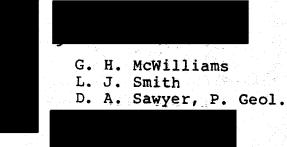
MAR 19790010: RICHARDSON RIVER

Received date: Dec 31, 1979

Public release date: Jan 01, 1981


DISCLAIMER

By accessing and using the Alberta Energy website to download or otherwise obtain a scanned mineral assessment report, you ("User") agree to be bound by the following terms and conditions:

- a) Each scanned mineral assessment report that is downloaded or otherwise obtained from Alberta Energy is provided "AS IS", with no warranties or representations of any kind whatsoever from Her Majesty the Queen in Right of Alberta, as represented by the Minister of Energy ("Minister"), expressed or implied, including, but not limited to, no warranties or other representations from the Minister, regarding the content, accuracy, reliability, use or results from the use of or the integrity, completeness, quality or legibility of each such scanned mineral assessment report;
- b) To the fullest extent permitted by applicable laws, the Minister hereby expressly disclaims, and is released from, liability and responsibility for all warranties and conditions, expressed or implied, in relation to each scanned mineral assessment report shown or displayed on the Alberta Energy website including but not limited to warranties as to the satisfactory quality of or the fitness of the scanned mineral assessment reports and warranties as to the non-infringement or other non-violation of the proprietary rights held by any third party in respect of the scanned mineral assessment report;
- c) To the fullest extent permitted by applicable law, the Minister, and the Minister's employees and agents, exclude and disclaim liability to the User for losses and damages of whatsoever nature and howsoever arising including, without limitation, any direct, indirect, special, consequential, punitive or incidental damages, loss of use, loss of data, loss caused by a virus, loss of income or profit, claims of third parties, even if Alberta Energy have been advised of the possibility of such damages or losses, arising out of or in connection with the use of the Alberta Energy website, including the accessing or downloading of the scanned mineral assessment report and the use for any purpose of the scanned mineral assessment report.
- d) User agrees to indemnify and hold harmless the Minister, and the Minister's employees and agents against and from any and all third party claims, losses, liabilities, demands, actions or proceedings related to the downloading, distribution, transmissions, storage, redistribution, reproduction or exploitation of each scanned mineral assessment report obtained by the User from Alberta Energy.

Alberta

Alberta Mineral Assessment Reporting System

September 1979

YEAR-END REPORT 1979 EXPLORATION PROGRAM RICHARDSON RIVER PROJECT NORTHEASTERN, ALBERTA NTS 74-L-2, 3, 6, 7

V-AF-161(2)

ļ

19790010

I. SUMMARY

The 1979 Exploration Program on the three Quartz Mineral permits #6876120002, #6876120004, and #6876120005 was designed to test the Questor airborne INPUT conductors located on permit #6876120005 and to further define the location of the western margin of the Athabasca Formation. Two cut and picketed grids totalling roughly 75 line kilometers were established over the airborne conductors within permit #6876120005. Ground geophysical surveying included Max Min II horizontal loop electromagnetics with vertical loop electromagnetic confirmation and magnetics. Eleven diamond drill holes totalling 1295.8 metres were completed between March 20 and June 22, 1979. One hundred and three core samples were geochemically analysed for uranium, lead, nickel, and cobalt content.

The drilling results indicated that:

- a. The two southern permits lie to the west of the Athabasca Formation.
- b. A fault zone or series of faults parallel to the Richardson River coincide with the conductors outlined by the airborne and ground geophysical surveys.
- c. The conductors are due to graphitic schists within a sequence of sheared steeply dipping metasedimentary rocks and to chloritized shear zones.
- d. The graphitic schists contained anomalous (2 3 times background) $\rm U_3O_8$ values.
- e. The presence of graphitic schists along the fault zone indicates a favorable environment for uranium deposition.
- f. The Athabasca Formation underlying permit #6876120002 appears to be of uniform thickness, in excess of 200 metres thick.

II. INTRODUCTION

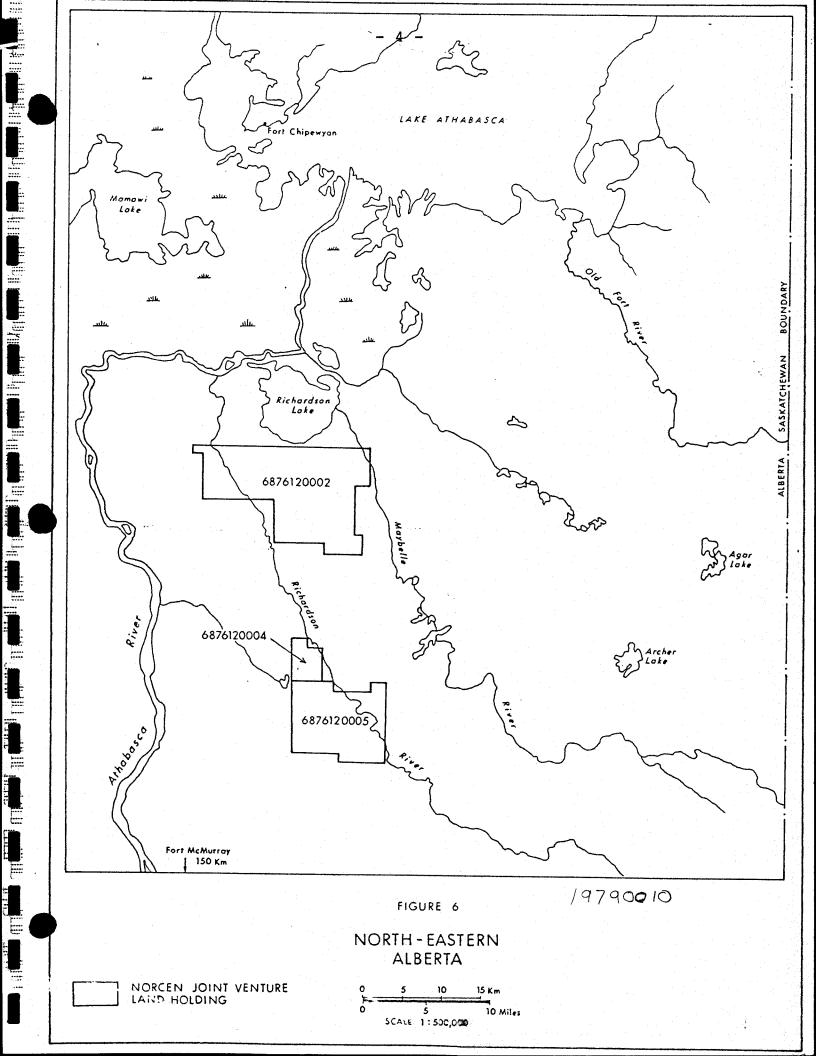
Norcen Energy Resources Ltd., on behalf of the Norcen Uranium Joint Venture (participants include Norcen, E & B Explorations Ltd., Ontario Hydro, and Campbell Chibougamau Mines Ltd.) holds title to three Quartz Mineral Permits in northeastern Alberta. These 3 permits covering 76,800 acres represent the remaining land holdings that at one time totalled 11 permits covering 485,677 acres. For simplicity the permits are referred to the Richardson North (permit #6876120002-48,640 acres) and Richardson South (permit #6876120004-3,200 acres and #6876120005-24,960 acres).

The exploration target in this area is the Athabasca Formation - Basement unconformity type uranium deposit. The Key Lake, Midwest Lake, Collins Bay, Maurice Bay, and the recent Canadian Occidental - Inco discovery are all examples of this type of deposit. The deposits are typified by highgrade ore, proximity to a major structure, occur at as near the Precambrian-Athabasca unconformity, are associated with metasedimentary rock types within the basement complexes, and frequently occur near magnetic highs. Chlorite and graphite schists are thought to be important pathfinder rock types.

B P Canada Ltd. and Utah Mines Ltd. have taken an option on the three permits held by the Norcen Uranium Joint Venture. At the completion of the 1979 exploration program BP and Utah will jointly hold 50% equity in the northern permit and 25% equity in the two southern permits.

III. LOCATION AND ACCESS

The Richardson Permits occur in two irregular shaped tracts of land separated by an area which has been withdrawn from staking by the Alberta government. The northern permit #687612002 encompasses 48,640 acres south of Richardson Lake between the Maybelle River on the east and extending just beyond the Richardson River on the west. The southern permits #687612004 and #687612005 encompass 28,160 acres which are diagonally intersected by the Richardson River. The southern boundary of the southern permit is approximately 165 kilometres north of Fort McMurray, Alberta.


- 3 -

The area is accessible by float or ski equipped aircraft available from Fort McMurray, landing at Boat Lake in the southern permit or Larocque Lake three kilometres northeast of the southern permit. A DC3 aircraft available in Fort McMurray is capable of carrying freight to Embarras most of the year or to Larocque Lake during ideal ice and snow conditions. The airstrip at Embarras, a former lumber mill, is maintained by Alberta Forest Services. This airstrip is approximately 22 kilometres from the centre of the northern permit and 30 kilometres from the centre of the southern permits.

A little used winter road connecting Embarras with Fort McKay cuts across the southern permit and can provide access to the area for tracked vehicles.

IV. HISTORY

The northeast corner of Alberta was first explored for its uranium potential in the late 1960's and early 1970's. Most of the work at that time was in the form of reconnaissance airborne spectrometer and scintillometer surveys. The absence of anomalies and the pervasive glacial cover in this area resulted in limited ground follow up. In 1976 Great Plains Development Company of Canada Limited (a subsiduary of Norcen Energy Resources Limited) on behalf of its uranium joint venture, acquired 6 Quartz Mineral Exploration permits totalling 256,077 acres along the interpolated margin of the Athabasca Formation. The 1976 work program which included lake bottom geochemistry, prospecting and a surficial study indicated that the edge of the Athabasca Formation was located further west than indicated on published geological maps. In 1977 Norcen Energy Resources Limited applied for 5 additional permits covering 229,600 acres to the east of the Athabasca River. In 1977 eight stratigraphic drill holes indicated that the margin of the Athabasca Formation occurred between the Richardson and Maybelle Rivers. In 1978 a Questor Mark IV INPUT electromagnetic survey was flown over the permit areas.

Three electromagnetic conductors were outlined on permit #6876120005. The objectives of the present program were:

- 1. were to test the nature of the conductors mentioned above.
- to locate the western rim of the Athabasca Basin, examine the unconformity and the underlying basement rocks.

V. REGIONAL GEOLOGY

The northeast corner of Alberta is occupied by approximately 15,500 square kilometres of the Canadian Shield, which consists of a complex of igneous, metamorphic and sedimentary rocks ranging in age from 1.7 billion years to older and forms part of the Churchill Structural Province.

The Precambrian rocks in the area include a basement complex of intrusive and metasedimentary gneisses which are unconformably overlain by the flat lying Athabasca Formation. The basement complex has been metamorphosed to amphibolite facies and structurally deformed during the Hudsonian Orogeny.

South of Lake Athabasca lie rocks of the Athabasca Formation within the Athabasca intracratonic basin. This Formation covers an area of 104,000 square kilometres mainly in Saskatchewan and reaches a thickness of 1,830 metres. Approximately 3,100 square kilometres of this Athabasca Formation occurs in Alberta and outcrops on islands in Lake Athabasca as well as small peninsulas located at Shelter Point and Fidler Point on the north shore of Lake Athabasca. The Athabasca Formation is considered to belong to the Paleohelikian Era (1.3 - 1.7 billion years).

The Athabasca Formation consists of quartz sandstone with minor interbeds of shale and siltstone and a basal gritty sandstone conglomerate unit. A pronounced unconformity underlies the Athabasca Formation and in some localities, depending on the composition of the Archean basement rocks, a regolith is developed.

A wedge of middle and upper Devonian sedimentary rocks unconformably overlaps the edge of the Athabasca Formation in northeastern Alberta. These rocks are rarely found in outcrop due to a thick blanket of glacial outwash which covers all of the Norcen permit areas. Exposure of these formations occur on the southwest shore of Lake Claire 25.6 kilometres (16 miles) northwest and along the banks of the Firebag River 20 kilometres (12.5 miles) south of the permits.

These Devonian sediments are primarily mudstone to sandy mudstones with minor interbeds of sandstone. A coarse grit with occasional basal conglomerate is frequently present lying unconformably on the Athabasca Formation (if present) or the basement rocks. In several locations the LaLoche Formation (Lower Devonian ?), a hematitic regolithic unit, is present at the base of the Devonian sediments. This La Loche Formation rarely excess 1 metre in thickness.

The area is characterized by a thick accumulation (up to 85 metres) of Quaternary and Recent unconsolidated sediments, primarily sands. This overburden is largely cobble or boulder free except near the bedrock surface. Cobbles and boulders are commonly present up to 10 metres above the bedrock interface.

VI. 1979 EXPLORATION PROGRAM

A. Geophysical Summary

In 1978 a Questor Mark VI INPUT EM and accompanying magnetics survey was flown over the lands held under permits #6876120002, #6876120004, and #6876120005. This survey located three conductors all of which are contained within the boundaries of permit #6876120005. No bedrock conductors were located on permit #6876120004 and #6875120002.

An inspection of the airborne data tapes revealed extremely conductive overburden records for the northern permit (#6876120002). This conductive noise is recorded up to the fourth channel of the INPUT data. It is likely that this conductive overburden has masked any response that might be expected if conductors are present.

In 1979 a geophysical consulting group, MPH Consultants Ltd., of Toronto, were retained to outline and define two of. the above mentioned conductors on the ground. For control two base lines were emplaced at a bearing of 046° and cross line cut at 90° to the baseline every 150 metres. The APEX Max Min II horizontal loop electromagnetic system was used reading the 444 and 1777 Hz frequencies utilizing a 200 metre cable. Readings were taken every 25 metres along the cut lines. A vertical loop McPhar SS-15 unit was used to confirm the conductive axis location. <u>East Grid</u> - On the east grid the electromagnetic conductors found were extremely weak (1 mho) and deep features (100 meters) which are interpreted to represent shear features. These showed no direct correlation with the magnetic anomalies. There was no apparent structural intersections involving the electromagnetic anomalies. Fault structure interpreted from the magnetics showed a possible fault or shear zone.

- 7 -

<u>West Grid</u> - One fairly strong (5-7 mho) conductor was mapped on this grid It was a 600 metre section contained within the major conductor. This section could represent a graphitic and/or sulphide assemblage. It was intersected by two weaker conductive zones. From airborne magnetics and airphoto analysis several linear structures were found to crosscut the major conductor which in some cases affects the conductor trace.

Completion of the ground magnetic survey on this grid is strongly recommended to provide greater control on the strucutural interpretation put forward to date. Several possible strucutural features have been outlined which warrant further investigations.

Details on the ground geophysical survey are included in <u>Geophysical Report on Richardson River Project Northern</u> <u>Alberta</u> by D. Jones June 1979 of MPH Consulting Limited.

A linear magnetic feature was defined on Permit #6876120002 by the airborne magnetics. A small grid was emplaced by compass and flagging for control. Using a proton precession magnetometer (Geometrics 816) and accompanying base station recorder (Barringer M-123) four of five grid lines were completed. Ground magnetic data was obtained for the small grid on permit #6876120005. Severe magnetic storms hampered accurate data recovery for a large part of the time while geophysical crews were in the area.

B. Drilling Survey

Twelve hundred and eighty six metres of diamond drilling was carried out during the period March 20 to April 21 and from June 1 to June 22, 1979. D. W. Coates Enterprises Ltd. of Richmond, British Columbia was engaged as the drilling contractor. A Longyear 38 was employed drilling BQ wireline.

The drill and equipment was flown by DC-3 to the Embarass airstrip. All drill moves were helicopter supported.

Drill hole RR-1 was collared to test whether the western edge of the Athabasca Formation was marked by the Richardson River. Drill holes RR-2, RR-5, RR-6, RR-7, and RR-8 were collared to test the ground electromagnetic conductors located by the geophysical surveying. Drill holes RR-3, RR-4, RR-9, RR-10 and RR-11 were collared in an attempt to locate the western extent of the Athabasca Formation. Core recovery averaged above 90% in all drill holes. Water circulation was lost in drill holes RR-8 and RR-9 resulting in abandonment of both holes before the projected depths had been reached. Drill hole RR-10 was abandoned due to unseasonally cold weather in April during which the nearby slew used for a water supply froze solid.

A breakdown of the drilling is given below:

	Bearing	Dip	Total Depth (metres)
Permit #68761200	04		
RR-1	0 °	-90°	79.5
			79.5
	Bearing	Dip	Total Depth (metres)
Permit #68761200	05		
RR-2 RR-3 RR-4 RR-5 RR-6 RR-7 RR-8	046 ° 0 ° 046 ° 046 ° 046 °	-72° -90° -90° -75° -68° -75°	99.7 69.2 35.6 121.0 102.7 117.5 111.9 657.6
Permit #68761200	02		
RR-9 RR-9A RR-10 RR-11	0 ° 0 ° 0 °	90° -90° -90°	$ \begin{array}{r} 83.8\\ 46.9\\ 151.5\\ \underline{276.5}\\ \underline{558.7}\\ \underline{1\ 295.8}\\ \end{array} $

	Depth (metres)	Lithology
RR-1	0 - 58.5 58.5 - 73.3 73.3 - 73.3 73.5 - 79.5	Quaternary and Recent Sediments Devonian Sediments Devonian ? LaLoche Formation (regolith) Precambrian basement paragneisses
/ RR-2	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	Quaternary and Recent Sediments Devonian Sediments Devonian ? LaLoche Formation (Regolith) Precambrian basement paragneisses
Note:	Probable Conductor	50.3 - 53.0 metres - biotite (chlorite) gneiss/schist with limonitic blebs and disseminated sulphides (5%)
[/] RR-3	0 - 28.6 28.6 - 69.2	Quaternary and Recent Sediments Precambrian basement gneiss
RR-4	0 - 23.7 23.7 - 35.6	Quaternary and Recent Sediments Precambrian basement gneiss
/ RR-5	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	Quaternary and Recent Sediments Devonian Sediments Precambrian basement paragneisses and schists
Note:	Conductor 103.0 - 1	09.4 metres - graphitic schist.
∕ RR-6	0 - 29.0 29.0- 33.0 33.8-102.7	Quaternary and Recent Sediments Devonian Sediments Precambrian basement paragneisses and schists
Note:	Probable Conductor	85.3 - 89.0 metres - fault zone with brecciation, clays, and abundant fault gouge.
RR-7	0 - 59.4 59.4 -78.0 78.0-117.5	Quaternary and Recent Sediments Devonian Sediments Precambrian basement paragneisses and minor schists
RR-8	0 - 61.0 61.0- 81.4 81.4- 83.5 83.5-111.9	Quaternary and Recent Sediments Devonian Sediments Devonian ? LaLoche Formation (Regolith) Precambrian basement paragneisses and minor schists
rr-9 rr-9a	$0 - 83.8 \\ 0 - 46.9$	Quaternary and Recent Sediments Quaternary and Recent Sediments

• •,

- 9 -

+ 1<u>8</u>

-16

-89

÷/ •

-145

- 15a

পাক্ষ

най в 1....

5-03

-

- 11

	Depth (Metres)	Lithologies
RR-10	0 - 58.8	Quaternary and Recent Sediments
	58.8-151.5	Precambrian Athabasca Formation -
RR-11	0 - 58.2	Quaternary and Recent Sediments
	58.2-267.3	PreCambrian Athabasca Formation
		58.2 - 246 Clean Sandstone
		246 - 264.2 hematitic sandstone silt-
		stone
		264.2 - 267.3 Conglomerate, sandstone,
		siltstone
	267.3 - 276.5	PreCambrian basement paragneiss

C. GEOCHEMICAL SUMMARY

Selected sections from drill core were split in the field and geochemically assayed for $U_3 0_8$, Ni, Co, and Pb contents. Four histograms are presented, one for each element analysed.

St <u>atistical Analysis</u>			lst Order Anomaly n (Values Greater Than) (ppm)	2nd Order Anomaly (Values Greater Than) (ppm)
Uranium in Sampled Core (94 Samples)	1.156	2.143	3.299	5.442
Uranium in Sampled Core minus values from Intrusive (drill hole RR-3)				
(87 Samples)	0.610	0.708	1.318	2.026
Nickel in Sampled Core (94 Samples)	35.861	27.126	62.987	90.113
Lead in Sampled Core (94 Samples)	12.20	5.146	17.346	22.492
Cobalt in Sampled Core (94 Samples)	18.319	10.12	28.439	38.559

The seven best U_30_8 values received (3.8 ppm ranging to 11.1 ppm) are all from drill hole RR-3 and are samples of granitic gneiss. The remaining 87 samples are believed to be sedimentary in origin and it is this suite that has been used to determine anomalous U_30_8 zones.

Nine Core Samples were assayed from drill hole RR-11 on permit #6876120002. Mean value from these nine assays are uranium 0.9 ppm, lead 6 ppm, nickel 22 ppm and cobalt 5 ppm.

GEOCHEMICAL ANOMALOUS DRILL SECTIONS AS DEFINED BY THE STATISTICAL ANALYSIS

Drill Hole	Depth/metres	Values (ppm) U_3 ⁰ 8	<u>Lithology</u>
RR- 2	20.4 - 21.4	1.6	Devonian coarse sandy grit to basal conglomerate
	21.4 - 22.4	1.8	Devonian ? LaLoche Formation (Regolith)

Drill	Hole	Depth/	/metres	Values (ppm) _U ₃ 0 ₈	<u>Lithology</u>
RR-	5	106.7 107.9	-106.7 -107.9 -109.1 -111.6	1.4 3.3 1.6 2.0	graphitic schist graphitic schist graphitic schist graphitic schist
RR-	6	42.7	- 43.9	3.1	feldspar-quartz-chlorite paragneiss
		54.9 86.3	- 54.9 - 55.5 - 87.5 - 88.4	1.8 3.1 1.6 1.4	chlorite schist (hematite) chlorite schist (hematite) chlorite schist (fault zone chlorite schist (fault zone
RR-	8	101.3	-102.0	1.8	feldspar-quartz-chlorite paragneiss (hematite)
		102.0	-102.6	1.4	feldsapr-quartz-chlorite paragneiss (hematite)

* The statistical analysis does not include assays from permit #6876120002.

Drill Hole Number	Depth/metres	Values ppm Ni	Lithology
RR- 2	25.4 - 26.4 51.8 - 52.9		chloritic paragneiss chloritic paragneiss
	52.9 - 53.9	82	(conductor ?) biotite feldspar quar
	53.9 - 54.8	84	paragneiss biotite feldspar quar
	55.9 - 56.8	71	paragneiss biotite feldspar quar
	56.8 - 58.6	94	paragneiss biotite feldspar quar chlorite schist
RR- 5	71.0 - 72.2 86.5 - 87.5 87.5 - 88.1	104 116 72	chlorite schist chlorite schist chlorite schist
RR- 8	98.8 - 99.4	78	feldspar quartz chlor
	99.4 - 100.0	79	paragneiss (hematite) feldspar quartz chlor paragneiss (hematite)
	100.0 - 100.6	86	chlorite feldspar qua
	100.7 - 101.3	82	paragneiss (hematite) chlorite feldspar qua
	101.3 - 102.0	94	paragneiss (hematite) feldspar quartz chlor
	102.0 - 102.6	89	paragneiss (hematite) feldspar quartz chlor paragneiss (hematite)
Drill Hole	Depth/metres	Values ppm Co	Lithology
RR- 2	25.4 - 26.4 47.9 - 48.9	29 34	chloritic paragneiss biotite feldspar quar
	48.9 - 49.9	29	paragneiss biotite feldspar quar
	51.8 - 52.8	29	paragneiss chloritic paragneiss
	52.8 - 53.9	37	(conductor ?) biotite feldspar quar paragneiss
	53.9 - 54.8	31	biotite feldspar quar
	55.9 - 56.8	33	paragneiss biotite feldspar quar
	56.8 - 58.6	39	paragneiss biotite feldspar quar chlorite schist
RR- 5	71.0 - 72.2	30	chlorite schist
RR- 6	52.4 - 53.6	29	chlorite schist (hema
	53.6 - 54.9	34	chlorite schist (hema

(conductor ?) iotite feldspar quartz aragneiss iotite feldspar quartz araqneiss iotite feldspar quartz aragneiss iotite feldspar quartz hlorite schist hlorite schist hlorite schist hlorite schist eldspar quartz chlorite aragneiss (hematite) eldspar quartz chlorite aragneiss (hematite) hlorite feldspar quartz aragneiss (hematite) hlorite feldspar quartz aragneiss (hematite) eldspar quartz chlorite

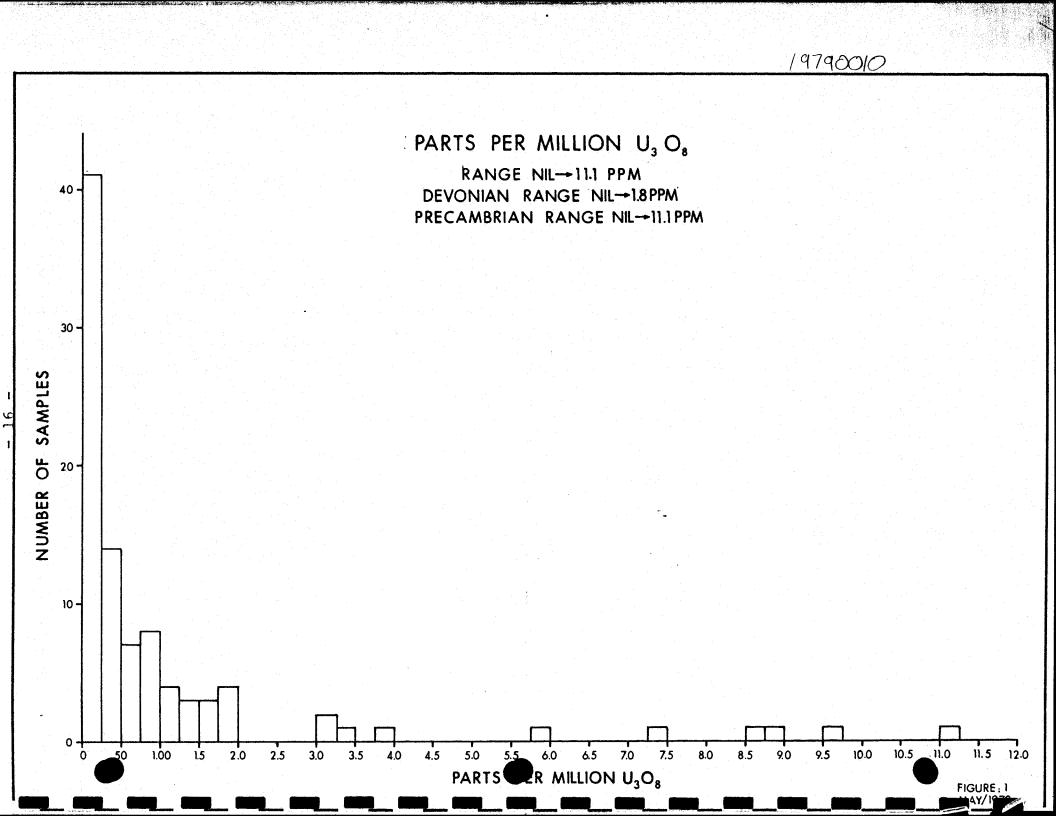
aragneiss (hematite) eldspar quartz chlorite aragneiss (hematite)

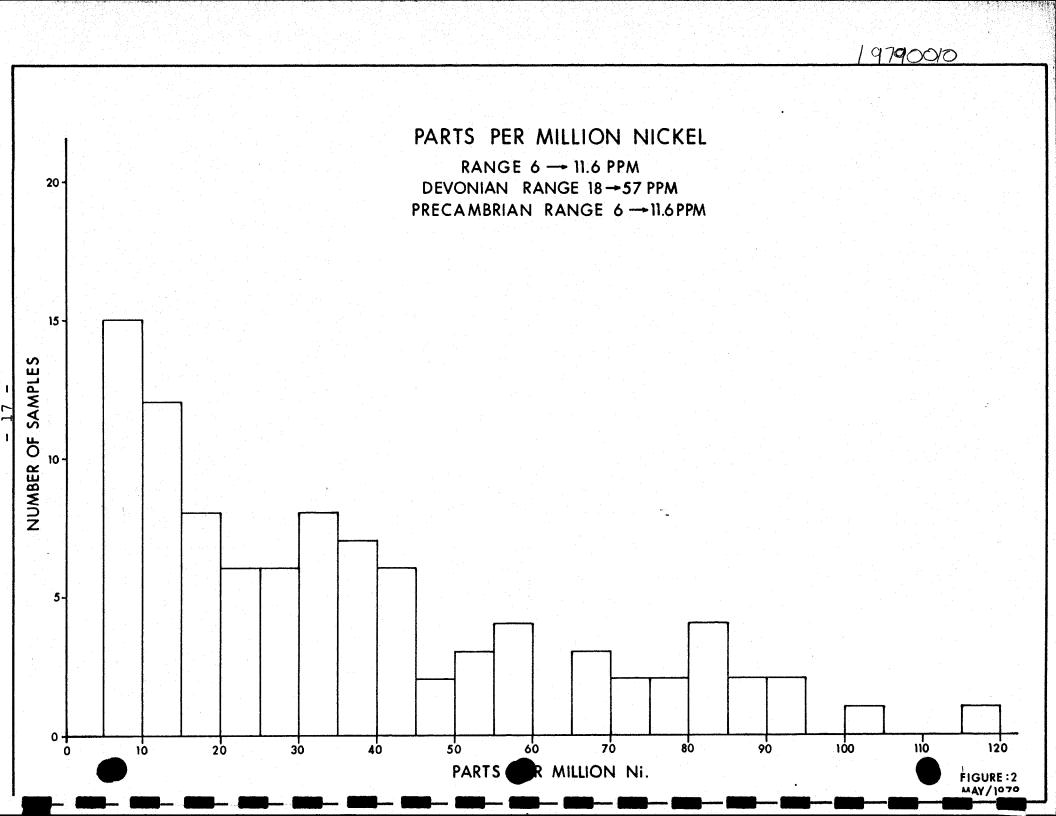
hloritic paragneiss iotite feldspar quartz aragneiss iotite feldspar quartz aragneiss nloritic paragneiss conductor ?) iotite feldspar quartz aragneiss iotite feldspar quartz aragneiss iotite feldspar quartz aragneiss iotite feldspar quartz nlorite schist lorite schist

nlorite schist (hematite) lorite schist (hematite)

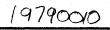
RR- 6 (con't)	56.1 - 57.0 57.0 - 57.9	36 37 26	chlorite schist (hematite) chlorite schist (hematite)
	57.9 - 58.8	36.	chlorite schist (hematite)
RR- 8	98.8 - 99.4	31	feldspar quartz chlorite paragneiss (hematite)
	99.4 - 100.0	30	feldspar quartz chlorite paragneiss (hematite)
	100.0 - 100.6	29	feldspar quartz chlorite paragneiss (hematite)
	101.3 - 102.0	33	feldspar quartz chlorite paragneiss (hematite)
	102.0 - 102.6	36	feldspar quartz chlorite paragneiss (hematite)
Drill Hole	Depth in metres	ppm Pb	Lithology
RR- 2	25.4 - 26.4	19	chloritic paragneiss
RR- 3	31.6 - 32.6	20	granitic gneiss
RR- 8	81.4 - 82.8	28	Devonian ? LaLoche Formation (regolith ?)
	82.8 - 83.2	25	Devonian ? LaLoche Formation (regolith ?)
	83.2 - 84.1	26	Devonian ? LaLoche Formation (regolith ?)
	84.1 - 85.0	23	Devonian? LaLoche Formation (regolith ?)
	85.0 - 86.0	19	chlorite schist
	101.3 - 102.0	21	feldspar quartz chlorite paragneiss (hematite)
	102.0 - 102.6	26	feldspar quartz chlorite paragneiss (hematite)
	· · · · · · · · · · · · · · · · · · ·		

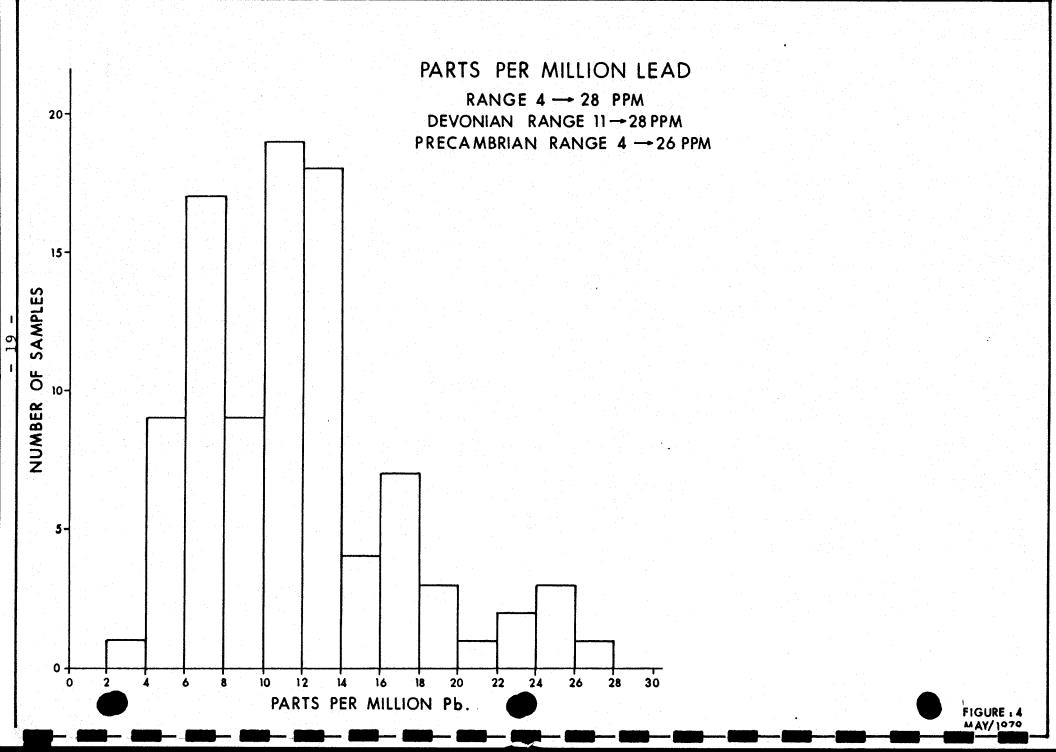
- 14 -


Minor radioactivity (slightly above background) is present at the base of the Devonian sediments overlying the basement rocks in drill hole RR-2. Anomalous cobalt and nickel concentrations (up to 2 times background) are present in a zone straddling the probable conductor within chlorite schists and paragneisses of drill hole RR-2.


