MAR 19780005: NORTHEAST ALBERTA

Received date: Dec 31, 1978

Public release date: Jan 01, 1980

DISCLAIMER

By accessing and using the Alberta Energy website to download or otherwise obtain a scanned mineral assessment report, you ("User") agree to be bound by the following terms and conditions:

- a) Each scanned mineral assessment report that is downloaded or otherwise obtained from Alberta Energy is provided "AS IS", with no warranties or representations of any kind whatsoever from Her Majesty the Queen in Right of Alberta, as represented by the Minister of Energy ("Minister"), expressed or implied, including, but not limited to, no warranties or other representations from the Minister, regarding the content, accuracy, reliability, use or results from the use of or the integrity, completeness, quality or legibility of each such scanned mineral assessment report;
- b) To the fullest extent permitted by applicable laws, the Minister hereby expressly disclaims, and is released from, liability and responsibility for all warranties and conditions, expressed or implied, in relation to each scanned mineral assessment report shown or displayed on the Alberta Energy website including but not limited to warranties as to the satisfactory quality of or the fitness of the scanned mineral assessment reports and warranties as to the non-infringement or other non-violation of the proprietary rights held by any third party in respect of the scanned mineral assessment report;
- c) To the fullest extent permitted by applicable law, the Minister, and the Minister's employees and agents, exclude and disclaim liability to the User for losses and damages of whatsoever nature and howsoever arising including, without limitation, any direct, indirect, special, consequential, punitive or incidental damages, loss of use, loss of data, loss caused by a virus, loss of income or profit, claims of third parties, even if Alberta Energy have been advised of the possibility of such damages or losses, arising out of or in connection with the use of the Alberta Energy website, including the accessing or downloading of the scanned mineral assessment report and the use for any purpose of the scanned mineral assessment report.
- d) User agrees to indemnify and hold harmless the Minister, and the Minister's employees and agents against and from any and all third party claims, losses, liabilities, demands, actions or proceedings related to the downloading, distribution, transmissions, storage, redistribution, reproduction or exploitation of each scanned mineral assessment report obtained by the User from Alberta Energy.

Alberta

Alberta Mineral Assessment Reporting System

Alla En. + Nat. Rer. /Pan

ELDCRADO NUCLEAR LIMITED EXPLORATION DIVISION OTTAWA, ONTARIO

4-AF-141 (3).

PROJECT 508

NORTH-EAST ALBERTA PERMITS

(Quartz Mineral Exploration Permits No's 207, 214, 215, 216, 217 and 218)

U-AF-141(3) 19780005

PROGRESS REPORT ON RESULTS OF WORK DONE DURING WINTER, 1978 (January to April, 1978)

File: 508-09 (1978)

Hugo Laanela Project Geologist Project 508 (NE Alberta Permits)

June, 1978, Ottawa

Proj. 508/Rept.

SUMMARY

- i -

The Project 508 area in NE Alberta consists at present of six permits, totalling 175,200 acres. These permits will expire in early 1979, after their third term.

Eldorado Nuclear Limited has been engaged in the Uranium search in the Project area since May, 1975. This work included regional surveys, such as lake geochemistry, boulder mapping traverses, airborne and ground radiometric prospecting, airborne magnetic and INPUT-EM surveys. A number of problems have been caused by lack of outcrop, depth of overburden, almost ubiquitous presence of "far-traveled" glacial deposits (i.e. Cree Lake End Moraine), uncertainty regarding the location of the Athabasca sandstone edge (= unconformity), and unexpected presence of Devonian cover; each of the foregoing has hindered or complicated the carrying out of various phases of standard exploration practices, and in some cases, invalidated the results of the surveys carried out. Examples: The initial work, in 1975, was done on now relinquished three permits to the north which were found to be underlain by thick (over several hundred feet) Athabasca sandstone, in turn locally overlain by Devonian sediments. Second, the results of geochemical surveys, including the regional lake-sampling, are now deemed to be of doubtful value due to the presence of the far-traveled end-moraine deposits. The absence of uraniferous boulders has also severely limited the availability of possible detailed exploration target areas.

Two winter diamond-drilling programs (1976/77 and early. 1978) have given sufficient information regarding the general location of the Athabasca sandstone edge, although the error could be locally in order of a mile or even several miles. This unconformity crosses Permits No's 214, 215 and the northern part of 216, - some 15 to 20 miles SW of where it

....ii

was thought to be when the original three permits were applied for in 1974.

Starting with an airborne geophysical survey in April, 1977, the emphasis has shifted increasingly in favor of the geophysical methods. A number of Airborne INPUT-EM targets (conductors) were further pin-pointed by ground geophysics (Turam and Horizontal Loop E.M.) and subsequently drilled. Several E.M. conductors were intercepted, and were found to be graphite zones, without uranium mineralization; these are some distance from the unconformity and the favorable paleo-weathering (regolith) zone. A number of lower priority conductors, not drilled, are probably caused by overburden (surficial) conductivity. It appears that the overburden thickness and conductivity limit the choice of geophysical methods that can be succesfully used in the area.

Four DDH's have been drilled on a deeply altered breccia zone of basement on Permit 216 (DDH #508-2 area). The original hole (#508-2) was drilled in 1976, and a trace of uranium, with attendant radioactivity, was found in the core in a fracture. Three additional holes, along the same section, were drilled last winter, encountering some further radioactivity and minor uranium values (up to 0.024% U). This alteration zone is thought to be associated with a possible E-W fault zone as interpreted from aeromagnetic surveys. The area is several miles from the edge of Athabasca sandstone.

The Summer Program for 1978 is to consist of the following ground geophysical surveys:

This unconformity crosses Permits Note 214. 215 and the

المذورة التي المراكبيني مكافية منه وهو معهد مراجع المار المراجع منها المنها المناطقة المناطقة المارية المناطقة المناطقة - ii -

- a long-line resistivity survey along the Athabasca unconformity to find basement "off-sets" (Permits 214 and 215);
- a Horizontal Loop E.M. survey on a number of INPUT-EM anomalies located near the Athabasca unconformity in order to find conductors associated with this unconformity (Permit 214);
- a "follow-up" survey near the DDH #508-2 area (on Permit 217) to test the presence and extent of the deep alteration zone; to consist of detail resistivity and magnetic surveys.

Limited radiometric prospecting and boulder hunting program is also scheduled for later in the summer, to check the areas of more locally derived till and to prospect some geochemical uranium anomalies along Richardson River. Total Budget for the 1978 Summer Program is about \$90,000.

It appears that most of the ground held at present under the Permits can be relinquished after the expiry of the third term in early 1979. If the Summer Program is successful, leases should be applied for in the remaining area to permit further follow-up work, including drilling.

CONTENTS

iv

	이 같은 사람은 것 같은 것은 것을 가지 않는 것을 알려야 한다. 이 가지 않는 것은 것은 것은 것은 것은 것을 가지 않는 것을 가지 같은 것은	Page
I	Location and Access	1
II	Properties, Tenures and Fees	2
III	Review of Previous Work (1975-1977)	3
IV	Ground Geophysics - Winter, early 1978	5
	 A) General B) Follow-up Surveys of Questor's Airborne INPUT-E.M. Conductor Zones: (1) Questor's Zone 3 (on Permit 216) (2) " 5 (" 207/215) (3) " 10 and 11 (on Permit 214) (4) " 12 (" 214) (5) " 15 (" 214) C) Surveys in the DDH #2 Area D) VLF-EM Surveys in other Areas 	6 10 11.
V	Diamond Drilling (DDH ^S No's 508-17 to 29)	
	<pre>A) General B) Summary of Drill-Hole Data (table)</pre>	. 13 . 14
VI	Estimated Costs of Winter, early 1978, Drilling	
	and Geophysical Program	. 16
VII	Proposed Program and Budget: Summer 1978	. 18
	 A) Schedule of Geophysical Surveys: Summer, 19 B) Other Work C) Allocation of Budget for Summer 1978 Field 	78 18 . 20
	Season	. 21

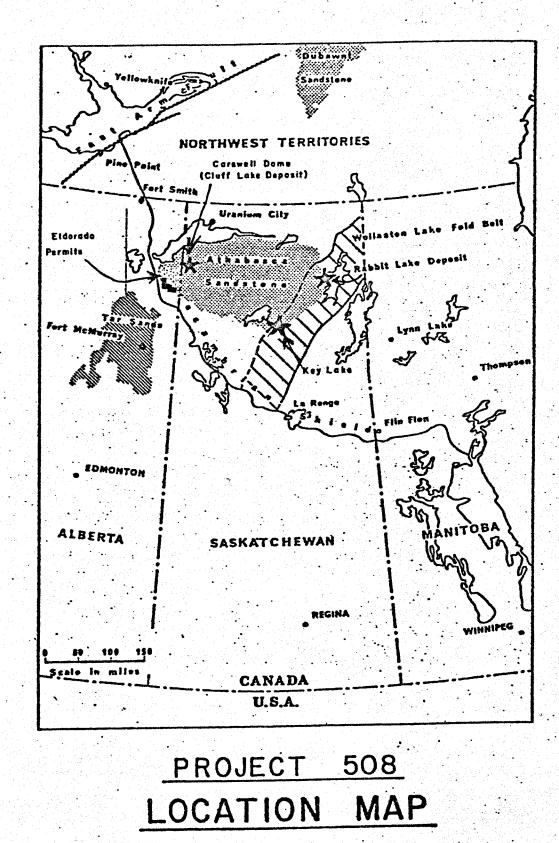
APPENDICES:

APPENDIX "A":	Surficial Geology (by L.A. Bayrock)
"B" ;	Diamond Drill Hole Logs (DDH ^S No's 508-17 to 29, incl.
	Sections of Diamond Drill Holes (#20-24)
	Certificates of Analysis (Bondar-Clegg & Co. Ltd.)
	Down-hole Gamma-ray Logs (#17-29)

508

A) In report:

Project 508 - Location Map, 1":150mi (before page 1) Status of Eldorado's Permits, 1":6mi (after page 1) Generalized Pre-Cambrian Geology 1":20mi (after page 2) DDH Sections No's 508-20 to 24 (Appendix "C").


B) Separately:

	Map Index #:	Map Title:	Scale:
Мар	#1:508-22 (1977)	Surficial Geology (L.A. Bayrock)	1:50,000
Мар	#2:508-26 (1976/77 /78)	Location Map of Diamond Drill Holes No's 508-1 to 29 and Line Grids (1976-1978)	1:50,000
Мар	#3:508-26 (1976/77 /78)	Locations and Sections Diamond Drill Holes No's 508-1 to 29	1:50,000
Мар	#4:508-22 (1978)	Surface Contours of Pre Cambrian Basement and Athabasca Sandstone	1:50,000
Map	#5:508-22 (1978)	Isopach Map of Athabasca Formation	1:50,000
Map	#6: 508-22 (1978)	Isopach Map of Devonian Sediments	1:50,000
Map	#7:508-22 (1978)	Isopach Map of Total Cover Over Basement/unconformity	1:50,000
Мар	#8:508-22/26 (1976 to 1978)	Main Grid Area: Permits No's 215, 216, 217 and 218	1:20,000
Мар	#9:508-26/30 (1978)	Index Map: Detail Grids "A" & "B"	1:20,000

....vi

B) Con't

	Map Index:	Map Title:	Scale:
Мар	#10:508-30 (1978)	Questor's Zone 3: Horizon- tal Loop E.M. Survey (E-W, 90m)	1:5,000
Мар	#11:508-30 (1978)	ditto	
		(E-W, 120m)	1:5,000
Map	#12:"	ditto	
		(N-S, 90m)	1:5,000
Мар	#13:	ditto	
		(N-S, 120m)	1:5,000
Map	#14: "	Questor's Zones 10 & 11: Horizontal Loop E.M. Survey (90m)	1:5,000
Map	#15:"	ditto	
Mon	#16:"	(NW-SE, 120m)	1:5,000
мар	#TO:	ditto	
		(NE-SW, 120m)	1:5,000
Мар	#17:"	Questor's Zone 15: Horizon- tal Loop E.M. Survey (120m)	1:5,000
Map	#18:508-26 (1976 /78)	Section of DDH ^S No's 2, 27, 28 and 29	1:500
Мар	#19: 508-26 (1978)	Section of DDH ^S No's 14, 22, 23, 25 and 26	1:5,000

-1a-

ASAMERA INC.

Mining Division

 $\sum_{m=1}^{m+1} \frac{1}{m+1} \sum_{m=1}^{m+1} \frac{1}{m} \sum_{m=1}^{m+1} \frac{1$

...2/

EVALUATION REPORT

FARMER CHEMICALS URANIUM PROPERTY

NORTHERN ALBERTA

LOCATION

The property visited is located north of the Lake Athabasca in Alberta; approximately 144 km, by air, west of Uranium City, and 51 km, by air, north of Fort Chipewyan. Although no definite information was supplied to the author, the property is assumed to be bounded by $59^{\circ}-60^{\circ}$ north latitude and $110^{\circ}-111.3^{\circ}$ west longitude. Access to the area is by air only.

REGIONAL GEOLOGY

The bed rock consists of intensely folded and fractured metamorphased Precambrian rocks composed mainly of paragneisses and granites. Two major faults are found to the north of the property trending in a north-south direction. Numerous minor faults are indicated throughout the property, trending in an east-west and north-east, south-west direction. (See Map 4).

Outcrop exposure throughout the area is approximately 90%.

WORK DONE & LOCAL GEOLOGY

On August 27th, 1980, Leigh Dauphin and the author travelled from Asamera's Dawn Lake camp to Farmer Chemicals Uranium option property north of Lake Athabasca. The trip was made in a chartered Cessna 185, and travelling time from Dawn Lake was approximately 2 hours.

In all, 10 hours were spent on the option property inspecting three preselected areas. The areas visited were selected on the strength of 1) areas indicated anomalous by the property holders (Map 4); 2) areas determined anomalous by examination of G.S.C. Airborne Gamma-Ray spectrometry maps (Maps 2 & 3); and 3) by accessability once on the ground.

The anomalous areas selected were covered by walking a loose grid pattern over the area looking for changes in rock type and high scintillometer readings. While walking to the anomalous areas, the scintillometers were always on and changes in rock type or alteration were watched for.

Two of the areas were selected because of coincident airborne

SURFICIAL GEOLOGY PROJECT 508 ALBERTA

199.4

ľ

ľ

l

Ŋ

h

J

ŀ

19780005

\$

MARCH 1978

Prepared for

ELDORADO NUCLEAR LTD.

by

L.A. BAYROCK BAYROCK SURFICIAL GEOLOGY LTD. #201, 1429 Dominion St., North Vancouver, B. C. Proj. 508/Rept.

۰...

s."ruor

•

SUMMARY

- i -

The Project 508 area in NE Alberta consists at present of six permits, totalling 175,200 acres. These permits will expire in early 1979, after their third term.

Eldorado Nuclear Limited has been engaged in the Uranium search in the Project area since May, 1975. This work included regional surveys, such as lake geochemistry, boulder mapping traverses, airborne and ground radiometric prospecting, airborne magnetic and INPUT-EM surveys. A number of problems have been caused by lack of outcrop, depth of overburden, almost ubiquitous presence of "far-traveled" glacial deposits (i.e. Cree Lake End Moraine), uncertainty regarding the location of the Athabasca sandstone edge (= unconformity), and unexpected presence of Devonian cover; each of the foregoing has hindered or complicated the carrying out of various phases of standard exploration practices, and in some cases, invalidated the results of the surveys carried out. Examples: The initial work, in 1975, was done on now relinquished three permits to the north which were found to be underlain by thick (over several hundred feet) Athabasca sandstone, in turn locally overlain by Devonian sediments. Second, the results of geochemical surveys, including the regional lake-sampling, are now deemed to be of doubtful value due to the presence of the far-traveled end-moraine deposits. The absence of uraniferous boulders has also severely limited the availability of possible detailed exploration target areas.

Two winter diamond-drilling programs (1976/77 and early 1978) have given sufficient information regarding the general location of the Athabasca sandstone edge, although the error could be locally in order of a mile or even several miles. This unconformity crosses Permits No's 214, 215 and the northern part of 216, - some 15 to 20 miles SW of where it

....ii

was thought to be when the original three permits were applied for in 1974.

Starting with an airborne geophysical survey in April, 1977, the emphasis has shifted increasingly in favor of the geophysical methods. A number of Airborne INPUT-EM targets (conductors) were further pin-pointed by ground geophysics (Turam and Horizontal Loop E.M.) and subsequently drilled. Several E.M. conductors were intercepted, and were found to be graphite zones, without uranium mineralization; these are some distance from the unconformity and the favorable paleo-weathering (regolith) zone. A number of lower priority conductors, not drilled, are probably caused by overburden (surficial) conductivity. It appears that the overburden thickness and conductivity limit the choice of geophysical methods that can be succesfully used in the area.

Four DDH's have been drilled on a deeply altered breccia zone of basement on Permit 216 (DDH #508-2 area). The original hole (#508-2) was drilled in 1976, and a trace of uranium, with attendant radioactivity, was found in the core in a fracture. Three additional holes, along the same section, were drilled last winter, encountering some further radioactivity and minor uranium values (up to 0.024% U). This alteration zone is thought to be associated with a possible E-W fault zone as interpreted from aeromagnetic surveys. The area is several miles from the edge of Athabasca sandstone.

•

X.--

· ••· ••••

a a a a a a construction

The Summer Program for 1978 is to consist of the following ground geophysical surveys:

This provident to the State 214. 210 and the

- ii -

- a long-line resistivity survey along the Athabasca unconformity to find basement "off-sets" (Permits 214 and 215);
- a Horizontal Loop E.M. survey on a number of INPUT-EM anomalies located near the Athabasca unconformity in order to find conductors associated with this unconformity (Permit 214);
- a "follow-up" survey near the DDH #508-2 area (on Permit 217) to test the presence and extent of the deep alteration zone; to consist of detail resistivity and magnetic surveys.

Limited radiometric prospecting and boulder hunting program is also scheduled for later in the summer, to check the areas of more locally derived till and to prospect some geochemical uranium anomalies along Richardson River. Total Budget for the 1978 Summer Program is about \$90,000.

5.....

.

N 1

It appears that most of the ground held at present under the Permits can be relinquished after the expiry of the third term in early 1979. If the Summer Program is successful, leases should be applied for in the remaining area to permit further follow-up work, including drilling.

In repor		
		Page
I wrajece	Location and Access	1
II	Properties, Tenures and Fees	2
III Janota	Review of Previous Work (1975-1977)	3
IV Sec		-
	Ground Geophysics - Winter, early 1978	5
a an	 A) General B) Follow-up Surveys of Questor's Airborne INPUT-E.M. Conductor Zones: 	5 6
	(1) Questor's Zone 3 (on Permit 216) (2) " 5 (" " 207/215)	
2 21 1 5 0 Bard	(3) " " 10 and 11 (on Permit 214) (4) " 12 (" " 214)	
e s To dissibility into		
2000 - 2012 - 219 50 # 1 1995	 C) Surveys in the DDH #2 Area D) VLF-EM Surveys in other Areas 	10 11.
V	Diamond Drilling (DDH ^S No's 508-17 to 29)	13
na seconda da seconda s Seconda da seconda da se	<pre>A) General B) Summary of Drill-Hole Data (table)</pre>	13 14
VI	Estimated Costs of Winter, early 1978, Drilling	
	and Geophysical Program	16
VII	Proposed Program and Budget: Summer 1978	L8
	 A) Schedule of Geophysical Surveys: Summer, 1978 B) Other Work C) Allocation of Budget for Summer 1978 Field 	18 20
	Season	21

ant day

- 197 - X

I

APPENDICES:

All Antonio

APPENDI		Surficial Geology (by L.A. Bayrock)
	"B":	Diamond Drill Hole Logs (DDH ^S No's 508-17 to 29, inc
N	"C":	Sections of Diamond Drill Holes (#20-24)
*	"D":	Certificates of Analysis (Bondar-Clegg & Co. Ltd.)
Ħ	"E":	Down-hole Gamma-ray Logs (#17-29)

	M A., 1	* MARCAT	
A A A	With States	治。诸侯 的	States and
	二 パイト いんかい しょうしょう		

 $\frac{\lambda_{A}}{E} = \frac{1}{2} \frac{1}{2$

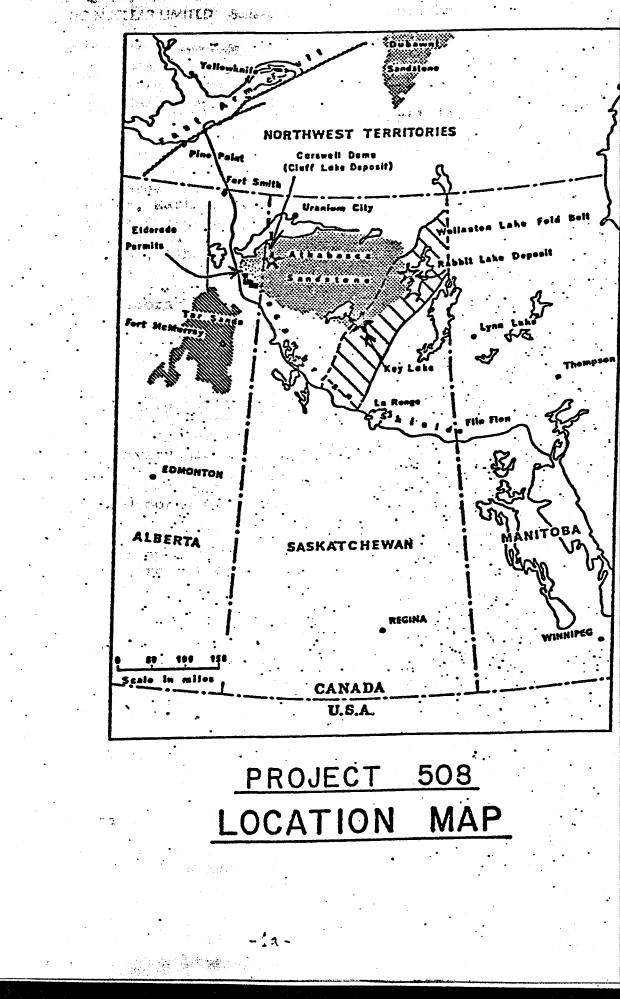
 $U_{2,1}$

1

A) In report:		
Project 508 - Loca	ation Map, 1":150mi (before	e page 1)
Status of Eldorado	o's Permits, l":6mi (after	page l)
Generalized Pre-Ca	ambrian Geology l":20mi (afte	r page 2)
DDH Sections No's	508-20 to 24 (Append	lix "C").
B) Separately:	•	
Map Index #:	Map Title:	Scale:
Map #1:508-22 (1977)	Surficial Geology (L.A. Bayrock)	1:50,000
Map #2:508-26 (1976/77 /78)	Location Map of Diamond Drill Holes No's 508-1 to 29 and Line Grids (1976-1978)	1:50,000
Map #3:508-26 (1976/77 /78)	Locations and Sections Diamond Drill Holes No's 508-1 to 29	1:50,000
Map #4:508-22 (1978)	Surface Contours of Pre- Cambrian Basement and Athabasca Sandstone	1:50,000
Map #5:508-22 (1978)	Isopach Map of Athabasca Formation	1:50,000
Map #6:508-22 (1978)	Isopach Map of Devonian Sediments	1:50,000
Map #7:508-22 (1978)	Isopach Map of Total Cover Over Basement/unconformity	1:50,000
Map #8:508-22/26 (1976 to 1978)	Main Grid Area: Permits No's 215, 216, 217 and 218	1:20,000
Map #9:508-26/30 (1978)	Index Map: Detail Grids "A" & "B"	1:20,000

••

....vi


				- 1.
	Map Index:		Map Title:	Scale:
Мар	#10:508-30 #11:508-30	.(1978)	Questor's Zone 3: Horizon- tal Loop E.M. Survey (E-W, 90m)	1:5,000
Map	#11:508-30	(1978)	ditto	1:5,000
			(E-W, 120m) ditto	1.07000
Мар	#12:*		(N-S, 90m)	1:5,000
Мар	#13:*		ditto " (N-S, 120m)	1:5,000
Мар	#14: "		Questor's Zones 10 & 11: Horizontal Loop E.M. Survey (90m)	1:5,000
Мар	#15:"		ditto " (NW-SE, 120m)	1:5,000
Map	#16:"	,	ditto " (NE-SW, 120m)	1:5,000
Мар	#17:		Questor's Zone 15: Horizon- tal Loop E.M. Survey (120m)	1:5,000
Map	#18:508-26	5 (1976 /78)	Section of DDH ^S No's 2, 27, 28 and 29	1:500
Map	#19: 508-26	•	Section of DDH ^S No's 14, 22, 23, 25 and 26	1:5,000
	1 2		•	

۰.

• 2

**

o. (

A Section of the sect

HI)()RA

ELDORADO NUCLEAR LIMITED Suite 400, 255 Albert Street, Ottawa, Canada K1P 6A9, (613) 238-5222

April 14, 1977

RESOURCES

Mr. George Fulford Manager, Earth Sciences Alberta Energy and Natural Resources 9915 - 108th Street Edmonton, Alberta T5K 2C9

Eldorado's Project 508 - N.E. Alberta Permits Re: No's 185, 186, 187, 214, λ^{215} , 215, 217 and 218.

216

Dear Mr. Fulford,

We are mailing you a copy of our 1976-1977 Progress Report of the work done on the above Permits during summer 1976 and winter 1976-1977. Twenty-eight maps and six resistivity graphs are also enclosed.

We beg your pardon for not being able to submit the above Report, etc., earlier as promised. Last minute delays and revisions were the cause of this delay.

It appears that we will commence our 1977 field season in the Project area in about mid-May, as scheduled.

Yours very truly,

ELDORADO NUCLEAR LIMITED

H. Laanela

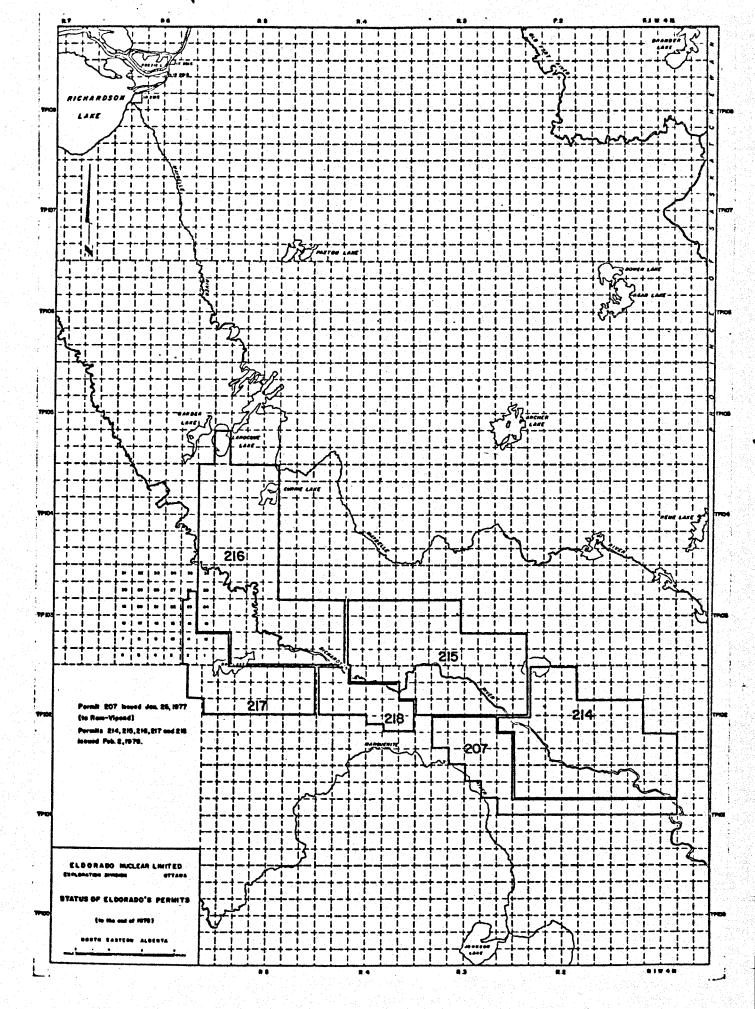
Project Geologist

HL/ca

Enclosure: 1 report 28 maps & 6 graphs

I - LOCATION AND ACCESS

The Project 508 (Permits 207 and 214 to 218) area is within the SW edge of the Precambrian Shield in NE Alberta, about 40 to 60 miles south of the west end of Lake Athabasca, and about 100 miles NNE of Fort McMurray.


There are no roads in the permits area, although a winter road passes the Richardson airstrip which is about 12 miles WSW of the Eldorado Base Camp. Some winter roads used in the tarsands project also reach within 20 miles of the permits, to the south (in the Audet Lake area).

The Base Camp is at the south end of Eldorado Lake, located in Township 103, on the boundary of Ranges 4 and 5. This lake is about one mile long, suitable for any float-plane landing.

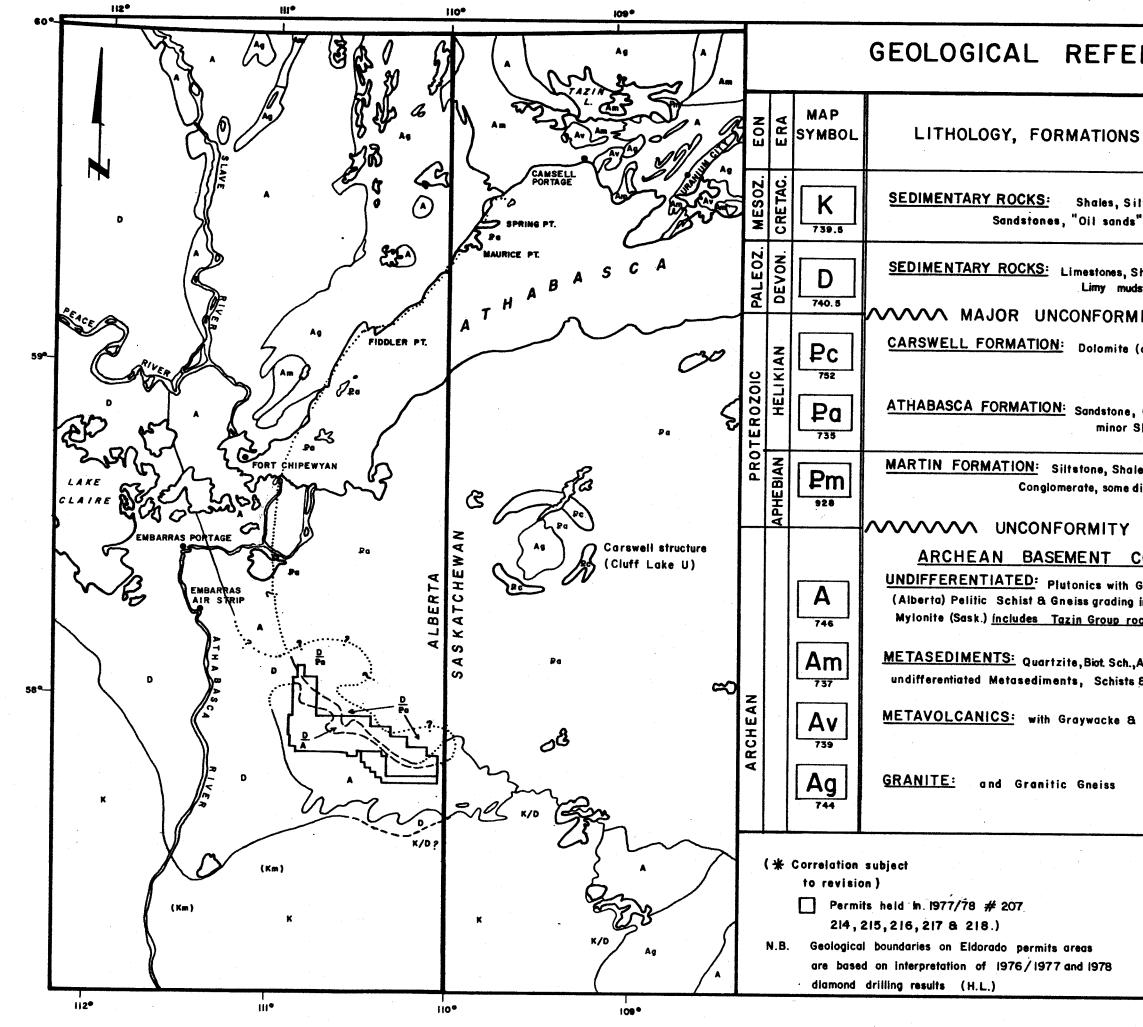
Large parts of the area are covered by muskegs and lakes, which greatly hinders traversing in the summer.

The project area can be reached by float-planes based in Fort McMurray (about 100 miles), Fort Chipewyan (about 60 miles) and Uranium City (about 140 miles). It is about 300 air miles north of Edmonton.

- 1 -

-2a-

II - PROPERTIES, TENURE & FEES


The present Project 508 area consists of six Quartz Mineral Exploration Permits. All will expire early in 1979, after their third term. After the expiry date leases can be applied for @ a rate of \$0.25/acre/year for the first 5 years, and thereafter @ a rate of \$1.00/acre/year for the remainder of 21 year term*.

Permit #	Date Issued	Present acreage	Final (Expiring) Date	Remarks
207	Jan.28/76	18,560	Jan.28/79	optioned from Ram-Vipond**
214	Feb. 2/76	39,680	Feb. 2/79	
215		39,680		
216	11	47,360		
217		20,000	n - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 19	
218	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	9,920		

* N.B. The rates and mining regulations may be soon subject to change by Alberta Government. (See present Regulation #377/67).

**

Re Ram-Vipond option agreement - Permit 207: Original acreage (optioned by E.N.L. on June 22, 1977): 49,920 acres, reduced upon third term renewal by E.N.L. to 18,560 acres. Transfer to E.N.L. was registered by the Minister of Alberta Energy & Natural Resources on November 2, 1977. Option terms call for E.N.L. to carry out an exploration program costing at least \$20,000 on Permit 207 over a period of not less than 18 months from the date of transfer (="effective date").

GEOLOGICAL REFERENCE & CORRELATION

	Correlation of	G. S.C.				
S, ETC.	Provincial ge		Map of			
	Alberta	Saskatchewan	Canada			
iltston e, " (Km)	Ks Kc Kg Km	Km	2uK IK			
Shales, Dolomite, dstones, Gypsum	Dc,Dw,Dn Dmg,Dk,Dm	Dm	uD mD			
(domal structure)		₽c	51₽			
, Conglomerate, Shale	₽a	₽o	41P			
le, Sandstone, diabase & Volcanics		₽m	UA			
	*	*	*			
Gneiss & Metasediments into: Migmatite & ocks	А	무4 grading into 무9	A ¹ gn An			
Amphibolite Gneiss, A Gneisses	Am	₽3,₽5,₽6	2An			
Schist.		₽2	2An			
	Agg, Ag and Ap	Pı	A ¹ gn An 2 An			
ELDORADO NUCLEAR LIMITED OTTAWA						
GENERALIZED PRECAMBRIAN GEOLOGY						
OF N.E. (scale						
H.L./W.J.S						
	508-	22(1978)				

Eldorado Nuclear Limited has been engaged in Uranium search in Project 508 area since May, 1975*.

Originally, during 1974-1975, the Project area consisted of 3 permits (185, 186 and 187), now relinquished (see Footnote 2). Additional five Permits (214 to 218), totalling 244.75 square miles, were granted in early 1976. Permit 207 was obtained from Ram Petroleum Limited/Vipond Oil and Gas International Limited by transfer during late 1977. The total area of the currently held 6 permits is now 273.75 square miles (=175,200 acres or 709.6 km²); these will expire in early 1979.

