MAR 19940007: LEGEND

Received date: Dec 30, 1994

Public release date: Dec 31, 1995

DISCLAIMER

By accessing and using the Alberta Energy website to download or otherwise obtain a scanned mineral assessment report, you ("User") agree to be bound by the following terms and conditions:

- a) Each scanned mineral assessment report that is downloaded or otherwise obtained from Alberta Energy is provided "AS IS", with no warranties or representations of any kind whatsoever from Her Majesty the Queen in Right of Alberta, as represented by the Minister of Energy ("Minister"), expressed or implied, including, but not limited to, no warranties or other representations from the Minister, regarding the content, accuracy, reliability, use or results from the use of or the integrity, completeness, quality or legibility of each such scanned mineral assessment report;
- b) To the fullest extent permitted by applicable laws, the Minister hereby expressly disclaims, and is released from, liability and responsibility for all warranties and conditions, expressed or implied, in relation to each scanned mineral assessment report shown or displayed on the Alberta Energy website including but not limited to warranties as to the satisfactory quality of or the fitness of the scanned mineral assessment report for a particular purpose and warranties as to the non-infringement or other non-violation of the proprietary rights held by any third party in respect of the scanned mineral assessment report;
- c) To the fullest extent permitted by applicable law, the Minister, and the Minister's employees and agents, exclude and disclaim liability to the User for losses and damages of whatsoever nature and howsoever arising including, without limitation, any direct, indirect, special, consequential, punitive or incidental damages, loss of use, loss of data, loss caused by a virus, loss of income or profit, claims of third parties, even if Alberta Energy have been advised of the possibility of such damages or losses, arising out of or in connection with the use of the Alberta Energy website, including the accessing or downloading of the scanned mineral assessment report and the use for any purpose of the scanned mineral assessment report.
- d) User agrees to indemnify and hold harmless the Minister, and the Minister's employees and agents against and from any and all third party claims, losses, liabilities, demands, actions or proceedings related to the downloading, distribution, transmissions, storage, redistribution, reproduction or exploitation of each scanned mineral assessment report obtained by the User from Alberta Energy.

Alberta

Alberta Mineral Assessment Reporting System

Legend Block Government Assessment Report

Legend Block NTS 72E and 82H

Takla Star Resources Ltd. and Fairstar Exploration

BY D. I. SRAEGA, Geologist EDMONTON, ALBERTA

DECEMBER, 1994

Table of Contents

Table of Contents		page 1
Legend Block Summary	· .	2
Introduction		4
Location		4
Map: Legend Block		5
Permit Tabulation		6
Work Performed		8
Conclusion		9
References	x	11
Statement of Qualification		12
Appendix I: Report on the 1993 Stream Sedin Survey of the Legend Block	nent Heavy Mineral Geochemistry	13
Appendix II Geophysical Reports	- 	51
Appendix III: Description of Locations of Per	mits	90
Appendix IV Statement of Expenditures		105

Legend Block Summary

The block consists of 129000 hectares or 230,000 acres. The block lies within the townships 4 to 12, ranges 12 to 16 west of the 4th meridian. A stream sediment heavy mineral program was conducted in the fall of 1992. The geochemical sediment heavy mineral survey report for the 1992 field season is given in Appendix I and the aeromagnetic geophysical report is given Appendix II.

In the fall of 1992 a 38 sample heavy mineral program was conducted in the vicinity of Etzikom Coulee. The ground follow-up work to the reprocessing of the GSC total field geophysical data was conducted in April of 1994

A large number of Peridotitic garnets with surface textures indicating a proximal source were found along Etzikom Coulee. The predominance of peridotitic suite minerals found suggests the potential source of the indicator minerals is a kimberlite or an ultramafic lamprophyre. A prospector reportedly found two diamonds in the gravel pit near the outlet of Crow Indian Lake.

The Peridotitic G9 and G11 garnets found had orange peel textures and one garnet had a partial kelyphitic rim. The chrome diopside grains were frosted and the ilmenite surfaces pitted. The physical surface characteristics of these minerals indicate proximal source.

One sample from Chin Coulee north of Etzikom Coulee contained one indicator mineral. The majority of indicator minerals were found along Etzikom Coulee. Indicator minerals were found in samples of glaciofluvial and alluvial origin along Etzikom Coulee. A sample of alluvium, possibly derived from the preglacial Skiff Channel sediments, contained indicator minerals. An intertill unit upstream from Crow Indian Lake on Etzikom Coulee contained indicator minerals. Samples take from glacial morainal material contained few or no indicator minerals. There is evidence of four glacial advances in a southerly direction of the Laurentide ice sheet in the Foremost area (Westgate, 1968). The Etzikom Coulee is a glacial meltwater channel that flowed eastward forming terrace deposits along the channel. The predominance of indicator minerals along the east flowing Etzikom Coulee and the southerly direction of ice movement suggests a source of indicator minerals from the north or northwest.

The results of the sediment heavy mineral program prompted the undertaking of the reprocessing of the GSC aeromagnetic total field magnetics data for part of the southern portion of the block. The reprocessing of the data included total field, first and second derivative of vertical magnetic gradient and the euler deconvolution. The reprocessing determined there were 12 possible geophysical targets in an area from Etzikom Coulee to Chin Coulee. Airphoto interpretation, ERCB computer database and ground follow-up of potential targets determined there was only one anomaly not related directly to culture. This anomaly (F6n) was between two fight lines and 100 meters south of a gas pipeline and three farm buildings (refer to appendix II)

The proximal provenance indicated from the surface textures of the indicator minerals suggested a local source of indicator minerals. The reprocessed geophysical data indicated one anomaly was not related to culture. Regional total field geophysical maps indicate radial dykes radiating from the Sweetgrass Hills in northern Montana (Ross et al., 1994). These dykes may be the source of the indicator minerals along Etzikom Coulee. It is inconclusive at this time where the potential source of the indicator minerals and the diamonds is in the block.

Introduction

This assessment report detail the stream sediment heavy mineral program carried out in the Legend Block in the search for diamond bearing alkaline ultrabasic rock. There were 15 samples taken in the fall of 1992 in the Legend Block.

The Precambrian basement underlying the Legend Block is the Medicine Hat Block (Ross et al., 1991). The Medicine Hat Block has been dated between 2.65 and 3.27 Ga. The block is bounded to the north by the Vulcan aeromagnetic low and to the south by the Wyoming craton. The Medicine Hat Block may be the northern extension of the Wyoming craton (Luth et al., 1994). The Wyoming Craton is known to host alkaline ultrabasic diamond bearing rocks. The association of a Precambrian basement terrane spatially associated alkaline ultrabasic diamond bearing rock make the Legend Block a potential target for diamond exploration.

Location

This assessment pertains to the Legend Block. The block consists of 14 metallic and industrial permits in the Eastern Alberta Plain. The block consists of 129000 hectares or 230,000 acres. The block lies within the townships 4 to 12, ranges 12 to 16 west of the 4th meridian.

Access in the block is excellent. Highways 61 and 4 provide good access by road and range and township roads grid the area at 1 mile intervals. The area is extensively cultivated providing good access by foot.

Permit Tabulation

The permit holder of the metallic and industrial mineral permits which comprise the Legend Block is held by Takla Star Resources Ltd. This assessment report is submitted by Takla Star Resources Ltd. and authored by Douglas I. Sraega. G.I.T. The list of permits, which comprise the Legend Block, is given below with amount of money allocated to the permit. The described lands are to be retained for 6 years with expenditures in excess of \$25 per hectare on retained lands The list of permits, which comprise the Legend Block, is given below with amount of money allocated to the below with amount of money spent on exploration per permit. At the current time the block is a joint venture between Takla Star Resources Ltd. 75% and Fairstar Exploration 25%. The description of the tracts of lands pertaining to each permit is given in Appendix II. The statement of expenditures in given in appendix III

Permit Number	Amount of Money Spent in Permit
9393030557	\$0.0
9393030558	\$0.0
9393030559	\$17,740.44
9393030560	\$0.0
9393030561	\$0.0
9393030562	\$0.0
9393030563	\$0.0
9393030564	\$0.0
9393030675	\$0.0
9393030676	\$0.0
9393030677	\$0.0
9393030678	\$0.0
9393030679	\$0.0
9393030680	\$0.0

The list of metallic and industrial mineral permit numbers with the locations to be retained by Takla Star Resources.

Permit Number	Description of Lands to be Retained
9393030557	-
9393030558	-
9393030559	4-14-5: 29: L 5-7, L 10-12, L 13-15; 30 L 6-11, L 14-16;
	31 L 1-3, L 6-11, 32 L 2-3, L 5-7, L 10-12
9393030560	-
9393030561	-
9393030562	-
9393030563	-
9393030564	-
9393030675	
9393030676	_
9393030677	-

_

Work Performed

A stream sediment heavy mineral program was conducted in the fall of 1992. The geochemical sediment heavy mineral survey report for the 1992 field season is given in Appendix I and the aeromagnetic geophysical report is given Appendix II.

Field Work

Stream Sediment Heavy Mineral Program Geophysical Ground Follow-up <u>Dates</u> September 1 to 25, 1992 April 25 to 30, 1994

Conclusions

In the fall of 1992 a 38 sample heavy mineral program was conducted in the vicinity of Etzikom Coulee. The ground follow-up work to the reprocessing of the GSC total field geophysical data was conducted in April of 1994

A large number of Peridotitic garnets with surface textures indicating a proximal source were found along Etzikom Coulee. The predominance of peridotitic suite minerals found suggests the potential source of the indicator minerals is a kimberlite or an ultramafic lamprophyre. A prospector reportedly found two diamonds in the gravel pit near the outlet of Crow Indian Lake.

The Peridotitic G9 and G11 garnets found had orange peel textures and one garnet had a partial kelyphitic rim. The chrome diopside grains were frosted and the ilmenite surfaces pitted. The physical surface characteristics of these minerals indicate proximal source.

One sample from Chin Coulee north of Etzikom Coulee contained one indicator mineral. The majority of indicator minerals were found along Etzikom Coulee. Indicator minerals were found in samples of glaciofluvial and alluvial origin along Etzikom Coulee. A sample of alluvium, possibly derived from the preglacial Skiff Channel sediments, contained indicator minerals. An intertill unit upstream from Crow Indian Lake on Etzikom Coulee contained indicator minerals. Samples take from glacial morainal material contained few or no indicator minerals. There is evidence of four glacial advances in a southerly direction of the Laurentide ice sheet in the Foremost area (Westgate, 1968). The Etzikom Coulee is a glacial meltwater channel that flowed eastward forming terrace deposits along the channel. The predominance of indicator minerals along the east flowing Etzikom Coulee and the southerly direction of ice movement suggests a source of indicator minerals from the north or northwest.

The results of the sediment heavy mineral program prompted the undertaking of the reprocessing of the GSC aeromagnetic total field magnetics data for part of the southern portion of the block. The reprocessing of the data included total field, first and second derivative of vertical magnetic gradient and the euler deconvolution. The reprocessing determined there were 12 possible geophysical targets in an area from Etzikom Coulee to Chin Coulee. Airphoto interpretation, ERCB computer database and ground follow-up of potential targets determined there was only one anomaly not related directly to culture. This anomaly (F6n) was between two fight lines and 100 meters south of a gas pipeline and three farm buildings (refer to appendix II)

The proximal provenance indicated from the surface textures of the indicator minerals suggested a local source of indicator minerals. The reprocessed geophysical data indicated one anomaly was not related to culture. Regional total field geophysical maps indicate radial dykes radiating from the Sweetgrass Hills in northern Montana (Ross et al., 1994). These dykes may be the source of the indicator minerals along Etzikom Coulee. It is inconclusive at this time where the potential source of the indicator minerals and the diamonds is in the block.

<u>References</u>

Luth R. C., Creaser R. A., Covell P. A. and Buhlman A. L., 1994, Lower crustal xenoliths of the Sweetgrass hills: preliminary findings. In Ross G. M., (editor), 1994, Alberta basement transects workshop (February 14-15), Lithoprobe Report #37, Lithoprobe Secretariat, University of British Columbia, pages 240-249

Dawson J. B. and Stephen W. E., 1975, Statistical classification of garnets from kimberlite and associated xenoliths. Journal of Geology, vol. 83, pages 589-607.

GSC Map 2588, Aeromagnetic Total Field Map, NTS 72E SW, scale 10000.

- Ross G. M., Mariano J. and Dumont R., 1994, Was Eocene magmatism widespread in the subsurface of southern Alberta? Evidence from new aeromagnetic anomaly data. In Ross G. M., (editor), 1994, Alberta basement transects workshop (February 14-15), Lithoprobe Report #37 Lithoprobe Secretariat, University of British Columbia, pages 240-249.
- Ross G. M., Parrish R. R., Villeneuve M. E. and Bowring S. A., 1991, Geophysics and Geochronology of the Basement of the Alberta Basin, Western Canada. Canadian Journal of Earth sciences, vol. 28, pages 512-522.
- Stephen W. E. and Dawson J. B., 1977, Statistical comparison between pyroxenes from kimberlites and their associated xenoloiths. Journal of Geology, vol. 85, pages 443-449.

Westgate J. A., 1968, Surficial Geology of the Foremost - Cypress hills Area, Alberta Research Council of Alberta, bulletin 22, 122 pages.

Statement of Qualification

I, Douglas I. Sraega of Edmonton , Alberta do hereby certify that.

- 1.) I am a graduate of the University of Alberta, Edmonton with a B.Sc. in Science obtained in 1987.
- 2.) I have completed a Special Certificate in Geology from the University of Alberta obtained in 1993.
- 3.) I am the author, except for the statement of expenditures, of this report.

Certified

Nec 16. 194 Data

Appendix I

Report on the 1993 Stream Sediment Heavy Mineral Geochemistry Survey of the Legend Block

REPORT ON THE 1993 STREAM SEDIMENT HEAVY MINERAL GEOCHEMISTRY SURVEY

ON THE

LEGEND BLOCK ALBERTA NTS 72E and 82H

Prepared for

TAKLA STAR RESOURCES LTD.