The graphitic schist zone intersected in drill hole RR-5 is anomalous (2 -3 times background) in $U_3 0_8$ concentrations. Two narrow zones of chlorite schist contain anomalous (up to 2 times background) cobalt and nickel values in drill hole RR-5.

Hematized chlorite schists and paragneisses contain anomalous $(2 -3 \text{ times background}) U_3 0_8$ values in drill hole RR-6. A fault zone is present here and likely provided the channel for solution migration as evidenced by the hematitic alteration . Anomalous (slightly above background) cobalt is associated with some of the hematized rocks in drill hole RR-6.


Minor radioactivity (slightly above background) is found associated with hematized paragneisses in drill hole RR-8. Anomalous (slightly above background) cobalt and nickel are associated with this hematitic alteration. Lead values up to twice background are associated with the hematitic alteration and in the overlying Devonian LaLoche Formation ? (regolith ?).


It is interesting to note that the anomalous geochemical values are associated with primarily the chlorite rich basement rocks particularly where hematite alteration is present and tectonic movement has occurred. The geochemical values for nickel and cobalt also reflect proximity to the major fault zone and resulting alteration zones in the area. The graphite zone appears to be anomalous in uranium oxide and represents the primary target for additional exploration.

D. GEOLOGICAL SUMMARY

The 1977 drilling program defined the western edge of the Athabasca Formation to lie between the Maybelle and Richardson Rivers. Assessment data filed for permit #187 by Eldorado Nuclear coupled with the Norcen et al 1979 drilling project has further defined this western rim to lie in the vicinity of Barber and Larocque Lake slightly east of the Norcen permit #6876120005. Results of the stratigraphic drilling in the north permit #6876120002 indicate a uniform thickness of Athabasca Formation between the 1977 drill hole on the Maybelle River and drill hole number 11, 206 metres vs 209 metres. this would appear to indicate that the basin is structurally controlled and not pinching out to the west as previously conceived.

Devonian sediments (primarily mudstones) unconformably overlie the Precambrian basement rocks, or where present, the Athabasca Formation, in the southern area (Boat Lake, Larocque Lake area) and can be found several kilometres east of permit #6876120005. At this time no Devonian sediments have been found within permit #6876120002.

As mentioned above no Athabasca Formation has been found within the southern permits (#6876120004 and #6876120005). The conductors found within permit #6876120005 lie within the Precambrian basement complex. Drill testing of these conductors has located volcanoclastic rock types not previously known to exist in the area. The basement metasediments, now primarily paragneisses and schists, represent a volcanic sedimentary regime that has been highly metamorphosed and structurally deformed. The paragneisses and schists represent greywackes, argillites (pelites) and perhaps volcanic tuff. Metamorphism, granitization ? (migmitization ?) has resulted in the banded and highly schistose nature now seen. The metamorphic grade appears to be amphibolite facies. The chlorite schists found along the Richardson River fault zone are likely the result of chemical alteration by solutions migrating along the fault trace producing the retrograde metamorphism.

Precambrian basement intrusive gneisses have been recognized in cores from the eastern edge of permit #6876120005 south of Barber Lake and possibly at the eastern edge of permit #6876120004.

The presence of massive graphitic schists along the Richardson River Fault indicate a favorable reducing environment for uranium deposition. The extent of the graphitic schist is unknown at present; but the geophysical conductor indicates it may extend for 6.4 kilometres along the fault which parallels the Richardson River. The Maybelle and Richardson Rivers are thought to represent large scale fault traces. The Richardson River fault zone is evidenced in drill cores by brecciation, fault gouge, and in places highly altered zones where the feldspars have been altered to clays, hematite is abundant and low temperature minerals are now found (chlorite, epidote). Although a restricted amount of data is available near the Maybelle River, it appears that the block between the two rivers has an upward stratigraphic displacement of 25-50 metres relative to the stratigraphy east of the Maybelle River and west of the Richardson River.

A description of the Quaternary and Recent sediments, the Devonian sediments, and the Athabasca Formation has be presented in the "Regional Geology" section. The Precambrian basement regime has not been delved into in much detail. A description of the units is given below.

<u>Paragneiss</u> - Several mineral assemblages of paragneiss represent the bulk of the sediments within the basement complex. The paragneisses exhibit a prominent banding of alternating leucocratic (feldspars and quartz) and melanocratic (mafics - biotite, chlorite, amphiboles ?) mineral assemblages. For simplicity in drill core logging three paragneiss groups have been used:

- (a) feldspar + quartz + biotite paragneiss
- (b) chlorite + feldspar + quartz + biotite paragneiss
- (c) feldspar + quartz + chlorite + biotite paragneiss

These distinctions were made in the field with no supporting thin sections identification or whole rock analysis. All of the three groups grade into one another. Group (c) represents perhaps an altered equivalent of (a) where the biotites have been altered to chlorite by retrograde metamorphism or locally by chemical solutions migrations along the Richardson Fault.

Chlorite and Biotite Schists

The distinction between the schists and the paragneiss has been arbitrarily determined by the degree of mineral segregation observed in the drill cores. These rock types commonly have gradational boundaries. The schists have a greater abundance of mafic minerals (predominantly chlorite). Whether this is due to the primary composition or an effect of alteration is difficult to determine.

There does appear to be an association between the schists and local shearing. Locally the shearing appears to be confined to the chlorite, chlorite-biotite, and graphitic schists.

Graphite Schists

Graphite occurs as fine disseminations within chloritic schists to massive graphite schists where the graphite content is greater than 80% of the rock mass. No clear cut relationship between the chlorite and graphite schist is known. The graphite schists appear conformable with the stratigraphy.

The origin of the graphite is speculative. It is likely that the graphitic schists represent pelitic zones conformably deposited within the sedimentary sequence. CONCLUSIONS

Permits 6876120004, 6876120005

Exploration to date on the Richardson River South permits has outlined a favourable structural trap containing a geological and geochemical environment similar to the uranium deposits within the Athabasca Formation in Saskatchewan. This structure has been outlined by ground geophysical surveys and drill testing indicates the presence of faulting, brecciation and an increased background in uranium values associated with chloritic and hematitic alteration. Results from the 1979 exploration program indicate:

- 1. The presence of a large fault zone with local offsetting faults.
- Paragneisses similar to those present in the Wollaston Fold. Belt in Saskatchewan.
- 3. The presence of graphite indicating a local reducing environment.
- 4. Thick chloritic and hematitic alteration zones associated with the Richardson River Fault.
- 5. An increased uranium background associated with chloritic and hematitic alteration.
- 6. No Athabasca Formation is present on these permits.

Uranium deposits in Saskatchewan occur at the intersection of similar structures and the pre Athabasca unconformity. The absence of Athabasca Formation on these permits may be the result of erosion by glaciation. The presence of in excess of 30 metres of Athabasca Formation intersected by Eldorado Nuclear in a hole 3 kilometres east of the Norcen Permits would suggest this possibility.

VIII. CONCLUSIONS AND RECOMMENDATIONS

a.) Permits #6876120004, 6876120005

The presence of graphitic schists within metasedimentary rocks along a major fault near the Richardson River provides an excellent exploration target warranting additional work. The near proximity of this structure to the present margin of the Athabasca Formation (5 to 10 kilometres) would suggest that this area was once part of the Athabasca basin prior to erosion and glaciation.

No further work is planned for southern permits in 1979. It is strongly recommended that application for lease of these permit areas be made as soon as possible. Further work in this area should include a series of drill holes along this structure which represents an environment similar to the known Unconformity-Type uranium deposits in Saskatchewan.

Recommendations for 1980:

 1. Lease payments 38,160 acres @ \$.25
 9,540.00

 2. Completion of the ground magnetic survey
 15,000.00

 3. Diamond Drilling 1,500 m @ 130/metre
 195,000.00

 Total

Permit #6876120002

Exploration on the Richardson River North Permit has progressed at a slower rate than the southern permit due to limiting physical factors in this area. The area is covered by thick sand overburden in excess of 60 metres thick and contains conductive horizons which mask any conductors present within the bedrock. Drilling in 1979 encountered a boulder horizon at the base of the overburden in which two strings of rods were lost prior to abandonment of the hole. This permit has no local water supply except for the Richardson River and seasonal bogs, one of which froze solid, suspending drilling and leading to abandonment of hole number 10.

Results of the drilling to basement indicated a uniform thickness of the Athabasca Formation between the 1977 drill hole on the Maybelle River and Drill Hole number 11, 206 metres vs 209 metres. This would appear to indicate that the basin is structurally controlled and not pinching out to the west as Saskatchewan indicates that major structures of this type represent prime exploration targets. Southwest trending faults associated with the uranium deposits at Uranium City Saskatchewan, if projected along strike, should extend into this permit area.

Recommendations for 1980

The primary objective for 1980 in the Richardson River North Permit is to locate major strucutural features which may be associated with uranium deposits. An audio frequency magnetic system designed to locate large weak conductive zones such as regional faults should be carried out over this area. An aeromagnetic study to delineate magnetic structures and determine the depth to magnetic basement should be carried out. In addition one or two stratigraphic drill holes should be completed along the Richardson Fault. Follow-up diamond drilling will be required to test favourable structures outlined by the AFMAG survey.

Lease Payment 48,640 acres @ \$.25/acre	\$ 12,160
AF MAG Survey 950 line kilometres @ \$32/kilometre	30,400
Aeromagnetic Study	5,000
Stratigraphic Diamond Drilling 500 metres @ \$130/metre	\$ 65,000
Follow-up drilling on favourable structures outlined by the AF MAG Survey 2,000 metres @ \$130/metre	\$260,000
	\$372,560

RICHARDSON RIVER NORTH EXPENDITURES (Estimated) (687612002) 1979 Expenditures

Land Rentals	\$ 7,296.00
Geophysical Consultants	\$ 5,000.00
Diamond Drilling	≥\$53,812.00
Helicopter and Fixed Wing Charter	\$34,976.00
Geological Support	\$ 4,800.00
Camp Costs	\$ 1,333.00
Expediting	\$ 1,895.00
Watchman	\$ 1,750.00
Helicopter Fuel	\$ 5,208.00
Expense Accounts	\$ 298.00
Instrument Rentals Spectrometers, Telephone	\$ 460.00
Miscellaneous	\$ 894.00
Overhead @ 5%	\$ 5,633.00
Overhead @ 10% Salaries, Expense Accounts	\$ 510.00

Total

\$123,865.00

RICHARDSON RIVER SOUTH PERMITS (Estimated)

1979 Expenditures

Land Rentals	\$ 4,224.00
Linecutting	\$ 15,194.00
Geophysical Consultants	\$ 33,208.00
Diamond Drilling	⇒ş 73,943.00
Helicopter Fixed Wing Charter	\$ 56,485.00
Geological Support (Salaries)	\$ 10,300.00
Expediting	\$ 1,000.00
Watchman	\$ 1,750.00
Fuel Helicopter	\$ 13,610.00
Assays	\$ 700.00
Expense Accounts	\$ 1,220.00
Instrument Rentals Scintillometers	\$ 460.60
Miscellaneous	\$ 2,300.00
Overhead @ 5%	\$ 10,144.76
Overhead @ 10% Salaries, Expense Accounts	\$ 1,152.00
Total	\$225,690.00

Description	Depth Metres/	Mineral- ization	Core Covery	Bag Count	Assay
					· · · · · · · · · · · · · · · · · · ·
chlorite alteration					
clay alteration along fractures slickensides					•
hematite associated with quartz and carbonate					•
n fractures					
fracture zone 63.85 -64.95					
fractures oriented 45 degrees to core axis fractures at 64.19 near perpendicular to core					
xis, quartz carbonate infilling, slickensides					
ranite					
(65.53 - 69.19)			•		
becomes very siliceous					
mafic content 10-15 %					
minor clay alteration quartz carbonate filling fractures with 3 to 5	9				
arbonate					
local quartz veins					
					· · · ·
a					
			·		
			•	· .	
					н н н
				_	

Property. Richardson Quartz Mineral Permit		.		Hole No		
				Started <u>March</u>		
	laim No	6876120	005	Completed Ma	rch 31, 1979	
Section 26 Be	earing			Ultimate Depth	35.66m/	117ft.
Clevation 289.5 D	IP90 de	grees		Proposed Depth	l	
				Logged by:	G. Wilso	n
Description	Depth Metres/		Mineral- ization	Core Recovery		Assay
Quaternary and Recent Overburden (0 - 23.77 - sand with a few boulders Unconformity						
Precambrian Basement Rocks Granodiorite (23.77 - 35.66)						
 possibly some paragneiss within the granodiorite -local gneissosity oriented 40-45 degrees to the core axis irregular fractures with pyrite aggregates i 						
<pre>fractures - biotite and chlorite in fractures - pink medium to coarse grained 25.17-32.12 and from 33.22 to 35.66 - hematite localized in fractures</pre>		•				
PVC Pipe 35.66m/117ft.						

Property: Richardson Quartz Mineral Perm	nit - Alberta	£		Hole No.	RR5	
Sheet Number: $1 \text{ of } 5$						
Collar <u>BL</u> 2400 + 260E	Claim No.	68761	2005	_Completed	April 4, 19	79
	_Bearing	046		_Ultimate Dept	h <u>121m/39</u>	7ft.
Elevation262.1 meters	DIP	-75		_Proposed Dept	h	
• •				Logged by:	L. Smith	
Description	Depth Metres/		Mineral- ization	Core Recovery	Bag Count	Assay
Quaternary and Recent Overburden (0 - 53.95) - sand and boulders - gneiss boulders 47.55 to 50.60 - Devonian and Athabasca sandstone boulders from 50.60 to 53.95 Devonian Mudstone (53.95 to 60.05) - mudstone with narrow sand lenses or beds	Assay Int	cerval.		95-100 95-100%	SPP - 2 15 cp 5 20-25cps	·
Devonian Mudstone and Sandy Mudstone (60.05 to 63.10m) - Mudstone 60.05 to 61.72, 61.87 to 62.64 - Sandy Mudstone 63.10 to 61.87 -Muddy Sandstone 62.64 to 63.10				95-100%	25cps	
Devonian Mudstone (63.10 to 64.14m) - Mudstone 63.10 to 64.62 - Sandy Mudstone 64.62 to 65.68 - Coarse Grit (10mm) in muddy matrix 65.68 t 64.14 - Clast Matrix Ratio 1:4 to 1:5	20			100%	25cps	U308 0.2 Pb 11
Gritty Sandstone (64.14 to 67.36) - quartz and feldspar clasts (to 20mm) and minor chlorite feldspar paragneiss clasts	66.1 - 6 67.4 - 6			90%.	20-30cps	Ni 21 Co 12 U ₃ O ₈ 0.2 Pb 1 Ni 25 Co 12

Description	Depth Metres/	Mineral- ization	Core Covery	Bag Count	Assay
Devonian (?) Conglomerate LaLoche Formation					U3 ⁰ 8 0.2 Pb
67.36 to 68.58	68.6 - 69.8		1		Ni 43 Co 18
- Precambrian clasts of paragneiss and schists			90%	20-30cps	
in a muddy matrix			208.	20-30CPS	• U3O8 0 Pb 9
	69.8 - 71.0				Ni 59 Co 22
Unconformity					U ₃ O8 0 Pb 1
Precambrian Basement Rocks	71.0 _ 72.2		85-90%	20 -30cps	NI 104 Co 3
Chlorite Schists					
(68.58 - 72.24m)					
-highly weathered - chlorite content 80-90%					
- chlorite content 80-90% - 1 to 3% disseminated pyrite			•		
- I to 3% disseminated pyrite -schistosity 40 to45 degrees to core axis			90-95%	25-35cps	
Sourcestry to coto degrees to core axis			8C6-06	22-22Cha	
Chlorite Schists and Chlorite Paragneiss					
(72.24 to 75.29)					
- chlorite schist with increased feldspar					
producing local gneissosity					
- schistosity 30 to 45 degrees to core axis			90-95%	25-35cps	
				-	
Chlorite Schists				l	
(75.29 to 78.33)					
- brecciation 76.50 to 76.80					
- narrow 10mm seams of chlorite rubble					•
- brown rusty veins containing siderite			00.050	20.40	
- parallel and crosscutting schistosity			90-95%	20-40cps	
siderite vein 76.2 to 76.50carbonate veïns 77.11 to 77.41 from 1 to 10m			and the second second		
- carbonate veins //.11 to //.41 from 1 to 10m					
MTAC Ó			ł		
Chlorite Schists					
(78.33 to 81.53m)					
- schistosity 40 to 45 degrees to core axis					
- carbonate in fractures					
- minor displacements along fractures					
			and the second		
					· · · · · · ·

Property: <u>Richardson Quartz M</u>	ineral Permit Alberta	Hole No. RR1
Sheet Number: <u>l of 2</u>	NTS NO.	Started March 21,1979
Collar Tp 105 R6 Sec. 14W	Claim No. 6876120004	Completed March 22, 1979
West of the 4th meridian	Bearing	Ultimate Depth79.5m/261ft.
Elevation299m	DIP -90 degrees	Proposed Depth
		Logged by: G. Wilson

KEDUUT

T

NUNCEN ENDAOT

			Logged by:	G. Wilson	
Description	Depth Metres/	Mineral- ization	Core Recovery	Bag Count	Assay
Quaternary and Recent Overburden (0-58.52m)	Assay Interval				
(0-50.52m)					
Sand - (0-51.20m)					
Sand and boulders - $(51.20-58.52m)$					
Devonian Mudstone, Sandstone (58.52-70.28m)					
- light to dark brown mudstone					
- grading into light brown to beige muddy					
sandstone with quartz pebbles up to 0.5cm.					
in diameter.					
 grey mud seams throughout minor disseminated Pyrite (2%) 					
- minor disseminated Pyrite (2%) - locally where Sandstone has been leached		Pyrite 2%			
vugs have formed which contain pyrite					
crystals					
Devonian Sandy Mudstone					
(70.28–71.32)				· .	
- grey brown mudstone with medium grained					
sandstone lenses					
- very soft					
Devonian Mudstone Sandstone					
(71.32-73.15)					
- grey brown mudstone grading down to ligh	t in the second s				
brown medium to coarse sandstone					
- minor mudstone seams throughout					
 poorly consolidated in places bedding is very irregular oriented 43 	72.1-73.1		90%		U ₃ 0 ₈ 0.4 Pb12 Ni 18 Co 6.0
degrees to core axis.					
	▲ とうしん ない おいわれたい		🚹 – star star star 🖬		이 사람이 그는 것은 것 않았다. 이 나는

Description	Depth Metres/	Mineral- ization	Core Covery	Bag Count	Assay
irregular interval of hematite coating sand grains.		hematite			
Regolith (73.15-73.45m)					•
-fragments of the basement rock in a matrix of light grey brown muddy sandstone	73.1-74.2		97%		U308 0.2 Pb
Unconformity					Ni 18 Co
Precambrian Basement Biotite Quartz Feldspar Gneiss	73.4-75.1		97%		U ₃ O8 0.8 Pb
 foliation and gneissosity oriented 60 to 87 degrees to the core axis Coarse grained 					Ni 8 Co
 abundant smoky quartz fractured throughout commonly at 60 degre 	es				
to core axis - chlorite associated with fractures - tension fractures filled with dark brown					
mud - minor pyrite in fractures		Pyrite in fractures			
END OF HOLE	79.45m/261ft.	I accurco			
PVC Pipe to 74.7m/245ft.					
Average Core Recovery 82%					
9					
			· · · · · · · · · · · · · · · · · · ·		

roperty: Richardson River Mineral Permit	Alberta	ha dan da a an da an	Hole No.	RR2	
heet Number: <u>1 of 5</u> N'	TS NO.		_Started	March 25,	1979
ollar Twp 104 R6 Section 23 of the C	laim No687	6120005	_Completed	March 27,	1979
4th meridian Be	earing 046	degrees	_Ultimate Depth	99.7m	/327ft.
levation 274.3m D	IP72 d	legrees	_Proposed Depth	<u> </u>	1
			Logged by:	L. Smith	
Description	Depth Metres/	Mineral- ization	Core Recovery	Bag Count	Assay
Quaternary and Recent Overburden (0-12.3m) ± sand with quartz feldspar gneiss boulders occuring at the unconformity with the Devonian	Assay Interval				
Devonian Mudstone (12.3-17.37m) - top 45cm. grey sand. Mudstone overlying ver	1				
fine grained greenish grey mudstone with minor carbonate in the matrix.			60-70%	TV-1A 900-1100 cpm	
Devonian Sandy Mudstone (17.32-20.42m) - medium grey coloured mudstone with quartz					
and feldspar sand grains up to 4mm - sand content increases with depth		pyrite	80-85%	900-1100 cpm	
- tar filling fractures from 17 to 18.1m - Pyrite along bedding of 19.8m			•		
Devonian Sandstone LaLoche Formation (20.42-21.0m) - coarse gritty sandstone - coarsens with depth	20.4-21.4m				U ₃ 0 ₈ 1.6 Pb 14 Ni 23 Co 11
Regolith Sandstone Conglomerate LaLoche					
Formation (21.0-23.47m)	21.4-22.4m		80-85%		U ₃ 08 1.8 Pb 11
(21.0-23.4711)					
- coarsens with depth to coarse grained grit with recognizable basement clasts from 21.0 to 23.47m					Ni 18 Co 9.0 U ₃ O ₈ 0.4 Pb 13

Description	Depth Metres/	Mineral- ization	Core Covery	Bag Count	As	say	
o 21.3m and pronounced hematitic alteration rom 23.1 to 23.47m	22.4-23.4m	hematitic alteration			U308 Ni		
nconformity recambrian Basement Rocks ltered Zone	23.4-24.4m				U308 Ni	0.0 28	
23.47-26.52m)							
angular clasts of quartz feldspar gneiss and aragneiss in a sandy matrix from 23.47 to	24.4-25.4m		90%		U308 Ni		
5.3m these rocks have a leached appearance giving				800-1500 cpm			
he rock a light grey colour lower section 25.34 to 26.5m contains grey reen chlorite rich paragneiss with numerous	25.4-26.4				U308 Ni	0.0 84	
ractures filled with quartz, feldspar(?)							
arbonate with narrow seams and blebs of yrite up to 3%		Up to 3% py.					
hlorite Feldspar Quartz Paragneiss							
26.52- 27.43m)			95-97%				
green grey colour							
eldspar Quartz Paragneiss 27.43-28.35m)							
leached light grey							
eldspar Qaurtz Paragneiss 28.35-31.43m)							
similar to the above but not as leached and ighter colour							
mphibole (?) Biotite Chlorite Paragneiss 31.55-32.61m)		Pyrite 1-2%	98-100%	1000-1100 cpm			
contains 1-2 percent disseminated pyrite							
artz Feldspar Paragneiss 32.61-35.66m)							
quartz and feldspar interbanded with chlorite			100%	1000-1100			
otite and amphiboles				cpm			

Description	Depth Metres/	Mineral- ization	Core Covery	Bag Count	Assay
Peqmatite					
(35.66-36.58m)					
- coarse feldspar crystals					
- pink colour				000	
				900cpm	· ·
Biotite Quartz Feldspar Paragneiss (36.58-39.00m)					
- biotite and chlorite interbanded with quartz					
and feldspar			100%		
Pematite					
(39.00-39.62m)			•		
- same as above				and the second	
3iotite Quartz Feldspar Paragneiss (39.62-41.85m)					
same as the above				1	
iotite Quartz Feldspar Paragneiss					
41.85-47.85m)					
grades to dark grey amphibole chlorite gneis					
coarse grained feldspars from 46.0 to 46.33m			100%	1000-1100	
biotite Paragneiss				cpn	
47.85-48.46m)	47.9-48.9m				
	47.9-40.910				U ₃ O ₈ 0.0 Pb 11
iotite Quartz Feldspar Paragneiss	48.9-49.9m			<u>.</u>	Ni 48 Co 34
48.46-50.29m)	10.5 45.5m				U ₃ O ₈ 0.2 Pb 11 Ni 39 Co 29
					NI 39 CO 29
hlorite Feldspar Quartz Paragneiss	49.9-50.8m			· · ·	U308 0.2 Pb 9
50.29-50.90m)		graphite (?)			Ni 37 Co 22
dark grey black					
colour possibly due to fine grained graphite					
ay represent conductor					
					$II \cap O \cap Dh IO$
iotite Chlorite(?) Paragneiss 50.90-53.95m)					U ₃ O ₈ 0.0 Pb 10 Ni 44 Co 25
biotite and chlorite up to 70% with rusty	50.8- 51.8m				
lebs of altered sulphides, limonite	51.8- 52.9m	pyrite	100%	1000-1100	U ₃ 08 0.6 Pb 11
conductor possibly extends from 50.3 to 53.0	2m 52 0- 52 0-	limonite		cpm	Ni 67 Co 29
construction population calenda from 50.5 CO 53.0.	Ju J2.9- 33.9M				U ₃ O ₈ 0.2 Pb 12
iotite Feldspar Quartz Paragneiss	53.9- 54.8m				Ni 82 Co 37
53.95-57.00m)	53.5 54.0m				U308 0.4 Pb 12
more leucocratic than the above					Ni 84 Co 31

Description	Donth	1 vet		1	
Description	Depth Metres/	Mineral- ization	Core Covery	Bag Count	Assay
- shistosity 40 degrees to core axis	54.9- 55.9m		100%	1000-1100	U308 1.0 Pb
Biotite Feldspar Quartz Paragneiss	55.9- 56.8m			cpm	Ni 33 Co
57.00-60.04m)	55.9- 56.8M				U308 0.2 Pb Ni 71 Co
similar to zone 50.3 to 53.05m but less mafic	56.8- 58.6		100%	1000-1100	U ₃ 08 0.2 Pb
blowitz Calict				cpm	Ni 94 Co
hlorite Schist					
60:04-63.09m)					
biotite possibly altered to chlorite minor limonite and hematite 2-3%		limonite			•
schistosity 40 degrees ot core axis	A A A A A A A A A A A A A A A A A A A	limonite hematite	100%	1000 1100	
Sentecosicy to degrees of core axis		nematice	TOO&	1000-1100	Put
iotite Quartz Feldspar Paragneiss					
63.09- 72.24m)	· · · · · · · · · · · · · · · · · · ·				
highly chloritic 60-70% beds,pyrite 1-2%					
local strong hematitic alteration from 66.14			96%	800-1000cbr	n
).19m		hematitic			••• • • • • •
		alteration			
mphibole Chlorite Biotite Paragneiss					
72.24 -75.59m)					
more mafic than above 70-80%					
sections of quartz feldspar segregations with					
% pyrite		pyrite 1%	95%	800-1000cpr	n
					· · ·
eldspar Quartz Paragneiss					
75.59 -77.08m)					
quartz feldspar with biotite 60-70% grading			0.65		
own to chloritic segregations at 77.08m			96%	1000-140dcr	om
iotite Chlorite Peldspar Paragneiss					
77.08-78.43m)					
dark grey green biotite (chlorite) feldspar					
aragneiss			95%	1000-1400cr	Cm
	· · · ·		0	T000-T400CI	
iotite Quartz Feldspar Paragneiss	· · · · · ·				
78.43-81.07m)					
prominent banding at irregular intervals					
mafic content 15-20%					
pyrite in fractures and within the mafic bands	;	pyrite	98%	1000-1400cr	Om
ccurs disseminated and in blebs up to 4%		disseminated			•
		and in blebs			
otite Quartz Feldspar Paragneiss					
81.07-88.09m)					
Coarse grained feldspar segregation at 87.6m	n an				

Description	Depth Metres/	Mineral- ization	Core Covery	Bag Count	Assay
- pink feldspar crystals up to lcm.					
mafic content 20-30 %					
light coloured section with leached appea	ar-				
nce at 85.10m		pyrite 1%	98%	1000-1400cpm	
disseminated pyrite 1%	•				
iotite Quartz Feldspar Paragneiss					
88.09-99.67m)					
grades into grey amphibole, chlorite biot	ite				
uartz paragneiss at irregular intervals					
mafic content 30-90% throughout					
common fractures filled wiht quartz and					
nlorite					
foliation 50 degrees to core axis disseminated pyrite 2%			0.00		
pink pegmatitic sections occur at irregul	ar	pyrite 2%	98%	1000-1400cpm	
tervals					
95.10-96.93m fractures parallel to core 1	ined				
ith chlorite local displacement .5cm.					
pronounced banding throughout					
dark grey mafic bands with pink irregular					
elsic bands of varying widths			96%	1000-1400cpm	
ND OF HOLE	00 67- (2276+				
	99.67m/327ft.				
	99.0/m/32/it.				
	99.67m/327it.				
	99.07m/327it.				
	99.07M/327IL.				
	99.07m/327ft.				
	99.07m/327ft.				
	99.07M/327IT.				
	99.07M/327IL.				
	99.07M/327IT.				
	99.07M/327IC.				
	99.0/m/32/it.				
	99.0/m/32/IL.				
	99.0/M/32/IL.				
	99.0/m/32/it.				
	99.0/m/32/it.				
	99.0/m/32/it.				