The search area is along the geologically favourable SW edge of the Athabasca Formation sandstone. Except for some granitic outcrops in and near the SW part of the Project area, there are no other outcrops in the area. The glacial overburden is thick, often in excess of 100 feet. Uncertainty regarding the actual location of the edge of the Athabasca Formation has been a major problem since the inception of the exploration program. In 1974 it was thought that this edge, which marks the unconformity between the Athabasca sandstone and Precambrian basement, lies along the NE boundary of Permit 185.

- 3 -

* See: 1) Progress Report on Results of Work Done During Summer 1976 and Winter 1976/77, March, 1977, by H. Laanela (Permits 185 to 187 and 214 to 218).

- 2) Summary Report on Exploration Activities during 1975, 1976 and 1977, Parts I and II; September, 1977, (Permits 185, 186 and 187) by H. Laanela.
- 3) Progress Report on Results of Work Done During Spring & Summer, 1977, December 1977 (Permits 207, 214 to 218) by H. Laanela.

Field work during 1975 indicated that this edge is much farther toward the SW, between Maybelle and Richardson Rivers. Hence the five additional permits (No's 214 to 218) were obtained in the Richardson River area and the 1976 and 1977 work was done mostly here. The Winter Drilling Programs, 1976-1977, and 1978 were carried out to test this assumption, and the results indicate that the edge of the Athabasca Formation is within the Permits 214, 215 and 216, between the above two rivers. The exact shape and location of the edge is by no means yet certain, and can only be determined by further work. The former Permits 185, 186, and 187 were found to be underlain entirely by thick (400'+) Athabasca Formation sandstone, which, in turn, is partly overlain by remnants of calcareous Devonian mud- and sandstone.

Aside from the above, the three past summers (1975, 1976 and 1977) were spent doing various regional surveys. These included regional sediment, water and muskeg geochemistry, semi-detailed soil sampling, radiometric prospecting, outcrop geology and boulder mapping. The 1975 work was done on the Permits 185, 186 and 187, and in the adjacent areas. The 1976 and 1977 work was done on the Permits 214 to 218, and in the areas adjacent to these; this work was more productive since it outlined several water and sediment geochemical anomalies by the end of summer 1976. A geochemical muskeg sampling program was started in late 1976 and continued in 1977.

Several grids, consisting to date of about 250 miles of linecutting, were also laid out on Permits 207, 214, 215, 216, 217 and 218. The "main grid" was soil sampled during 1976 and 1977. Parts of this grid were also

- 4 -

III - Con't

geophysically surveyed (resistivity, magnetics and VLF-EM) during 1976-1977, on ground. A number of granitic outcrops were located and mapped near and on these permits during 1976.

An airborne Mag.-EM survey, covering an area of about 230 square miles over the six permits (207, 214 to 218) was done during April, 1977. The results of this survey indicated a number of EM conductors in the area. (The subsequent work in early 1978, which is the topic of this report, consisted of various ground geophysical surveys (Turam, Horizontal Loop E.M., VLF-EM and magnetics) to define these airborne E.M. anomalies on the ground; these were followed up by diamond drilling in early 1978. A number of holes were also drilled during early 1978 to check the position of the Athabasca sandstone edge further and to test a deep alteration zone encountered during the 1976 drilling.)

IV - GROUND GEOPHYSICS - WINTER, EARLY 1978

A) GENERAL:

The ground geophysical surveys were carried out during January to April, 1978, in the project area to test a number of Airborne INPUT-EM anomalies and to locate these on ground accurately as drill targets. Two new line grids, "A" and "B", were cut on Permits 207, 214 and 215 for control. Additional and detail linecutting was also done on the "main grid" to the west to permit more detail geophysical surveys; this usually consisted of blazing, chaining and tagging lines by compass.

- 5 -

IV - Con't

	L						
Permit Survey #	207	214	215	216	217	218	Total Kms
Magnetic	31.6	67.8					99.4
VLF-EM (EM-16)	31.6	67.8	35.8	21.9	17.9		175.0
Hor.LpEM (EM-17)		24.6		43.9	2.7		71.2
Turam EM	27.6	74.9	2.5	8.8			113.8
Linecutting (contractor only)	28	49.3	40.8	N/A	N/A	N/A	118.1

The "breakdown" of the geophysical work done during early 1978 is as follows (figures in kilometres):

In the following discussion of results of geophysical surveys, reference is made to specific areas surveyed, for convenience, rather than to specific surveys, to enable comparison of results as related to each area.

Reference is made to drill holes, although these are more fully described in the next chapter.

- B) FOLLOW-UP SURVEYS OF QUESTOR'S AIR-BORNE INPUT-EM CONDUCTOR ZONES:
 - (1) <u>QUESTOR'S ZONE 3</u> (on Permit 216):

This airborne INPUT-EM Conductor Zone (anomaly) is located about 4 km west of E.N.L. Base Camp. The original airborne survey indicated a E-W trending anomalous zone, crossing a small lake. An 100-metre interval line grid was cut there during summer 1977 and a VLF-EM (EM-16) survey was run over this anomalous area subsequently. The results of it seemed to confirm the INPUT anomaly, indicating possibly several drill targets.

- 6 -

During the Winter 1978 it was decided to check this anomaly further by a Horizontal Loop EM (EM-17) survey, in order to determine the dip and exact location of the conductor. However, this survey failed to find the anomaly. Several N-S lines were also run with TURAM-EM, with very indefinite results. It now appeared that the original anomaly might have been caused by conductive overburden, eg. a E-W trending swampy area, centered on the lake.

More H. Loop EM was then run in E-W direction over the best of the original INPUT single line conductors and a short but definite bedrock anomaly was detected East of the lake. This was drilled (DDH^S ##508-20 and 21) and graphite was found to be the cause of the conductor. Because of this (no uranium mineralization was found) and also because of lack of regolith zone, and the distance from the edge of the Athabasca sandstone, no further work was recommended here.

<u>Conclusion</u>: The zone probably consists of a series of short en-echelon N-S trending graphitic conductors, lined up in a E-W trend (not confirmed); it is too far from the edge of the sandstone (and unconformity) in order to fill all the requirements of a model used in typical Athabasca Basin uranium deposit.

(2) QUESTOR'S ZONE 5 (on Permits 207/215):

(Detail Grid "A")

This INPUT-EM Conductor Zone, trending NE, on south side of Richardson River, is almost entirely in muskeg, paralleling a swampy creek.

A line grid was cut over the anomaly, 1.2km x 1.6km, with lines at 100m and 200m intervals, on which Turam EM and magnetic surveys were consequently run.

- 7 -

IV - Con't

Although originally the Zone 5 was classified as a priority EM conductor, the Turam Survey failed to confirm it. It is now thought to be caused by conductive overburden (which may be related to the creek?). Hence it was not drilled.

(3) QUESTOR'S ZONES 10 AND 11 (Permit 214):

(Detail Grid "B")

en de la companya de En la companya de la c

Zone 10 was classified as top priority anomaly by Questor. It trends NE, and intersects the original Zone 11 to the SW.

A 2km x 2km line grid was cut, with lines @100x100 to 200x200 metre intervals to facilitate the follow up surveys.

Both zones were then confirmed with the subsequent Turam surveys, and later pinpointed with Horizontal Loop EM (Geonics EM-17) surveys. Zone 11, originally interpreted as arc-shaped conductor zone appears now to be consisting of two intersecting zones: a SE part trending NE, parallel to Zone 10, and a NW part trending SE and intersecting both NE trending zones; the total configuration of both Zones 10 and 11 appears to be Z-shaped.

Three diamond drill holes (DDH^S No's 508-22, 23 and 24) were drilled on these zones, using EM-17 survey results to determine the optimum locations and dips, one on Zone 10, and one each on each segment of Zone 11.

Zone 10 was apparently not intersected, as no conductive material was seen in the DDH #23.

The NW part (trending SE) of Zone 11 was intersected by DDH #22, encountering a strong graphite interval in core.

The SE part (trending NE) of Zone 11 was also intersected by DDH #24, which encountered a strong graphite zone adjacent to a fault.

Since both DDH^S No's 22 and 24 intersected the conductors which appeared to dip away from the hole, rather than toward it (as originally interpreted), it is possible that the DDH #23 failed to intersect Zone 10 for the same reason, i.e. the conductor may have dipped away from the hole.

Since the lack of regolith indicated that the Athabasca sandstone edge may be farther north than thought, i.e. somewhere north of the river (substantiated by later drilling) no further drilling was done on this grid ("B").

In view of the Zone 10 possibly extending farther to the NE, across the river and possibly continuing under the sandstone edge there, Grid "B" was extended 1.2 km toward NE, across the river, and additional Turam Survey was run. The results were indefinite, i.e. no definite extension of the Zone 10 could be detected. However a small isolated Turam conductor was drilled (DDH #25) without intersecting either the conductor nor the sandstone.

<u>Conclusions</u>: Conductor Zone 11 was found to be caused by . graphite-cum-fault. Being some distance from the edge of the sandstone (and unconformity), as well as being in the rather unaltered basement, without regolith zone, it does not seem to fill the requirements of the model used in Athabasca Basin type exploration.

- 9 -

Zone 10 was not confirmed by drilling, but is assumed to be similar to Zone 11, i.e. probably caused by graphite, and too far from the sandstone.

(4) QUESTOR'S ZONE 12 (Permit 214):

This INPUT-EM conductor is located SE of Zone 11, about 2.5 km SE of Esker Lake, and was interpreted by Questor as a wide, poorly conductive zone in basement rocks. It appears to be several km's from the sandstone edge.

An attempt was made to find it on ground by running a number of crossing reconnaissance lines with EM-17 over some of the multi-channel Questor's anomalies. This work was unsuccessful.

(5) QUESTOR'S ZONE 15 (Permit 214):

It consists of one good and one poor INPUT-EM anomaly on the edge of the airborne survey area, - hence not well defined. A set of criss-crossing reconnaissance lines were run with EM-17 over the multi-channel anomaly location, some 4 km south of Grid "B", but no definite conductors were found on ground.

It appears to be at least several km's from the sandstone edge.

C) SURVEYS IN THE DDH #2 AREA:

(On Permit 217, also 216)

Diamond Drill Hole #508-2, drilled in late 1976, indicated a zone of deep alteration and brecciation south of Richardson River, along the common boundary of Permits #216 and 217. Very minor uranium mineralization was found in a fracture @ depth of about 400'. Since the location is several miles (about 4 km) from the known edge of Athabasca sandstone (and unconformity), the deep weathering seems to be related more to a fault zone than to the regolith zone (=paleoweathering) associated with the Athabasca unconformity. (Possibly the paleoweathering or the regolith zone may extend downwards along the proposed fault zone here?).

That such a fault may indeed be present here is indicated by a low magnetic E-W trend, starting from Dog Lake to the West and extending toward Richardson River in the SW corner of Permit 215, as evidenced both on previous G.S.C. mag survey*, and Questor's aeromagnetic mag survey (April, 1977) maps. If so, the fault does not appear to be a good conductor.

Horizontal Loop EM (EM-17) surveys were run over the area during Winter, 1978, which failed to locate a conductor. VLF-EM (EM-16) surveys run over the same area indicated some possible conductors, although these could be interpreted as being caused by overburden, i.e. swamp and ponds in the area.

Three additional DDH^S were drilled here in 1978, indicating more alteration @ depth. More geophysical work is planned here (magnetics and resistivity) during 1978.

D) VLF-EM SURVEYS IN OTHER AREAS:

Very Low Frequency EM surveys were done over large part of the "main grid" during summer 1977, mostly on Permit 216, some on 215. Additional VLF-EM was done during last winter, mainly over lakes and swamps to fill the gaps in the last summer work.

See: Map 468G: Richardson River, Alberta, Sheet 74^E/15, and Geophysics Paper 468, G.S.C., 1952. IV - Con't

The resulting work has shown a number of EM "cross-overs" (conductors) throughout the area. It has been suggested that most of these may be overburden-caused anomalies, and that until they can be checked and confirmed by other EM methods (eg. Horizontal Loop), not much can be said about them.

If any of these VLF-EM conductors were ever to be followed up, it is suggested that the ones in the muskeg area in the west part of Permit 215, presumably closest to the unconformity, may warrant priority.

N.B. - The final report and maps regarding the ground geophysics (magnetics, VLF-EM and Turam EM) done by Kenting Explorations Ltd., contractor, on detail Grids "A" and "B" were not yet available when this report was compiled. Only the preliminary field maps were used for reference.

> د. ۲۰۰۰ - برسید کا معلق میک ۲۰۰۰ - ۲۰۰۰ میکند کارمند

- 12 -

and the second second

same sais

V - DIAMOND DRILLING

(DDH^S No's 508 - 17 to 29, incl.)

A) GENERAL:

Thirteen BQ size DDH^S were drilled in the Project 508 area during March-April, 1978. The following table gives their locations, etc.:

DDH No.	Permit #	Twp	Range	Section	Depth (feet)	Date completed (1978)
508-17	216	104	5	19-NE	207	March 15
" -18	216	104	1 56. ⁷	12-SW	370	" 18
" -19	outside	104	4	17-NE	704	" 21
" -20	216	103	5	15-NE	499	" 27
" -21	216	103	5	15-NE	344	" 24
" -22	214	102	2	7-NE	327	" 31 ·
" -23	214	102	2	7-NE	503	Apr. 3
" -24	214	102	2	8-SW	451	" 8
" -25	214	102	2	17-SW	422	" 13
" -26	214	102	2	21-SE	357	" 17
" -27	217	102	5	36-NE	881	" 23
" -28	217	102	5	36-NE	327	" 25
" -29	217	102	5	36-NE	817	" 29

(Located West of 4th Meridian)

Amount of drilling per permit :

Οι	itside	≥:	704	ft.	(1	hole)
# .	214	:	2060	ft.	(5	holes)
#.'	216	:	1420	ft.	. (4	holes)
#	217	:	2025	ft.	(3	holes)

The next table summarizes the data of drilling:

- 13 -

B) SUMMARY OF DRILL-HOLE DATA: DDH^S NO'S 508 - 17 to 29

(Holes #1-16 were drilled in Winter 1976-77) (Metric figures are in parentheses)

- *

Ð

. . .

DDH 🛊	Dip	Azim. ⁰ (true)	Depth ft. (metres)	Over- burden	y-probed to*	Purpose	Major rock types (core): feet (metres)	Remarks
508-17	Vert.		207' (63.1)	72' (22)	200.1' (61)	stratigr./ /geol.	72'-207'(22-63.1): diorite/ gneissic	fresh basemert rx. (no weathering)
508-18	Vert.		370' (112.8)	87' (26.5)	288.7 * (88)	stratigr./ /geol.	87'-118'(26.5-36): Devon. sediments 118'-370'(36-112.8): metamorph. & granite	some alteration of basement
508-19	Vert.		704' (214.6)	52' (15.8)	689' (210)	stratigr./ /geol.	52-566'(15.8-172.5): Athabasca sst. 566'-704'(172.5-214.6): garnet- schist	bitumen in sst. some weathering
508-20	-50 ⁰ W	2700	499' (152.1)	85° (25.9)	485.6' (148)	EM conductor (Zone 3)	85'-499'(25.9-152.1): mainly . schist, graphitic	<pre>intersected graphite; no weathering; blue quartz</pre>
508-21	-50 ⁰ E	90 ⁰	344' (104.8)	63' (19.2)	328.1' (100)	_"_ _"_ (Zone 3)	63'-344'(19.2-104.8): -"- -"-, -"-	_" _"; _"_ _";
508-22	-70 ⁰ NE	50 ⁰	327' (99.7)	100' (30.5)	311.7' (95)	_"- (Zone 11)	100'-327'(30.5-99.7): granitic gneiss	_"_ _"_; _"_ _"_;

Con't

(continues next page)

* Probed with Mount Sopris Model 1000 gamma-ray logger

DDH 🛔	Dip ^O	Azim. ⁰ (true)	Depth ft. (metres)	Over- burden	y- probed to	Purpose	Major rock types (core): feet (metres)	Remarks
508-23	-50 ⁰ NW	320 ⁰	503' (153.3)	107' (32.6)	482.3' (147)	EM conductor (Zone 10)	107'-503'(32.6-153.3): gneisses and metamorphics	conductor not intercepted; surficial weathering (minor)
508-24	-50 ⁰ se	140 ⁰	451' (137.5)	202' (61.6)	426.5' (130)	-"- (Zone 11)	202'-451'(61.6-137.5): -"- -"- -"-	intersected graphite and fault zone; no weathering
508-25	-50 ⁰ se	140 ⁰	422' (128.6)	85' (25,9)	410.1' (125)	EM conductor (zone 10 Ext.)	85'-422'(25.9-128.6): gneissic rx	conductor not intercepted; minor alteration
508-26	Vert.		357' (108.8)	120' (36.6)	328.1' (100)	stratigr./ /geol.	120'-151'(36.6-46.0): Devon. sediments 151'-285'(46.0-86.9): Athabasca sst. 285'-357'(86.9-108.8): gneisses	red mudstone in lower sst.; regolithic zone
508-27	-57 [°] S	180 ⁰	881' (268.5)	881 (26.8)	853' (260),	Alteration zone (DDH 508-2)	88'-881'(26.8-268.5): granitic rx, with quartz & pegmatite	altered; cataclastic breccia zones; bitumen; some R/A zones
508-28	Vert.		327' (99.7)	77' (23.5)	312' (95)	-ditto-	77'-327'(23.5-99.7): -ditto-	-ditto-
508-29	-60 ⁰ S	180 ⁰	817' (249)	119' (36.3)	787.4° (240)	-ditto-	119'-817'(36.3-249): -ditto-	-ditto- increased R/A (in zones)

<u>v</u>	-	CC	on.	t	
-				-	
	-	B)	-		

(End of Winter, 1978 drilling)

- 15 -

VI - ESTIMATED COSTS OF WINTER, EARLY 1978, DRILLING and GEOPHYSICAL PROGRAM

The following cost figures are estimated, inasmuch not all the bills are yet paid and hence the Accounting Department statements are incomplete. They cover the work done on Project 508 area during January-February-March-April, 1978. The costs are based on bills paid and/or totals calculated using contractors' rates per amount of work performed, rounded to nearest hundred dollars. The actual costs may be somewhat higher than shown here. Work done by E.N.L. personnel is covered by salaries.

이 가슴 집을 통하는 것이 같아. 이 것은 것은 것이 같아. 이 것은 것은 것은 것이 같아.	Ψ	
Linecutting (contractor)	20,900	
Geophysics (contractors)	45,000	
Drilling (contractor)	139,600	
Helicopter (charter)	46,000	
Fixed-wing (charter)	8,500	
Salaries (E.N.L. personnel)	30,000	
Fuels (incl. helicopter's)	10,000	
Instrument rentals	5,500	
Equipment rentals	2,500	
Camp operation & Supplies	5,000	
Tele-communication	2,000	•
Travel (E.N.L. personnel)	5,000	
(SUBTOTAL: \$	320,000)
NON-FIELD COSTS:		
Surficial Geology (consultant)	2,700	
Permit Renewals for 1978 (paid in Dec., 1977)	26,300	
Drafting and supplies (H.O.)	1,000	
TOTAL COSTS: \$	350,000	
나는 것은 것 같은 것 같은 것 같이 많은 것 같은 것 같은 것 같은 것 같은 것 같은 것 같이 많이 많이 않는 것 같이 없다.		

\$:

- 17 -

VII - PROPOSED PROGRAM AND BUDGET: SUMMER 1978

Emphasis will be on geophysical work during the 1978 Summer Season. Some detail boulder prospecting, etc., is also to be carried out during the later part of the summer.

A) SCHEDULE OF GEOPHYSICAL SURVEYS - SUMMER 1978:

These surveys are to be run over three specific areas, each with a different purpose in mind. All surveys necessitate a cutting of line grids for survey control.

- A long-line <u>Resistivity Survey</u> along the edge of Athabasca Formation, in NW-SE direction on Permits 214 and 215.
 - Work: Cutting a 20km long baseline plus additional 20km of lines for detail work when and where warranted; - running a resistivity survey on the above grid.
 - Purpose: Map the basement topography to identify significant structures that may serve as drilling targets.
 - Budget: about \$29,000 including linecutting.
 - Timing: Start linecutting in June, survey in July, 1978.
 - Logistics: Fly-camping in area, using helicopter to move and supply.
- <u>Detail Resistivity and Magnetic Survey</u> in DDH #2 area, mainly on Permits 217 and 216, some on 218, south of Richardson River.

- - resistivity survey over this grid;
- Purpose: to further check and extend a deep alteration zone encountered in drill holes and to identify any subsurface structures that may serve as drilling targets.

Budget: - about \$30,000, including linecutting.

Timing: - Early summer, 1978.

Logistics: - Using existing base camp on Permit 216.

- 3) <u>Horizontal Loop E.M. Survey</u> on Permit 214, North of Richardson River.
 - Work: cutting a NE-SW base line and two line grids, totalling about 40 line km's to be extended if and where warranted.
 - running a Horizontal Loop Electromagnetic survey over the above grids.
 - Purpose: To confirm, locate and delineate on ground a number of Airborne INPUT-E.M. anomalies in order to define potential drilling targets at or/and within the sandstone edge.
 - Budget: about \$19,000, including linecutting.
 - Timing: Depending on 1) and 2), but possibly during mid-summer, 1978.
 - Logistics: Fly-camping near Richardson River, using helicopter to move and supply.

Total Budget for the above geophysical programs is \$78,000, including supervision by E.N.L. personnel and logistics. The linecutting and resistivity surveys are to be done by contractors.

B) OTHER WORK:

Approximately another \$9,000 is allocated for the following surveys to be carried out during the later part of the summer 1978:

- radiometric boulder prospecting in detail,
- mapping of locally derived glacial deposits,
- further evaluation of geochemical anomalies.

However, it has now been determined that practically the entire above permits area is covered by far-travelled Cree Lake End Moraine, and by outwash sands, etc., derived thereof, which renders the use of any surface exploration methods (geochemistry, boulder tracing, emanometry, etc.) impractical if not useless. Hence the emphasis is now on using the geophysical methods to define any favorable subsurface structures, followed by drilling.

The results of all previous geochemical surveys, traverses, etc., are being reviewed and evaluated in view of locating any areas where the far-travelled till, etc., is thin, or may have "windows" of more locally derived material in it.

Further drilling will be scheduled if and when the results of the Summer 1978 Program warrant it, at a later date.

C) ALLOCATION OF BUDGET FOR

SUMMER 1978 FIELD PROGRAM

Table	I	Allocation	per	Permit

	Permit # Activity	214	215	216	217	218	TOTAL \$:
09	Reporting	800	400	400	300	100	2,000
22	Geol. & Prospecting	3,500	3,000	1,000	500	725	8,725
30	Hor. Loop E.M.	8, 575					8, 575
30	Magnetic Surv.			2,650	2,650	600 .	5,900
30	Resistivity Surv.	8, 500	9,500	7,200	8, 200	1, 300	34, 700
74	Linecutting	15,000	5,000	3,900	3,900	865	28, 665
	TOTAL \$:	36,375	17, 900	15, 150	15, 550	3, 590	88, 565

June, 1978

Table II	Allocation	per	Cost	Element	
	بيريد والمستعد بالمستعد الشباب المربو المستعمل والمتعال المتك				

Cost Activity Element	09 Reporting	22 Geol.	30 H.L.E.M.	30 Mag.	30 Resist.	74 Linecut.	TOTAL \$
Salaries	1,550	2,500	2,500	1,000	2,000	750	10,300
Burden on -"-	250	375	375	150	300	115	1,565
General Supplies		200	200	200	100	100	800
Fuels	taip ap dae ine an die die	500	300	250	1,000	1,000	3,050
Contractor					25,000	21,000	46,000
Tools		50	50	100	ور بر بر نام من مرد مرد بر بر نام من مرد		200
Travel expenses		500	500	500	500		2,000
elecommunications	an a	100	200	200	100		600
Food & Meals		500	500	300			1,300
Camp Supplies		200	200	200			600
Helicopter		2,500	2,000	1,600	5,700	5,700	17,500
Fixed-wing		500	600	600			1,700
Rent Recovery		400	200	200			800
Office Supplies	200						200
Instrument Renta		200	650	500			1,350
Shipping Charges		200	300	100			600
TOTAL \$	2,000	8,725	8,575	5,900	34,700	28,665	88,565

(Proj. 508/Rept.)

l

APPENDIX "A"

SURFICIAL GEOLOGY (by L.A. Bayrock, March, 1978)

PROJECT 508, ALBERTA

TABLE OF CONTENTS

Included with

Report - Under Separate cover

INTRODUCTION	 ,	1
Terms of Reference		
Area		
Background Materials		
SURFICIAL GEOLOGY	 	2
BEDROCK GEOLOGY	 . <u></u>	
SURFACE BOULDER RATIOS		
SEDIMENT AND WATER ANOMALIES	 	8
SUMMARY	 	9

MAPS:

Lake Geochemistry showing U, Cu, Ni and Co Analyses Results

Surface Boulder Ratios of Oil Stained Versus Clean Sandstone

Diamond Drill Holes, and drill logs of the 1976-1977 Winter Drilling Program

Surface Boulders Ratios of Athabasca Sandstone Versus Basement Rocks

Airphoto Mosaic

SURFICIAL GEOLOGY PROJECT 508 ALBERTA

INTRODUCTION

Terms of Reference:

To describe surficial geology and to examine available data on the area in view of surficial geology results.

Area:

Project 508 of Eldorado Nuclear Ltd. encompasses Quartz Mineral Exploration Permits Nos. 185, 186, 187, 214, 215, 216, 217 and 218, northeastern Alberta. The exploration permits are located just north of the Marguerite River crystalline window.

Background Materials:

Aerial photographs for the area were obtained from Bayrock Surficial Geology Ltd. files.

Eldorado Nuclear Ltd. supplied maps to a scale of 1:50,000 showing the locations and results of the following:

> (1) Lake geochemistry showing U, Cu, Ni, and Co, analyses results.

.....

(2) Surface boulder ratios of oil-stained versus clean sandstone.

- (3) Diamond drill holes, and drill logs of the 1976-1977 winter drilling program.
- (4) Surface boulders ratios of Athabasca Sandstone versus basement rocks.
- (5) Airphoto mosaic.

All of the maps were used in this report in their original state.

SURFICIAL GEOLOGY

The area is located along the Cree Lake moraine which is one of the largest end moraines in North America and maybe in the world. The moraine is of Late Wisconsin time and may date at about 10,000 to 12,000 years before present.

Glacial advance directions in the area were generally from the north-northeast. Detailed advance directions are shown on the map of surficial geology of Fort Bitumount sheet, Bayrock (1971). The variations in glacial directions throughout the area are due to spreading of individual ice lobes.

The following units of surficial deposits are delineated on the surficial geology map: outwash sand, pitted outwash sand, ground moraine, end moraine (Cree Lake end moraine), esker and recent alluvium.

End moraine in the area forms a portion of the Cree Lake end moraine which runs from the shores of Lake Athabasca in Alberta to close to the Saskatchewan-Manitoba border, more-or-less along the edge of the Athabasca Sand-The end moraine is comprised of a thick accumulation stone. of till and related outwash in the form of crevasse fillings and moulin kames. The thickness of glacial materials in the end moraine is from 100 to over 300 feet. All of the materials including glacial erratics in the end moraine have been derived a considerable distance in the glacial upstream direction from the location of the moraine. The distance may be anywhere from 10 to over 50 miles. In this respect, all glacial erratics and analyses results of material of the end moraine do not show local bedrock conditions but refer to 13 distant bedrock.

h

h

h

h

h

h

h

h

H

h

h

Ľ

Ground moraine is a till sheet generally thin, from 20 to 40 feet in thickness, and of relative local bedrock origin. Generally, the derivation of materials and ground moraine is from one to three miles in a glacial upstream direction for over fifty percent of the ground moraine mass. In this respect ground moraine materials may be used for exploration of the local bedrock.

Ground moraine in the area is drumlinized. The drumlins of the ground moraine are well developed. Some drumlins are present in exploration permits 214 and 215. These drumlins are surrounded by outwash derived from the Cree Lake moraine and may be described as till islands surrounded by outwash sand.

-3-

Drumlins, although composed of ground moraine, have materials of relative distance origin as compared to ground moraine outside of drumlins. In this respect, drumlins occurring in permit 214 and 215 also cannot be used for local bedrock exploration.

Outwash derived from Cree Lake moraine covers most of the ground in front of the moraine and most of permits 214 to 217. The outwash has been divided into two categories:

(1) Pitted outwash

1

1

1

1

Ţ

1

(2) Non-pitted outwash.

Pitted outwash was deposited around and over some residual ice blocks which upon later melting produced kettleholes. Most of the kettleholes in the pitted outwash plain form lakes. The outwash thickness in the kettleholes or in the lakes is of course less than in the surrounding area.

The non-pitted outwash has been deposited over an area where no residual ice blocks were present. Both types of outwash in the area are composed predominately of sand. The thickness of the outwash is from 20 to over 50 feet. The outwash sand has been derived from the Cree Lake moraine. The materials in the glacier from which Cree Lake moraine was derived are of distant origin and do not reflect local bedrock composition. Thus, the outwash derived from the moraine is also of distant origin and does not reflect local bedrock. The pitted and the non-pitted outwash was deposited over ground moraine. The underlying ground moraine may reflect local bedrock composition.

A number of eskers are present in permits 185 and 186. These eskers are relatively large and composed predominately of sand with some pebbles and boulders.

Recent alluvium is present in places along the Richardson River. Most of recent alluvium is concentrated in permit 216. The alluvium is made of sand and silt.

Richardson River has incised itself into the outwash. At certain locations boulders are present in the river bed. These boulders may represent the exposure of the ground moraine underlying the outwash. Such locations are present all along the course of the river. Examination of the boulders in the river may reveal the composition of the underlying ground moraine and thus the composition of the underlying bedrock. This unfortunately is the only area of Project 508 where surficial geology may be helpful in the exploration.

BEDROCK GEOLOGY

j

J

P

j

Bedrock geology as deduced from outcrops and drilling data is shown on a separate map. The boundaries of the different bedrock types underlying surficial deposits have been compiled by Eldorado Nuclear Ltd. The crystalline basement - Athabasca Sandstone border runs more-or-less in the southeast-northwest direction across permits 214, 215 and 216.

The sandstone is overlain in places by devonian limestone and dolomite. The area of the limestone cannot be clearly delineated because of lack of outcrops and sparcity of drill holes. Nevertheless it is clearly shown that the limestone occupies large areas.

Examination of satellite imagery revealed some interesting structures. Photographs for the area designated as 45-19 and only Band 7 were used.

The Marguerite River crystalline window shows up as a round, even circular, structure somewhat similar to the Carswell Dome. A major fault from 1/4 to 1 mile in width is located in the window. It continues in the northeast direction to Muddy Lake. The location of the fault is shown by a solid line within the crystalline outcrop and by a broken line outside of it on the aerial photo mosaic. Outside of the crystalline rocks along the continuation of the fault are present some peculiar features in muskegs which are parallel to the fault. It is not known what these features represent. The bedrock map shows a gap in the limestone area a short distance to the northeast of the postulated fault. Any further speculation on the significance of the above feature is left for Eldorado Nuclear Ltd.

-6-

SURFACE BOULDER RATIOS

The map showing surface boulder ratios of oil stained versus clean sandstone has been compiled from numerous boulder counts throughout the area. A significant concentration of oil stained Athabasca Sandstone is present in permits 185 and 186. That area more-or-less coincides with the ground moraine.at that location. The ground moraine is of local derivation and consequently it should be underlain by oil stained Athabasca Sandstone.

-7-

The map showing the ratios of basement rocks versus Athabasca Sandstone also gives data on the occurrence of limestone and dolomite. The dolomite and limestone locations are circled in green. Referring to the bedrock map it is seen that there is no correspondence between the occurrence of limestone and the area underlain by it. The limestone area has no limestone boulders. This is interpreted that all of the materials throughout the area of the end moraine and the outwash are of distant derivation. Otherwise, considerable number of limestone rocks would have been found in the limestone area.

The same reasoning as stated above for the carbonate rocks also applies to the crystalline rocks. The result is that the Athabasca Sandstone-crystalline basement contact cannot be deduced from surficial deposits as all of the surficial rocks are of distant origin. The significance of the high basement-sandstone ratio in the area surrounding Dog Lake cannot be readily explained. This high ratio is partly derived from end moraine segments and thus partly represent relatively distant bedrock composition, over 3 miles.

The high ratio of basement-sandstone rocks along the Richardson River east and north of Dog Lake probably represents the composition of ground moraine underlying the outwash. These high ratio locations along the Richardson River should be explored in detail.as they are the only ones that may supply a clue to local bedrock.

SEDIMENT AND WATER ANOMALIES

J

-

All anomalies of sediments and water as compiled by Eldorado Nuclear Limited for U, Cu, Ni, and Co are shown on a separate map. All anomalies which are derived from areas of end moraine or outwash may thus be eliminated from any significance. These anomalies are derived from glacial materials which have distant bedrock origin.

This in effect, leaves anomalies along the Richardson River as significant for further consideration. As has been stated previously, the Richardson River most likely exposes at certain locations the underlying ground moraine. The ground moraine may be of local origin and thus may reflect the composition of the local bedrock.

SUMMARY

•••]

-b₁

łŋ

•]

. I7

h.]

Surficial geology techniques cannot be used to the full advantage in Project 508 area of Eldorado Nuclear Ltd. because most of surficial deposits are of distant origin.

Exploration of Richardson River boulders, which may show the underlying ground moraine, are the only means of derivation of local bedrock composition for the area.

APPENDIX "B"

DIAMOND DRILL HOLE LOGS for DDH^S No's 508-17 to 29 (incl.)

