MAR 19950023: PINHORN

Received date: Oct 30, 1995

Public release date: Oct 31, 1996

DISCLAIMER

By accessing and using the Alberta Energy website to download or otherwise obtain a scanned mineral assessment report, you ("User") agree to be bound by the following terms and conditions:

- a) Each scanned mineral assessment report that is downloaded or otherwise obtained from Alberta Energy is provided "AS IS", with no warranties or representations of any kind whatsoever from Her Majesty the Queen in Right of Alberta, as represented by the Minister of Energy ("Minister"), expressed or implied, including, but not limited to, no warranties or other representations from the Minister, regarding the content, accuracy, reliability, use or results from the use of or the integrity, completeness, quality or legibility of each such scanned mineral assessment report;
- b) To the fullest extent permitted by applicable laws, the Minister hereby expressly disclaims, and is released from, liability and responsibility for all warranties and conditions, expressed or implied, in relation to each scanned mineral assessment report shown or displayed on the Alberta Energy website including but not limited to warranties as to the satisfactory quality of or the fitness of the scanned mineral assessment reports and warranties as to the non-infringement or other non-violation of the proprietary rights held by any third party in respect of the scanned mineral assessment report;
- c) To the fullest extent permitted by applicable law, the Minister, and the Minister's employees and agents, exclude and disclaim liability to the User for losses and damages of whatsoever nature and howsoever arising including, without limitation, any direct, indirect, special, consequential, punitive or incidental damages, loss of use, loss of data, loss caused by a virus, loss of income or profit, claims of third parties, even if Alberta Energy have been advised of the possibility of such damages or losses, arising out of or in connection with the use of the Alberta Energy website, including the accessing or downloading of the scanned mineral assessment report and the use for any purpose of the scanned mineral assessment report.
- d) User agrees to indemnify and hold harmless the Minister, and the Minister's employees and agents against and from any and all third party claims, losses, liabilities, demands, actions or proceedings related to the downloading, distribution, transmissions, storage, redistribution, reproduction or exploitation of each scanned mineral assessment report obtained by the User from Alberta Energy.

Alberta

Alberta Mineral Assessment Reporting System

METAILIC AND INIDUSTRIAL MINERALS ASSESSMENT WORK REPORT

Metallic and Industrial Minerals Permit Numbers 093 9393080123, 093 9393080251, and 093 9393080252

> Index Number 199500-23 Assessment Report on the Cdn Land Medhat Property V. Jo-Am Patterson (St. Clair Pipelines Ltd.) Canadian Landmasters Resource Services Ltd. and Rich Mineral Corp. NTS 72L/9, 16 Salt Permit No. 9393080123, 0251, 0252

1495002?

Prepared by St. Clair Pipelines Ltd. on behalf of Canadian Landmasters Resource Services Utd. and Ruch Minerals Corporation

October 27, 1995

- 14 **- 14** -

CONFIDENTIAL

METALLIC AND INDUSTRIAL MINERALS

ASSESSMENT WORK REPORT

Metallic and Industrial Minerals Permit Numbers: 093 9393080123, 093 9393080251 and 093 9393080252.

Prepared by St. Clair Pipelines Ltd. on behalf of Canadian Landmasters Resource Services Ltd. and Rich Minerals Corporation.

Submitted: October 27, 1995

This Assessment Work Report is filed pursuant to Section 15 of the Metallic and Industrial Minerals Regulation, being Alberta Regulation 66/93.

TABLE OF CONTENTS

		I GED I WA
1.0	SUMMARY	1
2.0	INTRODUCTION	1
3.0	LOCATION AND ACCESS	1
4.0	PERMIT TABULATION	1
5.0	WORK PERFORMED	4
	5.1 Summary	
	5.2 Expenditures	
	5.3 Well Drilling	
	5.4 Formation Evaluations	
	5.4.1 Core and Fluid Analyses	
	5.4.2 Drill Stem Test	
	5.5 Logging	
	5.6 Geological Review	
	5.6.1 Regional Stratigraphy of the Upper Elk Point Group	
	5.6.2 Lithologic Characteristics	
	5.6.3 Salt Analyses	
	5.6.4 Local Distribution and Thickness of the Prairie Evaporite	
	5.6.5 Dawson Bay Formation (Watt Mountain Equivalent)	
	5.6.6 Winnipegosis and Ashern Formations	
	5.6.7 Depositional History of the Upper Elk Point Group	
6.0	CONCLUSIONS	19
7.0	BIBLIOGRAPHY	19
8.0	STATUTORY DECLARATION	20

Page No.

LIST OF FIGURES

Figure No.	Page No.
1	Permit Boundary Map 2
2	Reference Map - Test Well Location
3	Table of Geological Formations 9
4	South-North Cross Section of Nisku - Prairie Evaporite Formations 10
5	Lithologic Characteristics of Watt Mountain Equivalent, Prairie Evaporite and Winnipegosis
6	Detailed Lithology of Prairie Evaporite
7	Prairie Evaporite Structure
8	Prairie Evaporite Isopach 17

LIST OF TABLES

<u>Table No.</u>		<u>lo.</u>
1	Work Credit Summary Statement	4
2	Detailed Statement of Expenditures	5
3	Summary of Logging Runs	7
4	X-Ray Analyses of Salt Samples	13
5	Chemical Analyses of Salt Samples	13

TABLE OF APPENDICES

Permits and Land Descriptions	APPENDIX A1
Application and License for Test Well	APPENDIX A2
Drilling Curve	APPENDIX B1
Daily Drilling Activity Reports	APPENDIX B2
Nisku Core Analysis	APPENDIX C1
Nisku Fluid Analysis	APPENDIX C2
RE/SPEC Core Analysis	APPENDIX C3
Drill Stem Test Results	APPENDIX D
Geological Report - Wm. Baillie Resources Ltd.	APPENDIX E

1.0 SUMMARY

A test well was drilled with the primary purpose of establishing the stratigraphy of the permitted areas (shown in Figure 1). Core samples were obtained from the upper Nisku formation and from the Prairie Evaporite formation. The well was spudded on January 6, 1994 and reached TD on January 24, 1994. The well was subsequently plugged back on January 30, 1994. An application to reclassify the test well to a suspended well was submitted on October 24, 1995.

A geological review of the permitted areas was completed. The well confirmed the presence of the Prairie Evaporite and adequate salt thickness and purity for solution mining.

2.0 INTRODUCTION

A program was carried out to determine the suitability of the Prairie Evaporite for solution mining. The program consisted of well drilling, logging, core and fluid analysis, and a geological review. The program focused on determining the extent and purity of the Prairie Evaporite salt. The Nisku formation was also evaluated to determine the ability of the formation to be used for brine disposal.

3.0 LOCATION AND ACCESS

Figure 1 shows the permit boundaries and permit numbers. The location of the test well is shown on the reference map provided in Figure 2. The stratigraphic test well, Cdn Land Medhat, was drilled at 14-36-20-01 W4M.

4.0 PERMIT TABULATION

This Assessment Work Report is filed by St. Clair Pipelines Ltd., on behalf of Canadian Landmasters Resource Services Ltd., the registered owner of Metallic and Industrial Minerals Permit 093 9393080123 and Rich Minerals Corporation, the registered owner of Metallic and Industrial Minerals Permits 093 9393080251 and 093 9393080252. Canadian Landmasters Resource Services Ltd. has acquired an interest in Sections 1, 2, 11, and 12, Township 21, Range 01 (Permit 093 9393080252) from Rich Minerals Corporation. Copies of the surrender of interest, permits and land descriptions are provided in Appendix A1.

Figure 1 Permit Boundary Map

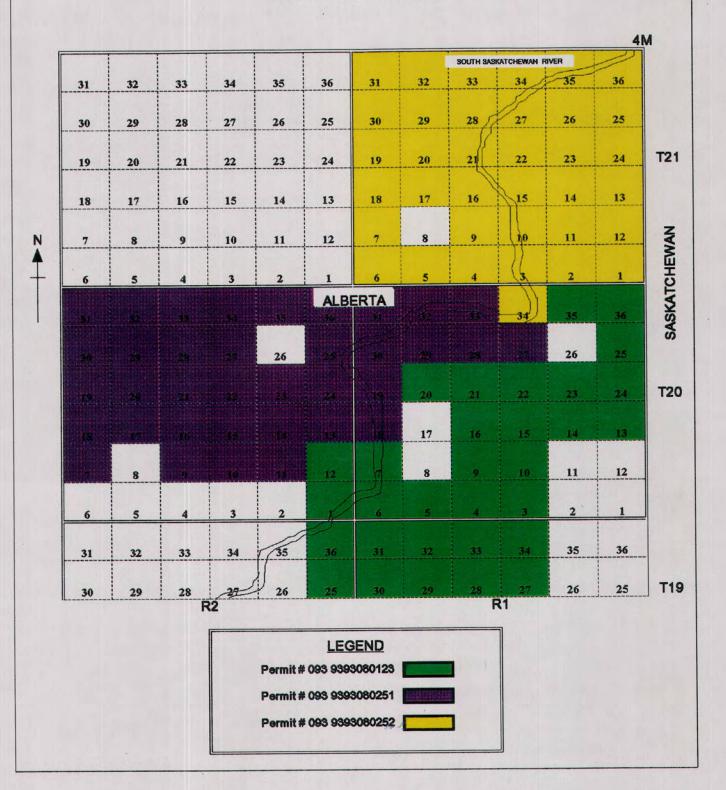
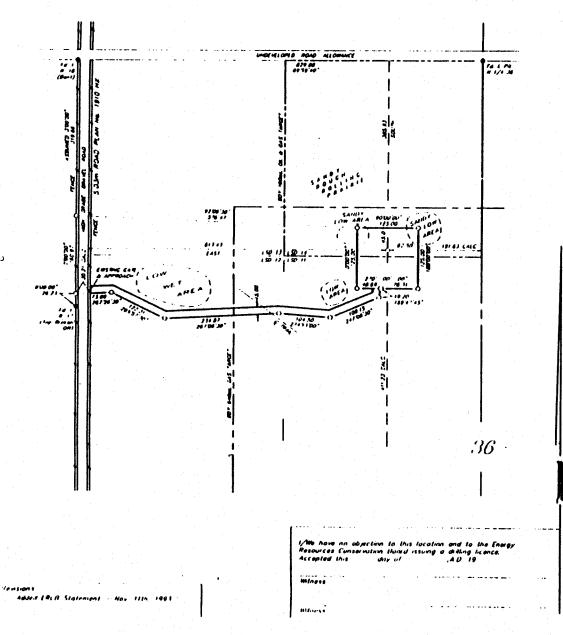
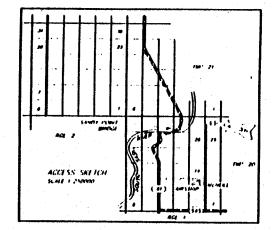




Figure 2 **Reference Map - Test Well Location**

'Revised' CDN LAND MEDHAT 14-36-20-1 Well Site And Access Road L.S. 14 Sec. 36 Twp. 20 Rge. 1 W.4M. M.D. OF CYPRESS No. 1

P034

INC.

I certify that the survey represented by this plan is currect to the best of my knowledge and was completed on the 9th day of Navember, 1991.

- M PART 2 ON & GAS CON MES'S (AR 111/21) THE PROPOSED WELL CENTRE IS At least 200m form any surface improvements
- units them other use At least 100m from the Granery ligh Water black
- Al least found and any value and Al least 200m han a surveyed reduct or coad allow
- Autors a potential car averagement area At least \$0 km kmm a lighted gardener At least \$0 km kmm a lighted gardener At least \$6 km kmm an unhahted aarodrome

- At loss! I 5 km bom the Carporate lunits of a City, Town or Wiege At loss! I 6 km hom any residence

CANADIAN LANDMASTERS RESOURCE SERVICES LTD.

CO-ORDINATES:

385 93 South of Nivih bdy 61143 East of West buy

LE	VA TIONS:	1.21	11 Ground
'ell	Site Corner	1 le volien	
I W.	722 60	NE	722 51
W.	721.66	S E	122 54

AREAS

AUCAD!	hee fures	acres
Well Sile	1 562	186
Access Rood	0 924	2.29
lotal	2.491	6 15

SCALE -1 5000

£

- 14

۸

Survey monuments lound sha Survey monuments planted shown thus O Whoden hubs planted shown thus II Parlans released to bounded thus Distances are in metres and decin

Sec

5.0 WORK PERFORMED

5.1 Summary

The work that is described and submitted in this work assessment report was performed during the two-year period ending August 26, 1995. The work included: i) well drilling; ii) coring; iii) logging; and iv) geological review, including mineralogic analyses of salt samples. A detailed break down of expenditures and a description of the work performed follows.

5.2 Expenditures

Section 14(1) of the Metallic and Industrial Minerals Regulation (Alberta Reg. 66/93) stipulates minimum expenditures requirements. This assessment reports that expenditures for the two-year period ending August 26, 1995 were \$985,982.26. An amount of \$119,650 is to be credited for the first and second year of the term of permits 093 9393080123, 093 9393080251, and 093 9393080252.

Section 14(2) allows for excess amounts to be credited against the remaining expenditure requirements under Section 14(1). Accordingly, \$800,350 is to be credited against the permits for the remaining eight years of the term of permits 093 9393080123 and 093 9393080252. The remaining amount of \$65,982.26 is to be credited for the third and fourth year of the term of permit 093 9393080251.

Table 1 summarizes the amounts credited against each permit for the first and second year of the term of the permits (\$5 per hectare). The table also summarizes the amounts credited against permits for the remaining eight years of the term of the permits (\$50 per hectare).

Permit Number	Hectares	Work Credits Applied Yrs 1 - 2	Work Credits Applied Yrs 3 - 10	Total Work Credits Applied
93 9393080123	8,650	\$43,250.00	\$432,500.00	\$475,750.00
93 9393080251	7,923	39,615.00	65,982.26	105,597.26
93 9393080252 (Sections 1, 2, 11, 12 of 21-1 W4M only)	1,036	5,180.00	51,800.00	56,980.00
93 9393080252 (Remainder)	6,321	31,605.00	316,050.00	347,655.00
Total	23,930	\$119,650.00	\$866,332.26	\$985,982.26

 Table 1

 Work Credit Summary Statement

Item	Description	Cost
1	Rig Move	\$82,420.00
2	Daywork	179,804.00
3	Footage	4,100.00
4	Camp, Crew Travel	22,864.44
5	Fuel, Power, Water	27,612.78
6	Location, Row, Roads, Surface Lease	55,624.53
7	Professional Services	30,583.51
8	Drilling Bits	24,998.33
9	Tubular Testing & Inspection	1,384.00
10	Casing Crews/Tools	5,695.63
11	Float Equipment, Centralizers, Scratchers	2,164.25
12	Cement & Services	24,405.03
13	Coring & Analysis	29,312.96
14	Electric Logging	72,548.33
15	Drill Stem Tests	77,709.10
16	Equipment Rentals	67,921.78
17	Transportation - Trucking of Materials	56,563.17
18	Direct Company Charges	3,428.09
19	Insurance	454.55
20	Miscellaneous Non Operated	2,545.00
21	Administrative Overhead	11,631.55
22	Service Rig	10,063.45
23	Well Stimulation	23,127.00
24	Surface Casing	22,445.90
25	Production Casing & Liner	48,523.56
26	Wellhead Equipment	4,296.30
27	Surface Well Production Equipment	2,479.20
28	Mud and Additives	49,180.82
29	Surface Well Production Equipment	42,095.00
	Total	\$985,982.26

Table 2Detailed Statement of Expenditures

5.3 Well Drilling

A stratigraphic test well was drilled into the Prairie Evaporite formation. A copy of the application and license for the test well is provided in Appendix A2. The stratigraphic test well, Cdn Land Medhat, was drilled at 14-36-20-01 W4 by Enron Oil Canada.

The test well was drilled to evaluate the suitability of the Prairie Evaporite formation for solution mining and to determine brine disposal potential in the Nisku. The well confirmed the presence of the Prairie Evaporite and that the salt thickness and salt purity are adequate.

The test well was spudded on January 6, 1994 and reached a total depth of 1704 metres on January 24, 1994. The well was then plugged back to 1540 metres, on January 29, 1994. An application to reclassify the test well to a suspended well was submitted on October 24, 1995. The drilling curve and the daily drilling activity reports are provided in Appendix B.

5.4 Formation Evaluations

5.4.1 Core and Fluid Analyses

A core analysis was conducted to evaluate the suitability of the Nisku for brine disposal. To facilitate the analysis, the Nisku formation was cored from 1158.0 metres to 1203.8 nietres. Core and fluid samples were analyzed by Core Laboratories. The Nisku core analysis is provided in Appendix C1. The fluid analysis is provided in Appendix C2.

Additional core samples were recovered from the Beaverhill Lake, First Red Bed, Dawson Bay, Second Red Bed, Prairie Evaporite, and the Winnipegosis formations. These samples were analyzed by RE/SPEC Inc. and are included in Appendix C3.

5.4.2 Drill Stem Test

Four drill stem tests were performed from, January 15, 1994 to January 17, 1994, to determine hydrocarbon potential in the Nisku and to estimate disposal rates into the Nisku. Two drill stem tests (1180.0-1203.0 metres and 1157.0-1175.0 metres) were successful and confirmed that there is no apparent hydrocarbon potential in the Nisku. The results of the tests were inconclusive with respect to disposal rates. Drill stem test results are provided in Appendix D.

A suite of logs were successfully run in the test well to assist in developing the geological description of the permitted area. The date logs were run, type of logs run, and logging interval are given in Table 3. Copies of all logs were filed with the ERCB office in Calgary and are available through ERCB staff.

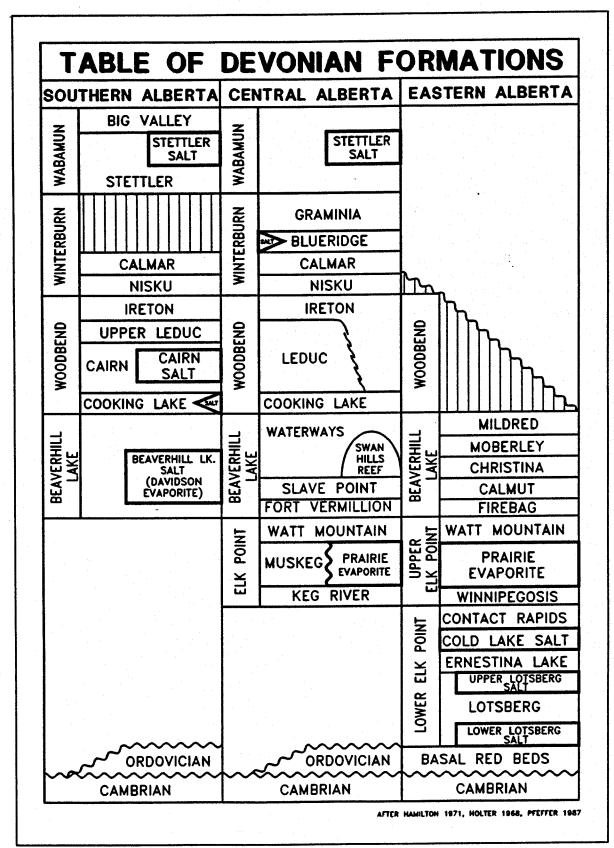
Date Log Run	Type of Log(s) Run	Logging Interval (metres)
January 23, 1994	FMI	1704 - 1600
January 26, 1994	DLL, MSFL, GR CNL, LDT, NGR	1704 - 391 1704 - 725
January 28, 1994	FMI DSI, GR	1704 - 1585 1704 - 391

Table 3Summary of Logging Runs

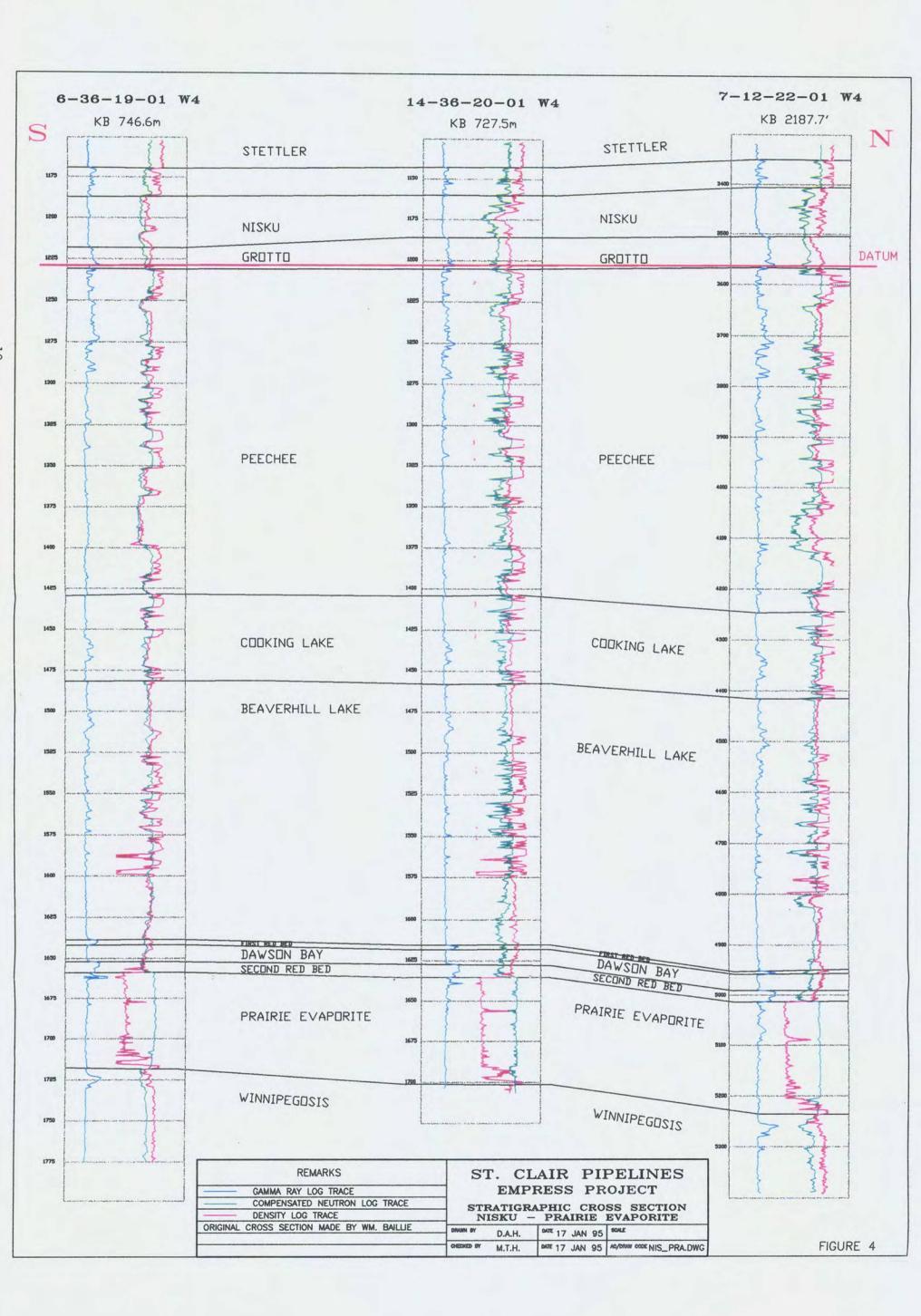
The Prairie Evaporite and the overlying and underlying formations were reviewed during the geological evaluation. The Dawson Bay Formation directly overlies the Prairie Evaporite in the central part of the Elk Point Basin. The Prairie Evaporite in this area is underlain by the Winnipegosis. A detailed geological report, prepared by Wm. Baillie Resources Ltd., is provided in Appendix E.

5.6.1 Regional Stratigraphy of the Upper Elk Point Group

The Prairie Evaporite Formation occurs within the Middle Devonian Upper Elk Point. This subgroup is comprised of a succession of shallow water carbonates (mainly basin filling), evaporites and some siliclastics. The attached Table of Formations (Figure 3) shows the succession to consist of Winnipegosis, Prairie Evaporite and Dawson Bay (Watt Mountain equivalent in the area of interest). The depositional history of the Upper Elk Point is discussed in Section 5.6.7.


The type locality of the Prairie Evaporite is the well Imperial Davidson #1 in 16-08-27-1 W3. Deposits of the Prairie Formation comprise one of the most widespread and thick evaporite successions in the world (Campbell 1992).

The Prairie Evaporite includes three members. The Geological Atlas of the Western Canadian Sedimentary Basin describes the members as follows. The lower or Whitkow member is composed mainly of halite but may also locally consist of interbedded halite and anhydrite. The middle or Shell Lake member is relatively thin and composed of anhydrite. The upper or Leofnard member, predominantly halite, forms the bulk of the Prairie Evaporite Formation.


In the immediate area of interest the Shell Lake and Whitkow members cannot be differentiated and consist of interbedded salt, anhydrite and dolomite. The south to north cross section (Figure 4) shows the Prairie Evaporite to consist mostly of Halite with rare thin Anhydrite beds in the upper part of the section. The basal 10 metres consists of interbedded anhydrite and salt. Rare shales occur in the upper part of the section. The test well 14-36-20-01 W4 cored the entire Prairie Evaporite section.

5.6.2 Lithologic Characteristics

The lithologic characteristics of the Prairie Evaporite and the overlying and underlying formations are shown in Figure 5. The Prairie Evaporite was cored and a detailed log of its lithology is shown in Figure 6.

-

(

LITHOLOGY

DEPTH (Metres)/(Feet)

ioni-			
	BEAVERHILL LAKE	16 10 -	- 5297
	FIRST RED BED		
	DAWSON BAY	1620 -	_ 5307
	DAWSUN DAT		5337
	SECOND RED BED	1630 -	5360
		1640 -	
		1650 -	
	PRAIRIE EVAPORITE	1660 -	
		1670 -	
		1680 -	- 1
		1690 -	
2010.2018.3018.		1700	
	WINNIPEGOSIS	- 1700 - 1701	- 5579

Figure 5

Lithology 14-36-20-1 W4M

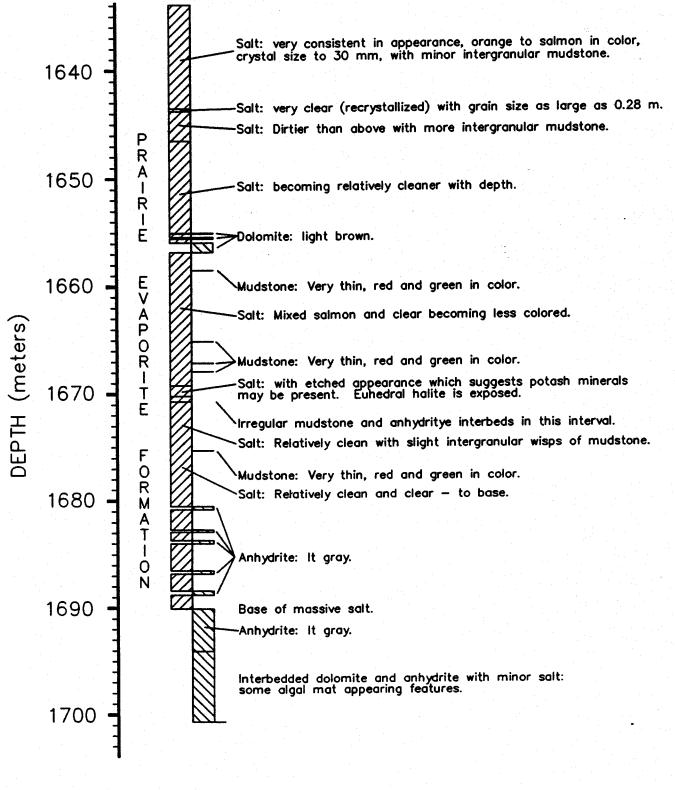


Figure 6

Detailed Lithology 14-36-20-1 W4M

5.6.3 Salt Analyses

Mineralogic analyses of the salt samples were performed and a summary of the results is provided in Table 4 and Table 5.

Table 4 X-Ray Analyses of Salt Specimens (Weight Percent)

Specimen ID	Halite	Anhydrite	Quartz	Sylvite	Carnallite	Total
EN/88/2-2	95.6	1.0	ND	3.4	ND	100.0
EN/106/2-2	94.0	ND	ND	ND	6.0	100.0
En/120/1/3/1-2	96.7	2.4	0.7	0.2	ND	100.0

	Tab	le 5	
Chemical	Analyses	of Salt	Specimens
	(Weight)	Percent)

Specimen ID	% Ca	% Na	% Cl	% SO4	% K	% Mg	% Water Insoluble	Total
EN/88/2-2	0.18	33.50	59.40	0.76	2.62	ND	0.85	97.31
EN/106/2-2	0.08	34.10	67.50	0.14	0.79	0.24	1.41	104.26
En/120/1/3/1-2	0.38	31.80	67.30	0.90	2.51	ND	1.44	104.33

5.6.4 Local Distribution and Thickness of the Prairie Evaporite

The south to north cross section (Figure 4) shows the Prairie Evaporite to be of fairly consistent thickness of 60-67 metres from Twp 19 through 22 Range 1 W4.

The structure on top of the Prairie Evaporite (Figure 7) in the immediate area of interest is from -890 to -915 metres subsea. The isopach of the Prairie Evaporite seen in Figure 8 in the immediate area (Twp 19-20 and Range 1-2 W4) is from 50 - 67 metres. The evaporite thins to 38 metres to the west in Ranges 2 to 3 W4M.

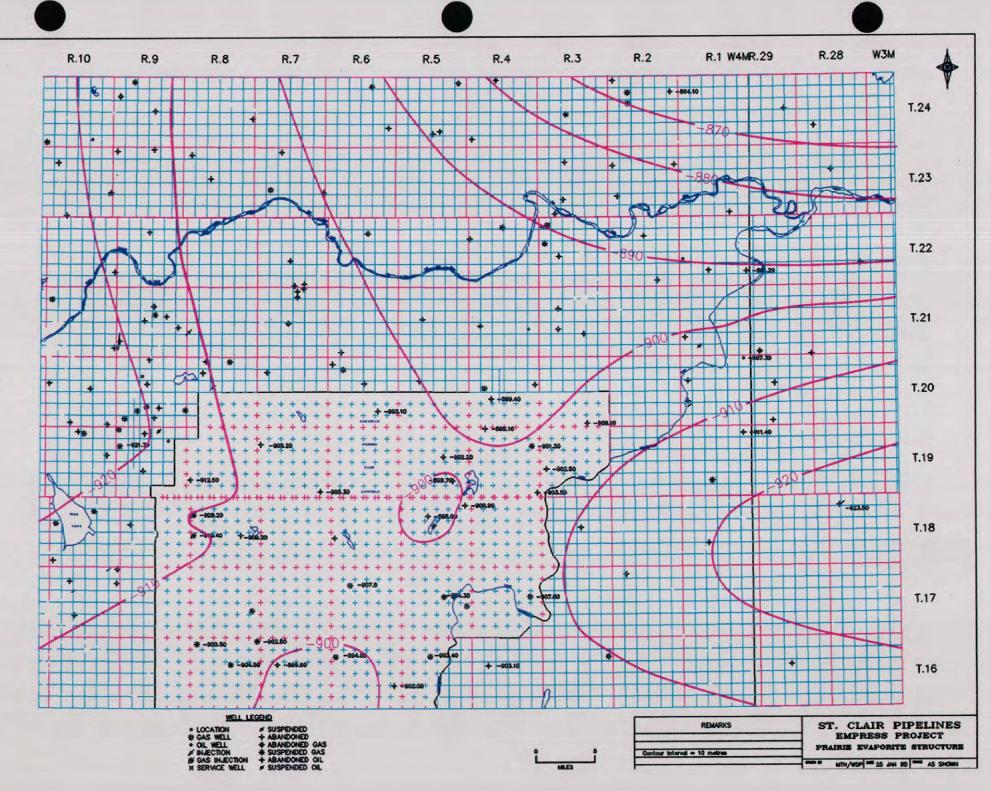
5.6.5 Dawson Bay Formation (Watt Mountain Equivalent)

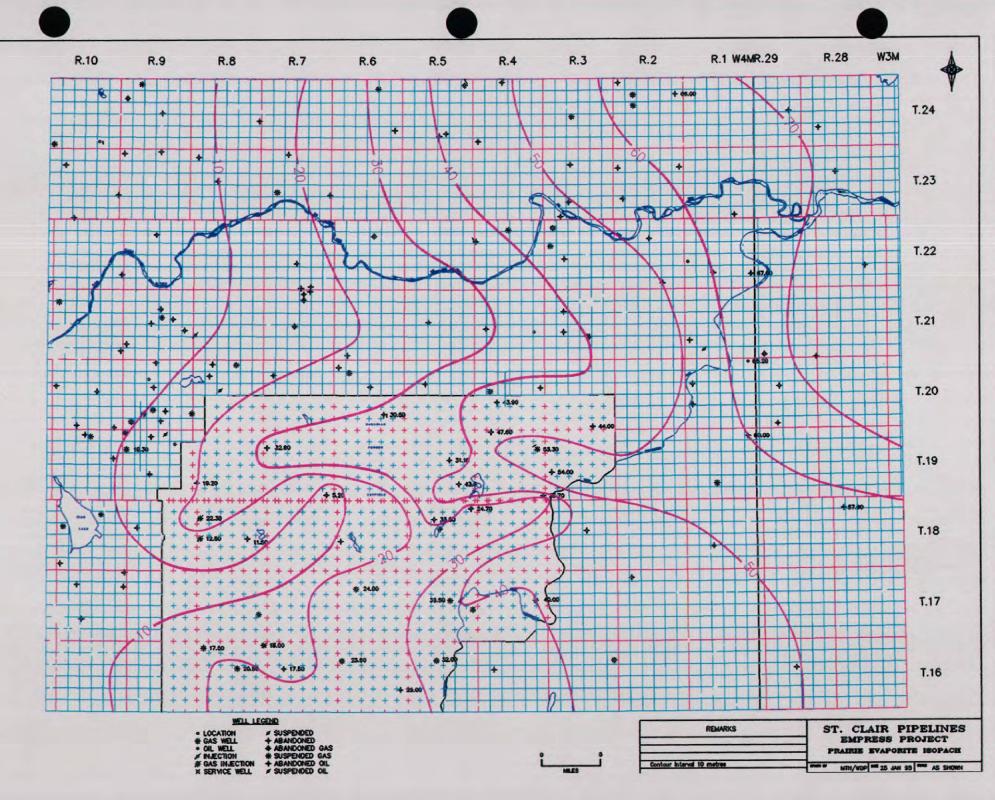
In this central part of the Elk Point Basin the Dawson Bay Formation directly overlies the Prairie Evaporite (Figures 4,5). The red and green shales termed the Second Red Beds form the base of the Dawson Bay. On the cross section this shale zone is 6 to 8 metres thick. The next unit in the Dawson Bay is a 10 metre thick dolomite. The shale and dolomite were also tested by Re/Spec and the sequence found to act as a competent and impermeable cap rock to the Prairie Evaporite salt.

5.6.6 Winnipegosis and Ashern Formations

The Prairie Evaporite in this area is underlain by the Winnipegosis. The Winnipegosis consists of reef and inter-reef deposits. In the immediate area the Winnipegosis is a thin carbonate (approximately 4 metres as seen in Figure 4). Below the Winnipegosis is the Ashern Formation. Typically the Ashern Formation is thin bedded red, green and grey shale, dolomitic siltstone and argillaceous dolomite. In the area of interest it is 4 to 7 metres thick.

5.6.7 Depositional History of the Upper Elk Point Group


(Meijer Drees, 1994, Martindale and MacDonald 1990, and Schmidt, McDonald and McIlreath 1977)


The formations in the upper part of the Elk Point group are widely distributed and outline the Elk Point Embayment that extended southeastward from northeastern British Columbia and the District of Mackenzie into the Williston Basin of southern Saskatchewan, Manitoba and North Dakota.

Winnipegosis/Lower Keg River sedimentation was initiated during a marine transgression. An increase in the rate of subsidence or a rise in sea level coupled with a reduction in the production of carbonate sediments initiated vertical reef growth. The reef mounds at the entrance of the Elk Point Embayment amalgamated with inter reef deposits to form the Presqu'ile Barrier. The formation of this reefal barrier limited the flow of sea water into the embayment to the southeast and conditions became restricted. During periods of low water level and excessive evaporation, anhydrite and salt of the Prairie Evaporite accumulated in the supratidal flats, coastal lagoons and ephemeral lakes behind the barrier by the process of evaporitic drawdown.

Sea level fell after the accumulation of these evaporites and the entire embayment became emergent. The southeastern part of the embayment remained emergent and here the salt deposits were partly leached and recrystallized into potash rich minerals. The Prairie Evaporite salt deposits are absent in the area southwest of Regina and south of Saskatoon due to dissolution. The Second Red Bed is probably an eolian deposit.

During the next phase of sea level rise (late Givetian to Early Frasnian) fossiliferous carbonates of the Dawson Bay prograded in to the southeastern part of the Embayment. Evaporitic conditions followed with windblown deposits of green and reddish brown silt and siliceous clays being present in the First Red Beds (and upper part of the Watt Mountain Formation).

6.0 CONCLUSIONS

The results of the analyses conducted reveal that the Prairie Evaporite formation has sufficient thickness, and is of suitable quality, for solution mining.

This Report has been prepared by V. Jo-Ann Patterson, P.Eng. Attached is the statutory declaration of the undersigned as to the veracity of the contents of this report.

7.0 **BIBLIOGRAPHY**

Campbell, C. V., 1992, "Upper Elk Point Megasequence, In Devonian-Early Mississippian Carbonates of the Western Canada Sedimentary Basin: A Sequence Stratigraphic Framework", J. Wendte, F. A. Stoakes and C. V. Campbell, SEPM Short Course No. 28, p 145-162.

Hargreaves G. E., Hunt A. D., de Wit R., Workman L. E., 1960, <u>"Lexicon of Geologic Names</u> in the Western Canada Sedimentary Basin and Arctic Archipelago, Alberta Society of Petroleum <u>Geologists</u>", p. 380.

Martindale, W., MacDonald R. W., 1990, <u>"Sedimentology and Diagenesis of the Winnipegosis</u> Formation, Tableland Area, Southeastern Saskatchewan, in The Development of Porosity in <u>Carbonate Reservoirs</u>". G. R. Bloy and M. G. Hadley (comps) CSPG Short Course, p 6-14 -6-19.