Property <u>Richardson Quartz Mineral Per</u>	rmit - Alberta		Hole No. RR3
Sheet Number: 1 of 3	_NTS NO.	74L	Started March 28, 1979
Collar Tp 104 R6	Claim No.	6876120005	Completed March 29, 1979
Section 35 West of the 4th	Bearing		Ultimate Depth 69.19m /227ft.
Elevation281.9 m	DIP	-90	Proposed Depth
			Logged by:G. Wilson

Description	Depth Metres/	Mineral- ization	Core Recovery	Bag Count	Assay
Quaternary and Recent Overburden (0 - 28.65) Sand with a few boulders of underlying	Assay Interval				
bedrock Unconformity					
Precambrian Basement Rocks Granite Gneiss					
(28.65 - 30.11 m) - intrusive (?)	28.6 -29.6				U ₃ O ₈ 8.6 Pb 4 Ni 6 Co 2
-white to light grey - generally medium grained with sections of very siliceous fine grained material - Composition Quartz 35%, Kspar 30, Plag 32, Biotite 3%, Pyrite 1% - common fractures at 40° to core axis	29.6 - 30.6		• 100%	800-1000 cpm	U ₃ Q ₈ 3.8 Pb 5 Ni 7 Co 2
Granite Gneiss				•	
 (30.11 - 31.06) highly fractured zone green clay mineral and tar in fracture feldspars altered to clay minor hemitite stain 	30.6 - 31.6	minor hemitit	e 100%	800-1000 cpm	U30 ₈ 6.0 Pb 5 Ni 7 Co 2
Granite (31.6 - 40.41m)	31.6 - 32.6				U ₃₀₈ 11.1Pb 20 Ni 6 Co 2

Description	Depth Metres/	Mineral- ization	Core Covery	Bag Count	Assay
light grey to white locally pink hemitite and malchite (minor) aligning ractures	32.6 - 33.6	hemitite malachite	100%	800-1000 cpm	U ₃ 08 9.7 Pb 6 Ni 6 Co 2
disseminated pyrite to 3% feldspars altered to clays	33.6 - 34.6 34.6 - 35.5	pyrite in fractures			U ₃ 08 9.0 Pb 5 Ni 6 Co 3
hlorite Feldspar Quartz Biotite Pa ra gneiss (40.41 - 40.69m)					U ₃ 08 7.4 Pb 6 Ni 9 Co 5
biotite and chlorite 40-70%					•
ranite Gneiss (40.69 - 42.06) as above					•
aragneiss					
(42.06 - 42.37) as above					
ranite Gneiss (42.37 - 42.67) as above					н Паралана Паралана
aragneiss					
(42.67 - 44.81) as above					
aragneiss (44.81 - 47.00) as above					
ranite					
(47.00 - 48.37m) altered, leached appearance feldspars altered to clay		calcite and			
calcite and pyrite in fractures		pyrite in fractures			
ranodiorite (47.38 - 65.53) dark to light grey					
medium to coarse grained with fine grained ections					

Description	Depth Metres/	Mineral- ization	Core Covery	Bag Count	Assay
Chlorite Feldspar Quartz Paragneiss (81.53 to 84.43) - same as chlorite schist except 20 - 30%			90 - 95%	20-30сра	
reldspar forming gneissosity - gneissosity 40 to 50 degrees to core axis - 81.99 shear zone mud and chlorite rubble - 82.75 - 03.51 brecclation possibly fault					
ougo - 84.12 fault gouge 10cm.					
hlorite Biotite Schist (84.43 to 84.73)					
eldspar Quartz Chlorite Biotite Paragneiss (84.73 to 85.03) offset along fractures					
pyrite 1%			90-95%	20-30cps	
hlorite Feldspar Quartz Biotite Paragneiss (85.03 to 85.95)	86.5 - 87.5				U ₃ 08 0.2 Pb 1 Ni 116 Co 28
hlorite Biotite Schist					
(85.95 - 87.48m) breccia zone 86.56 to 87.48m siderite filling veinlets to 10mm	87.5 -88.1				U3O8 0.2 Pb 8 Ni 72 Co 20
also gangue rubble chlorite and mud	88.1 - 89.0				U ₃ O ₈ 0.4 Pb 8 Ni 27 Co 12
hlorite Biotite Schist (87.48 to 90.52m)	89.0 - 90.2	hematite	00.050	15-40cps	2
siderite filling fractures 88.08 to 89.00 altered zone local hematite chlorite slickenstdes:		siderite	90-95%	40005090.2	² U ₃ O ₈ 0.2 Pb 8 Ni 38 Co 15
core highly altered kayolin and talc hlorite Feldspar Quartz Paragneiss					
(90.52 to 93.57m)					
90.52 to 91.74 intense fracture zone siderit nfilling fractures schistosity 40 to 45 degrees to core axis		siderite		15-35cps	

$(96.62 \text{ to } 99.67\text{m})$ of graphite $80-85 \text{ s}$ 97.53 45 cbs Ni 41 Comparison $\cdot \text{trace of graphite}}$ $97.8 - 99.1$ $97.8 - 99.1$ 97.53 45 cbs Ni 41 Comparison $(90.67 \text{ to } 99.97 \text{ m})$ $97.8 - 99.1$ $97.8 - 99.1$ $97.8 - 99.1$ $(99.67 \text{ to } 99.97 \text{ m})$ $99.1 - 100.0$ $99.1 - 100.0$ $99.1 - 100.0$ $(100.28 \text{ to } 102.10\text{m})$ $99.1 - 100.0$ $100.0 - 100.6$ $99.0 - 100.6$ $(100.28 \text{ to } 102.10\text{m})$ $100.6 - 101.8$ $100.6 - 101.8$ $99.0 - 100.6$ $(102.10 \text{ to } 103.02\text{m})$ $101.8 - 103.0$ $101.8 - 103.0$ $99.0 - 100.6$ $(103.02 \text{ to } 103.63\text{ m})$ $103.0 - 104.2$ 97.90 m $99.0 - 100.6$ $(103.63 \text{ to } 105.77)$ $103.0 - 104.2$ 97.90 m $15-35 \text{ cps}$ 90.06 m $(103.63 \text{ to } 105.77)$ $103.0 - 104.2$ 97.90 m 90.6 m $15-35 \text{ cps}$ 90.06 m $103.0 - 104.2$ 97.90 m 90.6 m $15-35 \text{ cps}$ 90.06 m $103.0 - 104.2$ 90.06 m 103.0 m 90.06 m $103.0 - 104.2$ 97.90 m 90.06 m $15-35 \text{ cps}$ 90.06 m $103.0 - 104.5 \text{ to } 105.76 \text{ massive graphite}$ $103.0 - 104.2 \text{ m}$ 90.06 m 100.06 m $105.46 \text{ to } 105.76 \text{ massive graphite}$ $103.0 - 104.2 \text{ m}$ 90.06 m 100.06 m $105.46 \text{ to } 105.76 \text{ massive graphite}$ $103.0 - 104.2 \text{ m}$ 100.06 m 100.06 m $105.46 to $	Bag Assay Count		Mineral- ization	Depth Metres/	Description
several brecciated zones 32.88 to 94.18 , 4.49 to 94.79 , 95.40 to 96.61 carbonate in breccia zone $90-95$ % $15-45cps$ $94.79m$ $40cps$ $96.01m$ $45cps$ eldspar Quartz Chlorite Paragneiss (95.40 to $96.62m$) red feldspars $96.6 - 97.8m$ trace of amounts of graphite $80-85$ % $15-45cps$ $U_3O_6 0.1$ 97.53 $45cps$ Ni 41 C 					
Calabar In Decil 201696.01m 45 cpseldspar Quartz Choirte Paragneiss (95.40 to 96.62m) red feldspars96.6 - 97.8mtrace of amounts of graphite $0f$ graphite96.01m 45 cpshlorite Feldspar Quartz Paragneiss (96.62 to 99.67m) trace of graphite soft yellow clay present97.8 - 99.1trace of amounts of graphite $0f$ graphite15-45 cpsU308 0.4 $0f$ graphite $0f$ graphitehlorite Schist (190.28 to 102.10m) this zone has traces to thin graphite seams incoghout99.1 - 100.0100.0 - 100.6 $100.6 - 101.8$ 100.0 - 100.6 $100.6 - 101.8$ U308 0.4 $0f$ Ni 19 cc $U_308 0.4$ Ni 31 cceldspar Quartz Chlorite Biotite Paragneiss (102.10 to 103.02m) 5 to 10 % graphite caphite Schist (103.63 to 105.77) 103.63 to 105.76 massive graphite 105.46 to 105.77103.67 to105.76 massive graphite 105.76 massiv					several brecciated zones 93.88 to 94.18,
Pidepar Quartz Chlorite Paragneiss $(95.60 \text{ to } 96.62\text{m})$ red feldspars $(96.62 \text{ to } 99.67\text{m})$ trace of graphite $(99.67 \text{ to } 99.97 \text{ m})$ aphite Schist $(99.97 \text{ to } 100.28\text{m})$ $(90.1 - 100.0 \text{ loo.} 6 \text{ this zone has traces to thin graphite seams (100.28 \text{ to } 102.10\text{m})$ $(100.28 \text{ to } 102.10\text{m})$ $(100.6 - 101.8 \text{ loo.} 6 \text{ to } 101.8 - 103.0 \text{ loo.} 28 \text{ to } 20.30 \text{ graphite}$ $80-90\text{ s}$ $15-35\text{cps}$ $U_3O_8 0.4 \text{ so } 100.6 \text{ so } 101.8 - 103.0 \text{ loo.} 104.8 \text{ so } 90.8 \text{ so } 15-35\text{cps}$ $U_3O_8 0.4 \text{ so } 100.6 \text{ so } 101.8 \text{ so } 103.0 \text{ so } 104.2 \text{ graphite}$ $80-90\text{ so } 15-35\text{cps}$ $U_3O_8 0.4 \text{ so } 103.0 \text{ so } 104.8 \text{ so } 90.8 \text{ so } 15-35\text{cps}$ $U_3O_8 0.4 \text{ so } 103.0 \text{ so } 104.8 \text{ so } 105.77 \text{ so } 103.0 \text{ so } 104.2 \text{ graphite}$ $80-90\text{ so } 15-35\text{cps}$ $U_3O_8 0.4 \text{ so } 103.0 \text{ so } 105.46 \text{ to } 105.77 \text{ so } 105.77 \text{ so } 105.77 \text{ so } 105.77 \text{ so } 103.0 \text{ so } 104.8 \text{ so } 105.77 $	1 . I -				carbonate in breccia zone
hlorite Feldspar Quartz Paragneiss (96.62 to 99.67m) trace of graphite soft yellow clay present (96.62 to 99.67m) trace of graphite soft yellow clay present (99.67 to 99.97 m) aphite Schist (100.28 to 102.10m) this zone has traces to thin graphite seams (102.10 to 103.02m) (102.10 to 103.02m) (102.10 to 103.02m) (102.10 to 103.02m) (102.10 to 103.02m) (102.10 to 103.02m) (103.63 to 104.65 zone of brecciation, dark (103.64 to 105.77) (103.64 to 105.77) (103.64 to 105.77) (103.64 to 105.77) (105.64 to 105.77) (105.76 to 105.76) (105.76 to 105.76) (105.76 to 105.76) (105.76 to 105.76) (105.76 to 105.77) (105.76 to 105.76) (105.76 to 105.76) (1					(95.40 to 96.62m)
$(96.62 \text{ to } 99.67\text{m})$ trace of graphiteof graphite $80-85 \text{ s}$ 97.53 45 ces Ni 41 C U ₃ 0 ₈ 0.4 Ni 46 Cdtrace of graphite $97.8 - 99.1$ $97.8 - 99.1$ $U_{3}0_{8} 0.4$ U ₃ 0 ₈ 0.4 Ni 46 Cdlorite Schist (199.97 to 100.28m) $99.1 - 100.0$ $U_{3}0_{8} 0.4$ Ni 35 Cdlorite Schist (100.28 to 102.10m) this zone has traces to thin graphite seams roughout $99.1 - 100.0$ $U_{3}0_{8} 0.4$ Ni 35 Cdlorite Schist (102.10 to 103.02m) $100.0 - 100.6$ $101.8 - 103.0$ $U_{3}0_{8} 0.4$ Ni 31 Cdlorite Schist (103.02 to 103.63m) 5 to 10 % graphite $103.0 - 104.2$ $103.63 to 104.85 zone of brecciation, darkoty appearancevaries from graphite schist to massive graphite103.0 - 104.2103.0 - 104.2graphite80-90\%15-35\text{cps}U_{3}0_{8} 0.4Ni 33 Cd$					red feldspars
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				96.6 - 97.8m	승규는 것 같은 것 같은 것 같은 것 같은 것 같은 것 같은 것 같이 많이
soft yellow clay present 97.8 - 99.1 10rite Schist (99.67 to 99.97 m) aphite Schist (99.97 to 100.28m) 100.0 - 100.0 100.0 - 100.6 100.0 - 100.6 100.6 - 101.8 100.6 - 101.8 101.8 - 103.0 101.8 - 103.0 101.8 - 103.0 103.0 - 104.2 103.0 - 104.2 103.0 - 105.76 103.0 - 104.2 103.0 - 104.2 103.0 - 104.2 103.0 - 104.2 103.0 - 105.76 103.0 - 104.2 103.0 - 104.2 103.	57.55 450ps NI 41 CO 18	00-00 % 97	or graphice		
$(99.67 to 99.97 m)$ aphite Schist $(99.97 to 100.28m)$ $99.1 - 100.0$ $(100.28 to 102.10m)$ $100.0 - 100.6$ $100.0 - 100.6$ $100.6 - 101.8$ $100.6 - 101.8$ $100.6 - 101.8$ $101.8 - 103.0$ $101.8 - 103.0$ $101.8 - 103.0$ $103.02 to 103.63m)$ $5 to 10 & graphite$ $aphite Schist$ $(103.63 to 105.77)$ $103.0 - 104.2$ $graphite$ $80-90 & 15-35cps$ $103^{O}_{B} 0.4$ $Ni & 31 cc$ $Ni $	U ₃ O ₈ 0.0 Pb Ni 46 Co 19			97.8 - 99.1	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					
lorite Schist (100.28 to 102.10m) this zone has traces to thin graphite seams roughout ldspar Quartz Chlorite Biotite Paragneiss (102.10 to 103.02m) lorite Schist (103.02 to 103.63m) 5 to 10 % graphite aphite Schist (103.63 to 105.77) 103.63 to 104.85 zone of brecciation, dark oty appearance varies from graphite schist to massive graphite 105.46 to 105.76 massive graphite luster 100.0 - 100.6 100.0 - 100.6 100.0 - 100.6 100.6 - 101.8 100.6 - 101.8 100.6 - 101.8 100.6 - 101.8 100.6 - 101.8 100.8 - 103.0 101.8 - 103.0 101.8 - 103.0 101.8 - 103.0 101.8 - 103.0 103.0 - 104.2 103.0 - 104.2 103.0 - 104.2 103.0 - 104.2 15-35cps $03^{O_8} 0.6$ Ni 33 columna $Ni 33 columnaNi 33 columnaNi 33 columnaNi 33 columna15-35cps$	4308 0.0 Pb			99.1 - 100.0	
roughout $100.6-101.8$ ldspar Quartz Chlorite Biotite Paragneiss (102.10 to 103.02m) lorite Schist (103.02 to 103.63m) 5 to 10 % graphite aphite Schist (103.63 to 105.77) 103.63 to 104.85 zone of brecciation, dark oty appearance varies from graphite schist to massive graphite 100.6-101.8 101.8 - 103.0 101.8 - 103.0 103.0 - 104.2 103.0 - 104.2 103.0 - 104.2 15-35cps 15-35cps 13-3	N1 35 Co 19 U ₃ O ₈ 0.4 Pb			100.0 - 100.6	(100.28 to 102.10m)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Ni 19 Co 10 U ₃ 0 ₈ 0.0 Pb			100.6- 101.8	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Ni 55 Co 20				
<pre>(103.02 to 103.63m) 5 to 10 % graphite aphite Schist (103.63 to 105.77) 103.63 to 104.85 zone of brecciation, dark oty appearance varies from graphite schist to massive graphite 105.46 to 105.76 massive graphite luster</pre> 103.0 - 104.2 graphite 103.0 - 104.2 graphit	U ₃ \$\$\mu_8\$ 0.4 Pb Ni 31 Co 12			101.8 - 103.0	o lorite Schist
(103.63 to 105.77) 103.63 to 104.85 zone of brecciation, dark by appearance varies from graphite schist to massive graphite 103.0 - 104.2 graphite 104.2 graphite 104.2 graphite 105.4					
Ni 33 Constraints Ni 33 Constraints Ni 33 Constraints Ni 33 Constraints from graphite schist to massive graphite 105.46 to 105.76 massive graphite luster					
varies from graphite schist to massive graphite .05.46 to 105.76 massive graphite luster	15-35cps U ₃ O ₈ 0.6 Pb Ni 33 Co 19	80-90% 15-3	graphite	103.0 - 104.2	.03.63 to 104.85 zone of brecciation, dark
				te	aries from graphite schist to massive graph
preculation and intense fracturing common,					05.46 to 105.76 massive graphite luster recciation and intense fracturing common,
arbonate common					