PROJECT 508

TEST	FROM	10	TOTAL		DIP CORE,		. 3048m) тире сим.		RTURE	DIAMOND DRILL HOLE LOG	LOCATION SECTION LATITUDE				AZIMU	VERTICAL			
	i									Project 508/ALBERTA	DEPARTURE ELEVATION CORE	SURFA	CE	•	LENC PURPO	207'(=63.lm) StH 207'(=63.lm) StE Recon./stratign 15-03-78			
						······	· ·		-	ELDORADO NUCLEAR LIMITED	STORAGE	Ëldor:	ado, Sa	sk.	LOGGED BY H. Laanela				
METE	PAGE_	(met	ric de	pths	in bracke	ts)		DESCRIPTIO	DN			FROM	TO	WIDTH	CORE SAN	IPLES AVERAGES *			
0'	0' 72' (22m)		3/4" i <u>Overbu</u> (72' t	nside rden: o 207	e diam.) t sandy; b ' @EOH (=	o E.O.H oulders 22m to	1. 5 in bo 63.1m)	ttom 2 : UNWE	0'. ATHERE	D). Plastic tubing (4.5cm=1 D PRE-CAMBRIAN BASEMENT) D. No sedimentary cover.	and								
			<u>Gener</u> a	<u>l des</u>	cription	of core	dar dio to min wit sec nea an	k to 1 ritic coarse very 1 erals. h alte tions rer the d disse	ight g appear grair ight p Very rnate throug e bott eminat	y 100%. Fresh unweathered, yray metamorphic rock of gen cance; varying composition. ed, locally fine grained. bink feldspars, quartz, mafi y coarsely banded (±1 to sev lighter, felsic and darker, shout; felsic section more p com. Fracturing uncommon; m ed pyrite in places. No an .n core.	erally Medium White c eral fe mafic redomin inor ga:	et), ant							
and in	93' (28.41	n) 1	rich, microc Biotit	Whit line e and	e sodic p (? - pale amphibol	lagioc greeni es/pyrc	lase, l lsh), q oxenes	ocally uartz. are fi	some Some ne gra	ne parts more quartz-rich or (minor) pink K-feldspars, e lagge feldspar (1-2cm) phe nined. Kaolinized feldspars weathering, all rock fresh	nocryst along	S •							
93' (28.4	95 ' m (29m	}	Light segreg bounda	ated	blebs of	ion of dark gi	felsic eenish	rock, -black	most] fine	y feldspars, some quartz, wi grained mafics. Has no def	th inite								
	99.5' (30.3)		Mainly indist			h patch	nes of	felsic	mater	ial, both as above; boundar	ies								
9.5'	101'				very fine d (and al					ossibly dike containing									

-

e the s

•

	DIAMOND DRILL HOLE LOG 78-508-26		PAGE	No. 2/2		HOLE	E 508-17
METERAGE	DESCRIPTION			1	CORE SAM	APLES	
IROM TO		FROM	TO	WIDTH	- %		AVERAGES
)1' 118' 30.8m) (36m)	Alternating <u>dioritic</u> and <u>felsic</u> material (as before), gradual changes. Pale pinkish and greenish feldspars in increasing amounts; a few garnets appear.						
.8' 120' (6m) (36.6m	Light colored felsic section; probably associated with ±2x B.G. radioactivity	an An Antara Antara				•	
0' 130' 6.6m)(40m)	Mixture of dioritic-to-granitic and felsic material, boundaries very indisting Garnets (2-5mm) in felsic material. Pale pink and greenish feldspar more common here.	t.					
0' 182'	As above, but generally of more dioritic appearance.			1			
2m) 155,5m 5.5m) (60m)	The above becomes finer grained grey digritid grained when bently and the						
6' 207'	Gray <u>dioritic</u> rock as above.						
Um) (63.1m	E.O.H. (End of hole) 207' (=63.1m). Core scanned with SPP2 scint., no anomalous R/A. Down-hole gamma-ray probed with Mt. Sopris 1000, from collar to 61m (=200.14'); B.G. 40-50 cps, up to 118 cps 2120.4'(37m)						
	Drilled by Canadian Longyear Limited, North Bay, Ontario.						
	이는 것 같은 것 같은 것 같은 것 같은 것 같은 것 같은 것 같아요. 말을 가 말을 수 있는 것 같아요. 말을 가 말을 수 있는 것 같아요. 말을 가 많을 수 있는 것 같아요. 말을 가 없는 것 같아요. 말을 것 않는 것 같아요. 말을 것 같아요. 말 ? 말 ? 않는 것 같아요. 말 ? 말 ? 말 ? 않는 ? 않는 것 않는 ? 않는 ? 않는 ? 않는 ? 않는 ? 않는						

		(CC	ONVERSI	ON: ln	1=3.281" DIP TESTS	and l'	<u> </u>			page 1/3 78-508-26		Permi	t 216		HOLE	. 5	08-18							
111	Nox	10	TCIA.	<u></u>	CO: 1.		CUM.	DEPAI	LTURA	DIAMOND DRILL HOLE LOG		0-10 de 2+4 cm 200000 e.		AZIMUTH TO BWTTT AT										
							<u> </u>																	
		-						-		Project 508/ALBERTA		SUPFAC		•	- LENGTH <u>370'(112.8m)</u> - PURPOSE <u>Recon./stratigr</u> <u>18-03-78</u>									
			-						1		CORE	RC			COMPLET	ED 18-	03-78 raingr							
	<u> </u>]						ELDOPADO NUCLEAR LIMITED	STORAGE	Eldora	ido, Sa	sk.	LOCUED	BY H.	U3-78 Laanela							
LIETE	PACE_	(me	etric d	epths	in brad	kets)	ar de la	DESCRIPTIC	N .						CORE SAM	PLES								
	0'		Collar	Div			01 (00)	1-6+				TROM	10	WIDTH	*		AVIRADIS -							
1			to EOH	. DW	casing	0 10 9	0 (80	leit	IU UOI	le, not recovered). Plastic	tubing													
0'	87'		Overbu	•	aandu																			
U	(26.5)		Overbu	ruen;	sanuy																			
			7071 ±	~ 110	1-26 6	- +- 26																		
			Core r	ecovei	v about	90%.	NO R/A	Devoi	nian	SEDIMENTS)		an an Artan An Anna Ang												
87	106'																							
	100		rock.	becom	ng slid	htly co	ine, 11 arser (gnt to arittv	mealu) near	m grey, generally massive c] bottom of section. Slight	Layey													
(26.51) (32.	3m)	limy.	Top p	bart bro	ken, pe	bb lv; a	lso son	me bro	oken irregular fractures fill	led													
ľ			with b	itume	ı (tar).	No ob	vious 1	ayerin	g, ban	ding, bedding or sorting; ir	n place	s a i					•							
			soft a		-																			
106'	117'		The ab	ove ha	s becon	ne coars	er, cru	mbly,	pitted	l and more porous, with "dead	l-oil-	$\mathcal{F}_{ij}(\mathcal{F}_{ij})$												
1	1		stain"	and h	oitumen d guart	in pore	s and f	ractur	es: C	Contains clasts of highly alt	ered													
(32.3r	n)(35. 118'	7m)	•				and a second second second			ed to clay.														
117'	118'		Very b	roken	section	(mostl	y missi	ng) on	top o	of Basement, similar to above	≥yn sgirl													
1 1	1		(No At	ting i hahaso	ainiy c	tion in	cores)	Basem	ent fr	agments.														
K35.7	n) (36m							1999 C. 1997 B. 19																
ſ			Pre-ca	to 3/1) (=301	rphics.	. om): P	RE-CAM	BRIAN	BASEMENT)														
1101	127±'									그는 물건을 가지 않는 것을 가지 않는 것이 없는 것이 없는 것이 없다.														
119.	μ2/Ξ.		Highly	weat	nered ar	d alter	ed (in	situ)]	Pre-ca	umbrian.Basement rocks in whi ine greenish to grey clay-li	LCh					1. N. M.								
1	1		minera	ls. S	Some rel	ict tex	ture an	d high	lv alt	ered reddish feldspars appea	<u>LKe</u>					n an								
(36m)	(39m)		in low	er pai	t. Irr	eqular	fractur	ing 0 ± 4	45° to	core axis.	1													
±127'	147'									with granite-like general														
	1 <u>1</u>		appear	ance;	still s	trongly	altere	d, with	h ligh	t to dark-green patches														
1	1		(epido	te? ar	nd/or cF	lorite)	. Irre	gular :	fractu	ring @ 30°-60° to core axis,	some													
(39m)	(45m)		clay m	ineral	. Core	broken	in pla	ces but	t reco	very is good. Original text	ure													
		, the second			and the second second					B.G. @135.5')														
47'	148.5		Broken	core	dark ç	reenish	highly	alter	ed met	amorphic rock.														
1	•																							
(45m)	(45.3	a)							4	한 경험 남주면서 가슴 힘들었는 것을														
	and the second s	- 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 1914 - 191	الاردى. بىرى بارزىغە جەھەرەرىيە ئ	n an					an a				•		l i i									

•

	ERAGE	DIAMOND DRILL HOLE LOG 78-508-26	· · · · · ·	PAGE	N0	2/ 3 508-18									
FROM	70 	DESCRIPTION	FROM	то	WIDTH	CORE SAM									
148.5 1	174' 1	As in 127'-147' above, similarly altered but original texture less apparent. Reddish to brown with			WIDTH			Ko Cu Po	zn	co					
45.3m		gneissic(?) structure.	#6002	188' (57.3m)(.61m										
74' 1 3m)	182'± 个 (55.5m	(Similar to previous section).	188' (57.3m) #6003 190'	190' (58m) 192'	2' 2'	<0.001 <0.001									
82' 85'	185'	annaront	(58m)	(58.5m											
т	198' ↑ (60.4m	brown rock. Texture indistinct. A dike? Fine intersecting fractures,	#6004 192' (58.5r	194' 1) (59.1		<0.001	.017								
		<u>N.B.</u> : <u>180.5'-200.1' (=55m-61m)</u> : This section contains the 6m (about 20') wide downhole gamma-ray log R/A anomaly of about 5-6m p.C.	#6005 194' (59.1m)	196' (60m)	2*	40.00 1	.017								
	201'	As in 182'-185' and 148.5'-174', above.													
· · · · · ·	202.5'	As in 185'-198' above; fine grained, light reddish. No R/A. Fractured (30 ⁰ -45 ⁰); dark purplish=red strongly altered metamorphics.					•								
3.5	212'	Dark greenish, fine grained metamorphic rock with altered red feldspars.			•										
.om) (220' 1 67.lm)	-rich and dark greenish mafic sections. Original texture not apparent in part													
0' 2 .lm)	236' 1 (72m)	203.5'-212' above.						1							
6'2	38'	Reddish, feldspar - rich granitic rock similar to 212'-220' above.													
	1 (72.6m)	상태의 문제가 방문을 가 많이 많다. 물건은 방문을 얻는 것은 것을 가지 않는 것을 가 없다.													

÷.,

ø

•		DIAMOND DRILL HOLE LOG 78-508-26	•	PAGE	No. 3/3	**********	HOLE 508-18
a distant and the second s	ERAGE	DESCRIPTION				CORE SAM	IPLES
FROM	TO		FROM	TO	WIDTH	*	AYERAGU
238'	252.5'	Dark greenish, fine to medium grained metamorphic rock as before.		-			
252.5 1 77m)	258' 1 (78.6m)	Mainly reddish, granitic appearing rock with greenish metamorphic bands, fine to medium grained. Fractures $\Im 30^\circ$ to core axis. (NB. contains 10-12 cm(=4-5") section \Im about 253' (=77.1m) showing 2-3x					
//11/	(78.011)	B.G. R/A on gamma probing. No anomalous R/A when scanned with SPP2 scint.),					
58' 1	271' 1	Mainly greenish metamorphic rock with reddish granitic patches. Broken core 262' to 265'. Folding and banding Dabout 268'-269'.					
8.6n) (83m)	(NB. contains 269' (=82m) which on gamma-probe $4-5x$ B.G. R/A. No anomalous R/A when scanned with scint.)					
No. 1	280 '	Fine to medium grained, mainly reddish granitic rock, partly fractured, 4-5cm wide part \Im_{274} (95.4m) broken and altered with some greenish fault gouge,					
	(85.4m)						
	285.5'	Fine, green metamorphics, as before. Fine fractures O various angles.					
19.2	290' 298'	Reddish granitic rock, as before. Partly broken.					
		Fine, green metamorphics, as before.					
	322' (98.lm)	Reddish granite; 10cm (4") wide, dark greenish-black mylonitic shear zone $2299'$, $330'$ to core axis.					
1.1.1	327'	Greenish metamorphics, as before.					
14	333'	Reddish granitic rock, mixed with greenish metamorphics.					
12.00	338'	Greenish metamorphics, as before.					
38' ♠	370'	Mainly reddish granitic rock, as before; mixed with some greenish metamorphic	з.		•		
03m)	(112.8ໜ	E.O.H. Δ370' (=112.8m). Core scanned with spp2 scint. Downhole gamma-ray probed with Mt. Sopris 1000, from collar to 88m (=288.7'); blocked below that.					
		Drilled by Canadian Longyear Limited.					
		n de la construction de la sur construction de la construction de la construction de la construction de la defe Rector de la construction de la cons					
		사건을 받았는 것은 것은 것은 것을 통해 가슴을 가 있었다. 가슴을 가는 것은 것은 것은 것은 것은 것을 가 있다.					아이는 동안에 가지 않았다.

1	ком	10	TOTAL	<u> </u>	CORE	LAT	TUDE		EPARTURE	W	DIAMOND DRILL HOLE LOG	LOCATION SECTION	4			AZU	No. 50	RTICAL	
											Project 508/ALBERTA	DEPARTURE ELEVATION CORE	HO .		•••••••	LEI PUR COMP	NGTH 704 POSE Rec LETED 21-	4 (=214.6	5m) ati
								-			ELDORADO NUCLEAR LIMITED	STORAGE	Eldora	do, Sà	ŝk.	LOGGE		Laanela	
ETERA	GE_	(me	tric d	epths	in brac	kets)		DESCR	PTION							CORE SA	MPLES		
				ú, externí svoj									FROM	TO	HTOIW		-	AVERAGES	
1	01	Co	llar.	Casi	ng from	0' to	55' (5	0' le	ft in	hol	e). Plastic tubing to H	.О.Н.							
י 5	52'	Ov	erburd	en: s	andv														
	5.8m)	<u> </u>	<u>) (12 (1</u>	<u> </u>	~···~1														
		(5	2' to	566'	(=15.8m	to 173	. 5m •	ልጥዘልፑ	ASCA	FORM	ATTON								
											covery very good.						1.00		
2 11	10'								-		one is "dead-oil-stained	", black							
. 8m)											dstone sections are from								
		to	10-20	cm wi	de, with	1 bands	("fing	ers")	ofo	il-s	tain paralleling bedding	. (0i1-							
		st	ain ap	pears	to be 1	cestric	ted to	more	poro	us s	ections of sandstone).	"Clean"				1. 1.		•	
											y bands) from 90 to ± 60								
											ken core due to fracturi 11s fractures. Sandstor						1.00		
					ne grai											1			
		(T	op 5'	of se	ction is	s about	: 99% p	il-st	ained	, fr	om surface down). Grade	S			No a tr				
		in	to les	s oil	y but o	herwis	se simi	lar s	andst	one	below.					1.			
0' 16	68'	Qu	artz s	andst	one (as	above)	, oil-	stair	ing a	bout	15%-20%. Light pinkish	, fine							
5m)(5]	1.2m	gr	ained,	mino	r grossl	pedding	, and s	ortir	ng, "	Oily	" streaks are 0.5 to sev	eral cms							
		wi	de, mo	stly	80~-90~	to con	e axis	, par	allel	ing	porous layers of bedding	• • • • • • • • •							
				-							.30'-135(±) has about 508		.n.		e e alta e				
58' 18	84'										in. Pinkish to buff whi				The second				
2m)(56	* 1mD										le medium grained interva						1 1 1		
2	0 • T W				a poros stitial		I SOITI	ng; n	inor	Cros	s-bedding, low porosity,	minor							
34' 30																1			
											kish white, oily "finger for sorting and cross-bed			alette de					
1m)(9	3.6m)										ottom of this section.	·~ 119 •							
07 33				T 1 1 1 1 1								ad				1			
			avily tumen.		stained	(98)	5-TOO4)	τητα	Jugnou	L .	Interstitial spaces fill	.eu with							
6m)(10	ο τ.7m	51	concili																s i
•																ŀ			
12 N 1		ert art 1916						27 July 1			요즘 동안은 것 같은 것이 가지 않는 것 같아요. 이 가 있는 것 같은 것 같이 많이		1	1	1	1.1.1.148			