BY

D.I. SRAEGA, Geologist EDMONTON ALBERTA

FEBUARY 1994

Table of Contents					
1 Introduction					
2 Location, Access and Physiography	1				
2.1 Location	1				
2.2 Access and Physiography	1				
3 Regional Geology	2				
4 Exploration Program	2				
5 Discussion of Indicator Minerals	3				
6 Table: Exploration Results	4				
7 Discussion	4				
7.1 Discussion of Indicator Minerals	. 4				
7.2 Potential Source Area	4				
7.3 Diamond Potential	5				
8 Conclusions	:5.				
9 Recommendations	6				
10 References	7				
11 certificate of Qualification	8				
	-				

)

12 Appendices

12.1 Sample Site Descriptions

12.2 Electron Microprobe Analysis Figures:

Figure 1: Indicator Minerals

Executive Summary

General

A sediment geochemistry program was carried out on the Legend Block during the fall of 1992. The object of the program was to sample glacial drift and alluvium primarily along or adjacent to Etzikom Coulee and Chin Coulee to assess the potential for diamondiferous source rocks.

Results

A large number peridotitic garnets with surface textures indicating a proximal source were found. The large number of peridotitic suite of minerals found suggests the source the potential primary source rock is kimberlite. The presence of microdiamonds indicates the potential source rock is diamondiferous.

Samples taken along the east flowing Etzikom Coulee and meltwater channels to the north of the channel contain indicator minerals. Samples taken from Chin Coulee 20 km north of Etzikom Coulee were barren. One sample of glacial outwash proximal to the north flowing preglacial Skiff drainage north of Chin Coulee contained indicator minerals. This suggests potential primary source rocks exists north and northwest of Etzikom Coulee. This is coincident with aeromagnetic anomalies north and northwest of Etzikom Coulee.

Recomendations

The results to date indicate at least one primary source rock may exist in the northwest corner of the Legend Block. Tightly spaced ground aeromagnetic survey should be conducted in the northwest and north of Etzikom Coulee coincident with aeromagnetic survey to define potential drilling targets.

1 Introduction

This report describes the results of a heavy mineral stream geochemistry program carried out on the Legend Block during the fall of 1992. The object of the program was to sample glacial drift and alluvium primarily along or adjacent to Etzikom Coulee and Chin Coulee to assess the potential for diamondiferous source rocks.

Kimberlites and lamproites are the primary source of diamond. Diamondiferous kimberlites are found in deep Archean cratons and lamproites with paleobenioff zones in mobile belts. Diatreme clusters and fields lie along linears controlled by deep crustal fractures. The Legend Block lies over the Archean Medicine Hat Block which has been interpreted as the northern extension of the Wyoming craton. Diamondiferous kimberlites are found in the Wyoming craton along the Colorado-Wyoming border.

2 Location, Access and Physiography

2.1 Location

The Legend Block lies 60 km east of Lethbridge Alberta and comprises 83879 hectares or nine mineral applications. The block is bounded by range 13 to 16 west of the 4th meridian and between the 4th and 7th township and includes 9 townships (T4-7,R13-16W4). Small agricultural communities of Legend and Skiff lie within the claim block. The Etzikom Coulee flows west through the southern portion of the block and Crow Indian Lake lies within the coulee. Chin Coulee cuts through the northern portion of the block.

2.2 Physiography and Access

The area is predominantly agricultural with excellent road access by highway and secondary road. The block is part of the Eastern Alberta Plain with rolling to undulating hills and incised drainages. Wheat and barley are the main agricultural crops with praire grasses the dominant vegetation on uncultivated land. Lodgepole pine, popular and spruce are found on the north side of the coulees. Access is excellent with highways 61 and 4, township and range roads.

The elevation in the Legend Block area averages 900m in the plains and the Chin and Etzikom coulees are incised up to 60m below the surrounding plain.

Southern Alberta is divided into three drainage systems. The Oldman River is part of the Nelson drainage to Hudson Bay and the Milk River, near the Montana border, is part of the Missouri drainage system. The Pakowki drainage basin lies between the Nelson and Missouri drainages and includes Etzikom Coulee (Westgate, 1968). It is an enclosed drainage encompasing almost the entire block.

1 Introduction

This report describes the results of a heavy mineral stream geochemistry program carried out on the Legend Block during the fall of 1992. The object of the program was to sample glacial drift and alluvium primarily along or adjacent to Etzikom Coulee and Chin Coulee to assess the potential for diamondiferous source rocks.

Kimberlites and lamproites are the primary source of diamond. Diamondiferous kimberlites are found in deep Archean cratons and lamproites with paleobenioff zones in mobile belts. Diatreme clusters and fields lie along linears controlled by deep crustal fractures. The Legend Block lies over the Archean Medicine Hat Block which has been interpreted as the northern extension of the Wyoming craton. Diamondiferous kimberlites are found in the Wyoming craton along the Colorado-Wyoming border.

2 Location, Access and Physiography

2.1 Location

The Legend Block lies 60 km east of Lethbridge Alberta and comprises 83879 hectares or nine mineral applications. The block is bounded by range 13 to 16 west of the 4th meridian and between the 4th and 7th township and includes 9 townships (T4-7,R13-16W4). Small agricultural communities of Legend and Skiff lie within the claim block. The Etzikom Coulee flows west through the southern portion of the block and Crow Indian Lake lies within the coulee. Chin Coulee cuts through the northern portion of the block.

2.2 Physiography and Access

The area is predominantly agricultural with excellent road access by highway and secondary road. The block is part of the Eastern Alberta Plain with rolling to undulating hills and incised drainages. Wheat and barley are the main agricultural crops with praire grasses the dominant vegetation on uncultivated land. Lodgepole pine, popular and spruce are found on the north side of the coulees. Access is excellent with highways 61 and 4, township and range roads.

The elevation in the Legend Block area averages 900m in the plains and the Chin and Etzikom coulees are incised up to 60m below the surrounding plain.

Southern Alberta is divided into three drainage systems. The Oldman River is part of the Nelson drainage to Hudson Bay and the Milk River, near the Montana border, is part of the Missouri drainage system. The Pakowki drainage basin lies between the Nelson and Missouri drainages and includes Etzikom Coulee (Westgate, 1968). It is an enclosed drainage encompasing almost the entire block.

3 Regional Geology

The Precambrian basement underlying the Legend study area is the Medicine Hat Block (Ross et al., 1991) dated between 2.65 and 3.27 Ga. The 1.8 Great Fall Tectonic Zone separates the Wyoming craton from the Medicine Hat Block. The block is bounded to the north by the Vulcan aeromagnetic low which is interpreted to be an aulocogen or a collision suture (Ross et al., 1991).

The sedimentary strata include Cambrian, Devonian and Cretacous strata. Cambrian siliciclastic, carbonate and red beds are uncomformably overlain by Devonian platform and reefal corbonates and shales. The Cretaceous Foremost Formation of the Belly River Group subcrops in the entire area. To the east a complete stratigraphic sequence in the Cypress Hills indicates the study area has been extensively eroded during the Tertiary (Westgate, 1968).

Surficial deposits range in depth from 50 ft to 100 ft except in the talwegs of buried preglacial channels which can exceed 200 ft in depth. The preglacial Skiff channel runs north through Skiff east Legend (Westgate, 1968). Glacial landforms include both dead and active ice features. Dead ice features include end , washboard, hummocky and disintegration moraine and eskers. Active ice features include drumlins and flutings. Proglacial landforms include outwash plains, meltwater channels, glaciolacustrine deposits and outwash spillways. The Chin and Etzikom Coulees are glacial meltwater channels. There is evidence in the area of four glacial advances of the Laurentide ice sheet in the Foremost area (Westgate, 1968) with ice directions south to southeast. The Etzikom and Chin Coulees drained glacial meltwater east and terraces along the Etzikom show evidence of at least two glacial advances.

4 Exploration Program

All samples were collected from natural or man made exposures that are easily accessible by truck. Well sorted glaciofluvial material was sieved to -4mm whiel poorly sorted diamictons and till samples were not sieved. Each sample weighed from 25 to 30 kg. Field samples were sent to SRC for processing. Picked mineral grains were sent to the University of Saskatchewan for microprobe analysis.

A total of 17 samples; 8 till, 7 glaciofluvial, 1 alluvial and one of uncertain origin were taken in this study. Thirteen samples were taken from the Etzikom Coulee and four were taken form Chin Coulee 25 km north of Etzikom Coulee. The garnets were classified according to Dawson and Stephen (1975) and clinopyroxenes according to Stephen and Dawson (1977). A summary of field notes and locations of sample sites is listed in Appendix 10.1 and electron microprobe analysis in Appendix 10.2.

5 Discussion of Indicator Minerals

Indicator minerals are minerals which indicate to the presence of a lamproite or kimberlite intrusion or the potential for diamond in an intrusion. These minerals are characteristic of phases found in kimberlites or lamproites, the source region in the upper mantle of the rock or found as inclusions in diamonds. Some minerals commonly found in kimberlites and lamproites are also found in alkali basalts, carbonatites, lamprophyres and other rocks. Care should be taken to screen for minerals only of potential economic importance.

Diamond inclusion (DI) mineral chemistries are determined from syngenetic inclusions from diamonds. Diamond inclusion chromites typically have greater than 60 wt. % Cr_2O_3 , Mg# greater than .6 and Al_2O_3 less than 10 wt. %. Eclogitic garnet containing greater than .07 wt. % Na_2O with elevated titanium (McCandless and Gurney, 1989 and Fipke et al., 1989) have been found as diamond inclusions.

Eclogites and peridotites are the two paragenetic sources of minerals from the upper mantle. They are found in xenocrysts and xenoliths in the primary source rocks. Peridotites are the source for peridotitic G1, G2, G7, G9, G10 and G11 garnets (Stephen and Dawson, 1975) and chrome diopside. Eclogitic rocks are formed from failed basaltic melts in the upper mantle or the ultrametamorphism of subducted oceanic crust. Eclogitic garnets are classes G3 and G5 garnets as defined by Stephen and Dawson (1975).

Minerals common to other rocks have compositions similar to minerals from kimberlites and lamproites. Chromium substitution in diopside increases with pressure and calcium depletion is correlative with increasing temperature. Chrome diopside is common to lamprophyres, layered mafic intrusions and other rocks. Subcalcic chrome diopside with greater than 1 wt. % Cr_2O_3 is potentially derived from peridotite xenoliths (Mitchell, 1986). Eclogitic G5 (Dawson and Stephen, 1975) garnet has been found by Fipke et al. (1989) to overlap with regional garnet compositions. Garnets containing less than 29.93 wt % FeO (Fipke et al., 1989) are potentially derived from eclogitic rocks. Picroilmenites are commonly found in carbonatites but are low in chromium. Ilmenites with greater than 9 wt. % MgO and 3 wt. % Cr_2O_3 is significant to diamond exploration.

Kimberlites contain a relatively greater variety and number indicator minerals as compared to lamproites. Because of the diversity of lamproites the only useful indicators are phenocryst and xenocryst chromites and xenocryst eclogitic garnets. Kimberlites contain a wide variety of distinctive phenocryst, macrocryst and xenolith minerals including eclogite garnets.

6 Table: Exploration Results

Sample	Indicator Minerals
9465-02	G9 and G11 with keliphytic rim
9465-03	no indicator minerals
9465-04	no indicator minerals
9465-05	no indicator minerals
9465-06	no indicator minerals
9465-07	three G9 garnets, one G1-G9 garnet and three picroilmenites
9465-08	one picroilmenite
9465-09	one chrome-diopside and one G9
9465-10	no indicator minerals
9465-11	no indicator minerals
9465-12	one chrome-diopside
9465-13	no indicator minerals
9465-14	two G9 garnets
9465-15	no indicator minerals
9465-16	no indicator minerals
9465-17	no indicator minerals
9465-18	one G9 garnet and one Aluminous Magnesium Chromite

7 Discussion

7.1 Discussion of Indicator Minerals

The predominant indicator mineral found was peridotitic garnet of the G9 (Stephen and Dawson, 1975) which is derived from garnet lherzolite. The G5 garnet found sample 9465-07 contained over 29.94 wt. % FeO and is similar to regional garnets which overlap G5 compositions (Fipke et al., 1989). Chrome-diopside was found in two samples but contain greater than 23.0 wt. % CaO indicating a low temperature origin. The picroilmenites found have compositions similar to macrocrystal ilmenites from kimberlites. The lack of eclogitic paragenesis indicator minerals and the relatively high abundance of picroilmenite suggests the source rock is a kimberlite.

7.2 Potential Source Area

The garnets have orange peel texture and one garnet from sample 9465-02 contained a partial kelyphitic rim. Ilmenites were pitted and chrome diopsides were frosted. These physical characteristics indicate that the potential source is proximal. Samples of Glaciofluvial and alluvial origin were typically found to contain indicator minerals from Etzikom Coulee. One sample contained indicator minerals from Chin Coulee. Samples of glacial morainal provenance were found to be barren of indicator minerals. A map illustrating the distribution of sample locations and indicator minerals found is given in figure 1.

•

Sample 9465-07 from Etzikom Creek alluvium near the outlet of Crow Indian lake contained peridotitic garnets and picroilmenites. Sample 9465-02 taken nearby from terrace gravels contained a peridotitic garnet with a kelyphitic rim.

Two meltwater tributaries of Crow Indian Lake near the inferred preglacial Skiff valley contained indicator minerals. The meltwater tributeries drain areas of hummocky, washboard and ground moraine to the north of the lake.

Sample 9465-13 taken upstream from the Indian Crow Lake from an intertill unit contained indicator minerals. Sample 9465-13 taken nearby from alluvial sediment in Etzikom Creek contained indicator minerals.

Glacial and alluvial samples from Chin Coulee 20km north of Etzikom Coulee contained no indicator minerals. A glacial outwash deposit sampled north of Chin Coulee and lying over the inferred preglacial skiff valley contained indicator minerals.