Meijer Drees, N. C., 1994, <u>"Devonian Elk Point Group. In Geological Atlas of the Western</u> <u>Canadian Sedimentary Basin</u>". G. D. Mossop and I. Shetsen (comps.) Calgary, Canadian Society of Petroleum Geologists and Alberta Research Council, p 129-147.

Schmidt, V., McDonald, D. A., and McIlreath, I. A., 1977, <u>"Growth and Diagenesis of Middle Devonian Cementation Reefs, Rainbow Field, Alberta, in Supplement to the Geology of Selected Carbonate Oil, Gas and Lead-Zinc Reservoirs in Western Canada"</u>. I. A. McIlreath and R. D. Harrison (eds), Canadian Society of Petroleum Geologists, Calgary, Alberta, p 1-21.

Kent, D. M., 1968. <u>"The Geology of the Upper Devonian Saskatchewan Group and Equivalent</u> <u>Rocks in western Saskatchewan and Adjacent Areas</u>". Saskatchewan Department of Mines, Report 99.

STATUTORY DECLARATION 8.0

I, V. Jo-Ann Patterson, P.Eng., of the City of Chatham, in the Province of Ontario, DO SOLEMNLY DECLARE THAT:

1. The contents of this Assessment Work Report are true to the best of my knowledge.

2. That I am of the full age of eighteen years.

AND I MAKE this solemn declaration conscientiously believing it to be true, and knowing that it is of the same force and effect as if made under oath.

)

DECLARED BEFORE ME at the)) (City of Chatham, in the Province of Ontario, this 20th day of October, A.D. 1995.

A Commissioner for Oatils in and for the Province of Ontario.

			- 특별 활용 활용 활용 활용 활용 활용
V.Jo	-Ann Patters	son, P.Eng	g .

APPENDIX A1

CORPORATION

August 23, 1994

CANADIAN LANDMASTERS AUG 2 3 1994

Canadian Landmasters Resource Services Ltd. P.O. Box 6806, Station "D" Calgary, Alberta ' T2P 2E7

Attention: Mr. Mervyn L. Henkelman, President and General Manager

Dear Mervyn;

- Re: Metallic and Industrial Minerals Permits December 17, 1993 Letter Agreement between Rich Minerals Corporation and Canadian Landmasters Resource Services Ltd.
- As requested, please find enclosed an executed Surrender of Interest addressed to the Crown in Right of Alberta and copies of the permit documents for the following four sections.

Sections 1, 2, 11 and 12, all in Township 21, Range 1, West of the fourth meridian

I trust the enclosed are in order.

Yours truly,

RICH MINERALS CORPORATION

Debra L. Senger Director of Mergers & Acquisitions

DLS/hlb

encl.

925 - 26 Street N.E. Calgary, Alberta, Canada T2A 6K8 Telephone: (403) 531-9100 Facsimile: (403) 531-9699

SURRENDER OF INTEREST

TO: THE CROWN IN RIGHT OF ALBERTA

CORPORATION

WHEREAS RICH MINERALS CORPORATION ("Rich") is the holder of Metallic and Industrial Minerals Permits No. 9393080252 and No. 939308251 (the "Permits"); and

WHEREAS Rich wishes to surrender unto the Crown in right of Alberta its interest in Sections 1, 2, 11 and 12, all in Township 21, Range 1, West of the fourth meridian within the Permits insofar as it relates to the Prairie Evaporite formation (between the intervals of 5100 feet and 5600 feet) (the "Surrendered Interest").


NOW THEREFORE Rich does hereby surrender, assign, set over, transfer and release unto the Crown in right of Alberta the Surrendered Interest unconditionally, absolutely and forever, together with all benefits and advantages to be derived therefrom.

Per:

RICH MINERALS CORPORATION

925 - 26 Street N.E. Calgary, Alberta, Canada T2A 6K8 Telephone: (403) 531-9100 Facsimile: (403) 531-9699

METALLIC AND INDUSTRIAL MINERALS PERMIT NO. 9393080252

Date of Issue: 1993 August 18

Term Commencement Date: 1993 August 18

In this Permit:

ŧ

- (a) "Date of Issue" means the date shown above as the Date of Issue;
- (b) "Location" means the tract or tracts of land described under the heading "Description of Location" in the Appendix to this Permit;
- (c) "Metallic and Industrial Minerals" means the minerals described under the heading "Permitted Substances" in the Appendix to this Permit;
- (d) "Permit Holder" means Rich Minerals Corporation
- (e) "Term Commencement Date" means the date shown above as the Term Commencement Date.
- (f) a reference in this Permit to the Mines and Minerals Act or to any other Act of the Legislature of Alberta shall be construed as a reference to
 - (i) that Act, as amended from time to time,
 - (ii) any replacement of all or part of that Act from time to time enacted by the Legislature, as amended from time to time, and
 - (iii) any regulations, orders, directives, by-laws or subordinate legislation from time to time made under any enactment referred to in paragraph (i) and (ii), as amended from time to time.

This Permit grants to the Permit Holder the right to explore for Metallic and Industrial Minerals that are the property of the Crown in right of Alberta in the Location subject to the following terms and conditions:

- The Permit Holder shall comply with all provisions of the Mines and Minerals Act that pertain or relate to Metallic and Industrial Mineral Permits and those provisions shall be deemed to be incorporated into and to form part of this Permit.
- Nothing in this Permit shall be construed as removing the necessity to obtain, in relation to the conduct of exploration on the Location, a right of entry, user and taking of the surface of the Location or an exploration approval for the conduct of the exploration, if such a right of entry or exploration approval is required by the Mines and Mineral Act or by any other Act of the Legislature of Alberta.
- 3(1) The Permit Holder shall comply with

1.

f

2.

- (a) the provisions of the Mines and Minerals Act that relate to, apply to or affect the rights and obligations of a holder of metallic and industrial minerals rights that are the property of Her Majesty, or that relate to, apply to or affect the Permit Holder in the conduct of its operations or activities under this Permit, and
- (b) the provisions of any other Act of the Legislature of Alberta relating to, applying to or affecting the rights and obligations of holders of metallic and industrial minerals rights that are the property of Her Majesty, or relating to, applying to or affecting the Permit Holder in the conduct of its operations or activities under this Permit.
- (2) The provisions of the Acts and regulations referred to in section 3(1) of this Agreement shall be deemed to be incorporated into and to form part of this Permit.
- (3) In the event of conflict between a provision of this Permit and a provision of an Act referred to in section 3(1) of this Agreement, the provision of the Act prevails.
- 4. This Permit is subject to the special provisions, if any, contained in the Appendix to this Permit.

For Minister of Energy on behalf of Her Majesty METALLIC AND INDUSTRIAL MINERALS PERMIT NO. 9393080252

AGGREGATE AREA:

8

7 357 HECTARES

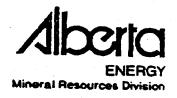
DESCRIPTION OF LOCATION:

4-01-020: 34WP, SEP

PORTION(S) LYING OUTSIDE THE PROPOSED MERIDIAN DAM AND RESERVOIR. 4-01-021: 1;2E,WP;3WP;4-7;9;10NP,SP;11E,SWP,NW;12-14;15NP,SEP; 16SEP,SW,NWP,L10P;17-20;21NP,SWP;22NP,SP;23;24;25S,NWP, NE;26NEP;27SP,NWP;28N,SEP,SW;29-33;34N,SEP,SW;35NP,SP;36SP

PORTION(S) LYING OUTSIDE THE PROPOSED MERIDIAN DAM AND RESERVOIR.

PERMITTED SUBSTANCES:


METALLIC AND INDUSTRIAL MINERALS

SPECIAL PROVISIONS:

NIL

METALLIC AND INDUSTRIAL MINERALS PERMIT NO. 9393080251

Date of Issue: 1993 August 18

Term Commencement Date: 1993 August 18

In this Permit:

ł

- (a) "Date of Issue" means the date shown above as the Date of Issue;
- (b) "Location" means the tract or tracts of land described under the heading "Description of Location" in the Appendix to this Permit;
- (c) "Metallic and Industrial Minerals" means the minerals described under the heading "Permitted Substances" in the Appendix to this Permit;
- (d) "Permit Holder" means Rich Minerals Corporation
- (c) 'Term Commencement Date" means the date shown above as the Term Commencement Date.
- (f) a reference in this Permit to the Mines and Minerals Act or to any other Act of the Legislature of Alberta shall be construed as a reference to
 - (i) that Act, as amended from time to time,
 - (ii) any replacement of all or part of that Act from time to time enacted by the Legislature, as amended from time to time, and
 - (iii) any regulations, orders, directives, by-laws or subordinate legislation from time to time made under any enactment referred to in paragraph (i) and (ii), as amended from time to time.

This Permit grants to the Permit Holder the right to explore for Metallic and Industrial Minerals that are the property of the Crown in right of Alberta in the Location subject to the following terms and conditions:

The Permit Holder shall comply with all provisions of the Mines and Minerals Act that pertain or relate to Metallic and Industrial Mineral Permits and those provisions shall be deemed to be incorporated into and to form part of this Permit.

- Nothing in this Permit shall be construed as removing the necessity to obtain, in relation to the conduct of exploration on the Location, a right of entry, user and taking of the surface of the Location or an exploration approval for the conduct of the exploration, if such a right of entry or exploration approval is required by the Mines and Mineral Act or by any other Act of the Legislature of Alberta.
- 3(1) The Permit Holder shall comply with

1.

-

2.

- (a) the provisions of the Mines and Minerals Act that relate to, apply to or affect the rights and obligations of a holder of metallic and industrial minerals rights that are the property of Her Majesty, or that relate to, apply to or affect the Permit Holder in the conduct of its operations or activities under this Permit, and
- (b) the provisions of any other Act of the Legislature of Alberta relating to, applying to or affecting the rights and obligations of holders of metallic and industrial minerals rights that are the property of Her Majesty, or relating to, applying to or affecting the Permit Holder in the conduct of its operations or activities under this Permit.
- (2) The provisions of the Acts and regulations referred to in section 3(1) of this Agreement shall be deemed to be incorporated into and to form part of this Permit.
- (3) In the event of conflict between a provision of this Permit and a provision of an Act referred to in section 3(1) of this Agreement, the provision of the Act prevails.
- 4. This Permit is subject to the special provisions, if any, contained in the Appendix to this Permit.

For Minister of Energy on behalf of Her Majesty

- 2 -

METALLIC AND INDUSTRIAL MINERALS PERMIT NO. 9393080251

AGGREGATE AREA:

ŝ

7 923 HECTARES

DESCRIPTION OF LOCATION:

4-01-020: 18EP, SWP; 19EP, L14P; 27S, NP; 28NP, SP; 29NP, SEP, SW; 30NP, SP; 31N, SEP, SW; 32NW, NEP, L5P; 33N, SP

PORTION(S) LYING OUTSIDE THE PROPOSED MERIDIAN DAM AND RESERVOIR. 4-02-020: 7;9-11;13NP,SP;14N,SEP,SW;15-23;24NP,SP;25N,SEP,SW; 27-36

PORTION(S) LYING OUTSIDE THE PROPOSED MERIDIAN DAM AND RESERVOIR.

PERMITTED SUBSTANCES:

METALLIC AND INDUSTRIAL MINERALS

SPECIAL PROVISIONS:

NIL

FORM C MINES AND MINERALS ACT (Section 135)

TRANSFER OF AGREEMENT(S)

BETWEEN:

RICH RESOURCE INVESTMENTS LTD., a body corporate incorporated under the laws of the Province of Alberta (hereinafter called the "Transferor")

- and -

CANADIAN LANDMASTERS RESOURCE SERVICES LTD., a body corporate, incorporated under the laws of the Province of Alberta (hereinafter called the "Transferee")

The Transferor, being the holder of Alberta Crown Metallic and Industrial Minerals Permit No. 9393080123 dated August 26, 1993 in consideration of the sum of One Dollar (\$1.00) and other valuable consideration, payment of which is hereby acknowledged by the Transferor, hereby transfers to the Transferee Alberta Crown Metallic and Industrial Minerals Permit No. 9393080123.

AND the Transferee hereby accepts this transfer.

DATED this <u>3</u> day of February, 1994.

RICH RESOL	IRCEINVE	STMENTS I T) - -
Per:			
Per: Title:			

CANADIAN LANDMAS	STERS	RESOL	RCE
SERVICES LTD.			

Per:			· .
Title:	-	.1	

c/s

Per:	 	 	
Title:			

c/s

FORM B

MINES AND MINERALS ACT

NOTICE OF CHANGE OF OFFICIAL ADDRESS FOR SERVICE

THE MINISTER OF ENERGY TO:

Take notice that the official address for service for the agreement(s) listed below is changed from:

> Rich Resource Investments Ltd. 11003 - 84th Avenue Edmonton, AB T6G. 0V6

> > to

Canadian Landmasters Resource Services Ltd. 700, 808 - 4th Avenue S.W. Calgary, AB **T2P 3E8**

LIST OF AGREEMENTS:

Alberta Crown Metallic and Industrial Minerals Permit No. 9393080123 Dated this 3 day of February, 1994. CANADIAN LANDMASTERS RESOURCE RICH RESOURCE DIVESTMENTS LTD. SERVICES LTD.

Per:

Per:

Per:

c/s

Per:

c/s

METALLIC AND INDUSTRIAL MINERALS PERMIT NO. 9393080123

Date of Issue: 1993 August 26

Term Commencement Date: 1993 August 26

In this Permit:

- (a) "Date of Issue" means the date shown above as the Date of Issue;
- (b) "Location" means the tract or tracts of land described under the heading "Description of Location" in the Appendix to this Permit;
- (c) "Metallic and Industrial Minerals" means the minerals described under the heading "Permitted Substances" in the Appendix to this Permit;
- (d) "Permit Holder" means

RICH RESOURCE INVESTMENTS LTD.

- (e) "Term Commencement Date" means the date shown above as the Term Commencement Date.
- (f) a reference in this Permit to the Mines and Minerals Act or to any other Act of the Legislature of Alberta shall be construed as a reference to
 - (i) that Act, as amended from time to time,
 - (ii) any replacement of all or part of that Act from time to time enacted by the Legislature, as amended from time to time, and
 - (iii) any regulations, orders, directives, by-laws or subordinate legislation from time to time made under any enactment referred to in clause (a) or (b), as amended from time to time.

This Permit grants to the Permit Holder the right to explore for Metallic and Industrial Minerals that are the property of the Crown in right of Alberta in the Location subject to the following terms and conditions:

APPENDIX

то

METALLIC AND INDUSTRIAL MINERALS PERMIT NO. 9393080123

AGGREGATE AREA:

8 650 HECTARES

TRACT ONE

DESCRIPTION OF LOCATION:

4-01-019: 27-30;31S,NWP,NE;32-34 4-01-020: 3-5;6SP,NP;7SP,NP;9;10;13-16;20-25;35E,WP;36 4-02-019: 25;36SP,NP 4-02-020: 1SP,NW,NEP;12 PORTION(S) LYING OUTSIDE THE PROPOSED MERIDIAN DAM AND RESERVOIR.

PERMITTED SUBSTANCES:

METALLIC AND INDUSTRIAL MINERALS

TRACT TWO

DESCRIPTION OF LOCATION:

4-01-020: 1;2;11;12;17

PERMITTED SUBSTANCES:

METALLIC AND INDUSTRIAL MINERALS EXCEPTING METALLIC AND INDUSTRIAL MINERALS IN THE PRAIRIE EVAPORITE FM AS DESIGNATED IN ZD 3843 INTERVAL: 1 662.00 - 1 707.50 METRES KEY WELL: 00/06-36-019-01W4/0 LOG TYPE: COMPENSATED DENSILOG COMPENSATED NEUTRON

em

SPECIAL PROVISIONS:

NIL

APPENDIX A2

WELL LICENCE 640 Fifth Avenue SW Calgary,Alts. T2P 3G4 ICENCE NO.: 0162547 VELL NAME : CDN LAND MEDHAT 14-36-20-1 LICENSEE : CANADIAN LANDMASTERS RESOURCE SERVICES LTD. PURPOSE : INJECT WATER INTO THE NISKU SURFACE LOCATION : LSD 14-36-020-01 W4M SURFACE CO-ORDINATES: 385.9 METRES SOUTH 613.4 METRES EAST (AS MEASURED OR CALCULATED FROM THE EXTERIOR BOUNDARIES OF THE QUARTER SECTION) UNIQUE ID : 100/14-36-020-01W4/00 FIELD : MEDICINE HAT LAHEE CLASS: NPW (C) AREA OFFICE: MEDICINE HAT (Ph 403-527-3385) UNIQUE ID : 100/14-36-020-01W4/00 SURFACE RIGHTS : FREEHOLD MINERAL RIGHTS : CROWN PROJECTED DEPTH : 2200 METRES TERMINATING ZONE: PRECAM SY GROUND ELEVATION: 723.2 METRES THIS LICENCE IS GRANTED IN ACCORDANCE WITH AND SUBJECT TO THE PROVISIONS OF THE OIL AND GAS CONSERVATION ACT AND REGULATIONS PURSUANT THERETO, AND SUBJECT TO THE FOLLOWING SPECIAL PROVISIONS OR SUCH FURTHER REOUIREMENTS AS MAY BE DIRECTED BY A BOARD REPRESENTATIVE: - CASING PROGRAM: SURFACE 385 - OM 244.5MM 53.5KG/M J-55 LT&C NEW PRODUCTION 2200 - 1800M 177.8MM 38.7KG/M J-55 LT&C NEW 1800 - OM 177.8MM 34.2KG/M J-55 LT&C NEW THIS WELL SHALL NOT BE DRILLED BEYOND THE PRECAMBRIAN AT A DEPTH OF APPROXIMATELY 2200 METRES. ALL USEABLE GROUND WATER AQUIFERS IN THIS WELL SHALL BE ISOLATED BEHIND SURFACE CASING OR ADEQUATELY COVERED BY THE CEMENTING OF THE NEXT CASING STRING OR, IF THE WELL IS TO BE ABANDONED, WITH THE APPROPRIATE OPEN-HOLE ABANDONMENT PLUG(S). - THE PRODUCTION CASING IS TO BE CEMENTED FULL LENGTH. IF CEMENT RETURNS ARE NOT MAINTAINED AT SURFACE, A CEMENT TOP LOCATING LOG SHALL BE RUN. THE LOG ALONG WITH A PROPOSED REMEDIAL CEMENTING PROGRAM SHALL BE SUBMITTED TO THE BOARD'S DRILLING AND PRODUCTION DEPARTMENT. - FLUID SHALL NOT BE INJECTED INTO THIS WELL UNTIL THE REQUIREMENTS OF ERCB INFORMATIONAL LETTER IL 84-12 HAVE BEEN COMPLIED WITH. - NOT MORE THAN 500 CUBIC METRES OF FLUID SHALL BE INJECTED INTO THIS WELL EXCEPT IN ACCORDANCE WITH A SCHEME APPROVAL BY THE BOARD. DATED AT CALGARY, ALBERTA THIS 24TH DAY OF NOVEMBER 1993 FOR ENERGY RESOURCES CONSERVATION BOARD

Energy Resources Conservation Board

Energy Resources Conservation Board 640 Fifth Avenue SW Calgary, Alberta Canada T2P 3G4 Telephone (403) 297-8311 Fax (403) 297-7040

DRILL CUTTINGS SAMPLE REQUIREMENT

WELL	CDN	LAND	MEDHAT	14-36-20-1	W4M
ماملية ١					_

Under provision of the Oil and Gas Conservation Regulations, section 11.010, the Board has set the drill cuttings sample requirement for the above identified well as follows:

) Melie	THLET ANTS		TO MELLES #DOAE	CHE	3	
5	intervale	from	30 metres above	the	Viking	
		to		-		•
metre	intervals	from		• •		
Samples r	equired					

The samples shall be a separate set, washed, <u>dried</u> and packaged in cotton bags of the type and size available for purchase at the Core Research Centre.

Each bag shall be labelled in waterproof ink showing the well name, location and sample depth. Whipstock and circulation samples are to be identified.

Bulk sacks containing bags shall be labelled with the well name and location and shall contain samples from one well only.

The drill cuttings samples shall be delivered <u>prepaid</u>, <u>within two weeks</u> of the well's finished drilling date to the CORE RESEARCH CENTRE, 3545 Research Way N.W., Calgary, Alberta, T2L 1Y7.

M. J. Vrskovy, P. Geol. Assistant Manager Geology Department

G5C 88-03

E	RCB	inergy Resources Conserv Boar 140 Fifth Avenue SW Calgary, A 12P 3G	d ;4					L LICENCE
PURFOSE		TON FOR A WELL LICENCE IS MADE UNDER OF THE PROPOSED WELL WILL BE TO $\frac{2}{2}$	SECTION 2.020 T	2.030	2.040 0			
J	WELL NAME:	Cdn Land Medhat				WELL NAME IS 36 (MERIDIAN NOT TO		
		ATION OF THIS WELL IS IN: 316 Twp 020 Rge L				2 1 0 10 (m) ⊥ . Ê (m)	TVD L	<u> </u> ()
		DTTOM LOCATION OF THIS WELL IS IN:		HE SURFACE		ANTICIPAT 93-11	ED SPUD DATE:	
רחראוותא	-	COORDINATES AS MEASURED FROM THE I						
	THE WELL WIL	L BE DRILLED: 1. VERTICAL 🛛 2. DIREC	TIONAL 🔲 3. HOR	ZONTAL 🔲 4. S	LANT 🔲 5. SI	PECIAL NUD SYSTEM	a 🔲 6. other	<u> </u>
	THE WELL WIL TERMINATE:	1. IN THE Precam 2. NOT MORE THAN		HE BASE OF THE			· · · · ·	
3	TERM. FORM.			EXPLORATOR		CONF. FORM. CO	E INCEN	TIVE CERT, NO.
ERCB USE	UNIQUE LD.			」♥ L_J / L_		FIELD/SECTOR	CODE	
	MINERAL RIGH	пз с Г г С в С	SURFACE	RIGHTS C			CODE	
4	1. THE API	LICANT HAS THE RIGHT TO PRODUCE AS	BELOW:			1. IN ALL OF	stc <u>36</u> . 20, Rc	
MINER	C. 🗌 O THE HEAD LE	NOW ALL FORWATIONS BELOW THE BASE O THER		ROWN/FREEHOLD	3)N	
		YPE(S)	NO(5).		1055	EXPIRY DA	TE(S) June	
972 6	TYPE OF PRODUCTION SPACING ORD	EXPECTED: OIL GAS TO BOTH CRUC ER OIL DSU/TARGET					GAS. ON TARGE	TE YES KI NO
USE	POOL IN	POOL ADJACENT		APPLICANT AP	BREV.	CODE		
(RCB U			· · ·	LICENCE NO.	<u></u>	AGEN	CODE	
		N DSU			OVAL NO.	Expir	Y DATE	
7	SURVEY CON		DATE OF SURVEY NOVERT	PLAN erg. 1993			TRACTOR Drilling	9
8	CASING TYPE	INTERVAL LENGTH (m) BOTTOM JOINT TO TOP JOINT	SIZE (mm)	WEIGHT (4g/m)	GRADE	COUPLING TYPE	NEW.USED OR IN-HOLE	TVD OF BOTTOM JOINT
	S	385 m to 0 m	244.5	53.51	J-55	LTEC	New	
CASING	P	2200 m to 1800 m 1800 m to 0 m	177.3 177.9	39.69 34.23	J-55 J-55	LT&C LT&C	New New	
	<u> </u>		<u> </u>	<u> </u>	<u>.</u> 7	<u> </u>	1	1
	CASING CON	ORMS TO API STANDARDS (SEE GUIDE G-	33)		J			
9		ORMS TO API STANDARDS (SEE GUIDE G-	33) BY		J	RECEIPT NO.		

PAG	SE :	OF APPLICATION FOR 14-36-20-01 W4M	WELL LOCATION (BO	TTOM HOLE)	
10	, ,	IF THE RESPONSE TO ANY OF THE FOLLOWING STATEMENTS I ADDITIONAL INFORMATION IS REQUIRED (SEE G-33)	3 -NO-		YES NO
INPACIS		THE PROPOSED WELL IS AT LEAST 1.5 Im FROM THE CORPO THE RURAL AUTHORITIES HAVE BEEN CONTACTED AS PER ID THE PROPOSED WELL IS OUTSIDE ANY POTENTIAL COAL DEVE THE PROPOSED LOCATION IS ENVIRONMENTALLY ACCEPTABLE THE PROPOSED WELL IS AT LEAST 100 m FROM ANY SURFAC THE PROPOSED WELL IS AT LEAST 5.0 Im FROM A LIGHTED THE PROPOSED WELL IS AT LEAST 1.6 IM FROM A LIGHTED THE PROPOSED WELL IS AT LEAST 1.6 IM FROM AN UNLIGHT THE WORKING INTEREST OWNER IS THE APPLICANT-100X OFTSET DRILLING RECORDS HAVE BEEN SEARCHED FOR HOLE THE CEMENTING PROGRAM WILL COVER ALL USABLE WATER 2 THE H ₂ S RELEASE RATE HAS BEEN ADDRESSED IN ACCORDA	88-2 LOPMENT AREA AS PER IL 90-20 IE IMPROVEMENTS AND AT LEAST 40 m FR AERODROME TED AERODROME PROBLEMS IONES		
11	ī	surface owner(s) Harold F. Wittig	MAILING ADDRESS	P.O. Box 38	·
		(NOTE: FOR CROWN LAND PROVIDE THE ADMINISTRATING DEP CITY	POSTAL CODE SON 0 HO	X NO []	679-4604
RIGHTS		SURFACE OCCUPANT(S) None			
SURFACE RIC		CITY PROVINCE	POSTAL CODE		
3		SURFACE OCCUPANT(S) AGREE(S) TO THE LOCATION OF THE THE INFORMATION PACKAGE WAS RECEIVED BY THE SURFACE THERE ARE NO OCCUPANTS OF THE LAND OTHER THAN	COCCUPANT(S) ON	<u> </u>	
			APPLIED FOR 2	IRFACE LEASE DATED C3- TTER OF AUTHORITY ON THE CHT OF ENTRY ORDER HER	<u>11-1:</u> USL
1	2	APPLICANT Canadian Landmasters Reso	urces Services Ltd	700, 808 - 1	+ Avenue SW
		CITYCALGARY PROVINCE	Alberta	OSTAL CODE T2P	227
		AGENTN/A	MAILING ADDRESS		
		CITY PROVINCE .			
		THE APPOINTMENT OF THE ABOVE AGENT HAS BEEN REGIST			
		THIS APPLICATION DATED AT <u>Calgary</u> Signature			
		NAME (PRINT) M. L. Henkelman company			
		FOR ADDITIONAL INFORMATION CONTACT			7-9111
	13	PROVISIONS	NOTES		entered the the second s
	ERCB USE				
	Ŝ				
	ě.				
		PROCESSED BY	CHECKED BY	APPROVED BY	

٠.

MEMORANDUM

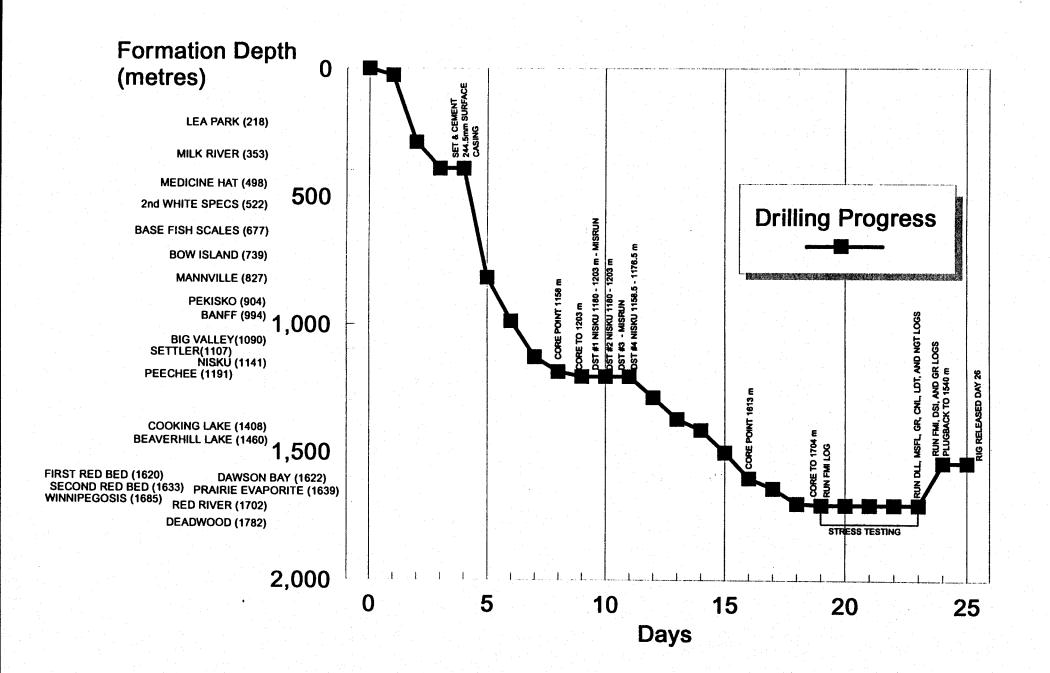
ENRON Oil Canada Ltd.

DATE 12 November 1993 TO M. L. Henkelman, Canadian Landmasters Resource Services Ltd. FROM David Monroe RE: EMPRESS DRILLING LOCATION 14-36-20-01 W4M MAXIMUM POTENTIAL H₂S RELEASE RATE

Based on the following information, the proposed well should be assigned a maximum H₂S release rate of zero:

- A search of available gas analyses in the region from Twp. 16, Rg. 1 W4M to Twp. 26, Rg. 5 W4M found no wells with H,S present.
- Prospective horizons to the Cambrian were DST'd at nearby location 7-12-22-1 W4M with no significant hydrocarbons and no H,S.
- 3) Nearby location 6-36-19-1 W4M encountered no productive sour horizons to the Pre-Cambrian.

Please let me know if you require further information.



24

Weiver of surface casing - Section 3.1 of G-8 (For wells where only conductor casing will be set)	
Well is within area shown in Appendix 1 of G-8 and will terminate no more than 15 m below the base of the Milk River, 20 m of conductor casing and a Class 1 BOP will be installed.	
Well is within the Surface Mineable Oil Sands Area (Appendix 2 of G-8); conductor casing and a diverter system will be installed.	
Well is within 10 km of the Surface Mineable Oil Sands Area and will not exceed 200 m in depth; conductor casing and a diverter system will be installed.	
Well is in the Heavy Oil/Oil Sands Area (Appendix 3 of G-8) and:	
• ERCB approval letter to waive surface casing is attached	
 an application to waive surface casing is attached which includes all details per section 3.1(3) of G-8 	
NORGENERENSING	
Contraction of the second se	
 Maximum of the most representative pressure measurements in area: <u>9578</u> 	L'P2
(1) Maximum of the most representative pressure measurements in area: <u>9578</u>	
 Maximum of the most representative pressure measurements in area: <u>9578</u> Depth of Recorder: <u>906.4</u> (m) Source: DSTAOF/Build Up/Stat. Grad. 	
 Maximum of the most representative pressure measurements in area: <u>9578</u> Depth of Recorder: <u>906.4</u> (m) Source: DST AOF/Build Up/Stat. Grad. Reference Well: <u>00/08 - 25 - 020 - 01 W4</u> Higher pressures were found but Reason: 	
 (1) Maximum of the most representative pressure measurements in area: <u>9578</u> (2) Depth of Recorder: <u>906.4</u> (m) Source: DST AOF/Build Up/Stat. Grad. Reference Well: <u>00/08 - 25 - 010 - 01 W4</u> Higher pressures were found but Reason: were discounted. 	
(1) Maximum of the most representative pressure measurements in area: 9578 (2) Depth of Recorder: 906.4 (m) Source: DST AOF/Build Up/Stat. Grad. Reference Well: $00/08 - 25 - 000 - 01$ W4 Higher pressures were found but Reason: were discounted. Max. Gradient = (1) ÷ (2) = 10.56 kP2/m Surface Casing = Max. Gradient x TVD x (.50000625 TVD) - 28.7 (5)	
(1) Maximum of the most representative pressure measurements in area: 9578 (2) Depth of Recorder. 906.4 (m) Source: DSTAOF/Build Up/Stat Grad. Reference Well: $00/08 - 25 - 020 - 01$ W4 Higher pressures were found but Reason: were discounted. \square Max. Gradient = (1) ÷ (2) = 10.56 kP2/m Surface Casing = $\frac{Max. Gradient \times TVD \times (.50000625 \text{ TVD})}{22} = 383$ m (3)	JAWS/Other

replaces: dated: APPENDIX B1

DRILLING CURVE

APPENDIX B2

المراجع المراجع والانتهام J (74) - L - L ENKUN OIL CANADA LTD. (-JDW, WCF, DAILY DRILLING REPORT SUPER TIGHT WELL- CON LAND MEDHAT DAY: 25 DATE: 30 January 1994 LSD : 14-36-20-01 W4M AT 0800 HRS. PEPTH: PBD 1340 m PROGRESS: K.B.: 727.48 m GL. 713.7 m OPERATION AT 9800 HRS. RIC RELEASED TIME MUD RECORD DEVIATION BREAKDOWN HYDRAULICS (HOURS) PROPERTIES ADDITIVES . SX 8 degree Rig Service . . 0.25 Density (kg/m3) . Condn. Hud . . PUMP: 1.75 EV15EV600 Viscosity (s/L) . • • • • • • Cementing SIZE: 140 mm LINER 2.00 pH . . . Run Casing x 381 mm STROKE 4.00 Water Loss (cm3) • • • • • • • • • Tear Out LENGTH 8.00 Plastic Visc. (MPa-s) SPEED: •. Yield Point (Pa) strokes/min. In/Fin.Gel.Str PRESSURE: kРа Solids Content RATE: m3/min. . . Sand Content ANNULAR VELOCITY: Cl-Content (mg/L) n/s Ca++Cont.(mg/L) . . . MOZZLE VELOCITY: a/a BHP: k⊌ DRILL STRING ASSEMBLY **BIT RECORD** DRILL COLLARS: Bit No. Size - mm Type DRILL PIPE: Serial No. Depth - IN m KB - OUT m KB MISCELLANEOUS EQUIPMENT: Distance Drilled - m . Time - hr. Speed - r/min. Force on Bit - 10.3 daw Nozzle Sizes - mm Bit Condition - T/B/G Penetretion Rate- m/hr. DESCRIPTION OF OPERATIONS FOR PAST 24 HOURS:

Run 105 jts. of 177.8 mm, 34.23 kg/m, J-55, LT&C IPSCO casing. Total string length with float and shoe 1403.52 m. Hole condition good.

Circulate and condition mud to viscosity 40 sec/L and density 1240 kg/m³ + .50% T-10 Fill cement, and 8 tonnes of 0:1:0 "G" + 18% NACL + .8% NFL-2 tail cement. Displace with 28.63 m³ of water. Bumped plug with 3500 kPa over. Plug held good. Plug down @ 1542 hrs. 94-01-29. Had 4 m³ of good cement returns.

Tear out BOP and set slips with 20,000 daN string weight. Tear out rig and clean mud tanks.

RIG RELEASED @ 2400 HRS. 94-01-29.

DAILY COST:	\$118,891	AFE: 09251470 1100 0000000	1
		AFE: C93E1479, LIC#: 0162547 NPW(C) Info: Enron Ges Marketing, St. Cleire P/L, Enron Ges Services/Morgan Hydroc.	WEATHER:
IULATIVE COST:	\$969,154	ENRON GEOLOGIST: PETER AUBRECHT WELLSITE GEOLOGIST: BILL BAILLIE	LEASE COND'NS: GOOD
REPORT FROM: ROT	DOCKEN	MOBILE NO.: 554-1686 / 940-6544	RIG: PRECISION #5

JDW, WCF 94/01/31_

SUPER TIGHT

DEPTII: PBD 1540.	Im.	PROGRESS: 0 m	KB: 727,4	8 m - G.I	
OPERATION AT 0800 HE	S. RUNNING 177.8 mm CASING MUD RECO			Î	ATION
BREAKDOWN (HOURS)	PROPERTIES	ADDITIVES - SX	HYDRAULICS	21	degree
Tripping 7.50 Rig Service . 0.50 Circulate 2.00 Logging 8.75 Cementing 0.50 L/D Pipe 3.00 Run Casing . 1.75	Density (kg/m3)		PLMP: EU15EW600 SIZE: 140 mm LINER x 381 mm STROKE LENGTN SPEED: strokes/min. PRESSURE: kPa RATE: m3/min. ANNULAR VELOCITY: m/s NOZZLE VELOCITY: m/s BHP: ku		
DRILL S	TRING ASSEMBLY	BIT RECORD		- i	
DRILL COLLARS: DRILL PIPE: MISCELLANEOUS EQUIPI	AENT:	Bit No. Size - mm Type Serial No. Depth - IN m KB - OUT m KB Distance Drilled - m Time - hr. Speed - r/min. Force on Bit - 10.3 dk Nozzle Sizes - mm Bit Condition - T/B/G Penetration Rate- m/hu			

DESCRIPTION OF OPERATIONS FOR PAST 24 HOURS:

Log with Schlumberger. Run #1 - DST log Run #2 - FMI log. RIH open ended to 1704 m. Circulate 1 hr. Condition good. Rig up Nowsco cementers and run bottom hole plug from 1704 - 1575 m. Cement with 8.5 tonnes 0:1:0 °G° + 15% NACL + .5% T-10. Cement calculated to 1575 m from hole volume log + 20% excess. Plug down @ 1937 hrs. 94-01-28.

Pull slow out of plug for 15 stands and stand pipe in derrick.

Run in 165 mm DC's and lay down same.

Make up Bit (222 mm) and RIH. Tagged top of cement @ 1540.0 m. Set 4000 daN string weight on plug. Lay down DP and 158 mm DC's. Pick up power tong and run 177.8 mm casing.

DAILY COST: \$ 65,894	AFE: C93E1479, LIC#: 0162547 NPW(C) Info: Enron Gas Marketing, St. Claire P/L, Enron Gas Services/Morgan Hydroc.	WEATHER: -4* Windy
CUMULATIVE COST: \$855,263	ENRON GEOLOGIST: PETER AUBRECHT WELLSITE GEOLOGIST: BILL BAILLIE	LEASE COND'NS: Good
REPORT FROM: ROY DOCKEN	MOBILE NO.: 554-1686 / 940-6544	RIG: PRECISION #5

DAY: 23

SUPER TIGHT

AT 0800 HRS.