•

Texa Texa Description 3,5' 337' Heavily indurated - bitumen saturated section, very viscous black tar oozing out. Strong petroleum odor. Avenace 1.70 (02.7m) (N.B. Drilling difficulties were encountered in this section: bitumen packing around rods, clogging bits, etc., needed fuel oil, etc., to wash it off. "Globs" of very viscous black tar-like material were collected. No R/A). Stimmen saturated intervals (as above), alternating with bands of low-porosity, fine, hard, white quarts sandstone soaked with and smelling of petroleum. 7.70 44' 34: As in 184'-307' As in 184'-307' 8.1 As in 184'-307' As in 184'-307' 9.1 As in 184'-307' As in 184'-307' 9.1 Be buff to white sandstone, uniform throughout, no sorting, low porosity. 7.3m A few mid chips surrounded by reddish to purplish zoning. Some interstitial clay. Fractures 90'-70' to the core axis. 3.1 452' 3.2 As above, but dead-oil-stained intervals toward the bottom of section contain interstitial clay. Fractures 90'-70' to the core axis. 3.1 452' 3.2 As in 352'-443' 3.2 As above, but dead-oil-stained intervals toward the bottom of section contain intarstitial clay. Fractures 90'-70' to the core axis. 3.2	NAM TO Description 3,5' 337' Heavily indurated - bitumen saturated section, very viscous black tar oozing out. Strong petroleum odor. Avenue 1.7mg(102.7mg) (N.B. Drilling difficulties were encountered in this section: bitumen packing around rods, clogging bits, etc, needed fuel oil, etc, to wash it off. "Globs" of very viscous black tar-like material were collected. No RAJ. State of the section below. 2' 12' 12' 12' 12' 12' 12' 12' 3' 12' 13' 13' 13' 13'	METERAGE	DIAMOND DRILL HOLE LOG 78-508-26				CORE SAN	IPLES
 Heavily indurated - bitumen saturated section, very viscous black tar oozing out. Strong petroleum odor. (N.B. Drilling difficulties were encountered in this section: bitumen packing around rods, clogging bits, etc., needed fuel oil, etc., to wash it off. "Globs" of very viscous black tar-like material were collected. No R/A). Hitumen saturated intervals (as above), alternating with bands of low-porosity, fine, hard, white quartz sandstone soaked with and smelling of petroleum. Grades into sandstone with "dead-oil-staining" only (as in 184'-307'). Heavily Pale buff to white sandstone, uniform throughout, no sorting, low porosity. A few "fingers" of "dead-oil-staining" only (as in 184'-307'). A sin 307'-333.5' Heavily Pale buff to white sandstone, uniform throughout, no sorting, low porosity. A few "fingers" of "dead-oil-stain" at infrequent intervals, 5% to 15% of core. A few mud chips curronuded by reddish to purplish zoning. Some interstitial Glay. Fractures 90°-70° to the core axis. Oil-stain layers mainly 80°-70° core axis. As above, but light pinkish in color, with indistinct pal-purple banding. Oily stain 120% of core. As above, but dead-oil-stained intervals toward the bottom of section contain indurated bitumen coring out of carcks and core spaces. Oily (petroleum) dodr. A couple of incw wide mud chips. Core uniformly massive, no apparent bedding or sorting. Sim Gio. Im section below. Si Si Si Si Si Si Sindone has gradually become impurg with reddish and purplish fissile contain indurated bitumen coring over dore. Cardes into nerve section. Sandstone has gradually become impurg with reddish and purplish fissile banding. Sim Gio. Im section below. Si Si S	 Heavily indurated - bitumen saturated section, very viscous black tar oozing out. Strong petroleum odor. (N.B. Drilling difficulties were encountered in this section: bitumen packing around rods, clogging bits, etc., needed fuel oil, etc., to wash it off. "Globs" of very viscous black tar-like material were collected. No RAN. Jitumen saturated intervals (as above), alternating with bands of low-porosity, fine, hard, white quartz sandstone soaked with and smelling of petroleum. Grades into sandstone with "dead-oil-staining" only (as in 184'-307'). Jat 148' As in 184'-307' As in 307'-333.5' Pale buff to white sandstone, uniform throughout, no sorting, low porosity. A few "fingers" of "dead-oil-stain" at infrequent intervals, 58 to 158 of core. A few multiple to cartis. As above, but light pinkish in color, with indistinct pale-purple banding. Oily stain 220 of core. Jat 28'. As above, but light pinkish in color, with indistinct pale-purple banding. Oily stain 220 of core. Jat 28'. As above, but dead-oil-stained intervals toward the bottom of section contain indurated bitumen oozing out of cracks and core spaces. Oily (petroleum) odor. A couple of inc wide mud chips. Core uniformly massive, no apparent bedding or sorting. Jat 25'. As in 35'-443'. As in 35'-443'. As in 35'-443'. Minor sorting toward bottom of section. Grades into section below. Jat 25'. As in 35'-443'. Minor sorting toward bottom of section. Grades into section below. Jate 25'. As in 35'-443'. Minor sorting toward bottom of section. Jate 32'-443'. Minor sorting toward bottom of section. Jate 3		DESCRIPTION	FROM	то			
 1.7m (12.7, 7m (1	 1.7m (10.2.7) out. Strong petroleum odor. (N.B. Drilling difficulties were encountered in this section: bitumen packing around rods, clogging bits, etc. needed fuel oil, etc. to wash it off. "Globs" of very viscous black tar-like material were collected. No R/A). 7' 344' Bitumen saturated intervals (as above), alternating with bands of low-porosity, fine, hard, white quarts sandstome soaked with and smelling of petroleum. Grades into sandstome with "dead-oil-staining" only (as in 184'-307'). 14' 348' As in 184'-307' 19' Ug6/11 As in 307'-333.5' Pale buff to white sandstone, uniform throughout, no sorting, low porosity. A few "fingers" of "dead-oil-stain" at infrequent intervals, 5% to 15% of core. A few md chips surrounded by reddisk to purplisk song. Some interstitial Glay. Fractures 90'-70' to the core axis. 0il-stain layers mainly 80'-70' core axis. 3' 452' As above, but light pinkish in color, with indistinct pale-purple banding. 0ily stain ±20% of core. 186' 5.1m (135.1m) core axis. 2' 186'. As above, but light pinkish in color, with indistinct pale-purple banding. 0ily stain ±20% of core. 18' 13'. 3.2m (135.2m) core of the mide mid chips. Core uniformly massive, no apparent bedding or sorting. 19' 525' As in 52'-443'. Minor sorting toward bottom of section. Grades into bedding or sorting. 2' 55' As in 52'-443'. Minor sorting toward bottom of section. Grades into section below. 5' and (16.1m) section below. 5' f' diding also becoming more frequent. Mud chips and occasional class. 0ily stains morting. 2' 546' Sandstone has gradually become impure; with reddish and purplish fissile cola. 2' 546' Sandstone has gradually become impure; with reddish and purplish fissile cola. 6' 549' Above becomes more gritty, coarser grained, more impure sandstone. A l5cm wide interval of purplish poro finsure purplish fissile cond shout dorm wide finely 							
 1.7m (12.7, 7m (1	 1.7m (10.2.7) out. Strong petroleum odor. (N.B. Drilling difficulties were encountered in this section: bitumen packing around rods, clogging bits, etc. needed fuel oil, etc. to wash it off. "Globs" of very viscous black tar-like material were collected. No R/A). 7' 344' Bitumen saturated intervals (as above), alternating with bands of low-porosity, fine, hard, white quarts sandstome soaked with and smelling of petroleum. Grades into sandstome with "dead-oil-staining" only (as in 184'-307'). 14' 348' As in 184'-307' 19' Ug6/11 As in 307'-333.5' Pale buff to white sandstone, uniform throughout, no sorting, low porosity. A few "fingers" of "dead-oil-stain" at infrequent intervals, 5% to 15% of core. A few md chips surrounded by reddisk to purplisk song. Some interstitial Glay. Fractures 90'-70' to the core axis. 0il-stain layers mainly 80'-70' core axis. 3' 452' As above, but light pinkish in color, with indistinct pale-purple banding. 0ily stain ±20% of core. 186' 5.1m (135.1m) core axis. 2' 186'. As above, but light pinkish in color, with indistinct pale-purple banding. 0ily stain ±20% of core. 18' 13'. 3.2m (135.2m) core of the mide mid chips. Core uniformly massive, no apparent bedding or sorting. 19' 525' As in 52'-443'. Minor sorting toward bottom of section. Grades into bedding or sorting. 2' 55' As in 52'-443'. Minor sorting toward bottom of section. Grades into section below. 5' and (16.1m) section below. 5' f' diding also becoming more frequent. Mud chips and occasional class. 0ily stains morting. 2' 546' Sandstone has gradually become impure; with reddish and purplish fissile cola. 2' 546' Sandstone has gradually become impure; with reddish and purplish fissile cola. 6' 549' Above becomes more gritty, coarser grained, more impure sandstone. A l5cm wide interval of purplish poro finsure purplish fissile cond shout dorm wide finely 	33.5' 337'	Heavily indurated - bitumen saturated section, very viscous black tar oozing					
<pre>around rods, clogging bits, stc, needed fuel oil, stc, to wash it off. "Globs" of very viscous black tar-like material were collected. No R/A). Bitumen saturated intervals (as above), alternating with bands of low-porosity, fine, hard, white quartz sandstone soaked with and smelling of petroleum. Grades into sandstone with "dead-oil-staining" only (as in 184'-307'). As in 184'-307' glub, J25/lm, As in 307'-333.5' g/lm (427.3m) (135.lm) Pale buff to white sandstone, uniform throughout, no sorting, low porosity. A few "fingers" of "dead-oil-stain" at infrequent intervals, 5% to 15% of core. A few mud chips surrounded by reddish to purplish zoning. Some interstitial glay. Fractures 90°-70° to the core axis. Oil-stain layers mainly 80°-70° core axis. As above, but light pinkish in color, with indistinct pale-purple banding. Oily stain 120% of core. A so above, but dead-oil-stained intervals toward the bottom of section contain indurated bitumen oozing out of cracks and core spaces. Oily (petroleum) odor. A couple of itom wide mud chips. Core uniformly massive, no apparent bedding or sorting. Sim(Gio.lm) section blow. Simicon exclose the over section. Grades into section below. Simicon (2-3cm wide) fissile reddish to purplish bands; minor brownish mottling. Oily staining abor, out loofs for core. As and the oreas wide for sorting toward bottom of section. Simicon (2-3cm wide) fissile reddish to purplish bands; minor brownish mottling. Oily staining about 10-15% of core. Crades into next section. Simicon (2-3cm wide) fissile reddish to purplish bands; minor brownish mottling. Oily staining abore of core arise reduct. Mud chips and occasional clasts. Oily stains have disappeared. Clay content increases downward. A browe becomes more gritty, coarser grained, more impures andstone. A 15cm wide interval of purplish brown fissile rook encloses about 4cm wide finely wide interval of purplish brown fissile rook encloses about 4cm wide finely wide interval of purplish brown fissile rook encloses about 4cm wide finely if</pre>	<pre>around rods, clogging bits, stc, needed fuel oil, stc, to wash it off. "Globb" of very viscous black tar-like material were collected. No R/A). Bitumen saturated intervals (as above), alternating with bands of low-porosity, fine, hard, white quartz sandstone soaked with and smelling of petroleum. Grades into sandstone with "dead-oil-staining" only (as in 184'-307'). As in 184'-307' By [957.1m] As in 307'-333.5' Grim [47.5m] Pale buff to white sandstone, uniform throughout, no sorting, low porosity. A few "fingers" of "dead-oil-stain" at infrequent intervals, 5% to 15% of core. A few mud chips surrounded by reddish to purplish zoning. Some interstitial clay. Practures 90°-70° to the core axis. Oil-stain layers mainly 80°-70° core axis. As above, but light pinkish in color, with indistinct pale-purple banding. Oily stain t20% of core. A so above, but dead-oil-stained intervals toward the bottom of section contain indurated bitumen oozing out of cracks and core spaces. Oily (petroleum) odor. A couple of ilcm wide mud chips. Core uniformly massive, no apparent bedding or sorting. Sim(05.1m] Oily stain 130'-443'. Minor sorting toward bottom of section. Grades into section below. Simic (2-3cm wide) fissile reddish to purplish bands; minor thrownish mottling. Oily stain low 10-15% of core. Simic (2-2, 546' Simic (2-2, 546' Simic (2-3cm wide) fissile reddish to purplish bands; minor thrownish mottling. Oily stain low 10-15% of core. Grades into next section. Staining also becomes more gritty, coarser grained, more impures and purplish fissile banding al so becoming more frequent. Mud chips and occasional clasts. Oily stain have disappeared. Clay content increases downward. A bove becomes more gritty, coarser grained, more impures andstone. A l5cm wide interval of purplish bown fissile rock encloses about 4cm wide finely A bove becomes more gritty, coarser grained, more impures andstone. A l5cm wide interval of purplish thown fissile rock encloses about 4cm wide finely A bove becomes more gritty, coarser grained, m</pre>	(1, 7m)(102, 7m)	out. Strong petroleum odor.					
<pre>of very viscous black tar-like material were collected. No R/A). 7' 344' Bitumen saturated intervals (as above), alternating with bands of low-porosity, fine, hard, white quartz sandstone socked with and smelling of petroleum. 7m) (05m) Grades into sandstone with "dead-oil-staining" only (as in 184'-307'). 4 3a in 184'-307' 5m) (105m) A s in 184'-307' A sin 307'-333.5' Fine fingers' of "dead-oil-stain" at infrequent intervals, 5% to 15% of core. A few mud chips surrounded by reddish to purplish zoning. Some interstitial clay. Fractures 90'-70' to the core axis. 0il-stain layers mainly 80'-70' core axis. 3' 452' As above, but light pinkish in color, with indistinct pale-purple banding. 0'ily stain t20% of core. 4' 486' As in 352'-443' As above, but dead-oil-stained intervals toward the bottom of section contain bedding or sorting. 4' ato 515.2m</pre>	of very viscous black tar-like material were collected. No R/A). 7' 34' Bitumen saturated intervals (as above), alternating with bands of low-porosity, fine, hard, white quartz sandstone socked with and smelling of petroleum. .7m (05m) Grades into sandstone with "dead-oil-staining" only (as in 184'-307'). 4' 348' As in 184'-307' As in 184'-307' As in 184'-307' Af 4'' As in 307'-333.5' 7.3m (135.1m) Oree A few mud chips surrounded by reddish to purplish zoning. Some interstitial clay. Fractures 90'-70' to the core axis. 0il-stain layers mainly 80'-70' core axis. 8' 452' Sa above, but light pinkish in color, with indistinct pale-purple banding. 0ily stain f208 off core. 2'' As in 352'-443' As above, but dead-oil-stained intervals toward the bottom of section contain indurated bitumen oozing out of cracks and core spaces. Oily (petroleum) odor. A couple of 10m wide mud chips. Core uniformly massive, no apparent bedding or sorting. 9' 525' 13.2m (060.1m) section below. 2'' 54 for 5. 0'' 54 or 0.2-30 wide) fissile reddish to purplish bands; minor brownish motling. 0'' 51 sol 0'' 54 or 0.2-30 wide) fissile reddish to purplish bands; minor brownish motling. 10'' 50 o	01.0/mg(102.//	(N.D. Diffing difficulties were checountered in this acction, bitumen packing		1 - 1 - 1			
 344' Bitumen saturated intervals (as above), alternating with bands of low-porosity, fine, hard, white quartz sandstone scaked with and smelling of petroleum. Grades into sandstone with "dead-oil-stainng" only (as in 184'-307'). 4' 348' As in 184'-307' As in 307'-333.5' 9' 1959.1m As in 307'-333.5' 9 Pale buff to white sandstone, uniform throughout, no sorting, low porosity. A few "fingers" of "dead-oil-stain" at infrequent intervals, 5% to 15% of core. A few mud chips surrounded by reddish to purplish zoning. Some interstitial glay. Fractures 90'-70' to the core axis. Oil-stain layers mainly 80'-70' core axis. 3' 452' As above, but light pinkish in color, with indistinct pale-purple banding. Oily stain 120% of core. A couple of the wide mud chips. Core uniformly massive, no apparent bedding or sorting. 9' 545' As in 352'-443'. Minor sorting toward bottom of section. Grades into section below. 9' 545' As in 352'-443'. Minor sorting toward bottom of section. Grades into section below. 9' 545' As in 352'-443'. Minor sorting toward bottom of section. Grades into section below. 9' 545' As in 352'-443'. Minor sorting toward bottom of section. Grades into section below. 9' 546' Sandstone, with increasingly more interstitial clay and mud chips. Minor (2-3cm wide) fissile reddish to purplish bands; minor provins motiling. 2' 546' Sandstone has gradually become impure; with reddish and purplish fissile banding dout 0-155 of core. Grades into next section. 2' 546' Sandstone has gradually become impure; with reddish and purplish fissile banding also becomes more gritty, coarser grained, more impure sandstone 4 lists 6' 549' Above becomes more gritty, coarser grained, more informer sandstone. A 15cm wide interval of purplish brown fissile rock real clays content fine fine fine fine fine fine fine fine	 344' Bitumen saturated intervals (as above), alternating with bands of low-porosity, fine, hard, white quartz sandstone scaked with and smelling of petroleum. 7.7m (105m) Grades into sandstone with "dead-oil-staining" only (as in 184'-307'). 4' 348' As in 184'-307' 4' 348' As in 184'-307' 4' 148' As in 184'-307' 9 ale buff to white sandstone, uniform throughout, no sorting, low porosity. A few "fingers" of "dead-oil-stain" at infrequent intervals, 5% to 15% of core. A few mud chips surrounded by reddish to purplish zoning. Some interstitial glay. Fractures 90'-70' to the core axis. 3' 452' As above, but light pinkish in color, with indistinct pale-purple banding. 0ily stain t20% of core. 2' 446' As in 352'-443' 9' 1419.7m 9' 525' As in 352'-443'. Minor sorting toward bottom of section contain indurated bitumen oozing out of cracks and core spaces. Oily (petroleum) odor. A couple of ilem wide mud chips. Core uniformly massive, no apparent bedding or sorting. 9' 525' As in 352'-443'. Minor sorting toward bottom of section. Grades into section below. 9' 165.2m (158.2m) oily staining about 10-158 of core. Grades into next section. 9' 546' Sandstone, with increasingly more interstitial clay and mud chips. 10 (165.2m) oily staining about 10-158 of core. Grades into next section. 11 (165.2m) oily staining about 10-158 of core. Cracks and occasional clasts. Oily staining about 10-158 of core. 12' 546' Sandstone with increasingly more interstitial clay and mud chips. 13.2m (166.1m) oily staining about 10-158 of core. Grades into next section. 14.3minor (2-3cm wide) fissile reddish to purplish bands; minor brownish mottling. 15' 542' Sinding also becomes more gritty, coarser grained, more impure sandstone. A 15cm wide singaparent. Clay content increases downward. 6' 549' Above becomes more gritty, coarser grained, more inpure			5"		1		
 fine, hard, white quartz sandstone soaked with and smelling of petroleum. Grades into sandstone with "dead-oil-staining" only (as in 184'-307'). As in 184'-307' g) 1065,1m As in 307'-333.5' g, 1m 4027,3m Pale buff to white sandstone, uniform throughout, no sorting, low porosity. A few "fingers" of "dead-oil-stain" at infrequent intervals, 5% to 15% of core. A few mud chips surrounded by reddish to purplish zoning. Some interstitlal glay. Fractures 90-70° to the core axis. 0il-stain layers mainly 80-70° core axis. 3' 452' As above, but light pinkish in color, with indistinct pale-purple banding. 0ily stain 120% of core. 2' 466' 519' 148'² As in 352'-443' As in 352'-443'. As in 352'. As i	 fine, hard, white quartz sandstone soaked with and smelling of petroleum. Grades into sandstone with "dead-oil-staining" only (as in 184'-307'). As in 184'-307' As in 307'-333.5' Pale buff to white sandstone, uniform throughout, no sorting, low porosity. A few "fingers" of "dead-oil-stain" at infrequent intervals, 5% to 15% of core. A few mud chips surrounded by reddish to purplish zoning. Some interstitial glay. Fractures 90-70° to the core axis. Oil-stain layers mainly 80-70° core axis. 452' As above, but light pinkish in color, with indistinct pale-purple banding. Oily stain 120% of core. A solve, but dead-oil-stained intervals toward the bottom of section contain odor. A couple of flow with empty for multiple pinkish in color section. Sand(26.1m) 55.2'-443'. As in 352'-443'. Minor (2-3cm wide) fissile reddish to purplish bands, minor brownish mottling. Oily stain gabout 10-15% of core. Grades into next section. Stand (26.1m) about 10-15% of core. Grades into next section. Stains have disappeared. Clay content increases downward. 6' 549' Above becomes more gritty, coarser grained, more impure sandstone. A 15cm wide finely 							
 .7m) (105m) Grades into sandstone with "dead-oil-staining" only (as in 184'-307'). 4' 346' As in 184'-307' 36' J35' Jm As in 307'-333.5' 5' J10(127.3m) Pale buff to white sandstone, uniform throughout, no sorting, low porosity. A few "fingers" of "dead-oil-stain" at infrequent intervals, 5% to 15% of core. A few mud chips surrounded by reddish to purplish zoning. Some interstitial glay. Fractures 90'-70' to the core axis. 3' 452' As above, but light pinkish in color, with indistinct pale-purple banding. 0'liy stain t20% of core. 2' 466' As in 352'-443' As above, but dead-oil-stained intervals toward the bottom of section contain indurated bitumen oozing out of cracks and core spaces. Oily (petroleum) odor. A couple of tlcm wide mud chips. Core uniformly massive, no apparent bedding or sorting. 9' 525' As in 352'-443'. Minor sorting toward bottom of section. Grades into section below. 5' 542' Pinkish sandstone, with increasingly more interstitial clay and mud chips. Minor (2-3cm wide) fissile reddish to purplish bands; minor brownish mottling. 0'liy staining about 10-15% of core. Grades into next section. 2' 546' Sandstone has gradually become impure; with reddish and purplish fissile 5' 542' Pinkish sandstone, clay content increases downward. 6' 549' Above becomes more gritty, coarser grained, more impure sandstone. A 15cm 4' 4'' Above becomes more gritty, coarser grained, more impure sandstone. A 15cm 	 7m) (105m) Grades into sandstone with "dead-oil-staining" only (as in 184'-307'). 4' 348' As in 184'-307' 9m) (1057.1m) As in 184'-307' 9m) (107.3m) Pale buff to white sandstone, uniform throughout, no sorting, low porosity. A few "fingers" of "dead-oil-stain" at infrequent intervals, 5% to 15% of core. A few mud chips surrounded by reddish to purplish zoning. Some interstitial glay. Fractures 90'-70' to the core axis. 011 stain 280'-70' core axis. 4' 452' As above, but light pinkish in color, with indistinct pale-purple banding. 011 stain 120% of core. 2' 466' As in 352'-443' As above, but dead-oil-stained intervals toward the bottom of section contain indurated bitumen oozing out of cracks and core spaces. Olly (petroleum) odor. A couple of tlcm wide mud chips. Core uniformly massive, no apparent bedding or sorting. 9' 525' As in 352'-443' Asin 352'-443'. Asin 352'-443'. Asin 352'-443'. Asin 352'-443'. Minor sorting toward bottom of section. Grades into section below. 9' 525' As in 352'-443'. Minor sorting toward bottom of section. Grades into section below. 9' 525' As in 352'-443' become impure; with reddish and purplish fissile 9.1m(165.2m) Oily staining about 10-15% of core. Grades into next section. 5' 542' Finkish sandstone, with increasingly more interstitial clay and mud chips. Minor (2-30m wide) fissile reddish to purplish bands; minor brownish mottling. 0'ly staining about 10-15% of core. Grades into next section. 5' 542' Stains have disappeared. Clay content increases downward. 6' 549' Above becomes more gritty, coarser grained, more impure sandstone. A 15cm wide finely 	7' 344'		Y,				
 44 348' As in 184'-307' 450' As in 307'-333.5' 7.3m (135.1m) As in 307'-333.5' 7.3m (135.1m) As the with a sandstone, uniform throughout, no sorting, low porosity. A few mid chips surrounded by reddish to purplish zoning. Some interstitial clay. Fractures 90°-70° to the core axis. 0il-stain layers mainly 80°-70° core axis. 34 452' As above, but light pinkish in color, with indistinct pale-purple banding. 0ily stain 1208 of core. 34 452' As above, but lead-oil-stained intervals toward the bottom of section contain inducted bitumen oozing out of cracks and core spaces. 0ily (petroleum) odor. A couple of flow wide mud chips. Core uniformly massive, no apparent bedding or sorting. 9' 525' As in 352'-443' Minor sorting toward bottom of section. Grades into section below. 9' 525' As in 352'-443'. Minor sorting toward bottom of section. 9' 525' As in 352'-443'. Minor sorting toward bottom of section. 9' 525' As in 352'-443'. Minor sorting toward bottom of section. 9' 525' As in 352'-443'. Minor sorting toward bottom of section. 9' 525' As in 352'-443'. Minor sorting toward bottom of section. 9' 525' As in 352'-443'. Minor sorting toward bottom of section. 9' 525' As in 352'-443'. Minor sorting toward bottom of section. 9' 525' As in 352'-443'. Minor sorting toward bottom of section. 9' 525' As in 352'-443'. Minor sorting toward bottom of section. 9' 544' Dinkish sandstone, with increasingly more interstitial clay and mud chips. 9' 544' Sindstone has gradually become impure; with reddish and purplish fissile 9' 546' Sandstone has gradually become impure; with reddish and purplish fissile 9' 546' Above becomes more grity, coarser grained, more impure sandstone. A 15cm 1' 4' book becomes more grity, coarser grained, more impure sandstone. A 15cm 1' wide interval of purplish brown fissile rock encloses about 4cm wide finely<td> 348' As in 184'-307' 348' As in 184'-307' 348' As in 307'-333.5' 71 and 135.1m As in 307'-333.5' 72 and 135.1m As in 307'-333.5' 73 and 135.1m As the wide of the standard on the section of the standard of the standar</td><td>7m) (105m)</td><td></td><td></td><td></td><td></td><td></td><td></td>	 348' As in 184'-307' 348' As in 184'-307' 348' As in 307'-333.5' 71 and 135.1m As in 307'-333.5' 72 and 135.1m As in 307'-333.5' 73 and 135.1m As the wide of the standard on the section of the standard of the standar	7m) (105m)						
 Gen (105,1m) (107,3m) (135,1m) As in 307'-333.5' Pale buff to white sandstone, uniform throughout, no sorting, low porosity. A few "fingers" of "dead-oil-stain" at infrequent intervals, 5% to 15% of core. A few mud chips surrounded by reddish to purplish zoning. Some interstitial clay. Fractures 90°-70° to the core axis. Oil-stain layers mainly 80°-70° core axis. 452' As above, but light pinkish in color, with indistinct pale-purple banding. Oily stain t20% of core. 466' As in 352'-443' 548' As above, but dead-oil-stained intervals toward the bottom of section contain inducated bitumen oozing out of cracks and core spaces. Oily (petroleum) odor. A couple of flem wide mud chips. Core uniformly massive, no apparent bedding or sorting. 525' As in 352'-443'. Minor sorting toward bottom of section. Grades into section below. 525' As in 352'-443'. Minor sorting toward bottom of section. 542' Pinkish sandstone, with increasingly more interstitial clay and mud chips. Minor (2-3cm wide) fissile reddish to purplish bands, minor brownish mottling. 546' Sandstone has gradually become impure; with redish and purplish fissile banding also becoming more frequent. Mud chips and occasional clasts. Oily stains have disappeared. Clay content increases downward. 6' 549' Above becomes more gritty, coarser grained, more impure sandstone. A 15cm wide interval of purplish brown fissile rock encloses about 4cm wide finely 	 Gen (106, 1m) (107, 3m) (135, 1m) (135, 1m) (135, 1m) (135, 1m) (135, 1m) (135, 1m) (135, 1m) (135, 1m) (135, 1m) (136, 1m) (13			ta an				
 ⁶/₁ Im ⁴(1)?²/₁ ^{3m} ⁶ Pale buff to white sandstone, uniform throughout, no sorting, low porosity. ⁷/₁ ^{3m}(1)²/₁ ^{3m} ⁷/₁ ^{3m}(1)²/₁ ^{3m} ⁸/₁ ⁴/₁ ⁴	 ⁶/₁ Im ¹(107, 3m) ⁶ Pale buff to white sandstone, uniform throughout, no sorting, low porosity. ⁷/₁ A few "fingers" of "dead-oll-stain" at infrequent intervals, 5% to 15% of core. A few mud chips surrounded by reddish to purplish zoning. Some interstitial glay. Fractures 90°-70° to the core axis. Oil-stain layers mainly 80°-70° core axis. ³/₁ 452' ⁴/₁ As above, but light pinkish in color, with indistinct pale-purple banding. ⁶/₁ 138m) ⁶/₁ 486' ⁶/₁ As in 352'-443' ⁸/₁ 148:²⁰/₁ As above, but dead-oil-stained intervals toward the bottom of section contain indurated bitumen oozing out of cracks and core spaces. Oily (petroleum) odor, A couple of tlcm wide mud chips. Core uniformly massive, no apparent bedding or sorting. ⁹/₂ 525' ¹/₂ As in 352'-443'. Minor sorting toward bottom of section. Grades into section below. ⁹/₂ 546' ¹/₂ Sandstone, with increasingly more interstitial clay and mud chips. Minor (2-3cm wide) fissile reddish to purplish bands; minor brownish mottling. ¹/₂ 140(56.2m) ¹/₂ 666.5m ¹/₂ Sandstone has gradually become impure; with reddish and purplish fissile banding also becoming more frequent. Mud chips and occasional clasts. Oily stains have disappeared. Clay content increases downward. ⁶/₁ 549' ⁶/₁ Above becomes more gritty, coarser grained, more impure sandstone. A 15cm ⁶/₁ wide interval of purplish brow fissile rock encloses about 4cm wide finely 							
 A few "fingers" of "dead-oil-stain" at infréquent intervals, 58 to 158 of core. A few mud chips surrounded by reddish to purplish zoning. Some interstitial clay. Fractures 90 -70° to the core axis. Oil-stain layers mainly 80°-70° core axis. As above, but light pinkish in color, with indistinct pale-purple banding. Oily stain 120% of core. As in 352'-443' As above, but dead-oil-stained intervals toward the bottom of section contain indurated bitumen oozing out of cracks and core spaces. Oily (petroleum) odor, A couple of flom wide mud chips. Core uniformly massive, no apparent bedding or sorting. 525' As in 352'-443'. As in 352'-443'. Minor sorting toward bottom of section. Grades into section below. 525' As in 352'-443'. Pinkish sandstone, with increasingly more interstitial clay and mud chips. Minor (2-3cm wide) fissile reddish to purplish bands; minor brownish mottling. Oily staining about 10-15% of core. Grades into next section. 546'. Sandstone has gradually become impure; with reddish and purplish fissile banding also becoming more frequent. Mud chips and occasional clasts. Oily stains have disappeared. Clay content increases downward. 6' 549' Above becomes more gritty, coarser grained, more impure sandstone. A 15cm wide finely 	 A few "fingers" of "dead-oil-stain" at infréquent intervals, 5% to 15% of core. A few mud chips surrounded by reddish to purplish zoning. Some interstitial clay. Fractures 90-70° to the core axis. Oil-stain layers mainly 80°-70° core axis. As above, but light pinkish in color, with indistinct pale-purple banding. Oily stain 120% of core. As in 352'-443' As above, but dead-oil-stained intervals toward the bottom of section contain indurated bitumen oozing out of cracks and core spaces. Oily (petroleum) odor. A couple of 11cm wide mud chips. Core uniformly massive, no apparent bedding or sorting. 525' As in 352'-443'. As in 352'-443'. Minor sorting toward bottom of section. Grades into section below. 525' As in 352'-443'. Pinkish sandstone, with increasingly more interstitial clay and mud chips. Minor (2-3cm wide) fissile reddish to purplish bands; minor brownish mottling. Jum 165.2m 0ily staining about 10-15% of core. Grades into next section. 2' 546' Sandstone has gradually become impure; with reddish and purplish fissile banding also becoming more frequent. Mud chips and occasional clasts. Oily stains have disappeared. Clay content increases downard. 6' 549' Above becomes more gritty, coarser grained, more impure sandstone. A 15cm wide finely 					1		
 A few "fingers" of "dead-oil-stain" at infraquent intervals, 5% to 15% of core. A few mud chips surrounded by reddish to purplish zoning. Some interstitial glay. Fractures 90 -70 to the core axis. 0il-stain layers mainly 80 -70 core axis. As above, but light pinkish in color, with indistinct pale-purple banding. Oily stain 120% of core. As in 352'-443' As above, but dead-oil-stained intervals toward the bottom of section contain indurated bitumen oozing out of cracks and core spaces. Oily (petroleum) odor. A couple of them wide mud chips. Core uniformly massive, no apparent bedding or sorting. Sum (158.2m) (158.2m) Sub (160.1m) section below. Pinkish sandstone, with increasingly more interstitial clay and mud chips. Minor (2-3cm wide) fissile reddish to purplish bands; minor brownish mottling. Sum (166.5m) banding also becoming more frequent. Mud chips and occasional clasts. Oily staining about 10-15% of core. Grades into next section. Sum (166.5m) banding also becoming more frequent. Mud chips and occasional clasts. Oily staining about 10-15% of core. Grades into next section. Sum (166.5m) banding also becoming more frequent. Mud chips and occasional clasts. Oily stains have disappeared. Clay content increases dowward. Above becomes more gritty, coarser grained, more impure sandstone. A 15cm Yi Wi Wi We how fissile redown fissile redown finger band ward. 	 7.3m (135.1m) A few "fingers" of "dead-oil-stain" at infrequent intervals, 5% to 15% of core. A few mud chips surrounded by reddish to purplish zoning. Some interstitial clay. Fractures 90°-70° to the core axis. Oil-stain layers mainly 80°-70° core axis. 3' 452' As above, but light pinkish in color, with indistinct pale-purple banding. Oily stain 120% of core. 2' 486' As in 352'-443' 3.2m) (158.2m) indurated bitumen oozing out of cracks and core spaces. Oily (petroleum) odor. A couple of film wide mud chips. Core uniformly massive, no apparent bedding or sorting. 9' 525' As in 352'-443'. Minor sorting toward bottom of section. Grades into section below. 9' 525' As in 352'-443'. Minor sorting toward bottom of section. Grades into section below. 9' 525' As in 352'-443'. Minor sorting toward bottom of section. Grades into section below. 9' 525' As in 352'-443'. Minor sorting toward bottom of section. Grades into section below. 9' 525' As in 352'-443'. Minor sorting toward bottom of section. 9' 525' As in 352'-443'. Minor sorting toward bottom of section. 9' 525' As in 352'-443'. Minor sorting toward bottom of section. 9' 525' As in 352'-443'. Minor sorting toward bottom of section. 9' 525' As in 352'-443'. Minor sorting toward bottom of section. 9' 525' As in 352'-443'. Minor sorting toward bottom of section. 9' 525' As in 352'-443'. Minor core axingly more interstitial clay and mud chips. Minor (2-3cm wide) fissile reddish to purplish bands; minor brownish mottling. 9' 546' Sandstone has gradually become impure; with reddish and purplish fissile banding also becoming more frequent. Mud chips and occasional clasts. Oily stains have disappeared. Clay content increases downward. 6' 549' Above becomes more gritty, coarser grained, more impure sandstone. A 15cm wide interval of purplish brown fissile rock encloses about 4cm wide finely 	2 - 10 443 - 30	Pale buff to white sandstone, uniform throughout, no sorting, low porosity.					
 bits and the solution of the solution	 bits and the second provide the second provide the provided by reacting to purple binding. Some interstitial Clay. Fractures 90 -70° to the core axis. Oil-stain layers mainly 80°-70° core axis. 452' As above, but light pinkish in color, with indistinct pale-purple banding. Oily stain ±20% of core. 486' As in 352'-443' 549' As above, but dead-oil-stained intervals toward the bottom of section contain odor. A couple of the mude chips. Core uniformly massive, no apparent bedding or sorting. 525' As in 352'-443'. Minor sorting toward bottom of section. Grades into bedding or sorting. 525' As in 352'-443'. Minor sorting toward bottom of section. Grades into bedding or sorting. 525' S42' Pinkish sandstone, with increasingly more interstitial clay and mud chips. Minor (2-3cm wide) fissile reddish to purplish bands; minor brownish mottling. 546' Sandstone has gradually become impure; with reddish and purplish fissile banding also becoming more frequent. Mud chips and occasional clasts. Oily stains have disappeared. Clay content increases downward. 64' 549' Above becomes more gritty, coarser grained, more impure sandstone. A 15cm wide interval of purplish brown fissile rock encloses about 4cm wide finely 	7.3m)(135.1m	A few "fingers" of "dead-oil-stain" at infrequent intervals, 5% to 15% of					
 mainly 80°-70° core axis. As above, but light pinkish in color, with indistinct pale-purple banding. 0ily stain ±20% of core. 480° As in 352'-443' 484° As in 352'-443' 486° As above, but dead-oil-stained intervals toward the bottom of section contain 548° As above, but dead-oil-stained intervals toward the bottom of section contain 558.2m 160.1m 542' Pinkish sandstone, with increasingly more interstitial clay and mud chips. 542' Minor (2-3cm wide) fissile reddish to purplish bands; minor brownish mottling. 646' Sandstone has gradually become impure; with reddish and purplish fissile 546' Sandstone has gradually become impure; with reddish and purplish fissile 549' Above becomes more gritty, coarser grained, more impure sandstone. A 15cm 549' Above becomes more gritty, coarser grained, more impure sandstone. A 15cm 	 mainly 80°-70° core axis. 452' As above, but light pinkish in color, with indistinct pale-purple banding. 0ily stain ±20% of core. 486' As in 352'-443' 486' As in 352'-443' 486' As above, but dead-oil-stained intervals toward the bottom of section contain 548' As a bove, but dead-oil-stained intervals toward the bottom of section contain 158.2m 158.2m 160.1m 525' As in 352'-443'. 416' As in 352'-443'. 525' As in 352'-443'. 525' As in 352'-443'. Minor sorting toward bottom of section. Grades into 525' basin 352'-443'. Minor sorting toward bottom of section. Grades into 542' Pinkish sandstone, with increasingly more interstitial clay and mud chips. 542' Minor (2-3cm wide) fissile reddish to purplish bands; minor brownish mottling. 546' Sandstone has gradually become impure; with reddish and purplish fissile 546' Sandstone has gradually become impure; with reddish and purplish fissile 549' Above becomes more gritty, coarser grained, more impure sandstone. A 15cm 549' wide interval of purplish brown fissile rock encloses about 4cm wide finely 		core. A new mud chips surrounded by redaish to purprish zohing. Some			e de l'Alemana		
 452' As above, but light pinkish in color, with indistinct pale-purple banding. 0ily stain ±20% of core. As in 352'-443' As above, but dead-oil-stained intervals toward the bottom of section contain indurated bitumen oozing out of cracks and core spaces. Oily (petroleum) odor. A couple of tlcm wide mud chips. Core uniformly massive, no apparent bedding or sorting. 525' As in 352'-443'. Minor sorting toward bottom of section. Grades into section below. 525' As in 352'-443'. Minor sorting toward bottom of section. Grades into section below. 525' As in 352'-443'. Minor sorting toward bottom of section. 542' Pinkish sandstone, with increasingly more interstitial clay and mud chips. Minor (2-3cm wide) fissile reddish to purplish bands; minor brownish mottling. 546' Sandstone has gradually become impure; with reddish and purplish fissile banding also becoming more frequent. Mud chips and occasional clasts. Oily stains have disappeared. Clay content increases downward. 64' 549' Above becomes more gritty, coarser grained, more impure sandstone. A 15cm wide interval of purplish brown fissile rock encloses about 4cm wide finely 	 452' As above, but light pinkish in color, with indistinct pale-purple banding. 0ily stain ±20% of core. As in 352'-443' As above, but dead-oil-stained intervals toward the bottom of section contain indurated bitumen oozing out of cracks and core spaces. Oily (petroleum) of core. A couple of them wide mud chips. Core uniformly massive, no apparent bedding or sorting. 525' As in 352'-443'. Minor sorting toward bottom of section. Grades into section below. 525' As in 352'-443'. Minor sorting toward bottom of section. Grades into section below. 525' As in 352'-443'. Minor sorting toward bottom of section. 92' 525' As in 352'-443'. Minor sorting toward bottom of section. 93.2m)(160.1m 94.65.2m 9.1m(165.2m) Oily staining about 10-15% of core. Grades into next section. 94.66.5m 94.66.5m 94.66.5m 94.9' Above becomes more gritty, coarser grained, more impure sandstone. A 15cm 94.9' Wide interval of purplish brown fissile rock encloses about 4cm wide finely 			ана (1997) Алагана Алагана	1.1.1.1			
 486' As in 352'-443' As above, but dead-oil-stained intervals toward the bottom of section contain indurated bitumen oozing out of cracks and core spaces. Oily (petroleum) odor. A couple of tlcm wide mud chips. Core uniformly massive, no apparent bedding or sorting. 525' As in 352'-443'. Minor sorting toward bottom of section. Grades into section below. 525' As in 352'-443'. Minor sorting toward bottom of section. Grades into section below. 542' Pinkish sandstone, with increasingly more interstitial clay and mud chips. Minor (2-3cm wide) fissile reddish to purplish bands; minor brownish mottling. Oily staining about 10-15% of core. Grades into next section. 546' Sandstone has gradually become impure; with reddish and purplish fissile banding also becoming more frequent. Mud chips and occasional clasts. Oily stains have disappeared. Clay content increases downward. 6' 549' Above becomes more gritty, coarser grained, more impure sandstone. A 15cm wide interval of purplish brown fissile rock encloses about 4cm wide finely 	 486' As in 352'-443' As above, but dead-oil-stained intervals toward the bottom of section contain indurated bitumen oozing out of cracks and core spaces. Oily (petroleum) odor. A couple of tlcm wide mud chips. Core uniformly massive, no apparent bedding or sorting. 525' As in 352'-443'. Minor sorting toward bottom of section. Grades into section below. 525' As in 352'-443'. Minor sorting toward bottom of section. Grades into section below. 542' Pinkish sandstone, with increasingly more interstitial clay and mud chips. Minor (2-3cm wide) fissile reddish to purplish bands; minor brownish mottling. Oily staining about 10-15% of core. Grades into next section. 546' Sandstone has gradually become impure; with reddish and purplish fissile banding also becoming more frequent. Muc chips and occasional clasts. Oily stains have disappeared. Clay content increases downward. 6' 549' Above becomes more gritty, coarser grained, more impure sandstone. A 15cm wide interval of purplish brown fissile rock encloses about 4cm wide finely 		가슴 동안에 특히 있는 것 같아요. 이는 것 같아요. 나					
 As in 352'-443' As above, but dead-oil-stained intervals toward the bottom of section contain indurated bitumen cozing out of cracks and core spaces. Oily (petroleum) odor. A couple of tlcm wide mud chips. Core uniformly massive, no apparent bedding or sorting. 525' As in 352'-443'. Minor sorting toward bottom of section. Grades into section below. 542' Pinkish sandstone, with increasingly more interstitial clay and mud chips. Minor (2-3cm wide) fissile reddish to purplish bands; minor brownish mottling. Oily staining about 10-15% of core. Grades into next section. 546' Sandstone has gradually become impure; with reddish and purplish fissile banding also becoming more frequent. Mud chips and occasional clasts. Oily stains have disappeared. Clay content increases downward. 6' 549' Above becomes more gritty, coarser grained, more impure sandstone. A 15cm it wide interval of purplish brown fissile rock encloses about 4cm wide finely 	 As in 352'-443' As above, but dead-oil-stained intervals toward the bottom of section contain indurated bitumen oozing out of cracks and core spaces. Oily (petroleum) odor. A couple of tlcm wide mud chips. Core uniformly massive, no apparent bedding or sorting. 525' As in 352'-443'. Minor sorting toward bottom of section. Grades into section below. 542' Pinkish sandstone, with increasingly more interstitial clay and mud chips. Minor (2-3cm wide) fissile reddish to purplish bands; minor brownish mottling. Oily staining about 10-15% of core. Grades into next section. 546' Sandstone has gradually become impure; with reddish and purplish fissile banding also becoming more frequent. Mud chips and occasional clasts. Oily stains have disappeared. Clay content increases downward. 6' 549' Above becomes more gritty, coarser grained, more impure sandstone. A 15cm wide interval of purplish brown fissile rock encloses about 4cm wide finely 	3' 452'						
 As in 352'-443' As above, but dead-oil-stained intervals toward the bottom of section contain indurated bitumen cozing out of cracks and core spaces. Oily (petroleum) odor. A couple of tlcm wide mud chips. Core uniformly massive, no apparent bedding or sorting. 525' As in 352'-443'. Minor sorting toward bottom of section. Grades into section below. 542' Pinkish sandstone, with increasingly more interstitial clay and mud chips. Minor (2-3cm wide) fissile reddish to purplish bands; minor brownish mottling. Oily staining about 10-15% of core. Grades into next section. 546' Sandstone has gradually become impure; with reddish and purplish fissile banding also becoming more frequent. Mud chips and occasional clasts. Oily stains have disappeared. Clay content increases downward. 6' 549' Above becomes more gritty, coarser grained, more impure sandstone. A 15cm it wide interval of purplish brown fissile rock encloses about 4cm wide finely 	 As in 352'-443' As above, but dead-oil-stained intervals toward the bottom of section contain indurated bitumen oozing out of cracks and core spaces. Oily (petroleum) odor. A couple of tlcm wide mud chips. Core uniformly massive, no apparent bedding or sorting. 525' As in 352'-443'. Minor sorting toward bottom of section. Grades into section below. 542' Pinkish sandstone, with increasingly more interstitial clay and mud chips. Minor (2-3cm wide) fissile reddish to purplish bands; minor brownish mottling. Oily staining about 10-15% of core. Grades into next section. 546' Sandstone has gradually become impure; with reddish and purplish fissile banding also becoming more frequent. Mud chips and occasional clasts. Oily stains have disappeared. Clay content increases downward. 6' 549' Above becomes more gritty, coarser grained, more impure sandstone. A 15cm wide interval of purplish brown fissile rock encloses about 4cm wide finely 	5.1m)(138m)	이 제공을 하는 것 같아요. 것 이 것 같아요. 것 이 것 같아요. 집에서 가슴을 알고 있었다. 가지 않는 것 이 가지 않을 것 같아. 정말 가지 않는 것 같아.	n an				
 a.2m (158.2m) bindurated bitumen oozing out of cracks and core spaces. Oily (petroleum) odor. A couple of them wide mud chips. Core uniformly massive, no apparent bedding or sorting. bedding or sorting. 525' As in 352'-443'. Minor sorting toward bottom of section. Grades into section below. 542' Pinkish sandstone, with increasingly more interstitial chay and mud chips. Minor (2-3cm wide) fissile reddish to purplish bands; minor brownish mottling. c) 1m (165.2m) c) 246' Sandstone has gradually become impure; with reddish and purplish fissile banding also becoming more frequent. Mud chips and occasional clasts. Oily stains have disappeared. Clay content increases downward. 549' Above becomes more gritty, coarser grained, more impure sandstone. A 15cm wide interval of purplish brown fissile rock encloses about 4cm wide finely 	 indurated bitumen oozing out of cracks and core spaces. Oily (petroleum) odor. A couple of tlcm wide mud chips. Core uniformly massive, no apparent bedding or sorting. 525' As in 352'-443'. Minor sorting toward bottom of section. Grades into section below. 542' Pinkish sandstone, with increasingly more interstitial clay and mud chips. Minor (2-3cm wide) fissile reddish to purplish bands; minor brownish mottling. 10.1m (165.2m) (160.1m) 546' Sandstone has gradually become impure; with reddish and purplish fissile banding also becoming more frequent. Mud chips and occasional clasts. Oily stains have disappeared. Clay content increases downward. 549' Above becomes more gritty, coarser grained, more impure sandstone. A 15cm wide interval of purplish brown fissile rock encloses about 4cm wide finely 	486'	As in 352'-443'					
 odor. A couple of tlcm wide mud chips. Core uniformly massive, no apparent bedding or sorting. 525' As in 352'-443'. Minor sorting toward bottom of section. Grades into section below. 521' As in 352'-443'. Minor sorting toward bottom of section. Grades into section below. 542' Pinkish sandstone, with increasingly more interstitial clay and mud chips. Minor (2-3cm wide) fissile reddish to purplish bands; minor brownish mottling. 6' 542' Sandstone has gradually become impure; with reddish and purplish fissile banding also becoming more frequent. Mud chips and occasional clasts. Oily stains have disappeared. Clay content increases downward. 6' 549' Above becomes more gritty, coarser grained, more impure sandstone. A 15cm wide interval of purplish brown fissile rock encloses about 4cm wide finely 	 odor. A couple of tlcm wide mud chips. Core uniformly massive, no apparent bedding or sorting. 525' As in 352'-443'. Minor sorting toward bottom of section. Grades into section below. 521' As in 352'-443'. Minor sorting toward bottom of section. Grades into section below. 542' Pinkish sandstone, with increasingly more interstitial clay and mud chips. Minor (2-3cm wide) fissile reddish to purplish bands; minor brownish mottling. 6' 542' Sandstone has gradually become impure; with reddish and purplish fissile banding also becoming more frequent. Mud chips and occasional clasts. Oily stains have disappeared. Clay content increases downward. 6' 549' Above becomes more gritty, coarser grained, more impure sandstone. A 15cm wide interval of purplish brown fissile rock encloses about 4cm wide finely 	519	As above, but dead-oil-stained intervals toward the bottom of section contain					
 odor. A couple of ficm wide mud chips. Core uniformly massive, no apparent bedding or sorting. 525' As in 352'-443'. Minor sorting toward bottom of section. Grades into section below. 5' 542' Pinkish sandstone, with increasingly more interstitial clay and mud chips. Minor (2-3cm wide) fissile reddish to purplish bands; minor brownish mottling. 6' 546' Sandstone has gradually become impure; with reddish and purplish fissile banding also becoming more frequent. Mud chips and occasional clasts. Oily stains have disappeared. Clay content increases downward. 6' 549' Above becomes more gritty, coarser grained, more impure sandstone. A 15cm wide interval of purplish brown fissile rock encloses about 4cm wide finely 	 odor. A couple of ficm wide mud chips. Core uniformly massive, no apparent bedding or sorting. 525' As in 352'-443'. Minor sorting toward bottom of section. Grades into section below. 5' 542' Pinkish sandstone, with increasingly more interstitial clay and mud chips. Minor (2-3cm wide) fissile reddish to purplish bands; minor brownish mottling. 6' 546' Sandstone has gradually become impure; with reddish and purplish fissile banding also becoming more frequent. Mud chips and occasional clasts. 0ily stains have disappeared. Clay content increases downward. 6' 549' Above becomes more gritty, coarser grained, more impure sandstone. A 15cm wide interval of purplish brown fissile rock encloses about 4cm wide finely 	.2m) (158.2m	indurated bitumen oozing out of cracks and core spaces. Oily (petroleum)					
As in 352'-443'. Minor sorting toward bottom of section. Grades into section below. 5' 542' Pinkish sandstone, with increasingly more interstitial clay and mud chips. Minor (2-3cm wide) fissile reddish to purplish bands; minor brownish mottling. 0.1m (165.2m) Oily staining about 10-15% of core. Grades into next section. 2' 546' Sandstone has gradually become impure; with reddish and purplish fissile banding also becoming more frequent. Mud chips and occasional clasts. Oily stains have disappeared. Clay content increases downward. 5' 549' Above becomes more gritty, coarser grained, more impure sandstone. A 15cm wide interval of purplish brown fissile rock encloses about 4cm wide finely	As in 352'-443'. Minor sorting toward bottom of section. Grades into section below. 5' 542' Pinkish sandstone, with increasingly more interstitial clay and mud chips. Minor (2-3cm wide) fissile reddish to purplish bands; minor brownish mottling. 0.1m/165.2m Oily staining about 10-15% of core. Grades into next section. 2' 546' Sandstone has gradually become impure; with reddish and purplish fissile banding also becoming more frequent. Mud chips and occasional clasts. Oily stains have disappeared. Clay content increases downward. 5' 549' Above becomes more gritty, coarser grained, more impure sandstone. A 15cm wide interval of purplish brown fissile rock encloses about 4cm wide finely		odor, A couple of ficm wide mud chips. Core uniformity massive, no apparent					
 .2m) (160.1m) section below. 542' Pinkish sandstone, with increasingly more interstitial clay and mud chips. Minor (2-3cm wide) fissile reddish to purplish bands; minor brownish mottling. .1m) (165.2m) Oily staining about 10-15% of core. Grades into next section. 546' Sandstone has gradually become impure; with reddish and purplish fissile banding also becoming more frequent. Mud chips and occasional clasts. Oily stains have disappeared. Clay content increases downward. 549' Above becomes more gritty, coarser grained, more impure sandstone. A 15cm wide interval of purplish brown fissile rock encloses about 4cm wide finely 	 .2m) (160.1m) section below. 542' Pinkish sandstone, with increasingly more interstitial clay and mud chips. Minor (2-3cm wide) fissile reddish to purplish bands; minor brownish mottling. .1m) (165.2m) Oily staining about 10-15% of core. Grades into next section. 546' Sandstone has gradually become impure; with reddish and purplish fissile banding also becoming more frequent. Mud chips and occasional clasts. Oily stains have disappeared. Clay content increases downward. 549' Above becomes more gritty, coarser grained, more impure sandstone. A 15cm wide interval of purplish brown fissile rock encloses about 4cm wide finely 		그는 것 같은 것 같			•		
 5' 542' Pinkish sandstone, with increasingly more interstitial clay and mud chips. A Minor (2-3cm wide) fissile reddish to purplish bands; minor brownish mottling. 6.1m (165.2m Oily staining about 10-15% of core. Grades into next section. 6.2m (166.5m Sandstone has gradually become impure; with reddish and purplish fissile banding also becoming more frequent. Mud chips and occasional clasts. Oily stains have disappeared. Clay content increases downward. 5' 549' Above becomes more gritty, coarser grained, more impure sandstone. A 15cm wide interval of purplish brown fissile rock encloses about 4cm wide finely 	 5' 542' Pinkish sandstone, with increasingly more interstitial clay and mud chips. A Minor (2-3cm wide) fissile reddish to purplish bands; minor brownish mottling. 0.1m (165.2m Oily staining about 10-15% of core. Grades into next section. 2' 546' Sandstone has gradually become impure; with reddish and purplish fissile banding also becoming more frequent. Mud chips and occasional clasts. Oily stains have disappeared. Clay content increases downward. 5' 549' Above becomes more gritty, coarser grained, more impure sandstone. A 15cm wide interval of purplish brown fissile rock encloses about 4cm wide finely 							
Minor (2-3cm wide) fissile reddish to purplish bands; minor brownish mottling. Oily staining about 10-15% of core. Grades into next section. 546' 546' 546' 546' 546' 546' 546' 546' 546' 546' 546' 546' 546' 546' 546' 546' 546' 546' 66.5m 549' 66.5m 66.5m 549' 66.5m 66.5m 66.5m 66.5m 66.5m 66.5m 7 66.5m 66.5m 66.5m 66.5m 7 7 7 80.50 </td <td>Minor (2-3cm wide) fissile reddish to purplish bands; minor brownish mottling. Oily staining about 10-15% of core. Grades into next section. 546' Sandstone has gradually become impure; with reddish and purplish fissile banding also becoming more frequent. Mud chips and occasional clasts. Oily stains have disappeared. Clay content increases downward. 549' Above becomes more gritty, coarser grained, more impure sandstone. A 15cm wide interval of purplish brown fissile rock encloses about 4cm wide finely</td> <td>17 1</td> <td>· 제품 소개품 · · · · · · · · · · · · · · · · · · ·</td> <td></td> <td></td> <td>2 T.</td> <td></td> <td></td>	Minor (2-3cm wide) fissile reddish to purplish bands; minor brownish mottling. Oily staining about 10-15% of core. Grades into next section. 546' Sandstone has gradually become impure; with reddish and purplish fissile banding also becoming more frequent. Mud chips and occasional clasts. Oily stains have disappeared. Clay content increases downward. 549' Above becomes more gritty, coarser grained, more impure sandstone. A 15cm wide interval of purplish brown fissile rock encloses about 4cm wide finely	17 1	· 제품 소개품 · · · · · · · · · · · · · · · · · · ·			2 T.		
0.1m)(165.2m Oily staining about 10-15% of core. Grades into next section. 2' 546' <u>Sandstone has gradually become impure</u> ; with reddish and purplish fissile 5.2m)(166.5m banding also becoming more frequent. Mud chips and occasional clasts. Oily stains have disappeared. Clay content increases downward. 6' 549' Above becomes more gritty, coarser grained, more impure sandstone. A 15cm wide interval of purplish brown fissile rock encloses about 4cm wide finely	0.1m)(165.2m Oily staining about 10-15% of core. Grades into next section. 2' 546' <u>Sandstone</u> has <u>gradually</u> become <u>impure</u> ; with reddish and purplish fissile 5.2m)(166.5m banding also becoming more frequent. Mud chips and occasional clasts. Oily stains have disappeared. Clay content increases downward. 6' 549' Above becomes more gritty, coarser grained, more <u>impure sandstone</u> . A 15cm wide interval of purplish brown fissile rock encloses about 4cm wide finely	542'	Pinkish sandstone, with increasingly more interstitial clay and mud chips.					
2' 546' Sandstone has gradually become impure; with reddish and purplish fissile banding also becoming more frequent. Mud chips and occasional clasts. Oily stains have disappeared. Clay content increases downward. 6' 549' Above becomes more gritty, coarser grained, more impure sandstone. A 15cm wide interval of purplish brown fissile rock encloses about 4cm wide finely	2' 546' Sandstone has gradually become impure; with reddish and purplish fissile banding also becoming more frequent. Mud chips and occasional clasts. Oily stains have disappeared. Clay content increases downward. 6' 549' Above becomes more gritty, coarser grained, more impure sandstone. A 15cm wide interval of purplish brown fissile rock encloses about 4cm wide finely	1 m (65 2m)		•				
5.2m) (166.5m) banding also becoming more frequent. Mud chips and occasional clasts. Oily stains have disappeared. Clay content increases downward. 5' 549' Above becomes more gritty, coarser grained, more <u>impure sandstone</u> . A 15cm 1 wide interval of purplish brown fissile rock encloses about 4cm wide finely	5.2m (166.5m) banding also becoming more frequent. Mud chips and occasional clasts. Oily stains have disappeared. Clay content increases downward. 5' 549' Above becomes more gritty, coarser grained, more impure sandstone. A 15cm 1 wide interval of purplish brown fissile rock encloses about 4cm wide finely						ана. 1949 - Пробелански страна 1949 - Пробелански страна	
5' 549' Above becomes more gritty, coarser grained, more impure sandstone. A 15cm t wide interval of purplish brown fissile rock encloses about 4cm wide finely	5' 549' Above becomes more gritty, coarser grained, more impure sandstone. A 15cm t wide interval of purplish brown fissile rock encloses about 4cm wide finely							
5' 549' Above becomes more gritty, coarser grained, more impure sandstone. A 15cm t wide interval of purplish brown fissile rock encloses about 4cm wide finely	5' 549' Above becomes more gritty, coarser grained, more impure sandstone. A 15cm t wide interval of purplish brown fissile rock encloses about 4cm wide finely	.2m)(166.5m					1. 1.	
1 wide interval of purplish brown fissile rock encloses about 4cm wide finely	1 wide interval of purplish brown fissile rock encloses about 4cm wide finely		그렇게 많이 나는 지원에 가지 않는 것이 같은 것이 가지 않는 것이 같이 같이 같이 않는 것 같이 많이 많이 많이 나라. 그는 것을 가지 않는 것 같이 많이 많이 나라.					
.5m) 167.4m clastic interval. Fracturing 90 to core axis.	.5m) (167.4m) clastic interval. Fracturing 90 to core axis.	549						
	양성에 비행하게 이 정말 것이 같다. 이 이 집에 있는 것이 같은 것이 같은 것이 집에 다 말했는 것은 것이 같은 것이 같은 것이 같이 있는 것이 같이 있는 것이 같이 있는 것을 하는 것이 같이 있는 것이 없다. 것이 같은 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없다. 같은 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없다. 같은 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없다. 같은 것이 없는 것이 없는 것이 없는 것이 없는 것이 없다. 같은 것이 없는 것이 없는 것이 없는 것이 없는 것이 없다. 같은 것이 없는 것이 없는 것이 없는 것이 없는 것이 없다. 같은 것이 없는 것이 없는 것이 없다. 같은 것이 없는 것이 없는 것이 없다. 않는 것이 없는 것이 없는 것이 없다. 않는 것이 없는 것이 없다. 같은 것이 없다. 같은 것이 없는 것이 없다. 않는 것이 없다. 같은 것이 없다. 않는	.5m) (167.4m	clastic interval. Fracturing 90 to core axis.					
요즘 그의 방법형은 가지 않았는 것이 가지? 2000년 가지? 2000년 전 전 것은 것은 것이 가지 않는 것이 하는 것을 만나지 않는 것이다. 정말 것이 가지 않는 것은								