Description	Depth Metres/	Mineral- ization	Core Covery	Bag Count	Assay
- schistosity plane					· ·
- several shear zones					
- chlorite rubble and fault gouge	-104.2 - 105.5			1	U ₃ 0 ₈ 1.0 Pb
					Ni 34 Co 21
Graphite Schist					U308 1.4 Pb
(105.77 to 108.81m)	105.5 - 106.7	graphite			Ni 39 Co 25
- same as above - brecciated 105.77 to 106.98 and 108.20 to	106.7 - 107.9				$U_{3}O_{8}$ 3.3 Pb
108.81m	100.7 - 107.9				Ni 33 Co 20
100.01		graphite	90-95%	15-35cps	
	107.9 -109.1				U ₃ 0 ₈ 1.6 Pb Ni 41 Co 27
	and the second				MT 4T CO 21
Graphite Schist (108.81 to 111.86m)			(1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2		
- as above with chlorite schist 109.42 to					
111.09 and 111.39 to 111.86		graphite	90-95%	20-40cps	U308 1.2 Pb
- disseminated pyrite 1 - 2%	109.1 - 110.3	pyrite		110-40cps	
	109.1 - 110.5				U30 ₈ 2.0 Pb
	110.3-111.6				Ni 43 Co 27
Chlorite Schist					
(111.86 to 113.84m)	111.6 - 112.8				U ₃ 08 0.6 Pb
			95-100%	20-35cps	•
					Ni 35 Co 17
Graphite Schist	112.8 - 114.0				U308 0.6 Pb
(113.84 to 114.3m)	112.0 - 114.0				Ni 29 Co 17
- 1 -2% disseminated pyrite		graphite			
T TO GINDOWINGCG FILLCO		1-2% pyrite			
Chlorite Feldspar Quartz Paragneiss					
(114.3 to 117.96m)					
- brecciated at 117.65 to 117.80	114.0 - 114.9		95-100%	20-30cps	U308 0.0 Pb
- pyrite and quartz crystals at 115.37					Ni 28 Co 17
Chlorite Feldspar Quartz Paragneiss					
(117.96 to 121m) - as above			95-100%	15-25cps	
			~~~~~ [		
End of Hole	121m/397ft.				
Plastic Pipe to 115.82m/380ft.	12 Iny 37710.				

	ENTRY PROUR				
Property Richardson River Permit Al	herta		Hola No.	RRG	
Sheet Number: 1 of 6 N	TS No: 74-L		_Started	<u>-11 5, 1979</u>	ang
Collar <u>BL 1200</u> + 650E C	laim No6876120		_Completed		
B	earing <u>046</u>		_Ultimate Dept	h <u>102.72m/</u>	337ft.
Elevation <u>262.1 m</u> D	IP68 degree		Proposed Dept		
		•	Logged by:	L. Smit	h
Description	Depth Metres/	Mineral- ization	Core Recovery	Bag Count	Assay
Quaternary and Recent Overburden (0 - 28.65)	Assay Intervals				
Devonian Mudstone (28.65 - 31.09)			95-100%	SPP-2 45-50cps	
Devonian Muddy Sandstone 31.09 to 31.24m)					
Devonian Regolith LaLoche Formation (31.24 to 31.55m) - coarse grit with rusty hematite stain			95-100%	40-50cps	
Devonian (?) Basal Conglomerate (31.55 to 33.52m)					
- clasts up to 15mm of Paragneiss and chlorite schist - matrix mudstone	33.5 - 34.2	- -			U ₃ O ₈ 0.4 Pb6 Ni 15 Co 12
- clast:Matrix ratio, 1:43 to 1:40 - this zone is weathered, leached and appears brecciated 32.30 to 32.45m					
- mud seam at 32.91m Unconformity			95-100%	45-50 cps	
Precambrian Basement Rocks Chlorite Feldspar Paragneiss	33.5 - 34.2				U ₃ 0 ₈ 0.4 Pb 6 Ni 15 Co 12
(33.52 to 35.66m) - contains narrow chlorite schist bands	34.2 - 35.7				U308 0.2 рь 8
- 34.06 10mm seam of highly weathered clay - chlorite rich layer					Ni 13 Co 13

Description	Depth Metres/	Mineral- ization	Core Covery	Bag Count	Assay
foliation and gneissosity 30-45 degrees t	0			· · · ·	
ore axis					
numerous fractures filled with silica car	bonate				•
nd epidote					
chlorite sections contain 1-2% pyrite		pyrite 1-2%	•		
hlorite Feldspar Quartz Paragneiss					
(35.66 to 38.10m)	35.7-36.6		· · · ·		U ₃ O ₈ 0.0 Pb 8
chlorite 50-70%					Ni 12 Co 13
feldspar and quartz 50-30%					
gneissosity 20 degrees to core axis					
brecciation from 36.58 to 36.88m			85-90%	45-50cps	
eldspar Quartz Chlorite Paragneiss					
(38.1 to 39.17m)					
chlorite 20-35%					
hlorite Feldspar Quartz Paragneiss					
(39.17 to 41.45m)	39.3-40.2			45-55cps	U ₃ O ₈ 0.2 Pb 6
1-5% disseminated pyrite			•		Ni 11 Co 10
shear zone chlorite schist at 39.32m			90-95%		
rubble for 15cm.				40.23m	
				55cps	
eldspar Quartz Chlorite Paragneiss					• •
(41.45 to 42.37m)		5% pyrite			
			•		
hlorite Feldspar Quartz Paragneiss					
(42.37 to 42.75m)					
eldspar Quartz Chlorite Paragneiss					
(42.27 to 43.29m)	42.7-43.9				U ₃ 08 3.1 Pb 7
					Ni 11 Co 10
hlorite Feldspar Quartz Paragneiss			100%	30-40cps	
(43.29 to 44.04m)		· 7-8% pyrite			
eldspar Quartz Chlorite Paragneiss					
(44.04 to 44.50m)					
hlorite Feldspar Quartz Paragneiss					
(44.50 to 44.81m)					
(1, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,					

Peldspar Quartz Chlorite Paragneiss (44.81 to 46.32m) gneissosity 0-15 degrees to core axis100%30-40cpshlorite Feldspar Quartz Paragneiss (46.32 to 46.63m) weathered, altered, leached rubbly shear zone (?)100%30-40cpseldspar Quartz Chlorite Paragneiss (46.63 to 48.00m)100%30-40cpshlorite Feldspar Quartz Paragneiss (46.63 to 48.00m)100%30-40cpshlorite Feldspar Quartz Chlorite Paragneiss (48.62 to 50.60m)100%30-40cpshlorite Feldspar Quartz Paragneiss (50.60 to 51.51m) gneissosity 0 to 15 degrees to core axis trace of pyrite in chlorite sections52.4 - 53.695-100%sldspar Quartz Chlorite Paragneiss (51.51 to 52.58m) quartz content higher than normal hlorite Schist (52.58 to 53.95m)52.4 - 53.695-100%	
(44.81 to 46.32m)' gneissosity 0-15 degrees to core axishlorite Peldspar Quartz Paragneiss (46.32 to 46.63m) weathered, altered, leached rubbly shear zone (?)eldspar Quartz Chlorite Paragneiss (46.63 to 48.00m)hlorite Feldspar Quartz Paragneiss (46.63 to 48.00m)hlorite Feldspar Quartz Paragneiss (48.62 to 50.60m)eldspar Quartz Chlorite Paragneiss (50.60 to 51.51m) gneissosity 0 to 15 degrees to core axis trace of pyrite in chlorite sectionsblorite Schist52.4 - 53.695-100%30-40cps	
gneissosity 0-15 degrees to core axis100%30-40cpsthorite Feldspar Quartz Paragneiss (46.32 to 46.63m) weathered, altered, leached rubbly shear zone (?)100%30-40cpseldspar Quartz Chlorite Paragneiss (46.63 to 48.00m)100%30-40cpshlorite Feldspar Quartz Paragneiss (48.62 to 50.60m)100%30-40cpshlorite Feldspar Quartz Paragneiss (48.62 to 50.60m)100%30-40cpshlorite Feldspar Quartz Chlorite Paragneiss (48.62 to 50.60m)100%30-40cpshlorite Feldspar Quartz Paragneiss (50.60 to 51.51m) gneissosity 0 to 15 degrees to core axis trace of pyrite in chlorite sections52.4 - 53.695-100%30-40cpseldspar Quartz Chlorite Paragneiss (51.51 to 52.58m) quartz content higher than normal52.4 - 53.695-100%30-40cps	
Chlorite Feldspar Quartz Paragneiss (46.32 to 46.63m) weathered, altered, leached rubbly shear zone (?)100%30-40cpseldspar Quartz Chlorite Paragneiss (46.63 to 48.00m)100%30-40cpshlorite Feldspar Quartz Paragneiss (48.62 to 50.60m)100%30-40cpseldspar Quartz Chlorite Paragneiss (48.62 to 50.60m)100%30-40cpshlorite Feldspar Quartz Paragneiss (50.60 to 51.51m) gneissosity 0 to 15 degrees to core axis trace of pyrite in chlorite sections52.4 - 53.695-100%eldspar Quartz Chlorite Paragneiss (51.51 to 52.58m) quartz content higher than normal52.4 - 53.695-100%030-40cps	
(46.32 to 46.63m) weathered, altered, leached rubbly shear zone (?)100%30-40cpseldspar Quartz Chlorite Paragneiss (46.63 to 48.00m)100%30-40cpshlorite Feldspar Quartz Paragneiss (48.62 to 50.60m)100%30-40cpshlorite Feldspar Quartz Paragneiss (50.60 to 51.51m) gneissosity 0 to 15 degrees to core axis trace of pyrite in chlorite sections52.4 - 53.695-100%sldspar Quartz Chlorite Paragneiss (51.51 to 52.58m) quartz content higher than normal52.4 - 53.695-100%30-40cps	
(46.32 to 46.63m) weathered, altered, leached rubbly shear zone (?)100%30-40cpseldspar Quartz Chlorite Paragneiss (46.63 to 48.00m)100%30-40cpshlorite Feldspar Quartz Paragneiss (48.62 to 50.60m)100%30-40cpshlorite Feldspar Quartz Paragneiss (50.60 to 51.51m) gneissosity 0 to 15 degrees to core axis trace of pyrite in chlorite sections52.4 - 53.695-100%sldspar Quartz Chlorite Paragneiss (51.51 to 52.58m) quartz content higher than normal52.4 - 53.695-100%30-40cps	
<pre>weathered, altered, leached rubbly shear zone (?) eldspar Quartz Chlorite Paragneiss (46.63 to 48.00m) hlorite Feldspar Quartz Paragneiss (48.62 to 50.60m) hlorite Feldspar Quartz Paragneiss (48.62 to 50.60m) hlorite Feldspar Quartz Paragneiss (50.60 to 51.51m) gneissosity 0 to 15 degrees to core axis trace of pyrite in chlorite sections eldspar Quartz Chlorite Paragneiss (51.51 to 52.58m) quartz content higher than normal hlorite Schist</pre>	
rubbly shear zone (?) eldspar Quartz Chlorite Paragneiss (46.63 to 48.00m) hlorite Feldspar Quartz Paragneiss (48.62 to 50.60m) eldspar Quartz Chlorite Paragneiss (48.62 to 50.60m) hlorite Feldspar Quartz Paragneiss (50.60 to 51.51m) gneissosity 0 to 15 degrees to core axis trace of pyrite in chlorite sections eldspar Quartz Chlorite Paragneiss (51.51 to 52.58m) quartz content higher than normal hlorite Schist P5-100% 30-40cps	
Peldspar Quartz Chlorite Paragneiss (46.63 to 48.00m) Alorite Feldspar Quartz Paragneiss 48.00 to 48.62m) Beldspar Quartz Chlorite Paragneiss (48.62 to 50.60m) Horite Feldspar Quartz Paragneiss (50.60 to 51.51m) gneissosity 0 to 15 degrees to core axis trace of pyrite in chlorite sections Eldspar Quartz Chlorite Paragneiss (51.51 to 52.58m) State of the section of the se	
(46.63 to 48.00m)Alorite Feldspar Quartz Paragneiss (48.00 to 48.62m)Aldspar Quartz Chlorite Paragneiss (48.62 to 50.60m)Alorite Feldspar Quartz Paragneiss (50.60 to 51.51m) gneissosity 0 to 15 degrees to core axis trace of pyrite in chlorite sectionsAldspar Quartz Chlorite Paragneiss (51.51 to 52.58m) quartz content higher than normalJorite Schist	
(46.63 to 48.00m)allorite Feldspar Quartz Paragneiss (48.00 to 48.62m)seldspar Quartz Chlorite Paragneiss (48.62 to 50.60m)allorite Feldspar Quartz Paragneiss (50.60 to 51.51m) gneissosity 0 to 15 degrees to core axis trace of pyrite in chlorite sectionsseldspar Quartz Chlorite Paragneiss (51.51 to 52.58m) quartz content higher than normalseldspar Quartz Chlorite Paragneiss (51.51 to 52.58m) quartz content higher than normalseldspar Quartz Chlorite Paragneiss (51.51 to 52.58m) quartz content higher than normalseldspar Quartz Chlorite Paragneiss (51.51 to 52.58m) quartz content higher than normalseldspar Quartz Chlorite Paragneiss (51.51 to 52.58m) quartz content higher than normalseldspar Quartz Chlorite Paragneiss (51.51 to 52.58m) quartz content higher than normalseldspar Quartz Chlorite Paragneiss (51.51 to 52.58m) quartz content higher than normalseldspar Quartz Chlorite Paragneiss (51.51 to 52.58m) quartz content higher than normalseldspar Quartz Chlorite Paragneiss (51.51 to 52.58m) quartz content higher than normalseldspar Quartz Chlorite Paragneiss (51.51 to 52.58m) (51.51 to 52.58m)seldspar Quartz Chlorite Paragneiss (51.51 to 52.58m)seldspar Quartz Chlorite Paragneiss (51.5	
Alorite Feldspar Quartz Paragneiss 48.00 to 48.62m) Aldspar Quartz Chlorite Paragneiss (48.62 to 50.60m) Alorite Feldspar Quartz Paragneiss (50.60 to 51.51m) gneissosity 0 to 15 degrees to core axis trace of pyrite in chlorite sections Aldspar Quartz Chlorite Paragneiss (51.51 to 52.58m) quartz content higher than normal lorite Schist 95-100% 30-40cps	
48.00 to 48.62m) Aldspar Quartz Chlorite Paragneiss (48.62 to 50.60m) Alorite Feldspar Quartz Paragneiss (50.60 to 51.51m) gneissosity 0 to 15 degrees to core axis trace of pyrite in chlorite sections Aldspar Quartz Chlorite Paragneiss (51.51 to 52.58m) quartz content higher than normal lorite Schist 48.00 to 48.62m) 100% 30-40cps 52.4 - 53.6 95-100% 30-40cps	
48.00 to 48.62m) Aldspar Quartz Chlorite Paragneiss (48.62 to 50.60m) lorite Feldspar Quartz Paragneiss (50.60 to 51.51m) gneissosity 0 to 15 degrees to core axis trace of pyrite in chlorite sections ldspar Quartz Chlorite Paragneiss (51.51 to 52.58m) quartz content higher than normal lorite Schist 30-40 cps 52.4 - 53.6 95-100% 30-40 cps	
1dspar Quartz Chlorite Paragneiss (48.62 to 50.60m)100%30-40cpslorite Feldspar Quartz Paragneiss (50.60 to 51.51m) gneissosity 0 to 15 degrees to core axis trace of pyrite in chlorite sections52.4 - 53.6100%ldspar Quartz Chlorite Paragneiss (51.51 to 52.58m) quartz content higher than normal52.4 - 53.695-100%30-40cps	
ldspar Quartz Chlorite Paragneiss (48.62 to 50.60m)       Initial Section Sect	
(48.62 to 50.60m) lorite Feldspar Quartz Paragneiss (50.60 to 51.51m) gneissosity 0 to 15 degrees to core axis trace of pyrite in chlorite sections ldspar Quartz Chlorite Paragneiss (51.51 to 52.58m) quartz content higher than normal lorite Schist 95-100% 30-40cps	
<pre>lorite Feldspar Quartz Paragneiss (50.60 to 51.51m) gneissosity 0 to 15 degrees to core axis trace of pyrite in chlorite sections ldspar Quartz Chlorite Paragneiss (51.51 to 52.58m) quartz content higher than normal lorite Schist</pre>	
(50.60 to 51.51m) gneissosity 0 to 15 degrees to core axis trace of pyrite in chlorite sections eldspar Quartz Chlorite Paragneiss (51.51 to 52.58m) quartz content higher than normal florite Schist 10 rite Schist	
(50.60 to 51.51m) gneissosity 0 to 15 degrees to core axis trace of pyrite in chlorite sections eldspar Quartz Chlorite Paragneiss (51.51 to 52.58m) quartz content higher than normal florite Schist 10 rite Schist	
gneissosity 0 to 15 degrees to core axis trace of pyrite in chlorite sections eldspar Quartz Chlorite Paragneiss (51.51 to 52.58m) quartz content higher than normal elorite Schist 95-100% 30-40cps	· · · ·
trace of pyrite in chlorite sections eldspar Quartz Chlorite Paragneiss (51.51 to 52.58m) quartz content higher than normal elorite Schist 95-100% 30-40cps	
eldspar Quartz Chlorite Paragneiss (51.51 to 52.58m) quartz content higher than normal Plorite Schist 95-100% 30-40cps	
(51.51 to 52.58m)       52.4 - 53.6       U308 0         quartz content higher than normal       95-100%       30-40cps         lorite Schist       30-40cps       11	
(51.51 to 52.58m)       52.4 - 53.6       U308 0         quartz content higher than normal       95-100%       30-40cps         lorite Schist       30-40cps       11	
quartz content higher than normal     Ni ll       lorite Schist     30-40cps	
quartz content higher than normal       Ni ll         lorite Schist       30-40cps	2 Pb 13
lorite Schist 30-40cps	
lorite Schist	
(52, 58, to, 53, 95m)	
(52.56 66 55.55m)	
dark grey colour	
quartz and feldspar content less than 15%	
limonite and hematite stain common $53.6 - 54.9$ $0_30_8$ 1	.8 Pb 14
hematite alteration specularite at 53.34 to Ni 11	Co 34
.95	
lorite Schist	
(53.95 to 57.00m)	
	ו אם ו
NI IO	.1 Pb 13
schistosity 0-15 degrees to core axis limonite	

pyrite

**I** .

Demonstration	Depth O	MINGL'A L	COLO	nona - a suescences Hay	
	Motron/	Ization	Covery	Count;	
Chlorite Soliet				n:   112 Mary 196 April 16 April 16 (198	nini finita da anta da anta da
(57.00 to 60.05m)	55.5 - 56.1				U308 0.0 Pb 14
- less hematite and limonite than above					Ni 10 Co 34
- 57.91 to 58.52 hematite red colour 10-20% of				1	NT TO CO 34
chlorite schist	56.1 - 57.0		95-100%	30-50cps	U308 0.0 Pb 14
- 59.74 to 60.05 sheared of brecciated chlorite					Ni 11 Co 36 U ₃ O ₈ 0.2 Pb 18
rubble with little hematite or limonite	57.0 - 57.9				
Chlorite Schist					Ni 13 Co 37
(60.05 to 60.80m)	57.9 - 58.8				
- brecciated from 60.05 to 60.50 rubbly 10-20%	27.2 20.4				U ₃ 0 ₈ 0.2 Pb 16
feldspar in this zone					Ni 13 Co 36
- 2-4% disseminated pyrite				(60.35m)	
n en				60cps	
Chlorite Feldspar Quartz Paragneiss				CCCPL	
(60.80 to 60.96m)					
	1		95-100%	50cps	
Feldspar Chlorite Quartz Paragneiss (60.96 to 61.87m)		and the second		en de state	
Chlorite Feldspar Quartz Paragneiss				· · · · ·	
(61.87 to 62.11m)			, N		
Feldspar Chlorite Quartz Paragneiss					
(62.11 to 63.09m)					
Chlorite Feldspar Quartz Paragneiss					
(63.09 to 64.00m)					
				40-50cps	•
Feldspar Quartz Chlorite Paragneiss				- <b>F</b> -	
(64.00 to 66.14m)	1			(64.31m)	
- chlorite content increases to 35% at 64.61				75cps	
Feldspar Quartz Chlorite Paragneiss				(64.46m)	
(66.14 to 67.36m)				70cps	
				30-75cps	
Chlorite Feldspar Quartz Paragneiss	67.4 - 68.6	4	and the second		U ₃ 08 0.2 Pb 8
(67.36 to 67.51m)				(67.51m)	Ni 9 Co 8
				75cps	
	an an <u>an a</u> t an 1860 an a				

Description	Depth Metres/	Mineral- ization	Core Covery	Bag Count	Assay
Feldspar Chlorite Quartz Paragneiss					
(67.51 to 66.19m)	68.9 - 69.8		95-100%	69.0m	U3 ⁰ 8 0.4 Pb
Chlorite Feldspar Paragneiss				70cps	. Ni 9 Co 9
(66.19 to 69.80m)					an a
- probably a shear zone at 69.04					
Feldspar Chlorite Paragneiss					
(69.80 to 70.71m)			95-100%	50-60-00	
			22-T002	50-60cps	
Chlorite Feldspar Paragneiss			•		
(70.71 to 72.24m) gneissosity at 0-10 degrees to core axis					
hlorite Feldspar Quartz Paragneiss					
(72.23  to  72.54m)			95-100%	50-60cps	
chlorite content varies from 50-80% possible shear zone at 72.54					
hlorite Feldspar Quartz Paragneiss					
(72.54 to 76.2m) chlorite 50%	and the second				
CHICITCE JUS					
eldspar Chlorite Quartz Paragneiss			95-100%	45-60cps	. • 
(76.2 to 77.88m)				-3-00CPS	
hlorite Feldspar Paragneiss					· · ·
(77.88 to 78.64m)					
gneissosity 10 to 20 degrees to core axis					
eldspar Chlorite Quartz Paragneiss					
(78.64 to 78.94m)					
				45-75cps	
nlorite Feldspar Quartz Paragneiss					
(78.94 to 79.55m)			95-100%		
		and the second second	22-T002		
eldspar Quartz Chlorite Paragneiss (79.55 to 80.16m)					
quartz vein with ¥enoliths of wall rock at				(79.55m)	
0.00m				75cps	

Description	Depth Metres/	Mineral- ization	Core Covery	Bag Count	Лязау
Chlorite Feldspar Quartz Paragneiss (80.16 to 81.38m)			95-100%	45-75cps	
- alteration at 80.77 and 81.22 to 81.38				2	
- chlorite content increases and feldspars alte to clay	ered		4		
Chlorite Feldspar Quartz Paragneiss					
(81.38 to 85.95m)					
- fractured and altered			95-100%	40-50cps	
			55 1008	40-30Cps	
Fault Zone					
(85.95 to 89.30m)					
- feldspars altered to clays	85.3 - 86.3			40-80cps	U308 0.6 Pb 7
- chlorite servite plus Fault Gouge					Ni 11 Co 10
