Paddy (and the coal). Gravel and sand were deposited before the river evacuated the site. Renewed erosion at a level some 30 feet lower removed Cadotte Sandstone from an area just north of the present gravel pit. The meandering river did not deposit gravel or sand in this area. Later Shaftesbury shales slumped into the erosion area vacated by the river.

Because of the uncertainty of the KB elevations of the Holes Location 6 No. 1 and 2, we do not use the elevations of the formation tops on the contour maps.

The thicknesses of the penetrated beds are independent of the elevation values and we have used these values on the Isopach maps.

1980 DRILLING CAMPAIGN

Some 36 wells were drilled with a total footage of 3363. For questionable reasons, the numbering of the wells was changed and reversed after drilling. There are serious questions, not about the location of the wells, but about the marking of the sample descriptions and of the samples tested.

The sample descriptions are also rather inadequate ("Clay and rocks"). We have attempted to re-correlate these wells (see Table II).

No values of the KB elevations were taken.

Most wells are located in the gravel pit area and the meager descriptions seem to confirm our visual observations that mainly gravel and sand overlay the coal at the top of the Cadotte directly.

East of the gravel pit Shaftesbury is present with sometimes gravel on top, sometimes underneath the Shaftesbury shale.

1980 DRILLING CAMPAIGN Continued:

In this last case the Shaftesbury slumped downhill over the much younger gravel.

Another series of 11 wells were drilled in the gravel pit with a total footage of 382. No location coordinates or KB values were obtained.

1981 DRILLING CAMPAIGN

Four wells were drilled close and parallel to the Cadotte cliff in the North-Eastern part of the exploration area.

Coordinates of all four wells and KB values on three of the wells were obtained (see map).

No other information however is available.

Later in the year (October - November) another six wells were drilled with a total drilled footage of 569.

Descriptions are available of the samples obtained. These descriptions are numbered 3 - 8 inclusive. The locations were surveyed at a later date. Because the wells were not marked, the surveyed holes are number 1 - 6 inclusive. There is no way to resolve this problem and therefore the results of the drilling cannot be used.

b) PRESENT

1982 DRILLING CAMPAIGN

In the period August 24 - September 14th, 1982, some 17 wells were drilled in the subject area under the supervision of Mr. John Tiberio, Mr. J. R. Jameson and Mr. J. H. Lichtenbelt.

These wells penetrated a total of 2179.5 feet. After some experimenting an efficient drilling procedure was developed.

The Pleistocene gravel and sand section and the soft clay at the top of the Shaftesbury were penetrated with the hammer drill.

The drilling was continued when firmer Shaftesbury shales were reached with a smaller diameter double pipe, a tricone bit and with rotary drilling, again using air to bring the samples to the surface. This method of drilling was used through the Shaftesbury shales, Paddy sands and Cadotte sandstone.

The descriptions are enclosed in the appendix No. III.

The daily drilling reports are enclosed in appendix No. IV.

COMMENTS ON THE MAPS

The results of the drilling were used to construct eight maps which are presented in ascending order.

MAP NO, 1 CONTOUR MAP TOP CADOTTE

The top Cadotte is flat and in the area where Paddy sand was deposited on this surface, the relief is in the order of 10 - 17 feet, only.

A study of the general area (Townships 83 - 84 - 85, Ranges 20 - 21 - 22, West of the 5th Meridian) also indicates an even, flat surface with a South West dip of <u>+</u> 16 feet/mile or + 3 m/Km.

The general study also indicates a thickness of the total Peace River Formation (Paddy & Cadotte) in the order of 130 feet in the subject area.

Considering a proven thickness of the Paddy of 30 feet, this leaves a thickness of 100 - 105 feet for the Cadotte, a figure which is substantiated by the height of the cliff exposing the Cadotte and by drilling. (See drilling Campaign 1980 Table II, wells 89/74, 90/73 and 91/72).

MAP No. 2 ISOPACH MAP TOTAL PADDY SAND

The Paddy Sand facies is well defined by drilling in the northern part of the exploration area.

The shape of the zero edge is proven in the north, but only indicated on the eastern side.

Page 14

MAP NO. 2 ISOPACH MAP TOTAL PADDY SAND Continued:

The Shaftesbury here is rapidly thickening and this thickness becomes prohibitive for the exploration of the underlying Paddy Sand.

From North East to South West we see the thickness of the Total Paddy Sand increasing from zero to more than 30 feet.

Close to the cliff edge the thickness decreases rapidly to zero because of erosion at the top.

The area enclosed by the 20 foot isopach line is the most attractive from a commercial standpoint.

MAP No. 3 ISOPACH MAP NET PADDY SAND

From the Total Paddy Sand section those sands were excluded which, by visual examination, were considered to be "dirty", either because of high content of mafic minerals (Fe containing Pyroxene and Amphibole), argillaceousness (clay content) or oxidation and Fe₂O₃ staining.

The finer the sand, usually the more mafic minerals are included.

The remaining thickness of "clean" sand was mapped on Map No. 3.

The Isopach lines closely parallel the Total Paddy sand isopachs.

The isopachs also infer a large area south of the drilled area in which favourable "clean" sands are developed.

MAP NO. 4 CONTOUR MAP TOP PADDY SAND

This map shows that the top Paddy Sand is practically flat.

Only five feet (in one foot contours) relief was indicated by the drilling.

From this we deduce that the new marine cycle of the Shaftesbury sea rapidly flooded the area, without transgressive erosional damage.

Only an inch of fine gravel at the base of the Shaftesbury indicates a re-working and "weaning" of the top of the Paddy by the transgressive waters.

In the Chapter Geology, Cretaceous, Chapter C, Paddy member Fig. 1, we have already discussed how the northern edge of the Paddy abruptly was buried by shales of the Shaftesbury.

MAP NO. 5 ISOPACH MAP SHAFTESBURY SHALE

From the top Paddy Sand map we know that the base of the Shaftesbury has a relief of only five feet.

The isopach map shows values from 100 - 70 feet. This is caused by erosion at the top, when the Peace river meandered sideways into the Shaftesbury shales.

The map does not show that the shales abruptly thin to zero near the edge of the cliff which they actually do.

MAP NO. 6 CONTOUR MAP TOP SHAFTESBURY SHALE

The thin areas in the Shaftesbury shales (centre of North East Quarter Section of 33 - 84 - 21 W5M and North West corner of North West Quarter Section of 34 - 84 - 21 W5M) are reflected in lows in the Contour Map on the top of the Shaftesbury Shales.

MAP NO. 7 ISOPACH MAP GRAVEL AND SAND

The lows on the top of the Shaftesbury Shales were filled in by the Pleistocene Sand and Gravels.

The isopach map shows this infill combined with the topography.

The thickest location of sand and gravel (30 -70 ft.) is situated over the Shaftesbury lows in a generally North East - South West direction through the centre of the exploration area.

V RESERVES

To measure the surface between isopach lines, the North Star Horizon 7012 Planimeter, made by Houston Instrument Digitizers was used.

We have two different categories of reserves:

 Reserves proven by the 1982 drilling in the area north of the East-West centre line through Section 33-84-21-W5M and; V RESERVES Continued:

2) Inferred Reserves in the exploration area situated <u>south</u> of the East-West centre line through Section 33-84-21-W5M. The thicknesses are obtained by extrapolation of the isopach lines in the drilled area.

The detailed calculations are presented in tables 1, 2 and 3 at the end of this chapter.

We recapitulate here the end results of the computations:

		<u>M 3</u>	Feet 3
Gravel & Sand	Proven Reserves Inferred Reserves	13,348,650 2,217,400	471,403,150 78,306,500
	Total Reserves:	15,566,050	549,709,650
Shaftesbury Shale (overburden)	Total Volume:	36,301,150	1,282,000,000
Total Paddy Sand	Proven Reserves Inferred Reserves	5,357,450 9,881,150	189,196,600 348,950,350
	Total Reserves:	15,238,600	538,146,950
Net Paddy Sand	Proven Reserves Inferred Reserves	3,030,100 7,315,100	107,006,950 258,330,350
	Total Reserves:	10,345,200	365,337,300
Cadotte	Proven Reserves	53,514,000	1,889,800,000
TOTAL SAND RESERVE PADDY & CADOTTE	S:	68,752,600	2,427,946,950

					Page 18		
	CADOTTE a	nd TOTAL PA	DDY SAND	RESE	ERVES TABLE 1		-**
+	RESERVES	RESERVES INFERRED	AREA IN HECTARES	THICKNESS IN METRES	RESERVES IN METERS3	RESERVES IN FEET ³	COMMENTS
CADOTTE	x		178.38	30	53,514,000	1,889,800,000)
TOTAL							
PADDY	x		9.37	.762	71,400	2,521,450	
		~	9.2	2.286	210,300	7,426,700	
			9.59	3.81	365,400	12,904,000	
			10.02	5.33	534,100	18,861,550	••••
			12.84	6.858	880,600	31,098,100	
			20.17	, 8.3 82	1,690,650	59,704,750	
			16.05	10.	1,605,000	56,680,050	PROVEN
			<u></u>				TOTAL
						-	PADDY
			87.24		5,357,450	189,196,600	SAND:^
·					<u>9-49-51-51-51-51-51-51-51-51-51-51-51-51-51-</u>		
		X	21.40	1.524	326,150	11,517,900	
			39.56	4.572	1,808,950	63,882,450	
			43.36	7.620	3,304,050	116,680,000	
			44.42	10.	4,442,000	156,870,000	INFERRE
							TOTAL
			148.74		9,881,150	348,950,35 0	PADDY Sand
							~
OTAL PADDY			235.98		15,238,600	538 ,146, 95 0	

Page 19

	NET	PADDY SAND	<u>s</u>	RESI	ERVES TABLE 2		
FORMATION	RESERVES PROVEN	RESERVES INFERRED	AREA IN HECTARES	THICKNESS IN METRES	RESERVES IN METERS ³	RESERVES IN FEET ³	COMMENTS
NET							·
PADDY	X		12.69	.762	96,700	3,414,950)
			12.20	2.286	278,900	9,849,250)
		-	13.46	3.81	512,800	18,109,350)
			15.86	5.33	845,350	29,853,250	•
			11.74	6.858	805,150	28,433,600	l i
			6.14	8.	491,200	17,346,550	
			16.05	10.	1,605,000	56,680,050	PROVEN
			 				NET
							PADDY
-			72.09		3,030,100	107,006,950	SAND
							······································
		x	30.0	1.524	457,200	16,145,850	
			41.36	4.572	1,891,000	66,780,050	
			70.96	7.	4,966,900	175,404,450	INFERRED
			. •				NET
					<u> </u>	·	PADDY
			142.32		7,315,100	258,330,350	SAND
			1,2002		7,010,100	200,000,000	SAND
			. <u></u>				
TOTAL NET PA	DDY SAND		214.41		10,345,200	365,337,300	-

SHAFTESE	BURY SHALE	OVERBURDEN	PLEISTO	CENE GRAVEL	& SAND	RESERVES TAB	LE <u>3</u>
. JRMATION	RESERVES PROVEN	RESERVES INFERRED	AREA IN HECTARES	THICKNESS IN METRES	RESERVES IN METERS ³	RESERVES IN FEET ³	COMMENTS
SHAFTE SBURY							
SHALE	X	X	170.11	21.34	36,301,150	1,282,000,000	TOTAL OVERBUR OF SHRLES FRO ZERO EDGE (CL TO THE IZOO CONTOUR (APP ZERO GRAVEL
PLEISTOCENE		X	20.97	7.62	1,597,900	56,429,300	
GRAVEL & SAN	D		20.13	10.67	2,147,850	75,850,600	
	_		14.4	13.72	1,975,700	69,771,200	
-			9.64	16.76	1,615,650	57,056,150	
			21.3	19.81	4,219,550	149,012,000	
			8.15	22.00	1,792,000	63,283,900	
							PROVEN
	,						GRAVEL
			94.59		13,348,650	471,403,150	& SAND
			·		<u></u>		
							INFERRED
		X	31.7	7.00	2,217,400	78,306,500	GRAVEL
·· .							& SAND
L L RESERVE	_		126.29		15,566,050	549,709,650	

GRAVEL & SAND

Page 20

VI ABSTRACT OF TEST RESULTS OF INDUSTRIAL SANDS

I <u>ADS</u>	TRACT OF TEST RESULTS OF TRUDSTRIAL SANDS
1.	SIEVE TEST of Paddy Sand taken from outcrop in exploration area close to well W-82-1008.
	$\begin{array}{c} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$
	<u>CRUSH TEST</u> Standard Test
	20 Crushed : 46.0% 20 - 40 Crushed : 30.0%
2.	SIEVE TEST of Paddy Sand taken from outcrop in exploration area close to well W-82-1008
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	CRUSH TEST Standard Test
	$\sum_{20} 20 : 40.5\% : 28.8\%$
3.	<u>SAMPLE HOLE 03</u> (?) EAST (28 - 30 ft.)
	SIEVE TEST
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
	CRUSH TEST Standard Test
	20 - 40 Crushed : 40.8%
4.	UNMARKED HOLE WEST
	SIEVE TEST
	$\begin{array}{c} > 20 & : 2.2\% \\ 20 - 40 & : 20.4\% \\ 40 - 100 & : 73.0\% \\ < 100 & : 2.2\% \end{array}$
	CRUSH TEST Standard Test
	20 - 40 : 38.3%

5.	HOLE A	EAST	(105	- 1	15	ft.)
	SIEVE TES	T				
		20 40 100 100			: : :	3.9% 17.6% 69.0% 5.5%
	CRUSH TES	<u>st</u> s	Standa	rd	Tes	it
	20 -	40			:	35.7%
6.	HOLE 03 SIEVE TES	· · · · · · · · · · · · · · · · · · ·	(28	ft.)	
	> 20 - 40 - ~	20 40 100 100				13.1% 36.8% 45.9% 4.5%

<u>CRUSH TEST</u> Standard Test 20 - 40 : 28.2%

In a report by Geotechnical Consultants Ltd. of September 29th, 1980, for Matkins Minerals, some chemical tests were reported.

Because of obtuse laboratory numbers and sample numbers, we could not retrace which wells were involved nor the depth from which the samples were retrieved.

The depth determination is very important. If obtained near the top of the Cadotte member, abnormally high Fe_2O_3 values can be expected, a value which is not representative for the rest of the Cadotte.

One series of tests reported values of Fe₂O₃% by weight of 1.56, 3.35 and 2.77. In another series of tests reported values of Fe₂O₃% by weight of 0.29, 0.38, 0.31 and 0.30 were reported. These values vary too much to be of any significance.

VI ABSTRACT OF TEST RESULTS OF INDUSTRIAL SANDS Continued:

During the 1982 drilling campaign a large amount of carefully marked samples were obtained.

These should be analyzed on a comparative basis. For instance, Paddy sands should be compared with other Paddy sands, while Cadotte samples should be taken selectively. Samples from the top of the Cadotte, which contain coal and oxydized sands, should be considered non-productive.

VII CONCLUSIONS

 Significantly large reserves of industrial grade sands are present in the Lease area:

Total Paddy Sand	15,238,600	MЗ
Net Paddy Sand	10,345,200	MЗ
Total Cadotte Sandstone	53,514,000	мЗ

- 2. Not only the Paddy Sand but also the Cadotte sandstone seem to be suitable for glass manufacturing. This increases the total reserves available greatly. Further testing should be carried out.
- 3. Because of the exposure of the Cadotte in the gravel pit area, exploitation could start here immediately, thereby not only assuring an immediate cash flow, but also providing an area for dumping of the Shaftesbury Shale overburden overlying the Paddy Sand to the North.