11 · 태종]

ţ

DIAMOND DRILL HOLE LOG 78-508-26

PAGE No. 3/ 3

HOL-19

CORE SAMPLES METERAGE DESCRIPTION FROM TO FROM WIDTH AVERAGES TÓ * 549' 550.5' A section of purplish-brown slightly fissile mudstone, fine grained. Sharp breaks with sections above and below, 285° to 45° , resp., to core axis. 167.4m (168m) Some green mineral (chlorite?) in a longitudinal fracture. (±550.5' to 566' (=167.8m to 172.5m): TRANSPORTED REGOLITH Approaching Regolith zone. 550.5 560± Approaching transported regolith zone: Quartz pebbles, rounded to subrounded, size <1cm to several cm's, in light fleshy-pink to brownish fine-to-gritty 168m) (171m)mudstone matrix. Some large clasts appear to be deeply weathered and altered aneiss. 560' Transported regolith; in gradual change from abo ve section: Mostly angular 566 to sub-angular guartz pebbles in gritty red-brown mudstone matrix. (171m) (172.6m)(566' to 590' (=172.5m to 179.8m): ALTERED-WEATHERED PRE-CAMBRIAN BASEMENT 566' 590±' Weathered (in situ) and strongly altered schist; mixture of grey and reddishbrown minerals. Structure largely indistinct; gneissosity (?) 290°± to core (172.6m)(180m) axis. (Rock appears to be either altered garnet schist or gneiss). Changes into somewhat less weathered rock below. (590' to 704' (=179.8m to 214.6m): PRE-CAMBRIAN BASEMENT Garnet schist, partly altered. Garnet schist: schistosity about 70° to core axis. Kaolinization of feldspars. 590' 605' Grey with brown specks (altered garnets); still slightly altered. (180m) (184.4m) Quartz - feldspar - garnet schist. Light grey with brown garnets, partly altered to chlorite (green); feldspars kaolinized. Schistosity about 45°. 605' 690' 184.4m (210.4m) 690' 704' As above, but garnets largely altered to greenigh chlorite. Feldspars kaolinized (white to buff). Schistosity 50°-70° to core axis. (210.4m)(214.6m) E.O.H. 0704' (214.6m). Core scanned with spp2 scint. Downhole gamma-ray probed to 210m (=689') with Mt. Sopris 1000. B.G. R/A only. Drilled by Canadia Longyear Limited.

200' 200' 300' 400' 499'	(30.2 (60.9 (91.2 (121. (153.2)	9m) 8) 6) 95m)	$\begin{array}{c c} \hline DIP \ TESTS \\ \hline DIP \ TESTS \\ \hline DIP \\ \hline CORE \\ -51 \\ \hline -50 \\ \hline -49 \\ \hline -49 \\ \hline -48 \\ \hline -47 \\ \hline \\ In \ brackets) \end{array}$		DIAMOND DRILL HOLE LOG SECTIO UNITUD Project 508/ALBERTA ELEVATION	N PERMI 2 10.70 2 8.62 N SURFA E BQ E ELDOR	ON 2 Ma 25E 5 Gr ACE	id .	AZIMUTI DII LENGTH PURPOSI COMPLETED	508-20 270 West (T -50 West 499'(152.1m) Test INPUT zo 27-3-78 P. FORTUNA	
TION	10			DESCRIPTION					CORE SAMPL	and the second se	
	l o	Collar:	BW casing to	881 (26 92) . 00		FROM	10	WIDTH	*	AVERADES	
	1		recovered). I	Plastic tubing to	(24.39) left in hole (not		1				
0	85'	Overburden:					1				
	25.9)	<u>overburden</u> :	Generally fir	ne sand; boulders	in bottom 10' (3.05); minor						
1.1.1											
	a ta sa		indicated in	down-hole gamma	No anomalous radioactivity log; B.G 10 c.p.s.						
85'	499	Ing 1 towns .									
	152.1) Unattered Pr	e-Cambrian Basen	ment: core recove	ry nearly 100%:						
,,											
(43.3	113.7	,	in the red alt at 30-90° to t medium grained pegmatitic tex not well devel	the core axis. Getting in the core axis. Getting is minor coarser	in colour, with some minor ns. H=6 but can be as low as 3 chistosity is well developed nerally, the rock is fine to grained sections showing a within the unit. Fracturing is radioactivity (up to 870 c.p.s.) gamma log.						
		Major structur	res: Graphite sh	ear zone from 20	6.5'-220' (62.96-67.1).						
		86'-93' (26.22-28.35)	Coarse grained	, massive textur	e; 60-70% quartz.			•			
		93'-127' (28.35-38.72)		Some minor felsi	ore axis; bands are lmm-3cm wide. ith minor sulphides (pyrite) c sections, pegmatitic in nature.						
		127'-136' (38.72-41.46)	Massive silicia (as described a	bus section, with above). About 60	n minor sections of schist -70%.quartz; pegmatitic.						
		136'-144'			hematite. Banding at 30-45° to	- 19 B					
		130144.	Red altered and	higt 20.200							

TERAGE		DESCRIPTION	Sample				CORE SA	MPLES	-			
			Number	FROM	то	WIDTH	10	1%0	%	8.		
	144'-161' (43.9-49.1)	Intermixed light grey and red altered schist; 30% red altered in short sections up to 3cm wide.					U	Th	Cu	Pb	Zn G	ò
	161'-167.5' (49.1-51.07)	Dark grey schist; locally schistosity poorly developed.										
	167.5'-172' (51.07-52.44)	As described from 136'-144' (41.46-43.9).										
	172'-197' (52.44-60.06)	Dark grey schist; locally gneissic. Texture poorly developed.										
	197'-206.5' (60.06-62.96)	Above schist strongly altered, approaching graphite shear zone; 40-50% red altered; texture well defined.										
	206.5'-220' (62.96-67.07)	Graphite shear zone. Contacts sharp and well defined both at 60° to core axis. Rock is grey in colour, with red alteration on fractures. Graphite coats fractures throughout the section.										
	206.5'-208' (62.96-63.4)	Intensely fractured, broken section.										
	218.5'-220' (66.6-67.07)	Intensely fractured, broken section.										
	220'-263' (67.07-80.18)	Fine grained section, mainly quartz and chlorite; massive texture. The rock is red altered along fractures. Red alteration of feldspar common throughout the section.					4					
	264'-265' (80.49-80.79)	Weak radioactivity (maximum count rate - 150 c.p.s., SPP2). This section registers 870 c.p.s. on the down-hole gamma log.			265.5' 80.94)		<0.001	0.0	₩ 461:	r.		
	263'-305' (80.18-92.99)	Generally fine grained schist, light to dark grey. Schistosity poorly developed locally; 70-90° to core axis.										

	TERAGE	1	DIAMOND DRILL HOLE LOG 78	-508-	26	PAC	SE No3/	4 ,		HOL	ε 5	0 <u>8-</u> ;	2.0
FROM	TO		DESCRIPTION	Sample Number				CORE S	the second s	the second s			
		279'-282'	Gneissic section; 60-70% white quartz bands up to		FROM	TO	WIDT	•		8		T	
		(85.06-85.98)	15cm wide.					U	Th	Cu	I Pb	Zn	Co N
	-	305'-309' (92.99-94.2)	Coarse grained granite/pegmatite (?); 20-30% pink feldspar grains, up to lcm in diameter.						-		•		
		309'-311' (94.2-94.8)	Schist (as (93'-127' (28.35-38.72).										•
		311'-312.5' (94.8-95.27)	As described from 305'-309' (92.99-94.2).										
		312.5'-371.5' (95.27-113.26)	Light to dark grey schist; minor red alteration.										
		356'-359' (108.54-109.45)	Quartz-rich, pegmatitic section.									- 	
		371.5'-373' (109.45-113.7)	As described from 305'-309' (92.99-94.2).										
373' (113.7	499' 152.1)		The rock varies between leucocratic and mafic gneiss. Leucocratic sections generally contain 20-30% pink to flesh-coloured feldspar. Gneigsic banding is well developed throughout at 45-90° to the core axis. H=6 throughout. The unit is about 50% ± quartz overall. No major structures are present, Minor schist. Anomalous radioactivity (up to 430 c.p.s.) detected in down-										
		373'-406' (113.7-123.8)	Mafic gneiss; 40-50% mafics (chlorite and biotite). Some minor sections of schist are massive granite/ pegmatite (?).										
		406'-426' (123.8-129.9)	Leucocratic gneiss, with some minor mafic-rich sections.										
		414'-415' (126.2-126.5)	Weak radioactivity (maximum count rate - 170 c.p.s., 60 SPP2). This section registered 430 c.p.s. on down- hole gamma log.	007 4	L3.5 L26.)	415.5 26.68)	2' (.61)	• t 0.001	↓ .02	↓ 9,Tr			↓ Tr

TERAGE	DESCRIPTION		1		CORE SAM	PLES
= ==i=		FROM	TO	WIDTH	%	AYIRAGU
	423' Gneissic banding @60 ⁰ to core axis. (128.96)					
•	426'-453' Mafic gneiss. (129.9-138.1)					
	436' Gneissic banding at 60 ⁰ to core axis. (132.9)					
	445'-446' Gneissic banding sub-parallel to core axis. (135.67-135.97)					
	453'-499' (138.1-152.1) Leucocratic gneiss; 30% pink feldspar. Well developed gneissic banding at 45° to core axis.					
499' (152.1)	END OF HOLE (E.O.H.). Core scanned with SPP2. Sampled sections split as 2' (.61m) samples.					

ø

137 <u> </u> FROM	DIP TESTS page 1/4 78-508-26 LOCATION 10 101/1 CORA CUM. CUM. DIPARTURE DIAMOND DRILL HOLE LOG SECTION 100' (30,49). -49° CUM. CUM. CUM. CUM. DIPARTURE DIAMOND DRILL HOLE LOG SECTION LATITUDE 200' (60.98) -48° - - Project 508/ALBERTA ELEVATION 300' (91.5) -43° - - - - COR COR 100 - 1.50 -43° -	- 10.7 - 8.5 - SURF - BQ	ZE (GI		. LEN PUR COMPL	DIP -5 DIP -5 IGTH 34 POSE TED FTED -24	508-21 UE (gr 0 ⁰ E 4'(104 st INP -3-78 LAANE1	.8) UT Zor
ETERAGE	(metric depths in brackets) DESCRIPTION	FROM	1 10	WIDTH	CORE SA		1 Ca %.	1 2/1 9/
0 63' (19.2)	Collar: Casing 0' to 65' (0-19.8).(30' (9.15) left in hole, not recovered). Plastic tubing to E.O.H. Core recovery) 95%. Overburden: Sandy. (NO REGOLITH ZONE).							<u>N; 7</u> ,
3' 344'	(19.2 to 104.8): PRE-CAMBRIAN BASEMENT) Mainly blue quartz-chlorite schist and gneiss; no weathering.						•	
3' 65.5' 9.2 20) .5' 73.5' 0 22.4)	Fresh, bluish medium-grey <u>blue-quartz schist</u> : mafic minerals sheared and altered (chlorite). Fine grained sulfide (pyrite) along fractures parallel to schistosity (20-25% to core axis). Quartz (bluish) in bands 0.3 to lcm, mafic bands a few mm's. Some cross-fracturing. R/A.(SPP2 scint.) ± 25 c.p.s., B.G. only, in core. Bluish medium-gray, medium grained <u>blue-quartz gneiss</u> (less sheared than above) Speckled with brownish-red spots in blue quartz (no sharp boundaries); Gneissosity about 30° to core axis. A band of material (K-feldspar?, blue quartz and quartz) several cm wide @70' to 70.5' (21.3-21.5); about 5-10° core axis, cutting across gneissosity. R/A (SPP2) of core 25-30 c.p.s. (B.G.).	46008						
.5' 81'± 2.4 24.7±	Coarse grained section of pegmatitic appearance (pegmatoid) metamorphic rock, irregular boundaries 10-30° to core axis. Feldspars (K, Na?) up to 2cm; blue quartz, dark mafics. Contains intervals of blue-quartz gneiss (as before). Lower part of core broken. R/A of core (with SPP2) higher, up to 50 c.p.s. (2x B.G.); 75-80 c.p.s. @77' (23.5), decreasing downwards.	77' *6008 77' *6009 79'	79' 81'	2' 2'	<0.001 < 0.001	0.015 0.004	frau 	frau 4
1' <u>†</u> 130.5 4.7 <u>1</u> 39.8	<u>Blue-quartz gneiss</u> , similar to section $65.5'-73.5'$ (20-22.4). Broken on top, with 2cm quartz vein (245°) . Small cavities and fracture contain minor bitumen. Some fractures hematite filled. Gneissosity $\pm 30^{\circ}$ (296' to 100' (29.3-30.49), $10-15^{\circ}$ (2129'(39.3), and 45° (210' (33.5); fractures bitumen filled. Chloritic <u>shear</u> zone in broken rock (2114' (34.8), (2 $\pm 15^{\circ}$ to core axis, at least several cm's wide. Pegmatoid section (215.5' (35.2) to 116.5' (35.5); large K-feldspars	# 6010 81'	83.	2	< 0.00 /	0.016		

.

٠

•

METH	ERAGE				No		HOLE 508-2
PROM	TO	DESCRIPTION		i da ka		CORE SAM	IPLES
			FROM	TO	WIDTH	%	
						ſ	
		(several cm's), broken and fractured, R/A 25-35 c.p.s. (B.G. only); quartz fracture filling with small cavities. Sharp break with section below.					
80.5' 19.8	132' 40.24)	Reddish, hematitic, very altered <u>shear zone</u> , very sharp contact above, gradual below, shearing @±15° to core axis, irregular break. Contains blue quartz. Grades into section below.					
2' 0.24	135.5' 41.3)	Blue-quartz schist, with chlorite; darker bluish grey. Broken core @133.5'-134' $(40.7-40.8)$. Lower part of section becomes reddish and pegmatoid, with K-feldspars and blue quartz.					
1.3	136.5' 41.6)	Chloritic greenish-black shear zone in pegmatoids. R/A (SPP2 on core) 150 c.p.s., up to 80 c.p.s. (3-4x B.G.) in lower half.		•			
	137' 41.8)	Continuation of above pegmatoid. Ends sharply in dark <u>chloritic mylonite</u> , several cm's wide @40° to core axis, below.					
	142' 43.3)	Blue-quartz gneiss, in sharp contact with above mylonite. Gneiss as $(81'-130.5')$ (24.7-39.8). Dark bluish grey toward bottom of section.					
3.3	145.2' 44.3)	Coarse, reddish <u>pegmatoid</u> , with K-feldspars, blue quartz, quartz and chlorite; crushed appearance. Definite boundaries: upper $\pm 10^{\circ}$, lower 30° to core axis, adjacent sheer fractures chlorite filled. R/A up to $30-40$ c.p.s. in core (SPP2).					
5.2' 1.3	147.5' 45)	Chloritic <u>blue-quartz</u> schist $(25-30^{\circ}$ to core axis). Dark bluish gray, some reddish mottling. R/A at core 30-40 c.p.s.					
7.5'	148' 45.1)	Pegmatoid, as before.					
	148.5* 45.3)	Chorite mylonite, shear @30° to core axis. Broken core.					
.5'] .3		Dark bluish green, fine grained rock containing fine (up to few mm) <u>blue quartz</u> grains in chloritic matrix, becoming slightly coarser downward. Gneissosity/ schistosity not apparent in upper part. Hairline fissures and fractures @ varying intersecting angles. Brown mottling (hematitic alteration?). Lower contact: a few mm wide fissure filling @45° of pale greenish-yellow mineral.					
		contact: a rew mm wide fissure filling @45° of pale greenish-yellow mineral.					

а а 1. а Ф

.....

	МЕТ	ERAGE	DIAMOND DRILL HOLE LOG 78-508	-26	PAC	SE No	3/4	L	οιε 5	08-21	L
	FROM	TO	DESCRIPTION				CORE S			••••••	*********
1	74.5' 53.2	178.5 54.4)	Blue quartz-chlorite schist (or fine gneiss?), dark bluish-grey. Schistosity $\pm 35^{\circ}$ to core axis. Grades into section below.	FRDM		WIDTH	U ×	Th 7	Cu'l	Ni	2
	78.5' 54.4	180.5 55)	Chlorite mylonite (?) with grains of the								
	30.5' 55	183' 55.8)	Graphitic chlorite mylonite; soft broken core. Blue quartz in lower part.								
	3' 5.8	186' 56.7)	Chlorite mylonite. Fine, soft, dark greenish-gray.								
	6' 6.7	192' 58.5)	Graphitic chlorite schist. R/A ±25 c.p.s. (B.G.) on SPP2.								
	2' 8.5	193' 58.8)	Chloritic blue-quartz schist, with lager blue quartz grains.								
19 (5	3' 8.8	230'± 70.1±)	Chloritic schist, becomes graphitic toward bottom of section. Blue quartz grains 216'-218' (65.8-66.5), 223'-225' (68-68.6).								
	0'± 0.1±	256' 78)	Chloritic schist has become increasingly graphitic. <u>Graphite schist;</u> schistosity 60-70° to core axis. R/A of core 25-30 c.p.s. on SPP2 (B.G. only).								
256 (78		258'± 78.7±)	ADOVE grades into chloritic blue				•				
	3' ± 3.7±	269' <u>+</u> 821)	Above schist grades into coarser, more gneissic, hematized rock with blue quartz grains in chlorite matrix. Strongly altered (hematized in coarsest mid-section).	#60h 260	262'	2'	<0.001	0.0/0	Trea	Treu	
269 (82		287'± 87.5+)	The above becomes fine grained <u>chloritic blue-quartz schist</u> , with some hematization; coarser parts contain blue quartz.	# 6012 262'	264'	2'	< 0.001	0.037	1	11	
287 (87	' <u>†</u> .5±	291'± 88.7 <u>+</u>)	Above grades into <u>chlorite schist</u> , with some crushed and flattened blue quartz grains. Schistosity 25° to core axis.								
291 (88		(1) A 1 (1) A 1	The above grades into medium-gray to greenish <u>chloritic blue-quartz gneiss</u> , with more schistose intervals. Some parts contain abundant quartz. Speckled axis, $(310' (94.5) \pm 30^\circ, (322' (98.2) \pm 45^\circ, (326' (99.4) \pm 40^\circ)$. Last 10' (3.05) becomes more schistoze.								
2000 2000 2000											

		DIAMOND DRILL HOLE LOG78-508-26		PAGE	No. 4/4	····F······	HOLE	508-21
METE:	RAGE TO	DESCRIPTION				CORE SAN	APLES	
			FROM	TO	WIDTH	*		AVERAGES
	1			-		1		
		Schistosity $(342' (104.3) \pm 30^{\circ}$ to core axis; reddish hematitic alteration parallels schistosity. R/A of core ± 25 c.p.s., B.G. only. Deformed and altered garnets (up to 1-2cm) and minute specks of sulfides (pyrite) appear in this section.						
		E.O.H. @344' (=104.8).					1997 - 19	na lain ta s
		Core scanned with SPP2 scint. Downhole gamma-ray probed to 100m (=328'), first through rods/casing, later through plastic tubing (see graphs).						
		Drilled by Canadian Longyear Limited.					•	
		(N.B. This hole was drilled before DDH #508-20).						
			an an Airtean Martin					nation Alternation
		동생님께 말했다. 한국 영상은 이상에 있는 것 같은 것 같						
		그는 것 같은 것 같						
		이 문제 방법에 대한 것을 통했다. 것이 가지 않는 것이 같은 것이 많은 것을 통했다. 같이 들어?						
		그는 것 같은 것은 것을 알았는 것 같은 것이 있는 것을 것을 알았다. 그는 것 같은 것 같						
		, 2019년 1월 2 1919년 1월 2019년 1월 201 1919년 1월 2019년 1월 201						
							• 11 - 11 - 14 - 14 - 14 - 14 - 14 - 14	
					1. S. 1			
		, 이상, 영상, 영상, 영상, 영상, 영상, 영상, 영상, 영상, 영상, 영						
		이 방법에 가지 않는 것 같은 것 같						

TEST 1	FROM I				DIP		ATITUDE	4	DEPAR	11198	page 1/2 78-508-26	LOCATION	PERM	IT 214		HOLE	No	3-22	
1		100'	101AL	m	-70			UM.		CUM.	DIAMOND DRILL HOLE LOG	SECTION	20.92	25 NE 5	GRID	AZIM	UTH -700.	True NE (Gr	ia ne)
		200' 327'	60.98 99.7n	m .	-71°						Project 508/ALBERTA	DEPARTURE	20.4 SURF/		" <u>B</u> " .	LEN	GTH	(99, INPUT	7m)
											ELDORADO NUCLEAR LIMITED	CORE	B.O. ELDOI	RADO,	SASK.	COMPLE	TED - 31-	-3-78 NELA/FO	RTUNA
METER	AGE_	(me	tric d	epths	in br	ackets)		D	ESCRIPTIO	N						CORE SAM			
	0	C	ollar:		B E	W casir .0.H.	ig to	100'	(30.5	5) (al	l recovered. Plastic tub	ing to	FROM	10	HTOIW	*		AVERAGE	13
	100' 30.5)	¢	verbur	den:	S	andy.													
100' 30.5	327'	Ţ	re-Cam	brian	basem	ent:													
100'] 30.5 5	184'	v r z B t (eddish ear to ones, roken ecomes 37.5);	weath K-fe p of s partic core f bette 60 ⁰ (ered, ldspars section cularly from le er deve 2150'	Eresh m 3, some 1, poor 7 115.5 14'-147 210ped	edium quar ly de '-116 ' (43 from 60-7	n grai tz an velop 5.5' (3.9-44 121' 70° @1	ned, d bio ed. K (35.2- .8); (36.9 .60' (reddi: tite. (aolin 35.5) 175'-) down (48.8)	sedimentary rocks. Section sh-brown granitic gneiss. Gneissosity 45-60° to con- ization of feldspar along Bitumen in longitudina. 179' (53.4-54.6). Gneisson n, about 50-55° to core a ; 60° @173' (52.7); 60° (p.s.	Contains ore axis fracture fracture osity							
84'] 56.1 5	188' 57.3)	a	long g harp @	neisso 70 ⁰ to	core	fine q	raine Conta	ed maf ains r	ic ma ed he	trix.	with some elongated K-fe Upper contact sharp 045 ic and yellow limonitic a	1 lower							
88' 2 57.3 6	219' 66.8)	g	neisso	sity 3	in plac	before es; 60 near b	~ @18	38.5'	(57.5): 65`	im grained. Well develope @ @196' (59 8 ; 60 ⁰ @215'	ed (65.5).							
219'2 66.8		q	trongl rained nterva	and f	led and inely	l alter banded	ed gn inte	neiss ervals	with alte	zones rnatii	of darker greenish-grey ng with coarse pegmatitic	fine c looking							
29 2	232.5 70.9)	' G	raniti reen co	c gnei	lss, ir	tensel	y alt	ered.	Feld	spars	have been kaolinized to	yellow-							

FROM	RAGE		· · · · · · · · · · · · · · · · · · ·		No		HOLE JUS
TRUM	TO	DESCRIPTION				CORE SAN	IPLES
			FROM	TO	WIDTH	*	AVE
232.5'	254.5'	GRAPHITE SHEAR ZONE. Strong alteration by graphite; kaolinization secondary.				1	
(70.9	77.6)	Greasy texture; graphite present in massive form as well as fracture coating material. Gneissic texture somewhat preserved. The rock is dark	1.1.1.1.1			1.4.4.2	and the second
		Material, (neiggin touture of the second of west as fracture coating			1		
	\$	greenish-grey in colour terres of a fine rock is dark grey to				1	
1. A.		229'-232.5' (69.8-70.9).	Carlos and				
254.51	276.5						
(77.6	84 31	Fresh, medium grained granitic gneiss, reddish-brown colour. Generally as in $100'-184'$ (30.49-56.1). Gneissosity @70-90° to core axis.	1.1.1	1			
		100 -184 (30.49-56.1). Gneissosity @70-90 to core axis					
276.51	292.5	Coarse grained					
(84.3	89.2)	Coarse grained massive granite, almost pegmatitic. Minor chloritic sections, light green in colour, up to 10cm wide.					
		이 사실 것 같아요. 이					
292.5'	327'	Granitic gneiss (as 254 51-276 FL (75 6 -					
(89.2	99.7)	in lower portion. Banding 870-00 to to Local pegmatitic sections				•	
		Granitic gneiss (as 254.5'-276.5' (77.6-84.3)). Local pegmatitic sections in lower portion. Banding @70-90° to core axis.	1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -				
- 1 - L	327' (99.7)	END OF HOLE (E.O.H.). Scanned with SPP2. No R/A.					
	(99.7)	그 같은 것 같아요. 그는 것 같아요. 이 것 같아요. 그는 것 같아? 이 집에 집에 가지 않는 것 같아요. 이 집에 있는 것 같아요.					
		방법은 사람이 있는 것 같은 것을 가지 않는 것을 수 있는 것 같아요. 이 가지 않는 것 같아요. 가지 않는 것 같아요.					
		[2] 28월 20일 - 28일 - 2 1999 - 28일 - 282 - 28 1999 - 289 - 289 - 289 - 289 - 289 - 289 - 289 - 289 - 289 - 289 - 289 - 289 - 289 - 289 - 289 - 289 - 289 - 28					
		지않는 것은 여행을 전화 가슴을 위한 것 것 같은 것 것 같아요. 가지 않는 것 같은 것 같아요. 것 같아요.					
5 in 1		수 그는 생각이 많다. 영화 방문에 있는 것이 가지 않는 것은 것은 것을 가지 않는 것이 많이 많이 많이 있는 것을 했다.					
		승규는 물 회사에 가지 않는 것 같아요. 이렇게 하는 것 같아요. 이야지 않는 것 같아요. 이야지 않는 것 같아요.					
		. 19 전에 가장 수상에 있는 것도 것 같아요. 또는 것은 것을 다 있는 것이 가지 않는 것이 가지 않는 것이 있는 것이 가 있는 것이 가 있는 것이 가 있다. 가지 가 있는 것이 가 있다. 것이 가 있는 것이 있는 것이 같이 있다. 것이 가 있는 것이 가 있는 것이 가 있는 것이 있는 것이 같이 있는 것이 없는 것이 없다. 것이 있는 것이 있는 것이 없는 것이 없 것이 없는 것이 없 같이 없는 것이 없 것이 없는 것이 없 않이 없다. 것이 없는 것이 없다. 것이 없 않은 것이 없는 것이 없다. 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없다. 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없다. 것이 않은 것이 없는 것이 없다. 것이 없는 것이 없다. 것이 없는 것이 없는 것이 없는 것이 없 않이 않이 않이 않이 않이 않이 않이 않이 않이 않아. 것이 않아. 것이 않아. 것이 않아. 것이 것이 않아. 것이 것이 것이 것이 것이 않아. 않아. 것이 않이 않아. 것이 않아. 것이 않이 않아. 것이 않이 않아. 것이					
		16 2월 16 2월 16 2월 28 2월 28 2월 28일 17일 18일 2월 20일 18일 2월 20일 18일 18일 18일 18일 18일 18일 18일 18일 18일 18					
		그는 것 같아요. 그는 것 같은 것 같아요. 이 같은 것 같아요. 이 같은 것 같아요. 이 있는 것 같아요. 이 것 않아요. 이 것 같아요. 이 것 같아요. 이 것 같아요. 이 있 않아요. 이 것 같아요. 이 것 않아요. 이 있 않아요. 이 있 이 않아요. 이 있 않아요. 이 않아요. 이 있 않아요. 이 않아요. 이 있 않아요. 이 있 않아요. 이 있 않아요. 이 있 않 않아요. 이 있 않아요. 이 있 않아요. 이 있					
		이야지 않는 것 이 것 같아요. 것 같아요. 한 것 같은 것 같아요. 가지 않는 것 같아요. 것 같아요. 한 ? 한 것 같아요. 한 ? 한 ? 한 ? 한 ? 한 ? 한 ? 한 ? 한 ? 한 ? 한					
			· · · ·			: I	
	1						
- 1 I		· 동안에 가는 물건에 가지 않는 것은 것을 많은 것을 받을까요? 이 같은 것은 가지 않는 것은 것을 하는 것을 했다. 🚺				- 1 J	
		이 것 같아요. 이 것 같아요. 말한 것이 가지 않는 것 같아요. 이 가 있는 것 이 가 있는 것 같아요. 이 가 있는 것 같아요. 이 가 있는 것 같아요. 이 가 있는 것 이 가 있는 것 같아요. 이 가 있는 것 이 가 있는 것 ? 이 가 있는 것 이 이 가 있는 것 이 이 이 가 있는 것 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이			. 1		
					e e e e 🖡	.	
		같은 사람이 잘못하고 못했어? 이 이 가지 않는 것 수 있는 것 것 같은 것 같은 이 가지?					
		물건에 비난 생활 사람들은 물건 가지만 그 것을 넣는 것이 있으니까? 것이 많이 가지만 못했다.	1. P. 1				
				a bar 🛛 a			
				1 A 2	and the second second		

71517 		DIP TESTS 100 TOTAL CORL CUM. DEPARTURE 100' 30.49m. -53° -	page 1/3 78-508-26 DIAMOND DRILL HOLE LOG SECTION LATITUDE DEPARTURE Project 508/ALBERTA ELEVATION ELEORADO NUCLEAR LIMITED STORAGE	21.6 20.5 SURF B.Q.	ACE	Grid "B"	LENG PURPO COMPLET	H <u>320° True</u> -53° NW 503'(153.3m) St <u>Test INPUT zon</u> el0
FROM	TO	(metric depths in brackets) DESCRIPTION		FROM	1 10	1	CORE SAME	
0	0 107'	Collar: BW casing to 108' (32.9) (100 recovered). Plastic tubing to Overburden: Collared in muskeg; 3' (.91)	of core recovered from bouldars	FROM	10	HIGIW	*	AVERAGIS
		consist of: 20cm's Athabasca sandston piece of limy Devonian mudston Devonian mudstone. This follo consisting of consolidated gn fragments and rounded pebbles origin (river channel?); the coarse, containing highly lea	he (top), 1"±(2.54cm) across, one one; 5.5" (14cm) of core of limy owed by 2' (.61m) section of core ay mud containing small rock (not limy), apparently of recent last few inches of it are very ached and weathered (kaolinized) cubble of granitic rock, which bout 107' (32.6).					
		Mainly dioritic and granitic gneisses.						
107' 1	38.7)	Weathered and altered granite, probably close surface. First 2' (.61m) are crumbly, pitted a weathering near present surface. Remainder of medium to coarse grained reddish granitic rock feldspars, quartz and micas. Alteration decrea with clay and limonitic filling; some fracture not apparent. R/A (radioactivity) of core 25-3 SPP2 scint.	nd porous, indicating more recent section contains highly altered with altered (kaolinized) ses downward. Fractured in places, contain bitumen (neissection)					
126.8 (38.7		Felsite dike. Reddish fine grained rock, alter Upper contact 70° (to core axis), lower 50° (w both are sharp. R/A of core 25-35 c.p.s. (B.G.						
129.5 (39.5	140' 42.7)	Altered granite, similar to 107'-126.8' (32.6- texture becoming very apparent. Clay minerals broken in places. Fresh appearing sections (wi some more weathered and kaolinized intervals. (42.1).	38.7) above. Coarse gneissic and bitumen in fractures; core					
• 1								

тų ,

MET	ERAGE	DIAMOND DRILL HOLE LOG 78-508-	26	PAG	2/	/3 r	HOLE 508-23
FROM	TO	DESCRIPTION				CORE SAA	
140' (42.7	167' 50.9)	Granite, similar to above, but fresher. Gneissosity poorly developed, about 30-40° to core axis @160' (48.8).	FROM	TO		*	AYIRAGES
167' (50.9	198' 60.4)	Dark, reddish to greenish grey fine grained rock, altered in upper part of section; probably a <u>dike</u> ?. Chlorite, hematite and kaolinized feldspars in altered part. 2-5mm veinlets and fissures at various angles, filled with pale greenish to yellowish mineral (calcite and/or siderite?), locally hematitic; wallrock. Some fissures show slickensides. R/A B.G. only.					
198' (60.4	219' 66.8)	Dark, reddish to brownish granitic gneiss. Mostly medium grained with some coarser, less gneissic intervals (pegmatitic). Strongly altered (hematite, chlorite, kaolinite) interval from 212.5' to 214' (64.8-65.2). Fine fissures, filled with reddish hematite and siderite. Gneissosity: 70° to core axis @198' (60.4), 60° @211' (64.3), 70° @217' (66.2).					
219' (66.8	224' 68.3)	As in 167'-198' (50.9-60.4) (dike?).					
224' (68.3	226' 68.9)	Reddish gray, fine to medium grained granitic gneiss.					
226' (68.9	228' 69.5)	Quartz vein; milky white, massive, irregular contacts.					
228' (69.5	257 ' 78.4)	Mixture of fine grained reddish and greenish grey rock and gneissic granite, alternating intervals. Siderite in fissures. Gneissosity 50° to core axis					
257' (78.4	264'± 80.5±)	As above, but very broken and altered. Chloritic; vuggy siderite filled interval about 261' to 262' (79.6-79.9).					
264'± (80.5±		Coarse, pegmatitic, with highly altered intervals both above and below.					
266' (81.1		As in 228'-257' (69.5-78.4); <u>Mixture</u> of greenish grey, fine grained <u>greissic</u> rock and coarser more <u>granitic greiss</u> . Hard red hematite, 5-6cm, $(283' (86.3))$; fine pyrite along fractures (about 283.5' (86.4), 308' (93.9), 312' (95.1). Greissosity: 40° to core axis (277' (84.4), 30° (288' (87.8), 45° (302' (92.1)), 35° (318' (96.9).					