G.L.: 723.2 m

WELL: CON LAND MEDHAT

D: 14-36-29-01 W4M

PROGRESS: 0 m KB.

K.B.: 727.48 m

EPTIL: 1704 m

DATE: 28 January 1994

-

OPERATION AT 4804 IIRS LOGGING WITH SCHLUMBERGER

TIME	MUD RECOR	D		DEVI	ATION
HOURS)	PROPERTIES	ADDITIVES - SX	HYDRAULICS	n.	degree
Tripping 10.75 Rig Service . 0.50 Slip & Cut Line 0.50 Logging 2.25 SITU Testing . 6.75 Handle Tools . 3.25	Density (kg/m3)		PLUMP: EVISENGOD SIZE: 140 wm LINER x 381 wm STROKE LENGTH SPEED: strokes/min. PRESSURE: kPa RATE: m3/min. AMMULAR VELOCITY: a/s MOZZLE VELOCITY: m/a BHP: kw		
DRILL	STRING ASSEMBLY	BIT RECORD			
DRILL COLLARS: DRILL PIPE:		Bit No. Size - mm Type Serial No. Depth - IN m KB - CUT m KB			
AISCELLANEOUS EQUIN	MENT:	Distance Drilled - 1 Time - hr. Speed - r/min. Force on Bit - 10.3 Nozzle Sizes - mm Bit Condition - T/B. Penetration Rate- m	daN /G		

DESCRIPTION OF OPERATIONS FOR PAST 24 HOURS:

Finish logging and lay down logging tools.

Slip and cut line and pick up Baker packer assembly.

Strap in hole (run in slow) with Baker packer.

Head up Halliburton testing head and frac test 1622 - 1624 m.

Deflate packer and move up hole.

Could not get packer seat.

POOH and change packer from 158 mm to 177 mm (both packers damaged).

RIH and set packer @ 1619 m to 1621 m.

Got good packer seat but could not get pressure.

Deflated packer and moved seat but still could not get pressure.

POOH and lay down packer assembly.

R/U and log with Schlumberger.

DAILY COST:	\$ 106,159	AFE: C93E1479, LIC#: 0182547 NPW(C) Info: Enron Gas Marketing. St. Claire P/L, Enron Gas Services/Morgan Hydroc.	WEATHER: -15°C, 0/C
CUMULATIVE COST:	\$ 789,369	ENRON GEOLOGIST: PETER AUBRECHT WELLSITE GEOLOGIST: BILL BAILUE	LEASE COND'NS: Good
REPORT FROM: RC	DOCKEN	MOBILE NO.: 554-1886 / 940-8544	RIG: PRECISION #5

JDW, WCF

SUPER TIGHT

AT 0800 HRS

DATE: 27 January 1994 DAY: 22 NO MEDE WELL: CDN L D: 14-36-20-01 W4M

DEPTH: . 1704 m PROGRESS: 0m

K.B.: 727.48 m - G.L.: 723.3 m

OPERATION AT 0800 HRS - LOGGING W SCHLUMBERGER

TIME	MUD RECOR	D		DEV	ATION
BREAKDOWN (HOURS)	PROPERTIES	ADDITIVES - SX	HYDRAULICS	R	degree
Tripping 8.75 Rig Service . 0.25 Circulate 1.50 Logging 10.50 Load Out Tools 1.00 V/O Loggers . 2.00	Density (kg/m3) 12 Viscosity (s/L)	43 7 25	PUMP: EV15EW600 SIZE: 140 mm LIMER x 381 mm STROKE LENGTH SPEED: strokes/min. PRESSURE: kPa RATE: m3/min. ANNULAR VELOCITY: m/s NOZZLE VELOCITY: m/s BHP: kW		
DRILL	STRING ASSEMBLY	BIT RECORD			
DRILL COLLARS: DRILL PIPE: MISCELLANEOUS EQUIT	MENT:	Bit No. Size - mm Type Serial No. Depth - IN m KB - OUT m KB Distance Drilled - I Time - hr. Speed - r/min. Force on Bit - 10.3 Nozzle Sizes - mm Bit Condition - T/B Penetration Rate- m	daN /G		

DESCRIPTION OF OPERATIONS FOR PAST 24 HOURS:

Finish RIH with overshot. Circulate and latch onto fish. Chain out of hole. Pull slow. Recovered complete packer assembly. Load out all testing tools.

Strap in hole on clean out trip. No fill on bottom. Strap 1703.05, Tally 1704.0 m. (Circulate to bottom from 1667 - 1704 m). Circulate and condition hole.

POOH to log. W/O Loggers for 2 hrs. Rig up and log with Schlumberger.

DAILY COST: \$ 57,176	AFE: C93E1479, LIC#: 0182547 NPW(C) Info: Enron Gas Marketing, St. Claire P/L, Enron Gas Services/Morgan Hydroc.	WEATHER:
CUMULATIVE COST: \$683,210	ENRON GEOLOGIST: PETER AUBRECHT WELLSITE GEOLOGIST: BILL BAILLIE	LEASE COND'NS: Good
REPORT FROM: ROY DOCKEN	MOBILE NO.: 554-1686 / 940-6544	RIG: PRECISION #5

TOW INCF. DAY: 21 WELL: CON LAND MEDHA LSD: 14-36-20-01 WAM

EPTII: 1704 m

ENRON OIL CANADA LTD. DAILY DRILLING REPORT

SUPER TIGHT

AT BROOK HIPS

DATE: 26 January 1994

PROGRESS: 0 m

K.B.; 727,48 m G.L.; 723.2 m

OP

OPERATION AT 0800 HR	S. RUN IN HOLE WITH OVERSHOT	æ	stimated T.D.: 2200 m)	<u> </u>		
TIME	MUD RECO	MUD RECORD		DEVIAT		
BREAKDOWN (HOURS)	PROPERTIES	ADDITIVES - SX	HYDRAULICS	R	degree	
Tripping 12.75 Rig Service . 0.25 Fishing 3.00 W/O Fish Tool . 5.75 Handle Tools . 2.25	pH		PUMP: EU1SEW600 SIZE: 140 mm LINER x 381 mm STROKE LENGTH SPEED: strokes/min. PRESSURE: kPa RATE: m3/min. ANNULAR VELOCITY: m/s MOZZLE VELOCITY: m/s BHP: kw			
DRILL S		BIT RECORD				
DRILL COLLARS: DRILL PIPE: MISCELLANEOUS EQUIPT Fishing Assembly	MENT:	Bit No. Size - mm Type Serial No. Depth - 1N m KB - OUT m KB Distance Drilled - m Time - hr. Speed - r/min. Force on Bit - 10.3 d				

Nozzle Sizes - Ann Bit Condition - T/B/G Penetration Rate- m/hr

DESCRIPTION OF OPERATIONS FOR PAST 24 HOURS:

Break down overshot. Recovered spring from top of packer.

Busted grapple in overshot.

Wait on new grapple and overshot.

RIH with overshot. Tagged top of fish @ 1672 m.

Circulate and work over fish.

Pressured up to 10,000 kPa. Had circulation through packer. Good returns.

Chain out of hole. Did not recover anything.

Run back in with 4-1/4" overshot.

Circulate and work over fish.

Pressured up to 9,000 kPa and pulled 6,000 daN over string weight at start,

and drop to string weight of 36,000 daN.

Chain out of hole. Recovered 8" of 4-1/2" O.D. top packer sub.

Removed skirt off overshot and tack weld bottom of grapple.

RIH with overshot.

Total length left of 4-1/4" OD stick up is 7".

DAILY COST:	\$ 34,374	AFE: C93E1479, LIC#: 0162547 NPW(C) Info: Enron Gas Marketing, St. Claire P/L, Enron Gas Services/Morgan Hydroc.	WEATHER: -20° O/C, Foggy
CUMULATIVE COST:	\$626,034	ENRON GEOLOGIST: PETER AUBRECHT WELLSITE GEOLOGIST: BILL BAILLIE	LEASE COND'NS: Good
REPORT FROM: ROY	DOCKEN	MOBILE NO.: 554-1686 / 940-6544	RIG: PRECISION #5

1	Fishing more
. 1	
	8-
	13
	T
	and the second

IELL: CDN 4AAD Med HAT SD: 14-36-20-1 24				DAY:	DATE:	4- 01- A	5	AT 0800 HRS.		
			1	PROGRE	and the second	(m)	KB ELEV.:	737.4	p (m)	
		1704 S. Pull with	Lole with		and the second se		(Estim	ated T.D.:		
TIME	0000 ///		MUD RECO		<u> </u>			DEVI	ATION	
BREAKDO	WN				DITIVES - KG	HYDP	AULICS	mKB	degree	
(HOURS	1	PROP	ERTIES							
rilling ripping	7.50					SIZE: 29	0 mm LINER			
ig Serv	-125	pN .		= =			LENGTH			
urveying ond'r.Mud		Water Loss (cm) Plastic Visc.(M	Pe-s)	- 12		SPEED :	trokes/min.			
irculate		Yield Point (Pa)	_ -		PRESSIRE	trokes/min.		i	
lean to Btm.		In/Fin.Gel.Str	(Pa)	- -		RATE:	m'/min.			
ST/Core	e	Solids Content_		_ _			VELOCITY:	 ,		
ogging		Cl Content (mg/L	.)	- -		NOZZLE VI	m/min. ELOCITY:			
ntg. AST A TESIA	. 7.00	Ca++Cont.(mg/L)		- 11						
19 out TOR	1.1.00	an a				3HP:				
. O. FISL. To	- 7 -			ľ			1 s.		<u> </u>	
ishing	DRILL	TRING ASSEMBLY	·······	T		BIT R	ECORD			
				1						
RILL COLLAR	S:	• • • • • •	P		· · · · · · · ·	•••			······································	
m of	0 mm 0	D xmm 10 x D xmm 10 x	Connections	Туре						
					NO					
DRILL PIPE		_			- OUT m K8 .	• •			· · · · · · · · · · · · · · · · · · ·	
		D x	Connections Connections		ce Drilled • # hr	-		[
				Speed	- :/win					
MISCELLANEO				1	on Bit -10 ³ da			i		
Fishing	<u></u>	= 6/ey	· · · · · · · · · · · · · · · · · · ·		Sizes - mm . ndition - T/8/		フニーフ			
					ation Rate- my		l			
		OPERATION	S:							
					A			31		
<u>x Repa</u>	in be	LK1 in n	ALLIBURTO	<u>a hia</u>	an Tre	3 Sule	TK #7	BIEW_	<u>2</u>	
NIP	مرم ها	rof Lubic	ator Head.	Pu	• • • سوه الما	Recorp	4 md	Ropi		
ales D	. R	Bert in	Recorden.	EIA	e Throw	11 000	Ken Ar	nd Pr	essure_	
	. e.	Pas Vera	Insitu	70.05	ياسون لعبه	Rels A.	e to	ST AL		
· · ·	10 96	nae~ur.		D/a.	A		الاست ، برسوسی			
<u></u>	sure_	<u> </u>	me Drapped	Tal		<u>TO</u> 4,		A		
frees		LL TESTING	Equipme	nT	<u>ad P. e.</u>	N. L	13 Ted E	oth la	LC Roly	
frees	ML B									
Pres 2, Rigo		Ishine Tre	4.5.							
Pres 2, Rigo 3. wait	nn E	Ishing To	43.			906 70	00167	(m.	·	
Pres 2, Rigo 3, wait 4 mar	- on E	Fishing Ter	Tools And	R. 1	.N. TA	906 70	p 0 167	<u></u>	·	
Pres 2, Rigo 3, wait 4 max 9610	Cond	Ishing Ter Fishing -	the and Cites and	R.I TRI	.N. The d The w	are eu	p @ 167.	(_m. 		
Pres 2, Rigo 3, wait 4 max 9610	Cond	Ishing Ter Fishing -	the and Cites and	R.I TRI	.N. The d The w	19-6 To	р е 167. ел. Fish	(_m. 	: 4	
fres 2, Rigo 3, wait 4 max 9 m	Cond Cond	Ishing Ter Fishing T Good M. Could	the ger 1	R.I TRI	.N. The d The w	0 RF . 4	p @ 167.	(m. . Fi)		
fres 2, Rigo 3, wait 4 max 9 m	Cond Cond	Ishing Ter Fishing -	the ger 1	R.I TRI	.N. The d The w	09-6 To	p 0 167 en Fisk	. Fi)		
fres 2, Rigo 3, wait 4 max 9 m	Cond Cond	Ishing Ter Fishing T Good M. Could	the ger 1	R.I TRI	.N. The d The w	09-6 To 0.82 04	p 0 167.	(
fres 2, Rigo 3, wait 4 max 9 max 9 max 9 kie 5 kip	Cond Cond	Ishing Ter Fishing T Good M. Could	the ger 1	R.I TRI	.N. The d The w	0 8 ° 0 0	p 0 167.	(
fres 2, Rigo 3, wait 4 mar 9 mar 96 le 5 Kip	Cond Cond	Ishing Ter Fishing T Good M. Could	the ger 1	R.I TRI	.N. The d The w	09-6 To	p 0 167 m Fish	(, 		
fres 2, Rigo 3, wait 4 mar 9 mar 96 le 5 Kip	Cond Cond	Ishing Ter Fishing T Good M. Could	the ger 1	R.I TRI	.N. The d The w					
fres 2, Rigo 3, wait 4 max 9 max 9 max 9 kie 5 kip	Cond 8	Ishing Ter Fishing T Good M. Could	the ger 1	R. 1 TRIA	Fish		p 0 167			
Pres 2, Rigo 3, weit 3, weit 4 7 me 9610 5, Cha 5, Cha 04:14 COST:	Cond Cond Dod 8	Ishing To Fishing - Good m. Cond T of Mkc.	Ls. Tools and Ciac and La's get 1	R.] TRIS	FISL	0 8 2 0 4				

~

•

94/01/24	T	CANADA LTD. LING REPORT	Clantary 1994		DER TIGI
LL: CONLAND MEDI				m G;]	.: 723.2
2TH: 1704 m			(Estimated F.D.: 22)		
	MUD RECOR			DEVI	
TIME BREAKDOWN (HOURS)	PROPERTIES	ADDITIVES - SX	HYDRAULICS	ជ	degree
ipping 5.00 int 2.00 ing 6.50 icover Core . 1.50 i XO Sub 3.00 IU Testing . 6.00	Density (kg/m3) Viscosity (s/L) PH Water Loss (cm3) Plastic Visc. (NPa-S) Yield Point (Pa) Solids Content Salids Content Ci-Content (mg/L)		PLINP: EW15EW600 SIZE: 140 mm LINER x 381 mm STROKE LENGTH SPEED: strokes/min. PRESSURE: kPa RATE: a3/min. ANNULAR VELOCITY: m/s NOZZLE VELOCITY: m/s BHP: tw		
DRILL (TRING ASSEMBLY	BIT RECORD		T	
DRILL COLLARS: DRILL PIPE: MISCELLANEOUS EQUIP SITU packer and drill p	MENT:	Bit No. Size - MR Type Serial No. Depth - IN m KB - OUT m KB Distance Drilled - Time - hr. Speed - r/min. Force on Bit - 10.3 Nozzle Sizes - MR Bit Condition - T/B Penetration Rate- m	5.50 110 deN 3 /G Good		

POOH. Recover core and lay down core barrels.

Pick up log and log FMI log with Schlumberger. Loggers's TD 1703.5 m.

Wait on XO Sub and make up packer assembly.

RIH to 1672 m.

R/U Halliburton Lubricator and lines. Run in recorder to packer. Held safety meeting with crews and all service company personnel. Try to pressure test surface equipment. Lots of leaks to repair.

DAILY COST: \$ 23,790	AFE: C93E1479, LIC#: 0182547 NPW(C) Info: Enron Gas Marketing, St. Claire P/L, Enron Gas Services/Morgan Hydroc.	WEATHER: -14°, O/C Windy
CUMULATIVE COST: \$552.896	ENRON GEOLOGIST: PETER AUBRECHT WELLSITE GEOLOGIST: BILL BAILLIE	LEASE COND'NS: Good
REPORT FROM: ROY DOCKEN	MOBILE NO.: 554-1686 / 940-6544	RIG: PRECISION #5

JAN 24 '94 08:38AM ENKUN UIL CHINHUH ENRON OIL CANADA LTD. WCF Div DAILY DRILLING REPORT SUPER TIGHT DATE: 23 Jamiery 1994 AT 0800 HRS. DAY: 18 WELE: CON LAND MEDILAT 12 · · · · · SU: 14-36-20-01 W4M 16.21 K.B.: 727.48 m G.L.: 723.2 m Core 58 m PROGRESS: PTH: 1698 m Estimated T.D .- 2200 m OPERATION AT 0800 HRS CUTTING CORE 16 DEVIATION MUD RECORD TIME HYDRAULICS BREAKDOWN degree ADDITIVES - SX PROPERTIES (HOURS) EW15EW600 PUMP: 105 1290 Salt 9.75 Density (kg/m3) Tripping . . SIZE: 140 Mm LINER Starch 8 Viscosity (s/L) 47 Rig Service . . 0.50 7 x 381 AM STROKE 8 Gel 0.50 pH Circulate LENGTH KP700 . . 19.8 Water Loss (cm3) 2 9.50 Core \$2 14 SPEED: Defoan 1 Plastic Visc. (MPa-s) Slip & Cut Line 0.50 strokes/min. Recover Core . Yield Point (Pa) 3.25 PRESSURE: 6500 kPm RATE: 1.02 m3/min. In/Fin.Gel.Str 2 Solids Content (55,993) 2.5/9.0 0.089 ANNULAR VELOCITY: 0.001 Sand Content n/s CL-Content (mg/L) 140,000 NOZZLE VELOCITY: m/s ku BHP: BIT RECORD DRILL STRING ASSEMBLY 6C SC. 40 Rit Mo. DRILL COLLARS: 199 199 199 Size - mn 53.94 m of 152 mm OD x 63 mm ID x H90 Connections Diam.CD93 Diam. CD93 Diam.CD93 Type 4930440 4930440 4930440 Serial No. DRILL PIPE: 1694 Depth - IN m KB 1640 1667 1602.63 m of 114 mm OD x 114 mm XH Connections 1694 - QUT m KB 1667 27 27 Distance Drilled - m 2.50 3.50 AISCELLANEOUS EQUIPMENT: 3.50 Time - hr. 110 it .20 m, 3 Core Barrels 28.44 m, XO .28 m, Bit Sub .92 110 110 speed + r/min. , XO .65 m, 2 Pup Jts. 5.85 m Force on Bit - 10.3 daw 3 3 3 -Nozzle Sizes . mm Bit Condition - T/8/G Good Good 1.14 10.8 7.71 Penetration Rate- m/hr. **DESCRIPTION OF OPERATIONS FOR PAST 24 HOURS:** Recover core #3. Recovered 25.7 m of core.

Service core barrels and RIH. No fill on bottom. Circulate and drop core ball. Cut Core #4 from 1640 - 1667 m. Hoist core #4. Recover core and service core barrels. Recovery - full. RIH. Circulate and drop core ball. Hole condition good. Cut Core #5 from 1667 to 1694 m. Hoist core #5. Recover core and service core barrel. Full recovery. RIH to 380 m. Slip and cut line and finish RIH.

No fill on bottom. Circulate and drop core ball. Cut Core #6.

DAILY COST: \$ 17,273	AFE: C93E1479, LIC#: 0162547 NPW(C) Info: Enron Gas Marketing, St. Claire P/L, Enron Gas Services/Morgan Hydroc.	WEATHER: -10°, Partly O/C
CUMULATIVE COST: \$529,106	ENRON GEOLOGIST: PETER AUBRECHT WELLSITE GEOLOGIST: BILL BAILLIE	LEASE COND'NS: Good
REPORT FROM: ROY DOCKEN	MOBILE NO.: 554-1686 / 940-8544	RIG: PRECISION #5

WCF

DAY: 17

SUPER TIGHT

AT 0800 HRS.

EDN LAND MEDH WELL LSD : 14-36-20-01 WAM

1640 m TH:

(Estimated T.D.: 3200 m) JPERATION AT 0800 HRS .: HOIST CORE /3

SIMI LING

DATE: 22 January 1994

TIME	MUD RECO	RD					DEV	
BREAKDOWN (HOURS)	PROPERTIES	· .	ADDITIVES - SX		HYDRAUUC		R	degree
Drilling 0.50 Tripping 9.75 Rig Service . 0.50 Circulate 3.00 Ciean to Btm . 0.50 Core 8.00 Handle Core Bbls. 1.75	Density (kg/m3) Viscosity (s/L) pH Water Loss (cm3) Plastic Visc.(MPa-s) Yield Point (Pa) In/Fin.Gel.Str Solids Content Sand Content Cl-Content (mg/L) Ca++Cont.(mg/L)	48 7.5 21.0 14 5 (9.0 0.09 .001 ppm	Salt 225 Starch 27 Defoamer 4 Lime 2 Barite 20 (51,744)	SI SPI PRIA	ZE: 140 mm L x 381 mm S L strokes Strokes ESSURE: 650 TE: 1.02 m3 WLAR VELOCITY ZZLE VELOCITY	TROKE ENGTH 52 /min. 0 kPa /min. TY: R/s		
DRILL S	TRING ASSEMBLY	BIT RECORD						
DRILL COLLARS: 53.94 m of 152 mm 00 x 63 mm 1D x H90 Connections DRILL PIPE: 1535.91 m of 114 mm CD x 114 mm XH Connections HISCELLANEOUS EQUIPMENT: .30 m, 3 core bbls 28.44 m, XO .28 m, Bit Sub .92m, 65 m, 2 pup jts. 5.85 m		Siz Typ Ser Dep Dis Tim Spe For Noz Bit	No. e - mm isl No. th - IN m KB - OUT m KB tance Drilled - m e - hr. ed - r/min. ce on Bit - 10.3 c Zle Sizes - mm Condition - T/B/G etration Rate- m/f		4 222 ATM33 F6545 1372 1613 261 54 80/95 14/16 3x10.3 3/2/1 4.46	3C 199 Diam 4930 1613 1640 27 8 100 3 3.37	- CD93 - 40	

DESCRIPTION OF OPERATIONS FOR PAST 24 HOURS:

Drill to core point of 1613.0 m. Circulate up sample for geologist. Dummy trip 12 stands. Hole condition good. Circulate and strap out to pick up core barrel. Strap 1441.15, Tally 1440.76, Diff. .39 m. N/C. Pick up and service core barrels. Pick up 152 mm DC's (6) and RiH. Pick up 8 DP to replace 165 mm DC's. No fill on bottom.

Circulate, drop ball and cut Core #3 from 1613 to 1640 m. Hoist core #3. Hole condition good.

DAILY COST: \$ 22,124	AFE: C93E1479, LIC#: 0162547 NPW(C) Info: Enron Gas Marketing, St. Claire P/L, Enron Gas Services/Morgan Hydroc.	WEATHER: -8°C, Partly O/C
JMULATIVE COST: \$511,833	ENRON GEOLOGIST: PETER AUBRECHT WELLSITE GEOLOGIST: BILL BAILLIE	LEASE COND'NS: Good
REPORT FROM: ROY DOCKEN	MOBILE NO.: 554-1686 / 940-6544	RIG: PRECISION #5

JHN 21 '94 BB: BEHM ENKUN UIL CHNHUH

ENRON OIL CANADA LTD. DAILY DRILLING REPORT

SUPER TIGHT

P.2/2

DEPTH: 1604 m		PROGRESS DE		fm G.	. 723.2 m
OPERATION AT TRUE TIR	MUD RECO	atimated P.D.: 2200 m). R D		DEV	ATION
BREAKDOWN (HOURS)	PROPERTIES	ADDITIVES - SX	HYDRAULICS	6	degree
Drilling 22.00 Rig Service . 0.50 Surveying 1.50	Viscosity (s/L)	5.5 Lignite 5	PUMP:EW15EU600SIZE:140 mm LINERx 381 mm STROKELENGTHSPEED:64strokes/min.PRESSURE:9500 kPaRATE:1.26 m3/min.ANNULAR VELOCITY:44/73 m/sNO22LE VELOCITY:84 m/sBHP:83 kw	1506 1581 1581	3/4 Hisru 3/4
DRILL S					
DRILL PIPE:	x 73 mm 1D x XH Connections x 114 mm XH Connections MENT:	Bit No. Size - mm Type Serial No. Depth - IN m KB - OUT m KB Distance Drilled - m Time - hr. Speed - r/min. Force on Bit - 10.3 Nozzle Sizes - smm Bit Condition - T/B/ Penetration Rate- m/	52.50 80 daN 14/16 3x10.3 'G		

DESCRIPTION OF OPERATIONS FOR PAST 24 HOURS:

Drill and survey. Hole condition good on connections.

Est. Core Point @ 1610 m.

RSPP 3800 kPa @ 32 spm.

AILY COST: \$ 32.195	AFE: C93E1479, UC#: 0162547 NPW(C) Info: Enron Ges Merketing, St. Claire P/L. Enron Ges Services/Morgan Hydroc.	WEATHER: -16° O/C
CUMULATIVE COST: \$489,709	ENRON GEOLOGIST: PETER AUBRECHT WELLSITE GEOLOGIST: BILL BAILLIE	LEASE COND'NS: Good
REPORT FROM - ROY DOCKEN	MOBILE NO.: 554-1688 / 940-6544	RIG: PRECISION #5

JAN 20 '94 09:03AM LINKUN ULENRON OIL CANADA LTD. DAILY DRILLING REPORT

WELL CON LAND MEDHAT LSD : 14-36-20-01 W4M

DEPTH-1500 m

DW-WCF.

PROGRESS

ATE: 29 January 1994

K.B .: 727:48 m G.L .: 723:2 m

(Estimated T.D.: 2200 m) OPERATION AT 0800 HRS ... DRILLING

-01-20

TIME	MUD RECO	RD			DEVIAT		
BREAKDOWN (HOURS)	PROPERTIES	ADDITIVES	- \$X	HYDRAULICS	n	degree	
Drilling 22.75 Rig Service . 0.75 Surveying 0.50	Sand Content	. 48 Thinz 9.5 Salt 18.5 Defoamer 13 KD-700 7 Starch 1/17 Lignite 0.089	1 1 373 4 10 9 18	PLMP: EW1SEU600 SIZE: 140 mm LIMER x 361 mm STROKE LENGTH SPEED: 64 strokes/min. PRESSURE: 10,000 kPa RATE: 1.26 m3/min. AMBULAR VELOCITY: 44/73 m/s MOZZLE VELOCITY: 84 m/s BHP: 93 kw			
DRILL S		BIT RECORD					
DRILL PIPE:	x 73 mm 10 x XH Connections x 114 mm XH Connections MENT:	Bit No. Size - mm Type Serial No. Depth - [N m KB - DUT m Distance Drille Time - hr. Speed - r/min. Force on Bit - Nozzle Sizes - Bit Condition Sa	KB ed - M 10.3 (Mm - T/B/(30.5 20/90 2aN 14 3x10.3 G			

DESCRIPTION OF OPERATIONS FOR PAST 24 HOURS:

Drill and survey. Hole condition good on connections. Penetration rate varies from 3 m/hr to 6 m/hr.

RSPP 3100 kPa @ 31 spm.

DAILY COST: \$	35,005	AFE: C93E1479, LIC#: 0182547 NPW(C) Info: Envon Gas Marketing, St. Claire P/L, Enron Gas Services/Morgan Hydroc.	WEATHER: -15° O/C
CUMULATIVE COST: \$	457,514	ENRON GEOLOGIST: PETER AUBRECHT WELLSITE GEOLOGIST: BILL BAILLIE	LEASE COND'NS: Good
REPORT FROM: ROY D	OCKEN	MOBILE NO.: 554-1686 / 940-6544	RIG: PRECISION #5

SUPER TIGIT

AT-0800 HRS

DW WEF

SUPER TIGHT

XT 0800 TURS

WELL: CON LAND MEDHAT SD : 14-36-20-01 W4M

DATE: 19 January 1994 11X.X 243m PROGRESS:

K.B.: 727.48 m G.L.: 723,2 m

DEPTH: 1412 m

-01-17

(Estimated T.D.: 2200 m)

TIME	AT 1999 HRS. DRILLING (Estimated T.D.: 2200 m)				Lassa	DEVIATION	
BREAKDOWN (HOURS)	PROPERTIES	ADDITIVES - S		HYDRAULICS		degree	
Orilling 9.25 Tripping 4.25 Rig Service 0.75 Circulate 0.75 Reaming 9.00	Density (kg/m3)	47 Cf II 0.3 Barite 2 1.0 Lime 1 15 (13,081) 3/19 0.089 0.002 500	0 2 SPE RAT ANN	E: 140 mm L11 x 381 mm STT LE: Strokes/1 SSURE: 9800 E: 1.26 m3/1 HULAR VELOCITY 44/73 ZZLE VELOCITY: 84	NER ROKE NGTH 64 min. kPa min. f: f: m/s		
DRILL	STRING ASSEMBLY	BIT RECORD					
DRILL PIPE:	x 73 mm ID x XH Connections D x 114 mm XH Connections	Bit No. Size - mm Type Serial No. Depth - IN m KB - OUT m KB Distance Drilled		3RR2 222 ATJ22S T02BF ** 1203 1372 169	1372 - 40		
MISCELLANEOUS EQUID Bit .25 m, S.S. 2.87 m		Time - hr. Speed - r/min. Force on Bit - 10 Nozzle Sizes - mm	.3 dan	37.25 80/90 14 2x9.5 1x10.3	7.75 80 14 3x10.3		
	an a	Bit Condition - T Penetration Rate-	/B/G m/hr.	8/6/4 4.53	5.16		

DESCRIPTION OF OPERATIONS FOR PAST 24 HOURS:

Drill to 1372 m.

Hoist bit # 3RR2. Hole got tight @ 1334 m and had to back ream from 1334 m to 1326 m, and from 1203 m to 1195 m. Remainder of hole condition good.

Changed hits and run in DC's. Slip and cut line and finish running in hole to 1165 m. Ream tight spots @ 1165 m to 1183 m. 1211 m to 1240 m, and from 1316 m to 1372 m.

Continue drilling 222 mm hole

RSPP 3100 kPa @ 31 spm.

DAILY COST:	\$ 15,745	AFE: C93E1479, LIC#: 0162547 NPW(C) Info: Enron Gas Marketing, St. Claire P/L, Enron Gas Services/Morgan Hydroc.	WEATHER: -20° O/C
CUMULATIVE COST:	\$422,509	ENRON GEOLOGIST: PETER AUBRECHT WELLSITE GEOLOGIST: BILL BAILUE	LEASE COND'NS: Good
DOY	DOCKEN	MOBILE NO .: 554-1686 / 940-6544	RIG: PRECISION #5

JDW WCF - 72 01.18 ----

SUPER TIGHT

AT 4844 HRS.

degree

DEVIATION

周

WELL: CON LAND MEDHAT LSD : 14-36-28-61 W4M

DEPTII:

TIME

(HOURS)

PHOGRESS:

DATE

K.B.: 7

2 9 7 8 0 7 mp 6 m 1 1 1 1 2 4 2 4 4

K.B.1 727 48 m G.L.1 7322

OPERATION AT SEO HRS DRILLING

OPERTIES AD	DITIVES - SX
MUD RECORD	HYDRAULICS
(Estimated	T.D.:. 2200 m)

In/Fin.Gel.Str	. 49 CF II 8 5 10.5 Gel 40 10.8 Lime 4 . 15 Plythin 2 7.5 5/21 (11,769) P 0.001 450 A 680 H	UMP: EVISELGOO <u>12E:</u> 140 mm LINER x 381 mm STROKE LENGTH <u>PEED:</u> 64 strokes/min. <u>RESSURE:</u> 10,000 kPa <u>AIE:</u> 1.29 m3/min. <u>NNULAR VELOCITY:</u> <u>44/76 m/s</u> <u>022LE VELOCITY:</u> <u>97 m/s</u> <u>HP:</u> 128 kw	3,4
DRILL STRING ASSEMBLY	BIT RECORD		
DRILL COLLARS: 171.52 m of 165 mm OD x 78 mm ID x XH Connections DRILL PIPE: 1186.45 m of 114 mm OD x 114 mm XN Connections	Bit No. Size - man Type Serial No. Depth - IN m KB - OuT m KB	3RR2 222 ATJ22S T02BF 1205	
MISCELLANEOUS EQUIPMENT: Bit .25 m, S.S. 2.87 m	Distance Drilled - m Time - hr. Speed - r/min. Force on Bit - 10.3 daw Nozzle Sizes - mm	165 35.75 90 14 2x9.5 1x10.3	
	Bit Condition - T/B/G Penetration Rate- m/hr.	4.61	

DESCRIPTION OF OPERATIONS FOR PAST 24 HOURS:

PR

Drilling and surveying. Hole condition good.

Drilled lots of anhydrite. Averaged 2 m/hr. in anhydrite. Remainder of drilling averaged 4 m/hr.

RSPP 3000 kPa @ 28 spm. Check BOP's on BOP's.

DAILY COST: \$ 18,65	1 AFE: C93E1479, LIC#; 0162547 NPW(C) Info: Enron Gas Marketing, St. Claire P/L, Enron Gas Services/Morgan Hydroc.	WEATHER: -26° O/C
CUMULATIVE COST: \$406,7	44 ENRON GEOLOGIST: PETER AUBRECHT WELLSITE GEOLOGIST: BILL BAILLIE	LEASE COND'NS: Good
REPORT FROM: ROY DOCKER	MOBILE NO.: 554-1686 / 940-6544	RIG: PRECISION #5

1.5 DAX: 12 DATE: 17 January 1994 AT 0800 HRS. 19.13 •••• 112 and an and a second PROGRESS: 82 m ÷ •••• K.B.: 727.48 m G.L.: 723.2 m (Estimated T.D.: 2200 m) 400 · . . . • • $\sim t$ MUD RECORD

	MUD RECO	RD			DEV	
(HOURS)	PROPERTIES		ADDITIVES - SX	HYDRAULICS	m	degree
Drilling 13.00 Tripping 4.00 Rig Service . 0.50 Surveying 0.25 Clean to Btm . 0.75 DST 3.00 Nandle DST Tool 2.50	Viscosity (s/L) pH Water Loss (cm3) Plastic Visc.(MPa-s) Yield Point (Pa) In/Fin.Gel.Str Solids Content	1140 55 11.0 11.0 24 8 3/20 .009 .001 450 680	Line 3	PLMP: EW15EW600 SIZE: 140 mm LINER x 381 mm STROKE LENGTH SPEED: 64 strokes/min. PRESSURE: 9600 kPa RATE: 1.29 m3/min. ANMULAR VELOCITY: 44/74 m/s NOZZLE VELOCITY: 97 m/s BMP: 125 kw	1270	3/2
DRILLS	TRING ASSEMBLY	BIT	RECORD			
DRILL COLLARS: 171.52 m of 165 mm OD x DRILL PIPE: 1101.67 m of 114 mm OD MISCELLANEOUS EQUIPM it .25 m, S.S. 2.87 m		Sizi Typi Ser Depi Dist Time Spec Forc Noza Bit	No. e - pm e ial No. th - IN m KB - OUT m KB tance Drilled - m e - hr. ed - r/min. te on Bit - 10.3 da tle Sizes - mm Condition - T/B/G etration Rate- m/hr	2x9.5 1x10.3		
Finish testing Nisku form Pull loose and hoist 5 sta Rig up and pump out flui Continue POOH and load DST #4: NISKU PF: Strong VO: Fair blo REC: 28 m of	d to rig mud tank.	ins. kish v	vater.			

Make up bit and RIH. Cleaned 5 m of fill to bottom. Remainder of hole condition good. continue drilling 222 mm hole.

RSPP 2800 kPa @ 28 spm.

WELL: CON LAND MEDHAT

OPERATION AT 4600 HRS. S. DRILLEING

LSD :: 14-36-20-01 W4M

EPTH: : .: 1285 ac

1 9AILY COST: \$ 42,951	AFE: C93E1479, LIC#: 0162547 NPW(C) Info: Enron Gas Marketing, St. Claire P/L, Enron Gas Services/Morgan Hydroc.	WEATHER: -29° C. O/C
CUMULATIVE COST: \$388,133	ENRON GEOLOGIST: PETER AUBRECHT WELLSITE GEOLOGIST: BILL BAILLIE	LEASE COND'NS: Good
REPORT FROM: ROY DOCKEN	MOBILE NO.: 554-1686 / 940-6544	RIG: PRECISION #5

SUPER TIGHT

ENKUN ULL CANADA LID. DAILY DRILLING REPORT

SUPER TIGHT

DEFTH: 1343 m			OGRESS:	K.B.: 727.4		L.: 723.2
OPERATION AT DEOD HR	S.: TESTING ON F.S.I.		(Estimated T.D.:			
TIME	MUC	RECORD		[DEVI	ATION
BREAKDOWN (HOURS)	PROPERTIES		ADDITIVES - SX	HYDRAULICS	 m	degree
Tripping 10.75 Rig Service . 0.50 Surveying 0.75 Circulate 1.00 DST 5.25 Handle DST Tools 6.25	Density (kg/m3) Viscosity (s/L) pH Plastic Visc.(MPa-s) . Yield Point (Pa) In/Fin.Gel.Str Solids Content Cl-Content (mg/L) Ca++Cont.(mg/L)	· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·		PUMP: EU1SEW600 SIZE: 140mm x 381 STROKE LENGTH STROKE SPEED: Strokes/min. PRESSURE: kPa RATE: m3/min. ANNULAR VELOCITY: m/s MO22LE VELOCITY: m/s BHP: kw		3/
. ORILL S	TRING ASSEMBLY	BI	T RECORD			
DRILL COLLARS: DRILL PIPE: MISCELLANEOUS EQUIPA Josting Tools	fent:	Si Ty Sc De Di Tiu Sp Foo No Bi	t Ng. Ze - mm pe rial No. pth - IN m KB - OUT m KB stance Drilled - m me - hr. eed - r/min. rce on Bit - 13.3 d zzle Sizes - mm t Condition - T/B/G netration Rate- m/h			
Recover recorder and ser DST #3: MISRL POOH and lay down test Circulate and condition h P/U testing tool and RIH ight. Deflated packer @ Jot good packer seat. DST #4: NISKU PF: Strong	ERATIONS FOR PAST : vice core barrels. RIH (s IN. ing tool. P/U bit and RIH ole and strap out of hole. . Head up testing head ar first testing interval 1157 (TOP) from 1158.5 m - initial puff and decreased strong throughout.	Rrap in). Hit I H. Reamed bri Strap 1026.20 Ind pump up pa V to 1175 m. V 1176.5 m. 1	idges @ 1070 to 11: 0 m, Taily 1024.55 cker, Tried 3 time:	25 m and from 1178 to m, Diff. 1.65 m.	1203 m.	
AILY COST:	\$ 17,429 AFE: Cg Info: Enj	on Gas Markeri	0162547 NPW{C} ing, St. Claire P/L,	WEATHER: -23° (C, O/C Ligh	t Snow
UMULATIVE COST:		es Services/Mo	rgan Hydroc. ETER AUBRECHT	LEASE COND'NS: Goo		

MOBILE NO.: 554-1686 / 940-6544

RIG:

PRECISION #5

DAILY DRILLING REPORT

SUPER TIGHT

DEPTH-		PRO	GKĽSS; 0 m		K.B.: 727.4	8 m C	L.: 723.2 m
OPERATION AT SHE HR	S. RECOVER CHARTS PROMIDS			Estimated T	.D.: 2290 m)	· ·	
TIME BREAKDOWN	MUD REC	ORD				DEV	ATION
(HOURS)	PROPERTIES		ADDITIVES - SX	HYD	AULICS	R	degree
Tripping 9.75 Rig Service . 0.50 Circulate 1.00 DST 7.25 Slip & Cut Line 0.50 Reaming 0.75 Handle DST Tool 4.25	50 Viscosity (s/L)		Barite 10	PUMP: EU15EW600 SIZE: 140 wm LINER x 381 mm STROKE LENGTH SPEED: strokes/min. PRESSURE: kPa RATE: m3/min. ANNULAR VELOCITY: m/s NOZZLE VELOCITY: m/s BHP: ku			
DRILL S		BIT	RECORD		I		
DRILL COLLARS: 171.52 m of 165 mm OD x DRILL PIPE: MISCELLANEOUS EQUIPM Testing Tools	73 mp 10 x XH connections	Type Seri Dept Dist Time Spee Forc Nozz Bit	- fmit	2x9.5 1x10.3	ble ISm Jin a'		

Finish ream rat hole to 1203 m. Circulate and POOH for DST #1. Pick up and make up DST #1. DST #1: Nisku 1203 - 1180 m. - MTSRUN.