The direction of glacial movement was to the south to southwest. The Etzikom glacial meltwater channel flowed east depositing terrace gravels. The preglacial Skiff valley flowed north crossing the present day Etzikom and Skiff Coulees. Samples taken along the Etzikom Coulee indicate a potential source exists north and northwest of Etzikom Coulee and south of Chin Coulee. Indicator minerals found in a glacial outwash deposit north of Chin Coulee could be derived from preglacial Skiff valley sediments.

7.3 Diamond Potential

Two microdiamonds have reported been found in alluvial deposits from Etzikom Coulee. Aluvial diamond concentrations are exceptionally low and the fact that two diamonds were found is a rare circumstance. Kelyphetic rims on garnets are fragile and do not travel far while other indicator minerals have a frosted surfaces indicating a proximal source. No minerals with diamond inclusion chemistries were found. This is most likely a function of the small number of indicator minerals found. The presence of diamond indicates the potential source is diamondiferous.

8 Conclusion

A large number peridotitic garnets with surface textures indicating a proximal source were found. The large number of peridotitic suite of minerals found suggests the source the potential primary source rock is kimberlite. The presence of microdiamonds indicates the potential source rock is diamondiferous.

Samples taken along the east flowing Etzikom Coulee and meltwater channels to the north of the channel contain indicator minerals. Samples taken Chin Coulee 20 km north of Etzikom Coulee were barren except for on sample of glacial outwash provenance proximal to the north flowing preglacial Skiff drainage. This suggests potential primary source rocks exists north and northwest of Etzikom Coulee. This is coincident with aeromagnetic anomalies north and northwest of Etzikom Coulee.

9 Recomendations

The results to date indicate at least one primary source rock may exist in the northwest corner of the Legend Block. Tightly spaced ground aeromagnetic survey should be conducted in the northwest and north of Etzikom Coulee coincident with aeromagnetic survey define potential drilling targets.

10 References

- Dawson J.B. and Stephans W.E., 1975, Statistical Classification of Garnets from Kimberlite and Associated Xenoliths. Journal of geology, vol. 83 pp589-607.
- Fipke C.E. (ed.), 1989, The Development of Advanced Technology to Distinguish between Diamondiferous and Barren Diatremes. Geol. Surv. of Canada, Open File Report pp143-166.
- G.S.C. Map 2588, Aeromagnetic Total Field Map, NTS 72E SW, scale 1:100000
- Mitchell R.H., 1986, Kimberlites Mineralogy, Geochemistry, and Petrology, Plenum Press, 442 pages
- Ross G.M., Parrish R.R., Villeneuve M.E. and Bowring S.A., 1991, Geophysics and Geochronology of the Basement of the Alberta Basin, Western Canada. Can J. Earth Sci., vol. 28, pp512-522.
- Stephens W.E and Dawson J.B., 1977, Statistical Comparison Between Pyroxenes from Kimberlites and Their Associated Xenoliths. Journal of Geology, vol. 85, pp443-449.
- Westgate J.A., 1968, Surficial Geology of the Foremost Cypress Hills Area, Alberta. Research Council of Alberta, bulletin 22, 122 pages.

11 CERTIFICATE OF QUALIFICATION

I, Douglas I Sraega of Edmonton, Alberta do hereby certify that:

1. I am a graduate of the University of Alberta, Edmonton with a B.Sc. in Science obtained in 1987.

2. I have a Special Certificate in Geology from the University of Alberta obtained in 1993.

3. I have not, nor do I expect to receive any interest directly or indirectly in the property or in the securities of Takla Star Resources Ltd.

Dated in Edmonton, Alberta, this 4th day of February, 1991

Certified

Date

Appendix 10.1

Sample Site Descriptions

•

Sample		NTS		UTM (GI	PS)	Land Location	ace Elevation fl. (from topo sheet)	Depth (m)	Colour	Field
			Zone	Easting	Northing			1		Carbonate
9465-02	9/12/92	73E/5	12U	451913	5467384	NW2-5-13W4	2925	5	Brown 10YR4/3	Strong
9465-03	9/12/92	73E/5	12U	451913	5467384	NW2-5-13W4	2925	8	Brown 10YR5/3	Weak
9465-04	9/12/92	73E/5	12U	452433	5468049	SW11-5-13W4	2950	3	Dark brown 10YR3/3	Strong
9465-05	9/12/92	73E/5	12U	451860	5466451	SW2-5-13W4	2910	2	Brown 10YR4/3	Moderate
9465-06	9/12/92	. 73E/5	12U	442091?	5468457?	NW11-6-13W4?	2915?	2	Olive gray 5Y 4/2	Moderate
9465-07	9/12/92	73E/5	12U	452244	5467248	NW2-5-13W4	2890	0	Very dark gray 10YR3/1	Moderate.
9465-08	9/12/92	73E/5	12U	444192	5472739	NW24-5-14W4	2945	1	Dark reddish brown 5YR3/3	Very strong
9465-09	9/12/92	73E/5	12U	441754	5471311	SE22-5-14W4	2950	1.5	Dark brown 10YR3/3	Very strong
9465-10	9/12/92	73E/5	12U	430106	5476694	SE4-6-15W4	2990	1	Brown 10YR4/3	Strong
9465-11	9/12/92	73E/5	12U	427826	5476390	SW5-6-15W5	2930	1.5	Dark yellowish brown 10YR4/4	Moderate
9465-12	9/12/92	82H/8	12U	427126	5477091	NE6-6-15W4	3050	1.5	Dark brown 10YR3/3	Strong
9465-13	9/12/92	73E/5	12U	433616	5475100	SW35-5-15W4	3050	1.5	Dark brown 10YR4/3	Strong
9465-14	10/12/92	73E/5	12U	436536	5472713	NW24-5-15W4	2920	1	Very dark grayish brown 10YR4/2	Very Strong
9465-15	10/12/92	73E/1 2	12U	443274	5488532	NW12-7-14W4	2800	1	Dark yellowish brown 10YR4/4	Strong
9465-16	10/12/92	73E/1 2	12U	436906	5491293	SW20-7-14W4	2950	2	Dark yellowish brown 10Y R4/4	Weak
9465-17	10/12/92	73E/1 2	12U	436906	5491263	SW20-7-14W4	2750	1.5	Olive 5Y4/4	Moderate
9465-18	10/12/92	73E/1 2	12U	435353	5493914	SW31-7-14W4	2925	1.5	Very dark grayish brown 10YR3/2	Very strong

Note: UTM coordinates for 9465-06 plot sample location in Crow Indian Lake.

Sample	ample Texture Environment		Comments		
9465-02	coarse sand	Glaciofluvial terrace	Gravel pit on inside bend Etzikom Coulee, coarse gravelly sand, sieved, overlain by 5 m poorly sorted coarse gravel		
9465-03	medium sand	Glaciofluvial terrace	Same site as 9465-02, sieved, channel-fill deposit, gravel finery and unit more resistive than 9465-02		
9465-04	silty sand	Morainal plain, eroded	Exposed backslope of old road, few oversized clasts, north flank Etzikom Coulee		
9465-05	silty sand	Morainal plain, eroded	Cutbank (caused by slumping) south shore Crow Indian Lake		
9465-06	clayey silt	Morainal plain, eroded	Backslope grid road 877, about 0.5 m below contact with overlying bouldery (abl?) material north bank Etzikom Coulee, blocky		
9465-07	gravelly sand	Alluvial	Etzikom Creek alluvium, organics, some gravel, unsieved		
9465-08	gravelly sand	Glaciofluvial terrace	very poorly sorted, small meltwater channel tributary to Etzikom Coulee, unsieved		
9465-09	medium-coarse sand	Glaciofluvial terrace	Old gravel pit, small meltwater channel tributary to Etzikom Coulee, sieved, poorly sorted		
9465-10	silty sand	Morainal plain, eroded	Man-made cut near pumpjack, Etzikom Coulee		
9465-11	silty sand	Morainal plain	South bank Etzikom Creek, jointed		
9465-12	medium-coarse sand	Glaciofluvial plain	Large gravel pit unit overlain by 0.75 m till and 0.75 m silt (lacustrine? aeolian?) north bank Etzikom Coulee, sieved		
.9465-13	clayey silt	Morainal plain, eroded	Back slope, farm access road, north bank Etzikom Coulee, coal clasts		
9465-14	silty sand	Glaciofluvial terrace? Alluvial fan? Morainal?	Sand, silt, gravel diamicton; clast supported in places; tabular, imbricated clasts; sieved; bottom of Etzikom Coulee		
9465-15	silty sand	Morainal plain, eroded	Old road cut, east of road 877, south bank Chin Coulee		
9465-16	medium grained sand	Glaciofluvial plain?	Intertill? deposit, trough x-bdg, load casting, clean, well sorted, near bottom of north bank Chin Coulee, unsieved		
9465-17	sandy silt	Morainal plain, eroded	Till overlying 9465-16; blocky, brecciated?, hard, competent, Sutherland Group equivalent?		
9465-18	fine-coarse sand	Glaciofluvial plain	Backslope large gravel pit, north bank Chin Coulee; matrix supported; horizons of coal pebbles, sieved		

Appendix 10.2

Electron Microprobe Results

9465 - SUMMARY AND DESCRIPTIONS OF PROBED GRATES

GRAIN NUMBER	SAMPLE MUMBER	NINERAL TYPE COLOUR VISUAL PROBE	DESCRIPTION (UISUAL)
- 1	9465-97	PYROPE STANKOLAE 6A	subrounded grain; opt on remant faces 71>72
CONTRACT 2	9465-ø7	PYROPE 6-9 6A	shard; rennant face has opt 1994
3 🔍	9465-07	pyrdpe G9 60	subrounded grain with opt; fragmented 15rc.
A	9465-87	PYROPE G4-G1 4	subroundeds reanant faces have opt
5	9465-87	PYROPE G9 4 1	subrounded; inclusion?, opt
6	9465-97	? PYROPE G.S 4	subangular shard
Million 7	7465-14	pyrope Gq-Ut50-	subrounded grain with opt, fragmeented 👘 😤
8 ~	9465-14	PYROPE G9-G10 50	extensively fragmented grain, small remnant primary 🖕 🦿
5	9465- 9 2	PYROPE G-Gig 5D	fragmented grain with opt; trace of keliphyte? 🖌 🎸
1. 1.	\$435-\$2	PYROPE - G45A	-fragmented-grain_with-opt-1985
1!	9465-18	PYROPE G4 58	angular shardi minor opt
12	9465-09	pyrope Gg Se	fragmented grain with opt 18 15
13 -	9455-89		-frosted, rectangular-shaped fragment C=S - 19 9
14	9465-12 J	CKRONE DIOPSIDE 🖌 GREEN	Frosted, inequient, subrounded grain c-5
15	9465-18	- CHROMITE: GRAY	subrounded, equient and euhedral 🖉 👘
16	9465-14	📈 Chromite Sphбuzigray-	-subrouned, inequient
1?	9465-12	-× ILMENTITEBLACK	_angular,-subaetalic
18	9465-12	× ILMENITE RUTILE BLACK	angular, subglassy
19	9465-18	🗡 ILNEHITE J - BLACK-	angular, sumetalic; primary fames seem pitted
20	9455-68	my-ILHENITE BLACK	angular,-subglassy, cleavage trace; present /
21	9465-87-		-angular, sumetalic; primary faces sees pitted
22	9465-97	× ILHENITE HEM. BLACK	angular, sumetalic; primary faces seem pitted
23	9465-07	mg- ILHENITE / BLACK	angular, sumetalic; primary faces sees witted
24	9455-07	m'z- RMENITE / BLACK	angular, sumetalic; primary faces seem pitted

Notes: opt = grange peel texture

WER 1 and 2 have colours indicative of G9/G19 chemistry

a seventh pyrope (50) from sample 9465-07 was lost

PROBE GARNET TYPES BASED UPON CLASSIFICATION OF BAWSON + STEPHENS (1975) A 'V' INDICATES A GREEMENT BETWEEN VISUAL AND MICROPROBE DETERMINATIONS. lo M

Feb 03 16:00 1993 /tmp/zaf_out533 Page 1

Unknown Sp	ecimen			
Group :	silicate	s Sa	mple : 87	2000 D
UNK No. :	1	Co	mment : 🎯	ă 1
Stage :	X= ;	59.557 Y⇒	40.209	Z= 10.749
Dated on WDS only	Feb 3 15:!	54 1993		•
ZAF Oxide	Acc. Vol	tage : 20.0	2 (kV)	
Element	Wt.(%)	Cation	К(%)	ZAF
Na20	0.000	0.0000	0.000	0.0000
MgO	1.188	0.2628	1.127	1.0536
A1203	55.579	9.7238	69.670	0.7977
Si02	29.836	4.4287	22.737	1.3122
K20	0.000	0.0000	0.000	0.0000
CaO .	0,000	0.0000	0.000	0.0000
TiO2	1.221	0.1363	1.055	1.1578
Cr203	0.000	0.0000	0.000	0.0000
MnO	0.000	0.0000	0.000	0.0000
FeO	0.174	0.0216	0.160	1.0848
ZnO	0.000	0.0000	0.000	0.0000
Total	87.998	14.5731	94.749	نده مي دي اي

Unknown Specimen Group : silicates Sample : 878 UNK No. : 2 Comment : 3 Stage : X= 61.580 Y= 40.502 Z= 10.752 Dated on Feb 3 16:00 1993 WDS only