ŗ

MET	ERAGE	DISTICUE DALLE HOLE EUG	-508-2 Sample	·	PAG	3/: E No		HOLE 508-23
			Number		то	WIDTH	CORE SA	
		(Core, in general, has become darker, grayer, finer grained intermediate dioritic gnelss downwards; some intervals appear argillaceous and contain pyrite along fractures. Coarser intervals are granitic, with reddish K- feldspars and some quartz.)	h					AVIRAGES
320' (97.6	324 't 98.8±	Dark greenish-black very fine grained chloritic rock, argillaceous appearance. Pyrite smeared along fractures. No sharp contacts; contains some more gneissic intervals (about $\pm 45^{\circ}$).						
324'± (98.8±	410' 125)	The above section has graded into more dioritic looking gneissic rock, similar to 266'-320' (81.1-97.6). Dark to medium gray, with some lighter intervals and bands containing coarse quartz and reddish feldspars. Gneissosity usually well developed. eg: 50° 0325' (99.1) 25° 2223						
		Gneissosity usually well developed, eg: 50° (325' (99.1), 25° (333' (101.5), 25° (348'(106.1), 30° (3581' (109.1), 45° (362' (110.4), 35°) (366' (111.6), 30° (381' (116.2), 40° (393' (119.8), 50° (407' (124.1), Pyrite common in fractures. Some small veinlets and fissures (less than 60)	# 013	400'	grab	2"		°/0
1 1		Icm), mostly parallel to gneissosity are filled with reddish-orange mineral (siderite?). An argillaceous interval @361'-362' (110.1-110.4) is broken, with calcite and finely crystalline pyrite blebs along fractures. Bottom most 10' (3.05m) becomes finer grained, chloritic; gneissic texture barely apparent, contains some very finely disse- minated pyrite (see: grab sample for sulfides).		121.9)	JIAD	(5.08cn		(Cn, Ni, Co) traces only
410' (125	412.5 125.8)	그는 것 이렇게 잘 하는 것 같은 것 같아요. 이렇게 이렇게 하는 것 같아요. 이렇게 하는 것 같아요. 이렇게 나는 것 같아요. 이렇게 가지 않는 것 같아요. 이렇게 나는 것 같아요. 이렇게 나는 것						
412.5 (125.8		Dark to medium gray <u>dioritic gneiss</u> , as in 324'-410' (98.8-125). <u>Pyrite</u> in fractures, particularly in more argillaceous, finer grained intervals (eg. 481'-484' (146.6-147.6), 496'-497' (151.2-151.5)). Gneissosity: 60° to core axis at 416' (126.8), 40° @427' (130.2), ±45° @441' (134.4), 45° @458' (139.6), 40° @470' (143.3), ±40° @478' (145.7), ±40° @491' (149.7), 50° @502' (153). Irregular quartz veins @472'-474' (143.9-144.5).						
		E.O.H. @503' (=153.3). Drilled by Canadian Longyear Limited. Core was scanned with SPP2 scint: -no anomalous R/A. No anomalous R/A was detected with downhole gamma-ray probe. E.M. Conductor was not intercepted (assume dip away from hole).						

¢

۰.

. .

١

1.640

1111 180 	5M	10 100'	тотац 30.49m .	DIP TESTS DIP CORE -51°		UDE CUM.		CUM.	Page 1/5 78-508-26 DIAMOND DRILL HOLE LOG	LOCATION SECTION LATITUD	20.80	ONE 7G	rid B"	HOLE	$\begin{array}{c} \text{OF} \frac{140}{-52} \text{SE} \\ \text{OF} \frac{-52}{451} \text{SE} \end{array}$
		438'	133.54m	-50°					Project 508/ALBERTA ELDORADO NUCLEAR LIMITED	DEPARTUR ELEVATION COR STORAG	SURFA B.Q.		•••••••	LEN PURF COMPLI	OSE Test INPUT zone -8-4-78
ETEPAG	E_	(me	etric dept	ths in bra	ckets)		DESCRIPTION	••••••••••••••••••••••••••••••••••••••		Sample	1	·····		CORE SA	WPLES
	02' 1.6) 0'±	Ove (20 In- Pre Ori in Co of cl ab 40 (22 wi	-situ rega -Cambriar Iginal mir places. lor of al all feld ay filled out 90-95 0 @218' (38' (72.5	hole (11) Sand ly r subc 1' (61.6-1 olith zone herals, ex (Assume cl teration spars. Bro . Original %. Gneisso 66.46), al 6), about	e; not r 7.7); bl 4, with hear and crop. Di 	ecover ocked 1 numerow above fficul ALTEREN sic row deeply artz, a to ori reddis t crum size p 0-60 (223' 0' (76	ed). Pla by cavin is large the bas t drilli <u>O PRE-CA</u> cks, gra <u>altered</u> are dest lginal P h brown bly core robably to core (67.98) .22). R	astic ng-in sement ng. <u>MBRI/</u> aphite (in- royed 're-At (hema e, po: axis), 30' /A of	' (59.4) casing left in tubing from 0' to 386! below this level. distone boulders, particular- t surface. No sandstone <u>AN BASEMENT)</u> e, fault gouge. -situ) granitic gneisses. d. Gneissic texture apparent thabasca paleosurface.) atized). Kaolinization rous in places. Fractures se to medium. Core recovery @211' (64.33), about @230' (70.12), 30-35° core about 20 c.p.s. (B.G. , and grades into section						AVERAGES
50' ± 27 76.2 82	_	Co in sh @2 gr to (<u>N</u> b	re has be places. een when 59'-260' anitic in ward bott .B. Downh	Broken co: wet). Stro (78.96-79. tervals. om, using ole gamma 9' and 27	re. Redd ongly al .27); fe R/A of c SPP2 sc -probinc	lish cl tered ldspar ore ±2 int.	ay in fr rock. Gr s kaolin 5, incre le indie	ractu neiss nized eases cates	ark greenish to reddish res (has metallic coppery osity about 45° to core axi . Quartz in coarser, to 40-50 c.p.s. (2x B.G.) a <u>radioactive section</u> 138 on Mt. Sopris 1000,	6014 s	256.5' (78.2)	spm.	2" (5.084	em)	% (Cu, Ni, Co, Pb, Zn trausonly 74: -

e

FROM	RAGE	DESCRIPTION	Sample				CORE SA		·.	
			Number	FROM	T0	WIDTH	<u>U*</u>	Th %	(m %.	1
272' (82.9	276' 84.15)	Strongly altered, reddish, coarsely granular rock, <u>Granite</u> ? No gneissic texture. Red K-feldspars abundant, partly altered. R/A of core about 40-55 c.p.s. (2x B.G.). (This R/A section, plus the lower part of	6015	273' (83.2	275' 83.8)	2' (.61)	100.0	0.012	trace	
		previous section above correspond with the downhole gamma-probe "high".) Some pale, apple-green mineral occurs in top of this section, also elsewhere.								
276' (84.15	283' 86.28)	A finely <u>gneissic</u> , almost schistoze, altered section. Bands of chlorite alternate with kaolinized feldspars, @30° to core axis. R/A of core about 50 c.p.s. (2x B.G.).								
283' 86.28	287 ' 87.5)	Altered granitic section, becomes finer grained and light greenish gray in center.								
287' 87.5	294' 89.6)	Dark greenish chloritized gneissic section; core partly broken. Gneissosity about 30° to core axis.								waters in the supervised worked
	299'± 91.16±)	Altered granite; soft, broken core. R/A of core about 30 c.p.s.								al-mark company in a bolice
299 '± 91.16	330'± 100.6)	Chloritized and kaolinized gneiss, as before. Gneissosity: 60° @309' (94.21); 60° @316' (96.3); about 45° @323' (98.47). Grades into section below:								
30'± 100.6	335' 102.1)	Very dark greenish black, fine grained altered and partly brecciated <u>argillaceous</u> looking rock; contains finely disseminated pyrite. Locally some gneissosity, eg. 60° (332' (101.2). Grades into next section:								and as and the providence of the
335' 102.1	336' 102.4)	Sheared and fractured hard argillaceous rock. Many hairline fractures are filled with quartz ($(230^{\circ} \pm)$). Contains finely disseminated <u>pyrite</u> . Greenish black. Rather sharp contact, 30° to core axis, with section below:								an owner the summary statements and provide the summary statements and the summary statements a
336' 102.4	337 '± 102.7 [±])	Graphite; contains minor disseminated pyrite. Lower, contact sharp, $\frac{0}{25}$ to core axis. Estimate: ± 30 % core lost.								
		방법은 이 바이가 있는 것 같아요. 이 가지 않는 것 같은 것은 가지 않는 것은 가지 않는 것을 가지 않는 것 같아요. 가지 않는 것은 것은 것을 가지 않는 것을 수 있다. 이 있는 것을 것을 수 있다. 이 있는 것을 것을 것을 것을 것을 수 있다. 이 있는 것을								

M	ETERAGE	DIAMOND DRILL HOLE LOG	78-	508-26	PAG	E No3/5				EO	0 0 4
TRO	OM TO	DESCRIPTION	Sample	<u> </u>			CORE SA		IOLE	50	8-24
(10)	7'± 338. 2.7 103.	 Hard, coarse grained crystalline rock, located between the graphite sections. Lower contact sharp, about 40-45° to gore anishing 	Number	FROM	TO	WIDTH	Cu x		12.2	10 .	141.11
		2) sections. Lower contact sharp, about 40-45° to core axis. Mottled with light gray (quartz), green, and brown (hematitic) mineral grain; inter mainly pyrite, possible some chalcopyrite. Green mineral is undeterm- ined (dull lustre, no cleavage, dull grayish-green color, soft.) A	6016 #	338' (103)	spm.	3" (7.62¢	0.01				0.03
338. (103	5' 353' .2 107.6	Section consists of very broken, estimate about 40% of core is lost. <u>Mixture of graphite</u> , and the rock described in previous section (337'- <u>338.5' (102.7-103.2)</u>) which is highly sheared here and <u>impregnated</u> with fine sulfides (pyrite), 5-10% of rock, up to 25% in places. The <u>contact</u> between the graphite and the rock previously described appears to run <u>subparallel</u> to almost parallel to core axis. Graphitic side of The bottommost 4' <u>f</u> (1.22) of this section consists of fine multiple and the core.	±	339.5' (103.5 <i>341</i> ′	spm.	2" (5.08c 2 ^{-*} ±	n)	Tr. Tr.			0.05
(107. 356' (108. 356.5 (108.) 358'1	356' 6 108.5) 5 108.69 1358'± 69 109.1 1367'± 111.89	As in 337'-338.5' (102.7-103.2), but more crushed and altered. Sulfide (pyrite) content less than 0.5%, mainly as finely disseminated grains. Lower contact zone lost in the core. Soft, crushed rock, consisting of graphite and kaolinite; shearing) about 45°. Grades into next section: Very fine grained dark greenish (chloritic) to brownish (hematitic) soft schistoze rock. Shearing 30° or less to core axis. Contact with i.e. longitudinal "slices" of core consist of fault gouge and highly									

*

	RAGE	DESCRIPTION	Com.1			E No			HOLE	508	
FROM	TO	DESCRIPTION	Samp1 Number	-	-			AMPLES			
367 ½ (111.8)	387' <u>+</u> 117.9	Main fault zone section: Very soft, crumbly, sheared and crushed 9) chloritized-kaolinized rock containing quartz fragments. Surface of core washed away, pitted. Fracturing and shearing from 15-20° to The drill tel		FROM		WIDTH	Cu ×	_ <u>P6;</u>	<u>% Z.</u>	<u>: Co</u> ;	4
		The drill hole apparently follows this fault zone at an acute angle $(15-30^{\circ}$ to core axis); caving was reported from the foregoing $\pm 40^{\circ}$ (12.2) of hole section. Core recovery good, $90-95$ %.									
387'± (117.99 397'±		recovery good. Contains fault gouge; fractures 30-45° to core axis.									
(121	123.5)	Fine grained dark greenish rock with red (hematitic?) alteration; argillaceous appearance. <u>Chloritic</u> , some kaolinite. Core broken in places. Becomes gradually more <u>gneissic</u> and medium to fine grained toward bottom of section, grading into next section:									
405'± (123.5	422'± 128.66)	Strongly altored mast in a									
	130.18	Fine grained, mainly pale to dark greenish (in bands), partly) argillaceous altered rock with chlorite, kaolinite and red (hematitic) minerals. Quartz appears toward bottom of section where rock becomes harder and less altered; some intervals are siliceous. Feldspars and quartz are crushed and fractured. Gneissosity about 50° to core axis @425' (129.57). Grades gradually into next section.									
427'± 4 130.18	136.6)	The above has graded into fine grained, lighter colored (pale reddish to greenish) <u>siliceous</u> rock. Much crushing and shearing evident throughout the section. Some small intervals have altered <u>granitic</u> appearance, with much quartz and K-feldspars; other intervals are fine grained and <u>argillaceous</u> . Gneissosity/schistosity: about 50 [°] @429' (130.8), 60 [°] @441' (134.45), 70 [°] @447' (136.3).									
136.61	450 <u>4</u>	Reddish, altered medium-fine grained rock, - a felsitic dyke? Upper contact about 50° to axis, lower contact indistinct.		448' 136.6	450' 137.2)	2' (.61)	Trau			-	Tn
	451' 137.5)	As in 422'-448' (128.66-136.6). Gneissosity about 50 ⁰ to core axis.				Also:	U'.= Th/.=				

· ·

€

E.O.H. @451' (±137.5). Drilling difficulties both in overburden and in graphite/fault zones; caving and blocking. Core was scanned with a SP2 scint. Hole was downhole gamma-ray probed through rods and casing to 130m (±426.5'). Drilled by Canadian Longyear Limited.	METERAGE	DIAMOND DRILL HOLE LOG 78-50	08-26	PAGE		CORE SAM	HOLE 508-24
E.O.H. @451' (=137.5). Drilling difficulties both in overburden and in graphite/fault zones; caving and blocking. Core was scanned with a SPP2 scint. Hole was downhole gamma-ray probed through rods and casing to 130m (=426.5').			FROM	TO	The rest of the local division of the local	A CONTRACTOR OF	
Drilling difficulties both in overburden and in graphite/fault zones; caving and blocking. Core was scanned with a SPP2 scint. Hole was downhole gamma-ray probed through rods and casing to 130m (=426.5').		<u>Е.О.Н.</u> @451' (_137.5).					
		Drilling difficulties both in overburden and in graphite/fault zones; caving and blocking. Core was scanned with a SPP2 scint. Hole was downhole gamma-ray probed through rods and casing to 130m					

W

1537	TEOM 1	TO TOTAL	DIP TESTS DIP COXE,	LATI	TUDE	DEPA		page 1/4 78-508-26	LOCATION		IT 214	••••		No	8-25 0 True
100' 200'	(30.b) (61m)	n)	-540		CUM.	-!	CUM.	DIAMOND DRILL HOLE LOG		22.40	ONE) Gr			DIP5	2° SE 2 (128.6m)
<u>300'</u> 400'			-49,0					Project 508/ALBERTA ELDORADO NUCLEAR LIMITED	ELEVATION CORE	SURF/ BQ	ACE		PURF COMPL	POSE TES	it Turam co -4-78 A. FORTUNA
ETE	RAGE	• (metric dep	pths in bi	ackets)		DESCRIPTIC	<u>.</u>		1.00000				CORE SA		
a					**********	de Alle I. I. Mary				FROM	10	WIDTH	*	=	AVERAGES
	0	Collar:		Casing	to 85'	(25.9)	; left	: in hole.							
0	85'	Overburden	• •	Sandy.											
	(25.9)			No sedin	mentary	rocks	•								
	422'	Pre-Cambria	an basemer	t:		•							a de la com		
25.9	128.6											and the second			
85'	191'	Altered Bas	comont Por	k (in ci	h.,	1212] •		ŀ	
25.9	58.2)		1							i e				1	
			s reddish-												
		The rock had dominant. A	the section ally presense been in Alteration the core.	on, and f rved, wit tensely a by chlor The rock	th band altered rite in	ing ge with crease	neral] hemati s with	y at 45-90° to the core ax: tization and kaolinization depth. No major structures feldspar and about 20% ma	is.						
		The rock ha dominant. A present in	the section ally presents been in Alteration the core. hides (pyr	on, and f rved, wit tensely a by chlor The rock	th band altered rite in k is 80	ing ge with crease % quar	nerall hemati s with tz and	o medium grained. Gneissosi y at 45-90° to the core ax: tization and kaolinization d depth. No major structures feldspar and about 20% ma:	is.						
		The rock ha dominant. A present in minor sulph 85'-86.5' (25.9-26.4) 86.5'-109'	the section ally present as been in Alteration the core. hides (pyr	on, and f rved, wit tensely a by chlor The rock ite). Red alte Section	th band altered rite in k is 80 ered se is int	ing ge with crease % quar ction; ensely	nerall hemati s with tz and .brecc kaoli	p medium grained. Gneissosi y at 45-90° to the core ax: tization and kaolinization a depth. No major structures feldspar and about 20% mas siated.	is. s are fics; vellow						
		The rock had dominant. A present in minor sulph 85'-86.5' (25.9-26.4)	the section ally present as been in Alteration the core. hides (pyr	on, and f rved, wit tensely a by chlon The rock ite). Red alte Section in colou	th band altered rite in k is 80 ered se is int ir, sof	ing ge with crease % quar ction; ensely t. Min	nerall hemati s with tz and .brecc kaoli or hem	medium grained. Gneissosi y at 45-90° to the core ax: tization and kaolinization depth. No major structures feldspar and about 20% mas iated.	is. s are fics; yellow (30m)						
		The rock ha dominant. A present in minor sulph 85'-86.5' (25.9-26.4) 86.5'-109'	the section ally present as been in Alteration the core. hides (pyr	on, and t rved, wit tensely a by chlor The rock ite). Red alte Section in color wide. Gr core.	th band altered rite in k is 80 ered se is int ir, sof neissic	ing ge with crease % quar ction; ensely t. Min bandin	nerall hemati s with tz and .brecc kaoli or hem ng in	p medium grained. Gneissosi y at 45-90° to the core ax: tization and kaolinization depth. No major structures feldspar and about 20% ma tiated.	is. s are fics; yellow (30m)						
		been partia The rock ha dominant. A present in minor sulph 85'-86.5' (25.9-26.4) 86.5'-109' (26.4-33.2) 98.5'	the section ally present as been in Alteration the core. hides (pyr	on, and t rved, wit tensely a by chlor The rock ite). Red alte Section in colou wide. Gr core. k" (.56c Weakly t	th band altered rite in k is 80 ered se is int ir, sof heissic cm) gou	ing ge with crease % quar ction; ensely t. Min bandin ge on rately	nerall hemati s with tz and .brecc kaoli or hem ng in fractu hemat	o medium grained. Gneissosi y at 45-90° to the core ax: tization and kaolinization a depth. No major structures feldspar and about 20% mas tiated. nized; feldspars generally atitized sections up to 1' upper portion of section @4	is. s are fics; yellow (.30m) 45° to						
		been partia The rock ha dominant. A present in minor sulph 85'-86.5' (25.9-26.4) 86.5'-109' (26.4-33.2) 98.5' (30) 109'-141'	the section ally present as been in Alteration the core. hides (pyr	on, and t rved, wit tensely a by chlor The rock ite). Red alte Section in colou wide. Gr core. k" (.56c Weakly t	th band altered rite in k is 80 ered se is int ir, sof heissic cm) gou	ing ge with crease % quar ction; ensely t. Min bandin ge on rately	nerall hemati s with tz and .brecc kaoli or hem ng in fractu hemat	o medium grained. Gneissosi y at 45-90° to the core ax: tization and kaolinization a depth. No major structures feldspar and about 20% mas stated. nized; feldspars generally matitized sections up to 1' upper portion of section @4 are @60° to core axis.	is. s are fics; yellow (.30m) 45° to						
		been partia The rock ha dominant. A present in minor sulph 85'-86.5' (25.9-26.4) 86.5'-109' (26.4-33.2) 98.5' (30) 109'-141'	the section ally present as been in Alteration the core. hides (pyr	on, and t rved, wit tensely a by chlor The rock ite). Red alte Section in colou wide. Gr core. k" (.56c Weakly t	th band altered rite in k is 80 ered se is int ir, sof heissic cm) gou	ing ge with crease % quar ction; ensely t. Min bandin ge on rately	nerall hemati s with tz and .brecc kaoli or hem ng in fractu hemat	o medium grained. Gneissosi y at 45-90° to the core ax: tization and kaolinization a depth. No major structures feldspar and about 20% mas stated. nized; feldspars generally matitized sections up to 1' upper portion of section @4 are @60° to core axis.	is. s are fics; yellow (.30m) 45° to						

IETE	RAGE		b Managerala	Sample	T			CORE SAM	APLES	-
DM	TO		DESCRIPTION	Number	FROM	то	, WIDTH	8	1 7	AVERAGE
	1. 54	126'	Gneissic banding @80° to core axis.		-	-		U	Th	
		(38.4)								
		141'-156.5' (43-48)	Fine grained section; larger (2-3mm) clasts throughout, dark red (probably hematitized feldsp			112 - 112 - 113 113 - 113 - 113 - 113 - 113 - 113 - 113 - 113 - 113 - 113 - 113 - 113 - 113 - 113 - 113 - 113 - 113 - 113 - 113				
			and flecks of chlorite. Kaolinization throughout section.	ar						•
		156.5'-167'	Chloritized section, generally pale green in colo	ur.			la en Las estas			
		(48-51)	minor kaolinization. Locally reddish-brown, intensely hematitized.							
		163'-164'	Medium to coarse grained brecciated section; 30-4	08						h été
		(49.7-50)	blue-grey quartz.	#						
		167'-176' (51-54)	Intensely hematitized, reddish-brown section. Mi kaolinization. Gamma-log response to 115 c.p.s. Not detected on scintillometer.	nor 6021	171' (52.1	173' 52.7)	2' (.61)	<0.001	0.013	
		176'-180' (54-55)	Blueish-green section, weakly hematitized 30-40% blue quartz.							
		180'-186.5' (55-57)	As described from 167'-176'(51-54). Minor dark green chloritic sections.							
		186.5'-191' (57-58.2)	As described from 176'-180'(54-55).							
	199'	Fine grained, ma	fic-rich section; argillaceous (?). Chloritized and							
. 2	50.6)	nematitized. Str	ong hematite filled fractures, generally sub-parallel m 194'-195'(59.1-59.4). Upper contact at 70° to core				•			
	422'		OCK (GRANITIC GNEISS)							
6]	128.6)		pink in colour, locally mafic-rich, but generally							
		is present through	ure; H=6. A moderately to well defined gneissic texture ghout the unit, with banding at 30-80° to the core					•		
		axis. Minor mass quartzite, are p	ive sections, ranging in width to 2.5'(.76m), generally resent within the section. The rock is fine to medium ve basic dykes (diabase?), green in colour, up to 11'							
		(3.3) wide cut th	he section.							
					1.2.4		a tha an			

METE	RAGE		DIAMOND DRILL HOLE LOG 78-508	Sample		PAGE	No3/	CORE SAM		E 508-25
TOM	70			Number	FROM	TO	WIDTH	*	1 %	AVERAGES
		Composition:	70-80% quartz and feldspar, 20% mafics. Fracturing is random. Minor radioactivity. Local alteration; kaolinization.					U	Th	iten dadou internationale period
		-199'-235.5' (60.6-71.8)	Granitic gneiss. Orange to reddish-brown in colour; banding @50-60° to core axis.							
		219.5'-221' (67-67.3)	Light grey quartzite band.	4						
		229.5'-230' (70-70.1)	Weak radioactivity (maximum count rate - 75 c.p.s., SPP2). This section registers 165 c.p.s. on down- hole gamma log. Within 2" (5.08cm) wide brecciated section.	6020	228' (69.5	230' 70.1)	2' (61)	(0.001	0.015	
		232'-234' (71-71.3)	Light grey quartzite band.						•	
		235.5'-236' (71.8-72)	BASIC DYKE (diabase?). Both margins sharp @80-900 to core axis and chilled. Dark green in colour, fine grained massive, H=7. Red, hematite-filled fractures.							
		236'-313' (72-95.4)	Granitic gneiss as per general description.							
		249' (76)	Gneissic banding @45 ⁰ to core axis.							
		265' (81)	Gneissic banding @50 ⁰ to core axis.							
		275'-277' (84-84.4)	Breccia. Large hematitized feldspar clasts in siliceous matrix.							
		292' (89)	Gneissic banding @30 ⁰ to core axis.							
		305' (93)	Gneissic banding 045 ⁰ to core axis.							
		313'-314' (95.4-96)	BASIC DYKE. As described from 235.5'-236' (71.8-72). Both margins chilled; upper at 20°, lower at 45°.							
		314'-321' (96-98)	Mafic gneiss. Generally reddish-brown to greenish- grey in colour. Banding at 40° to core axis. Local mafic sections.					antigan Transition T		

TERAGE			i			···F	HOLE 508-25
10		DESCRIPTION				CORE SAME	PLES
	321'-322'		FROM	TO	WIDTH	*	AVIRAGIS
	(98-98.2)	BASIC DYKE. Contacts sharp at 60° and 45° .					
	. 322'-328' (98.2-100)	Generally as described from 314'-321'(96-98).					
	328'-339' (100-103.3)	BASIC DYKE. Rock similar to 235.5-236'(71.8-72). Contacts upper @60°, lower poorly defined. Core is generally broken.	•				
	339'-391' (103.3-119.2)	Mafic gneiss, 20-30% mafics. Local quartz bands up to 1' (.30m) wide. Minor broken sections.					
	360' (110)	Gneissic banding @60 ⁰ to core axis.					
	370'-379' (113-115.5)	Broken core.					
	379.5'-380' (115.7-116)	BASIC DYKE (?).					
	385'-391' (117.4-119.2)	Transition zone. Increasing alteration (kaolinization) into underlying section.					
	391'-408.5' (119.2-124.5)	Altered section. Rock has been strongly altered (talc and kaolinization). Generally yellowish in colour. The upper and lower portions of the section are strongly chloritized.					
	405' (123.5)	Gneissic banding @80 ⁰ to core axis.					
	408.5'-422' (124.5-128.6)	Granitic gneiss. Banding generally at 60 ⁰ to core axis. Reddish-brown.					
422'	E.O.H.	End of hole. Hole scanned with SPP2. Minor R/A.					
			с.				

• 7

	DIP TESTS	page 1/3 78-508-26	LOCATION	PERMI	T 214			508-26
1151 JROM	TO TO:AL COXR. CUM. CUM. 1	DIAMOND DRILL HOLE LOG Project 508/ALBERTA	SECTION SECTION LATITUDE DEPARTURE ELEVATION	SURFA	• · · · · · · · · · · · · · · · · · · ·		LENG	WERTICAL 357.0'(108.8m RECCO -STRAT
		ELDORADO NUCLEAR LIMITED			ADO, S.	ASK.	COMPLET	$\frac{17-4-78}{P}$
ET PRACE	(Metric deptns in brackets) Discription		1		* * * * * * * * * * * * * * * * * * *		CORE SAM	
to	Jest Carrinon			FROM	10	WIDTH	1 %	AVERADES
0	Collar: Casing to 147.0' (45m); left in ho	e.	2010					2 - Alio - A Hanalan - Angelandaria
120 1								
(36.6r								
1								
20'±151' .6m46.0n	Post-Athabasca sediments: (Devonian)							
.0140.01	Mudstone to Sandy Mudstone: core recovery a but locally sand can make up about 40%. Gen	bout 50%. Mostly clay and s	silt,					
	Colour. Very Solt. Fine grained. Increasi	erally grey to brown-grey in ngly "gritty" with denth	n					
	Gradational contact.	mgry gritty with depth.						
1' 163'	Trancitional							
5m 49.6n	Transitional zone between mudstone and under of sandy mudstone up to 2' (.61m) wide inter	lying Athabasca sandstone. mixed with "dirty" sandstone	Seams					
3' 285'	Athabasca sandstone (minor red mudstone)					•		
.6m86.9m	White, grey and pink in colour, Upper conta	ct gradational lower charm						
	about 90 to core axis, although partially i	nterrunted in core by largo	15 am					
		TIDE Grained Guartz Sandeton						
	limonitic matrix. Local coarse grained sect Bedding very shallow, 85-90° to core axis; 1 Mudstone costion has been available to core axis; 1	ions have intergranular porc	osity.					
	Mudstone section has been intensely hematit	ocal cross-bedding at 60°.						
		-2-cu:						
	No major structures present in the core							
	163'-168' "Dirty" sandstone: 20	-30% grey silt and clay. Mi	nor					
	(50m-51.2m) bituminous bands.	See 3207 Blitt and Cluy. M						
	168'-208' Pink sandstonet home							
		en eous. Upper portion contai formable to banding. Genera	ns					
		hematitized.Local medium gra	ained				2	
	208'-222' White to grav gandate					•		
	(63.4m-68m) white to grey sands to	ne. Locally very fine grain	led.					
	[가 : - · · · · · · · · · · · · · · · · · ·	가슴은 이 가는 것을 가지 않는 것은 것이라는 것이다. 같이 아니는 것은 것이 같은 것이 같은 것이 같은 것이다. 같이 아니는 것은 것이 같은 것이 있						
		이 가는 물질에서 흔들 수밖에서 전 것을 얻을까?				F. ()		

.

Save 1

•

MPT	ERAGE	DIAMOND DRILL HOLE LOG 78-508-26		PAGE	No2	/3	508-26 HOLE
IRCM	TO	DESCRIPTION		-		CORE SAM	PLES
		217'-222' Coarse grained section.	FROM	<u> </u>	WIDTH	*	AYERACUS
		222!-233'Pale pink sandstone, fine grained. Coarse grained(68m-71m)from 223.5'-225' (68.1m-68.6m).					
		233'-247' (71m-75.3m) Banded section. Pink to red intermixed bands; section hematized to varying degrees. Banding @90° to core axis. Medium to coarse grained.					
		234.5'-235' (71.5m-71.6m) Cross bedding @60 ⁰ to core.					
		247'-271' (75.3m-82.6m) Intermixed red mudstone and sandstone (medium to coarse grained). Fine grained, intensely hematitized mudstone bands up to 6" (13.44cm) wide, interbanded with sandstone; banding @90° to core axis. Section is about 50% of each.	€				
		271'-282.5' (82.6m-86.1m)Coarse grained sandstone, buff to grey in colour. Sand grains range in size up to 1c but generally < 2mm. Artesian water (75±gal/min)). (Ployed) Fine grained sandstone, banded @80° to core.					
	285' (86.9m)	Unconformity: Between Athabasca Formation and Pre-Cambrian Basement					
285' 86.9m)	341.6' (104.1m)	Altered Pre-Cambrian Basement (in situ regolith) Dark, reddish-brown to purple-brown in colour, H=6. The rock has been ntensely hematitized throughout. Lower portion has been chloritized and kaolinized (weak). Relict gneissic texture somewhat preserved throughout the section; banding @60 -80 to the core axis. Upper portion fractured. No major structures are present in the section. Medium to coarse grained. About 50% quartz, 20-30% feldspar, 20-30% mafics.					
		285'-330' (87m-100.6m) Red altered regolith as per general description.					

		DIAMOND DRILL HOLE LOG	78-508-2	:6	PAGE	3/ No		HOLE	508-26
The second s	ERAGE	DESCRIPTION					CORE SAM	PLES	
FROM	TO			FROM	то	WIDTH	*		AVERAGES
		285'-287.8'Breccia. Large, fractured sections of quart(87m-88m)6" (13.44cm) wide.	tz up to						
		290' Gneissic banding @80 ⁰ to core axis. (Start of (88.4m)	Basement proper						
		291'-305' (89m-93m)							
		308' (94m)							
		315.5'-326'Section has thin green chloritic bands confo(96.2m-99.4m)gneissosity @60°-80° to core.	ormable to						
		326'-330' Coarse grained brecciated section. (99.4m-100.6m)							
		330'-341.6' Generally strongly chloritized, overall pale (100.6m-104.1m) colour, with red hematitized sections. Minor	e green kaolinizati	on.					
341.6' (104.1m)		Fresh Pre-Cambrian Basement (Granitic Gneiss) Reddish-brown in colour, H=6. Medium to coarse grained. No major Gneissosity well developed @70°-90° to the core axis. Composition: 60-70% feldspar, 20-30% quartz, 10-20% mafics.	structures.						
	357' 108.8m	END OF HOLE (EOH). Scanned with SPP2 B.G Sandstone - 25 c.p.s. - Basement - 35-40 c.p.s. No anomalous R/A.							