RIH and try to pump up packer. Tried 3 times with no results. POOH (chained out) and check out DST tools. Everything looked o.k. Install another packer rubber. RIH and pumped up packers and got good seat on DST #2. Test DST #2.

DST #2:	Nisku 1203 - 1180 m. Times: 10/60/60/90.	
PF:	Weak air blow increasing to fair throughout. NGTS on PV or VO.	
VO:	Weak air blow increasing to strong in 25 mins. Decreasing to fair throughout.	
REC:	28 m muddy water and 198 m of brackish water.	
PRESS:	IHP 13558, PF 1301 / 1474 kPa, ISI 10720, IF 1434, FF 2935, FSI 10700, FHP 1	3457 kPa.

Trip out with DST #2. Hole condition good. Chained out.

DAILY COST:	\$ 17,534	AFE: C93E1479, LIC#: 0162547 NPW(C) Info: Enron Gas Marketing, St. Claire P/L, Enron Gas Services/Morgan Hydroc.	WEATHER: -18° O/C
CUMULATIVE COST:	\$327,733	ENRON GEOLOGIST: PETER AUBRECHT WELLSITE GEOLOGIST: BILL BAILLIE	LEASE COND'NS: Good
REPORT FROM: R	OY DOCKEN	MOBILE NO.: 554-1886 / 940-6544	RIG: PRECISION #5

DAILY DRILLING REPORT

PRE

WELLY CONLAND MEDIAT

LSD :- 1436 20-01 WAM

DEPTH: 1205 m DATE: 14 Jan ary 1994

AT BER HRS.

SUPER TIGHT

G.L.: 721-2m

K.B. 727:48 m

TIME BREAKDOWN	MUD RECO	MUD RECORD			ATION
(HOURS)	PROPERTIES	ADDITIVES - SX	HYDRAULICS		degree
Tripping 10.25 Rig Service 0.75 Girculate 0.50 Core 2.50 Ream Ret Hole . 6.50 Handle Core & Bbls 5.50	Viscosity (s/L) pH Water Loss (cm3) Plastic Visc.(NPa-s) Yield Point (Pa) In/Fin.Gel.Str Solids Content Sand Content Cl-Content (mg/L)	089	PLOP: EU15EW60 SIZE: 140 mm LINE x 331 mm STROM LENG SPEED: SI strokes/mir PRESSURE: PRESSURE: 7500 kp RATE: 1.0 m3/mir ANNULAR VELOCITY: m/ MOZZLE VELOCITY: m/ RMP: k	R KE TH 3 Pa 1.	
DRILL S	TRING ASSEMBLY	BIT RECORD			
DRILL COLLARS: 171.52 m of 165 mm CD x DRILL PIPE: 1005.64 m of 114 mm CD ; MISCELLANEOUS EQUIPM Bit .25 m, B.S91 m		Bit No. Size - mm Type Serial No. Depth - IN m KB - OUT m KB Distance Drilled - m Time - hr. Speed - r/min. force on Bit - 10.3 da Nozzle Sizes - mm Bit Condition - T/B/G Penetration Rate- m/hr	199 C93 Diam.D85 4930440 1158 1185 27 5.00 1.0 3 -	2C 199 CD93 Diam. 4930448 1185 1203.8 13.8 2.25 110 3 - Good	

DESCRIPTION OF OPERATIONS FOR PAST 24 HOURS:

Cut Core #1: NISKU 1158 - 1185.0 m (27 m) Hoist core #1.

Recovered 27 m of core.

Service core barrel and stand in derrick.

Make up bit and RIH. Hole condition good.

Ream rat hole from 1158 to 1185 m with 2-3000 daN weight & 660 rpm.

Circulate and condition hole and hoist out for core barrels.

Pick up core barrels and unload 152 mm DC's.

RIH with core barrels. Circulate and drop core barrels.

Cut Core #2 GRETTO 1185 - 1203.8 m (18.8 m).

Hoist Core #2.

Recover core and lay down core barrels. Full recovery (18.8 m) Make up bit and RIH. Break circulation and ream rat hole.

DAILY COST: \$ 18,239	AFE: C93E1479, LIC#: 0182547 NPW(C) Info: Enron Gas Merketing, St. Claire P/L, Enron Gas Services/Morgan Hydroc.	WEATHER: -22°C, Light Snow
JMULATIVE COST: \$310,199	ENRON GEOLOGIST: PETER AUBRECHT WELLSITE GEOLOGIST: BILL BAILLIE	LEASE COND'NS: Good
REPORT FROM: ROY DOCKEN	MOBILE NO.: 554-1686 / \$40-6544	RIG: PRECISION #5

: - Wolnik Faig -94.01.12 -GIRUN ULL CANADA LID. DAILY DRILLING REPORT SUPER TIGHT CON LAND ROUBLAT WEDS CON LAND REDHAT OPERATION AT 684 TES. SPECIER C. TIME MUD RECORD DEVIATION **MEAKDOWN** HYDRAULICS (HOURS) PROPERTIES ADDITIVES . EX • deyr.ee Drilling . . . 9,00 EW15EW600 Lim 70: 5121: 140 cm L[NCR x 381 nm \$Thoke Tripoliu . . 6.23 Rig Service . 0.50 Circulate . . 2.25 Clean to Btm . 0.25 Core 6.79 Pelythin 18 pli Water Less (cm3) thing 21 LENGTH Burite 10 Plastic Vice. (MPg-3) Sel Stato: 55 40 Core 4.79 Pick up Core abl 1.00 Tield Point (Pe) 10/40 In/rin.Gel.Srr 10/40 Sulids Content 0.805 Send Content 0.801 Cl-Content (mg/L) 250 Tend (mg/L) 580 strokes/min. PHESSURE: 7500 kma RAYE: 1.0 m3/min. AMMULAR VFINCITY: M/S WCZZLE VELOCITY: m/3 <u> 6119 :</u> in a DRILL STHING ASSEMRLY BIT RECORD DRULL COLLARS: Bit No. 2 10 199 222 171.52 m of 165 mm CD x 73 mm 10 x XM Connections \$120 - MM ATJ225 Туре Diam. DBE 4930440 CALL PIPE Sertal No. TOZEP Depth * IN m KS - CUT m KS 917 1155 959.15 # of 114 mm CD x 114 mm XH Connections 1158 Distance Drilled m 26 261 MISCELLANEOUS EQUIPMENT: 4.75 Time - hr. 44 3 - core barrels /8.44 m, Jars 2.31, X0 .22, BS .01 m Speed - r/min 90/100 110 Force on Bit - 10.5 deal 14 5 Nozzie Sizes - mm 219.5 ٠ - - -1x10.3 Bit Condition - T/8/G Penetration Rate- whr. 5.6 5.47 DESCRIPTION OF OPERATIONS FOR PAST 24 HOURS: Drill to core point of 1158.0 m. Circulate and strap out on dummy trip to DC's. Strap 978.36 m, Tally 977.65 m. Diff. .71 m - n/c. Circulate and POOH for core barrels. Pick up core barrels and run in hole. Hole condition good. No fill on hours. Circulate and drop ball. CUT CORE #1. DAILY COST: \$ 21,753 AFE: C33E1479, LICE: 0187547 NPW(C) WEATHER: -21º. 0/C Info: Enron Gas Marketing, St. Claire P/L, Enron Ges Services/Morgan Hydros. CUMULATIVE COST: \$291,960 ENRON GEOLOGIST: PETER AUBRECHT LEASE COND'NS: Goud WELLSITE GEOLOGIST; BILL BAILLIE

MOBILE NO.: 554-1606 / 940-0544

PRECISION #5

FIG:

REPORT FROM:

ROY DOCKEN

ENKON OIL CANADA LID. Work DAILY DRILLING REPORT SUPER TIGHT AT 0800 IIRS. DAY: 7 WELL: CON LAND MEDHAT DATE: 12 January 1994 LSD : 14-36-20-01 W4M K.B.: 727.48 m G.L.: 723.2 m PROGRESS: ---- 140 1127 58

DEPTH:

TIME	MUD RECO		DEVIATION		
BREAKDOWN (HOURS)	PROPERTIES	ADDITIVES - SX	HYDRAULICS	m	degree
Drilling 22.75 Rig Service . 0.75 Surveying 0.50	Density (kg/m3)	45 Reef Floc 2 10 CF II 26 10 Caustic 8 18 7.5 /19 809 801 350	PLMP: EU15EW600 SIZE: 140 mm LINER x 381 mm STROKE LENGTH SPEED: 66 strokes/min. PRESSURE: 9000 kPa RATE: 1.32 m3/min. ANNULAR VELOCITY: 46/76 m/s. MOZZLE VELOCITY: 97 m/s BHP: 129 kw		
DRILL	STRING ASSEMBLY	BIT RECORD			
DRILL COLLARS: 171.52 m of 165 mm CD x 73 mm ID x XH Connections DRILL PIPE: 940.24 m of 114 mm CD x 114 mm XH Connections MISCELLANEOUS EQUIPMENT: Bit .25 m, S.S. 2.87 m		Bit No. Size - mm Type Serial No. Depth - IN m KB - CUT m KB Distance Drilled - m Time - hr. Speed - r/min. Force on Bit - 10.3 Nozzle Sizes - mm Bit Condition - T/8/ Penetration Rate- m/	35 90/100 14/15 2x9.5 1x10.3 6		

DESCRIPTION OF OPERATIONS FOR PAST 24 HOURS:

Drill and survey. Hole conditon and rig operation good.

DAILY COST:	\$ 21,220	AFE: C93E1479, UC#: 0162547 NPW(C) Info: Enron Gas Marketing, St. Claire P/L, Enron Gas Services/Morgen Hydroc.	WEATHER:
CUMULATIVE COST:	\$270.207	ENRON GEOLOGIST: PETER AUBRECHT WELLSITE GEOLOGIST: BILL BAILLIE	LEASE COND'NS: Good
REPORT FROM: ROY D	DOCKEN	MOBILE NO.: 554-1686 / 940-6544	RIG: PRECISION #5

Wolack

DA CZ

PROGRESS

SUPER TIGHT

AT 0800 HP

WELL: CON LAND MEDHAT SD := 14-36-30-01 WAM

10

OPERATION AT 0000 PIRS ------

DATE: 11 January 1994

K.B.: 727.48m -: GL: 123.2 m

DEPTIE

1000 (Estimated T.D.: 2200 m)

	MUD RECOF	I D		DEV	
TIME BREAKDOWN (HOURS)	PROPERTIES	ADDITIVES . SX	HYDRAULICS	n	degree
Drilling 18.50 Tripping 4.00 Rig Scrvice0.75 Surveying 0.75	Density (kg/m3)	45 Caustre 5 1.0 Soda Ash 5 1.5 Gel 50 - CF II 1 -	PUMP: EW15EW600 SIZE: 140 mm LINER x 381 mm STROKE LENGTH SPEED: 66 strokes/min. PRESSURE: PRESSURE: 9000 kPa RATE: 1.32 m3/min. ANNULAR VELOCITY: 46/76 m/s NOZZLE VELOCITY: 97 m/s BHP: 129 kw		1/4 1/2 1/2
DRILL	STRING ASSEMBLY	BIT RECORD		T	
DRILL PIPE:	x 73 mm 1D x XH Connections x 116 mm XH Connections	Bit No. Size - mm Type Serial No. Depth - IN m KB - CUT m KB Distance Drilled - f	BM6878 T02 393 917 917 0 524 70	1225 18P 7	
MISCELLANEOUS EQUIF Bit .25 m, S.S. 2.87 m		Time • hr. Speed - r/min. Force on Bit - 10.3 Nozzle Sizes • mm	19.75 12. 120 90, daN 10 10, 3x12.7 2x5	.25 /110 /14 9.5 10.3	
		Bit Condition - T/B Penetration Rate- m	/6 4/3/1	71	

DESCRIPTION OF OPERATIONS FOR PAST 24 HOURS:

Drill and survey to 917.0 m. Strap out of hole for Bit #2. Strap 733.95 m, Tally 733.83 m, Diff .12 m - N/C.

Make up bit and shock sub and RIH. Hole condition good. 3 m fill on bottom. Continue drilling and surveying.

Est. top of Pekisko 914.0 m RSPP 2500 kPa @ 33 spm. Shock sub started 94-01-10.

DAILY COST:	\$ 23,475	AFE: C93E1479, LIC#: 0182547 NPW(C) Info: Enron Gas Marketing, St. Claire P/L, Enron Gas Services/Morgan Hydroc.	WEATHER: -23° O/C
CUMULATIVE COST:	\$248,987	ENRON GEOLOGIST: PETER AUBRECHT WELLSITE GEOLOGIST: BILL BAILLIE	LEASE COND'NS: Good
	V DOCKEN	MORIFNO - 554-1686 / 940-6544	RIG: PRECISION #5

SUPER TIGHT

DEPTH:		PROCRESS: 423 or	K.B.: 727.4	8.m. G.)	.; 723.2 m
OPERATION AT POOR	E DRILLING (stimated T.D.: 2260-m)		1	• • •
TIME	MUD RECO	RD	HYDRAULICS	DEV	
BREAKDOWN (HOURS)	PROPERTIES	ADDITIVES . SX	HIDRACLICS	m	degree
Drilling 13.50 Rig Service	Density (kg/m3)	29 Reef Floc 15 . (1250)	PUMP: EM15EW600 SIZE: 140 mm LINER x 381 mm STROKE LENGTH SPEED: 66 strokes/min. PRESSURE: 5000 kPs RATE: 1.37 m3/min. ANNULAR VELOCITY: 48/79 m/s NOZZLE VELOCITY: 59 m/s BHP: 45 kw	439 514 589 665 740	3/4 3/1 3/4 1/4 1/4
DRILL S	TRING ASSEMBLY	BIT RECORD			
DRILL COLLARS: 171.52 m of 165 mm OD x 73 mm ID x XO Connections DRILL PIPE: 630.62 m of 116 mm OD x 114 mm XH Connections MISCELLANEOUS EQUIPMENT: Bit .25 m, Bit sub .90 m		Bit No. Size - mm Type Serial No. Depth - IN m KB - OUT m KB Distance Drilled - m Time - hr. Speed - r/min. Force on Bit - 10.3 Nozzle Sizes - mm Bit Condition - T/B/ Penetration Rate: m/	13.50 90/128 daw 10,000 3x12.7 G		

DESCRIPTION OF OPERATIONS FOR PAST 24 HOURS:

Drill out cement, float and shoe from 300 m to 393 m. Hold BOP drill and continued drilling 222 mm hole.

Repairs were 1/2 hr. working on kelly spinner and 1/2 hr. working on pump.

Hole conditions good on connections.

Started mudding up @ 780 m.

.

DAILY COST: \$ 19,644	AFE: C93E1479, LIC#: 0162547 NPW(C) Info: Enron Gas Marketing, St. Claire P/L, Enron Gas Services:Morgan Hydroc.	WEATHER: +26° O/C
CUMULATIVE COST: \$225,511	ENRON GEOLOGIST: PETER AUBRECHT WELLSITE GEOLOGIST: BILL BAILLIE	LEASE COND'NS: Fair
REPORT FROM: ROY DOCKEN	MOBILE NO.: 554-1686 / 940-6544	RIG: PRECISION #5

SUPER TIGHT

WELL: CON LAND ME LSD : 14362401 W4M	DHAT	DAY: 4 DATE: 9	January 1994	λт	0800 IRS
DEPTH: 393			K.B.:- 727.4	8 m G.I	: 723.2 s
OPERATION AT OROU HE	S. DAILENCOUT CEMENT	Estiunted	T.D.: 2200 m)		
TIME	MUD RECO			DEVIATION	
BREAKDOWN (HOURS)	PROPERTIES	ADDITIVES - SX	HYDRAULICS	n	degree
Trippingz 1.25 Rig Service 0.25 Circulate 0.50 Drill Out 1.50 Cementing 0.25 WOC 4.00 N/U BOP's 8.75 Pressure Test 3.50 Clean Mud Tanks 8.Rig & Rig 4.00	Density (kg/m3) Viscosity (s/L) pH Water Loss (cm3) Plastic Visc.(MPa-s) Vield Point (Pa) In/Fin.Gel.Str Solids Content Sand Content Cl-Content (mg/L) Ca++Cont.(mg/L)	 • • • • • • • • • • • • • • • • • • •	PLMP: EV15EW600 SIZE: 140 mm LINER 381 x mm STROKE LEWGTH SPEED: strokes/min. RATE: m3/min. ANNULAR VELOCITY: m/s NOZZLE VELOCITY: m/s SHP: tw		
DRILL	STRING ASSEMBLY	BIT RECORD			
DRILL COLLARS: 171.52 m of 165 mm OD x 73 mm ID x XH Connections DRILL PIPE: 132.5 m of 114 mm OD x 114 mm XH Connetions MISCELLANEOUS EQUIPMENT: 3it .25 m, Bit Sub .90 m		Bit No. Size - mm Typc Serial No. Depth - IN m KB - OUT m KB Distance Drilled - m Time - hr. Speed - r/min. Force on Bit - 10.3 o Nozzle Sizes - mm Bit Condition - T/B/0	3aN 3x12.7		

DESCRIPTION OF OPERATIONS FOR PAST 24 HOURS:

Finish cementing with Nowsco. WOC 4 hrs. Cut off conductor barrel. Clean collar and install thread on casing bowl. N/U BOP's. Weather very cold and had to clean mud for BOP's. Pressure tested blind rams, all manifold valves and HCR valve to 1400 kPa low and 14000 kPa high for 10 mins. each.

Make up Bit #1 and RIH. Circulate out air in pipe. Pressure test pipe rams aznd hydril and all string valves to 1400 kPa low and 14000 kPa high for 10 mins. each. Only went 10,500 kPa on hydril. Clean out mud tanks. Very slow cleaning out tanks due to vacuum truck. Had to haul 110 km around trip in cold weather.

Drill out cement in casing. Cement top @ 390 m.

DAILY COST: \$ 13,563	AFE: C93E1479, LIC#: 0162547 NPW(C) Info: Enron Gas Merketing, St. Claire P/L, Enron Gas Services/Morgan Hydroc.	WEATHER: -20° O/C
CUMULATIVE COST: \$205.867	ENRON GEOLOGIST: PETER AUBRECHT WELLSITE GEOLOGIST: BILL BAILLIE	LEASE COND'NS: Fair
REPORT FROM: ROY DOCKEN	MOBILE NO.: 940-6544	RIG: PRECISION #5

SUPER TIGHT

EPTH- 392 m			PROGRES	S- 103 H		K.B.: 727.4	8 m G.	L.: 723.2
PERATION AT 0800 HR	S	CASINC		.(Estimate	dT.D.: 22	00 m)		
TIME		MUD RECORD				DEV	ATION	
BREAKDOWN (HOURS)	PROPERTIES		ADDITIVES - SX		HYDR	AULICS		degree
rilling 4.25 ripping 4.00 ig Service . 0.50 onder Mud 2.25 tirculate 1.50 menting 1.50 nst. Sump Tanks 1.50 itean flowline 4.25 un Casing 3.75	Viscosity (s/L) pH Vater Loss (cm3 Plastic Visc.(H Yield Point (Pa In/Fin.Gel.Str Solids Content Sand Content Cl-Content (mg/L) Ca++Cont.(mg/L)		. 65 PF 1 9.0 N/C . 53 . 17 8/32 0.15 0.004 250 200	Ash 6	<u>\$12£3</u> 27/1 x 38 <u>SPEED:</u> <u>\$1</u> PRESSURE:		309 347 386	3, 3, 1,
DRILL S	TRING ASSEMBLY		BIT RECO	RD				<u></u>
RILL COLLARS:			Bit No.		24		T	······································
RILL PIPE:			Size - mm Type Serial No Depth - I	• • • • • • • • • • •	349 \$33J 475/33 243 393	5		
un Casing			Nozzle Si Bit Condi	Bit - 10.3 d	3/15.9	,		
DESCRIPTION OF OP Drill to 375 m. Circulat Run in hole and break ci ing. Drill to surface ho Pick up power tongs and Total casing string leng Circulate 1-1/2 hrs. Rig up cementers and co ood cement returns. I eturns.	te 1/4 hr. POOH rculation. Mud cl de TD of 393 m a run 31 jts., 244. th 397.44 m. Ca tement with 40 to Left 3 m ³ of ceme	on dummy trip. obbered. Pluggend circulate 3/4 h 5 mm, 53.56 kg/ sing landed @ 39 nnes 0:1:0 "G" 4 nt in pipe due to	d flowline. r. POOH a m, J-55, L')J.19 m. - 2% CaCl s vacuum tr	nd lay down F&C casing. Plug down uck quitting	9 DC's. Hole con n @ 0815	dition good. hrs. 94-01-01	3. Had 3	m ³
ery cold and windy we	ALDET CONditions di	ung completing of	casing and c	ement job.				•
			· · · · · · · · · · · · · · · · · · ·					
				AT NOWICE	WEATHER	R: -22°,	Windy &	Cold
DAILY COST:	\$ 63,130	AFE: C93E1479, Info: Enron Gas M Enron Gas Service	larketing, St.	Clairc P/L,				

JAN BY '34 BS:41HI LINKUN UIL UNINUN

ENRON OIL CANADA LTD. DAILY DRILLING REPORT

1

SUPER TIGHT

		ING REPORT	,,), (···/.)		eric IDS.
CON LAND MED		ROGRESS: 264 P	KB: 727.4		
PERATION AT 1880 HRS	DRILLDIC (EG	imsted T.D.: 2200 m)		DEV	ATION
TIME BREAKDOWN (HOURS)	PROPERTIES	ADDITIVES - SX	HYDRAULICS	R	degree
Initiang 14.25 Iripping 2.50 tig Service 0.75 Burveying 2.75 Repeir 1.75 Clean Flowline 2.00	Density (kg/m3)	.0 Caustic 1 Pelthin 1	PUMP: 2/EU 15EM600 <u>\$121</u> :27/140 mm LINER x 381 mm STROKE LENGTH <u>SPEED:</u> 50/50 strokes/min. <u>PRESSURE:</u> 6000 kPa RATE: 2.40 m3/min. <u>ANNULAR VELOCITY:</u> MOZZLE VELOCITY: m/s <u>BHP:</u> kw	34 62 148 176 205 262	
DRILL	STRING ASSEMBLY	BIT RECORD		T	
DRILL COLLARS: 18.97 m of 228 mm OD x 73 mm ID x H90 Connections 171.52 m of 165 mm OD x 63 mm ID x H90 Connections FRILL PIPE: 85.6 m of 114 mm OD x 114 mm XH Connections MISCELLANEOUS EQUIPMENT: Bit _30 m, XO _65 m, XO _60 m, KD 12.50 m		Bit No. Size - mm Type Serial No. Depth - IN m KB - CUT m KB Distance Drilled - Time - hr. Speed - r/min. Force on Bit - 10.3 Nozzle Sizes - mm Bit Condition - T/I Penctration Rate- M	0 243 243 47 243 47 12.75 2.5 150+ 150 3 dan 2/7 6 3x15.9 3x1 3/G 4/3/1 -	J 133 00 0+ 15.9	

DESCRIPTION OF OPERATIONS FOR PAST 24 HOURS:

Drill and survey to 243.0 m. Dummy trip to surface (change bits). Hole tight in spot on trip out. Strap 253.16 m, Tally 253.06 m. Diff. .10 m. Worked tight spot on trip in. When on bottom circulate out mud ring and clean out flow line. Continue drilling. Hole condition good.

DAILY COST:	\$ 23,374	AFE: C93E1479, LIC#: 0162547 NPW(C) Info: Enron Gas Marketing, St. Claire P/L, Enron Gas Scrvices/Morgan Hydroc.	WEATHER: -15° C, O/C
CUMULATIVE COST:	\$129,174	ENRON GEOLOGIST: PETER AUBRECHT WELLSITE GEOLOGIST: BILL BAILLIE	LEASE COND'NS: Fair
		MORILE NO : 940-8544	RIG: PRECISION #5

ENRON OIL CANADA LTD. DAILY DRILLING REPORT

SUPER TIGHT

الاعتباد والمراجع والمتحاف والمتحاف الأواجع والمتحاف والمتحاف والمتحاف والمتحاف والمتحاف والمحاف والمحاف والمحاف

WELL: CON LAND MEDRAT enter a constanta da AT 0806 HRS. . . SD : 14-36-20-01 WAM K.B.: 727:48 m G.L.: 723.2 m 26 PROGRESS; 26 m DEFTI •••• (Estimated T.D.: 2200 m) OPERATION AT 0600 HRS .: DRILLING 349 mm SURFACE HOLE DEVIATION MUD RECORD TIME HYDRAULICS BREAKDOWN ADDITIVES - SX degree PROPERTIES (HOURS) Drilling . . 1.00 Rigging Up . . 23.00 PUMP : Density (kg/m3) am LINER SIZE: Viscosity (s/L) x min STROKE DH-. LENGTH Water Loss (cm3) SPEED : Plastic Visc. (MPa-s) strokes/min. Yield Point (Pa) kPa PRESSURE: In/fin.Gel.Str m3/min. RATE: Solids Content ANNULAR VELOCITY: Sand Content m/s Cl-Content (mg/L) NOZZLE VELOCITY: Ca++Cont.(mg/L) a/s SHP: k₩. BIT RECORD DRILL STRING ASSEMBLY 18 Bit No. DRILL COLLARS: 349 Size - mm 9.62 m of 228 mm 00 x 73 mm 10 x H90 Connections RR1 Type Serial No. 0841 DRILL PIPE: Depth - IN m KB Ô. - OUT IN KS 26 Distance Drilled - M MISCELLANEOUS EQUIPMENT: 1 Time + hr. Speed - r/min. Bit .30 m, Bit Sub 1.11 m, 2 XO 1.25 m. 80 Force on Bit - 10.3 deM ALL Nozzle Sizes - mm 3x15.9 Bit Condition - T/B/G . . . Penetration Rate- m/hr. 26

DESCRIPTION OF OPERATIONS FOR PAST 24 HOURS:

Rig up. Very cold conditions for starting motor.

Rig to spud.

SPUD WELL IN @ 0700 HRS. 94-01-06.

CUMULATIVE COST: \$ 105,800 ENRON GEOLOGIST: PETER AUBRECHT LEASE COND'NS: Poor WELLSITE GEOLOGIST: BILL BAILLIE	DAILY COST:	\$ 105,800	AFE: C93E1479, LIC#: 0162547 NPW(C) INFO TO:: Enron Gas Marketing/St. Claire P/L, City Medicine Hat-5%, Enron Gas Services/Morgan Hydrocarbons	WEATHER: -30° C, Overcast
	CUMULATIVE COST:	\$ 105,800		LEASE COND'NS: Poor

APPENDIX C1

CORE ANALYSIS REPORT

FOR

CANADIAN LANDMASTERS RESOURCE SERVICES LTD.

CDN LAND MEDHAT 14-36-20-1 LSD XX/14-36-020-01 W4M/X MEDICINE HAT, ALBERTA

These analyses, opinions or interpretations are based on observations and materials supplied by the client to whom; and for whose exclusive and confidential use; this report is made. The interpretations or opinions expressed represent the best judgment of Core Laboratories (all errors and omissions excepted); but Core taboratories and its officers and employees, assume no responsibility and make no warranty or representations, as to the productivity, proper operations, or profitableness of any oil, gas or mineral well or formation in connection with which such report is used or relied upon.

Field : MEDICINE HAT Formation : NISKU Coring Equip.: DIAMOND Coring Fluid : WATER BASE MUD

File No.: 52131-94-0023 Date : 94-01-14 Analysts: LGM Core Dia: 99 mm

CORE ANALYSIS RESULTS

SAMPL		DEPTH	1.573/1	CAND 5		PERMEABIL	ITY				Bull M		SATURATION		
NUMBE		DEPTH	INTVL REP	SAMPLE LENGTH	(HAXIHUH) Kair	(90 DEG) Kair	(VERTICAL) Kair	CAPACITY (MAXIMUM) Kair	POROSITY (HELIUM)	CAPACITY (HELIUM)	BULK DENSITY	GRAIN DENSITY	(PORE 01L	VOLUNE) WATER	DESCRIPTION
		R	n		n D	wD 👘	mD	mD-m	fraction	#-m	kg/m3	kg/m3	frac	frac	
						CORE NO.	1 1158.00 -	1185.00 m (CO	RE RECEIVED	27.00 m) (2	5 BOXES)				
-		1158.00- 58.33	0.33	• •									1		sh dol anhy
NA		1158.33- 59.08	0.75												dol anhy shy
	1	1159.08- 59.23	0.15	0.10	58.2	34.7	7,90	8.730	0.107	0,016	2550.	2850.	0.000	0.510	dol i ppv sv anhy frac
NA		1159.23- 59.47	0.24												dol
	2	1159.47- 59.58	0.11	0.08	35.1	34.9	13.6	3.861	0.111	0.012	2530.	2850.	0.000	0.264	dol i ppv sv anhy
	3	1159.58- 59.78	0.20	0.08	9,35	7.13	0.62	1.870	0.074	0.014	2630.	2840.	TRACE	0.156	dol i ppv sv anhy frac
NA		1159.78- 60.29	0.51												dol anhy
	4	1160.29- 60.43	0.14	0.09	2.04	1.26	0,58	0.286	0.076	0.011	2640.	2860.	0.000	0,360	dol i ppv sv anhy vfrac
NA		1160.43- 61.48	1.05												dol anhy
	5	1161.48- 61.66	0.18	0.12	0.35	0.29	0.05	0.063	0.047	0.009	2680.	2820.	IRACE	0.092	dol i ppv lam frac
NA		1161.66- 62.66	1.00												dol shy
-		1162.66- 63.58	0,92												anhy dol
NA		1163.58- 63.81	0.23					and the second sec							dol anhy
	6	1163.81- 64.01	0.20	0.10	11.9	9.11	0.98	2.380	0.086	0.018	2600.	2840.	IRACE	0.412	dol i ppv sv anhy frac
NA		1164.01- 64.77	0.76												dol anhy
	7	1164.77- 64.93	0.16	0.11	13.0	11.9	6,19	2.080	0,194	0.030	2290.	2840.	1RACE	0.575	dol i ppv sv anhy frac
NA		1164.93- 65.61	0,68												dol anhy
-		1165.61- 65.78	0.17								a de para				anhy dol
NA		1165.78- 66.06	0.28					an a							dol anhy
•		1166.06- 66.20	0.14												anhy
NA -		1166.20- 66.75	0.55												dol anhy
	8	1166.75- 67.01	0.26	0.21	3.27	3.22	1.07	0.850	0.094	0.023	2560.	2830.	TRACE	0.235	dol i ppv sv anhy sty frac
	9	1167.01- 67.18	0.17	0.12	1.85	1.77	0.08	0.315	0,095	0,015	2550.	2820.	0.035	0,333	dol i ppv sv anhy vfrac
-		1167.18- 67.80	0.62												anhy dol
NA		1167.80- 67.95	0.15												dol anhy

1 - 1

CORE LABORATORIES

Company : CANADIAN LANDMASTERS RESOURCE SERVICES LTD. Well : CDN LAND MEDHAT 14-36-20-1 Field : MEDICINE HAT Formation : NISKU File No.: 52131-94-0023 Date : 94-01-14

CORE ANALYSIS RESULTS

SAM		DEDTH				PERMEABILI	ΤΥ					674 FM	SATUR	ATION	DESCRIPTION
NUH		DEPTH	INTVL REP	SAMPLE LENGTH	(NAXIMUN) Kair mD	(90 DEG) Kair mD	(VERTICAL) Kair mD	CAPACITY (MAXIMUM) Kair mD-m	POROSITY (HELIUM) fraction	CAPACITY (HELIUM)	BULK DENSITY kg/m3	GRAIN DENSITY kg/m3	(PORE OIL frac	VOLUHE) WATER frac	DESCRIFTION
· · ·				l					1			L		·····	l
	10	1167.95- 68.08	0.13	0.08	9.08	7.32	1.69	1.180	0,089	0.012	2590.	2840.	TRACE	0,354	dol i ppv sv anhy sty frac
NA	•	1168.08- 68.90	0,82												dol anhy
	11	1168.90- 69.05	0,15	0.12	267.	251.	16.8	40,050	0.209	0.032	2240.	2830.	0.020	0,465	dol i ppv sv mv
NA		1169.05- 69.23	0.18												anhy
	12	1169.23- 69.34	0.11	0.05	309.	241.	21.9	33,990	0.176	0.020	2320.	2820.	TRACE	0.449	dol i ppv sv vfrac
NA .		1169.34- 70.21	0.87												do1
	13	1170.21- 70.40	0.19	0.12	153.	137.	50.6	29.070	0.224	0.042	2210.	2850.	0.000		dol i ppv sv
	14	1170.40- 70.61	0.21	0.17	125.	117.	56.5	26.250	0.264	0.055	2100.	2850.	0.000	0.483	dol i ppv sv
NA .		1170.61- 70.78	0.17												dol
	15	1170.78- 70.98	0.20	0.11	475.	440.	57.9	95.000	0.256	0.052	2120.	2850.	TRACE	0.417	dol i ppv sv lam
NA		1170.98- 71.32	0.34												dol
	16	1171.32- 71.50	0.18	0.14	104.	104.	46.1	18.720	0,281	0.050	2060.	2860.	TRACE	0.616	dol i ppv sv
AA		1171.50- 71.86	0.36												do]
	17	1171.86- 72.04	0,18	0.10	145.	142.	4,80	26.100	0.273	0.049	2070.	2850.	TRACE	0.591	dol i ppv sv lam
	18	1172.04- 72.66	0.62	0.22	162.	162.	56.9	100.440	0.297	0.186	2010.	2850.	0.000	0.560	dol i ppv svdol
	19	1172.66- 72.83	0.17	0.13	223.	156.	26.4	37.910	0,303	0.051	1990.	2860.	TRACE	0.546	dol i ppv sv
	20	1172.83- 73.77	D.94	0.24	155.	148.	53.8	145.700	0.249	0.235	2140.	2850.	0.000	0.435	dol i ppv sv
	21	1173.77- 74.73	0.96	0.24	104.	65.5	39.2	99.840	0,179	0.173	2320.	2830.	0.000	0.372	dolippv sv mv
	22	1174.73- 74.91	0.18	0.15	224.	137.	60.4	40.320	0.201	0.036	2250.	2810.	TRACE	0.647	dol i ppv sv sshy frac
	23	1174.91- 75.85	0.94	0.24	431.	340.	30.4	405,140	0.189	0.179	2280.	2810.	0.000	0.258	dol i ppv sv sty frac
	24	1175.85- 76.00	0.15	0.12	183.	144.	24.0	27.450	0.165	0.025	2360.	2830.	TRACE	0.465	
NA		1176.00- 76.27	0.27						•••••						dol anhy
	25	1176.27- 76.43	0.16	0.13	43.9	39.2	16.5	7.024	0.121	0.019	2490.	2830.	IRACE	0.423	dol i ppv sv
NA		1176.43- 76.75	0.32				10.0	,		0.010	21001		INCIOL		dol anhy
	26	1176.75- 76.94	0.19	0.13	46.1	40.4	7.07	8,759	0.126	0.025	2470.	2830.	TRACE	0 336	dol i ppv sv anhy frac
NA		1176.94- 77.62	0.68				1.0/	0.733	V. 120	v.v LJ	L 7/ V.	2030.	IMUL	9.550	dol anhy
	27	1177.62- 77.80	0.18	0.12	21.7	16.3	1.72	3.906	0.104	0.018	2530.	2830.	0.000	0.358	dol i ppv anhy frac
A		1177.80- 78.94	1.14			10.3	1.72	J.300	0.104	v.vI0	2330.	2030.	0.000	0.000	dol anhy
	28	1178.94- 79.09	0.15	0.11	58.4	55.1	2.90	8,760	0.104	0.015	2530.	2830.	TRACE	0 415	dol i ppv anhy frac