VII CONCLUSIONS Continued:

- 4. At present it seems that the crush-strength of the sand is insufficient for the use as frac sand for deeper wells. We believe that the Paddy sand grains are for a major part formed out of quartz crystals. The grains shatter easily along shear planes of the crystal lattices.
- 5. Hardened amorphous glass grains (- or small pellets) made from the sands (Paddy and Cadotte) occuring in the exploration area could overcome this problem.
- 5. The Author of this report is planning to pursue this avenue of benefication of the sand in the near future.

CALGARY, ALBERTA, CANADA

DRS. JOHN H. LICHTENBELT Prof. Geol.

APPENDIX I DRILLING 1980

.

ORIGINAL NUMBERS	REVERSED NUMBERS	ELEVATION	PLEISTOCENE GRAVEL & SAND	SHAFTESBURY	PADDY	CADOTT
63	99	No Elev.	0 - 7	x	x	7 - 7
64	98	11	0 - 28	X	x	28 - 7
65	97	11	0 - 8	X	X	8 - 7
66	96	n .	0 - 5	X	· X	5 - 7
67	95	11	0 - 3	X	x	3 - 7
68	94		0 - 5	X	x	5 - 7
69	93	"	0 - 7	X	x	7 - 6
70	92	11	0 ~ 4	x	x	4 - 7
71	91	H	x	0 - 90		
72	90	, N	x	0 - 20		
73	89		x	0 - 39	x	39 - 9
74	88	11	x	0 - 37	x	37 - 70
75	87	II	x	0 - 34	x	34 - 90
76	86	II ·	0 - 27	x	x	27 - 42
77	85	"	0 - 27	X	x	27 - 12
78	84	31	0 - 9	9 - 18	x	18 - 90
79	83		x	0 - 13	x	13 - 90
80	82	88	x	x	x	0 - 60
81	81		x	X	x	0 - 60
82	80	n	0 - 8	8 - 49	x	49 - 90
83	79	n	x	0 - 58	x	58 - 75
84	78	, H	x	0 - 15	x	15 - 90
85	77	"	x	0 - 12	x	12 - 75
86	76	n	0 - 25		x	
87	75	n	0 - 5	5 - 37	x	37 - 10
89	74	"	x	0 - 27	x	27 - 12
90	73	14	0 -	23	x	23 - 12
91	72	11	0 - 3	3 - 47	x	47 - 15
92	71	11	0 - 5	5 - 53	x	53 - 13
93	70		x	0 - 43	x	43 - 10
94	69	"	x	0 - 68	X	68 - 13
95	6 8		0 - 4	4 - 75	x	75 - 12
96	67	n	X	0 - 150		
97	66		X	0 - 150		
	65		0	97	97 -	150
98	65		0 -	3/	<i>97 -</i>	150

APPENDIX II LITHOLOGICAL SYMBOLS USED IN THIS REPORT

	t
	GRAVEL
	SAND
	CLAY or SHALE
	ARGILLACEOUS
1.2.5.11.2.7.0.0.5.0.1	SILTSTONE
TTTT	CLAYSTONE
	CALC. SHALE
(19-20-1-1-10) (10-20-1-10-10-10-10-10-10-10-10-10-10-10-10-	COAL

COLOR CODE USED:

GRAVEL & SAND	FLUVIAL	PLEISTOCENE	
CLAY - SHALE	MARINE	CRETACEOUS	SHAFTESBURY FORMATION
SAND	NON-MARINE	CRETACEOUS	PADDY SAND MEMBERS
SANDSTONE	MARINE	CRETACEOUS	CADOTTE MEMBER

a/a	as above
arg	argillaceous (part
	clay content)
blk.	black
brn.	brown
calc	calcareous (part
	lime content)
carb	carbonaceous (part
	coal content)
cly	clay
crs	coarse
dk	dark
f	fine
gry	gray
grn	green
lt	light

m	medium
pk.	pink
Ру	Pyrite
rnd	round(ed)
rđ	red
S	Sand
Sh	Shale
S1t	Siltstone
SS	Sandstone
v	very
yel	yellow
()	minor
(())	trace
-	major
=	Large majority

WELL: **E - 8**2 - 1007

í

Spud 4 Compl Aug 25 1982 Td 89'

PAGE:

DEPTH	4		,					·····	
FROM	то	COLOR	MAIN ROCK TYPE	DESCRIPTION	TA G	Thiohness	MINERALS	Lith Log	FORMATION
	14	π brn	Sand	Sd, mbrn, f-m, calo, femic min., sub rounded.	1,2			183803704 Store 1	TODO
14	18	gry brn	Cly, Slt	Cly gry brn, v slt. cale.		14	mpn, yrox.		Shaftesbury
18	83	gry	Cly	Cly gry brn, v slt, cale. Cly, gry, calc, (silty)	3 4 - 10				· · · · · · · · · · · · · · · · · · ·
83	89	Wht-gry-p	k Gravel	Gravel: Qtz gry, Qtz wht, Granite pk, Diorite.					-
				the styped wit, oranite bk, Diorite.	10 -11				
	·····=								······································
					i	69			
	·								· · · · · · · · · · · · · · · · · · ·
									/ 1300
						6			
								•	
									······
							·		
						Ī			<i>4</i> 1200
						+			F 1600
					,				
			1	f	:				:
1	-	1			-+				

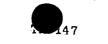
WELL: B = 82 = 1008 Spud Aug 26 1982 Comp Aug 27 1982 5 Ta 131'

ELEVATION: 391 .287 H - 1284 ' KB

PAGE: 2

()

···			0000 100 CT 19					
DEPT FROM	гн то	COLOR	MAIN ROCK TYPE	DESCRIPTION	Bag	Thickness	Lith Log	FORMATION
0	<u>14</u> 111	<u>gry-brn</u>	Gravel	Gravel m-ors.Qtz wht-brn.Granite pk.Diorite Cly-Sh gry brn,v.calc : Siltst gry hard bands 96-98 *	11	14		TOPS
111		n n			2-4	<u>.</u>	2.34	Shaftesbu
111	112		Sand	Sand f-brs)rounded, arg ((oalc)); ors: grains arest smoke Qtz	5			
112	118			Poor sample because of water and soap	6	97		
118	120	lt brn	Sand	Sand fam closramilky, rounded, (Siderite), ((Glauc)), (Amph, Pyrox)	7			
120 124	124	lt brn	Sand	Sand v f. 1t brn; Feldspar, Amph, Pyrox., Siderite.	8			¥ 1200
			Sand/Clay	Mixtube of Sand f a/a / Clay drk brn ((cale))	9			
124'6''	128	It brn	Sand	Sand It brn v fine, clear, sub rounded; Pyrox, Amph; Feldspar; (Siderite)	10			111 - 1179
128	-131	<u>. 11 11</u>	Sand v fine	Sand v fine a/a	11	20+		Paddy San
								-
	· · · · · · · · · · · · · · · · · · ·							
								4/ 1100
			· · · · · · · · · · · · · · · · · · ·					
	- F		· · · · · · · · · · · · · · · · · · ·					


Spud Sept 12 1982 WELL: B = 82 - 1669 - Comp Sept 12 1982 TD 167

i

ELEVATION: 397.9031 - 13051 KB

PAGE: **3**

		I	T					
DEPT	<u>́гн </u>		MAIN		Bag	Thiokness	Lith log	
FROM	то	COLOR	ROCK TYPE	DESCRIPTION		Incontrol	LIMITOR ,	1 /
	1-10-'	+ '					1 '	FORMATION
0	12	brn-drk b	in cend				1	TOPS
12	17		Gravel	Sand I brn-red-drk brn.	1			.1 🗸 🗸
$-\frac{12}{17}$		1′		Gravel I / Sand a/a.			First 17 Stand	+ /
28	34	ſ ′	Gravel	Gravel 1 = crs.		37	10.2 A. 5 132 '	1
	37	+ '	Gravel	Sand f brn-red-drk brn. Gravel f / Sand a/a. Gravel f = ors. Gravel crs / Sand a/a. Sand ors / Gravel f-m.	2		BAYYYEYE	.1
37	1 121	1	Sand	Sand crs / Gravel f-m.			FALL HOUSE	127 + 1260
		brn gry	Clay	clay brn gry. c 57 Clay a/a / Claystone. c 79 "				
	<u> </u>	<u> </u>		6 57 Clay a/a / Claystone.				Shaftesbury_Sh
	1 '	1	{	<u>@ 65 " " " " " " " " " " " " " " " " " " </u>			1 10 100 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1
	f'	t'	 	<u>n</u>	[]	· · · · · · · · · · · · · · · · · · ·		1
	1 '	1 '	1	@ 95 n H		94		<u>t</u> [
	,	[]	f	<u>e 108 n n n</u>				1
	<u> </u>	<u> </u>		@ 127 " / (SS wht / Claystone/Gravel)				f
131	132	ſ,	Sand	@ 127 " / (SS wht / Claystone/Gravel) Sand f clean ((mafic min.)) sub rnd-rnd.	3	′		<u>+ </u>
132	137	t'	Sand	ISand t' clean.	4			1
137	138	brn	Sand	Sand f brn (Arg)				t /
	147	[]	Sand	Sand f - ors , smoke, agate.	6			÷
147	151	1′	Sand	Sand f brn (Arg) Sand f - crs , smoke, agate. Sand f-m-crs clean.				+ 1200
151	153	.['	Sand	Sand f-m.				
153	155 1/2	7	Sand	Sand f It has		'		1
155 1/2	157	n n	Sand	Sand a/a (arg)				±
$\frac{157}{158 1/2}$	158 1/2	4	Sand	Sand a/a (arg) Sand a/a (Wet)	8	1		131 + 1174
<u>158 1/2</u>	159	n n	Sand	Sand a/a / ((coal))				
159	167	red	Sand	Sand $a/a / ((Coal))$ Sand f red (Fe ₂ 0 ₃)			اب ، بني محمد أسن	Paddy Sand
'	t'	t'	+	build 1 100 (F0203)		61 461	12.2.2.2	
,	1 1	1 '	1					
	[+	[]	t					158 1/2 + 1146 1/2
<u> </u>	<u> </u>	í'	1				· · · · · · · · · · · ·	Cadotte mbr
+	,	1	[/	him and the second s	(7
'	t'	t'	1		1 · 1		1	· · ·
,	1 1	1 7	1				TD 167	· · · · · · · · · · · · · · · · · · ·
	(+	[]	t		1	1	· •	6
	<u> </u>	1	1				·+	
	()	1,	[, J	4
'	⊢ J	t'	1					+ 1100
,	1 1	1 1	1				<u>ا</u> ــــــــــــــــــــــــــــــــــــ	1
,	[+	[]	t				, J	í
<u> </u>	1	£ 1	1				·	I
- ,	1 . 1	1					, J	· · · · · · · · · · · · · · · · · · ·
'	⊢	<u>ا</u> ــــــــــــــــــــــــــــــــــــ	1				t	· !
,	1 1	1	1				,]	(
	I	لنسب	t	5	·	i 📔 🔰	,)	· · · · · ·
, , ,	1 1	t 1	1				J	
	1+	·+	·			1 1	, I	· !
1	· I	I	1		1		+	,

ĺ

Spud Aug 28 1982 WELL: E-82-1013 Comp Aug 28 1982

ELEVATION: 3912 764 - 1284 ' KB

PAGE: 4

()

					- 12.04		FAGE: 3	
DEF	гн то	COLOR	MAIN ROCK TYPE	DESCRIPTION	Bag	Thickness	Lith Log	· · · · · · · · · · · · · · · · · · ·
0	.38							FORMATION TOPS
	110	gry-brn	Gravel Cly-Sh	Gravel m-crs. 2tz wht-lt brn. Granite pk. Diorite.			post coeffet	105
<u></u>		g1 y- 01 II	01y=0n	Gravel m-crs. 2tz wht-lt brn. Granite pk. Diorite. Cly-Sh, gry btn, v.calo,; Siltst drk gry, v.hard at 106 1/2	2	38		·····
	114	lt brn	Sand	Sand v f clear : Mefic Min				
114 118	118 123	lt brn-wh	t "	1 - (ors) clear well sorted	3			· · · · ·
123	128	rt 1	11	$\frac{1}{1} = (crs anonlar)$	4		4. A	8
- 128 -133	133	H		f - m subrounded, clear.	6		1	She At al an O
	<u>138</u> 139	11 11 73 71	n n	a/a with tight snot	7			Shaftesbury Sh
100	199		••	" a/a	<u> </u>			·
139	140	blk	Coal	Coal blk	{	72		
140) 9		***********	1200
<u>140</u> 143 1/2	143 1/	2 drk hrn 1t brn	Sand dr	Sand drk brn)			- 1000
				Sand f, lt brn	10	 		
								110 + 1174
						29		Paddy Sand
								-
						8+	Contraction of the second s	139 + 1145
						0.		Top Cadotte
			· · · · · · · · · · · · · · · · · · ·					
						<u>├</u> ────────────────────────────────────		1100
[
								······ ·······························
		·						
						<u>├</u>		
	T							
·	,	1	ſ					

Spud Aug 29 1982 WELL: E-82-1014 A Comp Aug 29 1982

DEPT	<u>гн</u>			ELEVATION: 394 4	<u>-1295</u> '	T		PAGE: 4	
FROM	то	COLOR	MAIN ROCK TYPE	DESCRIPTION	BEDDING	Bag	Thickness	Lith Log	FORMATION
0	40	<u> </u> '	Gravel Sand	Gravel Qtz wht-lt hrn, Granite pk, Diorite	1	+		TO UTO CAO ST	
40	124	gry brn	Cly-Sh	Cly-Shale gry brn, v calc : Clavatone and hard a to		 		136 C. 40 37	
!	1	-,	1	Cly-Shale gry brn, v calc : Claystone gry, hard @ 45, ' 89.Some sand f at 120'	2		40		
24	127 35 12 9	off white	Sand)	1		KS SAD BOAR	4
29	2 <u>9129</u> 132	n n	<u>├ #</u>	Sand f-(ors); sharp, Mafic min. "ors, rounded / Sand f	3		1	रिहेर्स्ट्रिक्ट्रेट्रेट्रेट्रेट्रेट्रेट्रेट्रेट्रेट्र	et an
.32	-134	<u>n n</u>	<u>↓</u>	" f-m-ors, sub rnd-rnd, (smoke), some rose 2tz	1 2.	1		Brochers with	40
34	139	n n	11	" I-m-ora sub md and (an in))4	†			Shaftesbur
39 44	144 -149		11	# f-m-(crs).clear.sub rnd-rnd (smake)		1			1
±4	- 199 , 1	[" +	1	# f-m-(crs), clear, sub rnd-rnd (smoke) "f-(m)-(crs)"""""""	6	1			1
49	158	DIR-IT D	n Coal, Sand	· ·	7	1			<u></u>
58	<u>160</u> ′	lt brn	Sand	@ 152 Coal blk; @153 Sand lt brn;@154 Coal blk; Sand brn f. @ 155 Sand brn f.	8	l			t
]	اا	<u> </u>	,	Sand brn f. @ 155 Sand brn f.	<u>9</u>	t	·'		1
ļ	J f	1	1		'	L	'		+1200
	·+	·+	, <u></u> /		1 . I	1			f
	·	t!	r'		ļ	1	<u> </u> ′		J
]	,'	t	· !		+	·'	<u>+'</u>		124 + 1171
_]	, J	1 1	,,		<u>+</u> !	·	<u> </u>		D
	, 	1	,Į	· · · · · · · · · · · · · · · · · · ·		í [']	28	[]	
+	, ————————————————————————————————————	·+		1		~	t		ſ
 	·'	⊢]			tt	·'	+	<u></u>	
]	,,	1	J		·	/ '	8+		152 + 1143 Top_Cadott
		1	+	/	ļ]	/ /	1 . 1	1	
	+	·+]	t	1	,,	+	·+	·
+]	·	/		.[·1	t+	·	
		ı	1	1	tt		tl	·	·
	ļ				+	/	I	.)	+1180
		·+	+		1	1	1		· · · · · · · · · · · · · · · · · · ·
	+	·		1	1		+		
]			1	·+		r		·····
	ļ	.			t		<u> </u>		
		·	+		I	1	1		
	+			h	1		,		
			7	2	1	+			
	ļ			1	r			1	
					1 F	I			