- clay and mud seams 85.89 to 85.95	86.3 - 87.5		95-100%		U308 1.6 Pb 11
- brecciation				(85.95m)	Ni 9 Co 10
	87.5 - 88,4			80¢pu	U308 1.4 Ph 9
	88.4 - 89.3		· · · · /~~	10 75	Ni 9 Co 8
	00.4 - 09.5			40-75cps	U308 0.8 Pb 7
Feldspar Clorite Quartz Paragneiss					Ni 9 Co 8
(89.30 to 90.52m)	89.3 - 89.9		95-100%	(89.0m)	U308 0.4 Pb 6
- alteration decreases away from fault zone			55 1000	75cps	Ni 11 Co 9
- chlorite content decreases towards 90.52			A second second second		
Feldspar Chlorite Quartz Paragneiss		-			
(90.52 to 96.62m)			95-100%	40-50cps	
- feldspar 50 to 70% - chlorite 10 to 50%					ана стана стана На стана с
- gneissosity 10 to 15 degrees to core axis			05 3000		
chlorite content decreases with depth			95-100%	30-40cps	
enterree content decreases with depth					
eldspar Quartz Chlorite Paragneiss					
(96.62 to 99.67m)			95-100%	30-40cps	
chlorite content 5 to 20%			55 1000	30 400P3	
eldspar Quartz Chlorite Paragneiss					
(99.67 to 102.72m)	and the second second second		95-100%	30cps	
gneissosity 20 to 45 degrees to core axis					
			and the second		
VC to 102.72m End of Hole 337ft. /102.72m					
					1
<u>and a standard standard standard standard standard standard standard standard standard</u>		A 1979			

property:	Richardson River Permit	All	ber	Hole No. RR 7
Sheet Number:	l of 3	_NTS NO.	74 L	Started April 8, 1979
Collar <u>BL 21</u>	00 + 265E	Claim No.	687612005	Completed April 9, 1979
		Bearing	043	Ultimate Depth <u>117.96m/387ft</u> .
Elevation	298.7 meters	DIP	-80 degrees	Proposed Depth
	an an an an tao 100 an An tao			Logged by: G. McWilliams

MORCENERNERRY RESERVICES DIMENSION

Mineral-Description Depth Core Bag Assay Metres/ ization Recovery Count Ouaternary and Recent Overburden Assay Intervals (0 - 58.5m)- glacial sand with a few boulders overlying bedrock Devonian Mudstone (58.5 - 63.1m)- grey colour calcareous sand lenses up to 95-100% 15cm thick - gypsum stringers - dip 80 degrees to core axis Devonian Mudstone (63.1 to 65.84m) - calcareous - brown to tan colour - local concentrations of sand up to 20% 95-100% - pyrite 1% Devonian Sandy Mudstone (65.84 - 68.28m)- grey to tan colour 95-100% - pyrite lining jugs Devonian Mudstone to Sandy Mudstone (68.28 - 74.98m)* 74.7 - 75.6 - light grey calcareous U308 0.4 Pb 16 - mudstone grading down to green Ni 31 Co 12 95-100% - sandy mudstone with 20% sand grains

Description	Depth Metres,	Mineral- ization	Core Covery	Bag Count	Assay
evonian Muddy Sandstone					
(74.98 - 75.90m)	75.6 -76.6		95-100%	, .	U308 0.2 Pb 12
green grey	•				Ni 19 Co 8
medium to coarse grained				1	
fining upwards					
egolith LaLoche Formation					
(75.90 - 78.03m)			1	1	
angular fragments of highly fractured weathere	a 76.5 - 77.4			1	U308 0.2 Pb 14 Ni 18 Co 7
asement rocks with quartz carbonate mudstone	T , / A 4		95-100%	1. 1	
illing intersticial spaces			20-1008	1 . 1	<ul> <li>Market for the second seco</li></ul>
basement rocks highly chloritized	77.4 - 78.3		1		
basement rocks highly chloritized opalescent quartz	11.4 - 18.3			( )	U ₃ O ₈ 0.4 Pb 13 N1 57 Co 16
Charlengene Andres					MT DY CO TO
the same formation					ter a ser a se
Unconformity			[ 1 1 1 1	to share a state of the state o	
recambrian Basement Rocks				te de la companya de	• • • • • • • • • • • • • • • • • • •
			1	t	
hlorite Schist				ŧ .	
(78.03 - 80.47m)				1 ( )	
chlorite and epidote 40 to 70%	78.2 -79.2		95-100%	t	
appears to represent a shear zone			1 · · · · · · · · · · · · · · · · · · ·	te de la companya de	U ₃ 0 ₈ 0.6 Pb 14
Quartz and feldspar grains elongated	79.2 - 80.2	a second second			Ni 55 Co 20
eldspar Quartz Chlorite Paragneiss			1		U388 0.2 Pb 18
(80.47 - 86.87m)					Ni 29 Co 12
brecciated on top alteration decreasing with	80.2 - 81.1				
epth					U3O8 0.6 Pb 17 Ni 25 Co 11
chlorite and epidote 20 to 40%			95-100%	• <b>.</b>	
Disseminated pyrite 1%					
siderite stringets up to 15mm thick 1-2% of					
siderite stringets up to ismum thick 1-2% of the unit				•	
aldspar Quartz Chlorita Doromoico	ł				
eldspar Quartz Chlorite Paragneiss (86.87 - 92.05m)					
chlorite 10 to 40%				· · · · · ·	
mafic clots 5mm 5 to 15%	t in the second s			I	
chlorite slickensides align fractures			95-100%	t de la Constante de la Consta	
gneissosity 65 degrees to core axis			1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -		
					ана селото на селото При селото на селото н
	<ul> <li>A second s</li></ul>	1	1		
	4	I I	1 1	1	

Denorlption	Dopth Metres/	Minoral- Ization	Сого Соvегу	nag Count	ΛΟNY
Feldspar Quartz Chlorite Paragneiss				• And the set of th	<ul> <li>Prevent the antiparty of the set of the se</li></ul>
(92.05 - 99.66m)			05 1000		
- siderite stringers at 97.8 - geneissosity at 98m is 45 degrees to core			95-100%		
axis					
Chlorite Schist					
(99.66 - 100.58m)		·			
(33:00 - 100:30m)		(1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2	95-100%		
eldepar Quartz Chlorite Paragneiss					
(100.58 - 105.61m)					
- gneissosity at 102.7 is 62 degrees to core					
ixis					
hlorite Schist			95-100%		
(105.61 - 106.07m)			JJ 100%	· · ·	
chlorite 80%					
possibly represents shear zone					
eldspar Quartz Chlorite Paragneiss					
(106.07 - 117.96m)					
chlorite 10-25%	113.7 - 114.3			1. A.	U ₃ O8 0.4 Pb 10
siderite stringers 109.7 to 110.6m and					Ni 27 Co 16
14 to 115.2m			95-100%		$11_{-00}$ 1 2 Db 14
gneissosity at 107.3m, 35 degrees	114.3 - 114.9				U ₃ O ₈ 1.2 Pb 14
gneissosity at 113.39m, 25 degrees	114.9 - 115.5				Ni 40 Co 12
gneissosity at 117.96m, 20 degrees	114.9 - 115.5				U ₃ O ₈ 0.2 Pb 11
					Ni 39 Co 9
End of Hole					

.

Property Richardson River Permit	Alb	er		Hole No.	RR 8	
Sheet Number: 1 of 3	NTS NO.	74 L		StartedApr	·il 9, 1979	
Collar <u>BL 2100 + 300E</u>	Claim No.	68761200	)5	_Completed Ap	oril 11, 1979	)
	Bearing			Ultimate Dept	n <u>111</u> .	.86m/367ft.
Elevation 294.1 m	DIP			_Proposed Deptl	٠ 	
				Logged by:	G. McWill	liams
Description	Depth Metres/		Mineral- ization	Core Recovery	Bag Count	Assay
Quaternary and Recent Overburden (0 to 60.96m)	Assay	Interval	S			
- sand with some boulders overlying the Devonian rocks						
Devonian Mudstone (60.96 to 63.55m)					TV lA	
- green grey colour - dark laminations possibly organic debris - bedding oriented 75 degrees to core axis				90%	600-700cpm	
Devonian Mudstone (63.55 to 64.0m)				95-100%	600-700cpm	
- brown colour - silt and sand laminations				99-100%	000 700020	
Devonian Mudstone (64.0 to 64.62m) - green grey calcareous				• 95-100%	600-700cpm	
Devonian Sandstone						
(64.62 to 68.58m) - green grey - few laminations oriented 90 degrees to core				95-100%	600-700cpm	
axis - becomes gritty at bottom						
		•				
				and the second		

Description	Depth Metres/	Mineral- ization	Core Covery	Bag Count	Assay
Devonian Sandstone Sandy Mudstone					
(68.58 to 81.38m)			•		
- grey brown to green grey colour					
- sandstone beds occur at 68.58 to 68.88,					
70.10 to 71.32, 75.59 to 75.74					•
- gypsum occurs filling vugs		pyrite 1%	90-95%	700	
minor laminations oriented perpendicular		pyrrce 18	90-958	700cpm	
co core axis					
· dissiminated pyrite 1%					
	Х. 				
evonian (?) LaLoche Formation	81.4 - 82.8				
(81.38 to 83.52m)		a de la companya de l	1		U ₃ 0 ₈ 0.2 Pb 21 Ni 22 Co 13
sandstone grading down to a coarse gritty					NI 22 CO 13
ebbly sandstone	82.8 - 83.2		95%	600-800cp	n
extremely angular pobbles of chert and				000-000cp	ⁿ U308 0.0 Pb 25 Ni 23 Co 14
neiss					AT 23 CO 14
egolith and Altered Basement	82.3 - 84.1				Hana 0 4 Bb 94
(83.52 to 85.0m)					$U_{3}O_{\beta}$ 0.4 Pb 26 Ni 19 Lo 11
highly weathered, sheared and brecciated	84.1 - 85.0		95%	600-800cpm	
					¹ U308 0.2 Pb 23 Ni 41 Co 18
hlorite Schist					
(85.0 to 87.48m)	85.0 - 86.0				
shear zone			05,1000	700 1000	U308 1.0 Pb 19
undullating foliation			95-100%	100-1000db	om Ní 57 Co 25
80% chlorite		-			
eldspar Quartz Chlorite Paragneiss					
(87.48 to 99.67m) *	98.8 - 99.4				·
grey brown colours					U ₃ O ₈ 1.2 Pb 23 Ni 78 Co 31
hematite forms surface coating, give rock			95-100%	600-900cpm	
isty brown colour	99.4 - 100.0				
local massive hematite seams					U ₃ O ₈ 1.2 Pb 17 Ni 79 Co 30
				ter in the second	MT 12 CO 30
nlorite Feldspar Quartz Paragneiss					
(99.67 to 100.43m)	100 - 100.6				
dark green grey colour			95-100%	2100cpm	U ₃ O ₈ 0.2 Pb 16 Ni 86 Co 29
contains graphite and pyrite disseminations		graphite			
to 25% combined		pyrite			
	· · · · · · · · · · · · · · · · · · ·	1		and the second	

Description	Depth Metres/	Mineral- ization	Core Covery	Bag Count	Assay
Feldspar Chlorite Quartz Paragneiss (100.43 to 101.50m)		hematite	95-100% .	700-1000cpm	
	•				
Chlorite Feldspar Quartz Paragneiss					· · ·
(101.50 to 103.93m)	100.7 - 101.3				U308 0.2 Pb
<ul> <li>green grey colour</li> <li>contains dissiminated graphite and pyrite</li> </ul>		graphite	95-100%	2000cpm	Ni 82 Co 27
concurse dissimilated draphice and pyrice		pyrite			
Feldspar Quartz Chlorite Paragneiss	101.3 - 102.0				UsAs 1 0 ph 3
(103.43 to 107.29		1. 1.			U ₃ O ₈ 1.8 Pb 2 Ni 94 Co 33
	102.0 - 102.6		95-100%	800-1000cpm	U308 1.4 Pb 2
					Ni 89 Co 36
Chlorite Feldspar Quartz Paragneiss					
(107.29 to 107.75m)			м.		
- green grey colour					
- contains fine disseminated graphite and		graphite	95-100%	2200cpm	
pyrite		pyrite			
Feldspar Quartz Chlorite Paragneiss					
(107.29 to 111.86m)			- 		
- banded grey to rusty brown		hematite	95%		
- quartz crystals and pyrite cubes forming		nemacre	556	800-1100cpm	
along joint surfaces					
- orientation of gneissosity 40-60 degrees to					
core axis					· · ·
Hole lost due to loss of circulation in what					•
would appear to be a highly porous fracture					
zone				•	
End of Hole	•				
					1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -
		1 I		1	

ElevationDIPDIPDIPDDPDESCRIPTIONDE	im No. <u>68761</u>	.2002		Abandon Abandon G. Wilson Bag	
Bear         Elevation       207.3 m       DIP         Description       De Me         Quaternary and Recent Overburden ( 0 to 57.91m)       De sand with boulders at bottom         - sand with boulders at bottom       - boulders of Devonian Mudstone and Athabasca	-90 de	grees Mineral-	_Ultimate Depth _Proposed Depth Logged by: Core	Abandon G. Wilson Bag	I
207.3 m       DIP         Description       Demonstrain         Quaternary and Recent Overburden       (0 to 57.91m)         - sand with boulders at bottom       - boulders of Devonian Mudstone and Athabasca	-90 de	grees Mineral-	_Proposed Depth Logged by: Core	G. Wilson Bag	I
Description Description Me Quaternary and Recent Overburden ( 0 to 57.91m) - sand with boulders at bottom - boulders of Devonian Mudstone and Athabasca	epth	Mineral-	Logged by:	G. Wilson Bag	
Me Quaternary and Recent Overburden ( 0 to 57.91m) - sand with boulders at bottom - boulders of Devonian Mudstone and Athabasca	epth etres/		Core	Bag	Assay
Me Quaternary and Recent Overburden ( 0 to 57.91m) - sand with boulders at bottom - boulders of Devonian Mudstone and Athabasca	epth etres/				Assay
<ul> <li>( 0 to 57.91m)</li> <li>- sand with boulders at bottom</li> <li>- boulders of Devonian Mudstone and Athabasca</li> </ul>					
					•
Hole lost due to caving around boulders.	57.9/190ft.				
			-		

Richardson Qu	artz Mineral Permit A	Hole No. RR10
Sheet Number: 1 of 2	NTS NO. 74L	Started April 18 1979
Collar TP 107 R6, Section 6	Claim No. 6876120004	Completed April 20 1979
West of the 4th	Bearing	Ultimate Depth <u>151.49m/497 ft.</u>
Elevation 274m	DIP	Proposed Depth

NORCEIN

ENERGY

Des	scription	Depth Metres	/feet	Minera. ization		1	Core Recove	ery	Bag Count	Ass	зау	
	Recent Overburden							,	McPhar			:
0 - 58.52	ne en la constante de la const En la constante de la constante					1 A	•		TV 1A			
Proterozoic At	habasca Sandstone								Background	4-600	cpm	÷
58.52 - 60.05	white, fine to medium grained						90		550			
60.05 - 63.09							100		500			
63.09 - 66.14							100		500			
	pink, fine to medium grained wit	h										1. A.
	pink solution bands						100		400	· .	:	
69.19 - 72.24	+											
	pink solution bands						95		400			
72.24 - 75.29	white with pink solution bands						.95	1.1	400			
75.29 - 78.33	white with pink solution bands									- <b>1</b>		
	fine to medium grained, dark		<b>i</b>									
	spots containing pyrite		•	pyrite	1%		100		400			
78.33 - 81.38	white with pink and maroon		i.				•					
	solution bands	<i>P</i> -					100		400		1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 1999 - 19	
81.38 - 84.45	as above						100		500			
84.45 - 87.48	white, fine to medium grained											
	pink and maroon solution bands						100		500			1
87.48 - 90.53	as above						100		500			[
90.53 - 93.57	white fine to medium grained					1 · · · · ·						·
	with thin clay laminations						100		500			
93.57 - 96.62	white with dark pyrite spots up	$f_{i,j} = - f_{i,j} + f_{i,j}$										
	to 5mm diameter	pyrite	1%				100	<b> </b>	500			
96.62 - 99.67	white with dark pyrite spots											
	minor clay chips						100		500			
99.67 -102.72	as above						100		500	1.1		- 10 A
102.72-105.77	white pink interbedded									•		
	disseminated pyrite, fine to							· · ·				
	medium grained		÷ *				100		500		t :	Î
								•				

Richardson guartz Mineral Permit

the group Ly

llole No. RR10

Page 2 of 2

Description	Depth Metres/feet	Mineral- ization	Core Covery	Bag Count	Assay
105.77 - 108.81 - white with pink solution			· · ·	· · · · · · · · · · · · · · · · · · ·	Mil 🦉 with set window aligns and independently any approximation of any original target (
bands, clay chips			100 .	450	
108.81 - 111.86 - as above			100	450	
111.86 - 114.91 - as above			100	400	
114.91 - 117.96 - white with local friable sectio	ns				
(poorly cemented)			95	400	
117.96 - 121.00 - as above			100	400	
121.00 - 124.05 - as above	,		100	400	
124.05 - 127.10 - white with pink and maroon					
solution bands			100	400	
127.10 - 130.15 - as above			100	500	
130.15 - 133.20 - as above			100	500	
133.20 - 136.25 - pink to green grey with maroon					
solution bands scattered clay				and the second second	
chips			100	500	
136.25 - 139.29 - white with pink solution bands			100	500	
139.29 - 142.34 - medium grained white to grey					
sandstone, siltstone beds up					
to 4cm thick			100	500	
142.34 - 145.39 - medium grained, white to grey					
green			100	550	
145.39 - 148.44 - as above			100	600	
148.44 - 151.49 - white, medium grained local					
green clay in matrix			100	650	
Hole was abandon at 151.49/497ft. due to lack of water due to local pond freezing solid					

Sheet Number:       1       NTS No.       74L       Started       June 14, 1979         collar       Tp 106 R6 Section 6       Claim No.       6876120002       Completed June 16, 1979         West of the 4th       Bearing       Ultimate Depth       276.45m/907ft         Slevation       274m       DIP       -90       Proposed Depth         Logged by:       C. McWilliams         Description       Depth Metres/feet       Mineral- ization       Core Recovery       Bag Count       Assay         Quaternary and Recent Overburden (0 - 58.22m)	Richardson Quartz Mineral Permi					Hole No. RR11	······································	
West of the 4thBearingUltimate Depth276.45m/907ftSlevation274mDIP-90Proposed DepthLogged by:C. McWilliamsDescriptionDepthMatres/feetMineral- izationCore RecoveryBag CountQuaternary and Recent Overburden (0 - 58.22m)- sand with boulders overlying bedrockMcPhar TV bickSprund 400 - 600Proterozoic Athabasca Sandstone58.22 - 60.05 white, fine - medium grained 66.14 minor pink solution bands85 400 100400 40066.14 - 69.19 white with pale pink solution bands of 1.38 - 64.45 minor pale pink solution bands 81.38 - 64.45 minor pale pink solution bands dat grey pyrite spots .5 to 4mm 90.53 white with pink solution bands dat grey pyrite spots .5 to 4mm 90.53 white with pink solution bands 		NTS NO.	74L			Started June	e 14, 1979	
DIP       -90       Proposed Depth         Logged by:       C. McWilliams         Description       Depth Metres/feet       Mineral- ization       Core Recovery       Bag Count       Assay         Quaternary and Recent Overburden (0 - 58.22m)       Mineral- ization       Core Recovery       Bag Count       Assay         Quaternary and Recent Overburden (0 - 58.22m)       Metres/feet       Mineral- ization       Core Recovery       Bag Count       Assay         Proterozoic Athabasca Sandstone       58.22 - 60.05 white, fine - medium grained       85       400       60.0 - 600         58.22 - 60.05 white, fine - medium grained       85       400       450       400 - 600         58.22 - 60.14 minor pink solution bands       100       400       400       400       400         66.14 - 69.19 white with pale pink solution bands       100       400       400       400       400         72.24 - 75.29 fine to medium grained with solution bands       100       400       400       400       400       400         78.33 as above       100       400       400       450       450       450       450       450       450       450       450       450       450       450       400       450       450       450       <	ollar Tp 106 R6 Section 6	Claim No.	687612	0002		Completed june	e 16, 1979	