ZAF Oxide	Acc. Vol	ltage : 20.0) (kV)	
Element	Wt.(%)	Cation	K(X)	ZAF
Na2O	0.000	0.0000	0.000	0.0000
MgO	21.048	4.5495	17.138 `	1,2282
A1203	19.694	3.3659	18.734	1.0513
SiO2	40.637	5.8923	34.219	1.1876
K20	0.000	0.0000	0.000	0.0000
CaO	5.521	0.8578	5.082	1.0864
T102	0.000	0.0000	0.000	0.0000
Cr203	4.405	0.5052	4.109	1.0724
MnO	0.464	0.0570	0.450	1.0310
Fe0	7.788	0.9445	7.165	1.0871
ZnO	0.000	0.0000	0.000	0.0000
Total	99.558	16.1722	86.896	

staurolite

G-9

Feb 03 16:13 1993 /tmp/zaf_out533 Page 1

Unknown Sp Group : UNK No. : Stage : Dated on WDS only	ecimen silicate: 3 X= (Feb 3 16:0	5 Sam Com 53.184 Y= 26 1993	ple : 87 ment : 40.140	8 3 4 Z = 10.755
ZAF Oxide	Acc. Vol	tage : 20.0	(kV)	
Element	Wt.(%)	Cation	К(%)	ZAF
Na20	0.001	0.0002	0.001	0.8923
MgO	22.844	4.8881	18.999	1.2024
A1203	19.499	3.2991	18.510	1.0534
SiO2	41.387	5.9409	34.821	1.1886
K20	0.000	0.0000	0.000	0.0000
CaO	4.896	0.7530	4.494	1.0893
Ti02	0.454	0.0490	0.395	1.1500
Cr203	3.380	0.3836	3.140	1.0762
MnO.	0.249	0.0303	0.241	1.0328
Fe0	6.871	0.8248	6.318	1.0876
Zn0	0.000	0.0000	0.000	0.0000
Total	99.581	15.1689	86.919	

Unknown Group UNK No. Stage Dated c WDS on1	Speci si : : on Feb	men licat 4 X≖ 3 18	64.657 13 1993	Sample Comment Y≖ 40.	: 878 : 277 069 Z=	10.755
Stage Dated c WDS onl	: on Feb y	X≠ 3 16	64.657 6:13 1993	Y= 40.	. 01	69 Z≈

ZAF Oxide	Acc. Vol	ltage : 20.0	(kV)		
Element	Wt.(%)	Cation	K(%)	ZAF	
Na20	0.002	0.0006	0.002	0.9107	•
MgO	22.209	4.7795	18.189	1.2210	
A1203	18.499	3.1479	17.498	1.0572	
Si02	41.103	5.9337	34.735	1.1833	
K20	0.000	0.0000	0.000	0.0000	·
CaO	5.190	0.8028	4.778	1.0862	P
Ti02	0.408	0.0443	0.356	1.1459	6
Cr203	5.025	0.5736	4.674	1.0751	
MnO	0.288	0.0352	0.279	1.0315	
Fe0	6.990	0.8440	6.422	1.0884	
ZnO	0.000	0.0000	0.000	0.0000	
Total	99.714	16.1615	86.934		

G-4
Feb 03 16:25 1993 /tmp/zaf_out533 Page 1

Unknown Sp	pecimen				
Group	: silicate	5 Sa	mple : 87	8.65	
UNK No.	: 5	Co	mment : 题	8	
Stage	: X=	66.651 Y=	40.097	Z= 10.7	55
Dated on WDS only	Feb 3 16:	19 1993			
ZAF Oxide	Acc. Vol	tage : 20.	0 (kV)		
Element	Wt.(%)	Cation	K(%)	ZAF	
Na20	0.001	0.0002	0.001	0.9090	
MgO	22.745	4.8814	18.652	1.2195	
A1203	17.922	3.0414	16.901	1.0604	
Si02	41.134	5.9222	34.827	1.1811	
K20	0.000	0.0000	0.000	0.0000	
CaO	5.226	0.8061	4.814	1.0854	
TiO2	0.538	0.0583	0.470	1.1451	
Cr203	5.779	0.6579	5.366	1.0770	
MnO	0.256	0.0312	0.248	1.0315	
FeO	6.406	0.7713	5.879	1.0895	
ZnO	0.000	0.0000	0.000	0.0000	
Total	100.007	16.1700	87.159		

Unknown Specimen Group : silicates Sample : 878 UNK No. : 6 Comment : 10 Stage : X= 68.167 Y= 40.142 Z= 10.755 Dated on Feb 3 16:25 1993 WDS only

ZAF Oxide	Acc. Vol	ltage : 20.0	(kV)		
Element	Wt.(%)	Cation	K(%)	ZAF	
Na20	0.000	0.0000	0.000	0.0000	
MgO	22.706	4.8228	18.737	1.2118	
A1203	19.978	3.3552	18.935	1.0550	
Si02	41.320	5.8874	34.683	1.1913	
K20	0.000	0.0000	0.000	0.0000	C
CaO	4.842	0.7392	4.449	1.0883	6
Ti02	0.075	0.0080	0.065	1.1471	
Cr203	4.214	0.4747	3.924	1.0740	
MnO -	0.341	0.0411	0.330	1.0315	
Fe0	7.226	0.8611	6.646	1.0874	
Zn0	0.000	0.0000	0.000	0.0000	
Total	100.702	16.1896	87.770		

6-9

9

.

Feb 03 17:47 1993 /tmp/zaf_out533 Page 1

Unknown Sp Group UNK No. : Stage Dated on WDS only	ecimen silicate: 19 X= 2 Feb 3 17:4	5 Sa Co 24.235 Y= 41 1993	mple : 87 mment : 🚛 40.226	8 9 Z= 10.551	/
ZAF Oxide	Acc. Volt	taoe : 20.	Ø (kU)		
Element	Wt.(X)	Cation	K(%)	ZAE	
Na20	0.000	0.0000	0,000	0.0000	
MaO	22.473 J	4.8369	18,189	1.2355	
A1203	16.725	2.8463	15.699	1.0653	
Si02	40.816	5.8931	34.739	1.1749	
K20	0.000	0.0000	0.000	0.0000	
CaO	5,952	0.9208	5.500	1.0822	
Ti02	0.898	0.0975	0.785	1.1434	
Cr203	6.826	0.7793	6.337	1.0773	
MnO	0.266	0.0325	0.258	1.0312	
Fe0	6.544	0.7901	6.001	1.0904	
ZnO	0.000	0.0000	0.000	0.0000	
 Total	100.500	16.1966	87.508		

Unknown	Speca	imen							
Group UNK No.	. : :	ilica [†] 20	tes		Samp	le	: 87	8	
Stage Dated o	; on Fel	X= 3 3 17	25. 7:47	.236 1993	Υ=	40	.039	Z=	10.549
wus on.	LY								

ZAF Oxide	Acc. Vol	tage : 20.0) (kV)	-
Element	Wt.(%)	Cation	K(%)	ZAF
Na20	0.725	0.2035	0.809	0.8961
MgO	17.689	3.8175	14.504	1.2196
A1203	1.896	0.3236	1.877	1.0103
Si02	53.336	7.7218	51.691	1.0318
K20	0.000	0.0000	0.000	0.0000
CaO	23.248	3.6065	21.432	1.0847
TiO2	0.063	0.0069	0.052	1.2077
Cr203	0.874	0.1001	0.784	1.1160
Mn0	0.071	0.0087	0.067	1.0541
Fe0	3.077	0.3726	2.792	1.1022
ZnO	0.000	0.0000	0.000	0.0000
Total	100.979	16.1612	94.008	

C-5 Chinne diopsiele. Opx

G-11

Feb 03 16:38 1993 /tmp/zaf_out533 Page 1

Unknown Sp Group UNK No. : Stage Dated on WDS only	ecimen silicate 7 X= Feb 3 16:	s Sar Cor 60.844 Y= 31 1993	nple : 87 nment : @ 42.154	8000 11 Z= 10.752
ZAF Oxide	Acc. Vol	tage : 20.0) (kU)	
Element	Wt.(%)	Cation	К(%)	ZAF
Na20	0.000	0,0000	0.000	0.0000
MaO	21.086	4.5633	17.033	1.2379
A1203	18,128	3,1021	17,170	1.0558
SiO2	40,743	5,9150	34.564	1,1788
K20	0.000	0.0000	0.000	0.0000
CaO	5.931	0.9227	5.474	1.0836
TiO2	0.045	0.0049	0.039	1.1436
Cr203	6.483	0.7441	6.033	1.0745
MnO	0.404	0.0497	0.392	1.0304
Fe0	7.042	0.8550	6.465	1,0893
Zn0	0.004	0.0004	0.003	1.1284
Total	99.866	16.1570	87.172	

Unknown Specimen Group : silicates Sample : 878 UNK No. : 8 Comment : 2000 Stage : X= 62.562 Y= 42.103 Z= Dated on Feb 3 16:38 1993 WDS only

ZAF Oxide	Acc. Vol	tage : 20.0	(kV)	•
Element	Wt.(%)	Cation	K(%)	ZAF
Na20	0.005	0.0013	0.005	0,8911
MgO	23.097	4.9158	19.228	1.2012
A1203	19.995	3.3649	18.970	1.0540
SiO2	41.257	5.8905	34.617	1.1918
K20	0.000	0.0000	0.000	0.0000
CaO	4.771	0.7299	4.380	1.0893
TiO2	0.340	0.0365	0.296	1.1493
Cr203	3.582	0.4044	3.329	1.0760
MnO	0.273	0.0330	0.265	1.0325
Fe0	6.807	0.8128	6.259	1.0875
ZnO	0.000	0.0000	0.000	0.0000
Total	100.127	16.1890	87.349	

6-9

10.755

G-9

Feb 03 17:59 1993 /tmp/zaf_out533 Page 1

Unknown Sp Group UNK No. Stage Dated on WDS only	becimen : silicate : 21 : X= Feb 3 17:	s Sau Cor 26.288 Y= 54 1993	nple : 87 nment : 40.053	8 14 Z= 10.545
ZAF Oxide	Acc. Vol	tage : 20.0	ð (kV)	
Element	Wt.(%)	Cation	K(%)	ZAF
Na20	0.688	0.1932	0.767	0.8967
Mg0	17.457	3.7681	14.314	1.2196
A1203	1.701	0.2903	1.687	1.0082
SiO2	53.392	7.7309	51.894	1.0289
K20	0.000	0.0000	0.000	0.0000
CaO ·	23.770	3.6879	21.923	1.0843
Ti02	0.090	0.0098	0.074	1.2088
Cr203	1.038	0.1188	0.929	1.1172
Mn0	0.068	0.0084	0.065	1.0546
Fe0	2.841	0.3440	2.576	1.1028
Zn0	0.000	0.0000	0.000	0.000
Total	101.045	16.1514	94.229	<u>م</u> مر بن و. ه خ م م م م م م

Unknown Specimen Group : silicates Sample : 878 UNK No. : 22 Comment : 15 Stage : X= 21.619 Y= 41.305 Z= 10.559 Dated on Feb 3 17:59 1993 WDS only

ZAF Oxide	Acc. Vol	tage : 20.	0 (kV)	
Element	Wt.(%)	Cation	K(%)	ZAF
Na20	0.000	0.0000	0.000	0.0000
MgO -	15.297	4.4833	8.477	1.8044
A1203	9.561	2.2157	7.384	1.2947
SiO2	0.037	0.0074	0.029	1.2738
K20	0.000	0.0000	0.000	0.0000
CaO	0.000	0.0000	0.000	0.0000
Ti02	0.438	0.0647	0.455	0.9630
Cr203	53.984	8.3919	54.336	0.9935
MnO	0.267	0.0444	0.276	0.9681
FeO	20.757	3.4132	19.091	1.0873
ZnO	0.025	0.0036	0.023	1.0977
<u> </u>				
T - 1 1	400 700 -			

Total 100.366 18.6241 90.071

FRO 11.256 Fe, 03 10.629 NENTER 101,490

Na 0.0 m Al Si ,7221 .2569

G-5 Chumu di opsule Gex

^	0
Ca	0
Ti	,0104
C-	1.3518
ma	,0022
ZN	. 0006
Fe2	.27

Fa: ,28 .

High Phonee : Chroniete

2019 4 ,7195 Ti & .0061 Cv & .6838 Fe 20 ,2805 Fe 20 ,1357

ZN PPm 201

AMC

Feb 04 09:01 1993 /tmp/zaf_out1090 Page 1

Unknown Specimen Group : silicates Sample : 878 UNK No. : 23 Comment : 16 Stage : X= 22.663 Y= 41.231 Z= 10.558 Dated on Feb 4 09:00 1993 WDS only

ZAF Oxide Acc. Voltage : 20.0 (kV) Element Wt.(%) Cation K(%) ZAF Na20 0.000 0.0000 0.000 0.0000 MgO 0.124 0.0333 0.079 1.5789 A1203 2.764 0.5849 2.635 1.0490 Si02 35.498 6.3727 33.495 1.0598 K20 0.000 0.0000 0.000 0.0000 CaO 32.249 6.2035 30.887 1.0441 sphere ? X Ti02 0.652 0.0881 0.551 1.1838 Cr203 0.000 0.0000 0.000 0.0000 No Ti ! MnO 1.049 0.1595 1.012 1.0370 Fe0 25.341 3.8047 23.453 1.0805 Zn0 0.000 0.0000 0.000 0.0000 Total 97.677 17.2468 92.112

Feb 03 16:49 1993 /tmp/zaf_out533 Page 1

Unknown Sp	pecimen				
Group	: silicate	∋s S	ample : 87	8	
UNK No.	: 9	C	omment : 🎆	17	
Stage	: X=	64.051 Y	= 41.758	Z= 10.759	5
Dated on	Feb 3 16:	43 1993			
WDS only					
·					
ZAF Oxide	Acc. Vol	ltage : 20	.0 (kV)		
Element	Wt.(%)	Cation	К(%)	ZAF	
Na20	0.000	0.0000	0.000	0.0000	
MgO	0.000	0.0000	0.000	0.0000	
A1203	5.105	1.8063	3.614	1.4125	
SiO2	1.248	0.3746	0.937	1.3313	
K20	0.000	0.0000	0.000	0.0000	
CaO	0.058	0.0186	0.059	0.9857	
TiO2	0.000	0.0000	0.000	0.0000	
Cr203	0.000	. 0.0000	0.000	0.0000	
MnO	0.000	0.0000	0.000	0.0000	
FeO	81.744	20.5227	82.208	0.9943	
ZnO	0.000	0.0000	0.000	0.0000	
Total	88.155	22.7222	86.818		