WFLL	7 0	- 1010	Spud 30 Aug 19 Comp 30 Aug 19	982		9		-
ACLL.	B - 82	- 1016	Comp 30 Aug 19	982 TD 146 1/2 ' ELEVATION: 396	6,05 M -1299'	КВ	PAGE: 5	
DEPT) FROM	тн то	COLOR	MAIN ROCK TYPE	DESCRIPTION	Bag	Thickness	Lith Log	FORMATION
	$\frac{5}{35 1/2}$		Sand Gravel, Sand	Sand brn			<u></u>	TOPS 5 35 1/2 Shaftesbury
			Gravel	Gravel, m-crs.Granite, Qtz, Diorite	2	35 1/2		
5 1/2 45	45	brn brn	Cly Sand	Cly brn (Sandy) Sand brn f-m			(5) (5) (5) (5) (5) (5) (5) (5) (5) (5)	1
-48	48	brn gry		Oly brn gry silty moist			7000000000	35 1/2
<u>48</u> 52	52 53	л п п	U T	Cly brn gry, silty, moist; Sand brn moist Cly , Sand a/a; Siltst 1-2 "		· · · ·		Shaftesbury -
-58	54	<u> </u>	Sand	Sand brn.crs.arg.			alle to a test	4
4 1/2	54 1/2		S / Gravel	Sand, Gravel, Siltst, Cly, moist Clay brn				
5 !!	156 1/2	j a j	Clay Sand	Clay brn Sand brn.wet.		91		-
3 1/21 6-1/2	126 1/2	brn gry lt gry	v Clay/Shale	I Ulay/Shale hrn gry. Clyst laver @ 8- 124	_3			<u></u>
28	1 29	↓	Sand	Sand f-(m), smoke, rnd-sub rnd. Sand a /a clear, (mica).	2x4.	+	== ==	1500
30.7	130	<u>k n</u>	11	Sand m-ors Sand f-(m) s/s	5	+		·
5 1/2	145 1	2 "	11	Sand vf : mafic min, well sorted.	2x6_	+		
5 1/2	146	bra	Sand	Sand f, carb				.+
6	46 1/2	blk-bm	Clay,Coal	Clay brn, Coal blk.	7			126 1/2 + 11
	1	·+	[20		
	(†	, 	[1/2 +		146 1/2 +11
+		,+	· · · · · · · · · · · · · · · · · · ·			-/-	/	Cadotte mbr
	+	·!	· · · · · · · · · · · · · · · · · · ·					1
	I	!	f					1
	t}	ł	f					1
	<u>├</u>	I	<u> </u>	-				1100'
	+	l	Į					
]		J	l					[
]		 	1	7				l
]			1					t
		, †	1]	/
	1+	+	·'					1
		J	f'	·				1

Spud Sept 2 1982 WELL: B - 82 - 1020 Comp Sept 2 1982

TD 128 1/2 • •

ELEVATION 386.22 11 _1269'

PAGE:6

(3)

KB

DEP	тн				-0	···		
6001		COLOR	MAIN ROCK TYPE	DESCRIPTION	Barg	Thickness	Lith Log	
FROM	то		HOCK TYPE					FORMATION
0	8		Grands 102					TOPS
8.	19	brn	Grav/S./Clay	Gravel crs, Sand, Clay	1		00000 2000	
	-21-	n	Sand brn ers c	Gravel f.well rnd; Sand crs brn.; 14'(Sand arg wet)	2		0.000 00000	8
21	22		Gravel, Sand	Gravel f. Sand a/a		25 1/2	00000000000	19
22	23	. п	Sand	Sand crs clean.				25 1/2
23	25 1/2	#	Gravel	Gravel n.	3		27	
25 1/2	93	brn gry	Clay	flay brn gry.				Shaftesbury Sh
-25-07			-			1 1		
93	94	brn	Sand brn f-m	Sand her for	4			······································
54	95		11	Sand brn f-m. "f,clean, sub rnd "f Sub rnd (Zafic min)/Siderite, yellow SS f / Siderite / mafic min.		67 1/2		
95	99	yel		"I Sub rnd ("afig min)/Siderite volla				+ 1200
99	108		SS ⁿ	SS f / Siderite / mafic min.	5			
		" -brn	"	@ 160' and 102' For the laws -	6			
108	1 /			V IVO I/C V M C PR- C I ADM mad [Bus les]	. 0			
108	11 1/2		·· · ·					93 + 1176
111 1/2	113			Jos 1/2 Sa/a f-m yrllow.well rnd, (Feg 0)	7			Paddy Sand
	118				8	30		······································
	20 1/2			S a/a v f. S a/a f(m)				
120 1/2	122 1/2		12	Sa/a red (Fe205)				
128 1/2	125		11	Sa/a clean	1		and the second s	Cadotte mbr
$\frac{123}{123}$	23 1/2	_blk_	Coal	Coal blk		1	······································	Cadotte mor
123 1/2	124 1/2		" /Sand	Coal / S f-m brn	99		TD 128 1/2	
124 1/2				Coal / S v f.				· · · · · · · · · · · · · · · · · · ·
	128		17 11	n n arg. moist.		l		······································
128	28 1/2	gry bra	Sand	Sand v f lt gry brn.			.	
								1100
				4 .				
							1	
	<u> </u> -	——— <u> </u>						
,								
		ł						
							I	

· Spud Sept 1 1982 well: B - 28 - 102/3 Comp Sept 2 1982

TD 155

ć

ELEVATION 397.9294 - 1306' КВ

PAGE: 7

DEPTH FROM TO	COLOR	MAIN ROCK TYPE	DESCRIPTION	Bag	Thickness	Lith Log	FORMATION
0 24	brn	Sand	Sand brn f-m, clean				TOPS +1300
24 30 	brn brn	Sand, Gravel	Sand a/a Gravel f-m-(crs)				
33 48	brn	Gravel,Sand	Gravel f-(m). Gravel f-m, Sand brn ors		24	· · · · · · · · · · · · · · · · · · ·	24
48 53 53 67 1/2	n	n n		3		2.14.07.40 T.C.	
67 1/2 70 70 86	brn gr	y Clay	Clay home were (sandy)				
86 94	gry	n ·	" gry; Silt f (powder) (@ 90' water?)	4 5		10-2030AU - 5 4 550 207-01	
94 106 106 127	brn gry	Cly-Shale	" gry; Silt f (powder)(@ 90' water?) " Sh brn gry calc. " a/a / (Siltst gry) " a/a / Silt / (Siltst)			100 2001 A	07.2/0.1.2000.01
127 130 1/	2 " "	11 12	" " a/a / Silt / (Siltst)				67 1/2 + 1238 1 4 Shaftesbury 5
130 1/2 131	lt brn	Sand	Sand f-m sub rnd (smoke)	7			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2 gry 1t brn	Siltst Sand	Siltst (2") are	8	· · · · · · · · · · · · · · · · · · ·		
132 135 135 137	11	13	Sand f-m rnd; olean (smoke) "f-m clean rnd."	9	64		+1200
137150_1		n	<u>"vf (no mafic min.)</u>	10			
150 1/2 152 152 154 1/	v drk br	n Clay Sand	Clay v drk brn, hard Sand drk brn	11			131 1/2 + 1174 1/2
154 1/2 155		:1	" v drk brn /Coal.	12			
					19		Paddy Sand
					4 1/2*		150 1/2 + 1155 1/2 Cadotte mbr
						TD 155	
							······
			· · · · · · · · · · · · · · · · · · ·	+			<u>+ 1100</u>
				+			
							······
							· · · · · · · · · · · · · · · · · · ·
	1						

Spud Aug 31 1982 WELLE - 82 - 1024 Comp Sept 1 1982

TD 122 1/2

(

ELEVATION 394, 563M - 1294 ' KB

ି

PAGE:8

DEPT	гн	· · · · · '								
FROM	то	COLOR	MAIN ROCK TYPE	DESCRIPTION	B≞g		Thie	okness	Lith Log	FORMATION
0	4	brn	Sand brn	Sand brn	<u>+</u>					TOPS
4	12	<u> </u> !	Gravel	Gravel	1					4
12	18	, ,	Clay	Clay / Sand / Gravel	 				The construction	18
18	42 46	brn	Clay Sand	Clay brn	 		<u> </u> '	92		Shaftesbury -S]
46	47	brn gry	Clay	Sand drk brn f-(m), carb mat.; Sand v f brn arg Clay brn grv (silty)	 		<u> </u>	<		
47	48 66	drk brn brn	Silt / Clay	Clay brn gry (silty) drk brn, carb mat.			\[`	{		
66	3 8	drk brn	Clay drk brn	Clay drk hrm reist	2			5		
		<u>пп</u> # n	11				103	7		
	85		Gravel /N	Gravel /w Granite pk m well mod	1		 <i>ı</i>	{'	Constant of the second	
<u> </u>	<u>87</u> 110	drk brn	Clay Clay		1		 ;	·	Pageory Pra	łI
	121	m prv	l	Clay " /Gravel v f / Sand v ors. Clay m gry (Bentonite)	2x3		<u>+</u>	<u>{</u> '		+1200
<u>122</u> 122	122	drk brn 2 lt brn	Sand drk brn f Sand	Sand drk brn f -(m) sub rnd / Sand crs (smoke) sub md Sand f-m (smoke) sub rnd.						
	100 1		Sand	Sand f-m (smoke) sub rnd.	4			(11	300000000	110 +1184
]	L]	ļļ		1		├	<u> </u>		121 + 1173
]	L]			ī]	[]	Paddy Sand
		·]	1		ſ		 		l]	
		1							I	
		1	,		·					
		·			·		I		1	· · · · · · · · · · · · · · · · · · ·
		· · · · · · · · · · · · · · · · · · ·					 I			
		+			·		 			· · · · · · · · · · · · · · · · · · ·
		+			,	1				
						1	· <u>·····</u>		<u>+</u>	+1100
						<u>+</u> }				·
										<u> </u>
				1		╂──────┼				
			<u>i</u>			łł				
						ll				×
1		1								
						•				

Spud Sept 11 1982 WELL:B - 82 - 1031 Comp Sept 11 1982

t 11 1982 TD 157

É

ELEVATION:397.6621 - 13051

PAGE:9

()

кв

;

DEPT	н		MAIN		Bag	Thickness	74+b 7	
FROM	то	COLOR	ROCK TYPE	DESCRIPTION	D-8	Turczuess	Lith Log	FORMATION
0	25	brn	Sand	Sand brn f.				TOPS
25	38	brn	Sand	Sand a/a m				
				@ 30 / ((Clay lt brn; glacial))				· · · · · · · · · · · · · · · · · · ·
				@ 34 / (Gravel f)	1			
38	52	brn	Sand	@ 36 / Sand m-crs / Gravel 1-m.		72		
			Sand	Sand orn m-crs / ((Gravel $f-m$))				
	-64		Gravel	Gravel f /((Clay 1/ or h, gladial))	2			
64	72		Gravel	Sand brn f. Sand a/a m @ 30 / ((Clay lt brn; glacial)) @ 34 / (Gravel f) @ 36 / Sand m-crs / Gravel f-m. Sand brn m-crs / ((Gravel f-m)) @ 50 / ((Clay lt brn, glacial)) Gravel f /((Glay a/a)) Gravel a/a m-crs; wet. Clay brn; @ 107 Siltst-Clayst.v lt brn. Shale a/a /Clayst /((Gravel f)) Sand gry v f ((arg)) sub rnd. Sand f well rnd clean / ((Sand v crs well rnd)) Sand lt brn (arg); Uniform quality.			it to a continue	
72 130	130 135	brn .	Clay	Clay brn; @ 107 Siltst-Clayst.v lt brn.				
135	138		Shale Sand	Shale a/a /Clayst /((Gravel f))			05,0000	
	142-	gray	Sand	Sand gry v f ((arg)) sub rnd.	34	-		-72 + 1233
142	150	lt brn	Sand	Sand 1 werr rnd clean / ((Sand v crs well rnd))	5			Shaftesbury Sl
150	151	brn-drkb	rn Sand	Sand 1t brn (arg); Uniform quality. Sand f brn-drk brn, arg / Clay brn silty.	6	· · · · · · · · · · · · · · · · · · ·		
151	154	-brn	Clay-Shalo	Clay-Shale brn silty. Coal.	7	63		
154 	155 157	blk	Coal	Coal.				
100	191	brn	Sand	Sand v f brn / Coal.				
<u></u>								
					1			135 + 1170
								Paddy Sand
						16		I may build
								151 + 1154
					<u> </u>	6+		Cadotte mbr
							TD 157	
								······································
								·
					· · · · ·			
								+ 1100
	- <u>-</u>							
					· · · · · · · · · · · · · · · · · · ·			
	T							
					i.			
ł	ł		ļ					
						· · · ·	1	

Ć

Spud Sept 7 1982 WELL: E - 82 - 1035 Comp Sept 8 1982 TD 100

ELEVATION:382.86 M = 1256 ft KB

PAGE:10

ì

ß

DEPT FROM	н	COLOR	MAIN ROCK TYPE	DESCRIPTION	Bag	Thickness	Lith Log	FORMATION
0	3	brn	Sand	Sand brn				TOPS 3
3	16		Gravel	Gravel				
16	- 24	brn	-Sand	Sand-brn-m	1 1	20		16
24	26	~	Gravel	Gravel	2			26 + 123 0
26	55	brn gry	Clay	Clay brn pry: @ 30 Clay - Sh:@ 43 Claystone any hand				Shaftesbury Sh
55	70	n n	_Clay	Clay a/a: @ 55 & 59 SS wht-lt gry;				
70	85	drk gry	Clay	Clay a/a:@ 55 & 59 SS wht-lt gry; Clay drk gry (powder);@82 Siltst;@ 84 Gravel v f Clay a/a/ Sand v f /Silt	3	60		
	- 86 90		Clay-S-Silt.	Clay a/a/ Sand v f /Silt				-55 +1200
90	90	gry	Sand - Silt Sand	Sand-Silt v f arg gry dirty. Sand f-m-(ors) clear, sub rnd-rnd.				59
93	_94		-Sand	Sand 1-m-(urs) clear, sub rnd-rnd.	4			
94	95		Sand	Sand a/a-(crs)((smoke))(dirty)(arg).	-			
95	100	lt brn	Sand	Sand f-(m), rnd ((dirty)) Sand a/a-(crs)((smoke))(dirty)(arg). Sand v f lt brn, dirty.	5			88 1170
				•		9		Paddy Sand
						5+		86 1170 <u>Paddy Sand</u> 95 1161 <u>Gadotto mbr</u>
							1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	
 								· · · · · · · · · · · · · · · · · · ·
							TD 100	
				· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·		
	L							
						<u> </u>	l	+1100
				· · ·				-
			······································					
					{			,
					t			
	<u> </u>							
	ļ							
	<u> </u>		···· · · · · · · · · · · · · · · · · ·		{			
								······································
	1	<u> </u>						
				•			;	
					I T			
<u> </u>	1				<u> </u>			

Spud Sept 8 1982 WELL B - 82 - 1049 Comp Sept 9 1982

TD 76

(

ELEVATION: 377.173 M -1237 ft KB

(??