Logged by:       G. McWilliams         Description       Depth Metres/feet       Mineral- ization       Core Recovery       Bag Count       Assay         Quaternary and Recent Overburden (0 - 58.22m)       McPhar TV Backgrmund 400 - 600       McPhar TV Backgrmund 400 - 600       McPhar TV Backgrmund 400 - 600         Solution bands       85       400 100       400         60.05 - 63.09 as above       100       450         63.09 - 66.14 minor pink solution bands       100       400         69.19 - 72.24 as above with dark grey spots of pyrite 2mm diameter       Pyrite 1%       100       400         72.24 - 75.29 fine to medium grained with solution bands       100       400       400         72.24 - 75.29 fine to medium grained with solution bands       100       400       400         73.33 - 81.38 local friable sections       100       400       400         81.38 - 84.45 minor pale pink, fine to medium grained       100       400       400         90.53 - 95.62 fine grained, dark grey pyrite spots 1-2 mm       100       450       400         96.62 - 99.67 fine to medium grained white to pale pink       Pyrite 1%       100       400         90.67 +102.72 witho with pink bands 1mm to 1 cm thick       100       400       400         100       400       100	West of the 4th	_Bearing _				_Ultimate Dept	h276.45	n/907ft
DescriptionDepth Matres/feetMineral- izationCore RecoveryBag CountAssayQuaternary and Recent Overburden (0 - 58.22m)0 - 58.22m)Metres/feetNoPhar TV BackgFoundNoPhar TV BackgFound	levation274m	DIP	-90			Proposed Dept	.h	•
Metres/feetizationRecoveryCountQuaternary and Recent Overburden (0 - 58.22m)				•		Logged by:	G. 1	4cWilliams
$ \begin{array}{ccccccc} (0 - 58.22m) \\ - \ sand with \ bouldors \ overlying \ bedrock \\ \hline Proterozoic \ Athabasca \ Sandstone \\ 58.22 - 60.05 \ white, \ fine - medium \ grained \\ 60.05 - 63.09 \ as above \\ 63.09 - 66.14 \ minor \ pink \ solution \ bands \\ 63.09 - 66.14 \ minor \ pink \ solution \ bands \\ 69.19 \ r2.24 \ as \ above \ with \ pale \ pink \ solution \ bands \\ solution \ bands \\ r2.24 - 75.29 \ fine \ to medium \ grained \ with \ solution \ bands \\ r3.32 - 81.38 \ local \ friable \ sections \\ 81.38 - 84.45 \ minor \ pale \ pink \ solution \ bands \\ 84.45 - 87.48 \ white \ to \ pale \ pink \ solution \ bands \\ dark \ grey \ pyrite \ spots \ .5 \ to \ 4mm \ point \ with \ pink \ solution \ bands \\ dark \ grey \ pyrite \ spots \ .5 \ to \ 4mm \ point \ with \ pink \ solution \ bands \\ dark \ grey \ pyrite \ spots \ .5 \ to \ 4mm \ point \ with \ pink \ solution \ bands \\ dark \ grey \ pyrite \ spots \ .5 \ to \ 4mm \ point \ with \ pink \ solution \ bands \\ dark \ grey \ pyrite \ spots \ .5 \ to \ 4mm \ point \ with \ pink \ solution \ bands \ dark \ grey \ pyrite \ spots \ .5 \ to \ 4mm \ point \ with \ pink \ solution \ bands \ dark \ grey \ pyrite \ spots \ .5 \ to \ 4mm \ point \ with \ pink \ solution \ bands \ dark \ grey \ pyrite \ spots \ .5 \ to \ 4mm \ point \ with \ pink \ solution \ bands \ dark \ grey \ pyrite \ spots \ .5 \ to \ 4mm \ point \ dark \ dar$	Description		feet					Assay
Proterozolc Athabasca Sandstone 58.22 - 60.05 white, fine - medium grained 60.05 - 63.09 as above 63.09 - 66.14 minor pink solution bands 66.14 - 69.19 white with pale pink solution bands 66.19 - 72.24 as above with dark grey spots of pyrite 2mm diameter 72.24 - 75.29 fine to medium grained with solution bands 75.29 - 78.33 as above 78.33 - 81.38 local friable sections 81.38 - 84.45 minor pale pink solution bands 63.19 - 72.24 as bouce with dark grey spots of pyrite 2mm diameter 72.24 - 75.29 fine to medium grained with solution bands 75.29 - 78.33 as above 78.33 - 81.38 local friable sections 81.38 - 84.45 minor pale pink, fine to medium grained 87.48 - 90.53 white with pink solution bands 62.19 - 76.62 fine grained, dark grey pyrite spots $1-2$ mm 96.62 - 99.67 fine to medium grained white to pale pink 90.67 - 102.72 whito with palo pink bands lmm to 1 cm thick 100 400 100	(0 - 58.22m)							
58.22 - 60.05 white, fine - medium grained       85       400         60.05 - 63.09 as above       100       450         63.09 - 66.14 minor pink solution bands       100       400         69.19 - 72.24 as above with dark grey       100       400         spots of pyrite 2mm diameter       100       400         72.24 - 75.29 fine to medium grained with       100       400         solution bands       100       400         75.29 - 78.33 as above       100       400         78.33 - 81.38 local friable sections       100       400         81.38 - 84.45 minor pale pink solution bands       100       400         87.48 - 90.53 white with pink solution bands       100       400         87.48 - 90.53 white with pink solution bands       100       400         90.53 - 93.57 white with pink solution bands       100       400         93.57 - 96.62 fine grained, dark grey pyrite       100       450         90.62 - 99.67 fine to medium grained white to       100       400         90.62 - 99.67 fine to medium grained white to       100       400         90.62 - 102.72 whito with pale pink bands lmm       100       400         100       400       100       400         100       400       100 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>100 000</td>								100 000
60.05 - 63.09 as above       60.05       63.09 as above       400         63.09 - 66.14 minor pink solution bands       60.00       400         66.14 - 69.19 white with pale pink solution bands       100       400         66.19 - 72.24 as above with dark grey       spots of pyrite 2mm diameter       100       400         72.24 - 75.29 fine to medium grained with       solution bands       100       400         75.29 - 78.33 as above       100       400       400         75.29 - 78.33 as above       100       400       400         75.29 - 78.33 as above       100       400       400         81.38 - 84.45 minor pale pink solution bands       100       400         84.45 - 87.48 white to pale pink, fine to       100       400         90.53 - 93.57 white with pink solution bands       100       400         93.57 - 96.62 fine grained, dark grey pyrite       100       400         90.62 - 99.67 fine to medium grained white to       100       400         90.62 - 99.67 fine to medium grained white to       100       400         90.67 -102.72 whito with pale pink bands 1mm       100       400         100       400       450       100         100       400       100       400       100							Background	400 - 600
63.09 - 66.14 minor pink solution bands       100       400         66.14 - 69.19 white with pale pink solution bands       100       400         69.19 - 72.24 as above with dark grey spots of pyrite 2mm diameter       100       400         72.24 - 75.29 fine to medium grained with solution bands       100       400         75.29 - 78.33 as above       100       400         78.33 - 81.38 local friable sections       100       400         81.38 - 84.45 minor pale pink solution bands       100       400         87.48 - 90.53 white with pink solution bands       100       400         87.48 - 90.53 white with pink solution bands       100       400         93.57 - 96.62 fine grained, dark grey pyrite spots .5 to 4mm       100       400         96.62 - 99.67 fine to medium grained white to pale pink       100       400         96.62 - 99.67 fine to medium grained white to pale pink       100       400         96.62 - 99.67 fine to medium grained white to pale pink       100       400         96.62 - 99.67 fine to medium grained white to pale pink       100       400         96.62 - 99.67 fine to medium grained white to pale pink       100       400         96.62 - 99.67 fine to medium grained white to pale pink       100       400         90.67 - 102.72 white with pale pink bands 1mm to 1 cm thi						85	400	
66.14 - 69.19 white with pale pink solution bands       100       400         69.19 - 72.24 as above with dark grey       pyrite 2mm diameter       100       400         72.24 - 75.29 fine to medium grained with       solution bands       100       400         72.24 - 75.29 fine to medium grained with       solution bands       100       400         75.29 - 78.33 as above       100       400       400         78.33 - 81.38 local friable sections       100       400         81.38 - 84.45 minor pale pink, solution bands       100       400         84.45 - 87.48 white to pale pink, fine to       100       400         medium grained       100       400       400         87.48 - 90.53 white with pink solution bands       100       400         93.57 - 96.62 fine grained, dark grey pyrite       100       400         93.57 - 96.62 fine grained white to       pale pink       100       400         96.62 - 99.67 fine to medium grained white to       100       400       400         99.67 -102.72 whito with pale pink bands 1mm       100       400       400         100       400       400       400       400         95.67 - 102.72 whito with pale pink bands 1mm       100       400       400       400						100	450	
69.19 - 72.24 as above with dark grey spots of pyrite 2mm diameter       Pyrite 1%       100       400         72.24 - 75.29 fine to medium grained with solution bands       100       400         75.29 - 78.33 as above       100       400         78.33 - 81.38 local friable sections       100       400         81.38 - 84.45 minor pale pink solution bands       100       400         84.45 - 87.48 white to pale pink, fine to medium grained       100       400         87.48 - 90.53 white with pink solution bands dark grey pyrite spots .5 to 4mm       100       450         90.53 - 93.57 white with pink solution bands       100       400         93.57 - 96.62 fine grained, dark grey pyrite spots .1 - 2mm       100       400         96.62 - 99.67 fine to medium grained white to pale pink       100       400         90.67 -102.72 white with pale pink bands 1mm to 1 cm thick       100       400         02.72 -105.77 as above       100       400         05.77 -108.81 fine to medium grained with thin       100       400		hadda					400	
spots of pyrite 2mm diameter       100       400         72.24 - 75.29 fine to medium grained with solution bands       100       400         75.29 - 78.33 as above       100       400         78.33 - 81.38 local friable sections       100       400         81.38 - 84.45 minor pale pink solution bands       100       400         84.45 - 87.48 white to pale pink, fine to medium grained       100       400         87.48 - 90.53 white with pink solution bands dark grey pyrite spots .5 to 4mm       100       450         90.53 - 93.57 white with pink solution bands spots 1-2 mm       100       450         96.62 - 99.67 fine to medium grained white to pale pink       100       400         90.67 -102.72 whito with pale pink bands 1mm to 1 cm thick       100       400         02.72 -105.77 as above       100       400         05.77 -108.81 fine to medium grained with thin       100       400		Danus				100	400	
72.24 - 75.29 fine to medium grained with solution bands       100       400         75.29 - 78.33 as above       100       400         78.33 - 81.38 local friable sections       100       400         81.38 - 84.45 minor pale pink solution bands       100       400         84.45 - 87.48 white to pale pink, fine to medium grained       100       400         87.48 - 90.53 white with pink solution bands dark grey pyrite spots .5 to 4mm       100       450         90.53 - 93.57 white with pink solution bands       100       400         93.57 - 96.62 fine grained, dark grey pyrite spots .1-2 mm       100       400         96.62 - 99.67 fine to medium grained white to pale pink       Pyrite 1%       100       400         99.67 -102.72 whito with pale pink bands 1mm to 1 cm thick       100       400       400         102.72 -105.77 as above       100       400       400         100       400       400       400       400         100       400       400       400       400         100       400       400       400       400         90.57 - 96.62 fine grained white to pale pink       100       400       400         100       400       100       400       400         102.72 whito with pale pink				Pyrite	1%			
solution bands       100       400         75.29 - 78.33 as above       100       400         78.33 - 81.38 local friable sections       100       400         81.38 - 84.45 minor pale pink solution bands       100       400         84.45 - 87.48 white to pale pink, fine to medium grained       100       400         87.48 - 90.53 white with pink solution bands dark grey pyrite spots .5 to 4mm       100       450         90.53 - 93.57 white with pink solution bands dark grey pyrite spots 1-2 mm       100       400         96.62 - 99.67 fine to medium grained white to palo pink       Pyrite 1%       100       400         90.67 -102.72 whito with palo pink bands 1mm to 1 cm thick       100       400       450         102.72 -105.77 as above       100       400       400			<u>,</u> •			100	400	
75.29 - 78.33 as above       100       400         78.33 - 81.38 local friable sections       100       400         81.38 - 84.45 minor pale pink solution bands       100       400         84.45 - 87.48 white to pale pink, fine to medium grained       100       400         87.48 - 90.53 white with pink solution bands dark grey pyrite spots .5 to 4mm       100       450         90.53 - 93.57 white with pink solution bands       100       400         93.57 - 96.62 fine grained, dark grey pyrite spots .1-2 mm       100       400         96.62 - 99.67 fine to medium grained white to pale pink       100       400         99.67 -102.72 white with pale pink bands lmm to 1 cm thick       100       400         100.2.72 -105.77 as above       100       400         100.2.77 -108.81 fine to medium grained with thin       100       400			4 - 2			100	100	
78.33 - 81.38 local friable sections 81.38 - 84.45 minor pale pink solution bands 84.45 - 87.48 white to pale pink, fine to medium grained10040087.48 - 90.53 white with pink solution bands dark grey pyrite spots .5 to 4mm 90.53 - 93.57 white with pink solution bands gard grey pyrite spots 1-2 mm10045096.62 - 99.67 fine to medium grained white to palo pinkPyrite 1%10040090.57 - 102.72 whito with palo pink bands lmm to 1 cm thick100400100400400100400400100400100400100400100400100400100400100400100400100400100400100400100400100400100400100400100400100400100400			•					
81.38 - 84.45 minor pale pink solution bands 84.45 - 87.48 white to pale pink, fine to medium grained10040087.48 - 90.53 white with pink solution bands dark grey pyrite spots .5 to 4mm 90.53 - 93.57 white with pink solution bands 93.57 - 96.62 fine grained, dark grey pyrite spots 1-2 mm10045096.62 - 99.67 fine to medium grained white to palo pinkPyrite 1%10040090.53 - 102.72 whito with palo pink bands 1mm to 1 cm thick100400100400400100400400100400400100400100400100400100400100400100400100400100400			la de la companya de			1 100	400	
84.45 - 87.48 white to pale pink, fine to medium grained10040087.48 - 90.53 white with pink solution bands dark grey pyrite spots .5 to 4mm10045090.53 - 93.57 white with pink solution bands 93.57 - 96.62 fine grained, dark grey pyrite spots 1-2 mm10040096.62 - 99.67 fine to medium grained white to palo pinkPyrite 1%10040099.67 -102.72 white with palo pink bands to 1 cm thick100400400102.72 -105.77 as above100400400105.77 -108.81 fine to medium grained with thin100400400						100	400	
medium grained10040087.48 - 90.53 white with pink solution bands dark grey pyrite spots .5 to 4mmPyrite 1%10045090.53 - 93.57 white with pink solution bands 93.57 - 96.62 fine grained, dark grey pyrite spots 1-2 mmPyrite 1%10040096.62 - 99.67 fine to medium grained white to palo pinkPyrite 1%10040099.67 -102.72 whito with palo pink bands 1mm to 1 cm thick100400102.72 -105.77 as above100400105.77 -108.81 fine to medium grained with thin100400							1	
87.48 - 90.53 white with pink solution bands dark grey pyrite spots .5 to 4mmPyrite 1%10045090.53 - 93.57 white with pink solution bands 93.57 - 96.62 fine grained, dark grey pyrite spots 1-2 mmPyrite 1%10040096.62 - 99.67 fine to medium grained white to palo pinkPyrite 1%10040099.67 -102.72 whito with palo pink bands100400102.72 -105.77 as above 105.77 -108.81 fine to medium grained with thin100400						TOO		
dark grey pyrite spots .5 to 4mm 90.53 - 93.57 white with pink solution bands 93.57 - 96.62 fine grained, dark grey pyrite spots 1-2 mm 96.62 - 99.67 fine to medium grained white to palo pink 99.67 -102.72 whito with palo pink bands 1mm to 1 cm thick 100 400 100 400				and the second second		100	450	
90.53 - 93.57 white with pink solution bands       100       400         93.57 - 96.62 fine grained, dark grey pyrite       spots 1-2 mm       100       400         96.62 - 99.67 fine to medium grained white to       palo pink       100       400         99.67 -102.72 whito with palo pink bands lmm       100       400       400         02.72 -105.77 as above       100       400       400         05.77 -108.81 fine to medium grained with thin       100       400	dark grey pyrite spots .5 to 4	mm	•	Pyrite	1%			
93.57 - 96.62 fine grained, dark grey pyrite spots 1-2 mmPyrite 1%10040096.62 - 99.67 fine to medium grained white to palo pinkPyrite 1%10040099.67 -102.72 whito with palo pink bando 1mm to 1 cm thick10040002.72 -105.77 as above10040005.77 -108.81 fine to medium grained with thin100400	90.53 - 93.57 white with pink solution bands					100	400	
96.62 - 99.67 fine to medium grained white to palo pink10040099.67 -102.72 white with palo pink bands lmm to 1 cm thick100400.02.72 -105.77 as above100400.05.77 -108.81 fine to medium grained with thin100400								
96.62 - 99.67 fine to medium grained white to palo pink10045099.67 -102.72 white with palo pink bands lmm to 1 cm thick100400.02.72 -105.77 as above100400.05.77 -108.81 fine to medium grained with thin100400				Pyrite	1%	100	400	