1 - 2

Company : CANADIAN LANDMASTERS RESOURCE SERVICES LTD. Well : CDN LAND MEDHAT 14-36-20-1

Field : MEDICINE HAT Formation : NISKU

File No.: 52131-94-0023 Date : 94-01-14

CORE ANALYSIS RESULTS

S	WPLE	DEPTH	INTVL	SAMPLE		PERMEABILI	ITY	CARACITY			5		SATUR	ATION	
	MBER	DETTI	REP	LENGTH	(MAXIMUN) Kair	(90 DEG) Kair	(VERTICAL) Kair	CAPACITY (HAXIHUH) Kair	POROSITY (HELIUM)	CAPACITY (HELIUN)	BULK DENSITY	GRAIN DENSITY	(PORE OIL	VOLUNE) WATER	DESCRIPTION
		n	R	m	۳D	m	m)	mD-m	fraction	∳- m	kg/m3	kg/m3	frac	frac	
NA		1179.09- 79.26	0.17						.			•	1		dolanhy
	29	1179.26- 79.43	0.17	0.13	35.6	24.8	1.76	6.052	0.118	0.020	2490.	2820.	TRACE	0.488	dol i ppv anhy frac
NA		1179.43- 80,59	1.16												dol anhy
1	30	1180.59- 80.79	0,20	0.17	46.7	29.8	30.0	9.340	0.169	0.034	2350.	2830.	TRACE	0.505	 The second se Second second secon second second sec
NA		1180.79- 81.04	0.25												do]
	31	1181.04- 81.23	0.19	0.14	54,9	43.6	18.8	10.431	0.157	0.030	2390.	2830.	TRACE	0.609	dol i ppv mv frac
NA		1181.23- 81.49	0.26						•	0.000	2000,	LUUV.	INNEL	0.005	dol i ppe ne rrac
	32	1181.49- 81.68	0.19	0.14	1.17	0.87	0.48	0.222	0.071	0.013	2640.	2840.	TRACE	0.555	dol i ppv mv anhy frac
NA.		1181.68- 81.89	0.21				•••••	0.662		0.015	2010.	2040.	INACE	0.000	dol anhy
	33	1181.89- 82.12	0.23	0.18	22.7	20.7	7.42	5.221	0.116	0.028	2510.	2830.	0.000	0 365	dol i ppv mv anhy frac
NA		1182.12- 82.72	0.60					5.221	0.110	V, ULU	2314.	2030.	0.000	0.303	do]
	34	1182.72- 82.96	0.24	0.20	62.6	40.6	15.2	15.024	0.118	0.029	2490.	2830.	TRACE	0 335	dol i ppv mv anhy frac
	35	1182.96- 83.24	0.28	0.18	51.2	49.4	19.0	14.336	0.121	0.034	2490.	2830.	0.075		dol i ppv mv anhy frac
NA		1183.24- 83.69	0.45								2450,	2030.	0.075	0.412	do]
	36	1183.69- 83.94	0.25	0.16	13.2	8.32	2.19	3.300	0.085	0.023	2590.	2830.	0.000	0.456	dol i ppv anhy frac
NA		1183.94- 85.00	1.06					0.000	0.000		2.559.	LOJA.	0.000	0.430	dol shy
1															our any
1						CORE NO. 2	2 1185.00 -	1203.80 m (COR	E RECEIVED	18.70 m) (17	BOXES				
								· · · · · · · · · · · · · · · · · · ·		,,			1		
NA		1185.00- 85.39	0.39												dol shy
	37	1185.39- 85.59	0.20	0.14	1.93	1.10	0.52	0.386	0.113	0.022	2470.	2790.	0.000	0.548	
NA		1185.59- 85.97	0.38											0.010	dol shy
	38	1185.97- 86.13	0.16	0.12	2.61	1.29	0.02	0.418	0.093	0.014	2490.	2750.	0.000	0 408	dol i ppv sshy frac
NA		1186.13- 87.02	0.89				·								dol shy
	39	1187.02- 87.27	0.25	0.20	0,45	0.42	0.02	0.112	0.101	0.025	2490.	2760.	TRACE	0.437	dol i ppv sshy
NA		1187.27- 88.69	1.42										TONE	4.15	dol shy
	40	1188.69- 88.96	0.27	0.21	0.05	0.02	0.01	0.014	0.068	0.019	2590.	2770.	0.050	0.223	dol i ppv sshy
NA	· .	1188.96- 90.86	1.90								•				dol shy
	41	1190.86- 91.07	0.21	0.16	0.18	0.08	<.01	0.038	0.071	0.015	2610.	2810.	TRACE	0.311	dol i ppv

Company : CANADIAN LANDMASTERS RESOURCE SERVICES LTD. Well : CDN LAND MEDHAT 14-36-20-1

: MEDICINE HAT Field Formation : NISKU

File No.: 52131-94-0023 Date : 94-01-14

CORE ANALYSIS RESULTS

Field

SAMPLE	DEPTH	INTVL	SAMPLE		PERHEABILI	TY	CAPACITY	POROSITY	CAPACITY	BULK	GRAIN	SATUR	ATION	DESCRIPTION
NUMBER	m	REP		(NAXIMUN) Kair mD	(90 DEG) Kair mD	(VERTICAL) Kair mD	(MAXIMUM) Kair mD-m	(HELIUN)	(HELIUN)	DENSITY kg/m3	DENSITY kg/m3	(PORE OIL frac	VOLUHE) WATER frac	DESCRIPTION
NA	1191.07- 93.08	2.01	· · ·	l					L	· · · · · · · · · · · · · · · · · · ·				dolshy
42	1193.08- 93.32	0.24	0.19	1.65	0.42	0.02	0.396	0.081	0.019	2570.	2800.	TRACE	0.331	dol i ppv vfrac
NA	1193.32- 94.04	0.72					0.550	0,001	0.013	2370.	2000.	TRACE	0.331	dol shy
43	1194.04- 94.29	0.25	0.20	0.06	0.05	<.01	0.015	0.075	0.020	2580.	2790.	TRACE	0.398	dol i ppv
NA	1194.29- 00.60	6.31												dol shy
44	1200.60- 00.79	0.19	0.11	0.18	0.07	0.02	0.034	0.053	0.009	2690.	2840.	TRACE	0.265	dol i ppv sv anhy
45	1200.79- 00.99	0.20	0.17	6.47	6.10	2.39	1.294	0.079	0.016	2620.	2850.	TRACE		dol i ppv sv anhy frac
NA	1200.99- 01.55	0.56												dol shy anhy
46	1201.55- 01.75	0.20	0.15	30.8	22.7	7.63	6.160	0.125	0.026	2490.	2850.	TRACE	0.356	dol i ppv sv anhy frac
NA	1201.75- 01.97	0.22												do] shy
47	1201.97- 02.13	0.16	0.08	20.0	13.9	4.34	3.200	0.121	0.019	2490.	2830.	TRACE	0.357	dol i ppv sv anhy frac
NA .	1202.13- 02.63	0,50												dol shy
48	1202.63- 02.86	0.23	0.20	13.1	10.7	12.7	3.013	0.163	0.037	2380.	2840.	TRACE	0.275	dol i ppv sv anhy vfrac
NA .	1202.86- 03.06	0.20												dol shy
49	1203.06- 03.24	0,18	0.14	9.18	8.59	3.17	1.652	0.188	0.034	2290.	2820.	0.000	0.303	dol i ppv sv anhy frac
-	1203.24- 03.70	0.46												sh dol
	1203.70- 03.80	0.10												Lost core

CORE LABORATORIES

CODE KEY - DESCRIPTIONS

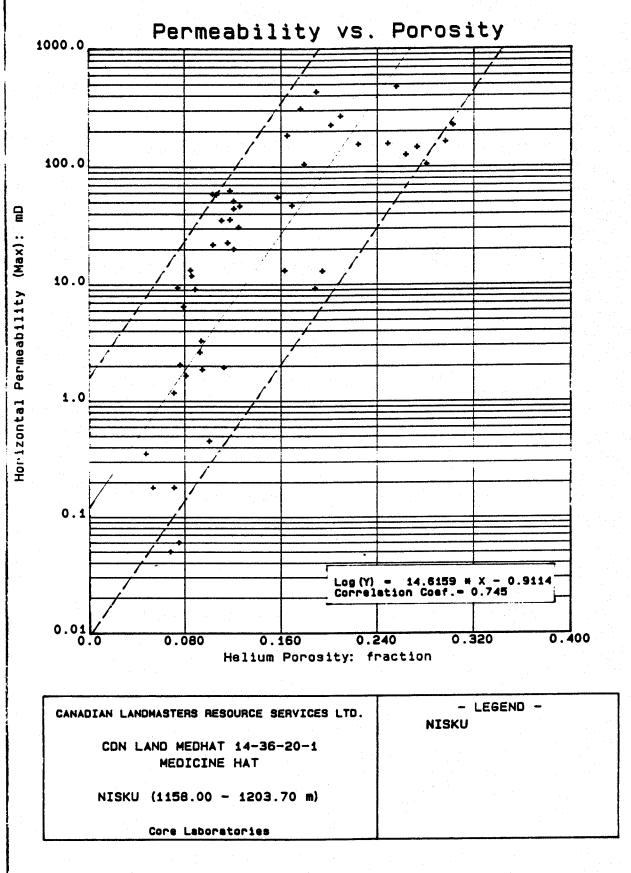
A	 (Prefix A) Plug taken from full diameter sample due to fracture or mud invasion 	hfrac hal	 Horizontal fracture Halite (sait) 	shy = Moderately shaly (20% - 40%)
	to measure horizontal matrix	neu 1		sid = Siderite
	permeability	Incl	= Intercrystalline	sitst = Siltstone
ACA	= Removed for advanced core analysis	Incl	= Inclusions	sity = Silty
anhy		lam	= Laminae (laminated)	SP = Small plug (sample drilled from core
AST	= Appears similar to	Imy	= Limy	maximum horizontal direction a
blt	= Appears sinnar to = Bitumen	Is	≠ Limestone	parallel to bedding plane whe
ok ok	= Break		= Large vug	possible) permeability, porosity a
n dr	= Boulder	m	= Medium	grain density are measured
·		ml	= Mud Invaded	ss = Sandstone
	= Coarse	mic	= Micaceous	sshy = Slightly shaly (<20%)
calc	= Calcite (calcareous)	ML	= Mineralog™	sty = Stylolite (ic)
arb	= Carbonaceous	mv	= Medlum vug	sulf = Sulphur
bl Sol	= Cobble	NA	= Not analyzed by request	sv = Small vug
CEC	Cation exchange capacity	NP	= No permeability measurement possible	TEC = Thermal Extraction Chromatography
em	= Cemented		due to poor sample quality	determine oil richness
gl	= Conglomerate	NR .	= Not received	TS = Thin section
:ht :	= Chert	ool	= Oolitic	uncons = Unconsolidated
oal	= Coal/coal Inclusion	OB	= Overburden sample (permeability and	vc = Very coarse
lol -	= Dolomite		porosity measured at net overburden	vfrac = Vertical fracture
_	= Fine		stress)	ví = very fine
Đ	= Full diameter analysis including three	P	= Preserved for future studies	VIS = Viscosity of oil measured
	directional permeabilities, porosity and	pbl	= Pebble	VOB = Vertical overburden sample (vertic
	densities	PET	= Removed for petrographic analysis	
oss	- Fossil (fossiliferous)	ppv	= Pinpoint vug	permeability measured at n overburden stress)
rac	= Fracture (undifferentiated)	PSA	= Particle size analysis	
ri 👘	= Friable	руг	= Pyrite (pyritic)	
auc	= Glauconite (glauconitic)	pyrbit	= Pyrobitumen	Find the second s
i ml	= Granule	RU	= Rubble	core to measure vertical permeabil
iyp i	= Gypsum	SA	= Sleve analysis	and occasionally porosity
ISP	= Humidity analysis of small plug sample	sdy		vug = Vuggy (vuggular)
	at 60 degrees Celsius and 50 percent	SEM	= Sandy	ws = Water sand
	relative humidity		= Scanning electron microscope analysis	XRD = X-ray diffraction
		sh	= Shale	* = Perm unavailable due to broken core

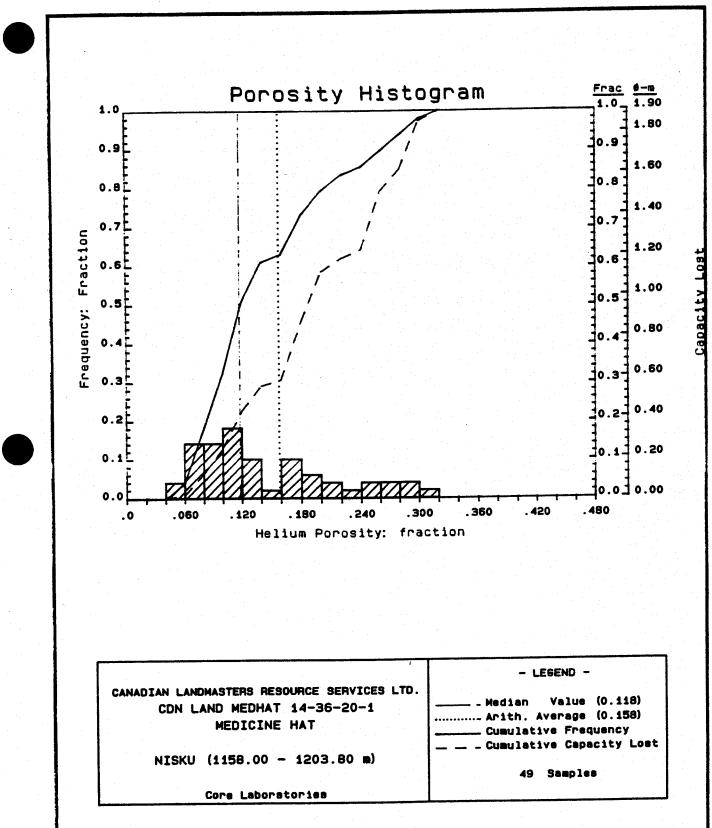
HANDLING & CLEANING ANALYSIS Core Transportation : Grain volume measured by Boyle's Law in a modified U.S.B.M. porosimeter using He Solvent : TOLUENE Bulk volume measured by calipering Extraction Equipment : CO2 EXTRACTOR Fluid saturations by retort Extraction Time : 9 DAYS Core Gamma Spectral Drying Equipment : GRAVITY OVEN Drying Time : 2 DAYS Drying Temperature : 115 DEGREES C.

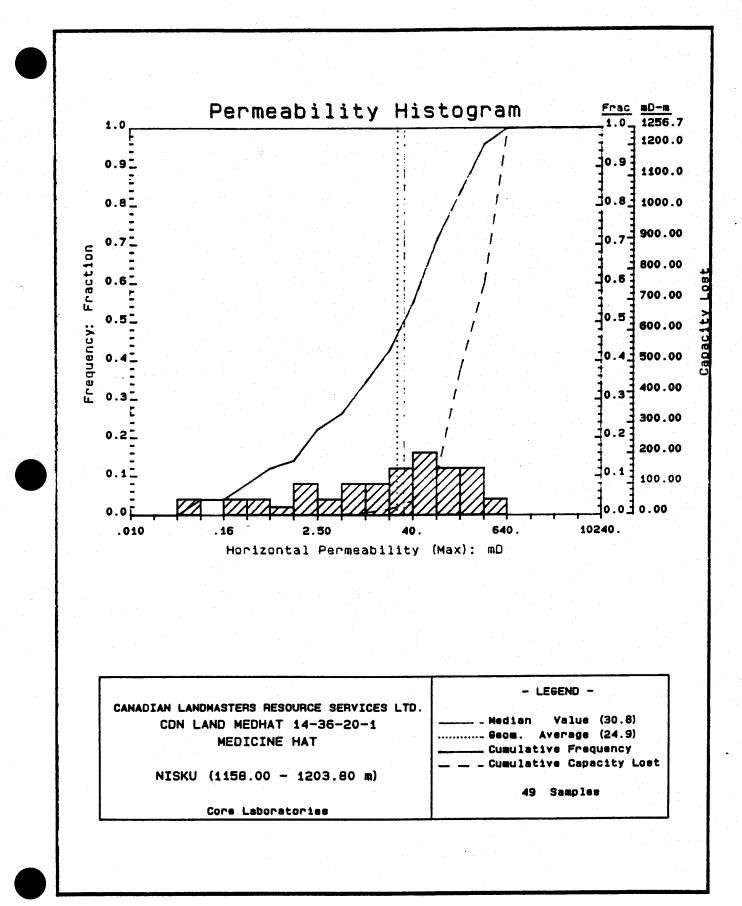
CORE LABORATORIES

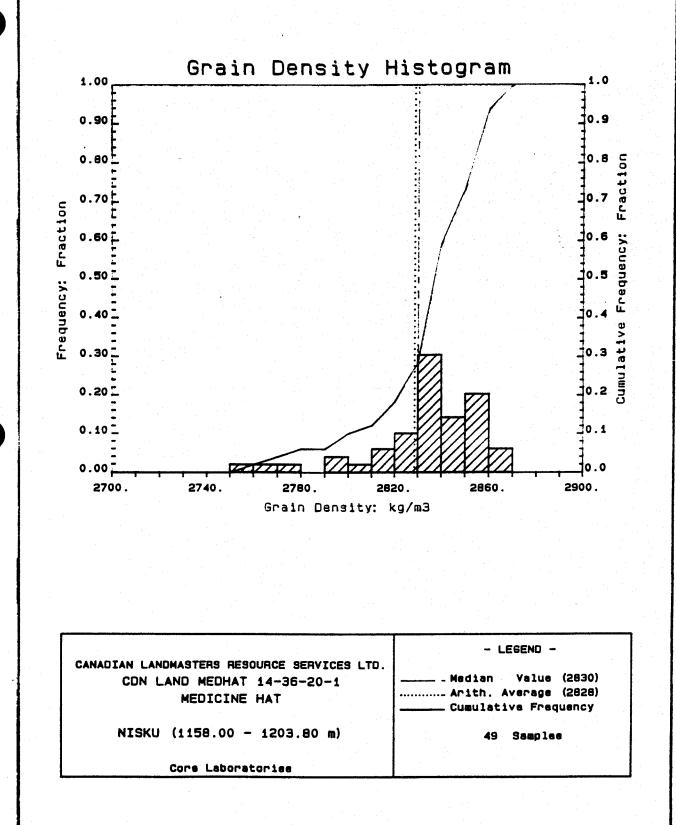
Company : CANADIAN LANDMASTERS RESOURCE SERVICES LTD. Well : CDN LAND MEDHAT 14-36-20-1 Field : Formation :

: MEDICINE HAT : NISKU File No.: 52131-94-0023 Date : 94-01-14


TABLE I


SUMMARY OF CORE DATA


ZONE AND CUTOFF DATA


CHARACTERISTICS REMAINING AFTER CUTOFFS

ZONE:		ZONE :		PERNEABILITY:	
Identification	NISKU	Number of Samples	49		
Top Depth	1158.00 m	Thickness Represented -	12.05 m	Flow Capacity	1256.68 mD-m
Bottom Depth	1203.80 m			Arithmetic Average	104. mD
Number of Samples	49	PDRDSITY:		Geometric Average	24.9 mD
				Harmonic Average	0.87 mD
DATA TYPE:		Storage Capacity	1.903 ø-m	Ninimum	0.05 mD
Porosity	(HELIUM)	Arithmetic Average	0,158 frac	Naximum	475. mD
Permeability (MAX	INUN) Kair	Ninimum	0.047 frac	Nedian	30.8 mD
		Naximum	0.303 frac	Standard Dev. (Geom)	K·10 ^{±1,044} mD
CUTOFFS:		Nedian	0.118 frac		
Porosity (Hinimum)	0.000 frac	Standard Deviation	±0.071 frac	HETEROGENEITY (Permeabili	ty):
Porosity (Maximum)	1.000 frac				
Permeability (Hinimum)	0.0000 mD	GRAIN DENSITY:		Dykstra-Parsons Var	0.904
Permeability (Maximum)	100000. mD			Lorenz Coefficient	0.484
Water Saturation (Maximum)	1.000 frac	Arithmetic Average	2828. kg/m3		
Oil Saturation (Minimum) -	0.000 frac	Ninimum	2750. kg/m3	AVERAGE SATURATIONS (Pore	Volume):
Grain Density (Minimum)	2000. kg/m3	Naximum	2860, kg/m3		
Grain Density (Naximum)	3000. kg/m3	Nedian	2830. kg/m3	D11	0.003 frac
Lithology Excluded	NDNE	Standard Deviation	±24. kg/m3	Water	0,428 frac

.

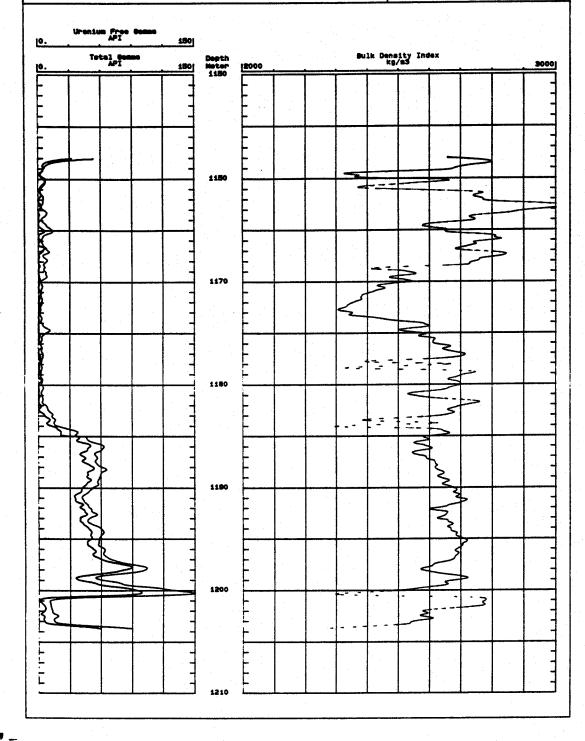
BULK DENSITY INDEX

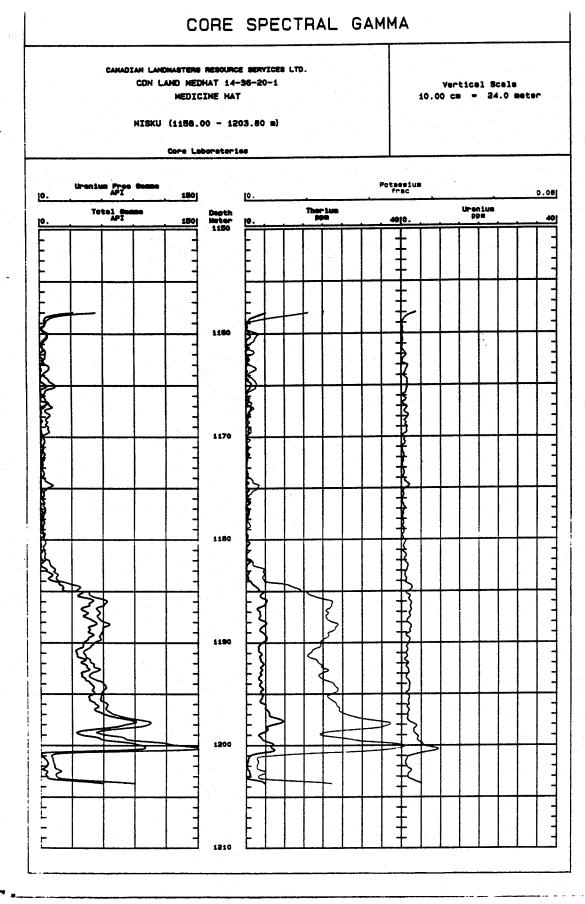
CANADIAN LANDMARTERS RESOURCE SERVICES LTD. Con Land Medhat 14-36-20-1

MEDICINE HAT

ş

Vertical Scale 10.00 cm - 24.0 meter


٠.


÷ .

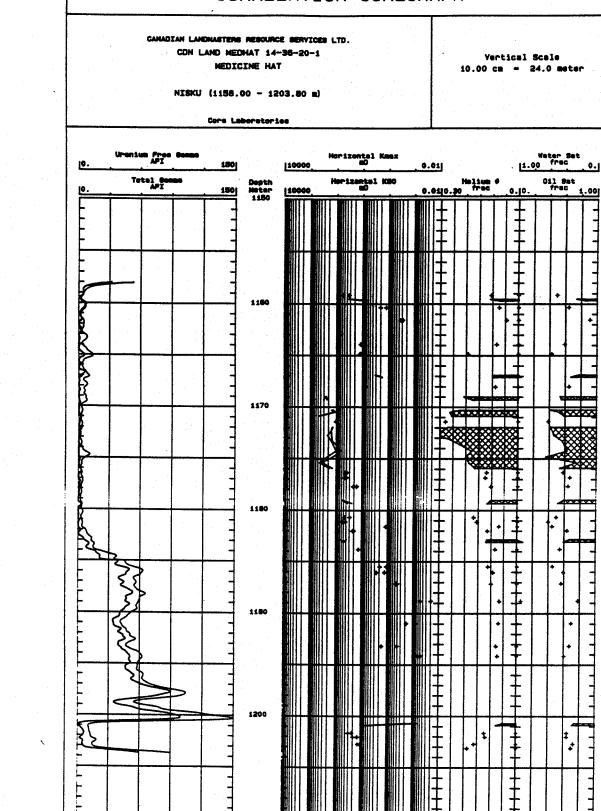
NISKU (1158.00 - 1203.80 m)

and the second second from the second for the second second second second second second second second second s

Core Laboratories

а 1

1


ł

	CANAD	CON LAN Nisku (NEDICINE	1203.60 m)	B LTD.				10.0			Scale 24.0 m	
	Shale				logy Le	gend -		drite					
10.	Uranium Prov	• ••••••	150]	12500			Gra	in Den kg/m3	sity				3
<u>io.</u>	Total Ga API	***	150 Met	th er 10.50			Hell	um Por frac	osity				
			-+										
				77								•	
													·
											•		+
										<u> </u>	`	1.	
									- 		••		-
	37			券 			•	+					
	<u>}</u>							-					•
	<pre> </pre>							+				•	
22				嵳					-	•	•		
				Ē									

· · ·

1

CORRELATION COREGRAPH

1210

1

APPENDIX C2

Reservoir Fluids Report for Enron Oil Canada Ltd. CDN Land Medicine Hat 14-36-020-01 Medicine Hat Alberta

> 52134-94-0123 1994 02 07

A product of **Core Laboratories** a division of Western Atlas Canada Ltd.

Reports Distributed to: Lyle Verstraete - Enron, Calgary - 2 Copies + Invoice

The analysis, opinions or interpretations contained in this report are based upon observations and material supplied by the client for whose exclusive and confidential use this report has been made. The interpretations or opinions expressed represent the best judgement of Core Laboratories. Core Laboratories assumes no responsibility and makes no warranty or representations, expressed or implied, as to the productivity, proper operations, or profitableness however of any oil, gas, coal or other mineral, proper well or sand in connection with which such report is used or relied upon for any reason whatsoever.

CORE LABORATORIES .

Western Atlas Canada Ltd Servicing & Depletion of Bottomhole Sampler

V 5968				52134-94-0123
CONTAINER IDENTITY				ABORATCRY NUMBER
	Enro	n Oil Canada Ltd.		<u>1 of 4</u>
		OPERATOR		PAGE
LSD 14-36-020-01 W	4M CDN	Land Medicine Hat 14-36	-020-01	727.48 723.13
LOCATION		WELL OR SAMPLE LOCATION		KB ELEV (m; 34 ELE
Medicine Hat, Alberta		Nisku		Alpine
FIELD OR AREA		POCLO	RZONE	SAMPLER
DST #2 TC	OCL: 2000cc of w	ater		1
TEST TYPE & NO.		TEST RECOVERY	·	
OST Chamber				
	FSAMPLE		AMT. & TYPE C	USHION MUD RESISTATY
	PUMPING	FLOWING	GASLET	SWAB
1180 -1203	WATER	mite Cit	m ³ /6	<u>GAS</u>
TEST INTERVAL (maters)				
		e 🛫	e •c	
SEPARATOR RES	ERVOIR	CONTAINER WHEN SAMPLED		SEPARATOR
	Pressures. 1	kPa (gauge)		Temperatures. C
94 01 15	94 01 21	94 01 28	GA	SIGNATURE

The following data was compiled from the DST Chamber.

The recovery was determined as being:

2000cc of Water.

The gas was not analyzed as per the clients request.

ADVANCED TECHNOLOGY CENTRE

WATER ANALYSIS

024 CON		Ŷ	· · ·			a La constanta Na constanta			52134-94 LABORATORT	NUMBER
			E	nron O	I Canada I	<u>Ltd.</u>			<u>2 of 4</u>	PAGE
LSD	14-36-020	-01 W4M	<u>C</u>	DN Lai	nd Medicin	ne Hat 14-	36-020-01		727.48	723.18
Madi	LOCATI					SAMPLE LOCATI	ÔN -		KB ELEV (m)	GA ELE
Mean	cine Hat, A	AREA			<u>Nisk</u>		ORZONE	<u>Alpine</u>	SAMPLER	
DST :										
	YPE & NO.				T	EST RECOVERY				
DST	Chamber	POINT OF SA	MPLE					ANT & TYPE CUSHION	MUD RES	D SSTNITY
1			PUMPING		FLO	WING		GASLIFT	SWAB	,
1	180 -120	03	WATER		او:دس	OL		m ¹ rd GAS		
, ,	EST INTERVAL	metera)				, <u>, , , , , , , , , , , , , , , , , , </u>				
	EPARATOR	RESERVO				CONTAINER			PARATOR	
				- 1.D. (HEN SAMPLED		RECEIVED	•	
			Pressure	s, kpa (gange) —				Temperature	s. °C —
94 01	AMPLED (YMD)		94 01 21		94 0)2 04		LZ/MB		
			TE RECEIVED (YM)			ALYZED (YALD)		ANALYST	SIGNATURE	
	<u> </u>	ATIONS			AN	IONS		Total	Solids	
	mg/L	ng Fradion	meq/L	NON	mg/L	mg Fraction	mest.	(1	mg/L)	
Ma	5090	0.2864	221.4	Cl	4901	0.2758	138.2	By Evaporation @ 110 °C	By Evapor	2000 @ 15.
x	220	0.0124	5.6	Br			·			
Ca	057	0.0482	42.0	I					1	7770
	857	0.0482	42.8					At Ignition	Ca	culated
Mg	185	0.0104	15.2	BC03	1036	0.0583	17.0			
34				SO4	5481	0.3084	114.1	1.0139 @ 15.6 °C	1 77	28 @ 21
Sr				co,	0	0.0000	0.0	Specific Gravity	-	ctive index
70	Pres.			OB	0	0.0000	Ċ.0	7.3	0.520	@ <u>2</u>
)(D				H ₂ S	N.D			рH	* d aman kanan kanan kana	(Ohm-Mea
			LOGA	RITH		TERNS O	F DISSOI	LVED IONS		
Na [, , ,				Шa
<u> </u>										
				N						HCC3
Mg										sc.
_ ⊷ U										᠁ᇭ
10	000,000	1,000	100		10	ı	10	100	1,000 1	0,000
Rema	arks: N.D-N	lot Detecte	d.							
	Pres	Analyte Pro	esent.							

Canada Ltd Servicing & Depletion of Bottomhole Sampler

V 5863					52134-94	
CONTAINER DENTITY					LABORATORY	
	Enron Oil Canada	Ltd.	میرون ا		<u>3 of 4</u>	
	OPERATO	A				PAGE
LSD 14-36-020-01 W4M	CDN Land Medicin	ne Hat 14-36-020	0-01		727.48	723.18
LOCATION	WELL OR	SAMPLE LOCATION			KB ELEV (m)	GR ELE
Medicine Hat, Alberta	Nisl			Alpine		
FIELD OR AREA		POOL OR ZON	Ê		SAMPLER	
DST #4 TOOL: Ga				•		
TEST TYPE & NO	·	EST RECOVERY				
DST Chamber		· · · · · · · · · · · · · · · · · · ·				٠
POINT OF SAMPLE			AMT. &	TYPE CUSHION	MUD RES	SISTIVITY
PUMPIN	<u> </u>	WING	GAS LET		SWAB	· ·
1157 -1175 WATER		OtL	•	mite GAS		
TEST ENTERVAL (mesors)						
		• • <7	• 22 °C			
SEPARATOR RESERVOIR		CONTAINER HEN SAMPLED	CONTAINER WHEN RECEIVED	SEI	PARATOR	
F	ressures, kPa (gauge) –		······		Temperature	s.~ —
			· · · ·			
94 01 16 94 01	21 94 (01 28	GA			

The following data was compiled from the DST Chamber. On arrival the opening pressure was <7 kPa @ 22.0 Deg. C. The recovery was determined as being:

Gas Only.

The gas was not analyzed as per the clients request.

027	TAINER DENTIT							-	52134-94-0123
	TARES DENTIT	•	E	nron Oi	I Canada I	Ltd.			LABORATORY NUMBER
<u> </u>	14 26 000	01 37454			OPERATOR	1			PAGE
.30	14-36-020		<u> </u>	UN Lar	d Medicin WELL OR S	AMPLE LOCATI	<u>86-020-01</u> m		727.48 723.18 KB ELEV (m) GR ELE
<u>ledi</u>	cine Hat, A	lberta			<u>Nisk</u>			Alpine	
ST		AREA				POOL	OR ZONE		SAMPLER
TESTT	YPE & NO				Ţ	EST RECOVERY			· · · ·
lotto	<u>m</u>	POINT OF SA				<u></u>		ANT. & TYPE CUSHION	
		1							
			PUMPING		<u>FLO</u>			GASLIFT	SWAB
	157 -117		WATER			01		m³/d GAS	•
						•	n de la C	• • 1	
9	SEPARATOR	RESERVO	DIR			CONTAINER HEN SAMPLED			ARATOR
			Pressure	es, kPa (Temperatures, °C
4 01	1 16	1	94 01 21		94 0	2 04		LZ/MB	•
ATE S	1 16 AMPLED (Y.M.D)	DA	TE RECEIVED (V.M.	D,	CATE AN	2 04 LYZED (YM/O)		ANALYST	SIGNATURE
	C	ATIONS			AN	IONS		Total	Solids
ION	mgʻl	mg Fraction	maq/L		mg/L	mg Fraction	mec/L		ng/L)
Na	7140	0.2858	310.6	c1	9151	0.3663	258.1		
		<u> </u>		╽┝═╾┥		0.5005	230.1	By Evaporation @ 110 °C	By Evaporation @ 180
x	440	0.0176	11.3	Br					
Ca	1265	0.0506	63.1	I					24982
		<u> </u>	<u> </u>	┫┝──┤		<u> </u>		At Ignition	Calculated
Ng	351	0.0141	28.9	BC03	2015	0.0807	33.0		
34				304	4520	0.1849	96.2		
8r		<u> </u>	1	co,	^	0.0000	0.0	1.0190@ 15.6 ℃	1.3339 @ 21
9 -			1		0	0.0000	0.0	Specific Gravity	Refractive Index
						1 1		1	
Z •	Trace			OE	0	0.0000	0.0		0 440 0
Zo Ma	Trace				-	0.0000	0.0	6.9	0.440 @ 25 Resistanty (Ohm-Mete
	Trace			oe B ₃ s	0 N.D	0.0000	0.0	6.9 pH	
	Trace		LOGA	H ₂ S	N.D				
				H ₂ S	N.D			pH	
Na				H ₂ S	N.D			pH	Resistovny (Ohm-Meu
MD.				H ₂ S	N.D			pH	Resistanty (Ohm-Mete
Na Ca			LOGA	H ₂ S	N.D			pH	Resistovity (Ohm-Mete
Na			LOGA	H ₂ S	N.D			pH	Resistavity (Ohm-Mete
Na Ca Mg				H ₂ S	N.D			pH	Resistivity (Ohm-Mete
Na Ca Me			LOGA	H ₂ S	N.D			pH LVED IONS	Resistavity (Ohm-Mete

APPENDIX C3

CORING ACTIVITIES CDN LAND MEDHAT 14-36-20-1W4 MEDICINE HAT, ALBERTA, CANADA

Topical Report RSI-0497

by

Tim J. Vogt RE/SPEC Inc. P.O. Box 725 Rapid City, South Dakota 57709

prepared for

Enron Gas Services Corporation 1400 Smith Street Suite 4804 Houston, TX 77002

February 1994

3

- . .

TABLE OF CONTENTS

1.0	INTRODUCTION	1
2.0	FIELD PROCEDURES	2
3.0	CORING DESCRIPTION	3
AF	PENDIX A. FIELD LOGS AND CORE DESCRIPTION	-1
AF	PENDIX B. FIELD PHOTOGRAPHS OF COREB.	1

i

LIST OF TABLES

TABLE

PAGE

3-1	Nominal Depths and Coring Dates for Each Core Run From the CDN LAND MEDHAT 14-36-20-1W4 Well	7
	CDN LAND MEDHAT 14-36-20-1W4 Well Samples Shipped to RE/SPEC Inc.	8

LIST OF FIGURES

FIGURE

3-1	CDN LAND MEDHAT 14-36-20-1W4 Well Logs and Core Intervals	5
3-2	Detailed Lithology of Prairie Evaporite for CDN LAND MEDHAT	
	14-36-20-1W4 Well	6

1.0 INTRODUCTION

Enron Gas Services Company is evaluating underground natural gas storage in solutionmined wells in the bedded salt of the Prairie Evaporite Formation in Southeastern Alberta.

The CDN LAND MEDHAT 14-36-20-1W4 Well, located in Alberta approximately 12 kilometers northwest of Burstall, Saskatchewan, is being drilled to investigate the evaporite section. Core samples were collected from the lower portion of the Beaverhill Lake sequence, First Red Bed, Dawson Bay Formation, Second Red Bed, Prairie Evaporite Formation, and the uppermost Winnipegosis Formation. The cored samples will be used to provide information on lithology and impurities and to provide samples to be used to determine mechanical, chemical, and mineralogical properties of the evaporite sequence.

RE/SPEC Inc. was engaged to participate in the field examination and logging of the core. In addition to examining and logging the core, Mr. Tim Vogt from RE/SPEC Inc. prepared samples for shipment to Calgary and then to RE/SPEC's laboratory in Rapid City, South Dakota. The field examination and logging was carried out in cooperation with Mr. William Baillie, consulting geologist.