PAGE:11

DEPTH FROM TO	COLOR	MAIN ROCK TYPE	DESCRIPTION	Bag		Thickness	Lith Log	FORMATION
0 53	brn	Gravel&Sand						
53 60	brn gry	Shale	Gravel m-crs / Sand; @ 50 ' water. Shale brn gry, weathered. Shale gry (powder); @ 67 thin Claystone beds. Shale a/a/((Gravel f))/((Sand m-crs dirty)) Sand f-brn, sharp.	11				
	gry	Shale	Shalo gry (powdor): 67 thin Clavatone hade	2			W UCCUC	······································
$\begin{array}{c c} 70 & 71 \\ \hline 71 & 76 \end{array}$	gry	Shale	Shale a/a/((Gravel f))/((Sand m-crs dirty))					
11 10	brn	Sand	Sand f-brn, sharp.				600.000	+ 1200
							6800000000	+100
			·				05,00000	
		· · · · · · · · · · · · · · · · · · ·				1 20	16000000	53 + 1184
				<u> </u>		18		Shaftesbury Sh
								71 + 1166
				-		57		Cadotte mbr
·								
					+		TD 76	
					L			
								······································
	}				<u> </u>			
								1
								+1100
								······
					· · · · · · · · · · · · · · · · · · ·			·
					<u> </u>			
		_						
				·			1	
		~						
	,							
	·							· · · · · · · · · · · · · · · · · · ·
1								

Spud Sept 7 1982 WELLS E = 82 - 1052

/

Comp Sept 7 1982 TD 146'

ELEVATION:391.4284 1284 ft КВ PAGE: 12 DEPTH MAIN COLOR Bag Thickness DESCRIPTION EROM то BOCK TYPE Lith Log FORMATION 28 COCCAST 28 COCCAST 34 Shaftesbury Sh + 1250 0 12 brn Gravel -Sand Gravel / Sand brn f-crs 28 12 Good quality Sand Sand brn m 2.8 Good quality 34 Gravel and Sand ? No roturn .Bit plugged by rook. T 34 80 34 gry brn Shale Shale gry brn / (Claystone gry) 80 2 113 Shale a/a / (SS r I"?) 113 118 Sand Sand f gry, mafic min_, dirty. Sand f-m, v clean, rnd. Sand a/a & crs (smoke) clean. gry 118 123 3 Sand -122 174 4 Sand 134 5 139 1/2 grv Sand Sand f, mafic min. 139 1/2 140 brn 6 Sand Sand f brn. ____140 142 1/P DIK Coal /Water when commenced drilling. Coal / Sand m brn. Coal 142 1/2 145 79 blk brn Coal 8 -146----brn-Sand 9 Sand f brn, sharp. +1200 Ĵ 113 + 1171 113 + 1171 Paddy Sand 139 1/2 + 1144 1/-Cadotte mbr 26,1/2 6 1/2 Cadotte mbr TD 146 + 1100 ____

C

Spud Sept 9 1982 WELL: W - 82 - 1056 Comp Sept 10 1982

TD 70

ELEVATION:377.2211 _ 12381 КВ

PAGE: 13

DEPTH	1			·	 		
FROM TO	COLOR	MAIN ROCK TYPE	DESCRIPTION	Bag	Thickness	Lith Log	FORMATION
0 32	brn	Sand & Gravel	Sand brn m-ors / Gravel f- (org)		 		TOPS
	brn gry	Clay	Sand brn m-ors / Gravel f-(crs) @ 18: drk brn and wet; & Clay brn gry / @:40: 3" Claystone bed. @ 43: a/a @ 45: powder Clay brn gry / (Gravel y f)	1	 32		
<u>65 68</u> 68 70	brn gry brn	<u>Clay & Gravel</u> Sand	© 43 ° &/a © 45 ° powder <u>Clay brn gry / (Gravel v f)</u> Sand f brn sharp.	2			32 ↓ <u>1206</u>
					36		Shaftesbury Sh
					 2+		68 + 1170 Cadotte mbr
				· · · · · · · · · · · · · · · · · · ·		TD 70	
							+ 1100
							:
				· · · · · · · · · · · · · · · · · · ·			
					· · · · · · · · · · · · · · · · · · ·		
			1	4			:

Spud Sept 10 1982 WELL: E - 82 - 1057 Comp Sept 10 1982 TD 100

ELEVATION: 377.8761 - 1240: KB

PAGE: 14

 $\widehat{}$

DEP	тн	· · · · · · · · · · · · · · · · · · ·			·		PAGE: 14	
FROM	то	COLOR	MAIN ROCK TYPE	DESCRIPTION	Bag	Thickness	Lith Log	
<u>0</u> 17	17	brn brn gry lt brn	Sand & Gravel	Sand m-crs brn / Gravel f-m. Shale brn gry; @ 56' ((Clayst));@65-68 ((Siltytone)) Sand f lt brn Sand f- (m) sub rnd close	1	 	28-51-81 - 55 - 195 - 195	FORMATION TOPS
68 1/2_	75	lt brn	Shale Sand	Shale brn gry; @ 56! ((Clayst)):@65-68 ((St1+Stern))	3	 17		
75	80	20 011	Sand	Sand P lt bra			2.40.0.2	17
	85		Sand	Sand a/a · (mella	3 x 4			Shaftesbury Sh
<u> </u>	90	lt brn brn	Sand	Sand a/a / Sand f arg 1+ hmp / ((a))	2x6	 <u>51 1/2</u>		Shar cos bur y Sh
	92	brn dele bee	Sand	Sand brn f arg , dirty.	7	 		+1200
95	97	drk brn blk	Sand	Sand f drk brn ; (Coal)				
97	1 99	drk brn	Sand	Sand f - (m) sub rnd clean. Sand a/a ; ((mafic min.)) Sand a/a / Sand f arg lt brn / ((Sh brn)), moist. Sand brn f arg , dirty. Sand f drk brn ; (Coal) Coal blk. Sand drk brn v f.				
99	100	lt brn-r		Sand lt bra-rd v f.	8	 		
						 		$68 \ 1/2 + 1171 \ 1/$
								68 1/2 + 1171 1, Paddy Sand
						23 1/2		
								92 + 1148 -
·	· · · ·					 8+		Cadotte mbr
							mp 100	
							TD_100	
						 		·
								+ 1100
								1 1100
	· · · · ·					 		
			+					
						 · · · · · · · · · · · · · · · · · · ·		·
								<u> </u>
	<u> </u>		1	1		 		<u>.</u>
		•	•			 	1	

Spud Sept 10 1982 WELL: g - 82 - 1058 Compl Sept 11 1982

TD 130:

ELEVATION 388.627 - 1273.

Ć

 \bigcirc

PAGE:15

КВ

		[T		-			
DEPT		COLOR	MAIN	DESCRIPTION	Bag	Thickness	Lith Log	-
FROM	то	·'	ROCK TYPE					FORMATION
0 32	<u>32</u> 100	brn	Sand	Sand brn m-crs / (Gravel f-(m))	1			
υc 	100	gry brn	Clay	Clay gry brn;	1 2	32	f	t!
	L'	Ĺ′	1	a 70 "			/ ····································	<u>+</u> .!
100 1 81	101 106	gry brn	Clay Sand v f.	Sand brn m-ors / (Gravel f-(m)) Clay gry brn; @ 43 Claystone @ 70 " Clay a/a / Claystone /Gravel v f.				32+1241
106	116	1	Sand f-(m) ol	ean (all5 wat)	3		TET T	Shaftesbury Sh
116	p22-1/	ę'	Sand v f.	ean (@115 wet) Clay/Sand	45			f
122 1/2	h25 1/	/ o '	Clay/Sand'	Clay/Sand	9	69		÷ · · · ·
-125-1/2	127_	í'	+coal /	Sand v f arg				ſ/
$ \begin{array}{r} 106 \\ 116 \\ 122 1/2 \\ 123 \\ -125 - 1/2 \\ 127 \\ 127 \\ 129 \\ \end{array} $	129	<u> </u>	[Coal / (Sand)	Sand v f arg Coal Coal / (Sand ors). Sand v f brn.	8			+ 1200
163	T2A	1 '	Sand	Sand v f brn.	<u> </u>	<u>+'</u>	<u> </u>	
	1	1,	1,			<u> </u> '		1
	1	1	[]	f		′		101 + 1172
	[+	ſ'	t'	t	·		2000 2022 202	Paddy sand
	F	t'	t'	1		24-1/2		
·'	t)	+'	<u>ا</u>			4 1/2+		125 1/2 + 1147 1/2
·····	<u>اا</u>	·'	1		/			125 1/2 + 1147 1/2 Cadotto mbr
	1	1	1		<u> </u>	<u> · · · · · · · · · · · · · · · · · · ·</u>	TD 130	
I	1	1 ,	1		'	· · · · · · · · · · · · · · · · · · ·	10 100	1
	1+	1	ſ		/		1	1
	(+	/	tJ	+			(
	F	·'	! ا	1	,		1+	+ 1100
]	⊢]	t!	1/	1			·+	
/		1)	1 ·]	tl	l	l
/	$\overline{1}$	1	1			t	·	·
	,	·+	1		I	I	()	1
+	·+	,;	·					······································
	+	J	J	1		1		· · · · · · · · · · · · · · · · · · ·
		,I	+!	1		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
	·	<u> </u>			+	· · · · · · · · · · · · · · · · · · ·	 	· · · · · · · · · · · · · · · · · · ·
	i	, ⁻ - J	1	1				<u>. </u>
1	,	·+	1	1]	+	·	
				. ,		· • • • • • •		· · · · · · · · · · · · · · · · · · ·

WELL: B	; - 82	- 1059	Spud Sept 12 Comp Sept 13		EVATION: 393.6591 - 1292.	кв		PAGE: 16	
DEPT	тн	, ,							
ROM	то	COLOR	MAIN ROCK TYPE	DESCRIPTION	Bag	1	Thickness	Lith Log	FORMATION
0	3	brn	Clay	Clay brn / Sand f brn.				'	TOPS
$\frac{3}{16}$	16 25	1	Gravel Gravel	Gravel clean			-		1
25	116	brn gry		Gravel / ((Sand)) Clay brn gry,firm, undisturbed. @ 28 Water.	2		25	Res Section	:f
	[]		t	Clay orn gry, firm, undisturbed.				Pool with	25 + 1267
	! '	<u>ا</u>	1	@ 58 Clavstone.			<u> </u>		Shaftesbury S
116	117	1 1	1 /	1 @ 78 + 89 Claustone					t
117	119		Sand / Clay	Sand f-crs arg / Clay.	3		1		.[
119-	124		Sand Sand	Sand gry v f arg. Sand f clean rnd, well sorted. Sand a/a /(Clay brn) Sand v f lt brn ((arg)) Sand a/a f clean. Sand a/a f clean. Sand a/a / (crs) Sand marg clean	4		91		.t
124	125	1!	Sand	Sand f clean rnd, well sorted.	2 x 6				1
125	µ33_1/1	P 1	Sand	Sand v f It hom ((ang))			1		1
3-1/2	125 133 1/2 135 137	brn	Sand	- Sand a/a Brn ((Coal))					ſ
$\frac{135}{137}$	137	اا	Sand	Sand a/a f clean.	2x 9		I		t
	145		Sand Sand	Sand a/a / (crs)			l		+1200
		ärk brn-rd	-Sanu		11	!	ſ		·
	·+	·+		Sand f drk brn-red. (Fe203).	12		· · · · · · · · · · · · · · · · · · ·		F
	<u> </u>	<u>ا</u> ـــــا	L				·		h
	1 1	, I	1			/	t'		116 +1176
1	(·	1			ļ	32		Paddy Sand
	·	·	t				'	<u> </u>	·
	<u> </u>	<u>اا</u>	ł				/'		
	, J	1	1				· , '		148 + 1144
	·+	·+	ſ <u></u>				6+	1	Cadotte mbr
			ſ <u> </u>					TD 154	
	+		·				/	F	
	·		J					t	
			l					J	<u>+ 1100</u>
			i					t	
			· · · · · · · · · · · · · · · · · · ·]	t	
·]								1	
								1	
		+				,		1	

1

HOLE E - 82 - 1008 ELEVATION 391.287 M T D - 130 1/2' 1287 Ft.

·

August 26th, 1982 Page 1

BAG NO.	TIME	DEPTH	LITHOLOGY	COMMENTS
	10:00	0'	Gravel	Start Hammer drill
	10:05	. 3 ¹	Gravel	
	10:15	6 1/2'	Gravel	Rock stuck in bit - pulled out
1	10:25		Gravel	Start drilling
	10:32	9'	Gravel	Connection
	10:44	11-14'	Clay	Rock in bit - pulled - Changed pipe
	11:05		Clay	Back on bottom
21	11:08	17'	Clay	
\sim	11:08	18'	Clay	Connection
	11:29	26'	Clay	
	11:37	27'	Clay	
	11:42	28'	Clay very hard	
	11:45			Put on 2' sub
r	11:55	30'	Clay & Shale	Stopped to change to rotary
	12:40			Tripping in
	12:50			Commenced rotary drilling
3	13:05	38'	Clay-Shale brown-gray & ((Siltstone – Claystone hard))	Connection
	13:15			Start drilling
	13:23	48'	н	Connection
	13:30	48'	11	Start drilling
	13:36	58'	0	Connection
	13:43	58'	п	Start drilling
	13:54	68'	II	Connection
	14:01	68'	н	Start drilling
	14:25	71'	Clay sticking	Bit plugged tripping
	15:30	71 *	Shale brown gray hard White claystone at 76' (1")	Commenced drilling with less weight
L	15:52	78'		Connection
T	16:02			Start drilling
	16:17	86'	Shale	
	16:20	88'	•	Connection
				•••·

-		E - 82 - 1 F D 130 1,		91.287 M 1284 Ft.	August 26th, 1982 Page 2	
B NO.	TIME	DEPTH	LITHOLOGY		COMMENTS	-
	16:29	88'	Shale	Sta	rted drilling	-
	16:53	96 1/2'	Claystone 2 - 4"			
11	16:59	98'	Shale & Claystone	layers		
7	17:00	98'		Con	nection	
	17:20	106'	Claystone layers			
	17:25	108'		Con	nection	
	17:30	109'		Rep	airs on rig	

.

,

		E - 82 - 1 D - 130 1		
BAG NO.	TIME	DEPTH	LITHOLOGY	COMMENTS
	11:00	109'	······································	Started drilling
<u></u>	11:20	112'	Sand	Added soap
	13: 3 0	112'		Commenced drilling: water & soap
.]	14:10	117 1/2'	Sandstone layer; Fine Sand & Siderite & ((glauc))	
6	14:20	118'		Connection
	14:35	118'		Commenced drilling
· · · · · ·	14:48	120'		Tripped out. Changed bit & Holed Tubes at 10', 50' 90' & 120'
•/	15:38	120'		Tripping in.
/	16:24	120'		Reached bottom.
0	16:30	123'	Sand - fine	
8	16:31	124'	Sand - fine	
9	16:33	124 1/2'	Clay layer & Sand arg.	
	16:38	126'		
10	16:45	128'	Sandstone layers, Sand Siderite & Mafic min.	&
	16:50			Commenced drilling
11	16:56	129 1/2'	Sand very fine - Sand caving in	
//		130 1/2'		
	17:30			Pulling out to move
	19:03			Leaving location
	19:12			Arrived at new location (1013)

.