99.67 -102.72 white with pale pink bands lmm to 1 cm thick       100       400         .02.72 -105.77 as above       100       400         .05.77 -108.81 fine to medium grained with thin       100       400		0		and the second second		1	450	
to 1 cm thick .02.72 -105.77 as above .05.77 -108.81 fine to medium grained with thin .05.77 -108.81 fine to medium grained with thin								
02.72 -105.77 as above       100       400         05.77 -108.81 fine to medium grained with thin       100       400						100	400	
02.72 -105.77 as above 05.77 -108.81 fine to medium grained with thin 100 400						100	400	
		•						
beds of granules		III						
	bèds of granules			1			$\frac{d_{11}}{d_{12}} = \frac{d_{11}}{d_{12}} = \frac{d_{12}}{d_{12}} = d_$	

Dencelption	Depth Metres/feet	Mineral- ization	Core Covery	Bag Count	Assay
Proterozoic Athabasca Sandstone			·		م . <del></del>
108.81 - 111.86 fine to medium grained white			•		
with pink solution bands			100%	500 - 600	
111.86 - 114.91 as above			95	450	
114.91 - 115.52 white pink, medium grained					
poorly cemented friable			80	500	
115.52 - 117.96 white fine to medium grained			95	500	
117.96 - 121.00 as above with thin clay					
laminations			100	500	
121.00 - 124.05 fine to medium grained white					· · · ·
with pink solution banding			100	500	
124.05 - 127.10 as above			100	400	
127.10 - 127.71 as above			100	500	
127.71 - 127.96 pale green colour due to clay					
in matrix		and the second	100	500	
127.96 - 130.15 fine to medium grained pink			100	500	
solution bands			100	500	
130.15 - 133.20 as above			95	500	
133.20 - 136.25 as above with white clay			100	500	
laminations			100	500	
136.25 - 138.23 pink white interbeds 138.23 - 139.29 white medium to coarse graine	a		100	500	
139.29 - 142.34 Whitemclay corrs granted	1		100	400	
139.29 - 142.34 medium to coarse grained 142.34 - 145.39 as above				400	
142.34 - 143.39 as above 145.39 - 148.43 pink, medium grained			100 100	400 500	
148.43 - 151.49 as above			100	500	
151.49 - 154.53 white pink medium grained loca	h 1		100		
green, chlorite in matrix	штл		100	500	
154.53 - 157.58 white pink medium grained			TOO	500	
157.58 - 160.62 as above			100	500	
160.62 - 163.68 as above			100	500	and the second
163.68 - 166.11 green grey, medium grained			100	500	
166.11 - 166.73 pink, medium grained			100	500	
166.73 - 169.17 solution banding			100	500	
169.17 - 172.82 white pink, medium to coarse			100	500	
172.82 - 175.87 pink with pale green interbeds			100	500	
175.87 - 178.92 pink with pare green interdeds	<b>*</b>				
pink and green clay minerals			100	600	
178.92 - 181.97 medium to coarse grained with			<b>T</b> , ,		
scattered pebbles			100	500	
scattered hennies			TOO		
					1
			•		

Description	Depth Metres/feet	Mineral- ization	Core Covery	Bag	hasay
Proterzoic Athabasca Sandstone			Covery	Count	
181.97 - 185.01 pink, medium to coarse graine	be				
white clay minerals in matrix			100	500	
185.01 - 188.06 green and pink solution bands	5		100	500	
188.06 - 191.01 medium grained to gritty grey	7		100	500	
and pink colours scattered					
rounded pebbles 2cm diameter			100	500	
191.01 - 194.06 medium to coarse grained whit	e		TOO	500	
clay in matrix thin 15 cm bed	L I				
with green clay matrix			100	500	
194.06 - 197.21 medium to coarse grained ligh	it i e		100	500	
pink colour well cemented wit	h			la a a com	
white clay			100	500	
197.21 - 200.25 as above			100	600	
200.25 - 203.30 pink with ligh green interbed	S	and the second sec			
scattered rounded pebbles			100	500	
203.30 - 206.34 as above					
206.34 - 209.40 poorly sorted sandstone pebbl	es		100	500	
2% green and pink interbeds 3	0				
to 70cm thick					
209.40 - 212.45 as above 10% angular to subro	unded		100	500	
pebbles					
212.45 - 215.50 pale pink to pale green coars					
gritty sandstone scattered pe	bbles				
and granules			90	600	
215.50 - 218.54 medium to coarse grained loca					
concentrations of granules and					
pebbles to 2.5 cm pale green	to		0.5	<b>C</b> 00	
pale pink			95	600	
218.54 - 221.59 gritty sandstone					
angular grains : •			90	650	
clay in matrix					
221.59 - 223.11 medium to coarse grained scat					
pebbles , pink and maroon solu	ution bands		100	700 -800	
223.11 - 224.64 sandstone conglomerate					
pebble up to 5cm			100	700-800	
light green to grey maroon per	obles				
subrounded					
				. [	

Description	Depth	Minsur			
	Metres/feet	Mineral- ization	Core Covery	Bag Count	Assay
oterozoic Athabasca Sandstone Conglomerate					
4.64 - 227.69 green and maroon beds 30 to 60cm					
thick Conglomerate pebbles rounde	d				
to subrounded pebble in a coarse					
sand matrix with white and green	• .				
clay and hematite forming cement	·		100	800	
7.69 - 230.73 medium to coarse grained with					
gritty beds 10 to 40 cm thick					
0.73 - 233.78 gritty sandstone			100	800	
pink to grey marcon colour			100	750	
1.78 - 235.61 gritty sandstone					
tan to maroon siltstone laminatio	A.C.				
quartz pebbles and siltstone chip					
.61 - 236.83 gritty sandstone as above			100	700	*
.83 - 239.88 coarse grained	9				
angular to subrounded					
blue quartz eyes					
white clay in matrix			100		
.88 - 242.93 marcon to grey colour poorly			100	800	
sorted, medium to coarse grained					
with granules beds appear					· · · ·
normondi cular te			100		
perpendicular to core axis .93 - 245.97 as above			100	600-700	
Red Beds			and the second second		
	· · · ·	hematite	100	700-900	
.97 - 246.58 poorly sorted gritty sandstone		hematite	100	700-900	
.58 - 246.89 interbedded siltstone sandstone		hematite	100	700-900	
.89 - 249.02 poorly sorted gritty sandstone		hematite .	100	700-900	
.02 - 250.55 interlaminated siltstone and fine					
sandstone		hematite	100	700 000	
55 - 252.06 interbedded siltstone and sandston	e	meniacice	100	700-900	
fining upwards		hematite	100/		• · · · ·
06 - 253.29 interbedded siltstone and coarse		mematite	100	700-900	
gritty sandstone		howeddie			
29 - 254.05 laminated siltstone and fine		hematite	100	800-1000	
sandstone		1			
05 - 255.12 thinly bedded red sandstone		hematite	100	800-1000	
		hematite	100	800-1000	

HOLC NO. RRL


1

Page 5

		rie no. rear	······	Page	
Description	Depth Metres/feet	Mineral- ization	Core Covery	Bag Count	nssay
255.12 - 255.73 red sandy siltstone		hematite	100	800-1100	ppm
255.73 - 258.17 red siltstone with dispersed sand grains			•		
258.17 - 261.21 siltstone and coarse sandstone		hematite	100	800-1100	
interbedded beds from 3 to					
50 cm contacts vary from sharp					•
to gradational rip up structure					н. 
(chips of siltstone incorporated		hematite	100	000 1000	
with sandstone) 261.21 - 262.13 interbedded red siltstone and		nematite	TOO	800-1200	U FD NI CO
conglomerate	261.21 - 262.13	hematite	100	1800-3500	1.2 7 14 5
262.13 - 263.04 conglomerate, coarse sand and				1000 3500	
pebbles cemented by hematite and					
silt	262.13 - 263.04	hematite	100	1800-3500	1.6 9 9 4
263.04 - 264.26 as above	263.04 - 264.26	hematite	100	1800-3500	1.0763
264.26 - 265.18 conglomerate appears to have					
formed as rubble from the base-					
ment, poorly sorted,angular quartz clasts, chloritic volcanic					
fragments with local					
cherty silt beds tan coloured fro	m				
l to 5cm thick	264.26 - 265.19		100	1800-2100	L.0793
265.18 - 266.09 as above	265.18 - 266.09		100	1800-2100	L.4 6 11 5
266.09 - 267.31 as above	266.09 - 267.31		100	1800-2100	L.8 4 16 4
Unconformity					
Precambrian Basement Complex 267.31 - 268.22 altered granite	•				
10% chlorite, feldspars altered			•		
to clay and epidote, hematite					
forms surface coating on fracture					
oriented 25 degress to the core					
axis	267.31 - 268.22		100	1200-1500 ^r	nil 4 15 5
268.22 - 269.14 as above	268.22 - 269.14		100	1200-1500 I	nil 2 32 5
269.14 - 270.36 feldspar chlorite gneiss	269.14 - 270.36		100	1200-1500	0.4 4 88 12
270.36 - 271.27 feldspar quartz chlorite gneiss					
foliation 60 - 70 degrees to core axis	070 00 000 000				
271.27 - 272.19 as above	270.36 - 271.27		100	800	
272.19 - 273.41 as above	271.27 - 272.19 272.19 - 273.41		100	800	
	212.13 - 213.41		100	800	
		1			

- Dispuss Lyik his		Metres	/feet	Minural ization	Covery	Hauj Count	
chiorit	n quartz chlorite gnets izod homatizod and		·		·		
to core altered	ied foliation 70 degree axis highly sheared an chlorite 5-30% e forms coating on						•
	and feldspar epidote				100	800-900	
			din				
	End of Hole276.45m/90 Core Recovery 97%	7feet					
						· •	
	Q						

To: NORCEN ENERGY RESOURCES LIMITED, 27th Flr., 715 - 5th Avenue S.W., lgary, Alberta T2P 2X7



File No.	16797	
Date	April -	2.
Samples	Rock C=	

ATTN: Laurie Smith

## St ASSAY of

## LORING LABORATORIES LTD.

Page # 1

SAMPLE No.	PPM U308	PPM Pb	PPM Ni	PPM Co	
" <u>Rock Cores</u> "					
RR 4301 N RR 4302 N RR 4303 N RR 4304 N RR 4305 N RR 4306 N RR 4307 N RR 4309 N RR 4309 N RR 4310 N RR 4312 N RR 4312 N RR 4312 N RR 4313 N RR 4314 N RR 4315 N RR 4315 N RR 4316 N RR 4317 N RR 4318 N RR 4318 N RR 4319 N RR 4320 N RR 4321 N RR 4322 N RR 4322 N RR 4324 N RR 4325 N RR 4325 N RR 4326 N RR 4327 N RR 4328 N	0.2 0.2 0.2 NIL NIL 0.2 0.2 0.2 0.4 0.2 0.2 0.2 NIL NIL 0.4 0.6 1.0 1.4 3.3 1.6 1.2 2.0 0.6 0.6 NIL 0.4 0.2 NIL 0.4 0.2 NIL NIL 0.4 0.2 NIL NIL 0.4 0.4 0.2 NIL NIL NIL 0.2 0.2 NIL NIL NIL 0.2 0.2 NIL NIL 0.2 0.2 NIL NIL 0.2 0.2 NIL NIL 0.2 0.2 0.4 0.2 0.2 NIL NIL 0.2 0.2 NIL NIL 0.2 0.2 NIL NIL 0.4 0.2 0.2 NIL NIL 0.4 0.2 0.2 NIL NIL 0.4 0.2 NIL NIL 0.4 0.2 NIL NIL 0.4 0.4 0.4 0.6 1.0 1.4 0.6 1.0 1.4 0.5 NIL NIL 0.4 0.4 0.4 0.4 0.4 0.6 1.0 1.4 0.5 NIL NIL 0.4 0.4 0.4 0.4 0.6 1.0 1.4 0.5 0.5 NIL NIL 0.4 0.5 0.5 NIL NIL 0.4 0.5 NIL 0.4 0.5 NIL 0.4 0.5 NIL 0.4 0.5 NIL 0.4 0.5 NIL 0.4 0.5 NIL 0.4 0.5 NIL 0.4 0.5 NIL 0.4 0.5 NIL 0.4 0.5 NIL 0.5 NIL 0.5 NIL 0.5 NIL 0.5 NIL 0.5 NIL 0.5 NIL 0.5 NIL 0.5 NIL 0.5 NIL 0.5 NIL 0.5 NIL 0.5 NIL 0.5 NIL 0.5 NIL 0.5 NIL 0.5 NIL 0.5 NIL 0.5 NIL 0.5 NIL 0.5 NIL 0.5 NIL 0.5 NIL 0.5 NIL 0.5 NIL 0.5 NIL 0.5 NIL 0.5 NIL 0.5 NIL 0.5 NIL 0.5 NIL 0.5 NIL 0.5 NIL 0.5 NIL 0.5 NIL 0.5 NIL 0.5 NIL 0.5 NIL	11 11 11 9 9 13 11 8 8 8 8 7 11 10 8 6 15 13 8 11 10 8 6 15 13 8 11 10 8 6 15 13 8 11 10 8 6 15 13 8 11 10 8 6 15 13 8 11 10 8 6 15 13 8 11 10 8 6 15 13 8 11 10 8 6 15 13 8 11 10 8 6 15 13 8 11 10 8 6 15 13 8 11 10 8 6 15 13 8 11 10 8 6 15 13 8 11 10 8 6 15 13 8 11 10 7 11 10 8 6 15 13 8 11 10 7 11 10 8 6 15 13 8 11 10 7 11 10 7 11 10 7 11 10 7 11 10 7 11 10 7 11 10 7 11 10 8 8 11 10 7 11 10 8 8 11 10 7 11 14 11 10 8 8 11 10 7 11 14 11 18 6 8 8 8 8 8 8 8 8 8 8 8 8 8	21 25 43 59 104 116 72 27 38 41 46 35 19 55 31 33 34 33 34 39 33 41 37 43 35 29 28 15 13 12 HAT THE ABOVE RESULT HEREIN DESCRIBED SA	12 12 18 20 20 20 20 12 15 10 20 20 20 12 15 10 20 21 25 20 27 10 27 10 27 10 27 10 27 10 27 10 27 10 27 10 27 10 27 10 27 10 27 10 27 10 27 10 27 10 27 10 27 10 27 10 27 10 27 10 27 10 27 10 27 10 27 10 27 10 27 10 27 10 27 10 27 10 27 10 27 10 27 10 27 10 27 10 27 10 27 10 27 10 27 10 27 10 27 10 27 10 27 10 27 10 27 10 27 10 27 10 27 10 27 10 27 10 27 10 27 10 27 10 27 10 27 10 27 10 27 10 27 10 27 10 27 10 27 10 27 10 27 10 27 10 27 10 27 10 27 10 27 10 27 10 27 10 27 10 27 10 27 10 27 10 27 10 27 10 27 10 27 10 27 10 27 10 27 10 27 10 27 10 27 10 27 10 27 10 27 10 27 17 17 17 17 17 17 17 17 17 17 17 17 17	

Rejects Retained one month.

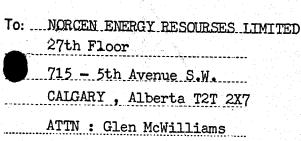
To: NORCEN ENERGY RESOURCES LIMITED, 27th Flr., 715 - 5th Avenue S.W., algary, Alberta T2P 2X7



File No.	16797	
Date	April	
Samples .	Rock C	

ATTN: Laurie Smith

<u>.....</u>


# LORING LABORATORIES LTD.

		Page #	¥ 2	
SAMPLE No.	PPM U308	PPM Pb	PPM Ni.	PPM Cc
RR 4329 N RR 4330 N RR 4331 N RR 4332 N RR 4333 N RR 4334 N RR 4335 N RR 4336 N RR 4336 N RR 4337 N RR 4339 N RR 4340 N RR 4340 N RR 4341 N RR 4342 N RR 4343 N RR 4344 N RR 4344 N RR 4245 N RR 4246 N RR 4247 N RR 4248 N RR 42249 N RR 42249 N RR 42276 N	0.2 3.1 0.2 1.8 3.1 NIL NIL 0.2 0.2 0.2 0.4 0.6 1.6 1.4 0.8 0.4 8.6 3.8 6.0 11.1 9.7 9.0 7.4 J. J. J	6 7 13 14 13 14 14 14 18 16 8 7 7 7 11 9 7 6 4 5 5 5 20 6 5 5 6 8 7 7 7 11 9 7 6 4 5 5 5 20 6 5 6 6 5 6	11 11 11 10 10 10 11 13 13 9 9 9 9 9 11 6 7 7 6 6 6 6 9 9 9 9 9 9 9 9 9 9 9 9 9	1C 10 29 34 32 35 36 37 36 37 36 37 36 37 36 37 36 37 36 37 36 37 36 37 36 37 5 1C 1C 1C 1C 1C 8 8 8 9 9 9 5 5

Pulps Retained one month

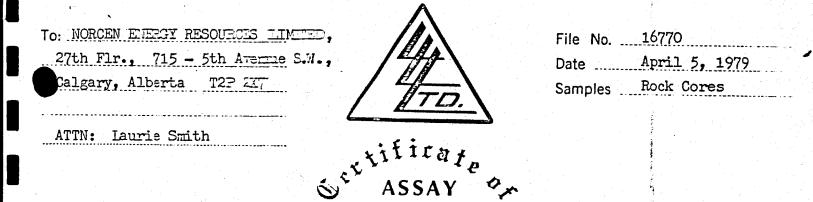
unless specific arrangements made in advance.

Licensed Assayer of British Columbia





File No. <u>17196</u> Date July 3rd , 1979 Samples Rock


LORING LABORATORIES LTD.

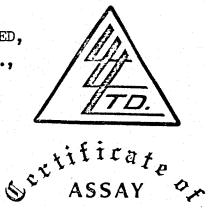
SAMPLE No.	PPM U308	PPM Pd	PPM Ni	PPM Co
" ROCK SAMPLES "				
4201N	1.2	7	14	<b>r</b>
4202N	1.6	9	9	5
4203N	1.0	7	6	4
4204N	1.0	7	9	3
4205n	1.4	6	11	3
4206n	1.8	4	16	5
4207N	Nil	4	15	4
4208N	Nil	2	32	5
4209N	0.4	4	88	5 12
			••••••••••••••••••••••••••••••••••••••	
	I Herehn	Certify THAT TH	E ABOVE RESULTS ARE TH	INSE
	ASSAYS MADE B	Y ME UPON THE HERE	IN DESCRIBED SAMPLES .	

Rejects Retained one month.

Pulps Retained one month inless specific arrangements nade in advance.

Licensed Assayer of British Columbia




LORING LABORATORIES LTD.

		Page # 1	
SAMPLE No.	PPM U318	PPM Ni	PPM Co
"Rock Cores"			
RR-4226-N	0.4	18	6
RR-4227-N	0.2	18	6
RR-4228-N	0.3	8	6
RR-4229-N	1.6	23	11
RR-4230-N	1.3	18	9
RR-4231-N	0. <u>/</u>	18	9
RR-4232-N	N_L	28	11
RR-4233-N	0.3	52	18
RR-4234-N	NT.	84	29
RR-4235-N	NI.	48	34
RR-4236-N	0.2	39	29
RR-4237-N	0.2	37	22
RR-4238-N	NTL	44	25
RR-4239-N	0.6	67	29
RR-4240-N	0.2	82	37
RR-4241-N	0 <u>.7</u>	84	31
RR-4242-N	1.0	33	17
RR-4243-N	0.2	71	
RR-4244-N	0.2	94	39
		ertify that the above results are e upon the herein described samples	

Page # 1

Rejects Retained one month.

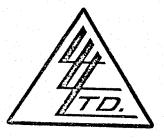
To: NORCEN ENERGY RESOURCES LIMITED, 27th Flr., 715 - 5th Avenue S.W., algary, Alberta T2P 2X7



File No.	16770	<b></b>
Dale	April 5, 1979	)
Samples	Rock Cores	

ATTN: Laurie Smith

## LORING LABORATORIES LTD.


SAMPLE No.		PP. P				-
"Rock Cores"		 				
RR-4226-N		1:	2			
RR-4227-N		1	4	a Reve Manada		
RR-4228-N			8			
RR-4229-N		1/	4			
RR-4230-N		1:	1	6		
RR-4231-N		1	3			
RR-4232-N		1:		<b>1</b>		
RR-4233-N		1:	1			
RR-4234-N		19	9			
RR-4235-N		1:				
RR-4236-N		1:	1			
RR-4237-N		· · · · · · · · · · · · · · · · · · ·	9 1		•	
RR-4238-N		10				
RR-4239-N		11	1			
RR-4240-N		12	2	Lander egystel -		
RR-4241-N		12	2			
RR-4242-N	-		3		•	
RR-4243-N		10	<b>)</b>	tin ya tin kana		
RR-4244-N		1/	4 ^{1.1} .			

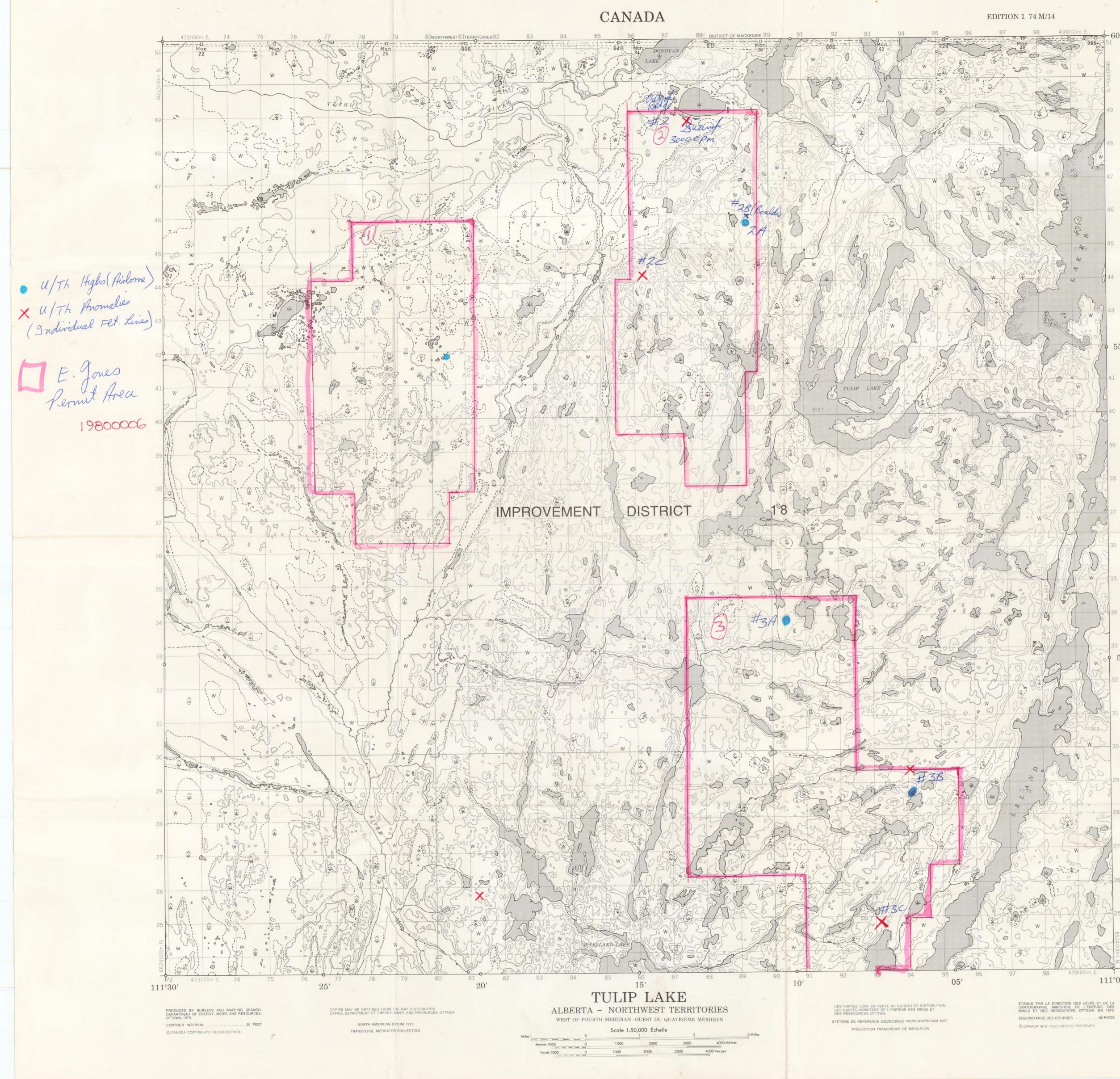
ASSAYS MADE BY ME UPON THE HEREIN DESCRIBED SAMPLES ....

Rejects Retained one month.

Licensed	Assayer	of	British	Columbia
----------	---------	----	---------	----------

To: NORCEN ENERGY RESOURCES LIMITED, 27th Flr., 715 - 5th Avenue S.W., Calgary, Alberta T2P 2X7




File No.	16818	
Date	April 19,	==79
Samples	Core	

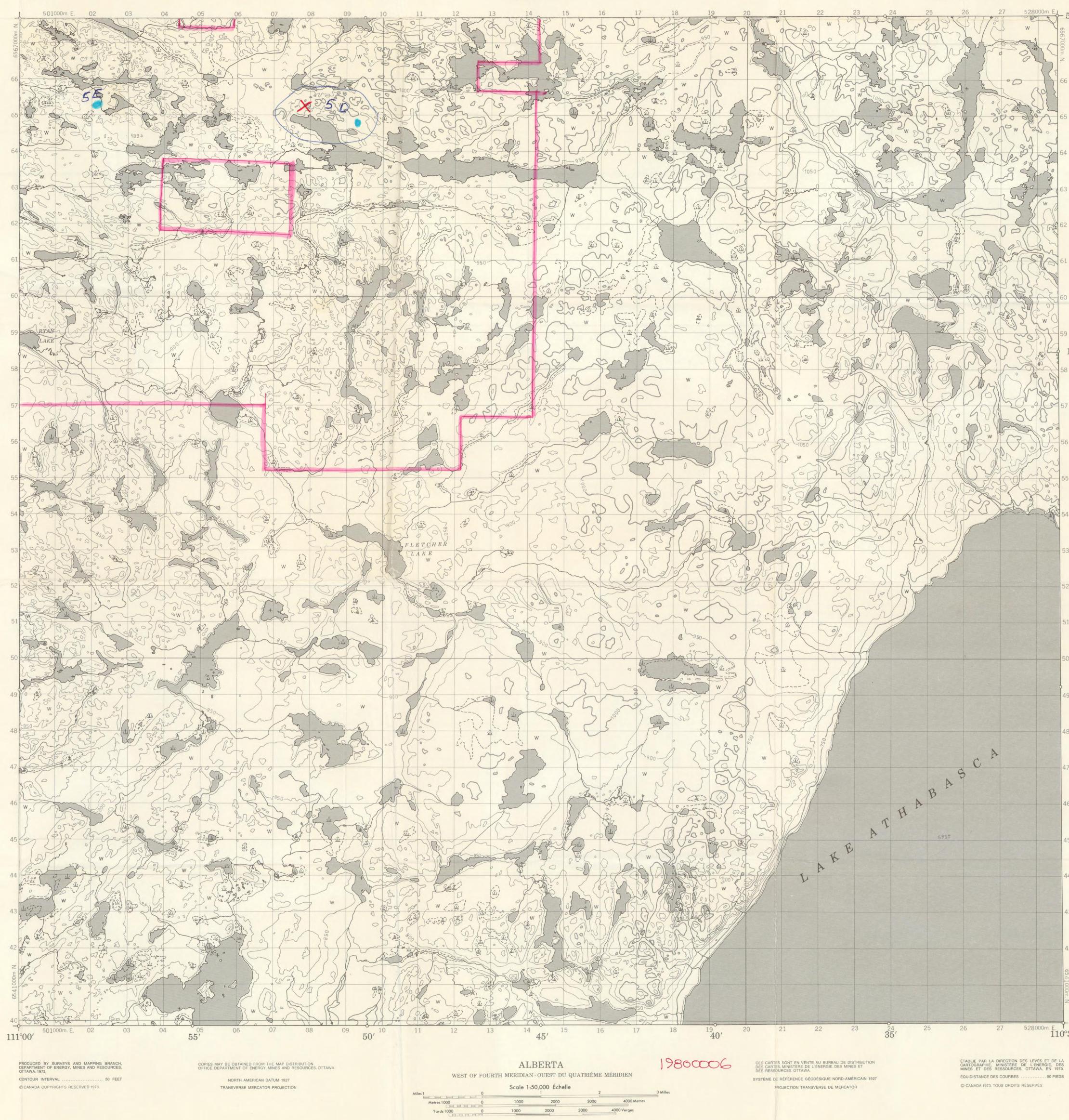
ATTN: Laurie Smith

ASSAY 0x

### LORING LABORATORIES LTD.

SAMPLE No.	PPM U308	PPM Ni	PPM Cc
"Core Samples"			
RR 4351 N RR 4352 N RR 4353 N RR 4353 N RR 4355 N RR 4355 N RR 4356 N RR 4357 N RR 4358 N RR 4358 N RR 4360 N RR 4360 N RR 4361 N RR 4362 N RR 4364 N RR 4364 N RR 4364 N RR 4366 N RR 4366 N RR 4366 N RR 4369 N RR 4369 N RR 4370 N RR 4371 N RR 4371 N RR 4373 N RR 4374 N	0.4 0.2 0.2 0.4 0.6 0.2 0.2 0.2 0.2 0.2 0.2 0.2 NIL 0.4 0.2 1.0 0.2 1.0 0.2 1.8 1.4 1.2 1.2 0.2 0.2 0.2 0.4 0.8 1.0	$\begin{array}{c} 31\\ 19\\ 18\\ 57\\ 55\\ 29\\ 25\\ 27\\ 40\\ 39\\ 22\\ 23\\ 19\\ 41\\ 57\\ 82\\ 94\\ 89\\ 79\\ 78\\ 86\\ 69\\ 69\\ 56\end{array}$	$ \begin{array}{c} 12\\ 8\\ 7\\ 16\\ 20\\ 12\\ 11\\ 16\\ 12\\ 9\\ 13\\ 14\\ 11\\ 12\\ 9\\ 13\\ 14\\ 11\\ 12\\ 25\\ 27\\ 33\\ 36\\ 30\\ 31\\ 29\\ 23\\ 31\\ 26\\ \end{array} $
	I Hereby Cert assays made by me u	ify that the above results on the herein described same	ARE THOSE



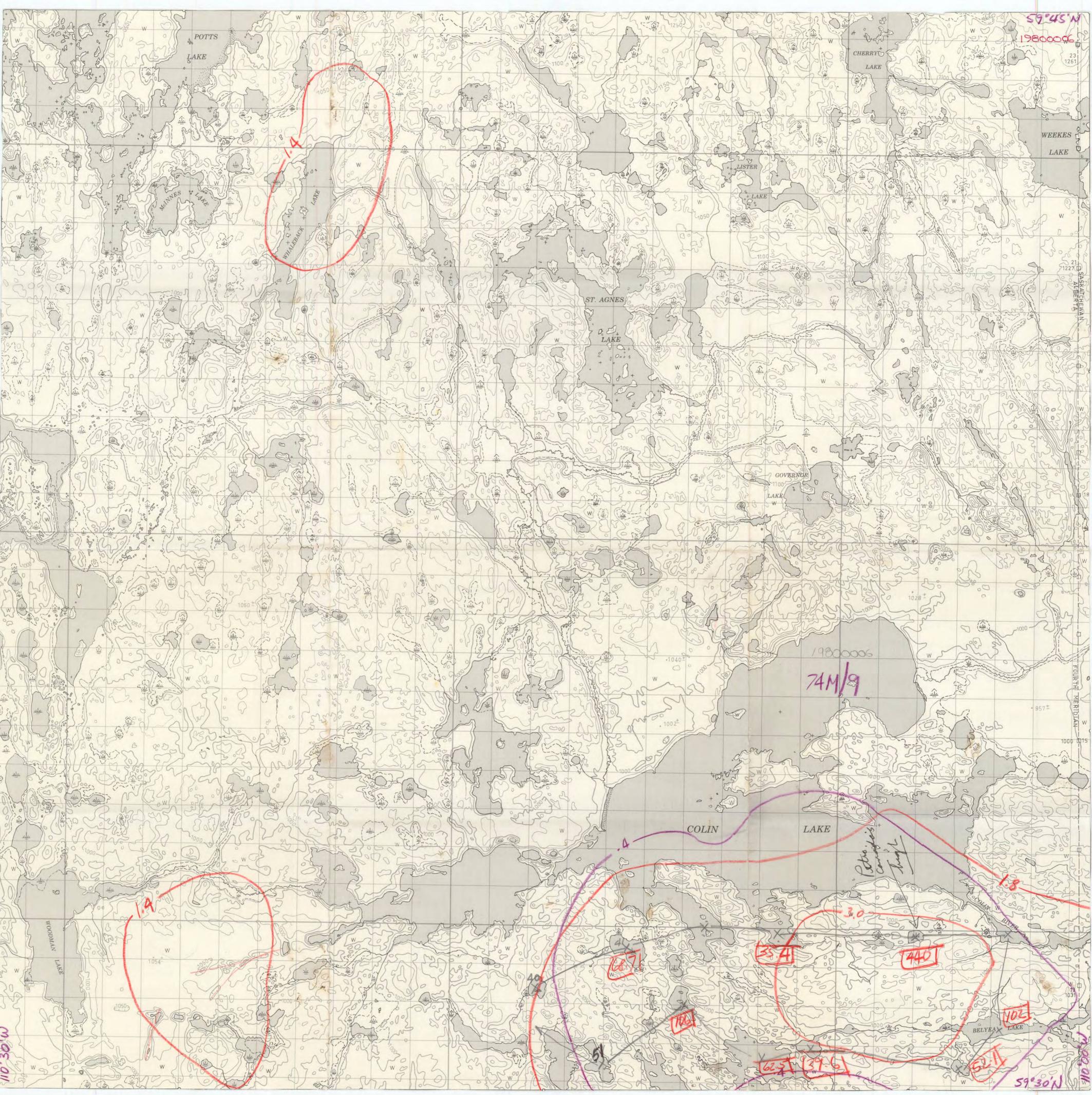

			refer to this map as: Référence de la carte	SERIES A 741 SÉRIE MAP 74 M/14 CARTE EDITION 1 MCE ÉDITION
-60°00′	LEGE ROADS AND RELATED FEATURES HARD SURFACE, ALL WEATHER		RAGES CONNEXES	(12)
תת	LOOSE SURFACE	CHEMIN DE TERRE D'HIV	YER JCTION	
0000	OR ROAD UNDER CONSTRUCTION	SENTIER, PERCÉE, PORTA	AGE	
Z	BUILT-UP AREA	CHEMIN DE FER, VOIE D'É	ÉVITEMENT, GARE, ARRÊT	·······
49	BRIDGE SEAPLANE BASE, ANCHORAGE LANDMARK FEATURES	HYDROAÉROPORT, MOUI	ILLAGE RE	D ¥
	HOUSE, BARN	ÉGLISE, ÉCOLE		1 1
48	POST OFFICE			A
	TOWERS: FIRE, RADIO			
	TANK: OIL, GASOLINE, WATER		ESSENCE, EAU	
47	POWER TRANSMISSION LINE		ÉNERGIE	
	CUTTING, EMBANKMENT			
46	BOUNDARIES AND SURVEY CONTROL INTERNATIONAL. PROVINCIAL. BOUNDARY MONUMENT	INTERNATIONALE, PROVI BORNE	POINTS DE RÉFÉREN NCIALE. E FRONTIÈRE	NCES
	COUNTY. DISTRICT TOWNSHIP. PARISH - SURVEYED - UNSURVEYED	CANTON, PAROISSE - ARP - NOM	PENTĖ N ARPENTĖ	
45	TOWNSHIP. DLS - SURVEYED. UNSURVEYED - SECTION CORNERS	- SECTION A	NON ARPENTE	+ + + +
	MUNICIPALITY	RÉSERVE INDIENNE, PAR	C, ETC	·····
44	HORIZONTAL SURVEY POINT		I	
	SPOT ELEVATION, ELEVATION APPROXIMATE		APPROXIMATIVE	
42	STREAM, SHORELINE: INDEFINITE		RÉCISE	
43	LAKE, INTERMITTENT LAKE		r	
	MARSH, SWAMP (WOODED)		ISÉE)	- 77
55'	SAND: ABOVE, IN WATER		S L'EAU	
	TUNDRA: PONDS. POLYGONS RAPIDS, FALLS, RAPIDS		S POLYGONAUX	
41	FORESHORE FLATS	ESTRANS		
	DAM	BARRAGE		DAM
	WHARF	FOSSÉ		
40	CONTOURS			
	APPROXIMATE CONTOUR		ROXIMATIF	
39	ESKER			······
	SAND, SAND DUNES PALSA BOG			()
	WOODED AREA			······
38	PHOTOGRAPHY PHOTOGRAPHIE			
	COMPILATION RESTITU	TION		
37	A-15096 09/55 75	83 DÉSIC	NE DESIGNATION: 100,000 M. SQUARI IDENTIFICATIO LA ZONE DE 100.	N DU CARRÉ
	A-15151 08/55	-	12 V VI	в
36	8 15004 09/55 1	65		5
	A-15094 A-15096 22 09/55	20		
	A-15164 09/55 28 21		EXAMPLE OF METHOD USED TO GIVE A REFERENCE TO NEAREST 100 EXEMPLE DE LA MÉTHODE EMPLO POUR FIXER DES REPÈRES À 100 MÈTI	0 METRES DYÉE
35	A-15162 08/55 14 08/5	62 5 13	99	