Prior to RE/SPEC's arrival, two core runs had been completed in the upper Nisku Formation. A total of four trips were made into the hole to retrieve core from the lower Beaverhill Lake sequence through the upper Winnipegosis between January 21 and January 23, 1994. Approximately 89.6 meters of core was recovered between the depths of 1,613.00 meters and 1,704.00 meters. All core was labeled, field logged, and photographed. The core was packaged for shipment to Core Laboratories in Calgary where a complete photographic record was completed. The core was repackaged for shipment to RE/SPEC's office in Rapid City, South Dakota.

Chapter 2.0 of this report describes the procedures used and activities completed at the field site in support of the coring. Chapter 3.0 is a description of the coring operation. Appendix A is made up of the field logs describing the core and Appendix B includes photographs of the core taken in the field.

1

2.0 FIELD PROCEDURES

All activities completed at the field site are in accordance with the following RE/SPEC procedures or as modified in accordance with specific directives of the personnel on site.

- Test Procedure 01 (TP-01), 9/21/87, RSI Standard Procedure for SAMPLE ACQUISI-TION, STORAGE, and SHIPPING, Revision 3.
- Test Procedure 09 (TP-09), 9/21/87, RSI Standard Procedure for LOGGING AND PRESERVING ROCK CORE AT A FIELD SITE, Revision 1.

The coring assembly was 27 meters in length. The core was removed from the inner tube of the core barrel on the drill rig floor. In most cases, particularly for nonsalt core portions, the core was in pieces short enough to be easily handled. Some portions of the core were manually broken into segments which could be safely handled. All of the core was hand-carried off the floor of the rig and laid out in the proper sequence in a heated core van near the drill rig for examination and logging.

The individual pieces of core were "reassembled" as well as possible so that a valid measurement of the actual length of the core could be obtained. Each piece of core was marked with a sequential number, beginning with the top-most piece for identification. The nominal depth of the core in meters was marked on the core. Two colored parallel lines were also scribed on the core to maintain orientation of the pieces. The core was measured and the length and depth of each individual piece recorded. All depths recorded are measured from the Kelly Bushing. Photographs were taken of the core to aid in the recording of lithology and petrographic features and for quality assurance. A brief petrographic description was completed for comparison with downhole geophysical logs.

All core was first wrapped in Saran Wrap[™], sleeved in polyethylene tubing, and carefully wrapped in protective "bubble-pak" material (nonsalt core was not wrapped in Saran Wrap[™]). This entire package was placed snugly in 6-inch-diameter PVC tubing cut to length for the piece or pieces to be included. End caps and tape secured the core from shifting during shipment. This method of packaging core for shipment yields excellent results in providing core protection and preservation.

The core was delivered to Core Laboratories in Calgary, Alberta, by the driver of the core van late on January 23, 1994. On January 25–27, 1994, all of the core was unpacked, reassembled in proper sequence, and photographed. The photography performed by Core Laboratories was required as a condition of the permit to remove the core from Canada. This photography could only be produced practically in the laboratory setting. Upon the completion of this photography, all core was repackaged for shipment to RE/SPEC's laboratory in Rapid City, South Dakota.

2

3.0 CORING DESCRIPTION

Two trips into the drill hole had been completed earlier to recover samples of the Nisku Formation. Therefore, the coring activities described in this report begin with Core Run Number 3.

The coring assembly was capable of recovering 27 meters of core in one trip. All core was nominally 102 mm (4 inches) in diameter. Run 3 was recovered at the surface at 8:00 a.m. on January 22, 1994. Drilling and tripping times were quite short resulting in the recovery of three 27 meter-length runs being recovered at the surface in less than 24 hours. The final core run, Run 6, was approximately 10 meters in length. Run 6 was recovered at the surface at about 1:00 p.m. on January 23, 1994.

The top of Core Run 3 is at a depth of 1,613.00 meters below the Kelly Bushing. The depths reported here have not been corrected with subsequent wireline depths. Run 3 included (in descending order) the base of the Beaverhill Lake sequence, First Red Bed, Dawson Bay Formation, Second Red Bed, and the top-most part of the Prairie Evaporite Formation. Runs 4 and 5 included only Prairie Evaporite Formation and Run 6 included the remainder of the Prairie Evaporite Formation and the top-most portion of the Winnipegosis Formation.

The top of Run 3, the Beaverhill Lake sequence, consists of dolomite; light brown to buff, slightly fossiliferous with an indistinct chickenwire texture and minor anhydrite clasts. The base of this unit was located at 1,615.03 meters below the Kelly Bushing.

The First Red Bed, located between the depths of 1,615.03 and 1,617.30 meters, consists of medium gray dolomitic shale. This unit is quite dense and competent-appearing but does tend to break along bedding planes, particularly as the core dries slightly.

The Dawson Bay Formation is generally a mottled light brown dolomite; massive in appearance. Near the top of this unit some vugular areas which may represent healed brecciation are infilled with halite. Near the base of this unit some slight very thin bedding is present as it grades into the unit below. The Dawson Bay Formation extends from 1,617.30 meters to 1,626.15 below the Kelly Bushing.

The Second Red Bed is found between 1,626.15 meters and 1,633.90 meters below the Kelly. Bushing. The top of this calcareous to dolomitic shale unit is gray and quite massive in appearance, grading to reddish and bedded or laminated near the base. Like the First Red Bed, as the core dries the shaly nature of this unit results in many partings which divide the core into thin disks.

The Prairie Evaporite is located between 1,633.90 meters and 1,700.70 meters below the Kelly Bushing. This unit is predominately salt which varies in color from colorless (clear) to slightly gray to strongly salmon-orange. Most of the color variation is due to inclusions of nonhalite material, some slight amounts of red and gray-green clay, and probably some potash minerals. Some of the salt had a preferentially etched appearance which also suggests the presence of nonhalite minerals. The grain sizes which were observed are fairly large, generally ranging from 10 mm to 30 mm. Some grains are significantly larger. In general, the salt is fairly uniform in appearance and lacks some of the interbedded mudstones which many bedded salts exhibit. Some very thin beds of anhydrite or dolomite are present and a few very thin clay beds are present throughout. The base of the massive salt is at about 1,690.00 meters of depth. Below that point the salt is interbedded with dolomitic material.

The upper portion of the Winnipegosis Formation was encountered from 1,700.70 to 1,704.00 meters below the Kelly Bushing. The Winnipegosis is a compact light brown dolomite with some salt filled vugs.

All core had been logged, field photographed, and securely packaged for shipment by about 7:00 p.m. on January 23, 1994. The core was delivered by heated van to Core Laboratories in Calgary that evening. On January 25–27, 1994, under the supervision of Mr. Vogt, the core was unpacked, reassembled, and photographed under more controlled conditions to meet requirements. Finally, the core was securely repacked for shipment to the RE/SPEC laboratory in Rapid City, South Dakota.

Field notes which briefly describe the core for each run are included as Appendix A. Photographs of the core in each run are included in Appendix B. Figure 3-1 illustrates the cored portion of the CDN LAND MEDHAT 14-36-20-1W4 Well. Information in this figure includes:

- Formations cored
- Depth
- Gamma ray and velocity logs
- Core run intervals
- Lithology.

Figure 3-2 illustrates lithologic details of the Prairie Evaporite interval.

Table 3-1 provides the depths and coring dates for each core run. Table 3-2 describes each of the samples shipped to Rapid City for testing and storage.

4

RSI-316-94-001

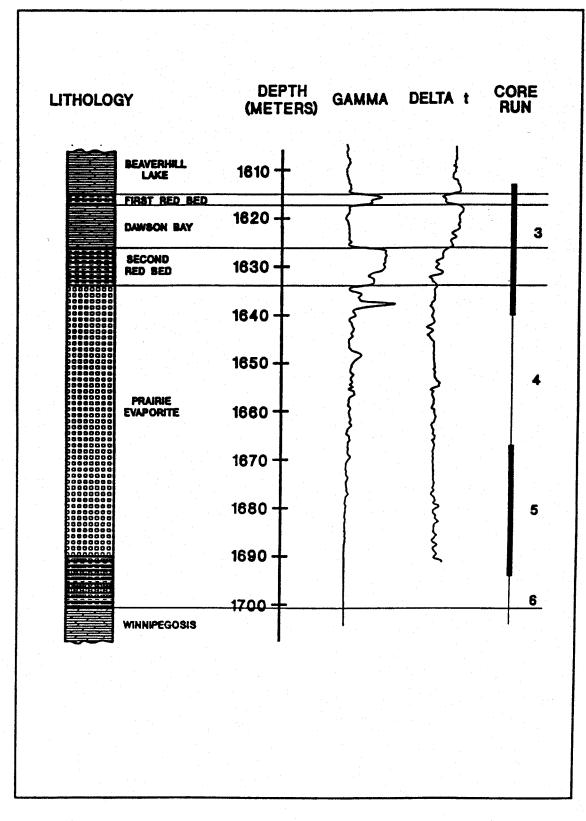


Figure 3-1. CDN LAND MEDHAT 14-36-20-1W4 Well Logs and Core Intervals.

RSI-316-94-002

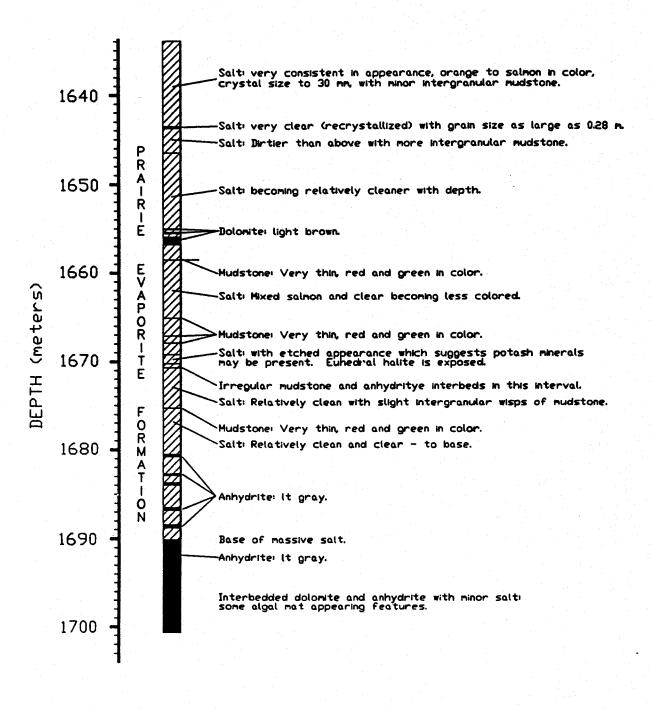


Figure 3-2. Detailed Lithology of Prairie Evaporite for CDN LAND MEDHAT 14-36-20-1W4 Well.

Core
RunDateTop of Interval
(Meters)Base of Interval
(Meters)31/22/941,6131,64041/22/941,6401,667

1,667

1,694

1,694

1,704

5

6

1/23/94

1/23/94

Table 3-1. Nominal Depths and Coring Dates for Each Core Run Fromthe CDN LAND MEDHAT 14-36-20-1W4 Well

Core Run	Piece	Top (Meters)	Length (Meters)	Unit ^(a)
3	1	1,613.00	0.62	В
3	2	1,613.62	1.13	В
3	3	1,614.75	1.04	B/1
3	4	1,615.79	0.15	1
3	5	1,615.94	0.69	1
3	6	1,616.63	0.06	1
3	7	1,616.69	0.06	1
3	8	1,616.75	0.05	1
3	9	1,616.80	0.15	1
3	10	1,616.95	0.77	1/D
3	11	1,617.72	0.38	D
3	12	1,618.10	0.66	D
3	13	1,618.76	0.22	D
3	14	1,618.98	0.55	D
3	15	1,619.53	0.30	D
3	16	1,619.83	0.21	D
3	17	1,620.04	0.67	D
3	18	1,620.71	0.41	D
3	19	1,621.12	0.58	D
3	20	1,621.70	0.13	D
3	21	1,621.83	0.67	D
3	22	1,622.50	0.10	D
3	23	1,622.60	0.04	D
3	24	1,622.64	0.29	D
3	25	1,622.93	0.31	D

Table 3-2. CDN LAND MEDHAT 14-36-20-1W4 Well Samples Shippedto RE/SPEC Inc. (Page 1 of 7)

(a) B=Beaverhill Lake; 1=First Red Bed; D=Dawson Bay; 2=Second Red Bed; P=Prairie Evaporite; W=Winnipegosis.

.

Core Run	Piece	Top (Meters)	Length (Meters)	Unit ^(a)
3	26	1,623.24	0.05	D
3	27	1,623.29	0.68	D
3	28	1,623.97	0.08	D
3	29	1,624.05	0.42	D
3	30	1,624.47	0.24	D
3	31	1,624.71	0.09	D
3	32	1,624.80	0.30	D
3	33	1,625.10	0.07	D
3	34	1,625.17	0.10	D
3	35	1,625.27	0.06	D
3	36	1,625.33	0.10	D
3	37	1,625.43	0.28	D
3	38	1,625.71	0.44	D
3	39	1,626.15	0.55	2
3	40	1,626.70	1.13	2
3	41	1,627.83	0.13	2
3	42	1,627.96	1.09	2
3	43	1,629.05	0.10	2
3	44	1,629.15	0.06	2
3	45	1,629.21	0.14	2
3	46	1,629.35	0.14	2
3	47	1,629.49	0.60	2
3	48	1,630.09	0.08	2
3	49	1,630.17	0.23	2
3	50	1,630.40	0.28	2

Table 3-2. CDN LAND MEDHAT 14-36-20-1W4 Well Samples Shipped to RE/SPEC Inc. (Page 2 of 7)

(a) B=Beaverhill Lake; 1=First Red Bed; D=Dawson Bay; 2=Second Red Bed; P=Prairie Evaporite; W=Winnipegosis.

Table 3-2. CDN LAND MEDHAT 14-36-20-1W4 Well Samples Shipped to RE/SPEC Inc. (Page 3 of 7)

Core Run	Piece	Top (Meters)	Length (Meters)	Unit ^(a)
3	51	1,630.68	0.21	2
3	52	1,630.89	0.09	2
3	53	1,630.98	0.04	2
3	54	1,631.02	0.23	2
3	55	1,631.25	0.28	2
3	56	1,631.53	0.45	2
3	57	1,631.98	0.14	2
3	58	1,632.12	0.22	2
3	59	1,632.34	0.20	2
3	60	1,632.54	0.20	2
3	61	1,632.74	0.08	2
8	62	1,632.82	0.08	2
3	63	1,632.90	0.27	2
3	64	1,633.17	0.19	2
3	65	1,633.36	0.19	2
3	66	1,633.55	0.06	2
3	67	1,633.61	0.10	2
3	68	1,633.71	0.09	2
3	69	1,633.80	0.60	P
3	70	1,634.40	1.23	Р
3	71	1,635.63	1.17	Р
3	72	1,636.80	0.79	Р
3	73	1,637.59	1.03	Р
3	74	1,638.62	0.10	Р
4	75	1,640.00	0.85	Р

(a) B=Beaverhill Lake; 1=First Red Bed; D=Dawson Bay; 2=Second Red Bed; P=Prairie Evaporite; W=Winnipegosis.

Core Run	Piece	Top (Meters)	Length (Meters)	Unit ^(a)
4	76	1,640.85	1.36	Р
4	77	1,642.21	1.28	P
4	78	1,643.49	0.28	P
4	79	1,643.77	0.72	, B
4	80	1,644.49	0.45	Р
4	81	1,644.94	0.16	Р
4	82	1,645.10	0.43	Р
4	83	1,645.53	0.94	P
4	84	1,646.47	0.20	Р
4	85	1,646.67	0.80	Р
4	86	1,647.47	1.31	Р
4	87	1,648.78	0.83	Р
4	88	1,649.61	1.29	Р
4	89	1,650.90	0.22	Р
4	90	1,651.12	1.23	Р
4	91	1,652.35 0.48		Р
4	92	1,652.83	1.28	Р
4	93	1,654.11	0.61	Р
4	94	1,654.72	1.28	Р
4	95	1,656.00	0.09	Р
4	96	1,656.09	0.28	Р
4	97	1,656.37	0.23	Р
4	98	1,656.60	0.57	Р
4	99	1,657.17	1.21	P
4	100	1,658.38	0.12	P

Table 3-2. CDN LAND MEDHAT 14-36-20-1W4 Well Samples Shipped to RE/SPEC Inc. (Page 4 of 7)

(a) B=Beaverhill Lake; 1=First Red Bed; D=Dawson Bay; 2=Second Red Bed; P=Prairie Evaporite; W=Winnipegosis.

Core Run	Piece	Top (Meters)	Length (Meters)	Unit ^(a)
·· 4	101	1,658.50	0.58	Р
4	102	1,659.08	1.26	Р
4	103	1,660.34	0.51	P
4	104	1,660.85	0.76	Р
4	105	1,661.61	1.34	P
4	106	1,662.95	1.30	P
4	107	1,664.25	0.34	Р
4	108	1,664.59	1.24	Р
4	109	1,665.83	1.25	Р
4	110	1,667.08	0.43	Р
5	111	1,667.00	0.13	Р
5	112	1,667.13	0.59	Р
5	113	1,667.72	1.48	Р
5	114	1,669.20	0.90	P
5	115	1,670.10	0.70	Р
5	116	1,670.80	1.34	Ρ
5	117	1,672.14	1.23	Р
5	118	1,673.37	1.27	P
5	119	1,674.64	1.20	Р
5	120	1,675.84	1.28	Р
5	121	1,677.12	1.38	Р
5	122	1,678.50	0.96	Р
5	123	1,679.46	1.11	Р
5	124	1,680.57	0.89	Р
5	125	1,681.46	1.24	Р

Table 3-2. CDN LAND MEDHAT 14-36-20-1W4 Well Samples Shipped to RE/SPEC Inc. (Page 5 of 7)

--.

(a) B=Beaverhill Lake; 1=First Red Bed; D=Dawson Bay; 2=Second Red Bed; P=Prairie Evaporite; W=Winnipegosis.

			Taradh	
Core Run	Piece	Top (Meters)	Length (Meters)	Unit ^(a)
5	126	1,682.70	0.55	Р
5	127	1,683.25	0.33	P
5	128	1,683.58	0.32	P
5	129	1,683.90	1.20	Р
5	130	1,685.10	1.26	P
5	131	1,686.36	0.77	Р
5	132	1,687.13	1.31	P
5	133	1,688.44	0.36	P
5	134	1,688.80	0.89	Р
5	135	1,689.69	0.41	P
5	136	1,690.10	0.70	Р
5	137	1,690.80	0.30	Р
5	138	1,691.10	0.42	P
5	139	1,691.52	0.36	Р
5	140	1,691.88	0.53	Р
5	141	1,692.41	0.70	Р
5	142	1,693.11	0.16	Р
5	143	1,693.27	0.12	Р
5	144	1,693.39	0.04	Р
6	145	1,694.00	0.62	Р
6	146	1,694.62	1.10	Р
6	147	1,695.72	0.92	Р
6	148	1,696.64	1.04	Р
6	149	1,697.68	1.13	Р
6	150	1,698.81	1.10	Р

Table 3-2. CDN LAND MEDHAT 14-36-20-1W4 Well Samples Shipped to RE/SPEC Inc. (Page 6 of 7)

(a) B=Beaverhill Lake; 1=First Red Bed; D=Dawson Bay; 2=Second Red Bed; P=Prairie Evaporite; W=Winnipegosis.

Core Run	Piece	Top (Meters)	Length (Meters)	Unit ^(a)
6	151	1,699.91	0.53	Р
6	152	1,700.44	0.34	Р
6	153	1,700.78	1.09	W
6	154	1,701.87	0.31	W
6	155	1,702.18	0.42	W
6	156	1,702.60	0.71	W
6	157	1,703.31	0.45	W
6	158	1,703.76	0.10	W
6	159	1,703.86	0.10	W

Table 3-2. CDN LAND MEDHAT 14-36-20-1W4 Well Samples Shipped to RE/SPEC Inc. (Page 7 of 7)

(a) B=Beaverhill Lake; 1=First Red Bed; D=Dawson Bay; 2=Second Red Bed; P=Prairie Evaporite; W=Winnipegosis.

-

APPENDIX A

FIELD LOGS AND CORE DESCRIPTION

Run X3 WELL ID. Colm. Lond Milian Hot 14-36. **RE/SPEC** Inc. 3824 JET DRIVE RAPID CITY, SOUTH DAKOTA Ennon Oil of Comeda WELL I.D. Ch Lad Mid Hot 14-36 WELL OWNER Docken BEARING Roy SUPERVISED BY 0 104 14-36-20 -INCLINATION PROPERTY 27 mittins 1.2Km 545 CORE BARREL LENGTH laster (4= 4.1 Km E ort of CORE DIAMETER 1613 COORD - WELL HEAD TOP CORE INTERVAL 1640 ELEV. - WELL HEAD BOTTOM CORE INTERVAL -27m -9 . WELL-HEAD - KE DIST. 4.3 4 LENGTH CORED INTERVAL 25.72 kΒ DEPTH MEASURED FROM RECOVERY_ 8:00 mm £ c TIME RECOVERED -Precision RIG 1-22-94 - Bonnt DATE RECOVERED -CORED BY NOTES LOGGED BY 00/14-36 4, 0 -020 40 DESCRIPTION GENERAL DEPTH LENGTH RQD # 6 38.72 1613 1 Sall bit nipple @ top Beurhill 1.28 ø₩ .62 1613.62 Place at we Den 1612 -Jofamilie sl. fossilions 1614 1.0 compact of an hydrift ん It foun on sur fact V. dK gray cliking wire +1+iurl shall perting (1613.62 - 1614.75 = hiriz. 1615 2.0 -1615.03-CHruilin19 3 12 Red bed no obvioni 3 1614.75- 1615.71 4 ned gray dobutic 1616 side - + -(9-16-15.79- 16-15.94 - parting 30+ v. competent w/ 5 5 1615.94- 1615.63 sw.rut parting 6 1616.63 - 1616.69 6 6nroks - hord. 7. cont Jun 7461669- 1616.75 1617 4.0 Kn. 3 1616.75 - 1616.80 croul 1616.80 -1616.95 Ó DewsonBay 10 1616.15 - 1417.97 1617.72 ĸ light beem 1618 5.0 dolonite 101617.12- 1618.1 Some brotal 12 breecia neor 1618.1- 108,76 top -/ solt 13 1619 6.0 1618.76-1618.98 in filling Æ 11-1619,53 Jener . 1611.53 - 1619.83 conport 15 16 1611.83 1620.04 6.20

Run 3

PAGE 20F

WELL ID.

RE/SPEC Inc. 3824 JET DRIVE RAPID CITY, SOUTH DAKOTA DESCRIPTION DEPTH LENGTH RQD GENERAL (7) K20.04 -1620.71 7,0 Some bedding 17 B 1620.71 1621.12 is evident 1621.12-1621.70 (9) 19 es "shalt 1621 0.0 sartings" 1621.70 - 1621.83 19 20 (1.1.35-1(22,50 1622 9:0 21 50-1622.60 60 - 1622 - 64 23 23 24 1264-1622.93 1473 100 25 26 1622.93 1623, 24 25 27 162324- 1623. 24 624 11 10 19 1623.29 - 1623.97 27) 30 31 28 163397 - 1624.05 29 1624.05 - 1624.41 323 1625 1.2-30 1624.17 - 1624.71 1624,00 1624.71 -37 3/ 38 52 1624.80 - 16 25:10 6.26 1626.13 1625-10 - 1625,17 33 2. I Rul Bel 39 16 25.27 5.17 -1625-27-1625.33 35 1625.13 1625.43 30 1627 To 1629 14 37 1625.43 1625.71 1g mossive ųO 39 1625-71 1626,15 31 1626.25 1626.70 idiorums shall -U. rough surface 40 .628.70 - 16 27.83 ન(textile -16.28 4 tures modelsh (41) 1627.33-1627.86 angh nene shol 14 1627.96 1629.05 42-42 Leddong -43 1629,05 1629.15 1624 46 44 16 29.15 16 29.24 45 1629.21 16 29.35 1344 1629.21 629.35 +6-1629.55-1629.49

RE/SPEC Inc. 3824 JET DRIVE RAPID CITY, SOUTH DAKOTA

WELL ID.

Run * 3

GENERAL	DEPTH	LENGTH	*	i li	ROD	DESCRIPTION
			47			
	11.	177	47			47 1629.49 - 1630 .01
	1630	11-1	48			48 1620.01 - 66 30.17
	1.1		45			44 1630. 17 - 1630,40
····· f ····· f ·····	••••••		50			
are a land			51			$50 16 \ 30.40 \ - \ 1630 \ , 68 \\ - \ 1630 \ , 68 \ - \ 1630 \ , 69$
4 4 1 1	1631	18-1	·3	[52 430.89 - 1630 .98
ks in		▎∔	54			53 1630.99 - 1621 .02
ad literal ad literal breaks in] _	55			$53 1634.97 - 1631 \cdot \frac{25}{25}$
S. Kiry	5. S.		56			55 1630.25 - 1631 - 53
P-6	1632	19-	57			3 5 76 50 . 13 le 71
12		[58			56 1631 53 - 1631,88
			59.			57 1431.98 1632.12
		ΙĮ	60			56 1632.34 16 37.34
	1633	, F	18			59 163234 - 16 32,54
	(CC+)	pot	63			10 1632.54 - 1672.74
			C\$/65			61 16 32.74 - 1632.82
		- =	66			62 1632.82 - 1632.90
1633.90			22			63 16.32.90 - 1633.55 17
E CTA	- 7734	M-	(9			
Top Salt		I : ‡			ang da	643 653 1633.17 · 1632.55
5017		I T	T	[,]		
-/ dronge sol	ω, [
coloration	1635	22				67 16 33.61 - 1633.71
som Lons, NCT			70			68 1633.71 - 16 33.20
10-ge ytob -				·		69 1633.50 - 1634.40
ing meral.						
đ	1 11.21	1-5-	1			70 1634.40 - 1635.63
guite consists	4 1024					
Lidde	ř.	1	11			71 1635.63 - 1636.80
Juite consister ladding Beddy	· · · · · · · · · · · · · · · · · · ·					
appearunit	11-1-	}	1			72 1636.80 -1637,57
·····J··4 ······	1637	17-1			····· ·	······································
]	72			73 1657.54-1638,62
		· ····	- · · · · ·			
		‡				74 16 39.62 - 1638,72
	1.38		73			(] 16 37.62 - 163 0, 1
]	1'			
	· · · · · · · · · · · · · · · · · · ·		1.4			
			1º	\top		T.t. ((1638.72.
	1/2	1 2 . 1)	X I	1 1		

Run × 4

RE/SPEC Inc. 3824 JET DRIVE RAPID CITY, SOUTH DAKOTA WELL ID.	In Lord Med Hat 14-36 PAGE 1 OF
WELL OWNER <u>Enroh</u> Oil of Conedu SUPERVISED BY <u>Roy Dockin</u> PROPERTY 14-36-20-1W4	WELL I.D <i>Co/14-36-020-4/~4</i> BEARING <i>O</i> INCLINATION <i>O</i>
LOCATION NEW OF BUNG tall South	CORE BARREL LENGTH <u>27m</u> CORE DIAMETER <u>4</u> TOR CORE INTERVAL 1640
ELEV WELL HEAD	BOTTOM CORE INTERVAL
RIG Precision KB	RECOVERY
CORED BY Boant - Jahn NOTES	LOGGED BY

WELL I.D EJ 00/14 .36 -020 -41	-40
BEARING	
INCLINATIONO	<u> </u>
CORE BARREL LENGTH	
CORE DIAMETER	
TOP CORE INTERVAL	
BOTTOM CORE INTERVAL	
LENGTH CORED INTERVAL 27	
RECOVERY ASSI	
TIME RECOVERED	
DATE RECOVERED	
LOGGED BY	

ŀ	GENERAL	DEPTH	LENGTH	+		RQD	DESCRIPTION
	Sult- "all "	1640		75			75 \$ 1640.0 - 1640.85
d'a	Erong Currissic	1.641					
35	4. 17 ⁶⁴ .	···• 7.7.		76		1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	
7 8 7 ⁸		1642					
1 1 3		101~			-		 76 1840.85 - 1642.21
43		1643	7	77			 77 164221 - 1643,49
33	······	0					 78: 1643.49 - 1643.77
,51	V eleen solt (478)	1644	4	78 71	• • •		 79 1643.77 - 1644.49
	Biglac quite						
	dinty-salt nosily no	1645	ς_ +	80 9			60 1644.49 - 1644.94
				8z		ан С. 1920 - А.	(1) 1644.99 - 1645.1 (83) 1645.1 - 1645.53
-		1646	6	83			 5 1645, 53 - 1646, 47
		- 		84			 (84) 1646.47 - 1646.67
	clumin -	1647	,1	85			85 1646.67-1647.47

Run # 4

ろ RE/SPEC hc. 3824 JET DRIVE RAPD CITY, SOUTH DAKOTA PAGE_ WELL ID. DESCRIPTION DEPTH LENGTH RQD ŧ GENERAL (SC) 1647.47 - 1648.78 9¢ -s/achydott B. 1648.78 - 1649.61 87 61 1649 9 R.99.61 - 1650.90 63 62 1650 ... 10 89) 1650.90 - 1651,12 1651 11-189 90 1651.12 - 1652.35 10 1652 t入 (1) 1652.35 - 1652.83 71 12 1652.63 - 1654.11 1653 13-92 1654 14 D 93 1654.11 - 1654.72 ay 454.72 - 1656.0 Berlin 94 1655 15 6-1655.00 1655.4-1655.55 1656.0-1656.09 1655.9-1656.60 1656 16-95 76) 95 96 97 07 - 1656.37 37- 1656.60

Runk 4

PAGE_OF

RE/SPEC hc. 3824 JET DRIVE RAPD CITY, SOUTH DAKOTA

WELL LD. _

DESCRIPTION DEPTH LENGTH ROD GENERAL 1656.60 - 1657.17 gha string my 98 18 1657 17-1657.17 - 1658.38 Ga (9) 19 1658 18 100 1658.38- 1658.50 100 MS STRINGER 1659,08 101 101 1659.08 1660.34 1654 (02) 102 1660 20 1660.34 - 1660.85 167) 103 1660.85 - 1661.61 1661 21-1661 61 - 1662.95 (05) 105 1662 22 (06) 1662.95 - 1669.25 1663 23-106 664 -24 1664.25 - 1664.57 1664.59 - 1665.83 67) 107 108 108 MS @ 15-20 1665 25 (brick) 69 1665.83 - 1667.08 109

Run X 4

PAGE ~ Y

RE/SPEC Inc. 3824 JET DRIVE RAPID CITY, SOUTH DAKOTA

WELL ID.

DESCRIPTION RQD DEPTH LENGTH ŧ GENERAL 76 104 Kd.T 1667.08 27 -1667.5 (10) ms 10 26 27.51 Recour Λ(055 umal 16 40 TOP-Bon of this core belongs of Ron 1

Run \$ 5 WELL LD. Con lind Med Hat 14-36 PAGE 1 OF 1/ **RE/SPEC** inc. 3824 JET DRIVE RAPID CITY, SOUTH DAKOTA Cola load Mich Hat WELL I.D. 14-36-20-1 W4 WELL OWNER Decken K. SUPERVISED BY BEARING __ 14-70 20-144 INCLINATION _ PROPERTY ___ w <u>SK</u> 27 . CORE BARREL LENGTH LOCATION CORE DIAMETER COORD - WELL HEAD TOP CORE INTERVAL ELEV. - WELL HEAD BOTTOM CORE INTERVAL -4.3 -LENGTH CORED INTERVAL 27m WELL HEAD - KB DIST. DEPTH MEASURED FROM RECOVERY 1120 Preulssen = RIG ____ TIME RECOVERED -1-23-94 Bern CORED BY . DATE RECOVERED -NOTES . LOGGED BY . GENERAL DEPTH LENGTH DESCRIPTION RQD . ll1 111 Saltin 112 ms . 1667.0 - 1667.13 1667.13 - 1667.72 U. even orongish 112 1668 1667.72 - 1669.2 color to solt 161.9.2 - 1690.10 V. few obuio-s Impurities. 1669 <u>}</u> several zones 114 which have film experie entre 1670 colt 3 16.70.8 16.10.10 ist dissolution 115 1670,8 16.72.14 10 116 1671 quite clean large teals V. thin ing 1672 - 167 3.37 ıη 1672.14 (17) 1673 1673.37 - 1674.64 18 rextul 110

\$243

Run \$ 5

PAGE_OF_

RE/SPEC Inc. 3824 JET DRIVE RAPID CITY, SOUTH DAKOTA

Well; ID. _

DESCRIPTION LENGTH RQD DEPTH GENERAL ŧ 1675.84 (119) 1674.64 -11 16.75 B k) 675,84 1677.12 49 9-676 (20 1677 10 120 1677.12 1678, 21 ·losi~f Sult Color 1678 slowly 79.46 (22) 122 1679 12-.+6.80.S 1679.4 [2] 12-3 U. little 6.80... 13 color (oron 68 1680.57 124 [24) 1681 14. 125 125 1681.4 clieve sulf 1682 15-. 1683.2 126 1682 anly dolo I 126 1683 16. 168358 1683.25 . (AT) 127

Runk 5

PAGE_OF

WELL ID.

RE/SPEC Inc. 3824 JET DRIVE RAPID CITY, SOUTH DAKOTA DESCRIPTION DEPTH LENGTH RQD GENERAL 1683.58 - 1683.90 128 128 unlydrite 1684 17 124 1683.90 - 1685.1 clour self -U. I.tthe orage 1685 18 1686.36 136) 1695.1 -130 1684 19 ISD 1686.36 - 1687.13 131 anty dist 132 1687.13 - 1688.44 687 20 パス 1688 21-16.28.14 - 16,88,80 (+33) 133 688.9 - 1689.69 134 689 22 135) 1689.89 - 1690.1 135 Bore of morsive 1690 23 130 1680.1 - 1680.8 134 TOP dalo (37)1680.8- 169/.1 137 1691 128 1691.1 - 1691.52 139 1691.52 - 1691.88 138 Salt 139 140 1691.88 1697.41 692 140 25 (141) 1692.41 1693.11 141 42

Run \$5

PAGE_OF

RE/SPEC Inc. 3824 JET DRIVE RAPID CITY, SOUTH DAKOTA

WELL ID.

DESCRIPTION DEPTH LENGTH RQD ŧ GENERAL 142. 173 1444 142/693/1 - 1693. 27) 1693.27 -1693 . 39) 1693.39 - 1693.43 143 694 27-144) Tot of necov. 1693.43 . **!**.....