•

_	HOLE I	E - 82 - T D - 14		76 M August 27th, 1982 4 Ft. Page 2
BAG NO.	TIME	DEPTH	LITHOLOGY	COMMENTS
- <u></u> .	19:12			Rig on location Aug.27/82
	19:22			Rig set up. Finished for the day.
	7:37			August 28th, 1982 Crew arrived and departed forgot keys.
	8:30			Arrived for second time.
	9:00	0'		Commenced Hammer drilling
	9:03	3'	Sand & Soil & Gravel	
	9:05	8'	Gravel Qtz White-Brown, Granite & Diorite	Connection
/	9:15	8'	Gravel & Sand	Commenced drilling
	9:38	17'		Repair screen o-ring seal
	10:02	17'		Commenced drilling
	10:06	18'	Gravel & Sand	
	10:08	19'		Connection
	10:13	19'		Commenced drilling.
	10:14	20'	Gravel & Sand	
	10:25	29'		Connection
	10:30	29'	Gravel & Sand	Commenced drilling.
	10:42	38'	Gravel & Sand	
	10:43	39'	Gravel & Sand	Connection
	10:48	39'		Commenced drilling
	10:49	40'	Clay	۲ س -
	11:01	45'		Pull back to next joint Set 3' sub & 5' sub
	11:09			Hammer - change over to Rotary drilling
2	11:21	46'	Clay & thin hard beds	
L	12:35	48 !		Changed sub above bit to prevent air from going _ outside the pipe
	13:00			Resume drilling after sub change over.
	13:05	49'	On bottom; some wet clay	Connection (6' pipe)
	13:08			Commenced drilling
	13:17	55'	Shale brown	Connection - drill pipe plugged

NO.	TIME.	DEPTH	LITHOLOGY	COMMENTS
	14:03	55'		Tripping out Drill with cone bit
	14:15	60'		Connection
	14:17	60'	Shale/Clay	Commenced drilling
	14:50	70'		Connection
	14:54	, 0	Shale/Clay	Commenced drilling
	15:02	80'	Shale/Clay	Connection
2	15:10	80'	Shale/Clay	Commenced drilling
(15:15	90'	Shale/Clay	Connection
v	15:17	90'	Shale/Clay	Commenced drilling
	15:25	100'	Shale/Clay	Connection
	15:27	100'	Shale/Clay 106 1/2' Silt dark gray very hard 107' Shale/Clay a/a	Commenced drilling
	15:40	109'	Sand mers sharp, clear Qtz	
		109 1/2'	Shale brown	
	15:43	110'		Connection
~	15:46	110'	Sand very fine & mafic mineral, clean	Commenced drilling
3	15:55	114'	Sand fine(coarse) clean	Tripping for soft fm (Andy) bit
	16:35	114'	Sand	Commenced drilling
4	16:49	118'	Sand fine - clear - well sorted	Connection
5	16:55			Commenced drilling
~	17:17	123'	Sand fine & (coarse-angular)	
6	17:27	128'		Connection
	17:31	128'	Sand fine-medium sub- rounded – clear	Commenced drilling
x 7	17:40	133'	Sand fine clear, well sorted	
	18:45	138'	Sand a/a & tight spot	Connection
	19:53	138'		Commenced drilling
∇	19:57	140'	Coal	139 Top Cadotte
0	19:59	142'	Sand, dark brown	
	20:00	143 1/2'	Sand fine-light brown	

``

HOLE E - 82 - 1009 ELEVATION 397.903 M September 12th, 1982 TD 167' & 1305 ft. Page 1

.

···

	Τ	D 167'	& 1305	ft. Page 1
BAG NO.	TIME	DEPTH	LITHOLOGY	COMMENTS
	7:45	· .	· · · · · · · · · · · · · · · · · · ·	Arrived on location
	8:30	0'	Sand – fine, brown – red – dark brown	Started Hammer drill
	8:40	8'		Connection
	8:43	8'		Commenced drilling
		12'	Gravel – fine & Sand, as above	-
		17'	Gravel fine – coarse	
/	8:54	18'		Connection
	8:58	18'		Commenced drilling
/	9:00	23'		Boulder stuck in bit
	9:27			Back on bottom
	9:30	28'		Hose plugged with rock. Connection
	9:35	28'	Gravel – coarse & Sand, as above	Commenced drilling
		34'	Sand - coarse & Gravel - fine - medium	1
	9:43	37'	Clay - brown gray	10
	9:46	38'		Connection
	10:00	48'	7' sub to KB	Commenced drilling
	11:05	50'		Connection - Changed over to Rotary drill
	11:10	50'		Commenced drilling
5		57'	Clay, as above/Claystone	
21	11:38	60'		Connection
	11:42	60 '		Commenced drilling
•		65'	Clay, as above/Claystone	
	12:05	70'		Connection
	12:12	70'		Commenced drilling
		79	Clay, as above/Claystone	
	12:29	80'		Connection
	12:35	80'		Commenced drilling
	12:50	90'		Connection
	12:57	90'		Commenced drilling

		E - 82 - D 167'	1009 ELEVATION 397.903 M & 1305 ft.	
AG NO.	TIME	DEPTH	LITHOLOGY	COMMENTS
	<u> </u>	95'	Clay, as above/Claystone	
	13:10	100 !		Connection
	13:16	100'		Commenced drilling
		108'	Clay, as above/Claystone	
	13:32	110'		Connection
1	13:37	110'		Commenced drilling
/	13:48	120'		Connection
\checkmark	13:55	120'		Commenced drilling
		127'	Clay, as above/(Sandstone, white & Claystone & Gravel)	
	14:05	130'		Connection
	14:10	130'		Commenced drilling
3		131'	Sand - fine, clean ((mafic min)) subrounded - rounded	
		132'	Sand, as above, clean	
4		137'	Sand, as above (arg brown)	т.
/		138'	Sand, as above/ <u>coarse</u> , smoke agate	
x5	14:26	140'		Connection
	14:31	140'		Commenced drilling
,		147'	Sand, as above - fine-medium- coarse, clean	
×6	15:26	150'		Connection
	15:30	150'		Commenced drilling
		151'	Sand, as above, fine-medium	
		153'	Sand, as above, fine-light br	own
		155 1/2'	Sand - fine, light brown (arg)
2		157	Sand - fine, light brown (wet)
) 		158 1/2'	Sand - fine, light brown/((Co	al))
		159'	Sand - fine red <u>(Fe2 03)</u>	
	15:37	160'		Connection
	15:42	160'		Commenced drilling
	15:47	167'	TD	

· ,

,				
		E - 82 - 1) - 91'	1007 ELEVATION 421.8 1384	20 M August 25th, 1982 4 Ft.
BAG NO.	TIME	DEPTH	LITHOLOGY	COMMENTS
	7:30			Arrived on Site.
	8:45	0-13'	Sand	Start drilling
	9:-10	13-14'	Start clay at 14'	
	9:40	42'	Clay	Bit plugged - Delay 5 min
	9:50	48'	Clay	Connection
	10:10	53	Clay	Plugged - 1 min.
	10:20	57'	Clay	Pulled up 3'
/	10:27	60'	Clay	Connection
	10:5 0	64'	Clay	
	11:07	69 '	Clay	Connection
	11:38	74'	Clay	Start drilling
	11:46	74'	Clay	Back at bottom
	12:05	78 1/2	Clay	Put on 2' sub
	12:16	80'	Clay	Changed to rotary
	5:23	80'	Clay	Start drilling
	5:45	81'	Clay	Plugged - added water
2,	6:50	83'	Gravel	
	7:03	84	Clay	Hit large rock
	7:34	89'	Clay & gravel	Gravel caving in
	8:05			Start pulling small pipe
	8:20	91 '		Finish pulling small pipe

••••••••••••••••••••••••••••••••••••••	HOLE	E - 82 - T D 160	1014 A ELEVATION 394	4.828 M August 29th, 1982 295 Ft. Page 1
BAG NO.	TIME	DEPTH	LITHOLOGY	COMMENTS
		· · · · · ·		Arrived on Location 20:36; on August 28th, 1982. Finished for the day
				Arrived at 8:00 Aug. 29/82
	9:11	0'	3 ft. soil; then Sand and Gravel	Start drilling (Hammer)
1	9:18	8'		Connection
/	9:25	8'		Commenced drilling
<u></u>	9:55	. 17'	~	Abandoned Hole; moved 3' South to new Hole E-82-1014A
	10:10	0'		Start drill (Hammer)
	10:16	8'		Connection
	10:21	8'		Commenced drilling
	10:26	16'		Return - Hose plugged
	10:27	16'		Commenced drilling
24	10:31	18'		Connection
24	10:37	18'		Commenced drilling
	10:41	26'		Return hose plugged, stopped hammer
	10:43	26'	· · · ·	Commenced drilling
	10:45	28'		Connection
	10:50	28'	•	Commenced drilling
	10:56	38'		Connection
	11:00	38'		Commenced drilling
_	11:00	38'	(Water)	
	11:04	40'	Clay - Gray-Brown	
	11:10	43'	Shale/Clay	r.
21	11:14	45'	Clay & Claystone - Gray, hard	Pulled out and changed to Rotary
•••	12:15	45'		Commenced drilling
	12:30	50'		Connection
x	12:37	50'		Commenced drilling
•	12:54	60'	· · · · · · · · · · · · · · · · · · ·	Connection
	12:59	60'		Commenced drilling
	13:15	68'	Shale	~

•

٠.

HOLE E - 82 - 1014 A ELEVATION 394.828 M August 29th, 1982 T D 160' 1295 Ft. Page 2

.

5 - 35**00** - 5

AG NO.	TIME	DEPTH	LITHOLOGY	COMMENTS
	13:23	70'		Connection
	13:26	70'		Commenced drilling
	13:48	80'	· · · · · · · · · · · · · · · · · · ·	Connection
	13:53	80'		Commenced drilling
	14:05	89'	Shale is moist; Thi Claystone beds	n
	14:07	90'		Connection
	14:20	90'		Commenced drilling
2	14:33	100'		Connection
\mathcal{N}	14:41	100'		Commenced drilling
	15:01	110'		Connection
	15:11	110'		Commenced drilling
	15:23	120'	Sand - much finer	Connection
	15:30	120'		Commenced drilling
	15:37	124'	First Sand fine-(coar	^s e)
		128'	<pre>smoke rounded Sand fine-((medium))</pre>	clear
3		127- 129'	Sharp & <u>Mafic Min</u> Sand coarse, round/ Sand fine	
<u></u>	15:50	129'		Pulled out to change to Andy bit
4	16:30	129'	129-132' Sand fine- medium-coarse subrour found (smoke) some ro Qtz. 133' Sand very fine-m	ose
	16:45	134'		
	17:00	139'		Connection
JX J	17:05	139'		Commenced drilling
6	17:18	149'		Connection
x 7	17:23	149'		Commenced drilling
	17:24	152'	Coal (black)	Top Catotte
\bigcirc	17:25	153'	Light brown Sand	
8		154'	Coal black	
		155'	Sand brown fine	

HOLE E - 82 - 1016 T D 146 1/2' •

BAG NO.	TIME	DEPTH	LITHOLOGY	COMMENTS
	7:40			Crew Arrived
	8:45	0'	Sand - Brown	Started Hammer drill
	8:55	5'	Sand & Gravel	
	8:57	8'		Connection
	9:00	8'		Commenced drilling
	9:07	18'		Connection
/	9:10	18'	Sand & (Gravel)	Commenced drilling
	9:23	28'	Sand & Gravel; Qtz; Granite, Diorite	Connection
	9:30	28'	at 35' fine gravel & Sand brown	Commenced drilling
	9:39	35 1/2'	Clay Brown (Sandy)	-
	9:40	38'	Clay Brown	Connection
	9:45	38'	At 45', Sand fine-med, brown 46' Clay silty, moist	Commenced drilling
	10:00	48'		Connection
-		48'	Clay silty, moist, Sand brown moist	Commenced drilling
21		52'	Siltstone 1-2"	
//		53 '	Sand, coarse brown arg	
		54'	Sand & Gravel & Siltsto & Clay, moist	one
		54 1/2'	Clay brown	
		55'	Clay & Sand, wet	
		56'	Clay - gray brown - sol	id ·
	10:29	56 1/2'		Pull out 10' pipe, sub- stitute 5' & 2' to get surfaced pipe at KB
	11:45	57'	Shale, brown calc dry	Commenced drilling with cone bit
^	12:10	60'		Connection
3	12:15	60'		Commenced drilling
	12:42	70'	Blowing mud & water	Connection
	12:50	70'	Shale, brown gray	Commenced drilling
	13:15	80'		Connection
	13:22	80'	Shale a/a & thin claystone layers	Commenced drilling

۰.

HOLE E - 82 - 1016 ELEVATION 396.050 M August 30th, 1982 T D 146 1/2' 1299 Ft. Page 2

۰.

G NO.	TIME	DEPTH	LITHOLOGY	COMMENTS
<u>-</u>	13:45	90'	· · · · · · · · · · · · · · · · · · ·	Connection
	13:54	90'	Shale brown calc	Commenced drilling
	14:16	100'		Connection
	14:25	100'	Shale a/a	Commenced drillmg
2	14:45	110'		Connection
5	14:53	110'	Shale a/a	Commenced drilling
\smile	15:13	120'		Connection
	15:22	120'	Shale a/a	Commenced drilling
		124'	Siltstone layer	
) , /	15:32	126 1/2'	Sand, fine-(medium), smoke, round-subrounded	Pulling out to ch ange to Andy bit Air tubes at 10 ° , 50' & 90'
$\times 4$	16:10	126 1/2'	Sand, fine-(medium) a/a	Commenced drilling
	16:25	128'		Connection
	16:28	128'	Sand fine(medium) clean ((mica))	Commenced drilling
5		129'	medium - <u>coarse</u>	
		130'	Sand fine-(medium) a/a	
		133'		
		135 1/2'	Sand very fine	
х Ю	16:45	138'		Connection
	16:50	138'	Sand very fine & <u>mafic</u> <u>min</u> - well sorted	Commenced drill äng
7		145 1/2'	Sand fine - carb material	
	17:05	146 1/2'	Clay - brown & <u>Coal</u>	Stopped drilling (Top Cadotte 1451/2')
				•

HOLE E - 82 - 1020 TD 128 1/2' September 2nd, 1982 Page 1

_ __

BAG NO.	TIME	DEPTH	LITHOLOGY	COMMENTS
	14:45	<u> </u>		Arrived at location
	15:15	0'	Coarse gravel & Sand & Clay	Started Hammer drill
		8'	Gravel fine well rounde & Sand coarse brown	d
/	15:25	10	Gravel fine well	Connection
/	15:29	10'	at 14' - some sand arg. (wet)	Commenced drilling
		19'	Sand brown coarse clean	
	- 15:40	20'		Connection
	15:43	20'		Commenced drilling
		21 '	Gravel fine & Sand	
2,		22'	Sand coarse clean	
\sim		23'	Gravel medium	
		25 1/2'	Clay brown gray	
	- 15:47	28'		Connection
		28'		Commenced drilling
	16:15	35'		Change over to rotary cone drilling
	17:00	35'		Commenced drilling
	17:15	40'		Connection
	17:24	40'		Commenced drilling
2	17:38	50'		Connection
\bigcirc	17:45	50'		Commenced drilling
	18:01	60'		Connection
	18:08	60'		Commenced drilling
	18:20	70'		Connection
	18:27	70'		Commenced drilling
	18:38	80'		Connection
	18:43	80'		Commenced drilling
<u></u>	18:58	90'		Connection
, /	19:04	90'	•	Commenced drilling
4	19:07	93'	Sand brown fine - medium	

.