	23 17		98	
34			97	_
	REVISION RÉVI	ISION	95 96 97 98	B
1	nevision nevi	REFE	RENCE POINT IT DE REPÊRE CHURCH - ÉGLIS	SE (as above) (ci-dessus)
³³ 9 50'		EASTIM	NG: Read number on grid line nediately to left of point:	
		du	ITUDE EST: Noter le chiffre de la ligne quadrillage immédiatement à gauche repère:	
- 32		this Esti	imate tenths of a square from s line eastward to point: imer le nombre de dixièmes du carré	
			tre cette ligne et le repère en direction HING: Read number on grid line	975
- 31		LATITU	mediately below point : UDE NORD: Noter le chiffre de la ligne quadrillage immédiatement en-desso	
5		Est	repère: timate tenths of a square from s line northward to point :	98
		Est	timer le nombre de dixièmes du carré tre cette ligne et le repère en direction REFERENCE SAMPLE	n nord:4 984
- 30		EXEMI	PLE DU QUADRILLAGE est similar grid reference 100,000 metres ochaine référence similaire est à 100.000 mètre	
-				
29		UN	ONE THOUSAND MET VIVERSAL TRANSVERSE MERCAT ZONE 12	
8	75 D/4 75 D/3 75 D/		JADRILLAGE DE MILLE JNIVERSEL TRANSVERSE DE ME	
- 28				
5	74 M/13 74 M/14 74 M/	EAST	73 MAGNETIC BEARING is 27 17 of GRID NORTH.	7' (485 mils)
1		GRID N	ICRTH is 0°13' (4 mils) WEST of tre of map.	
27		Le REP	ÈRE MAGNÉTIQUE en 1973 est	a 27°17' (485 mils)
4	74 M/12 74 M/11 74 M/		du NORD DU QUADRILLAGE. TION ANNUELLE DÉCROISSAN	VTE 4.5'
26			DU QUADRILLAGE est 0°13' (4 n GÉOGRAPHIQUE au centre de la	
			VATIONS	
2	ÉCHELLE 1 Metres 30 20 10 0 50	RSION SCALE FOR ELEV DE CONVERSION DES É 100 150		300 Mètres
525		00 400 500 (	600 700 800 9	900 1000 Pieds
662				
40001				
202				

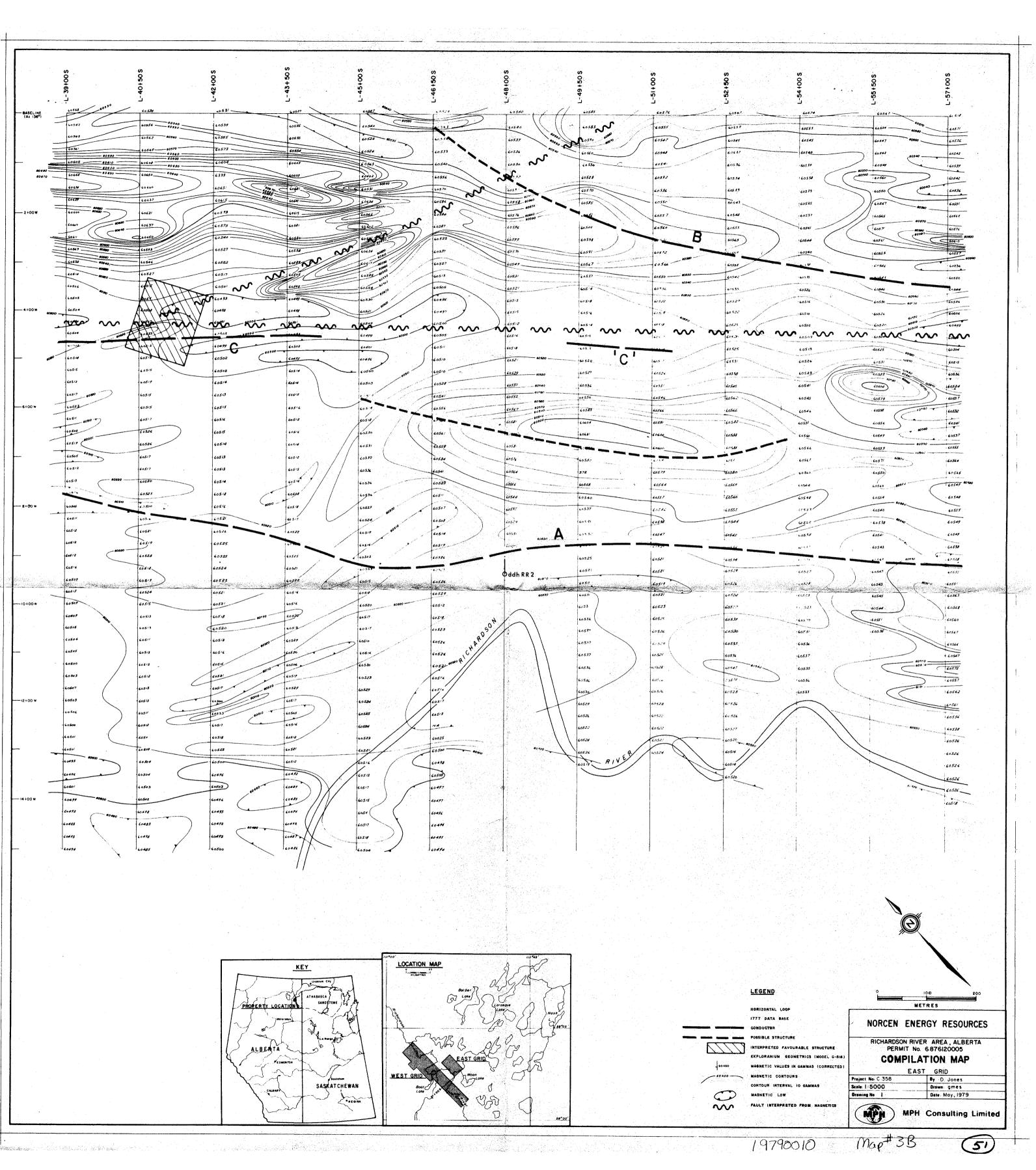
CARTER MAPPING LIMITED 510-5 Street S.W., Calgary, Alberta T2P 1V6 264-1230

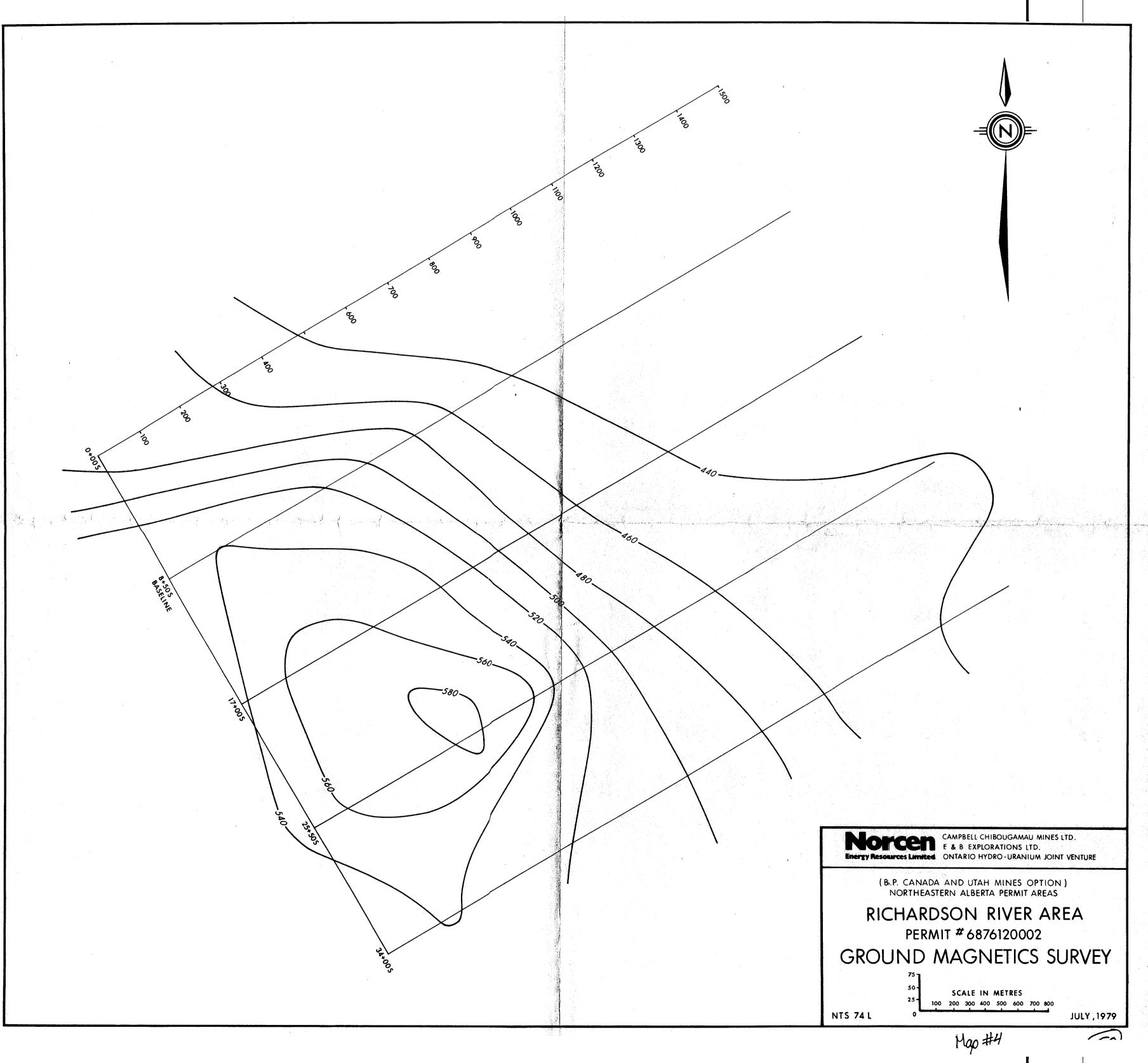
74 M/14 EDITION 1

-59°45'

111°00'





EDITION 1 74 M/2

								de la carte	DITION 1 MCE	
m.E.	⊢ 59°15		D RELATED	FEATURES		D - LÉGE ROUTES ET				
0	567000m.	LOOSE SURFAC CART TRACK, W		N		GRAVIER	TOUTES SAISONS			2
25	Z	TRAIL, CUT LINE BUILT-UP AREA	E. PORTAGE			SENTIER, PERCÉ AGGLOMÉRATIO	E. PORTAGE		571F	
$\sum$	66	BRIDGE		P		PONT	VOIE D'ÉVITEMENT, GA			
2	65	HOUSE, BARN		5			REPÈRE E			•
20	05	POST OFFICE		•••••••••••••••••••••••••••••••••••••••		BUREAU DE POST	ГЕ			•
Sh	64	WELL: OIL, GAS		••••••		PUITS: PÉTROLE,	GAZ			
to		TELEPHONE LIN	IE	·····		LIGNE TÉLÉPHON	NQUE PORT D'ÉNERGIE			
the contraction of the contracti	63	CUTTING, EMBA	NKMENT	••••••		TRANCHÉE, REM	BLAI			111111 ;;G
NO			ES AND SUF	RVEY CONTI	ROL		S ET POINTS DE	RÉFÉRENC	ES	
Stat	62		ICT	ED		COMTÉ, DISTRICT CANTON, PAROIS:	SE - ARPENTÉ - NON ARPENTÉ			
2			- SURVEYED. UNS - SECTION CORN	URVEYED		CANTON, DLS - AF	RPENTÉ NON ARPENTE CTION ANGULAIRE	🕀	⊕ + +	í
620	61	INDIAN RESERVE	E. PARK. ETC			RÉSERVE INDIEN REPÈRE PLANIMÉ	NE, PARC, ETC		····	
2		SPOT ELEVATIO	N, ELEVATION AP			POINT COTÉ, ÉLÉV	LEMENT	E		965 -
S	60	STREAM, SHORE	ELINE: INDEFINITE	·		COURS D'EAU, RIV DIRECTION DU CO	VE: IMPRÉCISE			
20	59	INUNDATED LAN	۷D			TERRAIN INONDÉ	MITTENT			
E	⁵⁹ 10'	DRY RIVER BED SAND: ABOVE, IN	WITH CHANNELS			LIT DE COURS D'E SABLE: AU DESSU	AU TARI AVEC CHENAU IS, DANS L'EAU	хх.		
- la	58	TUNDRA: PONDS	S. POLYGONS			TOUNDRA: ÉTANG	ENFILADE IS, SOLS POLYGONAUX S, RAPIDES		(TP)	SB PG
20		FORESHORE FLA	ATS			ESTRANS				T-
32	57	WHARF				QUAI				
3000							AU			
To	56	DEPRESSION		·····		COURBE DE CUVE	AU APPROXIMATIF			11/2
5		SAND, SAND DU	NES			SABLE, DUNES	••••••••		(SAN	
N.S.S.	55	WOODED AREA				RÉGION BOISÉE .	E		E "W.	
22°	2		PHOTOGR/	арну рното	GRAPHIE	N				
A.	54						and Eone Debidinition	00,000 M. SQUARE ID IDENTIFICATION DU		
	EQ		17 A-	15155 8	8/55 9		DÉSIGNATION DE LA ZONE DU QUADRILLAGE :	DE 100,000	M.	
	- 53		0 132 A-1510	65 9/5	55 124		12V	WA		
	52		73 A-151	63 9/5	55 80		EXAMPLE	OF METHOD USED		
		7:	A-1515	7 8	3/55 /3		EXEMPLE DE L	E TO NEAREST 100 ME MÉTHODE EMPLOYÉE PÈRES À 100 MÈTRES F		
	- 51		A-151	57 8/5	55 81		99			
							97			
	- 50	RE	EVISION		RÉVISIO	DN			as above)	
							REFERENCE POINT POINT DE REPÈRE CHU EASTING: Read number on immediately to left of p	grid line	as above) ci-dessus)	
	-49						LONGITUDE EST: Noter le c du quadrillage immédia du repère: Estimate tenths of a sq	atement à gauche	97	
							this line eastward to po Estimer le nombre de di entre cette ligne et le re	int: xièmes du carré	975	
	-48						NORTHING: Read number o immediately below poin LATITUDE NORD: Noter le o du quadrillage immédia	t: chiffre de la ligne		
	47						du repère: Estimate tenths of a squ this line northward to p	uare from oint:	98	
		L					Estimer le nombre de di entre cette ligne et le re GRID REFERENCE SAMPLE EXEMPLE DU QUADRILLAG	père en direction nord E S	984 975984	
	46					[	Nearest similar grid referen La prochaine référence similaire			
		, F					UNIVERSAL TRANSV	SAND METRE VERSE MERCATOR		
	- 45		74 M/6	74 M/7	74 M/8		QUADRILLAGE I UNIVERSEL TRANS	DE MILLE MÈT		
	-					Ţ	The 1973 MAGNETIC BE/ EAST of GRID NORTH.	ARING is 25°55' (4	61 mils)	
	- 44		74 M/3	74 M/2	74 M/1	A	NNUAL CHANGE DEC GRID NORTH is 0°13' (4) or centre of map.		JE NORTH	
			741/14	74 L/15	74 L/16	L	e REPÈRE MAGNÉTIQU EST du NORD DU QU	E en 1973 est à 25° ADRILLAGE.	°55' (461 mils)	
	43					1	ARIATION ANNUELLE NORD DU QUADRILLAG NORD GÉOGRAPHIQUE	Eest 0°13' (4 mils)	à l'est du	
	42	Me	etres 30 20 10 (	50	ÉCHELLE DE (		ELEVATIONS ES ÉLÉVATIONS	250	300 Mètres	
	0	F	Feet 100 50 (		200 300	400 500	600 700	800 900	1000 Pieds	S
	5410									
	6541000m. N.									

CARTER MAPPING LIMITED 510-5 Street S.W., Calgary, Alberta T2P 1V6 264-1230

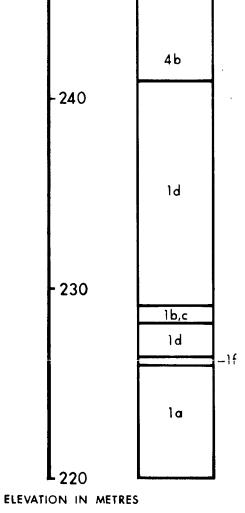






 299
 4α

 -290
 4α


 -290
 4α

 -280
 4α

 -270
 4α

 -270
 4α

 -270
 4α



ABOVE SEA LEVEL

## LEGEND:

QUATERNARY & RECENT OVERBURDEN

- 4a Sand
- 4 b Sand and boulders

DEVONIAN SEDIMENTARY ROCKS

- 3a Mudstone
- 3b Sandy Mudstone
- 3c Sandstone
- 3d Muddy Sandstone
- 3e Conglomerate
- 3f Regolith (La Loche Formation)

### PROTEROZOIC ATHABASCA FORMATION

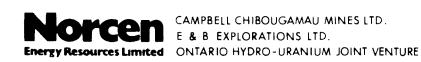
- 2a Sandstone
- 2b Mudstone
- 2c Conglomerate
- 2d Regolith

PROTEROZOIC OR ARCHAEAN BASEMENT ROCK

la Feldspar+Quartz ± Biotite Paragneiss

1b Chlorite + Feldspar + Quartz + Biotite Paragneiss

1c Feldspar+Quartz+Chlorite ± Biotite Paragneiss


1d Chlorite ± Biotite Schist

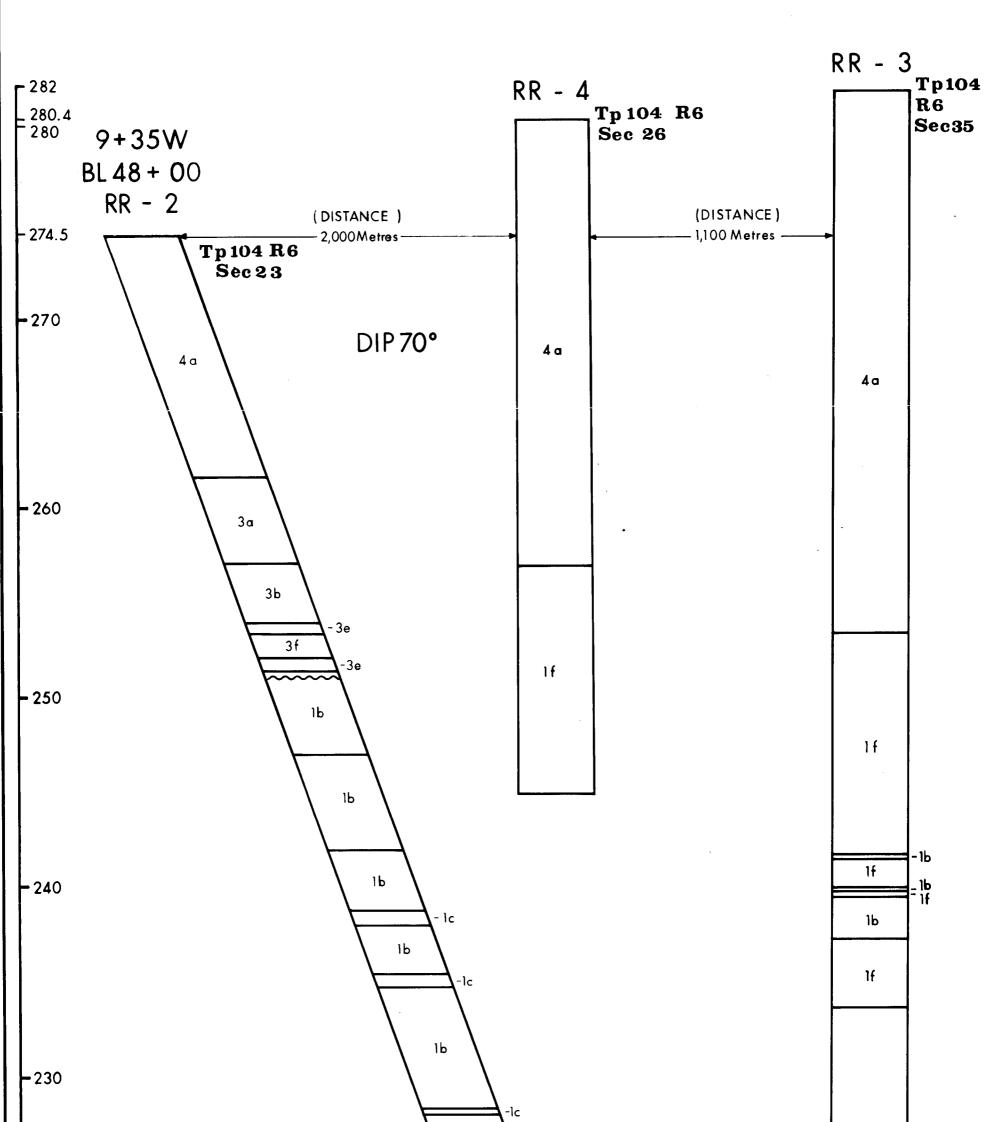
le Graphite Schist

1f Granite

Unconformity xxxxx Brecciation

sec A




### ( B.P. CANADA LTD. & UTAH MINES LTD. OPTION )

# RICHARDSON RIVER PERMITS, N.E.-ALBERTA

### DIAMOND DRILLING SECTIONS

Scale 1:200

NTS 74-L-2,3,6,7



۱b ۱Ь -CONDUCTOR? 1d ۱b -220 1f ۱d -210 ۱b -200 la ۱b . -1d la -190 ۰lb lc ıЬ lc -1b -180 la **L**170 ELEVATION IN METRES ABOVE SEA LEVEL LEGEND:

#### QUATERNARY & RECENT OVERBURDEN

- 4a Sand
- 4b Sand and boulders

### DEVONIAN SEDIMENTARY ROCKS

- 3a Mudstone
- 3b Sandy Mudstone
- 3c Sandstone
- 3d Muddy Sandstone
- 3e Conglomerate
- 3f Regolith (La Loche Formation)

### PROTEROZOIC ATHABASCA FORMATION

- 2a Sandstone
- 2b Mudstone
- 2c Conglomerate
- 2d Regolith

### PROTEROZOIC OR ARCHAEAN BASEMENT ROCK

- la Feldspar + Quartz ± Biotite Paragneiss
- 1b Chlorite + Feldspar + Quartz ± Biotite Paragneiss
- 1c Feldspar + Quartz + Chlorite ± Biotite Paragneiss
- 1d Chlorite ± Biotite Schist
- le Graphite Schist
- If Granite

Unconformity  $\sim\sim\sim$ 

**x x x x x** Brecciation

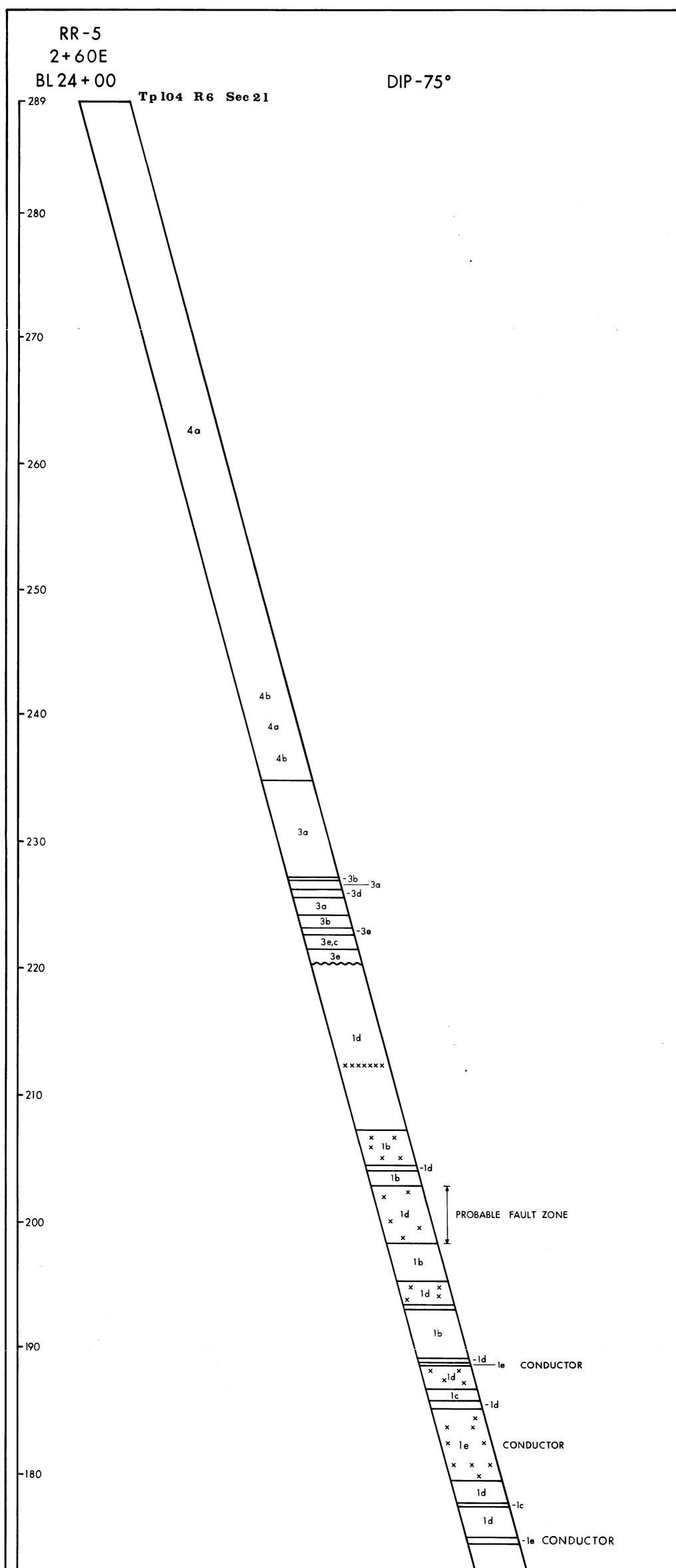
SecB



CAMPBELL CHIBOUGAMAU MINES LTD. E & B EXPLORATIONS LTD. Energy Resources Limited ONTARIO HYDRO-URANIUM JOINT VENTURE

( B.P. CANADA LTD. & UTAH MINES LTD. OPTION )

## RICHARDSON RIVER PERMITS, N.E.-ALBERTA DIAMOND DRILLING SECTIONS


Scale 1:200

NTS 74-L-2,3,6,7

May, 1979

K





- 170

1

### L 169

#### ELEVATION IN METRES ABOVE SEA LEVEL



## LEGEND:

### QUATERNARY & RECENT OVERBURDEN

- 4a Sand
- 4b Sand and boulders

#### DEVONIAN SEDIMENTARY ROCKS

- 3a Mudstone
- 3b Sandy Mudstone
- 3c Sandstone
- 3d Muddy Sandstone
- 3e Conglomerate
- 3f Regolith (La Loche Formation)

### PROTEROZOIC ATHABASCA FORMATION

- 2a Sandstone
- 2b Mudstone
- 2c Conglomerate
- 2d Regolith

#### PROTEROZOIC ARCHAEAN BASEMENT ROCK

- 1a Feldspar Quartz ± Biotite Paragneiss
- 1b Chlorite Feldspar Quartz ± Biotite Paragneiss
- 1c Feldspar Quartz Chlorite ± Biotite Paragneiss
- 1d Chlorite ± Biotite Schist
- le Graphite Schist
- 1f Granite

### ~~~ Unconformity

**XXXXX** Brecciation

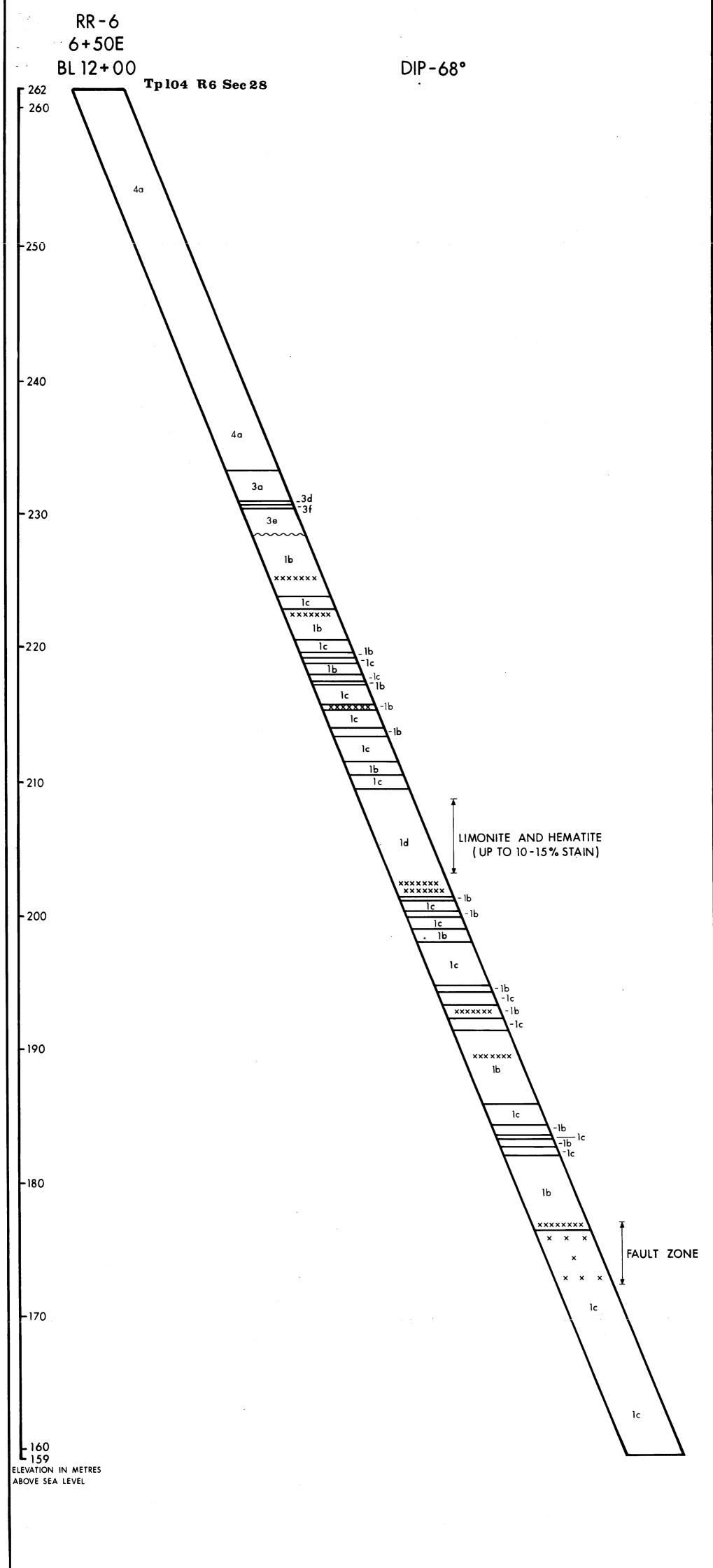
sec C



CAMPBELL CHIBOUGAMAU MINES LTD. E & B EXPLORATIONS LTD. Energy Resources Limited ONTARIO HYDRO-URANIUM JOINT VENTURE

(B.P. CANADA LTD. & UTAH MINES LTD. OPTION)

RICHARDSON RIVER PERMITS, N.E.-ALBERTA


DIAMOND DRILLING SECTIONS

Scale 1:200

NTS 74-L-2,3,6,7







### QUATERNARY & RECENT OVERBURDEN

- 4 a Sand
- 4 b Sand and boulders

#### DEVONIAN SEDIMENTARY ROCKS

- 3 a Mudstone
- 3b Sandy Mudstone
- 3 c Sandstone
- 3d Muddy Sandstone
- 3 e Conglomerate
- 3f Regolith (La Loche Formation)

#### PROTEROZOIC ATHABASCA FORMATION

- 2 a Sandstone
- 2b Mudstone
- 2 c Conglomerate
- 2d Regolith

### PROTEROZOIC OR ARCHAEAN BASEMENT ROCK

- 1a Feldspar+Quartz + Biotite Paragneiss
- 1b Chlorite + Feldspar + Quartz ± Biotite Paragneiss
- 1c Feldspar+Quartz+Chlorite ± Biotite Paragneiss
- 1d Chlorite ± Biotite Schist
- le Graphite Schist
- If Granite

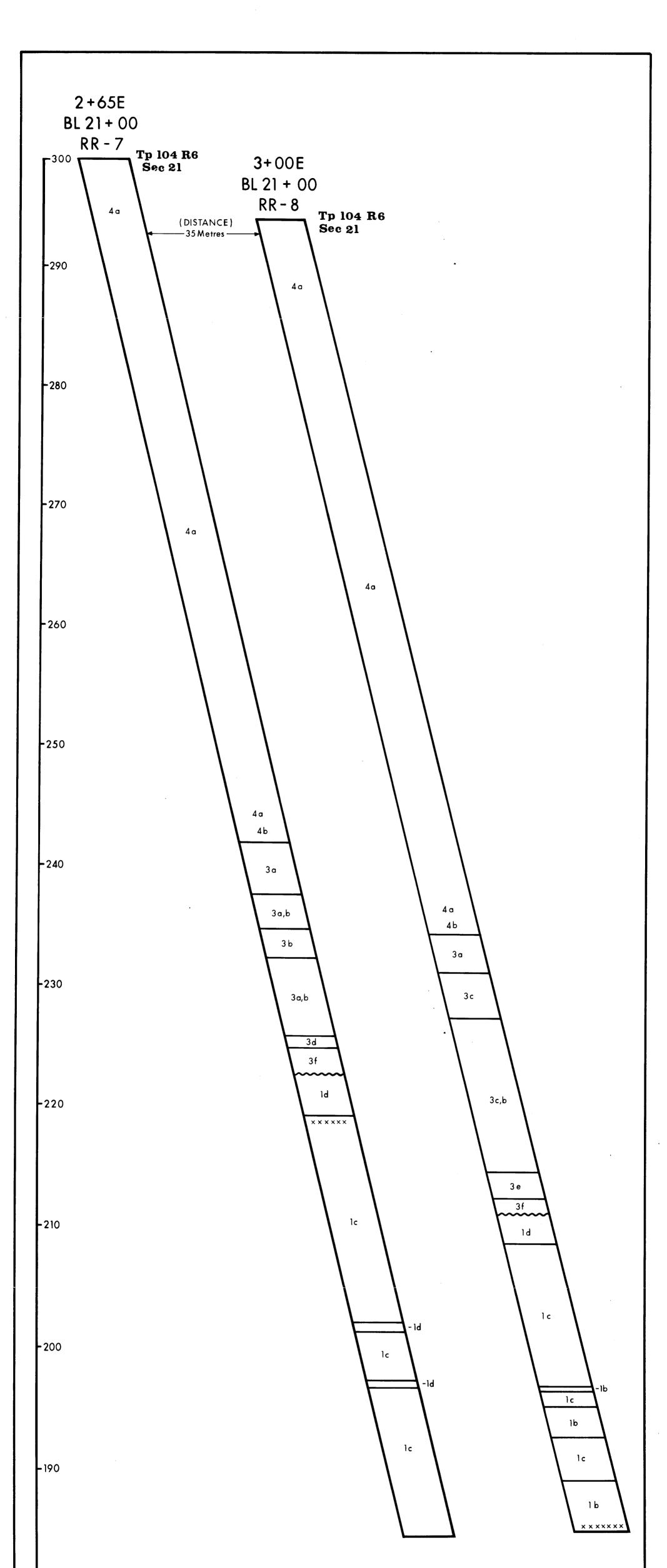
----- Unconformity

**XXXXXX** Breciation

1_

sec D

CAMPBELL CHIBOUGAMAU MINES LTD. E & B EXPLORATIONS LTD. Energy Resources Limited ONTARIO HYDRO-URANIUM JOINT VENTURE


( B.P. CANADA LTD. & UTAH MINES LTD. OPTION )

RICHARDSON RIVER PERMITS, N.E.-ALBERTA DIAMOND DRILLING SECTIONS

Scale 1:200

NTS 74-L-2,3,6,7





### QUATERNARY & RECENT OVERBURDEN

- 4a Sand
- 4b Sand and boulders

### DEVONIAN SEDIMENTARY ROCKS

- 3a Mudstone
  - 3b Sandy Mudstone
  - 3c Sandstone
  - 3d Muddy Sandstone
  - 3e Conglomerate
  - 3f Regolith (La Loche Formation)

### PROTEROZOIC ATHABASCA FORMATION

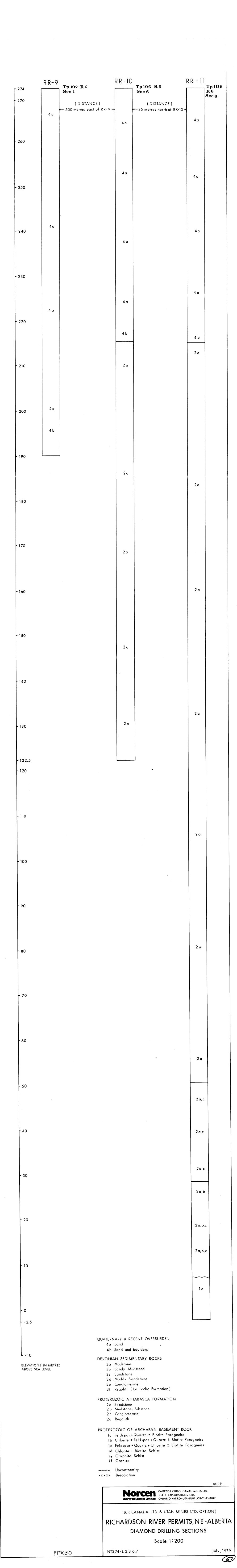
- 2a Sandstone
- 2b Mudstone
- 2c Conglomerate
- 2d Regolith

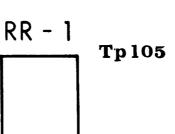
### PROTEROZOIC OR ARCHAEAN BASEMENT ROCK

- 1a Feldspar+Quartz ± Biotite Paragneiss
- 1b Chlorite + Feldspar + Quartz ± Biotite Paragneiss
- 1c Feldspar+Quartz+Chlorite ± Biotite Paragneiss
- Id Chlorite + Biotite Schist
- le Graphite Schist
- lf Granite

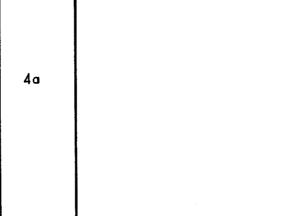
----- Unconformity

xxxxx Brecciation


CAMPBELL CHIBOUGAMAU MINES LTD. ENergy Resources Limited CAMPBELL CHIBOUGAMAU MINES LTD. & B EXPLORATIONS LTD. INTARIO HYDRO-URANIUM JOINT VENTURE (B.P. CANADA LTD. & UTAH MINES LTD. OPTION ) RICHARDSON RIVER PERMITS, N.E.-ALBERTA DIAMOND DRILLING SECTIONS Scale 1:200 May, 1979


L 170 ELEVATION IN METRES ABOVE SEA LEVEL

-180


secE







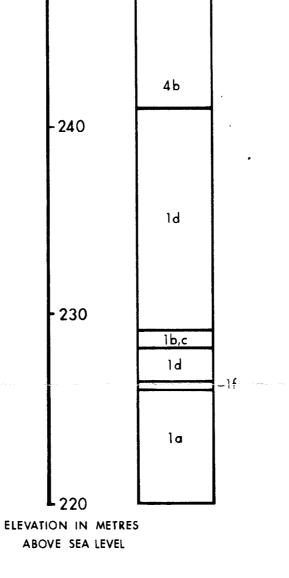
Tp105 R6 Sec 7



-280

**r** 299

-290


- 270

4a

- 260

-250

4a



## LEGEND:

#### QUATERNARY & RECENT OVERBURDEN

- 4 a Sand
- 4b Sand and boulders

### DEVONIAN SEDIMENTARY ROCKS

- 3a Mudstone
- 3b Sandy Mudstone
- 3c Sandstone
- 3d Muddy Sandstone
- 3e Conglomerate
- 3f Regolith (La Loche Formation)

### PROTEROZOIC ATHABASCA FORMATION

- 2a Sandstone
- 2b Mudstone
- 2 c Conglomerate
- 2d Regolith

1a Feldspar+Quartz ± Biotite Paragneiss

1b Chlorite + Feldspar + Quartz + Biotite Paragneiss

1c Feldspar+Quartz+Chlorite ± Biotite Paragneiss

1d Chlorite ± Biotite Schist

le Graphite Schist

If Gronite

Unconformity  $\sim\sim\sim$ XXXXX **Brecciation** 

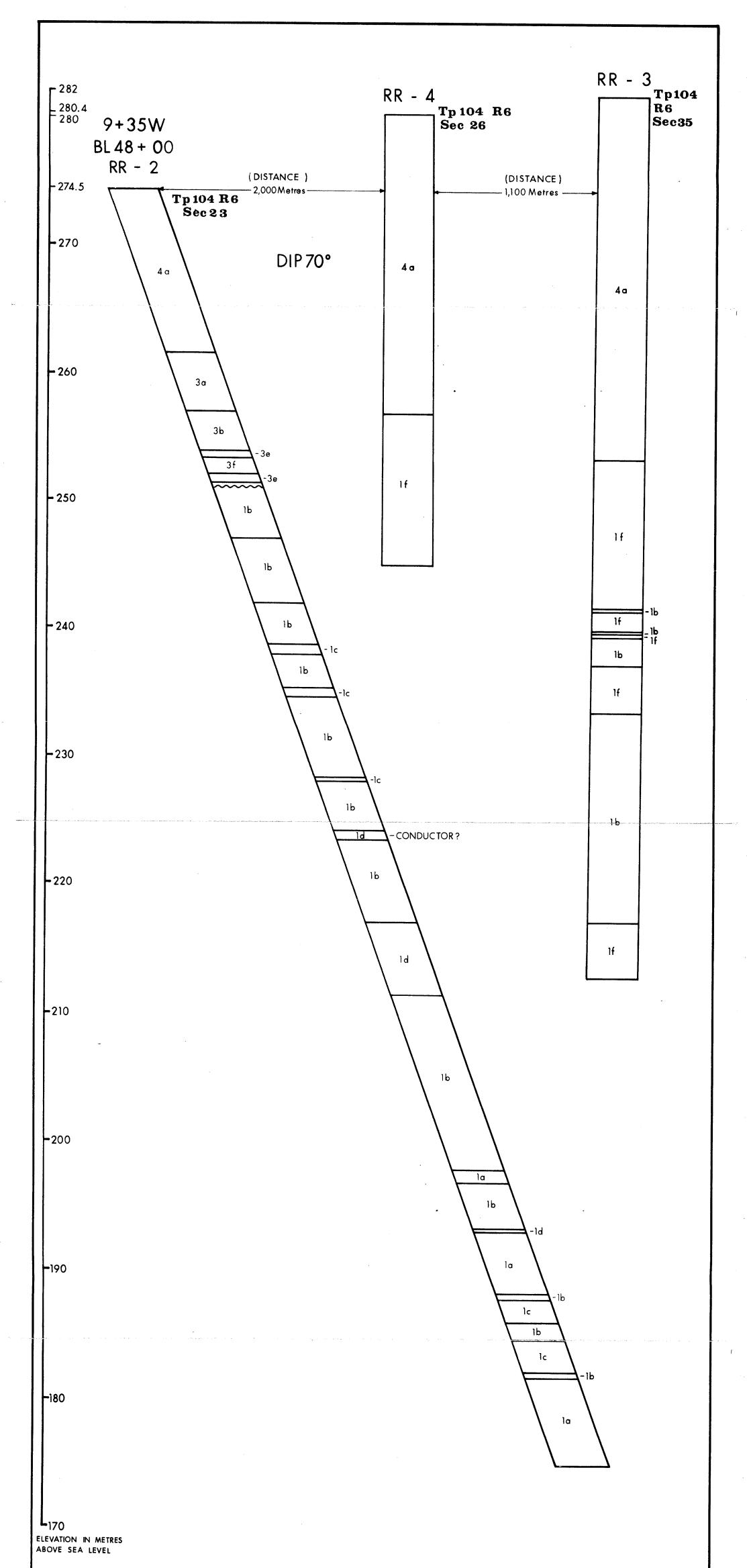
sec A



CAMPBELL CHIBOUGAMAU MINES LTD. E & B EXPLORATIONS LTD. Energy Resources Limited ONTARIO HYDRO-URANIUM JOINT VENTURE

( B.P. CANADA LTD. & UTAH MINES LTD. OPTION )

RICHARDSON RIVER PERMITS, N.E.-ALBERTA


DIAMOND DRILLING SECTIONS

Scale 1:200

NTS 74-L-2,3,6,7

May, 1979

(56



### QUATERNARY & RECENT OVERBURDEN

- 4a Sand
- 4b Sand and boulders

### DEVONIAN SEDIMENTARY ROCKS

- 3a Mudstone
- 3b Sandy Mudstone
- 3c Sandstone
- 3d Muddy Sandstone
- 3e Conglomerate
- 3f Regolith (La Loche Formation)

### PROTEROZOIC ATHABASCA FORMATION

- 2a Sandstone
- 2b Mudstone
- 2c Conglomerate
- 2d Regolith

### PROTEROZOIC OR ARCHAEAN BASEMENT ROCK

- 1a Feldspar + Quartz ± Biotite Paragneiss
- 1b Chlorite + Feldspar + Quartz ± Biotite Paragneiss
- 1c Feldspar + Quartz + Chlorite ± Biotite Paragneiss
- 1d Chlorite ± Biotite Schist
- le Graphite Schist
- If Granite

Unconformity  $\sim \sim \sim$ 

XXXXX Brecciation

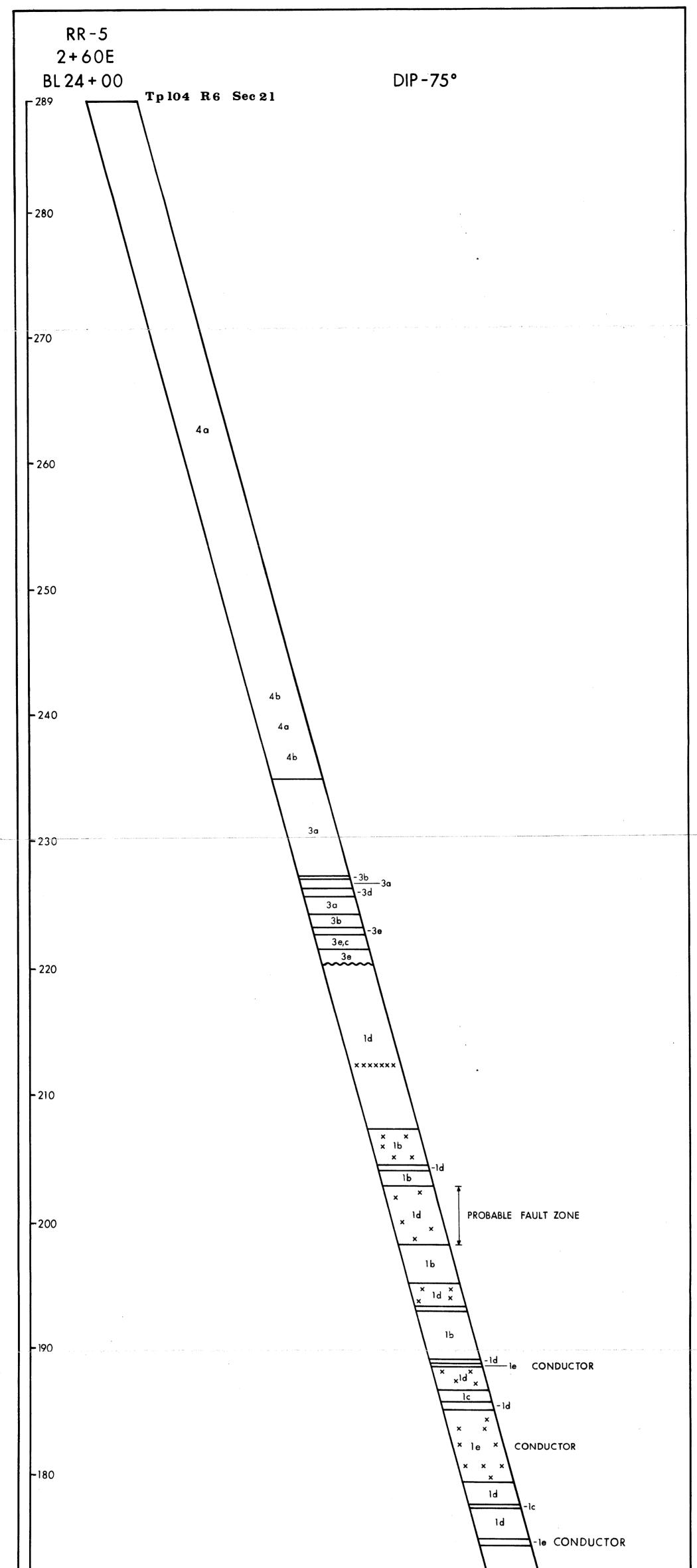
SecB

-1



(B.P. CANADA LTD. & UTAH MINES LTD. OPTION)

RICHARDSON RIVER PERMITS, N.E.-ALBERTA DIAMOND DRILLING SECTIONS


Scale 1:200

NTS 74-L-2,3,6,7

May, 1979

l





- 170

L 169

ELEVATION IN METRES ABOVE SEA LEVEL



## LEGEND:

### QUATERNARY & RECENT OVERBURDEN

- 4a Sand
- 4b Sand and boulders

#### DEVONIAN SEDIMENTARY ROCKS

- 3a Mudstone
- 3b Sandy Mudstone
- 3c Sandstone
- 3d Muddy Sandstone
- 3e Conglomerate
- 3f Regolith (La Loche Formation)

### PROTEROZOIC ATHABASCA FORMATION

- 2a Sandstone
- 2b Mudstone
- 2c Conglomerate
- 2d Regolith

#### PROTEROZOIC ARCHAEAN BASEMENT ROCK

- la Feldspar Quartz ± Biotite Paragneiss
- 1b Chlorite Feldspar Quartz ± Biotite Paragneiss
- 1c Feldspar Quartz Chlorite ± Biotite Paragneiss
- 1d Chlorite ± Biotite Schist
- le Graphite Schist
- lf Granite

----- Unconformity

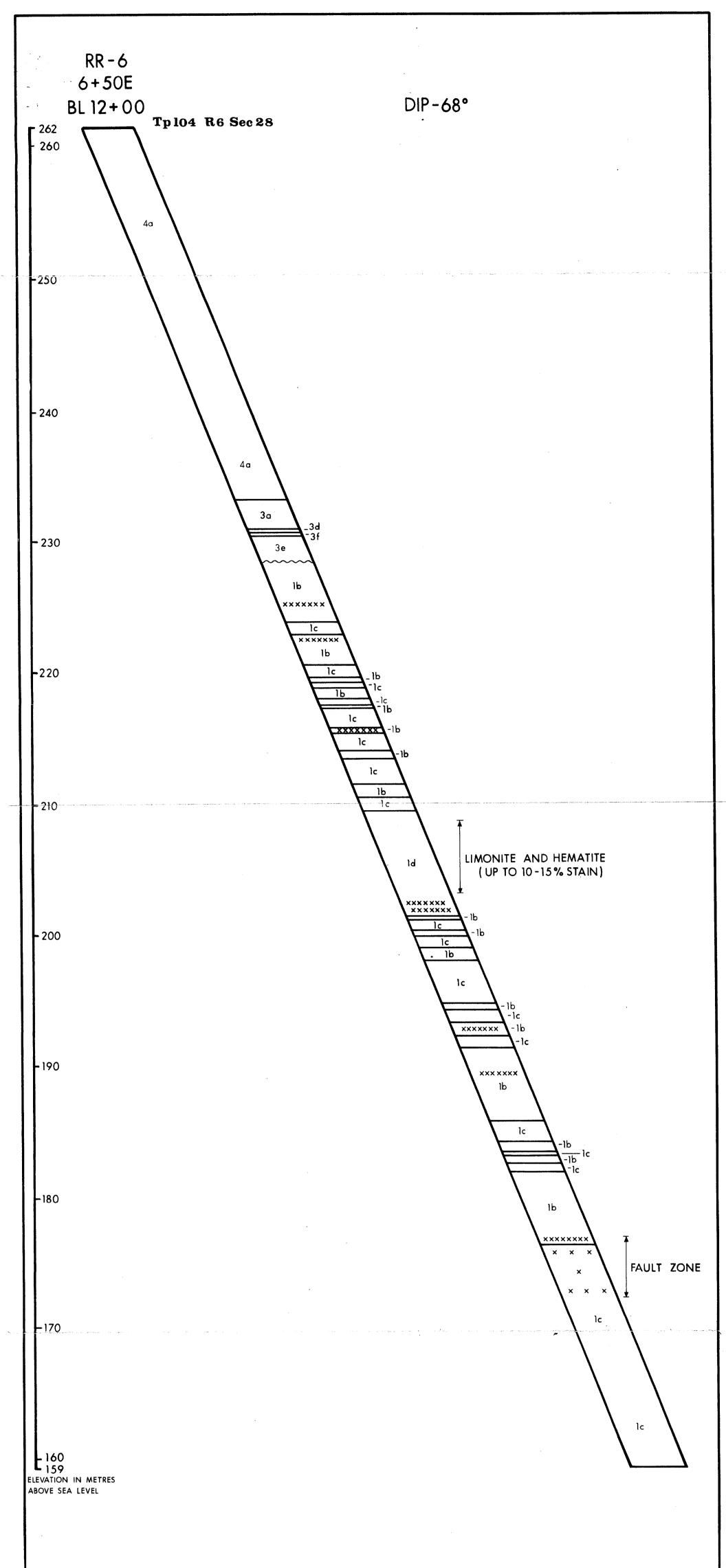
**xxxxx** Brecciation

'sec C

May, 1979 5



CAMPBELL CHIBOUGAMAU MINES LTD. E & B EXPLORATIONS LTD. Energy Resources Limited ONTARIO HYDRO-URANIUM JOINT VENTURE


(B.P. CANADA LTD. & UTAH MINES LTD. OPTION)

RICHARDSON RIVER PERMITS, N.E.-ALBERTA

DIAMOND DRILLING SECTIONS

Scale 1:200

NTS 74-L-2,3,6,7



ĩ

## LEGEND:

#### QUATERNARY & RECENT OVERBURDEN

4 a Sand

4 b Sand and boulders

### DEVONIAN SEDIMENTARY ROCKS

- 3 a Mudstone
- 3b Sandy Mudstone
- 3 c Sandstone
- 3d Muddy Sandstone
- 3 e Conglomerate
- 3f Regolith (La Loche Formation)

#### PROTEROZOIC ATHABASCA FORMATION

- 2 a Sandstone
- 2b Mudstone
- 2 c Conglomerate
- 2d Regolith

#### PROTEROZOIC OR ARCHAEAN BASEMENT ROCK

- 1a Feldspar+Quartz + Biotite Paragneiss
- 1b Chlorite + Feldspar + Quartz ± Biotite Paragneiss
- 1c Feldspar+Quartz+Chlorite ± Biotite Paragneiss
- 1d Chlorite ± Biotite Schist
- le Graphite Schist
- If Granite

----- Unconformity

**xxxxxx** Breciation

sec D

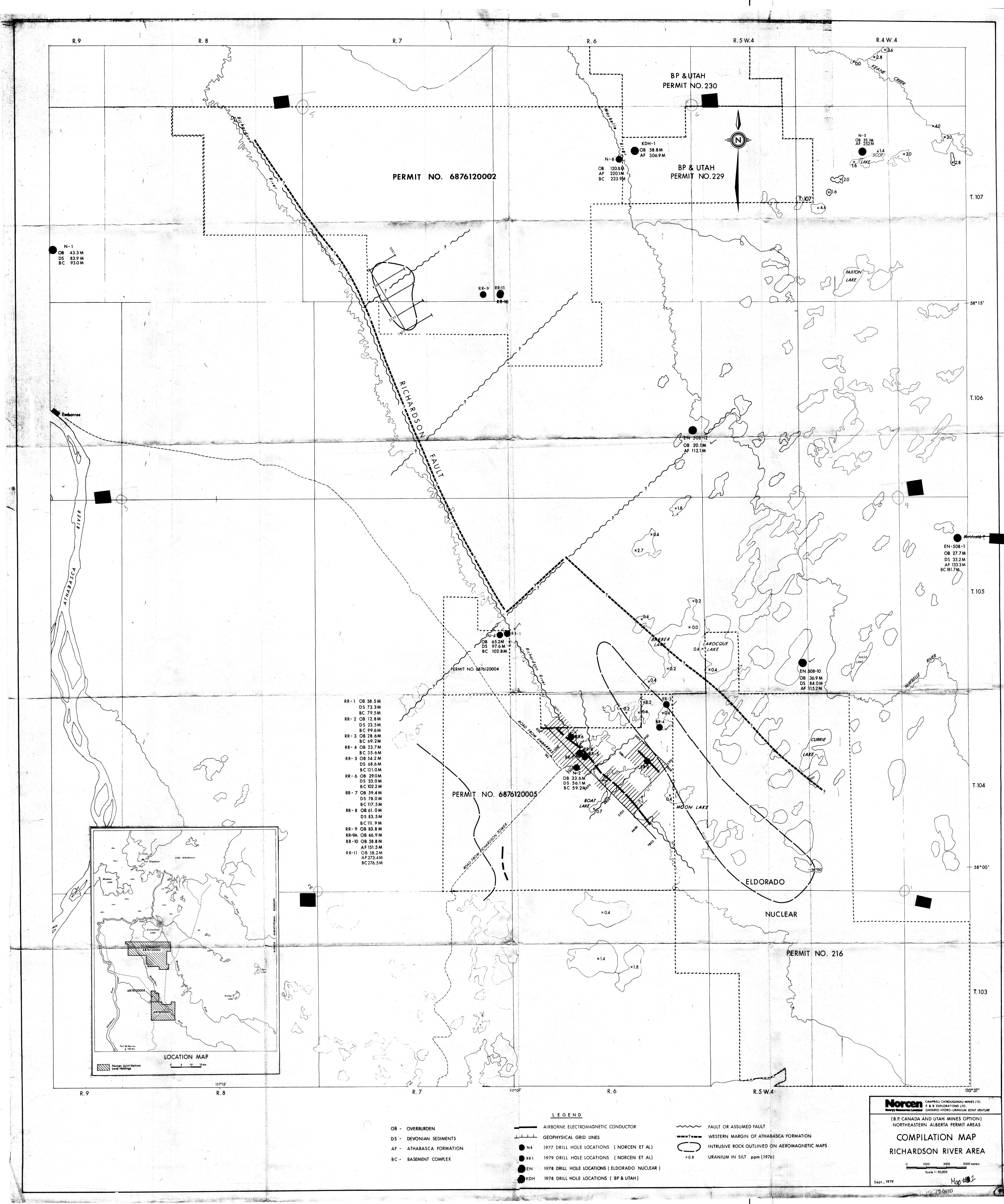
CAMPBELL CHIBOUGAMAU MINES LTD. E & B EXPLORATIONS LTD. Energy Resources Limited ONTARIO HYDRO-URANIUM JOINT VENTURE

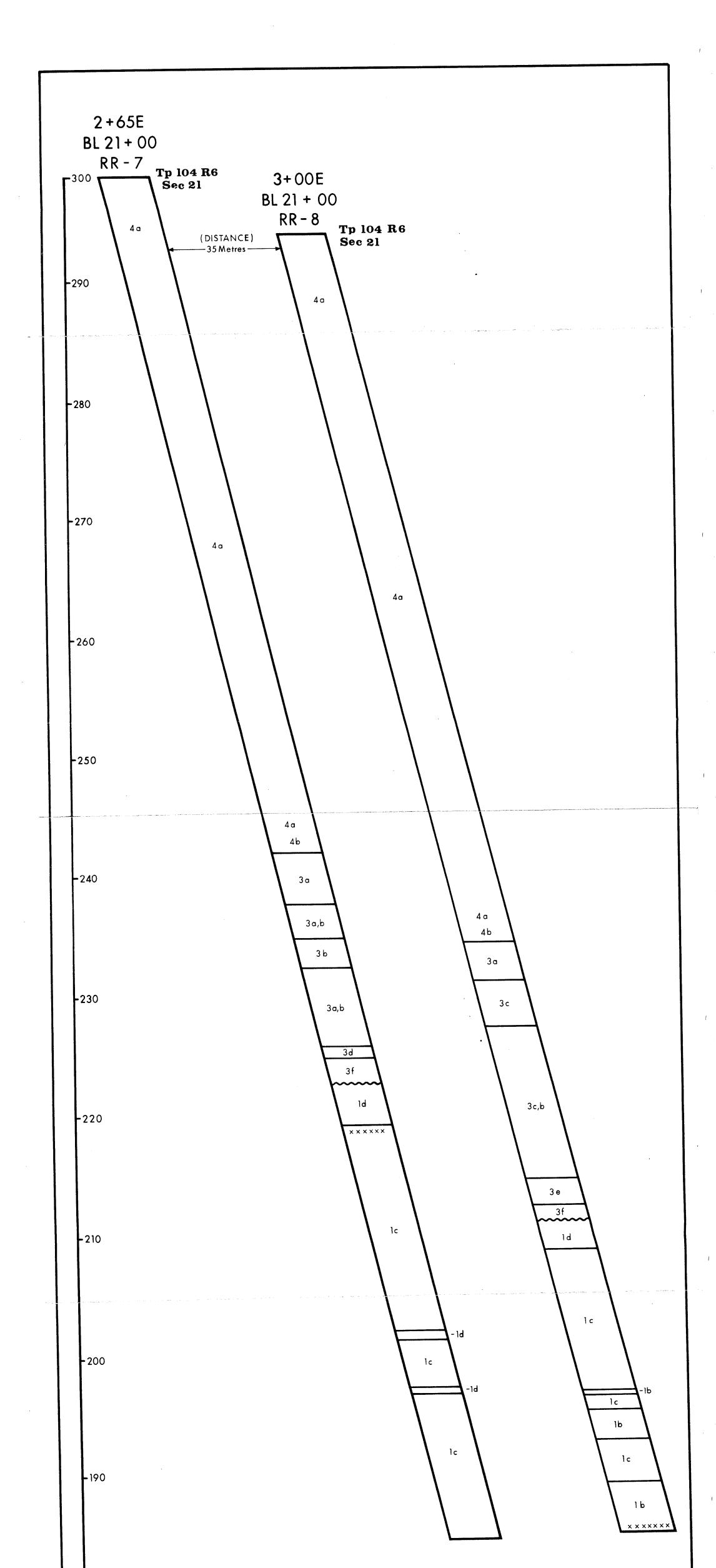
( B.P. CANADA LTD. & UTAH MINES LTD. OPTION )

RICHARDSON RIVER PERMITS, N.E.-ALBERTA DIAMOND DRILLING SECTIONS

Scale 1:200

NTS 74-L-2,3,6,7





I	- 274	R R - 9	Tp 107 R 6 Sec 1	R R - 1C	Tp 106 R 6 Sec 6	RR - 1	] 
	- 270		(DISTANCE)		Sec 6 ( DISTANCE )		Tp 106 R 6 Sec 6
	an a	4a -	<- 500 metres east of RR-9 →	and the second secon	<-35 metres north of RR-10→	يىن - يىپو بېرەندىرى بە مېيەنىيە	
				4 a		4 a	
	- 260						
				4a			
	- 250					4 a	
			· · · · · · · · · · · · · · · · · · ·				
	- 240	4 a				4a	
				4 a		Ψu	
	- 230						
				4 a		4 a	
		4 a		40			
	220						
	:			4 b		4 b	
						2 a	
	- 210			2 a			
						:	
	- 200	4 a					
		4 Ь					
	100						
	- 190 l						
			یس از این	2 a	nan Mahamatan kara yang berkerakan kara yang berkerakan kara yang berkerakan kara kara kara kara kara kara kar K	mynte a stansser fan en en e	
						2 a	
	- 180						
-	170			2a			
	160					2 a	
							х.
-	150						
				2 a			
-	140						
						2 a	
╞	130			2 a			
ļ	122.5						
F	120						
							1

•			
	- 110		
		2 a	n anta ang ang ang ang ang ang ang ang ang an
	- 100		
	- 90		
	- 80	2 a	
	- 70		
	- 60	2 a	
	- 50	2a,c	
	- 40	2a,c	
	- 30	2a,c	

- 30 2a,b 20 2a,b,c 2a,b,c - 10 1 c - 0 - - 2.5 QUATERNARY & RECENT OVERBURDEN 4a Sand 4b Sand and boulders **L** - 10 DEVONIAN SEDIMENTARY ROCKS ELEVATIONS IN METRES 3a Mudstone ABOVE SEA LEVEL 3b Sandy Mudstone 3c Sandstone 3d Muddy Sandstone 3e Conglomerate 3f Regolith (La Loche Formation) PROTEROZOIC ATHABASCA FORMATION 2a Sandstone 2b Mudstone, Siltstone 2 c Conglomerate 2d Regolith PROTEROZOIC OR ARCHAEAN BASEMENT ROCK la Feldspar+Quartz ± Biotite Paragneiss 1b Chlorite + Feldspar + Quartz ± Biotite Paragneiss 1c Feldspar + Quartz + Chlorite ± Biotite Paragneiss 1d Chlorite + Biotite Schist 1e Graphite Schist 1f Granite Unconformity  $\sim$ xxxxx Brecciation secF CAMPBELL CHIBOUGAMAU MINES LTD. E & B EXPLORATIONS LTD. Energy Resources Limited ONTARIO HYDRO-URANIUM JOINT VENTURE ( B.P. CANADA LTD. & UTAH MINES LTD. OPTION ) RICHARDSON RIVER PERMITS, NE-ALBERTA DIAMOND DRILLING SECTIONS Scale 1:200 July,1979 NTS 74 - L 2, 3, 6, 7 19790010

(57)





### QUATERNARY & RECENT OVERBURDEN

- 4a Sand
- 4b Sand and boulders

### DEVONIAN SEDIMENTARY ROCKS

- 3a Mudstone
- 3b Sandy Mudstone
- 3c Sandstone
- 3d Muddy Sandstone
- 3e Conglomerate
- 3f Regolith (La Loche Formation)

### PROTEROZOIC ATHABASCA FORMATION

- 2a Sandstone
- 2b Mudstone
- 2c Conglomerate
- 2d Regolith

### PROTEROZOIC OR ARCHAEAN BASEMENT ROCK

- la Feldspar+Quartz ± Biotite Paragneiss
- 1b Chlorite + Feldspar + Quartz ± Biotite Paragneiss
- 1c Feldspar+Quartz+Chlorite ± Biotite Paragneiss
- 1d Chlorite + Biotite Schist
- le Graphite Schist
- If Granite

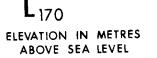
Unconformity  $\sim\sim\sim\sim$ Brecciation XXXXX

SecE



CAMPBELL CHIBOUGAMAU MINES LTD. E & B EXPLORATIONS LTD. Energy Resources Limited ONTARIO HYDRO-URANIUM JOINT VENTURE

( B.P. CANADA LTD. & UTAH MINES LTD. OPTION )


RICHARDSON RIVER PERMITS, N.E.-ALBERTA

DIAMOND DRILLING SECTIONS

Scale 1:200

NTS 74-L-2,3,6,7

May, 1979 (47)



-180