Unknown Specimen Group : silicates Sample : 878 UNK No. : 10 Comment : 18 Stage : X= 65.857 Y= 41.993 Z= Dated on Feb 3 16:49 1993 WDS only

ZAF Oxide	Acc. Vol	ltage : 20.0) (kV)	
Element	Wt.(%)	Cation	К(%)	ZAF
Na20	0.000	0.0000	0.000	0.0000
MgO	1.390	0.4123	0.748	1.8573
A1203	0.202	0.0475	0.169	1.1991
SiO2	0.219	0.0435	0.192	1.1377
K20	0.000	0.0000	0.000	0.0000
CaO	0.087	0.0186	0.095	0.9162
TiO2	61.030	9.1359	58.983	1.0347
Cr203	0.106	0.0167	0.099	1.0652
Mn0 ·	0.457	0.0770	0.445	1.0261
Fe0	30.259	5.0371	28.500	1.0617
ZnO -	0.000	0.0000	0.000	0.0000
Total	93.750	14.7885	89.231	

hematite

pseudorntile

10.758

Unknown Sp	oecimen	•			
Group	: silicate	s Sa	mple : 87	8	
UNK No.	: 24	Co	mment : 📾	19	
Stage	: X=	23.896 Y=	41.295	Z= 10.5	50
Dated on	Feb 3 18:	10 1993			
WDS only					
	A 11 A		.		
ZHF UXIDE	ACC. VOI	tage : 20.	2 (KV)		
Element	Wt.(%)	Cation	K(%)	ZAF	
Na20	0.000	0.0000	0.000	0.0000	
MgO	13.511	3.7363	7.554	1.7886	
A1203	0.599	0.1311	0.473	1.2681	
SiO2	0.000	0.0000.	0.000	0.0000	
K20	0.000	0.0000	0.000	0.0000	
CaO	0.000	0.0000	0.000	0.0000	
Ti02	53.138	7.4135	50.860	1.0448	
Cr203	0.439	0.0544	0.417	1.0527	
.Mn0	0.199	0.0312	0.194	1.0225	
Fe0	32.952	5.1124	31.051	1.0512	
ZnO	0.000	0.000	0.000	0.0000	
Total	100.838	16,4888	90.548		

Ilmente lou chime.

Feb 03 17:00 1993 /tmp/zaf_out533 Page 1

Unknown Sp	becimen				
Group	: silicate	s Sar	ple : 87	B	
UNK No.	: 11	Cor	ment : 🎯	20	
Stage	: X=	67.249 Y≖	41.870	Z= 10.7	58
Dated on	Feb 3 16:	55 1993			
WDS only					
	0 11-1	1			
ZHF UXIGE	HCC. VOI	tage : 20.0	(KV)		
Element	Wt.(%)	Cation	K(%)	ZAF	
Na20	0.000	0.0000	0.000	0.0000	
Mg0	12.431	3.4646	6.876	1.8077	
A1203	0.191	0.0422	0.151	1.2683	
Si02	0.013	0.0024	0.011	1.1890	
K20	0.000	0.0000	0.000	0.0000	
CaO	0.000	0.0000	0.000	0.0000	
T102	51.827	7.2875	49.802	1.0407	
Cr203	2.940	0.4346	2.802	1.0491	
MnO	0.290	0.0459	0.284	1.0194	
FeO	33.222	5.1947	31.294	1.0616	
ZnO	0.000	0.0000	0.000	0.0000	
Total	100.914	16.4718	91.221	میں چی ہیں جہ جہ حک (ما طلہ اط	

HIGH CHRUTAR ILMENTE mg-ilm

Low Ohnme - Ilmente

Jnknown Specimen		
Group : silicatés	Sample : 878	
UNK No.: 12	Comment : 21	
Stage : X= 61.774	Y= 44.057 Z=	10.754
Dated on Feb 3 17:00 1993 WDS only		

ZAF Oxide	Acc. Vol	tage : 20.0	(kV)	
Element	Wt.(%)	Cation	K(%)	ZAF
Na20	0.000	0.0000	0.000	0.0000
MgQ	10.964	3.1062	5.959	1.8398
A1203	0.154	0.0346	0.121	1.2720
SiO2	0.045	0.0086	0.038	1.1913
K20	0.000	0.0000	0.000	0.0000
Ca0	0.000	0.0000	0.000	0.0000
T102	51.611	7.3766	49.681	1.0388
Cr203	0.659	0.0991	0.633	1.0414
MnO	0.261	0.0420	0.257	1.0176
Fe0	37.000	5.8808	35.013	1.0568
ZnO	0.000	0.0000	0.000	0.0000
Total	100.694	16.5479	91.702	

Feb 03 17:11 1993 /tmp/zaf_out533 Page 1

Unknown Sp Group : UNK No. : Stage : Dated on WDS only	ecimen silicate 13 X= Feb 3 17:	s Sa Co 63.754 Y= 06 1993	mple : 878 mment : 65 43.977	22 Z= 10.756
7AF Oxide	Acc. Vol	tage : 20.	0 (kV)	
Flement	Wt.(%)	Cation	K(%)	ZAF
Na20	0.000	0.0000	0.000	0,0000
MoO	0.122	0.0501	0.054	2.2698
A1203	0.065	0.0211	0.047	1.3960
5102	0.043	0.0117	0.033	1.2801
K20	0.000	0.0000	0.000	0.0000
CaO	0.000	0.0000	0.000	0.0000
Ti02	14.279	2.9611	14.517	0.9835
Cr 203	0.000	0.0000	0.000	0.0000
MnO	0.080	0.0188	0.084	0.9608
Fe0	77.850	17.9537	77.532	1.0041
ZnO	0.000	0.0000	0.000	0.0000
Total	92.439	21.0166	92.266	

hematite?

Unknown	Specir	nen				
Group	: si	licat	es		Samp	le
UNK No.	. :	14			Comr	ient
Stage	:	X≖	65	.394	γ =΄	44
Dated o WDS onl	on Feb ly	3 17	11	1993		

ZAF Oxide	Acc. Vol	tage : 20.0	(kV)	
Flement	Wt.(%)	Cation	K(%)	ZAF
Na20	0.000	0.0000	0.000	0.0000
MaO	12.263	3.4044	6.752	1.8164
A1203	0.547	0.1201	0.431	1.2705
Si02	0.052	0.0097	0.044	1.1930
K20	0.000	0.0000	0.000	0.0000
CaO	0.000	0.0000	0.000	0.0000
Ti02	52.636	7.3719	50.519	1.0419
Cr203	0.191	0.0281	0.182	1.0459
MnO	0.256	0.0403	0.251	1.0198
Fe0	35.760	5.5696	33.789	1.0584
ZnO	0.000	0.0000	0.000	0.0000
Total	101.705	16.5442	91.967	

: 878 : 23 Z=

.121

10.759

Low deroue Ilmente.

Unknown Specimen Group : silicates Sample : 878 UNK No. : 24 Comment : 22 Stage : X= 64.443 Y= 83.665 Z= 10.610 Dated on Feb 5 12:10 1993 WDS only

LUL OXIGE	Acc. Vol	ltage : 20.	0 (KV)	
Element	Wt.(%)	Cation	K(%)	ZAF
Na20	0.000	0.0000	0.000	0.0000
Mg0	0.011	0.0047	0.005	2.2975
A1203	0.056	0.0188	0.040	1.4090
SiO2	0.000	0.0000	0.000	0.0000
K20	0.000	0.0000	0.000	0.0000
CaO	0.000	0.0000	0.000	0.0000
TiO2	11.089	2.3718	11.333	0.9785
Cr203	0.000	0.0000	0.000	0.0000
Mn0	0.019	0.0046	0.020	0.9564
Fe0	80.806	19.2189	80.788	1.0002
ZnO	0.000	0.0000	0.000	0.0000
Total	91.981	21.6188	92.186	

hematite with Minute T:02 inclusions

Feb 05 11:52 1993 /tmp/zaf_out311 Page 1

Unknown Specimen Group : silicates Sample : 878 UNK No. : 24 Comment : 22 inclusion Stage : X= 64.544 Y= 83.617 Z= 10.610 Dated on Feb 5 11:52 1993 WDS only

ZAF Oxide	Acc. Vol	ltage : 20.	0 (kV)	
Element	Wt.(%)	Cation	K(%)	ZAF
Na20	0.000	0.0000	0.000	0.0000
MgO	0.000	0.0000	0.000	0.0000
A1203	0.076	0.0147	0.072	1.0658
SiO2	0.000	0.0000	0.000	0.0000
K20	0.000	0.0000	0.000	0.0000
CaO	0.000	0.0000	0.000	0.0000
Ti02	96.288	11.8571	91.585	1.0513
Cr203	0.000	0.0000	0.000	0.0000
Mn0	0.000	0.0000	0.000	0.0000
FeO	1.925	0.2636	1.754	1.0974
Zn0	0.000	0.0000	0.000	0.0000
Ţotal	98.289	12.1355	93.411	

Feb 03 17:23 1993 /tmp/zaf_out533 Page 1

Unknown Sp Group UNK No	Decimen : silicates : 15	sa Co	mple : 87 mment : 🚳	8	
Stage Dated on WDS only	: X≕ 6 Feb 3 17:1	7.215 Y = 7 1993	43.755	Z= 10.7	59
ZAF Oxide	Acc. Volt	age : 20.	0 (kV)		
Element	Wt.(%)	Cation	К(%)	ZAF	
Na20	0.000	0.0000	0.000	0.0000	
Mg0	12.338	3.4531	6.810	1.8116	
A1203	0.523	0.1156	0.411	1.2698	
SiO2	0.04	0.0076	0.034	1.1924	
K20	0.000	0.0000	0.000	0.0000	
CaO	0.000	0.0000	0.000	0.9433	
TiO2	52.383	7.3966	50.251	1.0424	
Cr203	0.194	0.0288	0.185	1.0473	
MnO	0.212	0.0338	0.208	1.0204	
Fe0	34.950	5.4880	33.006	1.0589	
ZnO	0.000	0.0000	0.000	0.0000	
Total	100.640	16.5235	90.906		·
•					

Unknown	Speci	nen					
Group	: 5i	licat	ė5	Sample	: 87	8 Hillin	
UNK No.	. :	16		Comment		2	
Stage	:	X⇒	20.866	Y= 39	3.884	Z =	10.566
Dated o	on Feb	3 17	:23 1993				
WDS on B	ly						

1

ZAF Oxide	Acc. Vol	tage : 20.0	(kV)	
Element	Wt.(%)	Cation	К(%)	ZAF
Na20	0.000	0.0000	0.000	0.0000
MgO	20.795	4.5473	16.406	1.2675
A1203	15.034	2.5995	14.080	1.0677
SiO2	40.362	5.9209	34.674	1.1640
K20	0.000	0.0000	0.000	0.0000
CaO	6.874	90 0805	6.380	1.0775
TiO2	0.037	20040	0.032	1.1371
Cr203	10.307	1955	9.585	1.0754
Mn0 i	0.288	0.0358	0.280	1.0285
Fe0	6.471	0.7939	5.923	1.0926
Zn0	0.000	0.0000	0.000	0.0000
Total	100.168	16.1775	87.360	

G-9

Ilmuiti

Feb 05 11:17 1993 /tmp/zaf_out235 Page 1

Unknown Specimen Sample : 878 Comment : 617/3 Group : silicates UNK No. : 24 Stage : X= 18.765 Y= 38.995 Z= 10.591 Dated on Feb 5 11:17 1993 WDS only

ZAF Oxide	Acc. Vol	tage : 20.(ð (kV)	
Element	Wt.(%)	Cation	К(Х)	ZAF
Na20	0.000	0.0000	0.000	0.0000
Mg0	1.225	0.2942	0.754	1.6235
A1203	20.422	3.8800	18.880	1.0817
SiO2	37.630	6.0654	30.418	1.2371
K20	0.000	0.0000	0.000	0.0000
CaO	0.556	0.0961	0.527	1.0547
Ti02	0.000	0.0000	0.000	0.0000
Cr203	0.000	0.0000	0.000	0.0000
MnO	10.113	1.3807	10.120	0.9993
Fe0	31.733 X	4.2778	30.275	1.0482
Zn0	0.003	0.0004	0.003	1.1159
Total	101.682	15.9946	90.978	

almandine

G-5 Feo is high,'

??

Feb 05 11:44 1993 /tmp/zaf_out273 Page 1

Unknown Specimen Group : silicates Sample : 878 UNK No. : 24 Comment : S40/4 Stage : X= 59.069 Y= 48.422 Z= 10.717 Dated on Feb 5 11:44 1993 WDS only

ZAF Oxide Acc. Voltage : 20.0 (kV) Element Wt.(%) Cation K(%) ZAF Na20 0.210 0.0590 0.222 0.9452 MgO 16.790 3.6252 13.312 1.2613 A1203 0.731 0.1248 0.714 1.0229 Si02 54.461 7.8882 51.272 1.0622 K20 0.000 0.0000 0.000 0.0000 CaO 22.368 3.4714 20.656 1.0829 Ti02 0.000 0.0000 0.000 1.2001 Cr203 0.003 0.0004 0.003 1.1029 MnO 0.231 0.0283 0.220 1.0505 Fe0 7.277 0.8815 6.632 1.0973 ZnO 0.000 0.0000 0.000 0.0000 ___ ____ Total 102.071 16.0787 93.031

Diopside

~ ^Page 1 Unknown Specimen UNK No. : : silicates Stage X= Dated on Feb 3 17:29 1993 Sample : 878 Comment : 005 WDS only 39.949 Z= ZAF Oxide Elemant Acc. Voltage : 20.0 (kV) 10.560 Na20 MgQ A1203 22.821 0.0000 K(%) Si02 18.950 4.8800 0.000 40.918 ZAF K20 3.2040 18.813 0.0000 CaO 0.000 5.8696 17.919 1.2130 T102 5.289 0.0000 ³⁴.494 1.0575 Cr203 0.714 0.8129 0.000 1.1862 MnO 4.494 0.0771 4.867 0.0000 Fe0 0.305 0.5097 0.622 1.0865 ZnO 6.719 0.0371 4.173 1.1478 0.000 0.8050 0.296 1.0769 Total 0.0000 6.173 ົງ 1.0323 9 100.210 0.000 1.0885 16.1965 0.0000 87.358 Unknown Specimen Group : silicates UNK No. : Stage : X≈ 23.256 Dated on Feb 3 17:35 1993 Sample WDS only Comment : 878 ZAF Oxide 39,998 r6 Element Acc. Voltage : 20.0 (kV) Z= 10.556 Na20 M₉0 A1203 1.893 0.0000 K(X) 20.491 Si02 0.4592 0.000 36.713 ZAF K20 3.9303 1,171 0.0000 CaO 0.000 5.9744 18.886 1.5170 T102 2.553 0.0000 30.368 1.0850 Cr203 0.012 0.4451 0.000 1.2089 MnQ 0.000 1 0.0015 2.409 0.0000 Fe0 0.308 0.0000 0.011 1.0599 ZnO 38.240 0.0425 0.000 1.0914 0.013 5.2044 0.307 UNKINDUN Total 0.0000 0.0015 36.305 100.223 1.0047 0.012 1.0533 16.0589 1.1190 89.467

.