	HOLE E TD	- 82 - 1 128 1/2'	020	EL	EVATIO	N 386.82 & 1269'	м I	Septemb	er 2nd, 198: Page 2
AC NO.	TIME	DEPTH		LITH	OLOGY			COMMEN	TS
4	19:08	94'	Sand	fine	clean	subroun	ded	Stop dri Pulling Leaving	lling - out. for the day.
/	19:30				•				t location
·								· .	
-								·	
						·			
									-
									×

-14

 Bit plugged. Commenced drilling. Bit plugged agin (Bit formed cores of Siderite Sandstone - fine & Siderite Sandstone Pulling out going with Tricone Bit. 10:10 99' Sandstone - fine & Siderite & Mafic min 10:20 100' Connection 10:25 100' At 100' & 102' Fe2 03 layers Commenced drilling at 102 1/2' Sand - medium coarse clean rounded (smoke) 10:35 105' Tripping out for Sabit (Sand a/a medium 108' S a/a fine-medium yellow (Fe2 03 content) well rounded 11:04 105' Commenced drilling 108' Sand a/a medium 108' S a/a fine-medium yellow (Fe2 03 content) well rounded 11:07 109' Connection 11:10 109 Connection 11:10 109 Connection 11:15 119' Connection 11:15 119' Connection 11:15 119' Connection 11:19 112' Sand a/a clean well round 113' Sand a/a red (Fe2 03) 122 1/2' Sand a/a clean 123 1/2' Coal & Sand - fine-medium brown 124 1/2' Coal & Sand - very fine 123 1/2' Coal & Sand - very fine 127' Coal & Sand - very fine	AG NO.	TIME	DEPTH	LITHOLOGY	COMMENTS
(mafic min) & Siderite, yellow Commenced drilling. B plugged.com- menced drilling. B plugged.again (Bit formed cores of Siderite Sandstone Pulling. B plugged.com- menced drilling. B plugged.again (Bit formed cores of Siderite Sandstone Pulling. Durits of Siderite Sandstone Pulling. Connection 10:35 105' Tripping out for Sa Dift Dift. 10:35 105' Commenced drilling Dift. 10:35 105' Commenced drilling Commenced drilling 10:35 105' Connection 11:04 105' Commenced drilling 10:6' Sand a/a medium 10:6' Sand a/a clean well round 11:10 109 Connection 11:10 109 Connection 11:11 1/2' Sand a/a clean well round 11:15 119' Commenced drilling 12:0 1/2' Sand a/a clean 12:1 (2' Sand a/a clean 12:1 (2' Sand a/a clean 12:1 (2' Coal & Sand - very fine 12:1 (2' Sand very fine light gray brown		8:00			
 menced drilling. B 10:10 99' Sandstone - fine & Siderite Sandstone Pulling out going with Tricone Bit. 10:20 100' Connection 10:25 100' At 100' & 102' Fe2 03 layers Commenced drilling at 102 1/2' Sand - medium coarse clean rounded (smoke) 10:35 105' Tripping out for Sabit 11:04 105' Commenced drilling 108' Sand a/a medium 108' Sand a/a medium 108' Sand a/a clean well rounded 11:10 109 Connection 11:15 119' Connection 11:15 119' Connection 11:15 119' Connection 11:19 112' Sand a/a red (Fe2 03) 122 1/2' Sand a/a red (Fe2 03) 122 1/2' Sand a/a clean 123 1/2' Coal & Sand - fine-medium brown 124 1/2' Coal & Sand - very fine 124 1/2' Coal & Sand - very fine 128' Sand very fine light gray brown 		8:30	94'	(mafic min) & Siderite,	Commenced drilling
Siderite & Mafic min 10:20 100' Connection 10:25 100' At 100' & 102' Fe2 03 layers Commenced drilling at 102 1/2' Sand - medium coarse clean rounded (smoke) 10:35 105' 10:35 105' 10:36 Sand a/a medium (Fe2 03 content) well ow (Fe2 03 content) well rounded 11:07 109' Connection 11:10 109 Connection 11:10 109 Connection 11:11 1/2' Sand a/a clean well rounded 11:12 Sand a/a / fine-(medium) 11:13 Sand a/a red (Fe2 03) 11:15 119' Connection 11:19 119' Connection 11:19 119' Connection 11:19 120 122 1/2' Sand a/a clean 123 Coal 124 1/2' Coal & Sand - fine-medium brown 124 1/2' Coal & Sand - very fine 127' Coal & Sand - very fine 128' Sand very fine light gray brown	4				menced drilling. Bit plugged again (Bit formed cores of Siderite Sandstone) Pulling out going in
10:25 100' At 100' & 102' Fe2 03 layers Commenced drilling at 102 1/2' Sand - medium coarse clean rounded (smoke) 10:35 105' Tripping out for Sabit 11:04 105' Commenced drilling 10:35 108' Sand a/a medium 10:36 08' Sand a/a medium 10:37 108' Sand a/a medium 10:38 Sand a/a fine-medium yellow (Fe2 03 content) well rounded Connection 11:07 109' Connection 11:10 109 Commenced drilling 11:11 109 Connection 11:12 Sand a/a clean well round I13' 11:15 119' Connection 11:19 119' Connection 11:19 119' Commenced drilling 122 1/2' Sand a/a red (Fe2 03) Cadotte member 123 1/2' Coal & Sand - fine-medium Cadotte member 123 1/2' Coal & Sand - very fine I23 124 1/2' Coal & Sand - very fine I27' 128' Sand very fine light gray I28'		10:10	99'		
at 102 1/2' Sand - medium coarse clean rounded (smoke) 10:35 105' 11:04 105' Commenced drilling 108' Sand a/a medium 108' Sand a/a medium 108' Sand a/a medium yellow (Fe2 03 content) well rounded 11:07 109' Connection Connection 11:10 109 11:10 109 Commenced drilling 11:11 1/2' Sand a/a clean well round 11:12 Sand a/a / fine-(medium) 11:13 Sand a/a / fine-(medium) 11:19 119' Connection Connection 11:19 119' Connection Connection 11:19 119' Connection Connection 11:19 119' Coal 2' Sand a/a red (Fe2 03) Cadotte member 123 1/2' Coal & Sand - fine-medium 123 1/2' Coal & Sand - very fine 124 1/2' Coal & Sand - very fine 127' Coal & Sand - very fine - arg moist 10 128' Sand very fine light gray brown <td></td> <td>10:20</td> <td>100'</td> <td></td> <td>Connection</td>		10:20	100'		Connection
coarse clean rounded (smoke) 10:35 105' 11:04 105' Commenced drilling 108' Sand a/a medium 108' Sand a/a medium 108' Sand a/a medium 108' Sand a/a medium yellow (Fe2 03 content) well rounded 11:07 109' Connection 11:10 109 Commenced drilling 11:10 109 Commenced drilling 11:11 109 Connection 11:12 Sand a/a clean well round 113' 11:13 Sand a/a / erey fine Sand a/a / fine-(medium) 11:15 119' Connection 11:19 119' Commenced drilling 120 1/2' Sand a/a red (Fe2 03) 122 1/2' Sand a/a clean 123 1/2' Coal & a clean 123 1/2' Coal & Sand - fine-medium brown 124 1/2' Coal & Sand - very fine 124' 1/2' Coal & Sand - very fine - arg moist 10 128' Sand very fine light gray brown	_	10:25	100'	Aț 100' & 102' Fe2 03 layers	Commenced drilling
bit 11:04 105' Commenced drilling 108' Sand a/a medium 108' S a/a fine-medium yellow (Fe2 03 content) well rounded 11:07 109' Connection 11:10 109 Commenced drilling 111 1/2' Sand a/a clean well round 113' Sand a/a/ very fine 118' Sand a/a/ fine-(medium) 11:15 119' Connection 11:19 119' Commenced drilling 120 1/2' Sand a/a red (Fe2 03) 122 1/2' Sand a/a clean 123 1/2' Coal & Sand - fine-medium brown 124 1/2' Coal & Sand - very fine 127' Coal & Sand - very fine 127' Coal & Sand - very fine 128' Sand very fine light gray brown	Q		÷		
6 108' Sand a/a medium 108' Sa/a fine-medium yellow (Fe2 03 content) well rounded 11:07 109' Connection 11:10 109 Commenced drilling 11:11 1/2' Sand a/a clean well round 11:12 Sand a/a / very fine Connection 11:15 119' Connection 11:19 119' Connection 11:19 119' Connection 11:19 120 1/2' Sand a/a red (Fe2 03) 122 1/2' Sand a/a clean Cadotte member 123 122 Coal & Sand - fine-medium 9 123 Coal & Sand - very fine 124 1/2' Coal & Sand - very fine 124 128' Sand very fine light gray 10 128' Sand very fine light gray		10:35	105'		Tripping out for Sand bit
6 108' S a/a fine-medium yellow (Fe2 03 content) well rounded 11:07 109' Connection 11:10 109 Commenced drilling 11:10 109 Commenced drilling 11:10 109 Connection 11:10 109 Commenced drilling 11:11 1/2' Sand a/a / very fine Connection 11:15 119' Connection 11:19 119' Commenced drilling 120 1/2' Sand a/a red (Fe2 03) Commenced drilling 121:12 1/2' Sand a/a clean Cadotte member 123 1/2' Coal & Sand - fine-medium Cadotte member 123 1/2' Coal & Sand - very fine 124 124 1/2' Coal & Sand - very fine - arg moist 128' 128' Sand very fine light gray brown Sand very fine light gray brown		11:04	105'		Commenced drilling
(Fe2 03 content) well rounded 11:07 109' Connection 11:10 109 Commenced drilling 11:11 1/2' Sand a/a clean well round 113' Sand a/a/ very fine 113' Sand a/a/ very fine Connection 11:15 119' Connection 11:19 119' Connection 11:19 119' Connection 12:1/2' Sand a/a red (Fe2 03) Connected drilling 12:1/2' Sand a/a clean Cadotte member 12:3 1/2' Coal & Sand - fine-medium Cadotte member 12:3 1/2' Coal & Sand - very fine Coal & Sand - very fine 12:1/2' Sand wery fine light gray Coal & Sand - very fine	/		108'	Sand a/a medium	
11:10109Commenced drilling1111/2' Sand a/a clean well round113'Sand a/a/ very fine113'Sand a/a/ fine-(medium)11:15119'11:19119'1201/2' Sand a/a red (Fe2 03)1221/2' Sand a/a clean123'Coal1231/2' Coal & Sand - fine-mediumbrown1241241/2' Coal & Sand - very fine127'Coal & Sand - very fine128'Sand very fine light gray brown	6		108'		t .
111 1/2' Sand a/a clean well round 113' Sand a/a/ very fine 118' Sand a/a/ fine-(medium) 11:15 119' Connection 11:19 119' Commenced drilling 120 1/2' Sand a/a red (Fe2 03) 122 1/2' Sand a/a clean 123' Coal Cadotte member 123 1/2' Coal & Sand - fine-medium brown 124 1/2' Coal & Sand - very fine 127' Coal & Sand - very fine 127' Coal & Sand - very fine 128' Sand very fine light gray brown		11:07	109'		Connection
 113' Sand a/a/very fine 118' Sand a/a/fine-(medium) 11:15 119' Connection 11:19 119' Commenced drilling 120 1/2' Sand a/a red (Fe2 03) 122 1/2' Sand a/a clean 123' Coal Cadotte member 123 1/2' Coal & Sand - fine-medium brown 124 1/2' Coal & Sand - very fine 127' Coal & Sand - very fine 127' Coal & Sand - very fine - arg moist 128' Sand very fine light gray brown 	1	11:10	109		Commenced drilling
 118' Sand a/a/fine-(medium) 11:15 119' Connection 11:19 119' Commenced drilling 120 1/2' Sand a/a red (Fe2 03) 122 1/2' Sand a/a clean 123' Coal Coal 123 1/2' Coal & Sand - fine-medium brown 124 1/2' Coal & Sand - very fine 127' Coal & Sand - very fine 127' Coal & Sand - very fine 127' Coal & Sand - very fine 128' Sand very fine light gray brown 	7		111 1/2'	Sand a/a clean well round	
 11:15 119' Connection 11:19 119' Commenced drilling 120 1/2' Sand a/a red (Fe2 03) 122 1/2' Sand a/a clean 123' Coal 123 1/2' Coal & Sand - fine-medium 124 1/2' Coal & Sand - very fine 127' Coal & Sand - very fine 127' Coal & Sand - very fine - arg moist 128' Sand very fine light gray brown 	· · ·		113'	Sand a/a/ very fine	
11:19119'Commenced drilling1201/2' Sand a/a red (Fe2 03)1221221/2' Sand a/a cleanCadotte member123'CoalCadotte member1231/2' Coal & Sand - fine-medium brownCadotte member1241/2' Coal & Sand - very fine127'127'Coal & Sand - very fine arg moist128'128'Sand very fine light gray brown	0		118'	Sand a/a/ fine-(medium)	
 120 1/2' Sand a/a red (Fe2 03) 122 1/2' Sand a/a clean 123' Coal Cadotte member 123 1/2' Coal & Sand - fine-medium brown 124 1/2' Coal & Sand - very fine 127' Coal & Sand - very fine - arg moist 128' Sand very fine light gray brown 	8	11:15	119'		Connection
 122 1/2' Sand a/a clean 123' Coal 123 1/2' Coal & Sand - fine-medium 124 1/2' Coal & Sand - very fine 127' Coal & Sand - very fine - arg moist 128' Sand very fine light gray brown 		11:19	119'		Commenced drilling
 123' Coal Coal Cadotte member 123 1/2' Coal & Sand - fine-medium brown 124 1/2' Coal & Sand - very fine 127' Coal & Sand - very fine - arg moist 128' Sand very fine light gray brown 			120 1/2'	Sand a/a red (Fe2 O3)	
123 1/2' Coal & Sand - fine-medium brown 124 1/2' Coal & Sand - very fine 127' Coal & Sand - very fine - arg moist 128' Sand very fine light gray brown	\sim		122 1/2'	Sand a/a clean	
brown 124 1/2' Coal & Sand - very fine 127' Coal & Sand - very fine - arg moist 128' Sand very fine light gray brown	9		123'	Coal	Cadotte member
127' Coal & Sand - very fine - arg moist 128' Sand very fine light gray brown	<i>I</i> .		123 1/2'		
arg moist 128' Sand very fine light gray brown		_	124 1/2'	Coal & Sand - very fine	
brown			127'		
11:30 128 1/2' Sand very fine 1t grav brown	10		128'		-
TITO TEO TEO DUNA TETE TINE TOT GIUE DIONN		11:30	128 1/2'	Sand very fine lt. gray brown	
T D 128 1/2'				· · · · · · · · · · ·	

HOLE E - 82 - 1023 ELEVANTION 397.929 M September 1st, 1982 T D 155' 1306 Ft. Page 1