-				DIP		TITUDE			age 1/10 78-508-26	LOCATION		MIT 21		HOLE N	50	8-27	
IST PRO	0M	10 101	AL	CORL.		I CUM.	DEPJ	I CUM	DIAMOND DRILL HOLE LOG	SECTION		41 NJ		AZIMU	10	00	• • • •
OLLAR 00'61				-57 ⁰						LATITUDE	11.	314E](Grid"		<u>-5</u>	,0	
				<u>-57</u> °						DEPARTURE .				LENG	001	1(268.	im)
00 12				-540		_		-	Project 508/ALBERTA	ELEVATION .		ACE		PURPO	SE FOLL	OW-UP D	DH 2
00' 18 80' 26				-520				_	ELDORADO NUCLEAR LIMITED	CORE	BQ	DADO A	~ 7 ·		so <u>23-4</u>		
ETERAC				-440				1		STORAGE .	E LDC	DRADO,	lask.	LOGGED	ey P.A	. FORTU	NA
	no l	~(Metri	.c dept	n in bra	ackets)		DESCRIPTI	ON		_				CORE SAM	PLES		
											FROM	10	WIDTH	*			
	0	Collar		BW	casing	to 891	(26 0m	Non	e recovered. (Location 75m)								
				CO.	llar DDH	#508-2.	eleve	tion at	bout 8' (2.44m) below colla	N OI		l startes					
				DDH	1 #508-2). Plas	tic tu	bing +	o E.O.H.	TOT				a tea la			
	· · ·																
	8'	Overbu	rden:		ndy.												
(20	6.8m)			No	sedimen	tary ro	cks.										
							din series Linear	÷.,									
88' 84	2.5	Altere	d Pre-(Cambriar	Baseme	<u>nt</u> (una	ltered	silic.	ious bands).		1 - S				•		
0.8m) (/	23/1.7	Genera	LLY the	rock i	s quite	variab	le. M.	ainly 1	reddish-brown to greenish in	n		1					
		COTORL	, aeper	aing or	the do	minant .	altera	tion (he	emattization or chloritizat	ion).						•	
		through		anu qua	ITTZO-IC	Lospath.	ic sec	tions a	are relatively unaltered. H	=5-6							
9 - E		through	n most nout •	vith ehr	Section	. rract	uring i	ina pre	ecciation are well developed re. Fractures are commonly	a		1					
		coated	l in the	Se zone	s and	altorati	ion of	feilder	par (kaolinization) has occu	talc-							
ang dia <mark>k</mark> aran		Minor	bitumer	also o	oats fr	acture	. Gnoid	sic ba	anding is locally preserved	urrea.		1	1				
san k as		genera	lly the	intens	e altera	ation m	asks ar	v of t	the original texture of the	; DUT		1					ere tri G
		Anomal	ous rad	lioactiv	ity dete	ected by	v both	the ga	amma log and scintillometer;	TUCK.		۱					
		sample	s taker	. 🦾			•	9'									
										and and the							
de l'É		88'-98		Qua	rtzite,	dull g	rey in	coloui	r; 70-80% quartz. Lower cont	tact	1	1	[1, 1]				
		(26.8-	30)	gra	dationa.	1. H=7.	Intens	ely fi	ractured, random orientation	1.		1					
								· · · · · ·									
		98.5'-		Alt	ered gra	<u>anite</u> (1	?). Ger	nerally	reddish-brown. Strong rand	lom	1	1					
		(30-33) (1997)	fractu	ring. 1	Tematit.	ized th	rough	out; silicified.	te e stêle 🖡	.	1	1.0.0				
		1001 1	151	_			•				- 41 ST			1			
	8 J	108'-1		Qua	rtzite,	white	to grey	/ in cc	olour, local mafic sections.	•							
	: I -	(33-35	1.1.1	int	ensely i	tracture	ed; bit	-umi noι	18.			n an an Chine an ann					
	se la com	115'-1	221	n -		a enan	00 51	1001						1		and the second	
		(35-37		AS	aescribe	ea from	98.5	-T08.	(30-33). Locally gneissic.		- 24 - I		1	1. 1			
		(33-31	• • • •			•		in an		e i l							
		123'-1	24 51	<u> </u>	wt mita	20 001 0	10 EI 4	26 0 7	· · ·		6 1 .						
		(37.5-	• •	Qua	<u>rtzite</u> a	as 00 -	70.3	20.8-	۰ (v								
.			JU]		n an State Saidhean Anns						the transfer		1				
5 I I I I				아파카이	문학문학이				이 소설 방법 것은 사람이 많이 많이 많이 했다.								
A. 1																	
	· • •																

• - '

METE	RAGE			- Harristan data da da an			CORE SAM	PLES
ROM	TO		DESCRIPTION	FROM	70	WIDTH	*	
		124.5'-207' (38-63)	Generally red altered granite and gneiss. Locally quartz- rich. Hematitization is intense.					
		137.5'-138.5' (41.9-42.2)	Quartz vein, grey in colour. Most brecciated for 6" (15.24cm) at lower contact.					
		156'-157.5' (47.6-48)	Irregular quartz veining.					
· ·		166.5'-183.5' (50.7-56)	Section is 40-50% white milky quartz. Random fracturing; intense.					
		192'-194' (58.5-59.1)	Quartz-rich section.					
	•	207'-214' (63.1-65.2)	Fault zone. Minor gouge and broken core at top of section. Long healed fractures at 25° to core axis. Minor yellow- green alteration - kaolinization.					
		214'-277' (65.2-84.4)	Strongly altered, chloritized; green in colour. H=5. Locally gneissic. Pink felsic bands up to 1' (.30m) wide. Soft green mineral in lower portion of section.					
		214'-222.5' (65.2-67.8)	Minor kaolinization; brecciation.					
		227' (69.2)	Gneissic banding @35 ⁰ to core axis.					
		236.5' (72.1)	Gneissic banding @50 ⁰ to core axis.					
		255'-257' (77.7-78.3)	Fault zone; core generally broken and gouge smeared; $\frac{1}{4}$ " (.63cm) gouge on fracture sub-parallel to core axis in centre of section.					
		257'-258' (78.3-78.6)	Pink felsic band.					
		258'-277' (78.6-84.4)	Intensely chloritized. Lower section greenish-yellow in colour and contains blebs of soft green mineral (H=3). Opaque Possibly Green time.					

			DIAMOND DRILL HOLE LOG 78-508-2	6	PAGE	No3/1	.0	HOLE 508-27
PROM	TERAGE		DESCRIPTION				CORE SAM	
		277'-330' (84.4-100.6)	Red <u>altered granite</u> , as from 124.5'-207' (38-63). Massive. Fractures in upper 10' (3.05) of section are coated with talc; generally @60° to core. Felsic bands.	FROM	70	WIDTH	*	
		300'-301' (91.5-91.8)	Long, healed fracture, sub-parallel to core axis; up to 1/8" (.33cm) solidified gouge.					
		317'-323' (96.6-98.5)	Fault zone. Core generally broken; angles sub-parallel throughout zone; 2" (5.08cm) gouge @323' (98.5).					
		327'-330' (99.7-100.6)	Brecciated section; long fracture sub-parallel to core axis, up to $\frac{1}{2}$ " (1.27cm) gouge.					
		330'-336' (100.6-102.4)	Quartz-rich band, generally grey in colour. Thin wisps of green mafics (chlorite) throughout. Red hematitized fracture	s.				
		336'-351' (102.4-107)	Red altered, as from 124.5'-207' (38-63).					
		339.5' (103)	$\frac{1}{2}$ " (1.27cm) gouge on fracture @60 [°] to core axis. Minor brecciation for 3" (7.62cm) either side.					
		342.5'-343.5' (104.4-104.7)	Locally chloritized; green. Also silicious.					
		351'-355.5' (107-108.4)	Quartzite. Minor mafic, chloritized. 20-30% red altered feldspars.					
		355.5'-407' (108.4-124)	Red altered, as from 124.5'-207' (38-63).					
	an di kabu Manang Manang	356.5' (108.7)	6" (15.24cm) gouge, core angles 55 ⁰ . Large felsic fragments up to 1" (2.54cm).					
		364'-375' (111-114.3)	Minor bitumen coating fractures. Lower 2' (.61m) of section broken.				•	
		368.5' (112.3)	<pre>1" (.63cm) on irregular fracture.</pre>					

3

ana ing kanalan ing kanala Pangana pang kanalan ing ka ø

METE			DIAMOND DRILL HOLE LOG 78-508-	26	PAG	No	19	HOLE 508-27
OM	10		DESCRIPTION				CORE SAM	PLES
· · [374.5'		FRDM	<u></u>	WIDTH	*	AVERAG
		(114.2)	1" (2.54cm) gouge on fracture e_{30}^{O} to core axis.	1. 1. 1. 1. 1. 1.				
	-*	379'-385' (115.5-117.4)	Increased quartz, milky white. Minor chloritization locally.					
		385'-395' (117.4-120.4)	Core generally broken. Silica content increases at depth. Bottom section brecciated. Bitumen coated fractures.					
		387' (118)	Gouge smeared fracture, minor.					
		391' (119.2)	1 (1.27cm) gouge on fracture @30 ⁰ to core axis.					
		396' (121)	1" (2.54cm) gouge on fracture @50 ⁰ to core. Brecciated quartzite above; minor brecciation for 2'-3' (.61-91) below in red altered section. Gneissic banding somewhat preserved @40 ⁰ to core. Minor chloritization.					
		398'-400' (121.3-122)	Increased silica (30-40%).					
		402' (122.6)	1" (2.54cm) carbonate vein, irregular, cross-cutting @45 ⁰ ; vuggy.					
		406'-407' (124-124.1)	Quartz-rich band; altered feldspars.					
		407'-419' (124.1-127.7)	Red altered, minor silicious bands. Rock is intensely fractured, random. Locally brecciated. Chloritization throughout.					

METERAGE		DIAMOND DRILL HOLE LOG 78-508-		PAGE	No	10 	HOLE	508-27
TO TO		DESCRIPTION				CORE SAM	PLES	
	la di secondata da secondata Na secondata di secondata		FROM		WIDTH	*		
	419'-520.5' (127.7-158.5)	The rock is strongly altered and generally varies between red altered granite and quartz-rich sections. Bitumen commonly coats fractures. Quartz/quartz-feldspar sections are yellow-grey in colour: feldspar between						
		are yellow-grey in colour; feldspar has been kaolinized. Intense fracturing, gouge common; major shearing, about 20% broken core. Brecciated. Chloritization common throughout section to varying degrees.						
	419'-421' (127.7-128.3)	Quartz-veining, irregular and sub-parallel. Strongly chloritized.						
	421'-422' (128.3-128.6)	Broken core. Bitumen on fractures.						
	424.5'-426.5' (129.4-130)	As 421'-422' (128.3-128.6)						
	432'-442' (131.7-134.7)	Core generally broken throughout; brecciation. Fault zone (?) Gouge @433' (132) ($\frac{1}{2}$ " (1.27cm) @30 [°]); 437' (133.2) ($\frac{1}{2}$ " (1.27cm) @65 [°]). Bitumen common on fractures. Feldspars are altered, yellow in colour.) • •					
	442'-447' (134.7-136.3)	Gneissic banding preserved, 60 ⁰ @443' (135.1).						
	447'-486' (136.3-148.2)	Generally as described from 432'-442' (131.7-134.7). Core more competent. Brecciation throughout. Predominantly reddish-brown. Bitumen on fractures. Kaolinization not as common.						
	463'-464' (141.2-141.5)	Gamma-log high (235 c.p.s.), about 10 c.p.s. above B.G. (25 c.p.s.) on SPP2.						

	ERAGE	1	DIAMOND DRILL HOLE LOG	78-508 Sample		PAGE	No6/	CORE SAA	
FROM	<u>T0</u>		DESCRIPTION	Number		то	WIDTH		
		466'-467' (142.1-142.4)	Weak radioactivity (maximum count rate - 50 c.p.s. SPP2, 2x B.G.). Within locally brecciated band, about 2" (5.08cm) wide. Gamma log registers 200 c.p.s.	6022	466° 142.1)	468' (142.7)	2' (.61)		U: 0.007% Th: 0.001%
		480'-480.5' (146.3-146.5)	Weak radioactivity (maximum count rate - 60 c.p.s., SPP2). Possibly controlled by fine fracture sub- parallel to core @480' (146.3). Poor gamma log response.	6023		481' (146.6)	2' (.61)		U: 0.003% Th: 0.002%
		483'-486' (147.2-148.1)	Fault. Core broken throughout, bitumen on fractures. Upper foot contains up to 1" (2.54cm) gouge on irregular fracture sub-parallel to core axis; $30-40$ % angular fragments up to $\frac{1}{4}$ " (.63cm).						
		486'-496.5' (148.1-151.4)	Gneissic texture generally preserved, at about 30° to core. Brecciated quartz-rich sections up to 1'(.30m) wide.						
		.493' (150.3)	Weak radioactivity 10 c.p.s. above B.G. on SPP2. In locally brecciated section. Poor gamma log response.						
		496.5'-507.5' (151.4-154.7)	Silicious section, yellow-grey in colour; feldspars kaolinized. Brecciation, fracturing throughout.						
		507.5'-513' (154.7-156.4)	Red altered, gneissic banding locally preserved. Local brecciation associated with quartzo-feldspathic veining.						
		513'-518' (156.4-158)	Generally as described from 496.5'-507.5' (151.4-154.7).					
		518'-520.5' (158-158,7)	Intensely chloritized section, green in colour. Feldspars yellow, altered.						

METE	RAGE			,		No7/]	•	
FROM	to		DESCRIPTION	FROM	то	WIDTH	CORE SAN	
		520.5'-588' (158.7-179.3)	Fractured, brecciated; as 496.5'-507.4' (151.4-154.7). 20-30% kaolinized feldspar, yellow. Local red altered sections are also chloritized. Strongly hematitized, rusty red fractures.					
		529.5' (161.4)	Fracture @60 ⁰ to core. Strongly hematized, rusty. 6" (15.24cm) incompetent, easily crumbled by hand.					
		540' (164.6)	$\frac{1}{4}$ " (.63cm) bitumen on fracture @60 [°] to core axis.					
		551' (168)	Gneissic banding @60 ⁰ to core.					
	n	554' (169)	6" (15.24cm) broken core, fragments talc smeared.					
		561'-573' (171-174.6)	Shear zone. Broken core, up to 1' (.30m) in sections. Fractures generally @30 ⁰ , talc coated. Main fracture @571'-572' (174-174.4), sub-parallel to core. Minor bitumen on rock fragments.					
		579'-581' (176.5-177)	Broken core.					
		583' (177.7)	6" (15.24cm) incompetent rock, intensely hematized and chloritized, crumbles very easily.					
		588'-596.5' (179.3-182)	Red-brown brecciated granite. Intensely fractured. Medium to coarse grained. <u>Gamma log indicates minor R/A</u> (150 c.p.s. Very weak in core, difficult to pinpoint; 10 c.p.s. above B.G. (25 c.p.s.) at about 594' (181.1).	•				
		596.5'-604.5' (182-184.3)	Section is generally green in colour, chloritized. Minor quartzo-feldspathic bands up to 1" (2.54cm) wide.					
						e se la constance Secondaria Secondaria		

¢

PROM	RAGE TO	DESCRIPTION	Sampl				CORE SA	MPLES
			Numbe	T FROM	TO	WIDTH	%	
504.5' (184.3	606.5)(185)	Fresh granite, fracture. Massive.		-	•			
506.5' (185)	622 ~` (189.6)	Mafic section, generally greenish in colour; locally gneissic. Medium to coarse grained. Kaolinization of feldspar in lower portion of section.						
22' 189.6	636' I (194)	ntensely hematitized, red-brown granitic section. Chloritized towards bottom of section. Fractures sub-parallel to core, talc coated.						
36' 194	652' 198.8)	Generally unaltered red-brown granite/granitic gneiss Eracturing						
52' 198.8	676' 206.1)	Greenish-grey, chloritized. Local red-brown quartzo-feldspathic bands.						
53' 199.1	658.5° 200.8)	Weak radioactivity (maximum count rates - 75 c.p.s. on fracture (50°) @654' (199.4); 50 c.p.s. @656.5' (200.2); 75 c.p.s. on fracture (30°) @657.5' (200.4), SPP2 values). Gamma log response to 360 c.p.s.	6024	653' (199.1	655' 199.7)	2' (.61)		<u>in %:</u> U:0.022 Th:0.004
			6025	1 .	657' 200.3)	2' (.61)		U:0.013 Th:<0.001
	660.5' 201.4)	Broken core.	6026	657' (200.3	659' 201)	2' (.61)	•	U:0.012 Th:0.003
68'	671'	Weak radioactivity (maximum count rate - 300 c.p.s., SPP2).	6007					
203.6	204.6)	Radioactivity confined to face of break @60° to core @670' (204.3). Source not visible. Poor gamma log response.	6027	669' (204	671' 204.6)	2' (.61)		U:0.024 (=0.48 Th:0.002
	707' 215.5)	Red altered, massive. Silicious sections. Feldspars kaolinized, yellow- brown in colour. Bitumen on fractures.						
		20% broken core. <u>Bitumen abundant</u> , contains oil, flows. At 690' (210.3) flowing tar seam caused drilling problems; seeping into hole, gumming up rods. Hole had to be washed with fuel in order to pass through.						
07' 215.5	728'	Green, intensely chloritized section. Local red hematitized patches and schistose sections.						

<u>ج</u>ه

METE	RAGE		DIAMOND DRILL HOLE LOG 78-508-26	· · ·	PA	GE No9	<i>μ</i> 1ρ	HOLE	508 27
IOM	TO		DESCRIPTION				CORE SA		
		(202)		FROM	70	WIDTH	States and states		AVERAGES
		727 ' (221.6)	Talc coated slip, $\frac{1}{4}$ " (.63cm) wide @15 ⁰ to core axis. Minor brecciation associated.	-					
	••	728'-738' (222-225)	Red altered, massive. Feldspars kaolinized. Local green chloritized sections.						
		738'-745' (225-227.1)	As described from 707'-728' (215.5-222).						•
		740.5'-741.5' (225.8-226.1)	Irregular healed fracture sub-parallel to core axis.						
1997 1997 1997 1997 1997		745'-809' (227.1-246.6)	Red altered local green chloritized sections. Feldspars locally kaolinized. Gneissic banding preserved in places, but generally massive.						
	•	752' (229.3)	$\frac{1}{4}$ " (.63cm) gouge @20 ⁰ to core axis. Kaolinization associated						
		756.5'-758' (230.6-231.1)	Green chloritized section.						
		758'-769' (231.1-234.4)	Kaolinization of feldspars; yellow-brown in colour.						
		781'-790' (238.1-241)	As described from 758'-769' (231.1-234.4). Fracturing; generally sub-parallel to core axis.						
		806.5' (246)	Banding @45 ⁰ to core axis.						
		809'-814' (246.6-248.2)	Strongly altered yellow-brown; mainly kaolinization. Bitumen coated fractures. 814' (248.2) is bottom depth of bitumen occurence in this hole.						
		814'-815.5' (248.2-248.6)	Chlorite-rich, banded @55 ⁰ to core axis.						
		815.5'-838' (248.6-255.5)	Red altered, locally green. Rock appears to be slightly silicified; glassy appearance. Local kaolinization.						

C

ME	TERAGE	DIAMOND DRILL HOLE LOG 78-508	-26	PAGE	No1(0/10	HOLE 508-27
PROM		DESCRIPTION				CORE SAM	PLES
			FROM	TO	WIDTH	*	AVERAGES
		<pre>826' l' (.30m) long irregular talc coated fracture, sub-parallel (251.8) to core.</pre>					
		838'-845.5' Generally pale green in colour; green mineral makes up $(255.5-257.8)$ $50-60$; soft (H=3-4).				•	
845.5	' 881' 7 268.5)	Fresh Pre-Cambrian Basement (minor altered sections).					
		845.5'-862.5' Generally pink to grey in colour. Impure quartzite. Local (257.7-262.9) alteration on fractures. Glassy appearance; silicified. H=7.					
		862.5'-881' Red-brown, generally fresh. Local kaolinization on fractures. (262.9-268.5) Granite to granitic gneiss. Locally porphyroclastic.					
	881' (268.5)	END OF HOLE (E.O.H.) Scanned with SPP2. Anomalous sections sampled. Downhole gamma-ray probed with Mt. Sopris 1000.					
		N.B. See also: DDH #508-2 (drilled 1976) " "-28 (same collar /oc ² . as #27) " "-29					
		(All 4 holes are on same N-S section).					
		Drilled by Canadian Longyear Ltd.					
					1		

					DIP TESTS	LATIT	VOE	1 8/21	RTURE	page 1/4 78-508-26	ION PERMI	(T 217		HOIE	No. 508-28
<u></u>	780M	10	101AL		COAL		CUM.		CUM.	DIAMOND DRILL HOLE LOG SECTION	ION 6.442	N Ma 4E Gr	in id"	AZIM	UTH
				<u> </u>				<u> </u>	-	ELEVAL	ORE B.Q.		ASK.	PURP COMPLE LOGGED	TED + 25-4-78
ом 	10							DESCRIPTI	ON		FROM	to	WIDTH	CORE SAN	The second s
	0				ation and								HIDIR	<u> </u>	AVILADIS
			<u>Collar</u>		•	BW rec	casing overed	to 77 • Pla	' (23. stic t	5m); 70' (21.3m) left in hole, n ubing to E.O.H.	ot				
	77' 23.5n		<u>Overbu</u>	<u>rden</u>		San san	d and d dstone	till; bould	about ers abo	l' (.30m) of core from Athabasca ove 77' (23.5m).					
						No	sedimer	ntary	rocks.				ŀ		•
			(77' t	o 327'	(23.5m	to 99.	7m, EOF	I): PR	E-CAMBI	RIAN BASEMENT)					
8					ription: granitè:	cat more the 75m and of brea hem frac seen not deso 29	aciasti "fres intens to Sou hemati coarser ciated atite d tures in co well d cribed. for com	cally sher" se bred th, is zation grain and f listrik and ir bre. F levelor NO b	sheare looking cciatic s not s n; quan hed peo lealed, buted to tergra Regolit bed (?) bitumer bn).	bock, similar to DDH #508-27, ed, but somewhat less altered, g, particularly toward bottom; on, seen in DDH #508-2, about so apparent here. Some silitica tz veinlets. Contains sections gmatitic rock which has been Red color largely due to hroughout rock in hairline unulally. NO noticeable radioact hic zone (weathering) probably , aside from the alteration a seen. (See logs for #2, 27 and	ti vity				
	5.3m		<u>meu dit</u>	erea (<u>granite</u> :	hema hain hema appe	line f tizati arance	ractur on. F . Som	veinin es; re Rock is Ne kaol	; feldspars mainly altered; much g in randomly oriented irregular d color of rock mainly due to hard, has a "crushed-and-healed inite. Quartz about 20-30% of e absent. R/A of core B.G. only					

Man		DIAMOND DRILL HOLE LOG 78-508-26		PAGE	No. 2/4	*****	HOLE 508-28
FROM	ERAGE	DESCRIPTION				CORE SAM	PLES
			FROM	TO	WIDTH	*	AYERAGES
83' 25.3m	87' 26.5m	Lighter colored, coarser grained section, probably crushed and <u>altered</u> pegmatite. Kaolinization of large feldspar crystals; quartz is crushed. Rock is hard and massive (as above), having a "crushed-and-healed", silicifie appearance. R/A of core B.G. only.	d	-			
		(A 10-12cm piece of sandstone core @87' (26.5m) is apparently a "fall-in" when rods were pulled and greased).					
87' 26.5m	91'± 27.7m	As in 77'-83' (23.5m-25.3m); with small coarser intervals as in 83'-87' (25.3m-26.5m).				n de la calan Persona de la Persona de la calancia	
91' <u>+</u> 27.7m	92'± 28m	Greenish-gray altered mafic section, gradual boundaries, core is broken, with some clay in fractures.					
92'± 28m	30.2m	Granitic as in 77'-83' (23.5m-25.3m)					
	102'± 31.1m	Coarser, altered pegmatitic (?) section, similar to 83'-87' (25.3m-26.5m)					
102'± 31.1m	113'± 34.45m	Predominantly granitic, as in 77'-83' (23.5m-25.3m)			•		
	119'± 36.3m	Coarser, altered pegmatitic granite similar to 99'-102' (30.2m-31.1m). Contains broken core 116'-117.5' (35.4m-35.8m) with clay in fractures.					
19'± 36.3m		Granitic, altered as in 77'-83' (23.5m-25.3m). Broken core, with clay in fractures 121'-122' (37m-37.2m). Small fault gouge zone 121'-122' (37-37.2m) @20 to core axis.				Ť	
23' 37.5m	125.5' 38.3m	Coarser; altered, pegmatitic, similar to 99'-102' (30.2m-31.lm). Feldspars are kaolinized; clay in fractures.					
25.5 18.3m	158' <u>†</u> 48.2m	As in 77'-83' (23:5m-25.3m); aside from crushed appearance, with hematized hairline fracturing, rock looks quite unweathered and fresh.					

-

METERAGE	DIAMOND DRILL HOLE LOG 78-508-26		PAGE	: No	4	508-28
FROM TO	DESCRIPTION				CORE SAM	IPLES
158'± 179'± 18.2m 54.6m	Coarse, whitish-gray to red <u>quartz-rich</u> granitic rock, showing much crushing and silicification. Red color caused by hematized veining of fractures; larger irregular fractures oriented parallel to sub-parallel to core axis. Hard, massive, locally some broken core. Grades slowly into medium grained, more granitic rock toward bottom of section.	FROM		WIDTH	*	AVIRAGES
.79 '± 182' 4.6m 55.5m	Granitic, as in 125.5'-158' (38.3m-48.2m)					
82' 184' 5.5m 56.1m	As in 158'-179' (48.2m-54.6m)					
84' 213' 6.lm 65m	Granitic, as in 125.5'-158' (38.3m-48.2m)					
13' 224' 5m 68.3m	Mixture of both granitic and pegmatitic intervals with very gradual boundaries Large flakes of white mica in pegmatitic (coarse) intervals. Fine, irregular quartz and hematite-filled veinlets parallel to $\pm 20^{\circ}$ to core axis.	5.				
24' 231' 8.3m 70.4m	Granitic, as in 125.5'-158' (38.3m-48.2m); hematite-filled irregular hairline fractures. Quartz veinlets $20^{\circ}-30^{\circ}$ to core axis.					
31' 240'± 0.4m 73.2m	As in 213'-224' (65m-68.3m); some broken core					
40 '± 245 '± 3.2m 74.7m	Altered pegmatitic section (similar to 158'-179' (48.2m-54.6m)). Some original white feldspar crystals (now crushed) are several cm's across. Quartz veinlets, less than 0.5cm, 30°-40° to core axis. Hematite in randomly oriented hairline 'fractures.					
45'± 250'± 4.7m 76.2m	Mixture, as in 213'-224' (65m-68.3m)					
50'± 274'± 5.2m 83.5m	Fine grained, red (hematitic) granitic rock, similar to 125.5'-158' (38.3m-48.2m). Quartz veinlets, less than 0.5cm, are irregular and discontinuous. Grades into section below.					
74'± 288' 8.5m 87.8m	Predominantly quartz: Hole appears to intersect a quartz vein @ an acute angle, sub-parallel to core axis. Quartz in massive milky white, with slices of reddish fine altered granitic rock (as in 250'-274' (76.2m-83.5m)). Core is largely broken, with whitish clay minerals in fractures.					

.

1/17/07/27		DIAMOND DRILL HOLE LOG	:6	4/4 5 PAGE No			
METE FROM	TO	DESCRIPTION	FROM	TO	WIDTH	CORE SAME	AYERAGES
2 88' 37.8m	310'± 94.5m	Granitic, as in 250'-274' (76.2m-83.5m). Rock has very "fresh" appearance. Original fractures are healed with quartz, veinlets are irregular but predominantly sub-parallel to core axis.					
310 '± 94.5m	312 '± - 95.1m	Coarse pegmatitic section; white mica; boundaries are gradual					
312' 95.lm	327' 99.7m	"Mixed" rock, as in 213'-224' (65m-68.3m); intervals of broken core					
	327' 99.7m	E.O.H.					
		Core was scanned with SPP-2 scint no anomalous R/A. Downhole gamma-ray probed with Mt. Sopris 1000 from 0 to 95m (312'): NO significant R/A anomalies. Background 20-60 c.p.s.; up to 100 c.p.s. @78m (256') and 92.2m (302.5')					
		Drilled by Canadian Longyear Ltd. No samplus					
		가장 가지 않는 것 같아요. 이는 것은 것은 것은 것은 것은 것이 가지 않을 것을 알려요. 가지 않는 것은 것은 것은 것은 것은 것은 것을 가지 않는 것을 가지 않는 것을 가지 않는 것을 가지 않는 같이 같아요. 것은					
						•	
		이 같은 것이 있는 것은 것이 가지 않는 것이 가지 않는 것이 가지 않는 것이 같은 것이 있다. 가지 않는 것은 것이 가지 않는 것이 가지 않는 것이 있는 것이 있다. 이 같은 것이 있는 것이 같은 것이 같은 것이 같은 것이 있는 것이 같은 것이 있다. 것이 있는 것이 같은 것이 같이 있다. 것이 있는 같은 것은 것은 것은 것이 같은 것이 같은 것이 같은 것이 같은 것이 같은 것이 같이 있다. 것이 같은 것이 같이 있다. 것이					

1151 / 190		10 10141 100' 30.5m 200' 61m 600' 183m 700' 213.4m	DIP TESTS DIP -56 S -56 S -55 S			page 1/8 78-508-26 DIAMOND DRILL HOLE LOG Project 508/ALBERTA	SECTION LATITUDE DEPARTURE ELEVATION	6.311 11.30 SURFA	LN 7"1 19E 5 (Main Grid" .	PURP	итн <u>180°</u> DIP <u>-60° 5</u> GTN <u>817'(249.02m)</u> GTN <u>F0110w-up DDH</u> 2
		816' 248.8m	-50 S			ELDORADO NUCLEAR LIMITED	CORE	ELDOI	RADO, S	SASK.	COMPLI LOGGED	D A PODULINA
METERAG		(metric depths	s in bracke	ts)	DESCRIPTION						CORE SA	
								FROM	10	WIDTH	*	AVERAGES
0		<u>Collar</u>		DDH # 508 of DDH #5	-2. Elevatio 08-2). Plast	.27m). (Located 55m S of o on about 12' (3.6m) below o tic tubing to E.O.H.	collar collar					
0 11 (36.		Overburden		sandy with	n boulders							
				NO sedime	ntary rocks							
119' 817 ^{36.3m} 249	. 1 m) Pre-Cambria	n Basement									
		119'-221' (36.3m-67.4m)	green and grained w be about (intense. gneissic to the con is random	red in colou ith local coa 50-70% mafics The rock is texture has b re axis. Ger	ction. The rock is general ir, $H=4$ to 5. Fine to medi- arse grained sections. App , altered to chlorite; alt generally massive, but loc peen preserved. Banding is herally competent rock. Fr radioactivity, up to about t.p.s.)	tum pears to teration cally s at 30 ⁰ racturing					
		119'-121' (36.3m-36.9m)	Red altere	ed; massive							
		121.5' (37m)		Gneissic h	anding at 30	⁰ to core axis						
		125.5 (38.3m)		Healed fra	acture (kaoli	n) at 30 ⁰ to core axis						
		144.5' (44.1m)		Weak radio Gamma log	oactivity (ma response wea	ximum count rate - 40 cps, k; in red altered section	SPP2).			•		
		157'-166' (48m-50.6m)		Milky whit Core angle	ce silica ban es 30-40°, ge	ds, up to 5mm wide. nerally parallel to foliat	ion.					
· •	·	an de la construction de la construcción la construcción de la construcción la construcción de la construcción d							•			

.

٠

•

1001	ERAGE				PAGE	No	**************	HOLE
FROM	TO		DESCRIPTION			· · · ·	CORE SAM	IPLES
				FROM	то	WIDTH	%	AVERAGES
		169'-179' (51.5m-54.6m)	Generally pale green in colour: section appears to be more strongly altered. Several healed fractures at random orientation; up to $\frac{1}{4}$ " (.63 cm) gouge. Minor kaolinization. Gneissosity preserved at about 30° to core throughout section.					
		188'-189' (57.3m-57.6m)	White quartz vein sub-parallel to core axis					
		198'-200' (60.4m-61m)	Irregular fracture sub-parallel to core axis; coated with kaolin					
		203'-209' (62m-63.7m)	Quartz-rich section; lower portion brecciated.					
		209'-221' (63.7m-67.4m)	Transition with underlying section. Hematitization is becoming more prominent than chloritization.					
		221'-275' (67.4m-83.8m)	Red Altered Section. Dark red-brown in colour, fine to medium grained; H=5. Generally gneissic; but upper portion is massive. Fractures are randomly oriented and filled with quartz; local brecciation. The core is generally competent. Anomalous R/A; weak.					
	na serie de la composición de	221'-234' (67.4m-71.3m)	Massive; red-brown in colour. Silica banding up to 2" (5.08 cm) wide					
		234'-275' (71.3m-83.8m)	Gneissic banding is fairly well preserved throughout this section.					
		235' (71.6m)	Foliation at 55 ⁰ to core axis			an an an An Anna An An Anna Anna An		
				land n ∦		na an Allan San San Allan		

DIAMOND DRILL HOLE LOG 78-508-26

2/8

508-29 HOLE

		1	DIAMOND DRIEL HOLE LOG		PAGE	No		HOLE	
METE	RAGE		DESCRIPTION				CORE SAA	IPLES	
				FROM	то	WIDTH	*	AYERA	ទេ
					-		1		
		241'-247' (73.5m-75.3m)	Silicious section. Quartz makes up about 40%. Intensely fractured, brecciated. Lower portion broken.						
		253' (77.lm)	Weak radioactivity (maximum count rate - 40 cps, SPP 2); in gneissic section. Gamma log response to 175 cps						•
		259' (79m)	Foliation at 30 ⁰ to core axis						
		261'-262.5' (79.6m-80m)	Quartz vein, cross-cutting at about 10 ⁰ to core axis						
		263.5' (80.3m)	Weak radioactivity (maximum count rate - 40 cps, SPP2) Gamma log response to 200 cps	•					
		272' (83m)	Foliation at 60 ⁰ to core axis						
		275'-405' (83.82m-123.44m)	Quartzite: White, pink and grey in colour, the rock is massive and has a hardness of 7. Varies locally with increased mafics on feldspar (approaching granite). The rock is intensely fractured and broken through most of the section; bitumen coating is common. Locally, fractures are coated with soft limonitic material. No anomalous R/A detected.						
		275'-299' (83.8m-91.2m)	White to pink quartzite, broken from 283'-299' (86.3m-91.2m). Black mafic stringers. Upper portion may be up to 20% feldspar			•			
		299'-317' (91.2m-96.6m)	More reddish-brown in colour; increased feldspar; hematitized and brecciated			n an an Taon an An Airthean			
		304'-313' (92.7m-95.4m)	Core badly proken; angular fragments coated with bitumen.						
		317'-339.5' (96.6m-103.5m)	Generally white quartzite. Broken core through most of section; bitumen coated. Minor pink felsic bandin	g					
	a e e e 📘		이 것은 것을 넣었다. 이 같이 있는 것은 것은 것은 것이 같이 있는 것을 가지 않는 것을 하는 것을 하는 것이 없다.	2	11 - A - 14	1.4.1			

ر الله ال (موجوع)

DIAMOND DRILL HOLE LOG 78-508-26

3/8 PAGE No.....