•

Appendix II

Geophysical Reports

REPORT ON

PROCESSING AND INTERPRETATION

OF AEROMAGNETIC DATA

ON PART OF THE LEGEND CLAIM BLOCK

ALBERTA, CANADA

FOR

TAKLA STAR RESOURCES LTD.

BY .

ROGER K. WATSON, P.ENG.

APRIL 16, 1994

INTRODUCTION

At the request of Takla Star Resources Ltd. aeromagnetic data covering part of the Legend claim block in Southern Alberta has been processed so as to enhance anomalies which are characteristic of pipe-like structures. A number of anomalies have been selected from the new data for more thorough analysis with modelling methods and several of these are believed to be potential pipe structures and are recommended for additional investigation.

The data was provided by the Geological Survey of Canada and the data processing methods were done using software from Geosoft Inc. of Toronto.

DATA

The specifications of the data set are:

SC
-

PROCESSING

The data was processed to provide the following maps:

- 1. Total field with a local background removed. The background was calculated by a least squares fit of a second degree surface to all of the data points.
- 2. First vertical derivative, also called vertical gradient.
- 3. Second vertical derivative.
- 4. Euler deconvolution solutions:

This process compares the theoretical shape of an pipe source anomaly to the data, point by point, using a square grid of ten data points. Using a small circle it "flags" each point that has a fit better than a specified error. The depth to the target is also provided. A complete description of the theory behind this relatively new process method is given in Appendix A. The results show a number of flagged areas. Some are clearly coincident with buildings or other culture from the topo map. Others are not but do not lie on an recognisable anomaly. In three cases they support anomalies found on the second derivative maps.

5. MAGMOD.

This is a least squares fitting technique which uses profile data to make a best fit of the actual data to a theoretical anomaly for a selected model shape. The shape available for a kimberlite pipe is a prism, rectangular in horizontal section. The parameters which can be fitted are depth, width, dip, thickness (down dip) and magnetic susceptibility.

INTERPRETATION

Archean basement anomalies dominate the total field map and any smaller pipe-like anomalies are obscured by the gradients in the basement activity. The two vertical derivatives enhance the smaller anomalies and a number of them were selected from the second derivative map and evaluated further using the MAGMOD anomaly fitting process.

The results of twelve anomalies are described below. The numbering system is based on dividing the area into 5 km squares and numbering these from east to west as A to H and north to south as 1 to 8. If an anomaly is near the centre of the square it is given the number of the square. If near an edge or corner the direction is added to the square number. Thus B2ne is in the northeast corner of square B2.

Anomaly B2ne

This is a clear anomaly on the second derivative (VG2) map, but gives only 1 1/2 gammas on the profile of line 10870. It models to a vertical 120m wide prism, 176m below ground surface. A good model for kimberlite but graded poor because of the uncertainty inherent in analyzing a very weak anomaly. Recommended for ground follow up on a low priority basis.

Anomaly B3e

Good VG2 anomaly shows 10 gamma amplitude on Line 10800 profile. It coincides with a small road connecting two oil wells which suggests a pipeline as the cause. However other similar roads in the area have no magnetic expression so this one may not be culture. Models well to a 150m wide prism 12m below surface. Recommended for follow up by inspection for cultural source and ground magnetic survey.

Anomaly D2w

An elongated VG2 anomaly lying between basement units. It has a linear shaped cluster of Euler solutions. The profile on Line 10850 is 3 gammas and models to a steeply dipping dyke at surface, 60 metres wide. It anomaly crosses the Chin Coulee river valley which could explain the shallow depth. No culture is evident as the cause. Recommended for follow up by ground magnetic survey.

Anomaly D6ne

A sharp VG2 anomaly lying apart from the basement anomaly and with a different strike. It models to 50m wide prism lying at or near surface. No cultural cause is seen on the topographic map. Recommended for follow up.

Anomaly E2n

This excellent anomaly lies between two flight lines and therefore must be checked on the ground. It models to steeply dipping prisms on both lines. Line 10870 models to a 370m wide prism 186 m deep. Recommended on a high priority basis for follow up.

Anomaly E2s

This is a narrow sharp 14 gamma peak on Line 10830 which models to a 40m wide vertical prism at surface. It too straddles the Chin Coulee river valley which may explain the shallow depth. No culture visible on the topographic map. Recommended high priority for inspection an a ground survey.

Anomaly E4

A three-gamma anomaly on Line 10723 models to a near vertical 40 metre wide prism, coming to surface. There is no cultural source visible on the topographic map. If it passes a culture inspection recommended for a ground magnetic survey.

Anomaly F6n

This is a well-defined second derivative anomaly on two lines with the peak lying between the lines and gives a 3 gamma amplitude on Line 10620. It models well to a 70 metre wide prism at surface and dipping 88 degrees W. But the topo map shows buildings coinciding and culture may be the cause. If a site inspection shows no magnetic material the anomaly is recommended for a follow up ground survey.

Anomaly G5se

A good looking anomaly on the VG2 map provides only 2 gammas on the Line 10640 profile. The model is a prism at surface 60m wide. The flight line is along a road and so culture is a strong possibility. A site inspection and ground survey will be easily done for this one.

Anomaly G6w

This is a strong anomaly on the VG2 map with a large cluster of Euler solutions. No buildings on the topo map but near to and parallel a road. Maybe a pipeline?

The anomaly models well to a prism, 34m wide, 40m deep and dipping 88 degrees W. This is a good model for a kimberlite pipe and should be followed up if not due to culture.

Anomaly G7

A good anomaly with a large Euler cluster. It lies directly over a bridge and is almost certainly caused by it. It is included because of its similarity to other anomalies. No further work is recommended unless site inspection should find it to be a wooden bridge or otherwise non-magnetic.

Anomaly H7

This is a strong anomaly but it coincides directly with farm buildings and is believed caused by them. It is included because when the model is restricted to that of a cultural source (thin prism) it provides a depth of 90 metres instead of the expected zero. When allowed to search for the best shape it models to a steeply dipping thick prism, 180m metres wide, lying at surface, not a bad kimberlite model. If a site inspection should not confirm a cultural source then it is recommended for a ground magnetic survey.

SUMMARY

Twelve anomalies were selected from the second derivative map for further investigation. The results are summarized in the table below.

SUMMARY OF MAGMOD RESULTS

ANOM #	AMPL MODE gammas	EL DEPTH m	WIDTH m	- CULTU AS SOU	URE RECOMMENDATION URCE
B2NE	1.5 thick pri	ism 176	120	niļ	Ground magnetic survey
B3E	10.0 inf pris	sm 12	150	road?	Cult inspc, grnd survey
D2W	3.1 dyke	· 2	60	nil	Ground magnetic survey
D6NE	5.5 thick pri	.sm O	47	nil	Ground magnetic survey

E2N 3.8 thick prism 0 46 well? Cult inspc, grnd survey E2S 13.5 Inf prism 0 36 nil Ground magnetic survey E43.0 Inf prism 40 nil Cult inspc, grnd survey 0 3.0 Inf prism 5 70 F6N farm Probable cultural source G5SE 2.5 Inf prism 0 60 road Cult inspc, grnd survey 5.9 thick prism G6W 26 143 nr road Cult inspc, grnd survey G7 6.0 Flat prism 25 50 Bridge Probably bridge · H7 4.1 Prism 0 185 farm Probably cultural

These anomalies and potentially others could be more easily seen with a new aeromagnetic survey flown at a lower altitude and closer line spacing. If this should be considered the following specifications are recommended:

- Line spacing 300 metres, 200 if the budget will permit
- flying height 200 feet mean terrain clearance
- Fixed wing is adequate.
- Cesium vapour sensor.
- reading interval about 10 15 metres.
- -. Navigation by GPS is adequate provided a base station is established and post processing is done to correct for the Selective Availability error.

Roger K. Watson, P.Eng. Consulting Geophysicist

APPENDIX A

EULER DECONVOLUTION THEORY

(Geosoft Inc.)

,

1

1. INTRODUCTION

The most universal application of magnetic and gravity data has been to determine the depth to the top of the geologic sources that produce observed anomalies. For hydrocarbon exploration, this is usually equivalent to determining the maximum thickness of the sedimentary section, or the location of igneous intrusives in the section. For minerals exploration, depth estimates are often used to determine the depth and location of geologic units or structures that produce a magnetic or gravity anomaly.

GRIDEPTH is an automatic location and depth determination method for gridded magnetic and gravity data.

Based upon Euler's homogeneity equation, GRIDEPTH uses a significantly different concept from most conventional depth interpretation methods. The advantages of GRIDEPTH are :

- its ability to rapidly analyze large amounts of area data; and
- that the method does not assume any particular geologic model, thus, GRIDEPTH can be applied and interpreted even when the geology cannot be properly represented by particular models, such as prisms or dikes.

The EULER's homogeneity equation relates the field (magnetic or gravity) and its gradient components to the location of the source, with the degree of homogeneity N, which may be interpreted as a structural index (Thompsom, 1982). The Structural index is a measure of the rate of change with distance of a field. For example, in a magnetic field a narrow 2-D dike has a structural index of N=1, while a vertical pipe gives N=2. In a gravity field, a pipe has a structural index of 2, while a sphere has a structural index of 2.

In GRIDEPTH, Euler's equation is solved simultaneously for each grid position within a sub-grid (window) by a least squares method. A square window, say 10 by 10, is moved along each grid row. At each grid point there will be 100 equations (for a 10 by 10 window), from which the four unknowns (location X, Y, Z, and a background value B) and their uncertainties (standard deviations) are obtained for a specified structural index. A solution is recorded if the depth uncertainty of the calculated depth is less than a specified tolerance and the solution is within a limiting distance of the center of the data window. When the process is finished, a Geosoft XYZ file containing the depth solutions is obtained as output.

GRIDEPTH includes the following features:

- Input grid dimensions can be up to 2000x2000 points.
- Choice of structural index, which can be between 0 and 3, including fractions.
- Adjustable depth tolerance and window-source distance.
- Adjustable data window size.

GRIDEPTH is designed as an add-on product to the Geosoft Mapping and Processing System (MPS), which includes programs for data processing, gridding, grid processing and general map graphics. GRIDEPTH also make use of companion programs MAGMAP, for gradient calculations and filtering, SYPLOT, for symbol plotting, MAPEDIT for interactive graphics editing, and XYZWIND from the XYZ Utilities I to window results based on error ranges. You are assumed to be familiar with the use of the MPS in general, and the Geosoft Graphics System in particular.

2. THEORY

Any three-dimensional function f(x,y,z) is said to be homogeneous of degree n if the function obeys the expression

$$f(tx,ty,tz) = t^* f(x,y,z)$$

From this, it can be shown that the following (known as *Euler's equation*) is also satisfied:

$$x\frac{\partial f}{\partial x} + y\frac{\partial f}{\partial y} + z\frac{\partial f}{\partial z} = nf$$

Considering potential field data, Ruler's equation can be re-stated as follows:

$$(x-x_0)\frac{\partial T}{\partial x}+(y-y_0)\frac{\partial T}{\partial y}+(z-z_0)\frac{\partial T}{\partial z}=N(B-T)$$

where (x_1, y_2, z_3) is the position of a magnetic source whose total field T is

measured at (x, y, z). The total field has a regional value of *B*. Note that *N* in this expression is equivalent to -n in Euler's equation.

It can easily be shown that simple magnetic and gravity models conform to Euler's equation (Thompson, 1982). The degree of homogeneity, N, can be interpreted as a *structural index* (SI), which is a measure of the rate of change with distance of a potential field. A magnetic point dipole conforms for N = 3, while a gravity point mass, a magnetic pole and a line of magnetic dipoles conform for N = 2; whereas a magnetic dyke and an anomalous pipe mass conform for N = 1. Reid et. al. (1990) have shown that a magnetic contact will yield an index of 0 provided that an offset A is introduced to incorporate anomaly amplitude, strike and dip factors:

$$A = (x - x_0)\frac{\partial T}{\partial x} + (y - y_0)\frac{\partial T}{\partial y} + (z - z_0)\frac{\partial T}{\partial z}$$

Given a set of observed total field data, we can determine an optimum

source location (x_0, y_0, z_0) by solving Euler's equations for a given index N by least-squares inversion of the data. The inversion process will also yield an uncertainty (standard deviation) for each of the fitted parameters, and this can be used as a criterion to accept or reject a solution. This inversion process is often called Euler Deconvolution.

In GRIDEPTH, Euler deconvolution is applied by selecting a square window of data from grids of the total field and its orthogonal derivatives, solving for

 (x_0, y_0, z_0) and its uncertainties, saving the solution if it passes certain criteria, and moving the window to the next grid point. Solutions with a depth error (standard deviation) that exceeds a defined tolerance (typically 15%), and which are within a limiting distance of the observed window are accepted. The accepted solutions are saved in a Geosoft XYZ file that can be used to plot the results.