-

BAG NO.	TIME	DEPTH	LITHOLOGY	COMMENTS
	12:28		₩ 8.4 ⁶ ₩ 86	Crew & rig arrived on location.
	12:37	0'	Sand fine-medium - brown - clean	
	12:40	8'		Connection
/	12:45	8'		Commenced drilling
18'	- 12:50	18'		Connection
2.	12:55	18'		Commenced drilling
24'		24'	Sand & gravel - fine to medium - (coarse)	
	13:00	28'		Connection
		28'		Commenced drilling
		30'	Gravel fine-(medium)	
	13:14	38'	Gravel	Connection
^	13:20	38'	Gravel	Commenced drilling
3	13:23	48'	Gravel	Connection
	13:30	48'	Gravel/Water at 49'	Commenced drilling
		53'	Gravel coarse & Water	
	13:42	58'	Gravel coarse & <u>water</u>	Connection
	14:00	58'	Gravel coarse & water	Commenced drilling
		67 1/2'	Clay brown gray (sandy) wet	
	14:10	68'		Connection
	14:14	68'		Commenced drilling
				Bit plugged - pulling ou
	15:38	68'		Back on bottom
4	15:42	70 '	Clay brown gray solid	Start Hammer drill
/	15:55	73'		put in 5' sub
	16:40			Change over to rotary drill
	17:00			Start tricone rotary
	17:30	80'		Shut down for the day

		. <u></u>		
BAG NO.	TIME	DEPTH	LITHOLOGY	COMMENTS
	7:30			Crew arrived at location
	8:00	80'		
2	, -	86'	Clay-gray/Silt-fine (powder)	Commenced drilling
	8:44	90'	Clay-gray/Silt-fine (powder)	Connection
	8:47	90'	((Water))	Commenced drilling
		94'	Clay-Shale brown gray calc	
	9:05	100'		Connection
	9:14	100'	. · · · ·	Commenced drilling
6		106'	Clay-Shale brown gray calc & (Siltstone gray)	
	9:31	110'		Connection
	9:40	110'		Commenced drilling
	10:00	120'		Connection
	10:07	120'		Commenced drilling
		127'	Clay/Shale brown gray & Silt & (Siltstone)	
	10:25	130'	Clay/Shale "	Connection
	10:32	130'	Clay/Shale "	Commenced drilling
			Sand fine-medium sub- round (smoke)	-
7		131	Siltstone (2") gray	
/		131 1/2'	Sand fine-medium round clean (smoke)	
	10:38	132'		Pulling out for Andy bit Cleaning pipe with air
\bigtriangledown	11:30	132'	Sand fine- <u>medium</u> clean round	Commenced drilling
0		135'	Sand - <u>fine</u>	. v .,
9	-	ĩ37'	Sand - very fine (no mafic min!!)	
142'	11:35	139'	Sand - very fine	Connection
10	11:50	149'		Connection (nearly stuck
177	12:27	149'		Commenced drilling

•*

· ·

	HOLE	- 82 - 10 T D 130'	058 ELEVATION 388.027 M & 1273 ft.	September 10th, 1982 Page 1
BAG NO.	TIME	DEPTH	LITHOLOGY	COMMENTS
<u> </u>	16:05			Arrived on location.
	16:20	0'	Sand - medium-coarse, brown/ (Gavel - fine-((medium))	Start Hammer Drill
	16:23	8'		Connection
	16:25	8'		Commenced drilling
/	16:32	18'	Sand as above/ Gravel as above	Connection
	16:40	18'	Sand as above	Commenced drilling
	16:45	28'		Connection
	16:50	28'	Pipe plugged 5 min.	Commenced drilling
	_	32'	Clay - gray, brown	-
		40'		Connection
		40'		Commenced drilling
		43'	Claystone - 5' sub.	
	17:42	45'	· · ·	Change to rotary drill.
	18:10	45'		Commenced drilling
1	18:25	50'		Connection
L	18:29	50'		Commenced drilling
·	18:55	60'		Connection
	19:00	60'		Commenced drilling
	19:30	70'		Stopped for the day
	20:00			Left Location

82 -1058 FLEVATION

,

•

	HOLE E	- 82 - 1 T D 100		September 10th, 1982 t. Page 2
BAG NO.	TIME	DEPTH	LITHOLOGY	COMMENTS
7	_	95'	((<u>Coal</u>))	· · · · · · · · · · · · · · · · · · ·
		97'	Sand – very fine, dark bro	wn
8		99'	Sand – very fine, light br red	own -
	14:45	100'	TD	
	15:50			Left Location
			,	

· · ·

· ·

AG NO.	TIME	DEPTH	LITHOLOGY	COMMENTS
 	7:40			Arrived on Location
	8:10			Start back in hole
0	8:20	70'	Some Water in hole. Clay as above & Claystone	Commenced drilling
],	8:35	80*		Connection
\sim	9:10	90'		Connection
	9:23	100'	Shale, as above & Claystone & Gravel, very fine	Connection
<u></u>	_	101'	Sand - very fine	
3	_	106'	Sand fine-(medium), clean	
H .	9:35	110'		Connection
5	_	115'	Sand fine-(medium), wet	
/		116'	Sand, very fine	
6	_	120'		Connection
1		122 1/2'	Clay/Sand	
/		123'	Sand - very fine arg	
125'		125 1/2'	Coal	
		127'	Coal & (Sand - coarse)	
\bigtriangledown		129'	Sand - very fine - brown	
8		130	TD	TD

•••

- ..

,

2

HOLE E - 82 - 1059 TD 154'

.

.

,

ELEVATION 393.659 M September 12th, 1982 & 1292 ft. Page 1 Page 1

-

•

KG NO.	TIME	DEPTH	LITHOLOGY	COMMENTS
	16:15			Arrived at Location
	16:30	0'	Clay-brown/ Sand brown fine	Start Hammer drill
		3	Gravel – clean	
1	16:35	8'		Connection
/	16:42	8'		Commenced drilling
/		16'	Gravel/((Sand))	
	17:00	25'	Clay-brown/gray - Firm, undisturbed	
	17:03	28'	Clay, as above & Water	Connection
	17:10	32'	Clay	Set 5' sub to KB
	17:35	35'		Change to Rotary
	18:00	35'		Start Rotary drill
	18:10	40'		Connection
				Stop for the day
				September 13th, 198
1	7:50			Arrived on location
</td <td>8:08</td> <td>40'</td> <td>(some water in hole)</td> <td>Commenced drilling</td>	8:08	40'	(some water in hole)	Commenced drilling
v	8:40	50'	Shale, as above	Connection
	8:45	50'	at 58' Claystone layer	Commenced drilling
	8:57	60'		Connection
	9:03	60'		Commenced drilling
	9:20	70 '		Connection
		70'	at 78' Claystone	Commenced drilling
	9:47	80'		Connection
		80'	At 89' Claystone	Commenced drilling
	10:03	90'		Connection .
		90'	,	Commenced drilling
	10:19	100'		Connection
		100'		Commenced drilling

HOLE E - 82 - 1059 ELEVATION 393.659 M September 13th, 1982 TD 154' & 1292 ft. Page 2

AG NO.	TIME	DEPTH	LITHOLOGY	COMMENTS
2	10:31	110'	· · · · · · · · · · · · · · · · · · ·	Connection
		110'		Commenced drilling
5		116'	Sand-fine- <u>coarse</u> arg & Clay	
3		117'	Sand-gray very fine arg.	
		119'	Sand fine, clean, round, well sorted	
4	10:45	120'		Connection
	10:49	120'	Sand fine, as above	Commenced drilling
5		124'	Sand, as above/(Clay, brown)	
		125'	Sand very fine, light brown ((arg))	
×6	10:53	130'		Connection
7	10:56	130'		Commenced drilling
/		133 1/2'	Sand, as above, brown ((Coal))
8		135'	Sand, as above, fine, clean	
.9		137'	Sand, as above/ (coarse)	
	11:00	140'		Connection
10	11:03	140'		Commenced drilling
x 10 1		145'	Sand medium-coarse, clean	
//		148'	Sand, fine dark brown - red (Fe2 03)	
	11:09	150'		Connection
21	11:13	150'		Commenced drilling
	11:20	154'	T D	

		- 82 - 10 D 155'	23 ELEVATION 3	97.929 M September 2nd, 1982 1306 Ft. Page 2
₽°3 NO.	TIME	DEPTH	LITHOLOGY	COMMENTS
		150 1/2'	Clay hard very d	ark brown <u>(150 1/2' Top Cadotte)</u>
	_	152'	Sand - dark brow	n .
12			Sand fine - very Soal	dark brown -
12	12:45	155'	• •	TD - <u>Tripping out</u>

Rig moving to Location 1020

HOLE E - 82 - 1024 ELEVATION 394.563 M August 31st, 1982 TD 122 1/2' 1294 Ft. Page 1

•

·· - - - <u>- - - -</u> - · ·

G NO.	TIME	DEPTH	LITHOLOGY	COMMENTS
<u> </u>	7:40			Crew arrived on location
1	8:10	0'	Sand - brown	Start Hammer drill
/		4	Gravel	
<u></u>	8:24	12'	Clay/Sand/Gravel	Connection
	8:26	18'	Clay	Commenced drilling
	8:34	28'		Connection
	8:45	28'	Clay - gray calc	Commenced drilling
	9:04	38'		Change over for cone bit rotary – Add 2' sub to KB level
	9:20	40'	Clay gray brown calc	Connection
	9:52	40'		Commenced drilling
	10:00	40'		Connection
	10:03	40'	•	Commenced drilling
		42'	Sand dark brown f(m) carb. material	
		46'	Clay brown gray (silty)	
		47'	Clay dark brown & carb	mat
		48'	Silt-Clay very fine bro (Powder)	wn
	10:44	50 '	:	Connection
	10:47	50'	Siltstone-Clay dark changes to light gray- dark brown (Silt-Clay)	Commenced drilling
	11:23	60 '		Connection
	11:35	60'		Commenced drilling
	12:00	66'	Clay dark brown <u>moist</u> •	Bit plugged went in with new cone bit
\mathbf{Q}_{1}	12:30	66'		Commenced drilling
\sim		68'	Clay dark brown dry	•.
	12:53	70 '	• •	Connection
	13:00	70'	Clay dark brown sandy	Commenced drilling
		78'	Gravel: with Granite pink	
	13:45	80'	· ·	Connection
	14:00	80'	Gravel Qtz-Granite-med; well sorted	Commenced drilling

.

.

BAG NO.	TIME	DEPTH	LITHOLOGY	COMMENTS
	14:10	81'	While cleaning hole - water blew out	Bit plugged - Pulled out
	14:55			Commenced drilling
	15:07	85'	Clay dark brown calc	
21		87'	Clay dark brown & gravel very fine - Sand very coarse	
	15:24	90'		Connection
		90'		Commenced drilling
	16:30	100'		Connection
	16:40	100'		Commenced drilling
<u>110'</u>	17:10	110'	Clay medium gray very pure	
<u>115'</u>	17:43	120'		Connection
	17:45	120'		Commenced drilling
4		121'	Sand dark brown fine- (medium)- Subrounded - (Sand course (smoke) subrounded)	• · ·
	-17:50	122 1/2'	Sand fine-medium (smoke) subrounded)
			·	Pull out for Andy bit (lost one foot because of sub) Bit plugged several times because of gravel in the shale section. Left the location for the day at 19:45
				Sept. 1st, 1982 Crew arrived at 7:40. Tripping in with Andy bit Plugged. Tried the cone bit & 2 x Andy bit. Gravel & Water & Mud kept

.

.

.

Plugged. Tried the cone bit & 2 x Andy bit. Gravel & Water & Mud kept plugging bits. Abandoned hole at 11:00 hours. Moved to location 23.

**

-

HOLE	Ε	-	82	- 1031	
		Т	D 1	57'	

....

ά NO.	TIME	DEPTH	LITHOLOGY	COMMENTS
	11:45			Arrived at Location
	12:10	0 '	Sand - brown, fine	Start Hammer drill
	12:13	8'	Sand - brown, fine	Connection
	12:15	81	· · ·	Commenced drilling
,	12:19	18'		Connection
/	12:24	18'	At 25' Sand as above - med.	Commenced drilling
•	12:33	28'		Connection
	12:35	28'		Commenced drilling
		30'	Sand as above & ((Clay - light brown - glacial))	
		34'	Sand as above & (Gravel - fine)	
		36'	Sand as above/Sand-medium- coarse/Gravel-fine-medium	
	12:40	38'		Connection
	12:45	38'	Sand-medium-coarse, brown/ ((Gravel – fine-medium))	Commenced drilling
	12:50	48'		Connection
	12:54	48'		Commenced drilling
		50'	Sand as above/((Clay, light brown, Glacial))	
		5 2 '	Gravel - fine & (Clay as abo	ve)
	13:00	58'		Connection
		58'	Water in hole	Commenced drilling
		64	Gravel – medium-coarse, wet	
	13:10	68'		Connectión
	13:17	68'	Water	Commenced drilling
, ,		72'	Clay, brown	
	13:29	78'		Pounded to KB Changing to rotary .
2	14:23	80'		Commenced drilling
\checkmark	14:54	90'		Connection
	14:59	90'	·	Commenced drilling
	15:20	100'		Connection
	15:32	100'		Commenced drilling

		T D 15	7' & 1305 ft	September 11th, 1 Page 2
BAG NO.	TIME	DEPTH	LITHOLOGY	COMMENTS
		107'	As above & Silstone & Clay- stone, light brown	
	15:53	110'		Connection
	16:00	110'	((Water))	Commenced drilling
2	16:25	120'		Connection
Δ	16:40	120'	(pipe replaced because of faulty thread) ((water))	Commenced drilling
	16:58	130'		Connection
	17:02	130'	Shale as above/Claystone/ & ((Gravel - fine))	Commenced drilling
3		135'	Sand, very fine, gray ((arg subrounded))
	_	138'	Sand fine, subrounded, clear (Sand very coarse well round	n/ ded)
7	17:15	140'		Connection
		140'		Commenced drilling
	_	142'	Sand, as above - light brown (arg) uniform quality	-
6	17:23	150'		Connection
	17:30	150'	Sand – fine brown-dark brown, arg & Clay brown silty	Commenced drilling
		151'	Clay & Shale - brown silty	
		154'	Coal	
/		155'	Sand very fine brown	
	•	157'	Sand fine-medium, brown & Coal	
-			T D 157	Moved off Location

at 19:00 hours

AG NO.	TIME	DEPTH	LITHOLOGY	COMMENTS
	16:00	. <u>, , , , , , , , , , , , , , , , , , ,</u>	· · · · · · · · · · · · · · · · · · ·	Arrived on location
	16:15	0'	3' Sand 3-8' Gravel	Start Hammer drill
/	16:25	8'	Gravel	Connection
/	16:35	16'	Sand brown medium	
		24'	Gravel	
· · · · · · · · · · · · · · · · · · ·		26'	Clay brown grey	
	16:45	28'		Connection
		30'	Clay - Shale	
	17:13	37'		Changed to rotary drill
	18:08	37'		Commenced drilling
2	18:20	40'		Bit plugged. Pullin out.
\mathcal{N}	18:45	40'		Commenced drilling
		43'	Clay a/a & <u>Claystone</u> grey, hard	
	19:10	50	Clay a/a	Connection
	19:17	50'		Commenced drilling
		55'	Sandstone layer - white - light gray	
		59'	a/a	
	19:37	60'	Water on bottom	Connection Pulled drill pipe inside Hammer drill pipe (37')
	19:45			Finished for the day
	20:00			Left location

.

۹.

.