Run # 6

WELL LD. Con Lond Mil H.+ 14-36 PAGE 1 OF RE/SPEC Inc. 3824 JET DRIVE RAPID CITY, SOUTH DAKOTA WELL OWNER Jockin SUPERVISED BY . PROPERTY SK COORD - WELL HEAD ~ ELEV. - WELL HEAD 4.6 4.3 WELL HEAD - KB DIST. DEPTH MEASURED FROM Kn ¥C Precision RIG ___ Baert Diemend CORED BY ____ NOTES

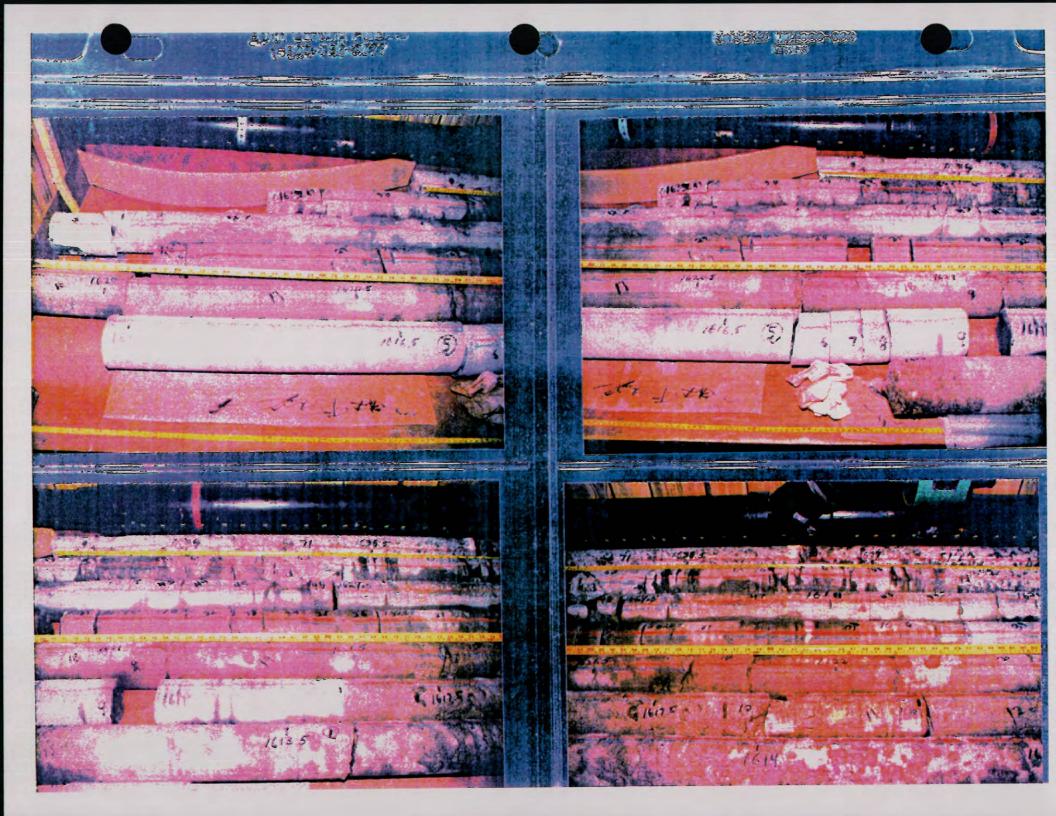
103,96

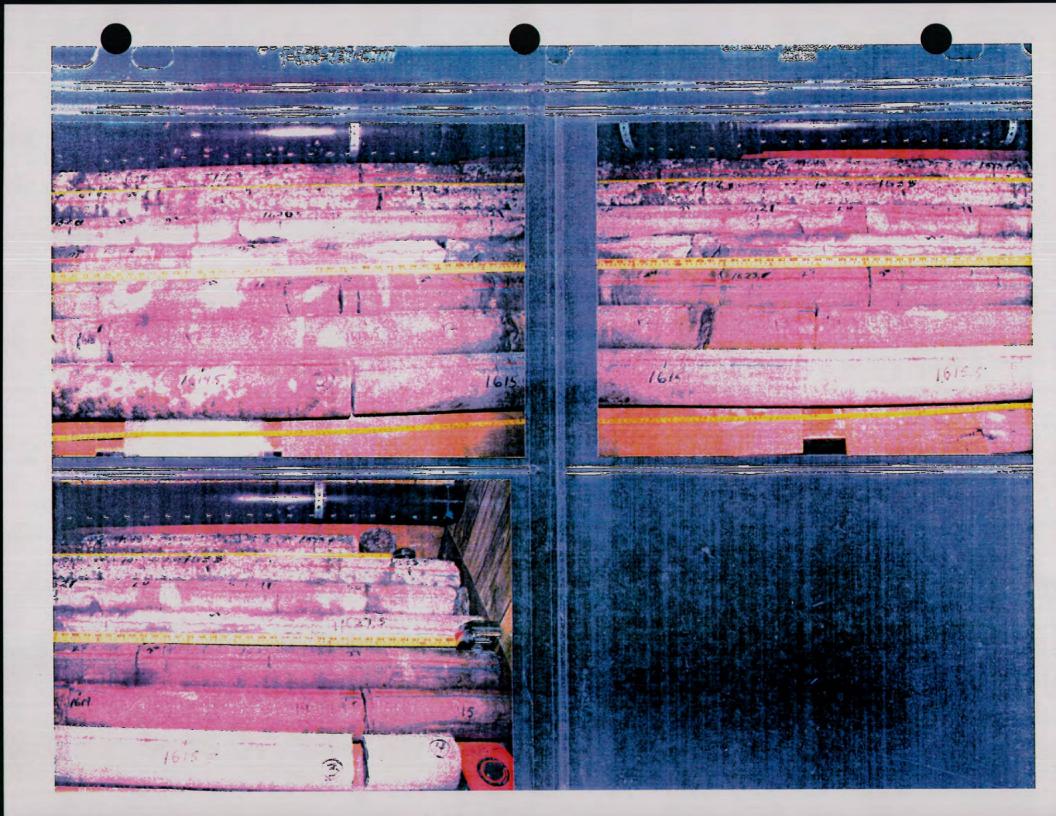
WELL LD 14.36-20- 10	54
BEARING	
CORE BARREL LENGTH	A
CORE DIAMETER 42 TOP CORE INTERVAL 16	14
BOTTOM CORE INTERVAL	<u>m.</u>
RECOVERY 1.9(
TIME RECOVERED	94
LOGGED BY	

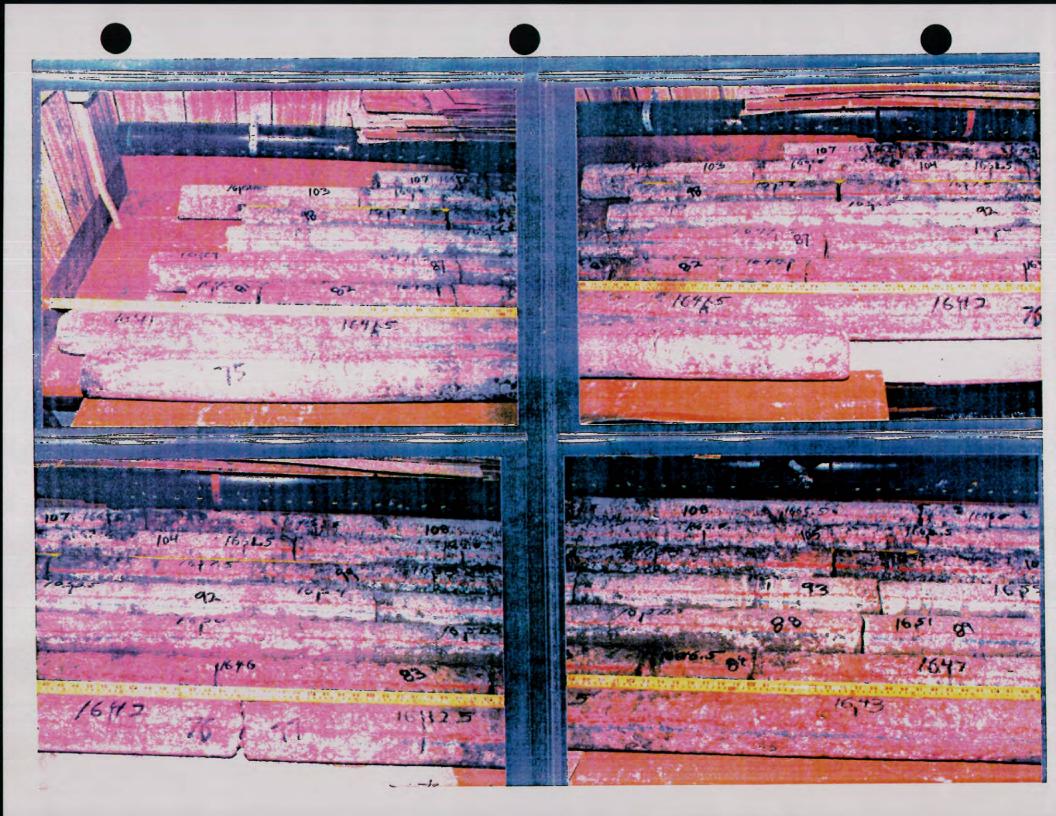
DESCRIPTION DEPTH LENGTH GENERAL RQD # 145 1114.0 - 1694 (2 Í45 .07 delantes ashydek .57~ íŋ 146 1694.62 - 1695,92 1695 solt fille 1.20 - 196 .94 1695.72 T4T) 142 1896 2 1.44 Jolo - 1.5 1.69 salt 1.99 nots 4 solt 1697 (AD) 1696.94 - 1697.68 HB 2.59 Ay 1697-68 - 1618.81 149 (50) 1698.31-1699.91 (50) 1698.31-1699.91 (51) 1699.91 1700.44 4.45 (52) 1700.44 1700.78 4.65 5014 (1.10) 1698 4 2.69 Jolo. 272 Salt 3.30 dele sult mat 1699 5 150 (53) 1700.74 1701.87 4.81 3.92 5.11 (54) 1701.81- 102.18 5.5C solid comput 1702 18 170260 HISI. 150 1702.60 1703.31 6.70 157) 103.36 103.76 6.70 delo 3,60 salt -1 minor 4,45 salt -1 minor 1700.70 15.7. 153 158) 1703.76 1703.86 159 1203.86 1703.96 TINTAN

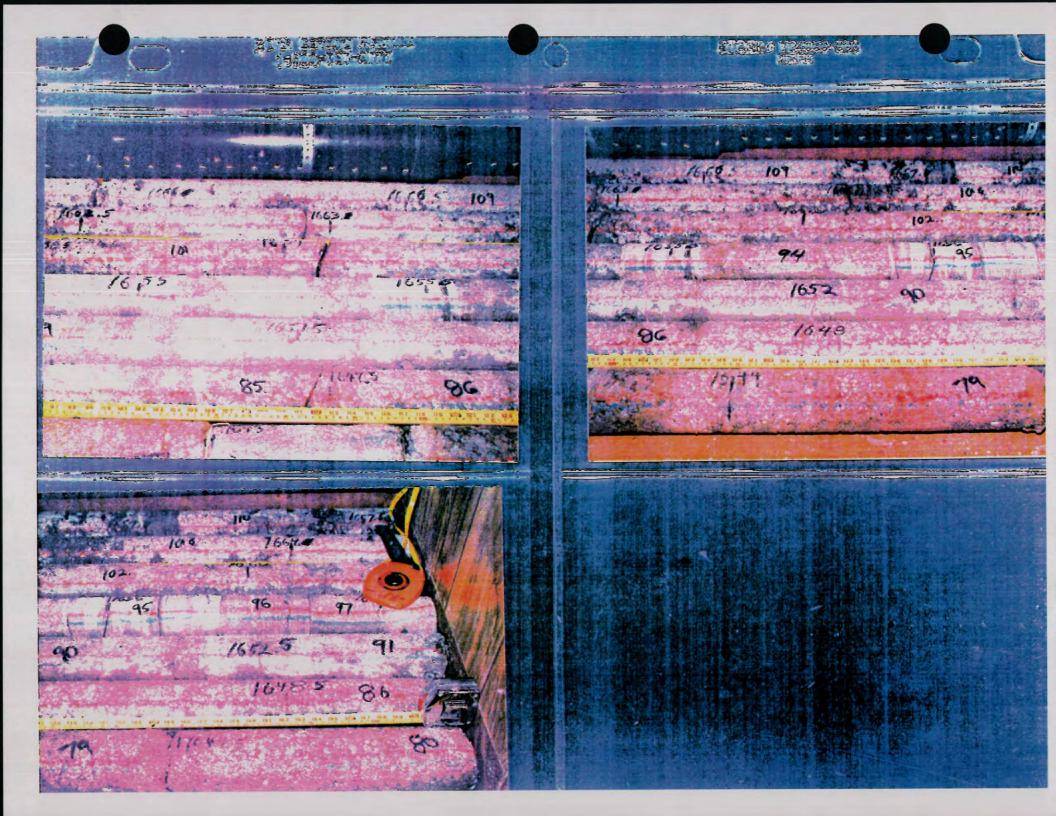
Rur # 6

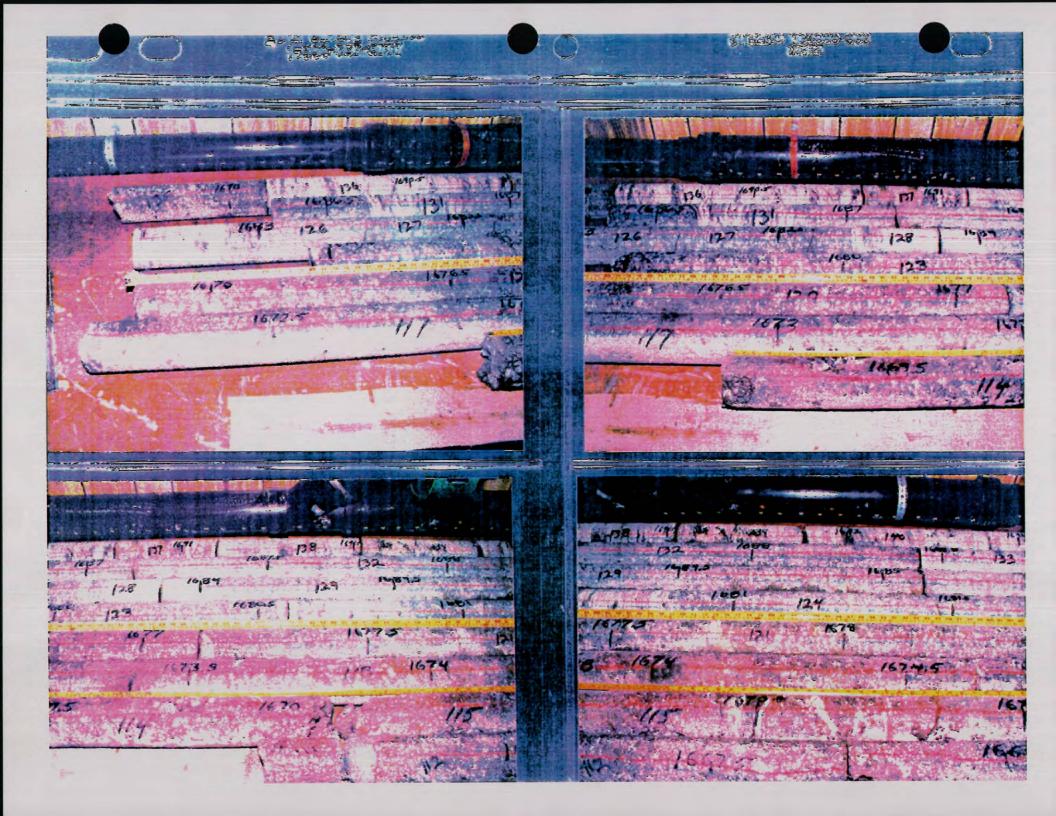
RE/SPEC Inc. 3824 JET DRIVE RAPID CITY, SOUTH DAKOTA


WELL LD.

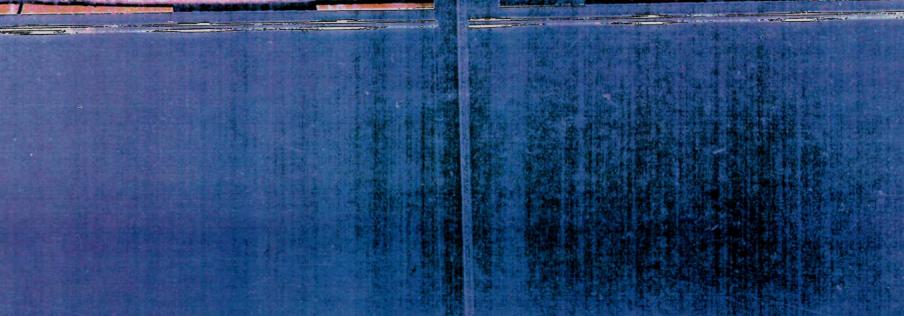


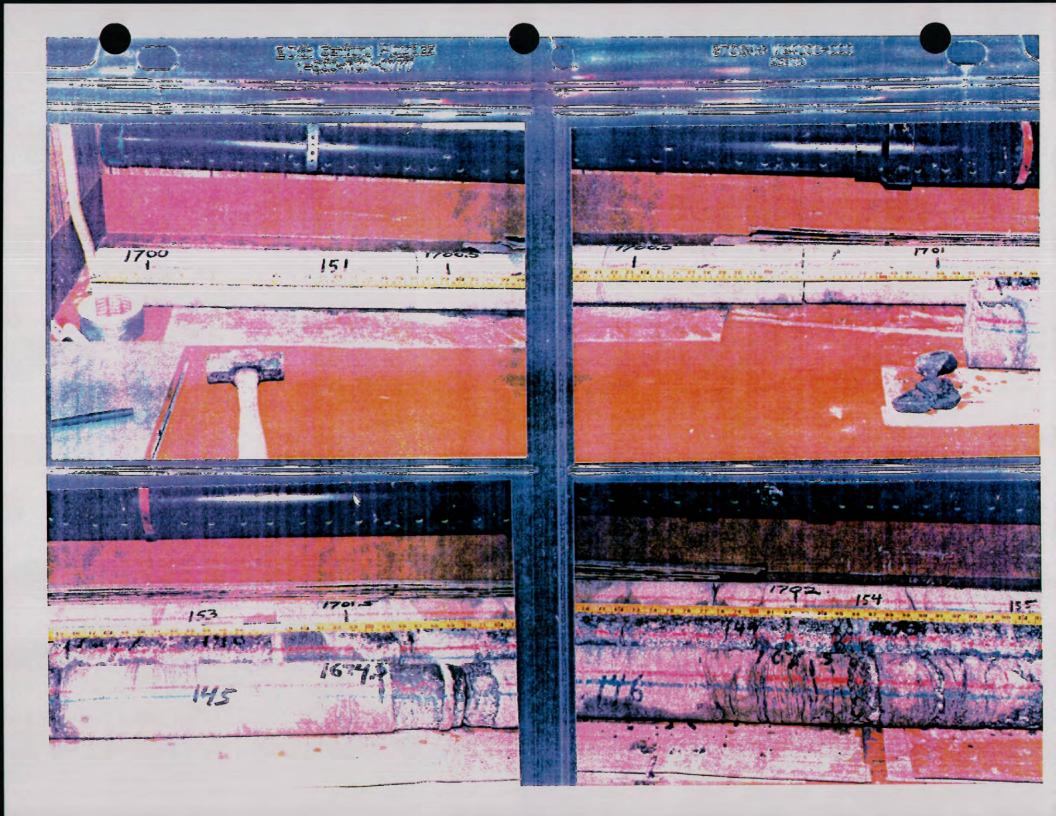

GENERAL	DEPTH	LENGTH	*		RQD		DESCRIPTION
		1					
170		1					
7.85		·····			••••		
0000					х.		
	1702	8-1	45 <u>4</u>	· · · · · · ·		••••	
· ()	ľ] -	155				
765		<u> </u>		·			
1.00		▎▁	156				
4 · ·	1702	4	ľ				
••••••	2071				••••		
			157				
		·····					
		t	158				
	1704	1/2-F	101	·			
1 240-15		ľΞ					
Winnipgois compactien/ dolomiten/ dolomiten/ dolomiten/ dolomiten/ dolomiten/							
art int							
company front							
dolonite		<u> </u>					
A only of						[
and for	· / · · · · · · · ·				•••		
doroning pe doroning pe other op other foll ungular foll							
10 6011	×			•••• [*] ••	1.1 ×	1	
JUH", C'							
E DO I							
51 [F			1.1				
n'ov bose							
hiov							
	•					1.1.1.1	
•••••				•		1	
		1 1					
		· [• • •
		<u> </u>	1				
			1				
		1 1					
······							
	l					1	
· · · · · · · · · · · · · · · · · · ·			1 · · · · ·				
			1	1	ŀ		
		1 +	1	1	I	1	

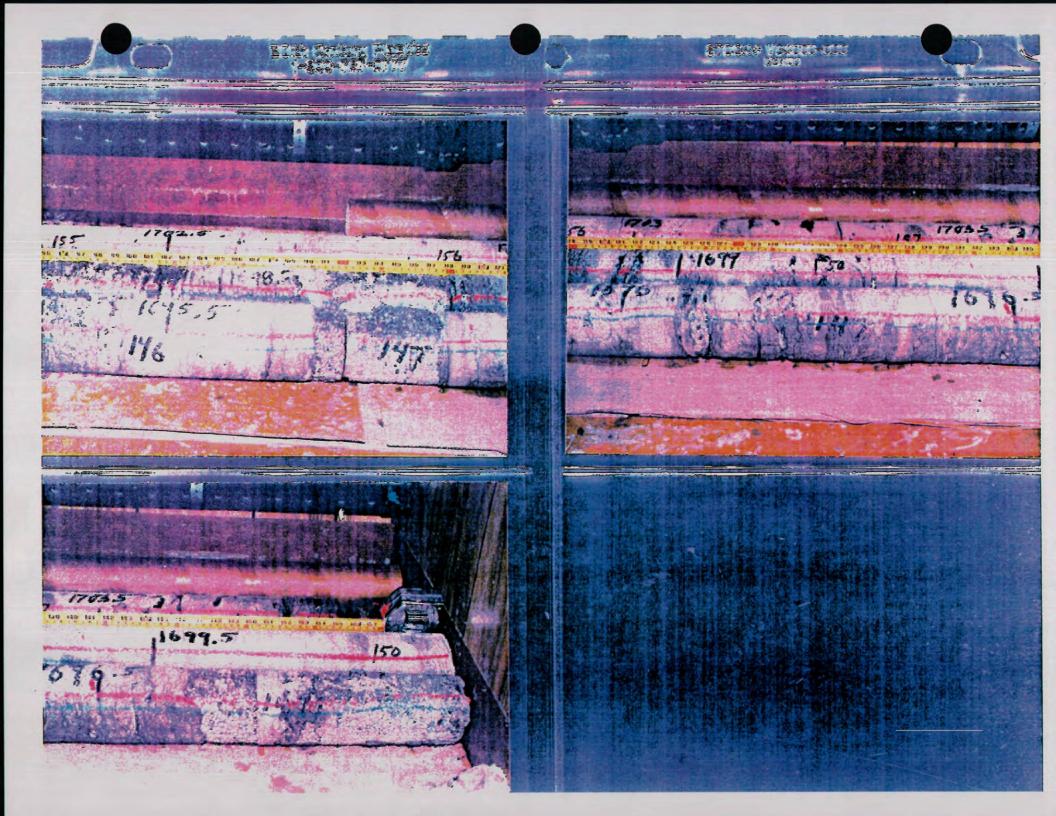

APPENDIX B


FIELD PHOTOGRAPHS OF CORE






1575 119


166 E 13 640-5

SUDANA ARCORD-CTT

Union Gas

MEMORANDUM

TO: J. P. Hayes

DEPT/OFFICE: Head Office

DATE: 1994-01-31

FROM: C. E. Smart DEPT/OFFICE: Head Office

SUBJECT: Enron Oil - Drill Stem Test Analyses

During the period of January 14/94 through to January 16/94, <u>Alpine Testers</u> conducted four drill stem tests on <u>CDN Land Medhat 14-36-20-1 W4M</u>. The results of these tests have been reviewed using <u>Fekete Well Test Package v.4.00</u> and are summarized below.

D.S.T #1

Date : January 14, 1994 Perforation Interval : 1180.0 - 1203.0m (core #2) Gauge Location : Outside (pressure measurement open to the annulus) Average Recovery Rate : 0.0 m³/d Assumed Porosity : 7.806%

0

D.S.T #1 was never initiated due to a problem achieving the packer seat. The tool was recovered from the well and prepared for D.S.T #2.

D.S.T #2 Date : January 14, 1994 Perforation Interval : 1180.0 - 1203.0m (core #2) Gauge Location : Outside (pressure measurement open to the annulus) Average Recovery Rate : 38.135 m³/d Assumed Porosity : 7.806%

• Two tests were analyzed within D.S.T #2; the build up to the preflow (a) and the build up to the actual test run (b).

0

(a) At the time of shut in the recorder was measuring at a one minute sampling interval. Consequently, wellbore storage effects are not visible on the typecurve or the Horner plots.

The onset of infinite acting radial flow appeared at approximately 21 minutes into the shut in. This corresponded to a radial extent of approximately 15m. At this point it appears that the limitations of the recorder had been reached.

Modelling the data permitted values of local permeability (k) and skin effect (s) to be estimated. They are as follows:

$$k_1 = 11.7 \text{ mD}$$

s = 30.7

(b) Significantly more data was available for the test run than the preflow. Still however, a one minute sampling interval at shut in limited the data available to identify wellbore storage effects.

The derivative response on the typecurve indicates a possible constant pressure boundary at approximately 13m from the wellbore. However due to insufficient data and recorder limitations this hypothesis cannot be confirmed.

Modelling the data resulted in the following estimates of local permeability and skin effect.

$$k_1 = 12.8 \text{ mD}$$

s = 27.1

D.S.T #3

0

0

Date : January 15, 1994 Perforation Interval : 1157.0 - 1175.0m (core #1) Gauge Location : Outside (pressure measurement open to the annulus) Average Recovery Rate : 0.0 m³/d Assumed Porosity : 13.156%

Upon running into the wellbore for D.S.T #3, a bridge was encountered at 1077.0 m. Consequently the recorder had to be recovered and the obstruction removed prior to any further test attempts.

D.S.T #4 Date : January 16, 1994 Perforation Interval : 1157.0 - 1175.0m (core #1) Gauge Location : Outside (pressure measurement open to the annulus) Average Recovery Rate : 173.635 m³/d Assumed Porosity : 13.156%

 During both shut in periods (i.e. preflow and actual test flow) the sampling rate was set at 5 minutes. This rate was insufficient for the reservoir resulting in small data sets (<30 test points) from which to try and identify skins and permeabilities. Since the preflow itself lasted only 5.04 minutes all of the preflow data was lost.

The lengthy sampling rate coupled with the apparently high permeability in this zone hindered the measurement of any wellbore storage effects.

Modelling the data permitted estimates of local permeability and skin which have a relative compliance with the core analyses. They are as follows:

$$k_1 = 188.7mD$$

s = -3.4

I would like to emphasize caution in the usage of these figures. In general the data sets were very limited and due to the nature of the testing and the assumptions inherent in the analysis, there is likely to be some error associated with the results.

If you have any questions or would like to see the diagnostic plots please do not hesitate to call me at extension 2395.

Thank you,

Carolyn E. Smart Asst. to Reservoir Engineer

cc. J. B. Carlson

APPENDIX E

GEOLOGICAL REPORT CDN LAND MEDHAT 14-36-20-01 W4M

FOR

ENRON OIL CANADA LTD.

BY

WM. BAILLIE RESOURCES LTD. 2515 34th Avenue N.W. Calgary, Alberta T2L 0V4 Tel: (403)282-8416

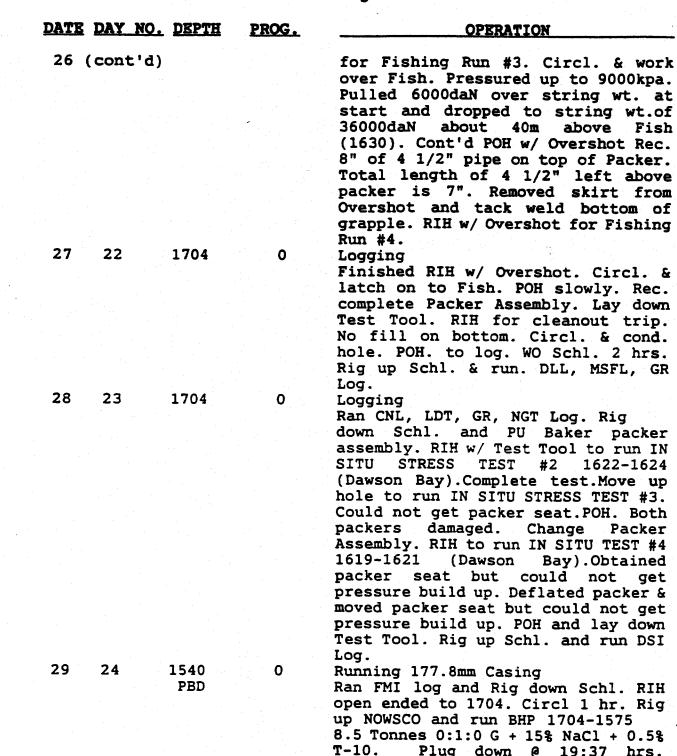
LIST OF CONTENTS

WEDD DATA	1
SUMMARY OF DAILY OPERATIONS	
DRILLSTEM TESTS	
FORMATION TOPS	
SAMPLE DESCRIPTIONS	
CORE DESCRIPTIONS	
SAMPLE LOG	POCKET

WELL DATA

LICENSEE:	Canadian Landmasters Resource Services Ltd.
LICENCE NO:	0162547
WELL NAME:	Cdn. Land Medhat 14-36-20-01W4
LOCATION:	Lsd 14-36-20-01W4M Co-ordinates 385.9m South, 613.4m East
ELEVATIONS:	K.B. 727.48m Grnd. 723.17m
TOTAL DEPTH:	1704m Winnipegosis
SPUD:	January 6, 1994
RIG RELEASE:	January 29, 1994
STATUS:	Potential Saltwater Disposal Well
HOLE SIZE:	Surf - 393m 349mm 393m -1613m 222mm 1613m -1704m 200mm.
MUD:	Water Surface - 800 Gel 800 - 1120 Gel Chemical 1120 - 1550 Salt Saturated 1550 - 1704
CASING:	244.5mm, 53.5 Kg/m, J-55, LT&C @ 391.2m 177.8mm, 38.7 Kg/m, J-55, LT&C @1402.5m
DRILLSTEM TEST:	S: DST#1 1180-1203 (Bsl. Nisku) Misrun DST#2 1180-1203 (Bsl, Nisku) DST#3 1157-1175 (Nisku) Misrun DST#4 1158.5-1176.5 (Nisku)
CORES:	Core #1 1158-1185 (27) Nisku, Rec.27 Core #2 1185-1203 (18) Grotto, Rec.18 Core #3 1613-1640 (27) 1st Rd.BdPr.Evp.Rec.25.7 Core #4 1640-1667 (27) Prairie Evap., Rec. 27.5 Core #5 1667-1694 (27) Prairie Evap., Rec. 26.4 Core #6 1694-1704 (10) Pr. EvpWinnpg's.,Rec.10
LOGS:	Run #1 Schl. FMI, GR 1704-1600 Run #2 Schl. DLL, MSFL, GR. 1704-391 CNL, LDT, 1704-725 GR, NGT 1704-391 Run #3 Schl. DSI, GR 1704-391 FMI, GR 1704-1585

-1-


SUMMARY OF DAILY OPERATIONS

DATE	DAY NO.	DEPTH	PROG.	OPERATION
06	1	26	26	Drilling 349mm Surface Hole.
				Spud 07:00 hrs. 01/06/94
07	2	290	264	Drilling Surface Hole.
				Trip for Bit @ 243m
				Bit 1A 349mm HP11 Surf-243m(243m)
-				RPM 80-150+
				Wt. 2-7x1000 daN
				PP 6000kpa
08	3	393	103	Cementing Surface Casing
•••	-			Drilled to 393m POH and Ran 31 jts.
				244.5mm, 53.56kg/m, J-55, LT&C
				Landed @ 391.19m. Cemented w/ 40
				Tonnes $0:1:0 \text{ G} + 2$ CaCl2.
				Plug Down @ 08:15hrs 01/08/94 Left
				3m3 cement in D.P. due to Vacuum
				Truck breakdown
				Bit 2A 349mm S33J 243m-393m(150m)
				RPM 150+
				Wt. 8x1000daN
			a service and the service of the ser	PP. 7000kpa
09	4	393	0	Drilling out cement
0,5			•	Top Cement @ 291m
10	5	816	423	Drilling 222mm Hole
11	6	987	171	Drilling
**	0	307	± / ±	Trip for Bit @ 917m.
				Bit 1 222mm HP11 393m-917m(524m)
				RPM 90-100
				Wt. 10-14x1000daN
				PP. 9000kpa
12	7	1127	140	Drilling
13	8	1184	57	Cutting Core #1
10	0	1104	57	Trip for Core Barrel @ 1158m. RIH w/
				Core Barrel & 199mm Core Bit
				RPM 80-110
				Wt. 2-3x1000daN
				PP. 7500kpa
				Bit 2 222mm ATJ22S,917m-1158m(241m)
				RPM 90-100
				Wt. 10-14x1000daN
				PP. 9000kpa
14	9	1203	19	Reaming Core Hole
7.4	7	1203	7	Cut Core #1 1158-1185 (27)Rec.27
				Reamed Core Hole
				Cut Core #2 1185-1203 (18) Rec.18
				Reamed Core Hole
				VEGWER FOLE NOTE

DATE	DAY NO.	DEPTH	PROG.	OPERATION
15	10	1203	0	Recovering Charts from DST #2
~~			. •	Finished reaming Core Hole, POH.PU
				Test Tool & RIH
				DST #1 1180-1203 (Bsl. Nisku)
				Misrun-Packer wouldn't inflate
				POH Chang'd Packer, RBIH w/Test Tool
	•			DST #2 1180-1203 (Bsl. Nisku)
				Rec.226m Fluid,
				28m MW+198m Brk.Wtr.
16	11	1203	0	Running FSI on DST#4
10	TT	1203	U	RIH w/Test Tool to run DST#3 Misrun
· · · · ·				Hit Bridge @ 1077. POH. RIH
				w/Bit.Cleaned out Bridges 1070-1125
				and cleaned out 1178-1203 POH. PU
				Test Tool. RIH for DST#4 1158.5-
				1176.5 (Nisku)
17	12	1285	82	Drilling
τ,	12	1200	02	Finished running DST#4
				DST #4 1158.5-1176.5 (Nisku)
				Rec. 980m Fluid,
				28m MW+952m Brk.Wtr.
	to a second s			RIH w/ Bit #3 RRBit #2 222mm ATJ22S
				Cleaned out 5m fill on bottom and
				drilled ahead.
18	13	1369	84	Drilling
TO	12	1203	04	
				Cont'd drilling w/ Bit #3.
19	14	1412	43	Drilling
				Trip for Bit @ 1372. Pulled tight @
				1334 on way out. Back reamed 1334-
				1326 and 1203-1195. Rest of hole
				clean. RIH w/ Bit #4 222mm, ATM 33,
				Reamed tight spots 1165-1183, 1211-
				1240 and 1316-1372. Drilled ahead.
				Bit #3 RR2 222mm ATJ22S, 1203m-
				1372m(169m)
				RPM 80-90
				Wt. 14x1000daN
				PP. 9800kpa
20	15	1500	88	Drilling
				Cont'd drilling w/ Bit #4
				Began converting mud to Salt
	16	1600	100	
21	16	1600	100	Drilling
				Cont'd drilling w/ Bit #4
				Mud now converted to Salt Saturated
				System.

DATE	DAY NO.	DEPTH	PROG.	OPERATION
22	17	1640	40	POH w/ Core #3
				Cont'd drilling w/Bit #4 to 1613
				POH. PU Core Barrel & 199mm Core
				Bit. RIH cut Core #3 1613-1640 (27)
				Bit#4 222mm ATM33 1372m-1613m(214m)
				RPM 80-90
				Wt. 14-16x1000daN
				PP.9500-10000kpa
23	18	1698	58	Cutting Core #6
23	10	2020		Rec'd Core#3 1613-1640 (27)Rec.25.7
				DRTH w/ Core Barrel and cut COre #4
				1640-1667 (27) Rec.27.5. RBIH W/
				Core Barrel and cut Core #5 1667-
				1694 (27) Rec. 26.4. RBIH w/ Core
				Barrel and began cutting Core #6.
			-	Running IN SITU STRESS TEST #1
24	19	1704	6	Cut Core #6 1694-1704 (10)Rec.10
				Layed down Core Barrel. Rigged up
				Schlumberger and ran FMI Log from TD
				1704-1600. Rig up Halliburton to run
				IN SITU STRESS TEST. Press lest
				Surface equipment, Numerous leaks.
25	20	1704	0	POH after Fishing for Packers.
				Repaired leaks in Halliburton
				surface lines. Pressure up packers
				to run IN SITU STRESS TEST #1 1672.
		-	×	Instananeous press.drop from
				21000kpa-0, POH w/ Test Tool, Leit
				Packers in hole. Test Tool ruptureu
				above packer assembly. Released
				Schl. RIH w/ Overshot for Fishing
				Run #1. Tagged top of Fish @ 10/1.
				Circl & try to work over top or
				Fish Fish skidded 8m. Unable to
				get hold of Fish. Strapped out of
				hole.
		1704	0	RIH w/ Overshot.
26	21	1704	U U	Breakdown Overshot. Rec. spring from
				top of Packer. Grapple in Overshot
				broken. RBIH with Overshot for
				Fishing Run #2. Tagged Top of Fish @
				1672. Circl and work over Fish.
				Pressured up to 10000kpa. Circl'd
				thest aschore w/ good returns POH
				thro' packers w/ good returns. POH
				w/ Overshot No Recovery. RBIH w/ 4
				1/4" Overshot

-4-

T-10. Plug down @ 19:37 hrs. 01/28/94. POH. Stand pipe in derrick & lay down 165mm DC's. RIH w/ 222mm Bit.

	· •		
DATE DAY NO	. DEPTH	PROG.	OPERATION
29 (cont'd)		Tagged top cement @ 1540. Set
			4000daN string wt. on plug. POH. Lay
			down drill pipe & 158mm DC's. PU
			Power Tongs and begin running
		•	177.8mm casing.
30 25	1540	0	Rig Released
	PBD		Finished running 177.8mm casing. Ran
			105 jts. 177.8mm, 34.23 kg/m J-55
			LT & C Landed @ 1402.52. Circl &
			cond mud. Cement w/ 8 Tonnes 0:1:0
			G + 18% NaCl + 0.8 % NFL -2 Tail
			Cement. Displace w/ 28.63m3 Water.
			Bumped plug w/ 3500kpa. Plug held.
			Plug down 15:42 hrs. $01/29/94$. Had
			4m3 cement returns. Tear out
			BOP's.Set slips w/ 20000daN string
•			wt Big down & clean mud tanks

.....

-6-

wt. Rig down & clean mud tanks. Rig Released 24:00 hrs. 01/29/94.