Note that the standard deviation is a measure only of how well the measured field conforms to Euler's equations for a given index. This assumes that the index chosen is correct for the source of the field observed in the sample

window, and that only one source is producing the field observed in the window.

For magnetic data, a significant advantage of Euler's equation is that it is insensitive to magnetic inclination, declination and remanence since these become a part of the constant in the anomaly function of a given model. However, low magnetic latitude problems will still exist for magnetic North-South geologic features because the physics of this situation dictates a low signal to noise ratio in the data. Pole reduction and careful North-South leveling noise rejection filters can be applied to low-latitude data to improve the situation somewhat.

Please refer to Reid et. al. (1990) for a more complete discussion of the Euler deconvolution method used in GRIDEPTH.

GRIDEPTH

REFERENCES

Thompson, D. T., 1982, EULDPH: A new technique for making computer-assisted depth estimates from magnetic data, Geophysics, Vol.47, pp.31-37.

Reid, A. B., Allsop, J. M., Granser, H., Millett, A. J., Somerton, I. W., 1990, Magnetic interpretation in three dimensions using Euler deconvolution, Geophysics, Vol.55, pp.80-91.

APPENDIX B

MAGMOD fitted anomaly profiles

-

94/04/15

94/04/15

Geosoft MAGMOD-3 Modeling Result

P

94/04/ 18

Report on the Field Reconnaissance for the Reprocessed GSC Aeromagnetic Data of the Legend Block

prepared for

Takla Star Resources and Fairstar Exploration

By

D. I. SRAEGA, Geologist Edmonton, Alberta

April 1994

Introduction

The GSC 1992 aeromagnetic survey data for the western portion of the Legend Block of Alberta was reprocessed by Roger K. Watson, P. Eng. of Toronto. The reprocessing included total field, first derivative, second derivative and Euler deconvolution. Thirteen anomalies were defined and modeled to estimate the potential depth, width and dip of each anomaly.

Follow up of aeromagnetic anomalies included checking 1:250 000 topographic maps and airphotos against defined anomalies from the GSC reprocessed data. Anomalies not correlated with any map or airphoto feature were followed up by ground survey and ERCB database. The airphotos for the Legend block were shot during August of 1992 and 1:250 000 maps are current to mid 1970's. The GSC aeromagnetic data was collected during September and October of 1992. Flight lines were at 800m spacing at 150m mean terrain clearance.

This report details the surface follow up of anomalous sites, defines the potential anomaly source(s) and defines anomalies for follow up as suspect kimberlite like magnetic anomalies. Field follow up of magnetic anomalies included site inspection utilizing mobile GPS, prospecting of local area and some samples along Etzikom Coulee. Samples were panned down and concentrated for visual inspection.

Airphoto Interpretation and Ground Follow Up

Anomaly B2ne (UTM 419750E 5494750N, Airphotos LN-14 no. 18-19)

The anomaly is on the north side of Chin Lakes Reservoir 3.2 km above the dam. The anomaly corresponds to a circulating sprinkler system as seen on the air photos.

Anomaly D2w (UTM 4250900E 5493100N, Airphotos LN-14 no. 20-21)

The anomaly is 3 km east of Chin Lakes dam. The map produced in 1975 shows one well while the airphotos taken in 1992 show multiple wells in the area.

Anomaly B3e (UTM 4194000E 5489000N, Airphotos LN-14 no. 18-19)

Anomaly is 3.5 km southeast of Chin Lakes dam. The anomaly is associated with a battery of oil wells.

Anomaly E2s (UTM 431750E 5491250N, Airphotos LN-14 no. 23-24)

Anomaly is 3.5 km southeast of Chin Coulee dam and the airphotos taken in 1992 indicate evidence of culture. A battery of oil wells is immediately to the northeast and airphotos indicate culture over the anomaly

Anomaly E2n (UTM 4327500E 54912500N, Airphotos LN-3 no. 92-93)

Anomaly is associated with oil wells 3.5 km north of Chin Coulee. The oil wells are visible on 1992 airphotos to the northeast.

Anomaly E4 (UTM 433000E 5482600N, Airphotos LN-12 no. 71-72)

The anomaly is not related to any cultural feature on the topographic map on the air photo as seen from air photos. Ground follow up revealed a new oil well and a tank. The oil well is 14-23-6-15W4 (N 49° 29.652' W 111° 55.578') and is owned by Newtec.

Anomaly D6ne (UTM 4287000E 5474400N, Airphotos LN-11 no. 255-256)

The anomaly is associated with oilfield tanks seen in airphotos but not marked on the 1975 topographic map. Ground follow up revealed eleven wells visible in the area.

Anomaly F6n (UTM 436800E-5474250N, Airphotos LN-11 no. 252-253)

The anomaly coincides with farm buildings as seen on air photos. Ground follow up revealed the farm buildings were grain storage silos made of wood with some metal reinforcing rods. The Chin Coulee Gas Co-Op pipeline passes 100m north of the farm buildings running east-west. The area is flat with crops rotating from wheat to fallow. The ERCB has record of only one well in the LSD drilled in 1944 which was never cased and is south of the anomaly. A ground total field magnetic survey is recommended for this area

Anomaly G5se (UTM 444500E 5476400N, Airphoto LN-11 no. 256-257)

The anomaly is along the township road with no other cultural landmarks present in the area from topographic maps and airphotos. Ground follow up shows no cultural features. ERCB records indicate a well was drilled at 14 36 5 14W4 cased and abandoned in 1985. Two water wells were also drilled on a farm 200m west of the magnetic anomaly

Anomaly G7 (UTM 442850E 5468750N, Airphotos LN-10 no. 138-139)

The anomaly is associated with the road crossing Etzikom Coulee.

Anomaly H7 (UTM 446000E 5466500N, Airphotos LN-9 no.14-15)

The anomaly is associated with a farm south of Etzikom Coulee.

Conclusions

Currently only anomaly F6n is has no cultural landmarks found which could potentially generate an anomaly. The anomaly is recommended for ground total field magnetic survey or a small airborne program. The anomaly is found between two flight lines and the anomaly may shift or represent two separate sources. The ground survey in this area would ideally include at least two square miles of survey.

Appendix ERCB Computer Printouts on Well Sites

DN0604-01	ENERGY RESOURCES DATA DISSEMINATI	CONSERVATION BOARD ON - GENERAL QUERY	27 APR 1994
WELL ID : 0 ICENSE NO. : LICENSE DATE: 1 CONTRACTOR CODE	00/14-36-005-14W4/0 0115377 14 JUN 1985 5: 0Y61 BASIC DRIL	COSEKA ET AL SK LICENSEE: 0N170 AGENT : RIG NO : 0002 LHOLE DATA	IFF 14-36-5-14 COSEKA RES
TELD : 9	98 UNDEFINED		DEPTHS (M)
POOL :	· · ·	TOTAL:	976.00 SS: -52.50
GG AREA :		PB :	SS:
POSIT :		TVD :	SS:
TAHEE CLASS: 25	NEW POOL WILDCAT TEW	CONF :	(NC)
WELL STATUS. OC			(2.0)
			DATES
STATUS DATE: 22	,TIIN 1985		SPIID : 17 JUN 1985
	. 00N 1905		ETN_DETT. 21 JUN 1985
			DIC DEL . 22 JUN 1905
	NGITUDELATITUDE	ELEV (M)	RIG REL. : 22 JUN 1985
40.0 ACT:	111./65197 ACT: 49.435	166 GRD: 919.50	ON PROD. :
E 780.0 THE:	THE:	KB: 923.50	ON INJ. :
-		CF :	

ETTOM HOLE CO-ORDINATES = SURFACE CO-ORDINATES

DDN0614-01	ENERGY RESOURCES CONSERVATION BOARD 27 APR 1994 DATA DISSEMINATION - GENERAL QUERY
WELL ID : (LICENSE #:	00/14-36-005-14W4/0COSEKA ET AL SKIFF 14-36-5-140115377LICENSE DATE: 14 JUN 1985
LICENSEE:	APPLICANT/AGENT/CONTRACTOR APPLICANT/AGENT/CONTRACTOR ON170 COSEKA RESOURCES LIMITED C/O NORTH CDN OILS LTD., 700, 112 - 4 AVENUE S.W. CALGARY ALBERTA T2P4B2
AGENT:	
DRILLING CONTRACTOR: RIG NUMBER:	0Y610 BODOR DRILLING LTD 0002
SURFACE RI AGRE	SURFACE/MINERAL RIGHTS OWNERSHIP SURFACE/MINERAL RIGHTS OWNERSHIP IGHTS OWNER: 2 FREEHOLD HEAD LESSOR: 1 CROWN EEMENT TYPE: 004 5 YEAR PLAINS PETROLEUM & NATURAL GAS LEASES GREEMENT NO: 0482040167 EXPIRY DATE:
3 8	
9 R	

DDN0604 - 01	DATA DISSEMINA	ATION - GENERAL (QUERY	27 APR 1994
WELL ID : SO/03- LICENSE NO. : B00005 ICENSE DATE: 6 JAN CONTRACTOR CODE:	-30-005-14W4/0 568 N 1944 BASIC DE	DOMIN OIL LICENSEE: AGENT : RIG NO : RILLHOLE DATA	72CHIN COULEE 1 07630 DOMINION	PH 3-30-5-14 OIL
FIELD : 998 UN	NDEFINED	· · · · · · · · · · · · · · · · · · ·	DEPTHS	(M)
POOL :		Т	OTAL: 160.00	SS: 741.60
OS AREA :	-	PI	B :	SS:
DEPOSIT :		T	VD :	SS:
LAHEE CLASS: 12 TESI	r hole	C	ONF : (NC)	·
WELL STATUS: 00	02 00 00)		· · ·
	ABD		D	ATES
STATUS DATE: 6 JAN	1944		SPUD	: 6 JAN 1944
·			FIN-DRILL	: 6 JAN 1944
CO-ORLONGITU	JDELATITU	JDEELEV (M)) RIG REL.	:
5 1619.3 ACT: 111.	.877523 ACT: 49.4	106663 GRD: 90	1.60 ON PROD.	•
E 761.9 THE:	THE:	KB : 90	1.60 ON INJ.	•
•		CF :		

BOTTOM HOLE CO-ORDINATES = SURFACE CO-ORDINATES

ß

B

ļ

Section 30 new F6m

U'		DAT	A DISS	SEMINATION - GENERAL QUERY		
VEL.	L ID : 00/14-3 COSEKA	86-005- ET AL	14W4/0 SKIFF	FIN-DRI 14-36-5-14 KB: 9	LL-DATE: 21 JUN 23.50 M	1985
				CORE AN	ALISED: NO	· .
FOG	REQUEST CODE:	S				-
	,			LOG DATA		
FIN	RUN	CO.	· · ·		INTERVAL (M)	ļ.
NO.	DATE	CODE		LOG TYPE	TOPBA	SE
d	21 JUN 1985	HIST	0504	BHC SONIC	192.20 - 97	/5.20
R	21 JUN 1985	HIST	0621	COMP NEUTRON FORM DENSITY	192.20 - 97	6.20
1	21 JUN 1985	HIST	0703	DUAL INDUCTION SPHER-FOC	192.20 - 97	6.20
2	22 JUN 1985	HIST	4101	CEMENT PLUG	85.00 - 62	1.00
						•

Magnetic Anomalig G5 Se

ARD 27 APR 1994

IN0724-01

ENERGY RESOURCES CONSERVATION BOARD DATA DISSEMINATION - GENERAL QUERY

4-01 E

DN0806-01

ļ

ENERGY RESOURCES CONSERVATION BOARD DATA DISSEMINATION - GENERAL QUERY

27 APR 1994

WELL ID : 00/14-36 CENSE #: 0115377	-005-14W4/0	COSEKA ET AL KB: 923.50	SKIFF 14-36-5-14 M TD: 976.00 M
	CASING AN	D CEMENTING	
DESERVATION DATE.: CASING TYPE: CASING SIZE(MM) .:	18 JUN 1985 SURFACE 219.1		
HOE SET (M) : INER TOP (M) . : CASING DEN(KG/M3)	190.00		
GRADE (STEEL PROC): RADE (STRENGTH).:	J 55		
MIX STRING:	NO 1		
CEMENT AMOUNT: CEMENT TYPE:	14.0 TONNES CLASS G NEAT		
E-CEMENT:	NO		

ĺ

DN0616-01 ENERGY RESOURCES CONSERVATION BOARD 27 APR 1994

	DATA DISSEMINATIO	N - GENERAL QUERY	
ELL ID : 00/14-36	-005-14W4/0	COSEKA ET AL SK	IFF 14-36-5-14
CENSE #: 0115377	r . *	KB: 923.50	TD: 976.00
I DRILL DATE : 2	1 JUN 1985	GEO INT DATE :	
EO REVISED DATE: C	2 DEC 1986	GEO INT BY :	
	GEOLOGICAL TOPS	& MARKERS - LOG	•
• • • • • • • • • • • • • • • • • • •	DEPTH	SUB SEA	•
	/M\		

	FORMATION	(M)	(M)	QUALITY	-DESCRIPTION-
16 0	SECOND WHITE SPECKLED SH	525.00	398.50	LOGS,GOOD	TOP
1 060	BASE FISH SCALES ZONE	602.20	321.30	LOGS, GOOD	TOP
2120	BOW ISLAND FM	637.50	286.00	LOGS, GOOD	TOP
2130	BOW ISLAND SD	652.00	271.50	LOGS, GOOD	TOP
80	MANNVILLE GRP	769.00	154.50	LOGS, GOOD	TOP
5320	SUNBURST SD	889.00	34.50	LOGS, GOOD	TOP
4240	RIERDON FM	911.00	12.50	LOGS, GOOD	TOP
4 80	SAWTOOTH FM	941.00	-17.50	LOGS, GOOD	TOP
80	LIVINGSTONE FM	962.50	-39.00	LOGS,GOOD	TOP
9999	TOTAL DEPTH	976.00	-52.50	· -	,