		E - 82 - D 100'	1035 ELEVATION 383.995 M & 1260'	September 8th, 1982 Page 1
BAG NO.	TIME	DEPTH	LITHOLOGY	COMMENTS
<u> </u>	7:45			Arrived on location
	7:55	60'		Water in hole. Trying to establish circula- tion.
	9:25	.70'		Connection
	9:26	70'	Shale – dark gray (powder)	Commenced drilling
2	9:52	80'		Connection
\mathcal{A}	9:55	80'	•	Water influx under control
		82'	Shale a/a & Siltstone	
		84'	Shale a/a & Gravel very fine	
	-	85'	a/a & Sand very fine - Silt	
2		86'	Sand-Silt very fine arg dirty gray	
3	10:52	90'		Very tight connec- tion.
	10:54	90'	Sand fine - medium (coarse) clean, subrounded - round	Commenced drilling
		93'	Sand fine-(medium), clean rounded ((dirty))	
4		94'	a/a & (coarse) ((smoke)) (dirty) (arg)	
	-	95'	Sand very fine light brown, dirty & ((medium))	95 Top Cadotte
5	11:10	100'	a/a	Tight

,

Abandoned Hole

BAG NO.	TIME	DEPTH	LITHOLOGY	COMMENTS
	13:00		· · · · · · · · · · · · · · · · · · ·	Arrived on location
	13:15	0'	Gravel – coarse-medium & Sand brown	Started Hammer drill
			Sund Brown	Commenced drilling
1	13:40	30'		Connection
	13:50	40'		Connection
,	14:06	50'		Started drilling
	14:10	50'	Water	
	_	53'	Shale brown gray, weathered	i
	14:26	60'		Connection
	15:17	60'		Change to rotary drill.
·	15:25	60'	· · ·	Finished for the day. Rig Repair. Hydraulic leaking. Waiting for parts from Calgary.
	,			September 9th, 1982
	15:45	60'	Shale – grey (powder)	Commenced drilling
		67 1/2'	a/a/ & thin claystone layers	-
	16:20	70'	a/a/ & ((Gravel-fine)) & ((Sand-medium-coarse, dirty)) Connection
		71'	Sand fine-brown-sharp	Top Cadotte & at + 1170
	16:35	76'	<u>T D</u>	
				Pulling out
	18:15			Moving to next location.

. .

HOLE E - 82 - 1052 T D 146'

`

•

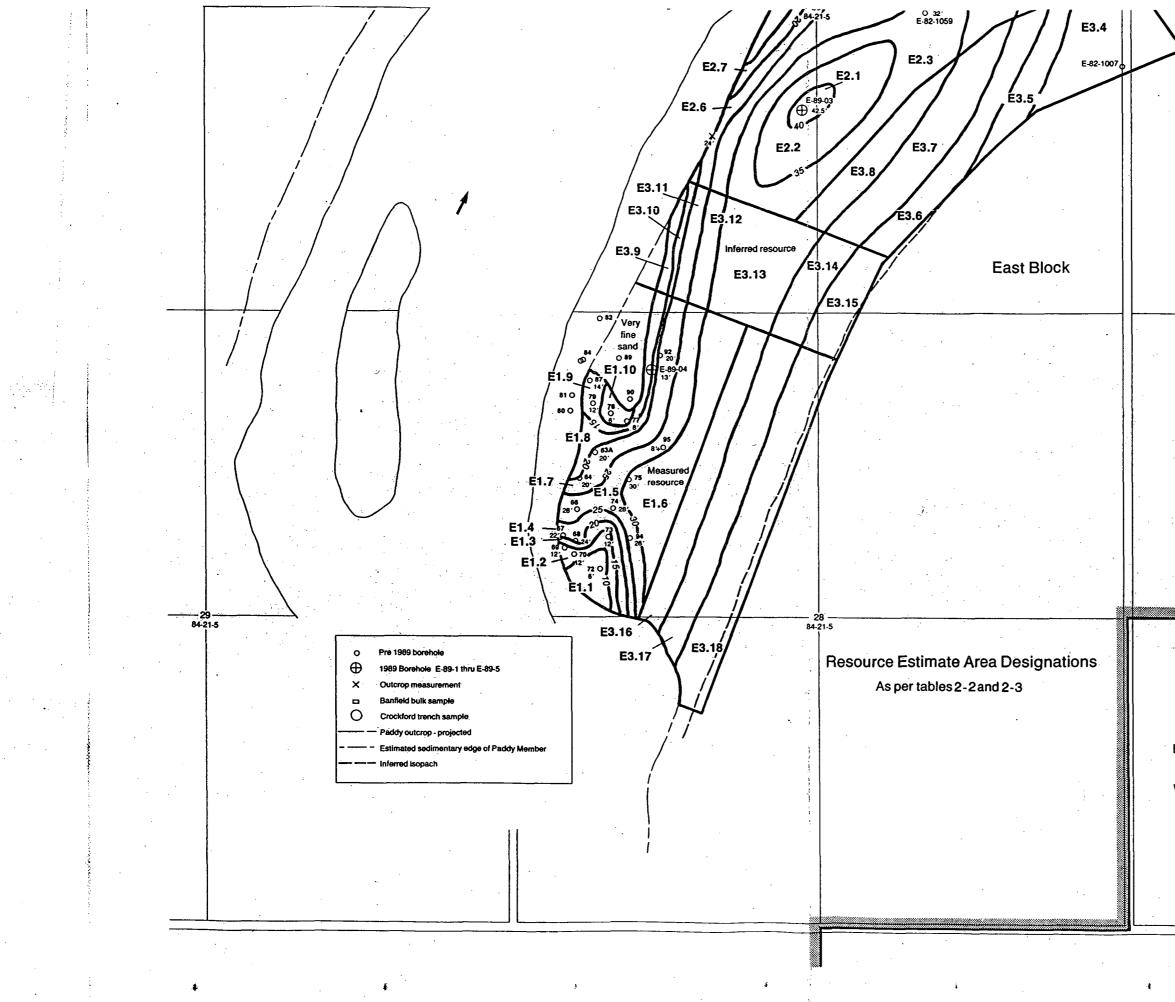
ELEVATION 391.428 M September 7th, 1982 & 1284' Page 1

BAG NO.	ŤIME ,	DEPTH	LITHOLOGY	COMMENTS
	8:45			Arrived at Location
	9:04	0'	Gravel & Sand brown - fine to coarse - good quality	Start Hammer Drill
	9:20	8'		Connection
	9:25	8'		Commenced drilling
/		12'	Sand brown medium - <u>good</u> quality	
	9:30	18'		Connection ~
/	9:35	18'		Commenced drilling
	9:40	28'	Gravel (no return) Bit plugged by rock	Connection
	9:45	28'	u .	Commenced drilling
	9:50	34'	n	Pulled pipe to unplu bit
	10:20	34'	Shale – gray/brown & Clay- stone – gray	Back at bottom
	10:40	40'		Change over to rotar Tricone drilling
	11:20	40'		Commenced drilling
		50'		Connection
		50'		Commenced drilling
	12:05	60'		Connection
~	12:10	60'		Commenced drilling
-/	12:27	70'		Connection
\mathcal{A}	12:34	70'		Commenced drilling
	12:45	80'		Connection
_	12:50	80'	Shale/ a/a (Sandstone 1"?)	Commenced drilling
	13:06	90'		Connection
	13:12	90'		Commenced drilling
	13:97	100'		Connection
	13:34	100'		Commenced drilling
	13:45	110'		Connection
	13:50	110'		Commenced drilling
2×3	-	113'	Sand fine grey - mafic min dirty	
		118'	Sand fine-medium very clean rounded	

	HOLE E - 82 - 1052 T D 146'			ELEVATION 391.428 M & 1284'	September 7th, 1982 Page 2	
BAG NO.	TIME	DEPTH	1 M.	LITHOLOGY	COMMENTS	
	13:00	120'			Connection	
2×4	14:05	120'			Commenced drilling	
	_	123'	Sand	a/a & coarse (smoke)		
2×5	-	128'	Sand	a/a fine clean		
	14:12	130'			Connection	
2×6	14:15	130'			Commenced drilling	
133	-	134'	Sand	fine & <u>mafic min</u> . gray		
2 x 7 138'	-	139 1/2'	Sand	fine brown		
139 1/2.1	14:20	140'			Connection	
	14:25	140'	Coal dril	& Water when started ling	Commenced drilling	
Q		142 1/2'	Coal	& Sand medium brown		
7	14:30	145′	Sand	fine brown	Top Cadotte Sand	
<u> </u>	14:33	146'	ΤD			

j.

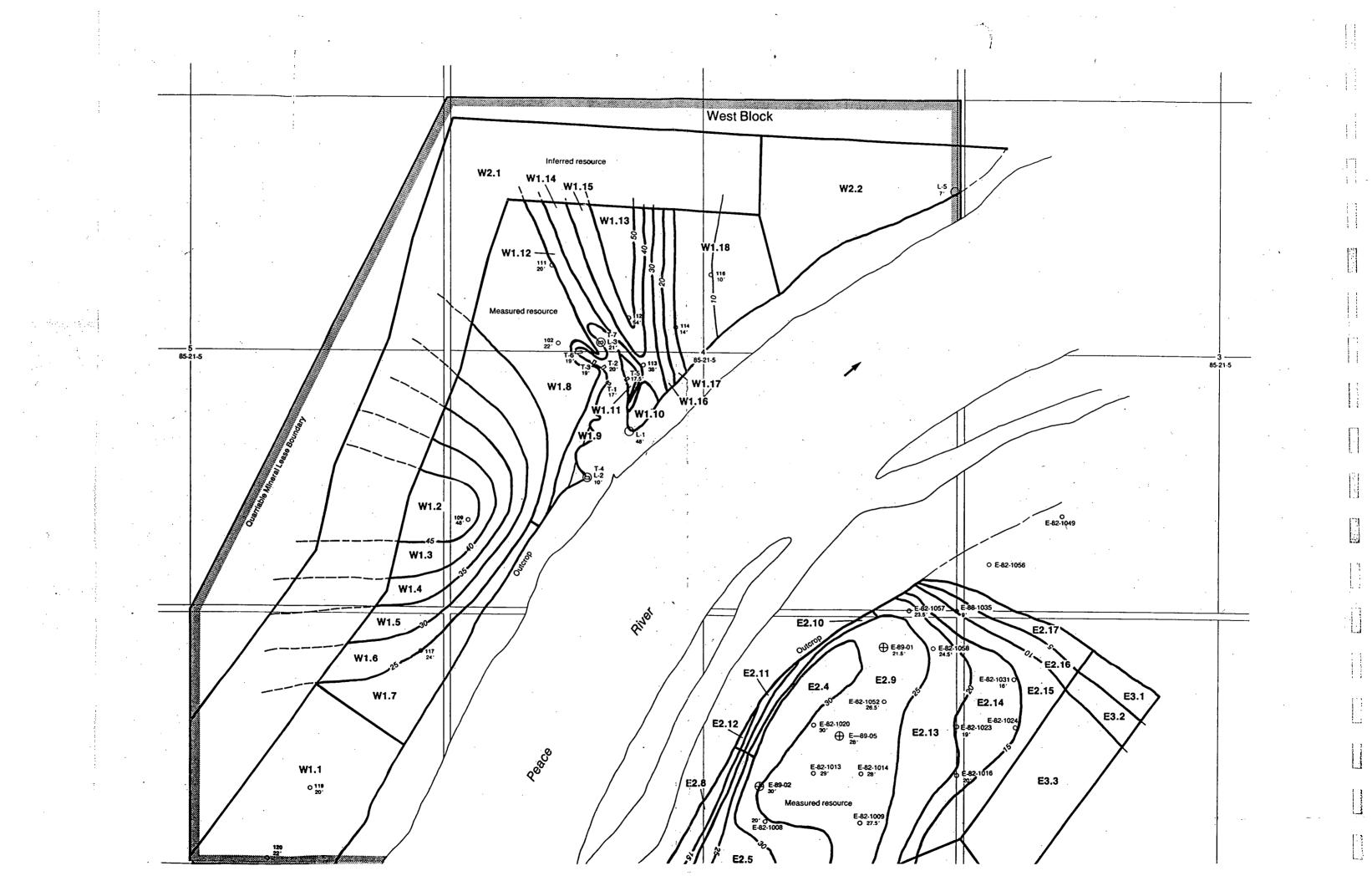
HOLE E - 82 - 1056ELEVATION 377.221 MSeptember 9th, 1982T D 70'& 1238 ft.Page 1


			& 1238 ft.	Page 1
BAG NO.	TIME	DEPTH	LITHOLOGY	COMMENTS
	18:30			Arrived on Location
	.18:43	0'	Sand brown, medium - coarse & Gravel fine-coarse	Commenced Hammer Drill.
	18:50	8 '		Connection
1	18:55	8 '		Commenced drilling
/	19:00	18'		Connection
	19:04	18'	As above – wet, dark brown	Commenced drilling
	19:11	28'		Connection
	19:15	28'	as above - wet	Commenced drilling
		32'	Clay - brown/gray	
	19:25	38'	Add 2' sub as above & 2" claystone	Connection
	19:40	40'	As above & 3" Claystone	Converting to rotary
				Finished for the day
				September 10th, 1982
	8:00			Arrived on location
1	8:35	40'	At 43' Claystone	Commenced drilling
L			At 45′ - Powder	
	9:00	50'		Connection
	9:06	50'		Commenced drilling
	9:23	60'		Connection
		60'		Commenced drilling
		65'	Clay – brown/gray/ Gravel – very fine	- vae-
	_	68'	Sand – fine, brown, sharp	
3	9:40	70 '	TD.	
	10:45			Left location

	HULE E	- 82 - T D 100		
G NO.	TIME	DEPTH	LITHOLOGY	COMMENTS
	10:55			Arrived on Location
	11:10	0'	Sand - medium-coarse, brown & Gravel - fine-medium	Start Hammer drill
/	11:20	8'		Connection
/	11:25	8'		Commenced drilling
		17'	Shale - brown/gray	
	- 11:35	18'	Hose plugged	Connection
	11:38	18'		Commenced drilling
	11:50	28'		Add 2' sub
	12:05	30'		Changing to rotary drill.
	12:38	30'		Commenced drilling
	13:06	40'		Connection
2.	13:10	40'		Commenced drilling
\checkmark	13:30	50'		Connection
	13:38	50'		Commenced drilling
		56'	((Claystone))	
	13:50	60'		Connection
	13:57	60'		Commenced drilling.
			65 - 68' ((Siltstone))	
	_	68 1/2'	Sand - fine, light brown	•
2	14:07	70'	×	Connection
<u> </u>	14:11	żo'		Commenced drilling
°×4		75'	Sand – fine-(medium) subrounded, clean	·
~ /	14:18	80'		Connection
.5		80'	Sand – fine, subrounded, clean ((mafic min))	
~	-	85'	Sand as above/sand - fine arg light brown/((Shale- brown)) moist	
× 6	14:30	90'		Connection
7	14:34	90'	Sand, brown, fine, arg. dirty	-
		92'	Sand fine, <u>dark brown</u> , & (Coal)	

.

••••


ľ

		· · ·			
			1		
•		· .			
			· ·		
		• · ·	· · · ·		
•		•	· ·		
			· ·		
•					
	•				
•	· · · ·				
	· · · · · ·				
• .		and the second			
		• ,			
		·			
			1		
			i i i		
		. •			
Quarria	ble Mineral Lease	Boundary	·		
			·	**	
—	(1)))		1		
Resourc	es of Paddy	/ Member			•
				•	
and lota	es of Paddy I Thickness	slsopach			
Doggo D	River Silica	Pand I td	1		
Feate F	iver Sinca	Sanu Liu.	·		
Doddy Mam	han Cilian Ca-		- · ·		
	nber - Silica Sar				
(Mill	lions metric tonnes)				
•					
	Management	1-1-1-1			
	Measured	Inferred	· · ·		
East Block	13.67	8.59			
East Dioon	10.07	0.55			
West Block	14.89	10.97			
	28.53	19.56			
	20.33	19.50			
0 100	200 300	400 500 metres			
	200 300	400 500 metres			
6	500 1000	1500 (arc)	· ·		
v		1500 feet			
			· · ·		
	Map 2-2				
	map c-c				

84-21-5

1.500