DRILLSTEM TESTS

DST #1	1180-1203 (Bsl Nisku) Misrun could not inflate packer
DST #2	1180-1203 (Bsl Nisku)
	10/60/60/90
	PF-WK Air blow incrs'g thr'out to Fair-NO GTS VO-WK Air Blow incrs'g to strn'g in 25 mins. Fair Air Blow thr'out - NO GTS
	Water Cushion - Nil
	Rec. 226m Fluid; 28m MW + 198m Brak. Wtr.
	HP 13 558 - 13 457 PF 1301 - 1474 VO 1434 - 2935 SIP 10720 - 10700 BHT 37.70C
DST #3	1157-1175 (Nisku) Misrun - Hit Bridge @ 1077
DST #4	1158.5 - 1176.5 (Nisku)
	10/60/60/90
	<pre>PF-Wk. to Strn'g init'l puff in 1 min Dcrs'g to Fair Air Blow - NO GTS VO-Strn'g Air Blow in 1 min Constant thr'out - NO GTS</pre>
	Water Cushion - Nil
	Rec. 980m Fluid; 28m MW + 952m Brak. Wtr.
	HP 13173 - 13023 PF 7389 - (Final PF not readable) VO 7306 - 9995
	SIP 10338 - 10308 BHT 37.0C

FORMATION TOPS

KB. 727.5

		SCHLUMBERGER		
FORMATION	SAMPLE LOG	(SUBSEA) CNL/LDT		
CRETACEOUS				
2nd White Specks	e e e e e e e e e e e e e e e e e e e	(+99.6) 627.9		
Base Fish Scales	-	(+44.0) 683.5		
Bow Island	740.0	(-19.7) 747.2		
Joli Fou	785.0	(-67.5) 795.0		
Mannville	835.0	(-111.3) 838.8		
MISSISSIPPIAN				
Pekisko	914.0	(-194.5) 922.0		
Banff	982.0	(-247.5) 974.4		
Bakken	1094.0	(-368.3) 1095.8		
UPPER DEVONIAN				
Big Valley	1100.0	(-373.5) 1101.0		
Stettler	1116.0	(-389.4) 1116.9		
Calmar	?	(-416.0) 1143.5		
Nisku	1158.3	(-432.7) 1160.2		
Grotto	1186.0	(-458.5) 1186.0		
Peechee	1206.0	(-475.2) 1202.8		
Cooking Lk.	1401.0	(-675.2) 1402.7		
Beaverhill Lk.	1459.0	(-728.2) 1455.7		
1st Salt Marker	1563.5	(-835.3) 1562.8		
2nd Salt Marker	1570.2	(-842.7) 1570.2		
MIDDLE DEVONIAN				
1st Red Beds	1615.0	(-888.2) 1615.7		
Dawson Bay	1617.3	(-890.5) 1618.0		
2nd Red Beds	1626.2	(-899.3) 1626.8		
Prairie Evaporite	1633.9	(-907.3) 1634.8		
Winnipegosis	1700.7	(-972.5) 1700.0		
	1704 0			
TOTAL DEPTH	1704.0	(-974.9) 1702.4		

SAMPLE DESCRIPTIONS

700-35 735-40	Shale: Shale:	<pre>med.gy., firm, fiss, micromic as abv. w/tr. shell frag's</pre>
	an a	BOW ISLAND 740
740-70	Sndstn:	<pre>lt.gy, fn., ang., w.srt'd, kaol'c, cgl'c in pt.w/ w.rdd. v.crs-gran.qtz &blk cht. fg. por.,tr. pyr., & tr. rsty fn - v.fn. sidrt'c ss. No Fluor or Cut</pre>
770-85	Sndstn:	lt. brn. fn-v.fn, argill, tt, No Fluor or Cut
		JOLI FOU 785
785-35	Shale:	med. gy. firm fiss, micromic
		MANNVILLE 835
835-45		lt. gy, fn-med qtz.,ang.,sbrdd, uncns'l in pt. f-g intgran, por. No Fluor or Cut
845-55	Sndstn	& Shale: intbd'd
		Sndstn: lt. gy, v.fn-fn. kaol'c, tt No Fluor or Cut
		Shale: med-dkgy, slty, w/ intbds, fn.ss grd'g to sltstn.
855-70		buff, fn, kaol'c in pt. p-f intgran por., mnr.intbds shale as abv tr. coal
870-75	Shale:	med dkgy., slty v.fn sdy, w/ intbd'd sltstn.
875-85	Sndstn:	lt. gy, fn, ang. qtz., p.cns'l, kaol'c in pt. intbd's, buff, dol'c, sltstn, tr. coal & pyr.
		No Fluor, Tr. lt yell. wht. cut from one ss. frag.
885-90	Shale:	med.dk gy, slty - v,fn. sdy intbd's sltstn.
890-95	Sndstn:	<pre>lt.gy - buff, fn, ang.qtz., argill, kaol'c, f intgran por., intbd'd w/sh & sltsln. as abv.</pre>
895-00	Shale:	abv. tr.clystn: buff, mottl'd red
900-05	Sndstn:	<pre>lt. gy - buff, fn. ang.qtz. argill kaol'c intbd. w/sltstn as abv.</pre>
905-10	Shale:	med. dk.gy slty - v. fn. sdy w/intbd's sltstn
910-20		TRIP - NO RELIABLE SAMPLES
		PEKISKO 914
920-2 5	Lmstn:	<pre>lt. buff, crpxln tt. No Fluor or Cut - tr.fract'd. clr. qtz & lt. buff cht. from ovlv'g Bsl Otz.</pre>

	925-40	Lmstn:	buff-wh., crpxln. tt. tr. milky cht. frag's. tr. contam. dd.hvy oil stn'g from thin 1m ss.in Bsl. Mann.
	940-80	Lmstn:	whlt. buff, crpxln, tt, as abv.
			BANFF 982
	980-53		tan-buff, crpxln, tt argill.
	1053-59 1059-70	Lmstn: Lmstn:	as abv. bcm'g more argill. lt. buff - wh, v.fn xln - v.fn sdy, p-f intgran por. No Fluor or Cut - grd'g v.fn calc. ss.
•	1070 95		<pre>& Shale - intbd'd lt. buff-wh, v.fn., calc., mnr. p. intgran por. to tt.</pre>
			BAKKEN 1094
•	1095-00	Shale:	dk brn. blk., firm, fiss.
			BIG VALLEY 1100
	1100-02	Lmstn:	<pre>lt.grn-gy, to buff, crpxln. sli argill, tt, tr.pyr. crin'd osscl's & bry'z</pre>
	1102-16	Shale:	lt grn. firm, fiss, tr. bry'z. crind's & pyr.
			STETTLER 1116
	1116-23 1123-43	Dol: Anhy:	<pre>lt. brn - buff, crpxln anhy'c, tt lt. buff-wh.,micxln - crpxln, mnr. intbds Dol: lt.brn - buff.crpxln anhy'c tt</pre>
			CALMAR ?
	1143-58	Dol & An Dol:	nhy: intbd'd w/ mnr. sh buff, crpxln, anhy'c tt, Anhy: lt buff wh.crpxln
		Shale:	brick red mottl'd gy in pt. sli dol'c & anhy'c
			NISKU 1158.3
	1158-85		e Descriptions 1158-1185(27)Rec.27
			GROTTO 1186.0
	1185-03		e Descriptions 1185-1203 (18) Rec.18
	1203-06		REAMED COREHOLE - No reliable samples
			PEECHEE 1206

-10-

	1208-10	Dol:	<pre>lt. buff, v.fn - fn xln, tr.f.por. No Fluor or Cut ovl'n by Shale; lt.grn. firm</pre>
	1210-27	Anhy:	wh1t. buff., crpxln, mnr. intbd. dol. buff v. fn, xln. tt.
	1227-33	Dol:	lt. gy micxln, argill,tt - f intxln por. No Fluor or Cut
	1233-52	Shale:	lt. grn. gy., firm, fiss, calc.
	1252-55	Dol:	lt. gy crpxln - v.fn. argill, tt
	1255-64		wh - lt. buff-gy, mnr. intbd's Dol:buff.
	1233-04	Anhy:	
		·	micxln,tt
	1264-70	Lmstn.	lt. buff, micxln, argill, tt
	1270-75	Lmstn:	lt. gy, micxln, argill, tt
	1275-82	Dol:	buff, micxln, tt.
	1282-88	Anhy:	wh lt. buff. mnr. intbd's Dol: as abv. tt.
	1288-08	Dol:	buff. fn xln. p-f. intxln por. No Fluor or Cut
	1308-13	Anhy:	whlt. buff. crpxln
, •	1313-18	Dol:	buff, micxln,tt.
	1318-32	Anhy:	buff-wh, crpxln mnr. intbds Dol: buff crpxln
		Lmstn:	
	1335-46		
	1333-40	Dol:	buff, v.fn-fn xln. tt - f intxln. por.
			No Fluor or Cut
			tr. dk. brn. hvy. oil stn'g (lt. yell. wh.
			strm'g cut) contam. from 1 m hvy oil sd. in
			Bsl. Mann.
	1346-49		Dol: intbd'd
			buff wh. crpxln Dol: buff crpxln. tt.
	1349-72	Lmstn:	<pre>lt. buff - wh. micxln, stng's f-intxln. por.</pre>
			tr. dk. brn hvy oil stn'g & mnr. globs free v.
	•		hvy tarry oil - contam from 1m hvy oil sd. in
			Bsl. Mann.
	1372-74		TRIP - No Reliable Samples
	1374-90	Anhy:	buff -wh. crpxln, mnr. intbd's micxln - v.fn.
			dol. grd'g to 1mstn. tt tr. dk. brn. hvy oil
			<pre>stn'g w/ faint yell. cut - contam. from lm hvy</pre>
			oil sd. in Bsl. Mann.
	1390-95	Lmstn:	lt. buff wh, micxln, chky, micxln grns flt'g
			in wht. mic. tt.
	1395-01	Lmstn:	lt.buff wh. crpxln. chky. tt.
		Dind Cirr.	icibali wa. cipala. Cany. cc.
			COOKING LK. 1401
			COOKING DR. 1401
	1401-06	Dol:	lt. buff. micxln grd'g - v.fn. xln. tt
	1406-11	Anhy:	buff - wh. crpxln
	1411-20	Dol:	buff lt.gy, fn xln, p-f intxln. por. tr.
			pyrobit. No Cut intbd'd w/ buff crpxln.
			dol.tt. & Anhy: buff-wh. crpxln
	1420-25	Dol:	lt. buff. crpxln tt intbd'd w/ Anhy as abv.
		Anhy:	buff - wh. crpxln
	1430-44	Dol:	buff crpxln tt intbd'd w/ Anhy as abv.
	1444-52	Dol:	buff. v. fn xln. tr.p. intxln por.

1452-59	Dol:	buff mostly micxln tt. intbdd w/ Anhy: buff-wh.crpxln.
		BEAVERHILL LK. 1459
1459-85 1485-95	Lmstn: Lmstn:	<pre>buff crpxln tt. intbd'd w/ lt. gy crpxln tt. lt. gy - buff. crpxln dol'c tt.</pre>
1495-00 1500-10	Lmstn: Lmstn:	<pre>lt. gy v.fn.pellets in mic., mtx,tt pred. buff crpxln intbd'd w/ mnr lt. gy dol'c crpxln tt, local thin string's v.fn-fn xln. buff lmstn. w/ tr.p. intxln. por.</pre>
1510-29	Anhy & Anhy:	Lmstn: intbd'd buff-wh. crpxln w/ mnr. intbds Dol: buff crpxln tt.
	Lmstn:	pred. buff crpxln. tt w/mnr. tt.gy crpxln. locly grd'g to micxln tt.
1529-31	Dol:	<pre>buff. micxln, earthy text., p.pp intxln -vug por.</pre>
1531-36	Dol:	pred. buff crpxln w/mnr. lt.gy crpxln tt., mnr. intbds. Anhy: lt. buff - wh. crpxln
1536-40	Dol:	buff. v. fn xln. tr. p-f.intxln. por. No Cut grd'g dwn to crpxln tt.
1540-44 1544-48 1548-61 1561-65	Anhy: Dol: Anhy: Dol:	<pre>buff-wh.crpxln buff. v. fn.xln. p-poss.f intxln. por. No Cut buff - wh. crpxln lt. buff. crpxln tt prob. contains 0.3m Salt bed</pre>
		1st SALT MARKER 1563.5
1565-70	Anhy:	<pre>buff-wh. crpxln. w/ mnr.dol: buff. v.fn. xln p.intxln. por locl'y earthy text</pre>
		2nd SALT MARKER 1570.2
1570-72 1572-77 1577-91	Salt: Dol: Lmstn:	No evid. por. in smpl's. Drill Time 3 mins/M buff crpxln tt. buff. crpxln tt. mnr. intbds lt. buff-gy to
1591-96	Lmstn:	tt., brn. micxln lt med. brn. fn-med xln dol'c & sli argill.
1596-13	Dol:	tr. vug. por. sli cut buff. v.fn. xln. p-f intxln. por. No Cut
1613-40		e Descriptions 1613-1640 (27) Rec.25.7

-12-

- -13-
- 1st RED BEDS1615.0DAWSON BAY1617.32nd RED BEDS1626.2

PRAIRIE EVAPORITE 1633.9

- 1640-67 See Core Descriptions Core #4 1640-1667 (27)Rec.27.5
- 1667-94 See Core Descriptions Core #5 1667-1694 (27)Rec. 26.4
- 1694-04 See Core Descriptions Core #6 1694-1704 (10)Rec.10

WINNIPEGOSIS 1700.7

1704 TOTAL DEPTH

.

CORE DESCRIPTIONS

CORE #1 1158-1185 (27)REC. 27

NISKU

1158.33-59.10	(0.77)Dol:	<pre>buff, fn. xln., upper 1/2 contains lt.grn sh.prtg's tr.blind pp.vugs. essent.tt, patchy appar.lt. oil stn'g Prt woll fluor</pre>
1159.10-62.49	(3.39)Dol:	Brt. yell. fluor. buff., fn xln, irreg. wavy bdd'g., poor-fair pp.vug & intxln por. appar. lt. oil stn'g Brt.yell. fluor.
1162.49-63.51	(1.02)Anhy	wh. locl'y irreg. wavy bdd'g w/some dol. lenses.
1163.51-66.88	(3.37)Dol:	<pre>buff., fn xln, some irreg. wavy bdd'g bioturb'd.in pt. common anhy.lenses nodules., fair to locl'y good intxln and pp - 1 cm vug por., appar. lt oil</pre>
1166.88-67.89	(1.01)Dol:	<pre>stn'g Brt-yell. fluor. buff. fn xln, faint irreg. wavy bdd'g. w/anhy veins, lamin's & nodules fair pp. vug. por., appar. lt.oil stn'g Brt,yell fluor.</pre>
1167.89-70.29	(2.40)Dol:	buff fn xln, faint irreg. wavy bdd'g good to excell. intxln & pp to vug por. up to 2 cms., appar. lt.oil stn'g. Brt.yell fluor.
1170.29-73.15	(2.86)Dol:	essent. identical to ovly'g intv'l separt'd by 5cm. micxln(?) tt dol.band, appar. lt. oil stn'g Dull yell. fluor,poss. fading due to exposure.
1173.15-76.81	(3.66)Dol:	buff.fn xln occas. faint wavy bdd'g appar. bioturb'd mostly good to excell. intxln to pp vug por., minor anhy. lamin's, veins & nodules, appar. lt. oil stn'g. Brt. yell. fluor.
1176.81-79.51	(2.70)Dol:	

1179.51-82.98 (3.47)Dol: buff. fn xln mottl'd skeletal hash, leach'd skeletal vugs,overall por fair to good, appar.lt. oil stn'g Dull yell. fluor. Prob. wet from top of this intv'l down.

1182.98-84.05 (1.07)Dol:buff fn xln irreg faint wavy discont. bdd'g.,mnr. pp vug. overall por. poor, dull yell. fluor.

- 1) Most of core displayed minor pin point bleeding to occasional narrow strip bleeding of live light brown oil shortly after being layed on the deck.
- 2) All of the sample intervals caught while coring were examined but no cut was obtained.
- 3) The apparent staining and fluorescence were impressive but the core did not have the aroma that is usually present in an oil zone.

CORE #2 1185-1203.8 (18.8)REC.18.8

1185.00-86.15 (1.15)Dol: buff.fn xln.,bioturb'd mottl'g,burrows infill'd w/med.brn.sh., one anhy nod. (2cms.) scatt'd. pp-3cm vug. prob. blind & tt. No Fluor.

GROTTO

	<pre>buff. fn xln, faint to obvious irreg. wavy lamin's occas. med.brn. sh prtg's. infill'g ripple mks. w/some soft. sed.defm'n, tr.pp-0.5 cm. vugs. essent.tt No Fluor.</pre>
1186.70-87.30 (0.60)Dol:	<pre>buff, fn xln, bioturb'd mottl'g burrows infill'd w/med. brn sh., scatt'd pp- 2 cm. vugs, prob. blind &tt No Fluor.</pre>
1187.30-90.70 (3.40)Dol:	poss. horiz. burrow'g, mnr. fileg. med. buff argill. dol. infill'g ripple mks. tr. pp-1cm vugs., prob. blind essent.tt Dull vellorange fluor.
	buff, intbd'd micxln argill dol & fn xln.dol, micxln dol. bcm'g more argill dwnw'd, scatt'd. 1-2cm vugs prob. blind, poor overall por. No Fluor.
1193.37-96.30 (2.93)Dol:	buff intbd'd micxln argill dol & fn xln dol. as abv. but becm'g. prog.thinner bd'd dwnw'd - no appar. por tt.No Fluor

1196.30-98.15 (1.85)Dol: buff, micxln-crpxln, argill, lamin'd (varved) interspersed w/ Ls: wh., crs, xln, tt.,lower 1/2 intrv'l appar. horiz. burrowed. No Fluor 1198.15-99.42 (1.27)Sh&Ls.lamin'd Sh; grd'g from buff crpxln argill.dol dwn to dk. brn varved calc. Sh., Ls: lt gy-wh. crs xln as thin lamin's & occas. lenses & nodules, horiz burrw'g in upper 1/2. No Fluor. 1199.42-02.26 (2.84)Dol:buff fn-v.fn xln mass to thin wavy bdd'g w/dk. brn sh. lamin's in lw'r part, mnr.Anhy. blebs in upper 1/2, upper contact of interval soft sed. defm'n., poor pp. vug. por thr'out Dull Yell-orange Fluor in bsl. 6-8cms. 1202.26-02.66 (0.40)Sh: lt. grn hd.w/thin intbd's & lamins of lt.gy -wh. to buff, v. fn xln.dol.Bsl. 6-8cm. fract'd rubble w/Brt.yell fluor on fract's.

CORE #3 1613-1640 (27) REC. 25.7

1st RED BEDS

1615.03-17.31 (2.28)Sh: med. grn-gy hard dense no appar. fissil'ty highly indur'd mudstn. develops fissility when dry. Precise contact w/dunderlying unit faint.

DAWSON BAY

1624.71-26.15 (1.44)Dol:buff prob. mic-crpxln, lamin'd w/hair line dk. Sh.lamin's tr. pp. vug por. Bsl. 8 cms. lamin'd dol & dk. Sh. 40% Sh., cont. ripple mk'd w/some minor bioturb'n. Fair sharp contact w/underlying unit

2ND RED BEDS

1626.15-29.25 (3.10)Sh: med grn-gy. no appar. fissility hard dense highly indur'd mudstn. -

1629.25-33.87 (4.62)Sh: br

develops fissility when dry.
(4.62)Sh: brick red hard dense occas.faint
 indictn's bdd'g little indicat'n of
 fisility, occas.thin intbds 0.5-4cms.
 med grn-gy sh. as above - develops
 fissility when dry.
 Contact w/undrlying unit distinct.

PRAIRIE EVAPORITE

1633.87-38.72 (4.85)Salt:mixture orange-red(Salmon) and clear v.crs xtals, massive, 5cm band. red sh as abv. about 5cms below top.

Coring times indicate that the core barrel probably jammed temporarily while cutting the lower 3m of the 2nd Red Beds. The 2nd Red Bed/Prairie Evaporite contact is intact. There are no milled surfaces in the recovered salt section and the total recovery of salt equates with the total relatively fast coring times for the salt. It is believed that some of the 2nd Red Bed section was milled-up while the core barrel was jammed, probably about 0.8m . Therefore, the top of the Prairie Evaporite could be about 0.8m lower than indicated. The additional 0.5m of missing core probably was recovered at the top of Core #4. Therefore, all depths on Core #4 probably are 0.5m deeper than they should be.

CORE #4 1640-1667(27) REC. 27.5

1640.00-43.50 1643.50-43.77	(3.50)Salt:pred.salmon clr'd v, crs. xln (0.27)Salt:clr. mass
1643.77-44.94	(1.17)Salt:pred. salmon clr'd. v.crs. xln, mixed w/clr. v.crs. xln, lamins soft brick
1644.94-49.51	red cly & some lt.gy near top. (4.57)Salt:mixed salmon & clr. v.crs. xln, 2 lt. gy. Anhy bnd's. (2mm) 0.42m
1649.51-55.40	abv.bse. (5.89)Salt:pred. clr., v.crs. xln,w/mnr. v.crs. xln salmon clr'd salt, occas 1mm - 5.5 cm dol bnds w/some upper surfaces ripple mkd.
	MIDDLE PRAIRIE EVAPORITE DOLOMITE MARKER

1655.40-55.55 (0.15)Dol: buff micxln - crpxln intrlamin'd w/salt 1655.55-55.91 (0.36)Salt:mixed salmon clr'd & clr v.crs. xln 1655.91-56.60 (0.69)Dol: buff micxln - crpxln upper 2/3 w/ fine lamin's. clr. salt, occas ripple mks. 1656.60-67.50 (10.90)Salt:mixed salmon clr'd &clr v.crs.xln.

CORE #5 1667-1694 (27) REC. 26.4

1667.00-67.14 (0.14)Salt: salmon clr'd v.crs xln 1667.14-67.19 (0.05)Clystn:lt.gy sft to firm (2.76)Salt: mixed clr. & salmon clr'd, v.crs xln 1667.19-69.95 portn's of lwr. 1.25m strongly leached creating large vugs up to 0.19m -suspect highly soluble K20 minl's 1669.95-70.25 (0.30)Salt: mixed salmon clr'd & clr v.crs.xln w/discont. intbd's Anhy lt.gy-wh., Clystn lt.gy & brick red. rng'g from 0.5-3.0cms. 1670.25-80.55 (10.30)Salt: mixed but pred. clr. w/mnr salmon clr'd v.crs xln mnr. scatt'd impurities thr'out, short discont. whisps lt.gy clystn. btwn xtls & mnr Anhy bnd's lt gy-wh up to 2 cms. 1680.55-80.85 (0.30)Anhy: It gy-wh to buff fnly lamin'd w/mnr irreg. bnds. clr. salt up to 2 cms. 1680.85-82.68 clr. v. crs. xln (1.83)Salt: buff lt. gy wh. irreg. fn lamin's w/ 1682.68-82.92 (0.24)Anhy: mnr blebs. clr. salt. 1682.92-83.68 (0.76)Salt: clr. v.crs. xln 1683.68-84.02 (0.34)Anhy: lt.gy wh. fnl'y lamin'd locl'y irreg. w/ intb'd clr. salt in upper 1/2 1684.02-86.62 (2.60)Salt: clr. v. crs. xln 1686.62-86.86 (0.24)Anhy: buff to lt. gy-wh. fn irreg. lamin's w/mnr intbds salt. 1686.86-88.44 (1.58)Salt: clr. v. crs. xln 1688.44-88.86 (0.42)Anhy: buff to lt.qy wh. fnl'y lamin to irregl'y lamin'd, sft. sed. defm'n w/mnr. interlamins of clr. salt. 1688.86-90.10 (1.24)Salt: clr. v.crs. xln LOWER PRAIRIE EVAPORITE INTERBEDDED ANHYDRITE, SALT & DOLOMITE MMBR

1690.10-93.43 (3.33)Anhy:

lt.gy-wh to buff, fnl'y lamin'd to irreg. lamin's w/sft. sed, defm'n & mnr interlamn's clr.salt.

-18-

CORE #6 1694-1704 (10)REC.9.96

1694.00-94.51	(0.51)Anhy:	<pre>lt.gy-wh to lt.gy lamin'd dol'c w/ intrlamin's salt filled algal mat. upper 7cm. dol buff micxln algal mat.</pre>
1694.51-94.65	(0.14)Salt:	clr. mass, 1 cm. lt gy wh. dol'c anhy- bnd in middle
1694.65-95.65	(1.00)Dol:	buff, micxln., lamin'd algal mat., plugged w/ salt. mostly clr., some salmon clr'd salt in middle. occas, bnds 1cm clr salt & lamin's Anhy, lt, gy-wh dol'c up to 7cms.
1695.65-95.81	(0.16)Salt:	clr. mass
1695.81-96.60		hy:intbd'd, Dol: buff, micxln algal
		<pre>mat, salt plugged, mnr. intbd's Anhy, lt gy -wh.</pre>
1696.60-98.81	(2.21)Salt:	clr. mass. prob.v.crs.xln on fresh surf, occas. 3cms - 0.18m bnds of Dol.buff, micxln, algal mat, salt plugged,mnr. bnds Anhy lt. gy-wh.
		BASE BEDDED SALT IN PRAIRIE EVAPORITE
1698.81-99.60	(0.79)Anby:	<pre>lt. gy wh lamn'd algal mat plugged w/ salt dol'c in pt.</pre>
1699.60-00.70	(1.10)Anhy:	<pre>lt gy-wh dol'c in pt. w/mnr lamin's dol. buff micxln algal mat.</pre>

WINNIPEGOSIS

1700.70-03.96 (3.26)Dol:

buff,micxln,poor vug por. pp-2cms in upper 1/2, all appear to be salt plugged, vugs in lower 1/3 incrs'g in size up to 3cms. all salt plugged. some Anhy: lt gy-wh. blebs and bnd'g in upper 0.9m - Bsl. 0.1m shaly and sandy w/dk gy. blk. sh. prtg's,would not dry, bld'g salt water.

BULK DENSITY INDEX

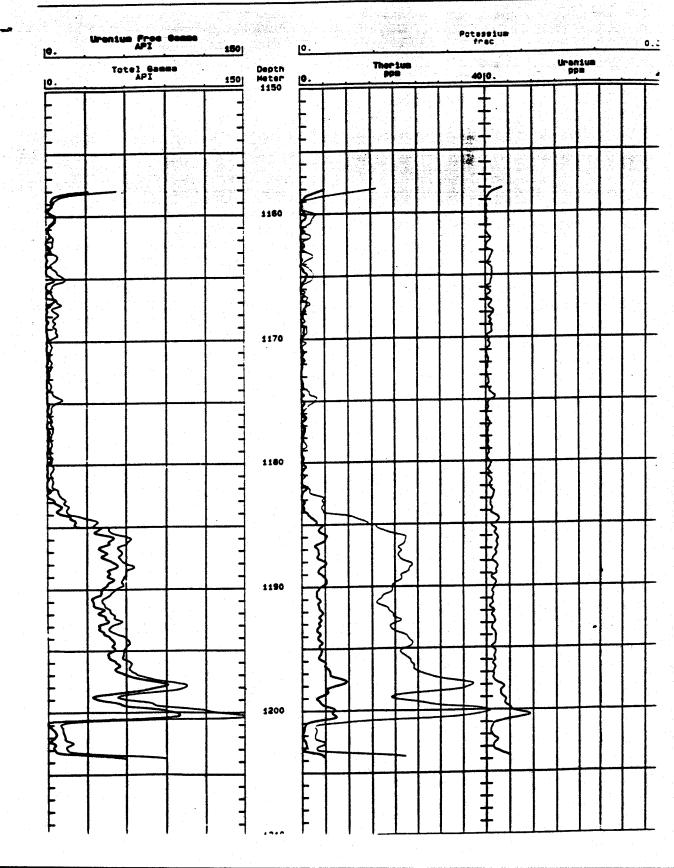
CON LAND MEDHAT 14-36-20-1 MEDICINE HAT

Vertical Scale 10.00 cm = 24.0 meter

NISKU (1158.00 - 1203.70 m)

Urenius Pres Bass 180 10. Bulk Density Index kg/m3 Tetel Ges Depth Noter 1150 300 2000 150 -1160 ALLEN AVAILAN 1-1-1-1-E 1.1 -F ٢ 4 1170 -4 L 1-1-1] 4 5 1180 -F c Ę 1190 1200 Ĺ 3 B Ś E

Core Laboratories


CORE SPECTRAL GAMMA

CON LAND MEDHAT 14-36-20-1 MEDICINE HAT

Vertical Scale 10.00 cm = 24.0 meter

NISKU (1158.00 - 1203.70 m)

Core Laboratories

COMPANY: ENRON OIL CANADA ATD. WELL: CON LAND MEDHAT 14-36-20-01 W4 UNIVERSAL LOCATION: 130 14-36-20-01 W4 GEOLOGICAL LOG PROVINCE: ALBERTA 1.1 FIELD: ___ CONTRACTOR: PRECISION DRILLING (1987) LTO. ELEVATIONS RIG RELEASED: Jun. 29/94 SPUDDED. January 6, 1974 KB: <u>727, 48 m</u> GL: <u>723, 77</u> Driller: 1704 m; Logger: 1703.6 m. TOTAL DEPTH: Plugged Bock: 1370 m. BOTTOM HOLE FORMATION: Winnipeposis OPEN HOLE LOGS STATUS: Potential Salt Water Disposal Well COMPANY: SCHLUMBERGER CASING RECORD 244.5.min U55 x LIFC @ 391.211 with 40 0:1:0 GF22. Cold Jonnes DA1E(5): x 17+ C @ 1402.5m with 8 0.1:06+181.40Cl tonnes INTERVAL LOGS RUN INTERVAL 1/23/94 FMT...../704-1600 177.3 mm J55 34.23 ×5/m CORES 1/26/94 DUL, MISHL, GR. 4. 1704-351 10.0 RECOVERY FORMATION CNILLOTNOT 1704 - TRS INTERVAL No: NISKU - GROTTC 1158-1203 (45) 45 f'2 89.6 1613 - 1704 (91) IRO. BO. - WAGS. DRILLSTEM TESTS FORMATION INTERVAL No. Nisku (misrun, 1180-1203 Nisku 1180 -1203 2 1157 - 1175 (Adission) 1153.5 - 1176-5 Nisku NISKU DATE: February 3, 1994 GEOLOGIST: HIM. BAILLIE P. Geol. - ...**y** .. REMARKS: LEGEND Froducts OIL SHOWS 0 SILTY; SANDY; PEBBLES 四日的日 BRECCIA; CONGLOMERATE L:a. ARGILLACEOUS; SILICEOUS EVEN -SANDSTONE O SPOTTED I J CALCAREOUS; DOLOMITIC SILTSTONE Cargery. ANHTRINC; GYPSIFEROUS O QUESTIONABLE SHALE DEAD (BITUMEN) D NODULES A A A A CHERT Nocha ETT LIMESTONE POROSITY ٠, 8 BENTONITE DOLOMITE: SIDERITE X INTERCRYSTALUNE/INTERGRANULAR PYRILE MARLSTONE; CALCAREOUS; DOLONITIC H 11 V; PP VUGGY; PIN POINT KAOUN ĸ ANHYORITE; GYPSUM F: E FRACTURE; EARTHY E FISH REMAINS SALT CORED PITERYAL (BI DEPTH COLUMN) [D] PLANT REMAINS 🛋 COAL IGHEOUS; METAMORPHIC F FUSSILS SORTING ROUNDING W; M; P WELL; MEDIUM; POOR ANGULAR; SUBANGULAR A; O ROUNDED; SUBROUNDED R; r **. . . .** . • .• Crystal or Crai Porosity Form Total Gas and Litnology Penetration Rata Depth 0 GEOLOGICAL DESCRIPTION Depth Scale 1:240 15851 ĸ Units/ppm 2.0 0.2 0.6 1.0 4.0 metres Minutes/metre Shale : mod. Sy. firm, fissile, micro mie. .700. Shale : as abv. Shere : as abr. ã Shale 1 410bv. Shale 1 as abr. Stule: as oby. 25-Shale : as obv. Shale 1 as aby. Shale 1 as abr. - Ir. pelesypad frog i - to Ss Ilgy for xfor, Si'l? argill, light up tr. pyr. 740 Bow 25. đ Sndwin: 11.97. fn EEP. 1001's ang w. srt d. cgl's impt. 4/w rnd. v. ors-gram glz i kik. cht f. gran. Noring. or sot -h. pyr. flr. rusty fn. r fr S. P. sidert's ss. 50-2 רום. 0 ö Snestn: as alm. · poss. intodid Shale . med. sy firm fiss. misso mic. aigery. - tr pinell (colate) floor , 531 lt. brwn. m-r.fn, argill, tight, No Fluor. or cut. 75-785 Shele: med grey, fiem, fissile micro mic -anterbods wht Shale firm (bentonitie?) w/ v.fn. ang. gtz. (gloss stands?) Shales as abo Semig dk. grey in pt. firm, fissile micro mic OLI F 00 mic 800-11 D. 25 835 .tr.pyrite . MANN. 11 Sand: framed gtz. ang - sbidd. unconsol. No fluor. Snastnill gy whi, from fr. Kaole . H. No fluor or cut . ٩. 50-Shale: med. - dk gy sily a sintbo's v. for so - state. Snashi buff as abr. prob. int bid w/ sh. Med gy. as obr. 11 : ASAbr. proh. mildd u/sh. tr. coal Shale :- med. - dk gy. sty v. In sity - inthes bulg-trastitis. Sond stor : 11 gy. for any gtz. poorly consol. kaole in pt. inthos buff wole sitch. - Ir. coal & pyr. No fluor but fr H.yer. wit cat from one frag. 75-U Shale : Med. - Ok 87 Sty +. for sig will s stato. Snown: Hgy lub-1f for any gla cogit. Kaale intbod of Ex / when do obr. -----Shak: med. ok gy sty v. fr. sky - inthes silver. to algebre buff month and. 4 4 · · · · · 100 -900-Smith: H. gy. to buff for any gla. angill, hade. Shale I med. dk gy slly r. for. say withds state. Losill buff, criptin, tite - minil fluer. No cut -tr. fractid St gts It buff cht. photos from " overly's BR. 914 S245_ *Ç<u>ı</u>,* 12 £... 1<u>P</u> 22 2 PEKT 9 Los buff. wht. as aby - It chips w/ bon appur. do hay oil strig - mint fluor his Gut. 25 " - tr. milky chl. frog's Δ " - tr. chips w/brn. hry oil stag. at you fluct it. yell. whit ent. LS: whi-H.buff. as obv., erprin, tite. 50-- tr. milky cht " 75. 732 Lsi red brn - fon, argill, crpx In. tile BANFF Ls: tan . buff , copola tile , argill 1000-Ls : as abr. & new. gy - brn. Sh. firm bling to slifix Ls: 11.97 - med buig - 97., crpxIn, argik tite 25 Ls illgy - bulf-gy, crpsle, argill, tite has abr. up tr. blk . alk bra cht 50 4 Los III. buff - wht. V.fn yter Everasic. Noflvor color poor fair por , Silly - V.fn sdy. 41 75 Ls; as abr. groig to up cale. Ss. sther: Hgy to buff wht. cole. 094 Shi dk brn blk. firm fissile . AKKEN Luitt gra gy to buff crasta. she argill, tite, to pyr. Shill gin firm finite BIG VALUET Shiasabr. A. Biyoz. & pyrite Dai Hbrn - buff. crprln, lite, anhy's, - sucrosic 1116 77 ETTLE min Anty: H. buff wh! micaln. Dol: M. Drn- Buff expanse file anty's - asabr. Anhyill, buff and micele w/ int bd; dd esebr.

	Anhyill, buff and micele w/ int bots dd ei ebr.
	Anhy: E'Dd: 05 obv. intbdis
774 J.B 115 E.C.	bols mm. introduces abr.
	Det: biff fextin g-cy with, pp frugp 41.05; Bit. Yell flue. 75-0
	Der ibuff fn sin nontid stal host leuch'd stal p W.O.S. Null yell Friedrich Stal p W.O.S. Der i fn sin rrig wy Comins & prty's med-bin sh Nofthor. Der i buff mic-fnstin wry brog, argin in pt.
	1200 120 12
227	Devi bull micaln. H. calc.
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Shidt gransy firm, finite cale.
1 2 5/1 2 9	Dol: Hay & hy. srp. In Hargill
No 3- 12-21	Lis: Ilsy micula, argill, it
	=
	Del: bull fin n/n pluposs fair intrin pon
source Services	25 25 25 25 25
	x x x x x x x x x x x x x x x x x x x
	Anhyit boff, whit cipaln.
	Asi buff whit micrin, tr, intrin per Asi buff micrin, tr, intrin per
Precue: Lta.	Dolill. 97 V. frislin fr. p. intsin par tt. tr. dk. bin. Dolill. 97 V. frislin tr. p. intsin par tt. tr. dk. bin. Dolill. 97 V. frislin tr. p. intsin par tt. tr. dk. bin. Anhyi kult-wht. mint. intkit V. fn - mic. Andel. grsie 0
Ceigery. Alberta	Litter Dulling - bull fin-vfn.x/n.tt. Litter Litter Dulling - bull fin-vfn.x/n.tt. Litter Litter Litter Chky - micr/n gini. fills in whit mic Litter Litter Chky - micr/n gini. fills in whit mic Litter Chky - micr/n gini. fills in whit mic
	Del: // buff inics/n grolg -r fn x/n. H. CRG. L
	Dol 1/1: bull crps/n dol. #. No Cal -X
	Anhy: as aby. NY: bull coprin. It
	Dol: buff x fn.xln tr. p. intxln por,
	Link La
	Lis: buff i H. sy copola the Lis: buff i H sy copola the Lis: buff i H sy copola the Lis: prat. buff man H sy copola the
	Lsi bull cipila dole t
4 	Lsi pred. bull sy r. fr pelleli in nie nix # Lsi pred. bull si nix lisy dole cipiln #. Lsi pred. bull r.fn-fn xln. tr. p. intrin por Lsi pred. bull v.fn-fn xln. tr. p. intrin por Lsi pred. bull w/mnr. It sy cipxin. # & Anhy: bull tows!.
	Ls: pred bull & maxill gy as aby which have have a start with the second bull of maxill gy as aby which have have have have have have have hav
	25 Andys bull - white croxin w/mone inthos bull cropile A. Dol & bull mich earthy full p.pp. intsin - vus por Dol & bull mich earthy full p.pp. intsin - vus por Dol & bull mich earthy full p.pp. intsin - vus por
	Der i buff r. finslin tr. p. Intslin por. D.T. sussent i pur. No Cut No Cut Anhy: buff r. finslin. p. poss. f. intslin. por Nu Cut Anhy: buff. wht. cipslin.
	Anhy: bull v. farla, p. intrin par Nocol Anhy: bull v. farla, p. intrin par Nocol Anhy: bull . whi. cipila. Dol: 11 bull . whi. cipila. Dol: 11 bull . whi. cipila. Dol: 11 bull . whi. cipila.
-	SALT No evid. of por. in Small. 241 buff crps/n #. 241 buff crps/n #.
	Lill bill gy mich H. Lill bill gy mich H.
	Ls: II and bra for med stands to up & sticat. Ls: II med. bra for med stands to up & sticat. Ls: II med. bra for med stands to up & sticat. Ls: II med. bra for med stands to up & sticat. Ls: II med. bra for med stands to up & sticat. Dot i boff v. fa xla. p intxin por No Cat Dot i boff v. fa xla. p intxin por No Cat Avi as abv. bearing II. bra. upt. D.T. suggests prob. f for
	RIF 213 Dol, bull r. fn×ln. p appur intela For Sul D.Tsuggestr prob. fair 4 No Cut. 213 Dol: Suif v. fn×ln. tt. Shi mod gin. gy hard dense klinduntit mendsta. 213 Shi mod gin. gy hard dense klinduntit mendsta. 213 Litter
	CORE # 3 25 25 25 25 26
	The second solution of the second solution of the second solution of the second solution of the second solution is the second solution of
	$\frac{Ocis F + H}{F} = \frac{1}{50} + \frac$
	Sall: pick ch, v. cr. v/n. ccca: salling chil + + + + + + + + + + + + + + + + + + +
	$\frac{ORE}{45} = \frac{1}{1000} + \frac{1}{1000} + \frac{1}{10000} + \frac{1}{10000000000000000000000000000000000$
	An hy: H.gy. Why bull for lamin - inicy. la min's Algulant
	$= \frac{13}{13} \frac{7he}{5arre} \frac{23}{24}$ $= \frac{1}{2} \frac{1}{12} \frac{1}{12} \frac{5}{5} \frac{1}{5} \frac{1}{5}$ $= \frac{1}{2} \frac{1}{12} \frac{1}{12} \frac{5}{5} \frac{1}{5} \frac{1}{5}$

.

· · · на (**1**. 1977) 1976 — Приланд Парадари, 1977) $\begin{array}{l} \left\{ \begin{array}{c} \left\{ 1, 0, 0 \right\} \\ \left\{ 1, 0 \right\} \\ \left\{$

с · ·

. .