DN0604-01

ENERGY RESOURCES CONSERVATION BOARD DATA DISSEMINATION - GENERAL QUERY

27 APR 1994

ELL ID : F3/13-36-005- ICENSE NO. : 0032755 LINNSE DATE: 14 SEP 1974 CONTRACTOR CODE:	14W4/0 FLOF LICE AGEN RIG	CHINGER SKIFF NSEE: 0FF30 DO T : NO :	DWW 13-36-5- MESTIC W. W.	-14
	BASIC DRILLHOLE L	ATA		
RELD : 998 UNDEFINED			DEPTHS (M) -	
	LVER UND	TOTAL:	183.00 SS:	-183.00
AREA :		PB :	SS:	
EPOSIT :		TVD :	SS:	
LAHEE CLASS: 09 OTHER		CONF : (N	C)	
WELL STATUS: 06 00 (00 00			
WATER F	ARM		DATES	
TATUS DATE: 14 SEP 1967		SP	UD : 14	SEP 1967
		FI	N-DRILL: 14	SEP 1967
CO-ORLONGITUDE	LATITUDEE	LEV (M) RI	G REL. : 14	SEP 1967
152.4 ACT: 111.773851 A	ACT: 49.434171 GRD	: ON	PROD. : 14	SEP 1967
Е 152.4 ТНЕ: П	THE: KB	: ON	TNT.	
·		:	11 .	
		• • •		

HTTOM HOLE CO-ORDINATES = SURFACE CO-ORDINATES

Water Wills near G5se

DN	06	04	-0	1	

ENERGY RESOURCES CONSERVATION BOARD DATA DISSEMINATION - GENERAL QUERY

•		
ELL ID : F1/13-36-005-14W4/0	FLORCHINGER SKIL	FF DWW 13-36-5-14 DOMESTIC W. W.
NSE DATE: 21 JUN 1966	AGENT :	
CONTRACTOR CODE:	RIG NO :	
BASIC DRILLH	OLE DATA	
IELD : 998 UNDEFINED	, 	DEPTHS (M)
POOL : 158098 MILK RIVER UND	TOTAL:	183.00 SS: -183.00
6 AREA :	PB :	SS:
EPOSIT :	TVD :	SS:
LAHEE CLASS: 09 OTHER	CONF :	(NC)
VELL STATUS: 06 00 08 00		
WATER FARM		DATES
TATUS DATE: 21 JUN 1966		SPUD : 21 JUN 1966
		FIN-DRILL: 21 JUN 1966
CO-ORLONGITUDELATITUDE	ELEV (M)	RIG REL. : 21 JUN 1966
201.0 ACT: 111.773181 ACT: 49.43373	3 GRD:	ON PROD. : 21 JUN 1966
201.0 THE: THE:	KB :	ON INJ. :
	CF :	

DTTOM HOLE CO-ORDINATES = SURFACE CO-ORDINATES

Water Nello 65 se

Appendix III

Description of Location of Permits

90

то

METALLIC AND INDUSTRIAL MINERALS PERMIT NO. 9393030557

OM Meh

AGGREGATE AREA:

•

8 704 HECTARES

DESCRIPTION OF LOCATION:

4-13-004:2-7;9;10;15-19;30;314-13-005:6;7;18;19;30;314-13-006:5-7;9;16-20;29-32

PERMITTED SUBSTANCES:

METALLIC AND INDUSTRIAL MINERALS

SPECIAL PROVISIONS:

то

METALLIC AND INDUSTRIAL MINERALS PERMIT NO. 9393030558

en Heb

AGGREGATE AREA:

8 256 HECTARES

DESCRIPTION OF LOCATION:

4-12-005: 9-11;13-16;21-25;27;28;33-36 4-12-006: 1-4;10-14;23-25;26NE;35;36

PERMITTED SUBSTANCES:

METALLIC AND INDUSTRIAL MINERALS

SPECIAL PROVISIONS:

то

METALLIC AND INDUSTRIAL MINERALS PERMIT NO. 9393030559

en

AGGREGATE AREA:

8 704 HECTARES

DESCRIPTION OF LOCATION:

4-14-005: 1-7;9-25;27-36

PERMITTED SUBSTANCES:

METALLIC AND INDUSTRIAL MINERALS

SPECIAL PROVISIONS:

TO ·

METALLIC AND INDUSTRIAL MINERALS PERMIT NO. 9393030560

ØM

Meh

AGGREGATE AREA:

8 704 HECTARES

DESCRIPTION OF LOCATION:

4-15-005: 1-7;9-25;27-36

PERMITTED SUBSTANCES:

METALLIC AND INDUSTRIAL MINERALS

SPECIAL PROVISIONS:

то

METALLIC AND INDUSTRIAL MINERALS PERMIT NO. 9393030561

AGGREGATE AREA:

8 768 HECTARES

DESCRIPTION OF LOCATION:

4-12-006: 9;15-22;27-34 4-13-006: 10-15;21-25;26NE;27;28;33-36

PERMITTED SUBSTANCES:

METALLIC AND INDUSTRIAL MINERALS

SPECIAL PROVISIONS:

то

METALLIC AND INDUSTRIAL MINERALS PERMIT NO. 9393030562

AM)

AGGREGATE AREA:

8 768 HECTARES

DESCRIPTION OF LOCATION:

4-14-006: 1-7;9-25;26NE;27-36

PERMITTED SUBSTANCES:

METALLIC AND INDUSTRIAL MINERALS

SPECIAL PROVISIONS:

то

METALLIC AND INDUSTRIAL MINERALS PERMIT NO. 9393030563

IJ,

AGGREGATE AREA:

,

8 768 HECTARES

DESCRIPTION OF LOCATION:

4-15-006: 1-7;9-25;26NE;27-36

PERMITTED SUBSTANCES:

METALLIC AND INDUSTRIAL MINERALS

SPECIAL PROVISIONS:

NÌL

то

METALLIC AND INDUSTRIAL MINERALS PERMIT NO. 9393030564

EM flob

AGGREGATE AREA:

8 768 HECTARES

DESCRIPTION OF LOCATION:

4-12-007: 1-7;9-25;26NE;27-36

PERMITTED SUBSTANCES:

METALLIC AND INDUSTRIAL MINERALS

SPECIAL PROVISIONS:

то

METALLIC AND INDUSTRIAL MINERALS PERMIT NO. 9393030675

AGGREGATE AREA:

8 000 HECTARES

DESCRIPTION OF LOCATION:

4-15-007: 1-3;7;9-25;26NE;27-36

PERMITTED SUBSTANCES:

METALLIC AND INDUSTRIAL MINERALS

SPECIAL PROVISIONS:

то

METALLIC AND INDUSTRIAL MINERALS PERMIT NO. 9393030676

om Nur

AGGREGATE AREA:

8 768 HECTARES

DESCRIPTION OF LOCATION:

4-16-007: 1-7;9-25;26NE;27-36

PERMITTED SUBSTANCES:

METALLIC AND INDUSTRIAL MINERALS

SPECIAL PROVISIONS:

то

METALLIC AND INDUSTRIAL MINERALS PERMIT NO. 9393030677

AGGREGATE AREA:

7 982.73 HECTARES

DESCRIPTION OF LOCATION:

4-16-009: 1-6;9SW;10-12;14-16;17SE;18;20;22;23L13-L16;24;26NE;28;29; 33S,NW;34;36

4-16-010: 2S,NEP

PORTION(S) LYING TO THE NORTH AND SOUTH OF THE RIGHT OF WAY AND STATION GROUNDS OF THE CANADIAN PACIFIC RAILWAY AS SHOWN ON PLAN R:Y. 21.

2L11P,L12P,L14NE,L14SEP,L14SWSE,L14SWNE,L14NWSE,L14NWNE; 3EP,NW

PORTION(S) LYING TO THE NORTH AND SOUTH OF THE RIGHT OF WAY OF THE SAID RAILWAY AS SHOWN ON THE SAID PLAN.

3L3P

PORTION(S) DESCRIBED AS THE NORTHERLY 251.46 METRES.

L5P

PORTION(S) BEING THE RIGHT OF WAY LYING TO THE NORTH AND SOUTH OF THE SAID RAILWAY AS SHOWN ON THE SAID PLAN.

- L6P

PORTION(S) LYING TO THE SOUTH OF THE SAID RAILWAY AND THE RIGHT OF WAY LYING TO THE NORTH OF THE SAID RAILWAY AS SHOWN ON THE SAID PLAN. 4NE, SEP

7L13SESE, L13SESW, L13SWSE, L13SWSW, L14P

PORTION(S) DESIGNATED AS BELLY RIVER.

9N, SW; 10-12; 14; 16; 17; 18NW, SWP, NEP, L2P

PORTION(S) LYING TO THE NORTH AND WEST OF THE RIGHT BANK OF THE SAID RIVER.

PERMITTED SUBSTANCES:

METALLIC AND INDUSTRIAL MINERALS.

SPECIAL PROVISIONS:

то

METALLIC AND INDUSTRIAL MINERALS PERMIT NO. 9393030678

AGGREGATE AREA:

8 925.586 HECTARES

DESCRIPTION OF LOCATION:

4-15-010: 1-6;7SP, NW, NEP;8SE, NEP;9S, NP;10-12;13SP, NE, NWP;14SP, NW, NEP;15N, SP;16N, SW, SEP;17-25;26E;27-36
PORTION(S) LYING TO THE NORTH AND SOUTH OF THE RIGHT OF WAY OF THE

len

CANADIAN PACIFIC RAILWAY AS SHOWN ON PLAN R.Y. 22908.

PERMITTED SUBSTANCES:

METALLIC AND INDUSTRIAL MINERALS

SPECIAL PROVISIONS:

то

METALLIC AND INDUSTRIAL MINERALS PERMIT NO. 9393030679

AGGREGATE AREA:

6 965.58 HECTARES

DESCRIPTION OF LOCATION:

4-15-011: 1-6;7NP,SW,SEP PORTION(S) LYING TO THE SOUTH AND WEST OF THE LEFT BANK OF THE BELLY RIVER.

8N, SP

PORTION(S) LYING OUTSIDE THE SAID RIVER.

· 9SP, NEP; 10S, NE, NWP; 11S, NE, NWP

PORTION(S) LYING TO THE SOUTH AND EAST OF THE LEFT BANK OF THE SAID RIVER.

12;135,NE,NWP

PORTION(S) LYING TO THE SOUTH OF THE LEFT BANK OF THE SAID RIVER. 14SP,NE,NWP;15SP

PORTION(S) LYING TO THE SOUTH AND EAST OF THE LEFT BANK OF THE SAID RIVER.

18L4P

PORTION(S) DESIGNATED AS THE SAID RIVER.

23SP;24SP;26S,NW

PORTION(S) LYING TO THE SOUTH AND EAST OF THE LEFT BANK OF THE SAID RIVER.

4-16-010: 19NP, SE, SWP; 20NW; 22; 24; 25; 26NE; 27-29

PORTION(S) LYING TO THE EAST OF THE LEFT BANK OF THE SAID RIVER. 30N, SW, SEP; 31; 32; 34-36

PORTION(S) LYING TO THE WEST OF THE RIGHT BANK OF THE SAID RIVER.

PERMITTED SUBSTANCES:

METALLIC AND INDUSTRIAL MINERALS

SPECIAL PROVISIONS:

APPENDIX

то

METALLIC AND INDUSTRIAL MINERALS PERMIT NO. 9393030680

AGGREGATE AREA:

9 072.44 HECTARES

DESCRIPTION OF LOCATION:

4-16-012: 1;2N, SE, SWP; 3N, SP

PORTION(S) LYING TO THE NORTH OF THE RIGHT BANK OF THE BELLY RIVER. 4N, SP; 5-36

PORTION(S) LYING TO THE NORTH AND WEST OF THE RIGHT BANK OF THE SAID RIVER.

PERMITTED SUBSTANCES:

METALLIC AND INDUSTRIAL MINERALS

SPECIAL PROVISIONS:

NIL

Mah

Appendix IV

Statement of Expenditures

TAKLA STAR RESOURCES LTD. STATEMENT OF EXPENDITURES DECEMBER 31, 1994 LEGEND BLOCK

GEOPHYSICAL SURVEY COSTS

FIELD STAFF EXPENSES ACCOUNTING FEES SUPPLIES 8.20 COMMUNICATIONS DELIVERY AND FREIGHT TRAVEL AND ACCOMODATION 39.25 AUTOMOTIVE EXPENSE 152.69 CONSULTING FEES GEOPHYSICAL CONTRACTS 3,702.94 EQUIPMENT EXPENSE EQUIPMENT RENTAL MEALS/ENTERTAINMENT/SUSTENANCE 20.81 **REFERENCE MATERIALS** 24.60 ASSAYING FIELD STAFF WAGES 1.887.92 MANAGEMENT SALARIES 5,836.41 SUBTOTAL **OVERHEAD COMPONENT - 15%** 875.46 TOTAL GEOPHYSICAL SURVEY COSTS 6,711.87 **GEOCHEMICAL SURVEY COSTS** FIELD STAFF EXPENSES 415.59 ACCOUNTING FEES 240.00 SUPPLIES 2.97 COMMUNICATIONS 47.62 0.00 DELIVERY AND FREIGHT TRAVEL AND ACCOMODATION 3.93 AUTOMOTIVE EXPENSE 537.65 CONSULTING FEES 0.00 GEOPHYSICAL CONTRACTS 0.00 EQUIPMENT EXPENSE 1,871.08 EQUIPMENT RENTAL 0.00 MEALS/ENTERTAINMENT/SUSTENANCE 24.85 **REFERENCE MATERIALS** 3.20 ASSAYING 3,697.40 FIELD STAFF WAGES 2,497.77 248.00 MANAGEMENT SALARIES 9,590.06 1,438.51 **OVERHEAD COMPONENT - 15%** 11,028.57 TOTAL GEOCHEMICAL SURVEY COSTS

LEGEND

(

Compiled by L.R. Abrams, CMA