508-29 HOLE

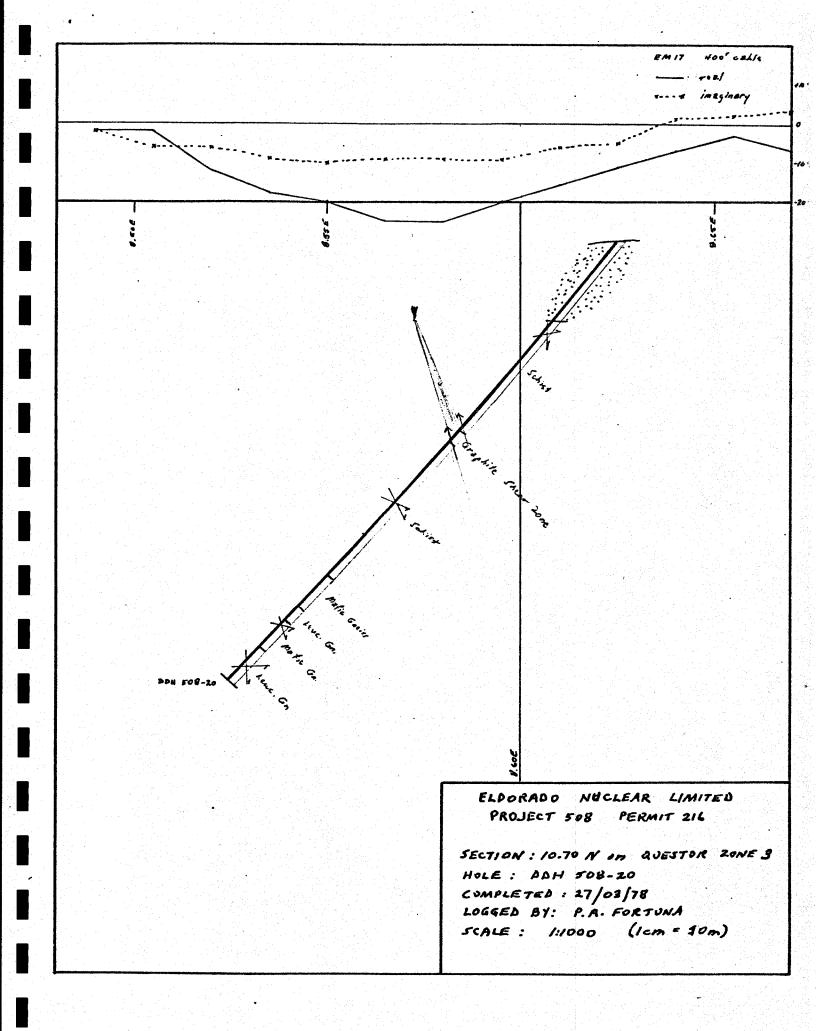
METERA	AGE		DIAMOND DRILL HOLE LOG 78-508-26		PAGE	No		HOLE 508-29
TROM	TO		DESCRIPTION				CORE SAM	APLES
				FROM	TO	WIDTH	%	AYERAGES
					1		1	
		339.5'-349' (103.5m-106.4m)	Red-brown altered section, gneissic (as from 221'-275' (67.4m-83.8m)). Quartz veining common.					
			Fractures bituminous.			e no sentro Second		
		346'-347' (105.5m-105.8m)	Irregular. Vuggy carbonate vein, sub-parallel to core. Bitumen partially fills vugs and is on fractures.					
at i i	2 I	349'-359'						
		(106.4m-109.4m)	Quartzite with intermixed red altered feldspar. Generally white in colour. Bitumen coats fractures; core blocky					
	an a b	359'-372'	Red altered maggine Folderer that					
		(109.4m-113.4m)	Red altered, massive. Feldspar abundant. Lower 3' (.91m) of section broken and gouge smeared.				•	
		372'-405' (113.4m-123.5m)	Quartzite is pink to grey in colour, becoming red- brown in lower 3' (.91m). Intense fracturing, brecciation. Fragments coated with bitumen. About 50% broken.					
		372'-391' (113.4m-119.2m)	Core broken, gouge (sandy) smears fragments. Core angles flat, generally less than 30 ⁰					
		391'-395' (119.2m-120.4m)	Bitumen coating on fractures is heaviest in this section.					
		405'-446' (123.5m-136m)	Red altered hematitization very intense, and rock is reddish-purple in colour. Texture varies from massive to brecciated. Shear zone at 455.5' (139m). Anomalous R/A		•		•	
		405'-424' (123.5m-129.3m)	Generally massive, but locally brecciated. Broken core @410' (125m) - 2' (.61m); 414' (126.2m) - 2' (.61m). Gouge smeared					

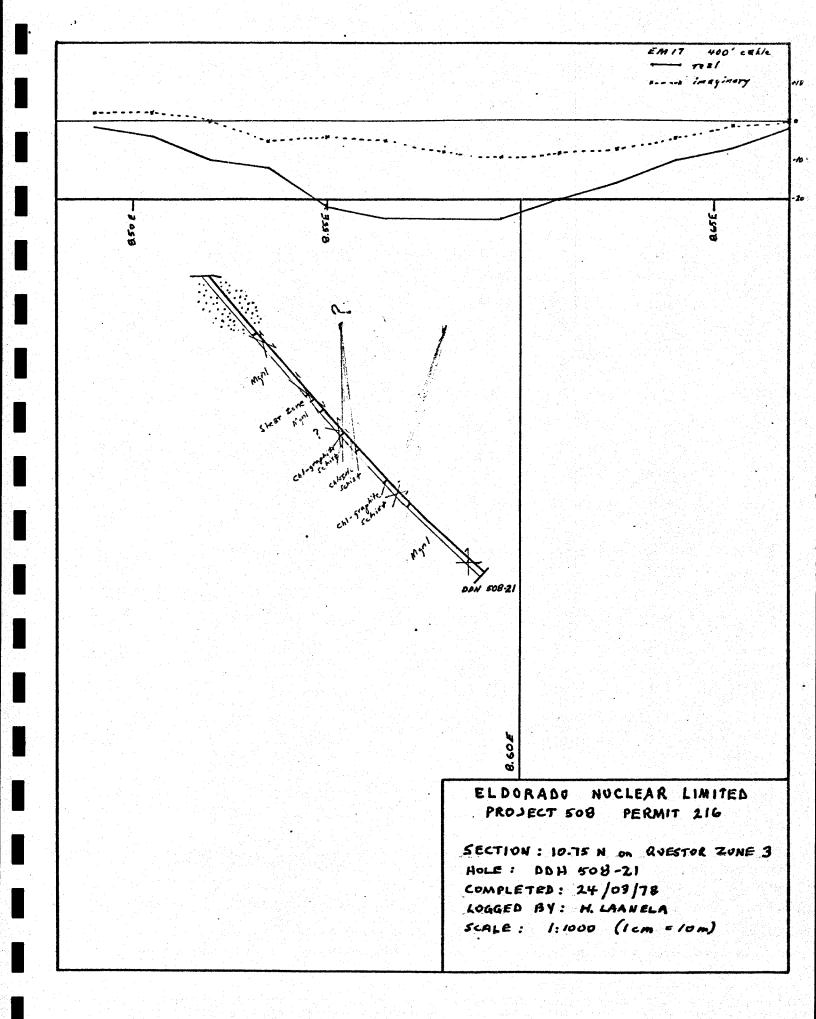
ſ	METI	ERAGE		DIAMOND DRILL HOLE LOG 78	-508-26		PAGE	5 No	/8	Hole	508-29
	IROM	to		DESCRIPTION	SAMPLE				CORE SAN	MPLES	
					NUMBER	FROM	TO	WIDTH	%	-	AYERAGES
			424'-446' (129.3m-136m)	Brecciated throughout. More silicious than above. Minor amount of broken core.							
			446'-478.5' (136m-146m)	The rock has been intensely altered. Fault at 453.5'-455'. (138.3m-138.7m), broken core, abundant gouge. Generally brecciated throughout.Hematitization most intense - deep	.	139.6m	460' 140.2m	2' .61m		(Results arrive) U: .001 Th:.022	8
				brick red in colour. Bituminous. Weak R/A present in section: 50 cps @445' (135.7m), possibly fracture controlled; 457'-459' (139.3m-140m) (max. 65cps); 70 cps at 467' (142.4m); 60 cps at 477.5' (145.6m). Generally higher background. Gamma log response to 450 cps	D 2402		470' 143.3m	2' .61m		U: .001 Th:.020	8
			478.5'-480' (146m-146.3m) 480' (146.3m)	Increased chloritization Weak radioactivity (maximum count rate - 50 cps, SPP-2). Gamma log response to 400 cp	D 2403	478' 145.7m	480' 146.3m	2' .61m		U: .002 Th:.008	8
			480'-817' (146.3m-249.1m)	Generally as described from 446'-478.5' (136m-146m). Becoming silicious and fresher looking with depth.							
			480'-515' (146.3m-157m)	Less hematitized than rest of section. Green to red in colour. Foliation locally preserve	D 2404 d	488' 148.8m		2' .6lm		U: .002 Th:.025	8
			487' (148.5m)	Healed fracture at 90 ⁰ to core axis							
			491.5. (150m)	<pre>1" (.63cm) gouge on fracture @30⁰ to core axis Core is broken and gouge smeared for 2' (.61m) below</pre>	s D2405	499.3'5 152.2ml	01.3 52.8m	2' .61m		U: .002 Th:.025	\$ (0.51bs/tm)
			514.5' (1568m)	$\frac{1}{4}$ " (.63cm) gouge on fracture at 30 ⁰ to core axis							
			517.5'-520' (157.8m-158.5m)	Numerous healed fractures, up to $\frac{1}{4}$ " (.63 _{cm}) Core angles from 30 [°] to sub-parallel	D 2406	508' 5 155m 1	10' 55.5m	2' .61m		U: .004 Th:.022	88
19.4° 19.45			la series de la construcción de la Reconstrucción de la construcción d Reconstrucción de la construcción d								

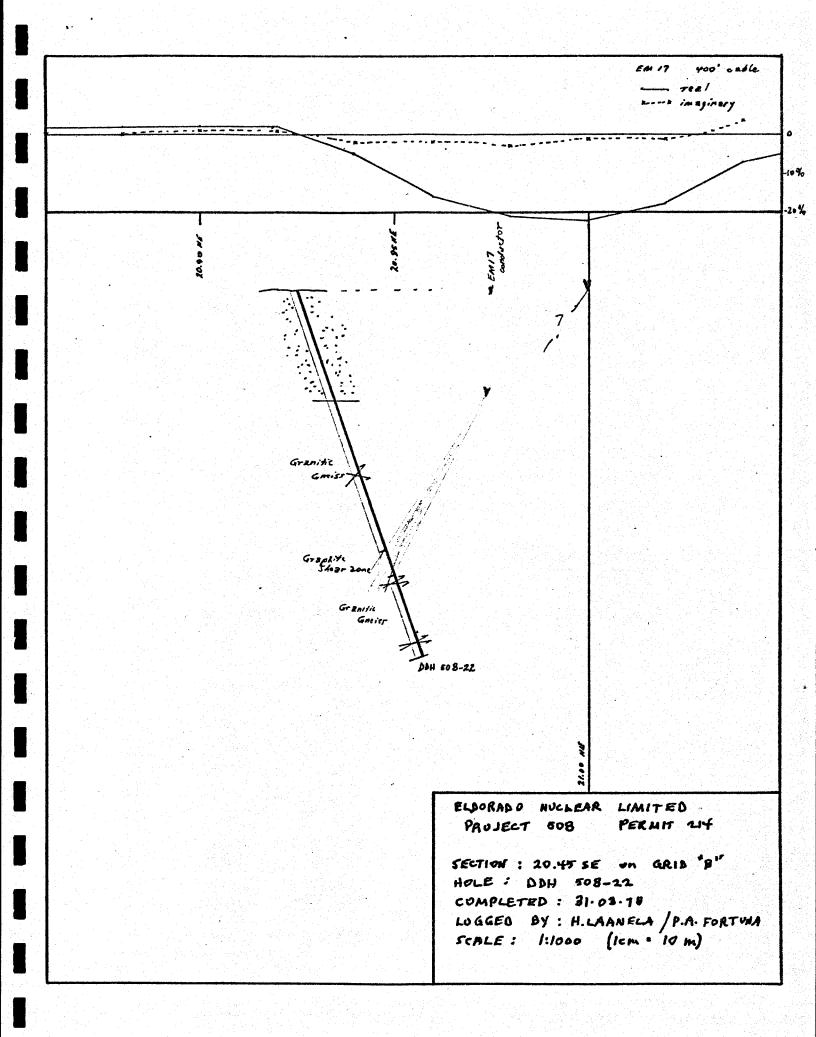
	RAGE		DESCRIPTION	SAMPLE	1			CORE SAM	API FS
ROM	CT			NUMBER	FROM	то	WIDTH		AYERAGES
		537'-558' (163.7m-170.1m)	Strongly fractured; brecciated. More silicious than most of section (30%). Feldspar kaolinized. Fractures generally sub-parallel. Main fracture at 546' (166.5m), 6" (15.24cm) gouge; upper contact at 30		518' 158m	520' 158.5m	2' .61m		U: .007 % Th: .032 %
		565'-566' (172.3m-172.6m)	Quartz veining; irregular						
		573'-575.3' (174.7m-175.4m)	Silicious section. Long fracture running sub- parallel to core axis; kaolinized. Upper foot of section broken						
		602'-615' (183.5m-187.5m)	Intensely brecciated throughout; cataclastic texture. Generally not as strongly hematitized Minor gouge smearing, but no major structures	1.					
		615'-617' (187.5m-188.lm)	Broken core. Up to 1" (2.54cm) gouge, fracture are generally sub-parallel	es	an a				
		625' (190.5m)	Talc-coated fracture; 30 ⁰ to core axis						
		631'-647' (192.4m-197.3m)	Brecciated; 20-30% white quartz. Fractures commonly talc-coated, sub-parallel to core. Colour varies from pink to dark reddish-brown.						
		649.5' (198m)	Talc coated fracture, $1/8"$ (.32cm) wide at 30° to core axis.					•	in %
		656'-817' (200m-249.1m)	Brick-red to purple in colour.Hematitization I very intense. Massive to brecciated. The section from 702'-740' (214m-225.6m) is generally more radioactive than rest			660 ' 201	2' .61m		<u></u> U:.001, Th:012

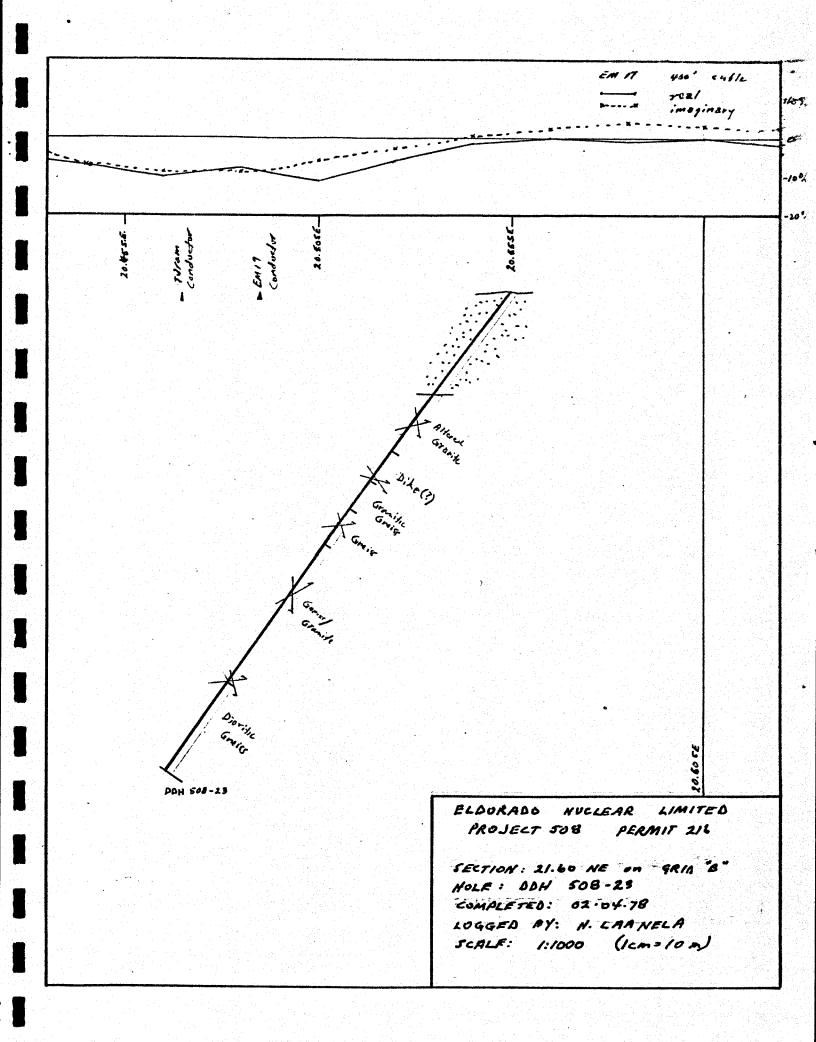
			DIAMOND DRILL HOLE LOG 78-508	8-26		PAGE	7/8 No	3	508-29			
FROM	RAGE		V G G A IF I I U A	ANPIC	CUKE SAMPLES							
			A A	JUHBER	FROM	то	WIDTH	%	AYERAGES			
									in %			
		658'-672' (200.6m-205m)	Strongly kaolinized. Feldspars yellow in D. colour. Lower 2' (.61m) of section chloritized			670' 204.3m	2' .61m		U: .001 , Th: .011			
		687'-689' (209.4m-210.1m)	50 to sub-parallel. Fragments are gouge	2411	688'	207.3m 690'	2' .61m 2'		U:.001, Th.012 U:.001, Th: .014			
						210.4m	.61m					
		698.5' (213m)	6" (15.24cm) broken core, angular fragments up D to 1" (2.54cm). Minor gouge. Core angles about 30	2412	698' 212.8n	700' 213.4m	2' .61m		U:.002 ,Th: .014			
		708'-711' (215.8m-216.8m)	Rock kaolinized. Yellow-red in colour D2			710' 216.5m	2' .61m	×.	U:.002,Th:(0.001			
		718.5'-719' (219.1m-219.2m)	Weak radioactivity (maximum count rate - 200 D2 cps (70 above BG) SPP2). Possibly fracture controlled. Gamma log response to > 500 cps	2414		720' 219.5m	2' .61m		U:.003 ,Th: .045			
		724'-725' (220.7m-221m)	Fractures gouge smeared. Core angles about 45									
		727'-734' (221.6m-223.8m)	Section is more silicious. White quartz makesD24 up about 30-40%			730' 222.6m	2' .61m		U:≪0.001,Th: .007			
		728.5' (222m)	3" (7.62cm) broken core on fracture @30 ⁰ to D24 core axis			740' 225.6m	2' .61m		U: .001,Th: .011			
		758' (231.lm)	$\frac{1}{4}$ " (.63cm) gouge on fracture 060° to core axisD24			750' 228.6m	2' .61m		U: .001, Th: .028			
		761'-768' (232m-234.lm)	Brecciated; silicious. White quartz makes up about 30%									
		768'-775' (234.lm-236.3m)	Core generally broken; bitumen coated					:				
Marine States and States an	مار میروند. مراجع	n an gagatagatan ina sa alian 200 kitan na kata dan na matatan katan katan katan sa sa sa sa sa sa sa sa sa sa An angan gagatagatan ina sa	ie provinse oblagio de la construcción de la construcción de la construcción de la construcción de la construcc Acompanya construcción de la constr Acompanya construcción de la constru				in an					

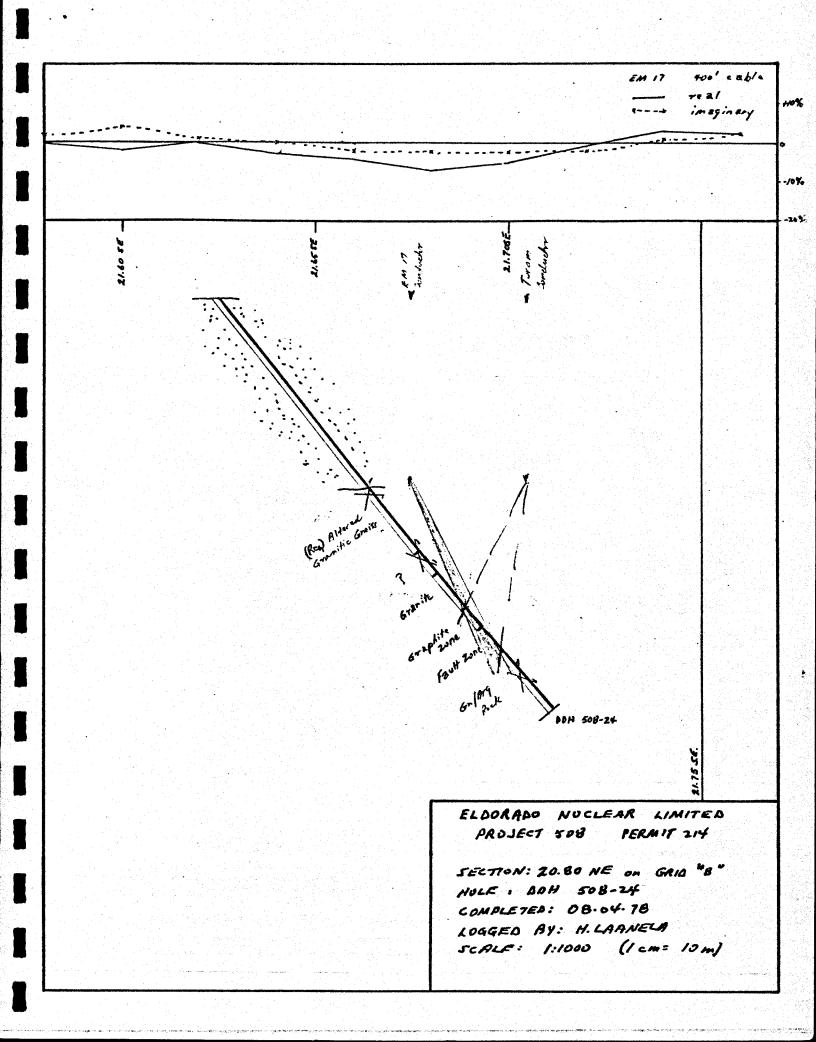
	AGE	DIAMOND DRILL HOLE LOG 78-508-26		PAGE	No	8/8	508-29
775'-817' (236.3m-249.1m) 30-40% white quartz; grains stretched and aligned at 45-60° to core axis. Local massive sections. 817' END OF HOLE (E.O.H.) Scanned with SPP2. Downhole gamma-ray probed with Mt. Sopris 1000. Drilled by Capadian Le	10	DESCRIPTION		T		The second s	
(236.3m-249.1m) 817' END OF HOLE (E.O.H.) Scanned with SPP2. Downhole gamma-ray probed with Mt. Sopris 1000. Drilled by Capadian Le			FROM		WIDTH		AYIRAGE
(236.3m-249.1m) 817' END OF HOLE (E.O.H.) Scanned with SPP2. Downhole gamma-ray probed with Mt. Sopris 1000. Drilled by Capadian Le							
(249.1m) END OF HOLE (E.O.H.) Scanned with SPP2. Downhole gamma-ray probed with Mt. Sopris 1000.	(236.3m-249.1m)	$30-40$ % white quartz; grains stretched and aligned at $45-60^{\circ}$ to core axis. Local massive sections.					
Drilled by Constitution	17' END OF HOLE (E.O.H.) 49.lm)	Scanned with SPP2. Downhole gamma-ray probed with Mt. Sopris 1000.					
(End of drilling/Winth, 1978)		Drilled by Constinue					
	(End of drilling / Winter 19	», cumutan hongyear hta.					
	0/				1		
			· · · · ·				
						•	
		그는 것은 것이 가지 않는 것을 하는 것이 같이 많이 많이 했다.					
	• • • • • • • • • • • • • • • • • • •						
	한 가는 물건 나는 병원이.						
		같은 사실 <mark>방</mark> 것 같은 것 같은 것 같은 것 같은 것 같은 것 같은 것 같이 있다.				.	
		a se a de 1868 de 1969 de la companya de la company La companya de la comp					الحية المحالي المراجع المحية . سابق المحية المحية المحية
			1		Ι.		
				·	1.1		
	· 國家 · 電影 · 法法 · 通道 · 法	이 전에 있는 것은 것은 것은 것은 것은 것을 통하게 했다.					
		그는 동안은 전문에 있는 것은 것들은 것 가슴을 통하는 것이다.	ang an 🚺		.		
- 영화 [편], 44월 16일 20일 1일 - 19일							
지금 물건을 전쟁을 가지 않는 것이 같이 있는 것이 같은 것이 많이 다니는 것이 같이 많이 있다. 지하는 것이 같이 있다. 지하는 것이 같이 많이 했다.							
성장 [14] [16] [16] [16] [16] [16] [16] [16] [16							


.


.....


PROJECT 508, ALBERTA


SECTIONS OF DIAMOND DRILL HOLES for DDH^S No's 508-20 to 24 (incl.)


APPENDIX "C"

APPENDIX "D"

I

CERTIFICATES OF ANALYSIS for Diamond Drill Core Samples (by Bondar-Clegg & Co. Ltd, May, 1978)

PROJECT 508, ALBERTA

764 BELFAST ROAD, OTTAWA, ONTARIO, KIG OZ5

GG

0.7

Certificate of Analysis

S

Eldorado Nuclear Ltd.,

то

300 - 255 Albert Street,

Ottava, Ontario. KIP 6A9

144 D.YED	and and a second s	5	The state	7	12	7.	7	5	a service de la compañía de la comp	
MARKED		υ		Cu	Ръ	Zn	Co	N1		Reference
6001 6002 6003 6004 6005		L0.001 L0.001 L0.001 L0.001 0.001	0.013 0.012 0.016 0.017 0.017							508-18 186-185 188-190 190-192 192-194
6006 6007 6008 6009 6010		L0.001 0.001 L0.001 L0.001 L0.001	0.046 0.028 0.015 0.004 0.016	trace trace trace				trace trace trace trace		194 -196 508-20 2635-2655 4135-4155 508-21 77 - 79 79 - 81 81 - 83
6011 6012 6013 6014 6015		L0.001 L0.001 0.001	0.010 <u>0.037</u> 0.012	trace 0.02 trace	trace	trace	trace	trace trace trace trace 0.01		260 - 262 262 - 264 508-23 400' 508-24 256.5' 273 - 275

NOTE:

Rejects retained two weeks Pulps retained three months unless otherwise arranged. BONDAR-CLEGG & COMPANY LTD.

IPAN

REPORT NO.

DATE

PHONE: 237-3110

A-194-78

May 8, 1978

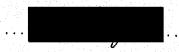
784 BELFAST RDAD, OTTAWA, ONTARIO, KIG 025

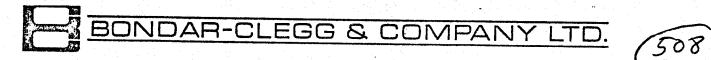
PHONE: 237-3110

0-21

Certificate of Analysis P.2

TO ____Eldorado Nuclear Ltd.


DATE May .8, 1978.....


- 2 -

MARKED		\$	7	7	1 2	7	7 .	7	1	
	U		Th	Th Cu		Zn	Co	11		Référence
6016 6017 6018 6019 6020 6021 6022 6023 6024 6025		L0.001 L0.001 L0.001 0.007 0.003 0.022 0.013	0.015 0.013 0.001 0.002 0.004		trace trace trace	trace trace traco	trace 0.01 trace	0.03 0.05 0.06 trace		508-24 378" 389.5" 341" 508-24 448 - 450 508-25 228 - 230 171 - 173 508-27 466 - 468 479-481 653 - 65
6026 6027		0.012 0.024 L Means	0.003 0.002 less the	n. n 0.01\$ (u, Pb,	ún, Co, i	11.			655 - 65 657 - 65 689 - 67

NOTE:

Rejects retained two weeks Pulps retained three months unless otherwise arranged, BONDAR-CLEGG & COMPANY LTD.

764 BELFAST ROAD, OTTAWA, ONTARIO, K1G 025

PHONE: 237-3110

Certificate of Analysis

Eldorado Nuclear Ltd.,

400 - 225 Albert Street,

Ottawa, Ontario.

DATE !iny 10, 1978.....

MARKED		7.	. %							
	U Th		Th						- Reference	
D-2401 ↓ 2402 2403 2404 2405		0.001 0.001 0.002 0.002 0.002	0.022 0.020 0.008 0.025 0.025						NH 508-29 458-460 468-476 478-480 486-490 486-490 499.3-501.	
2406 2407 2408 2409 2410		0.004 0.002 0.001 0.001 0.001	0.022 0.032 0.012 0.011 0.012						508 - 510 516 - 520 658 - 660 668 - 670	
2411 2412 2413 2414 2415		0.001 0.002 0.002 0.003 10.001	0.014 0.014 L0.001 0.045 0.007						678 - 685 688- 69 698 - 70 708 - 71 718- 72	
2416 2417 End		0.001 0.001	0.011 0.028	L Means	less th	an.			728 - 79 738 - 14 748 - 75	

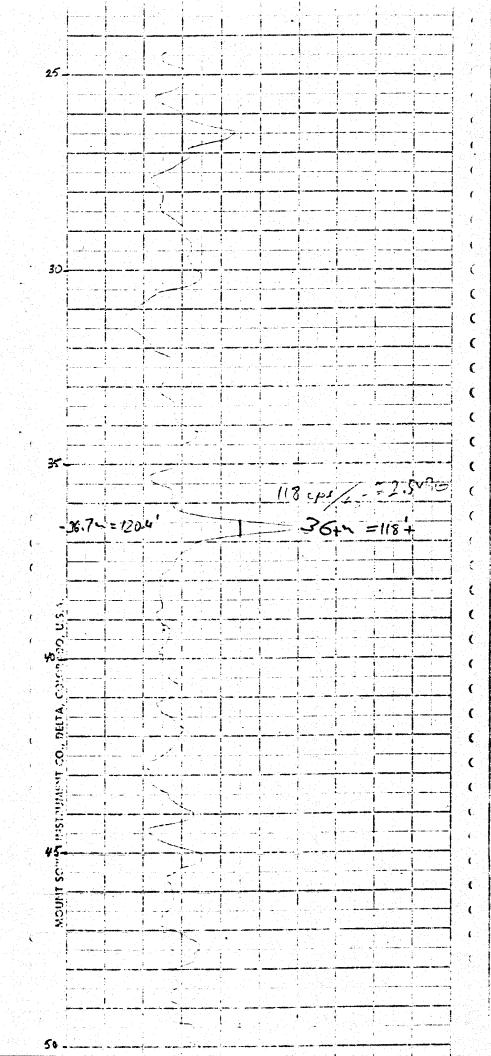
BONDAR-CLEGG & COMPANY LTD.

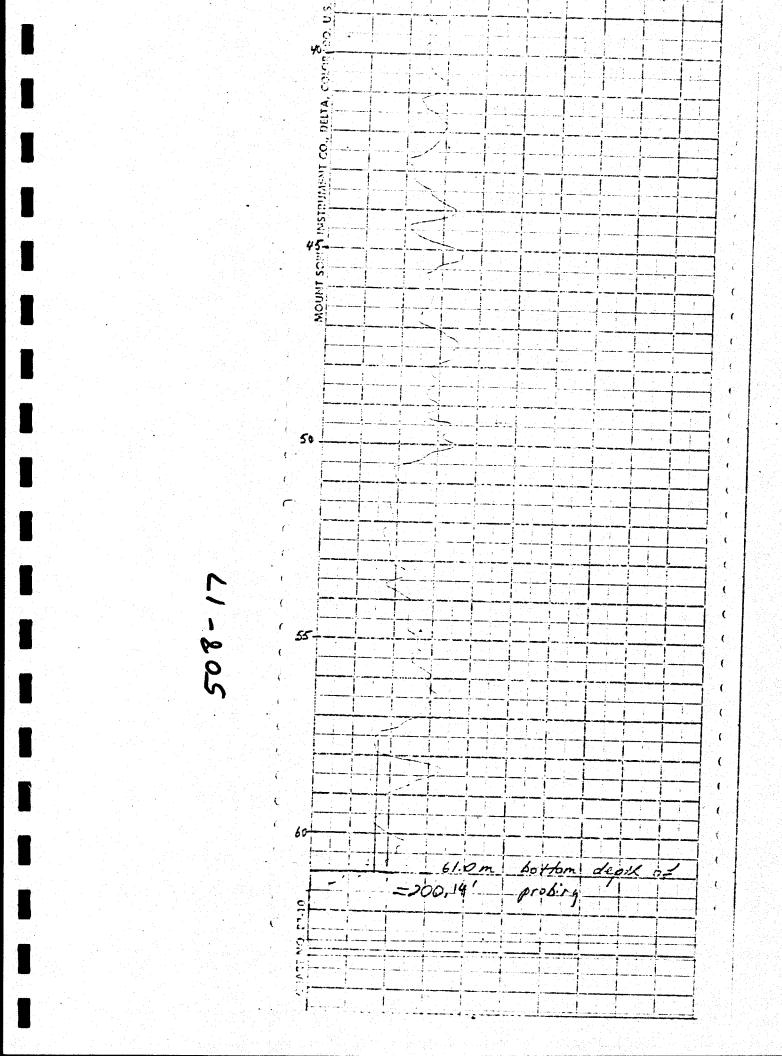
NOTE:

TO

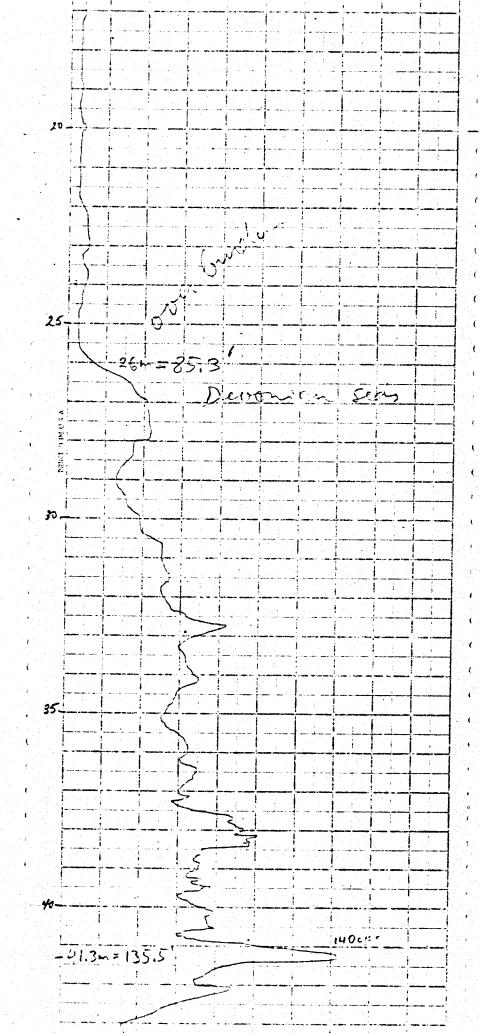
Rejects retained two weeks Pulps retained three months unless otherwise arranged.

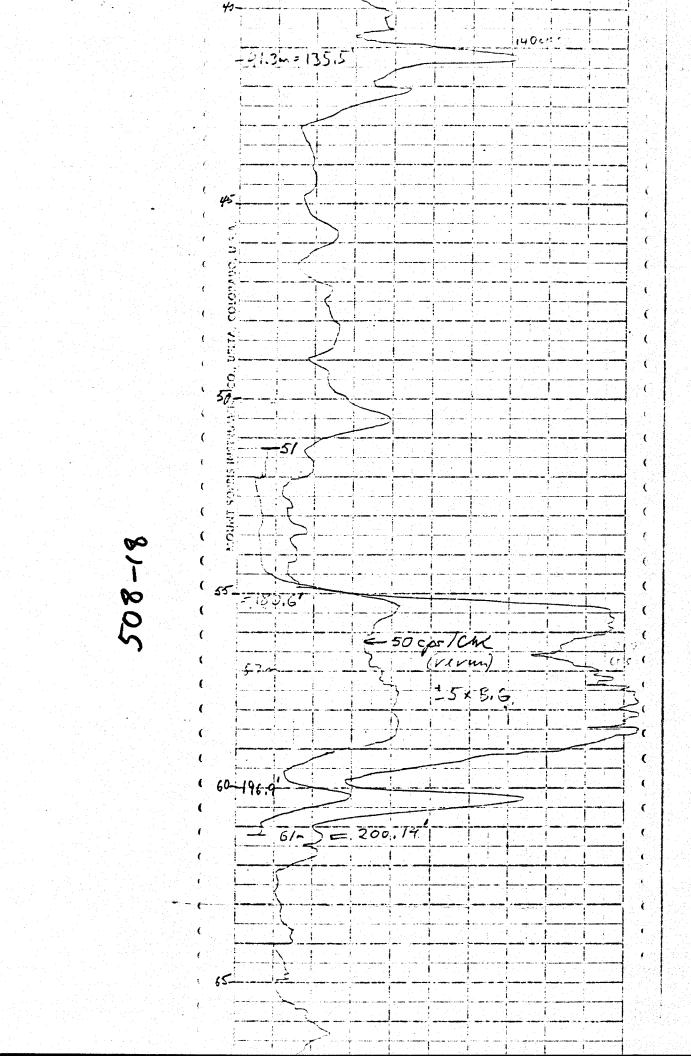
PROJECT 508, ALBERTA

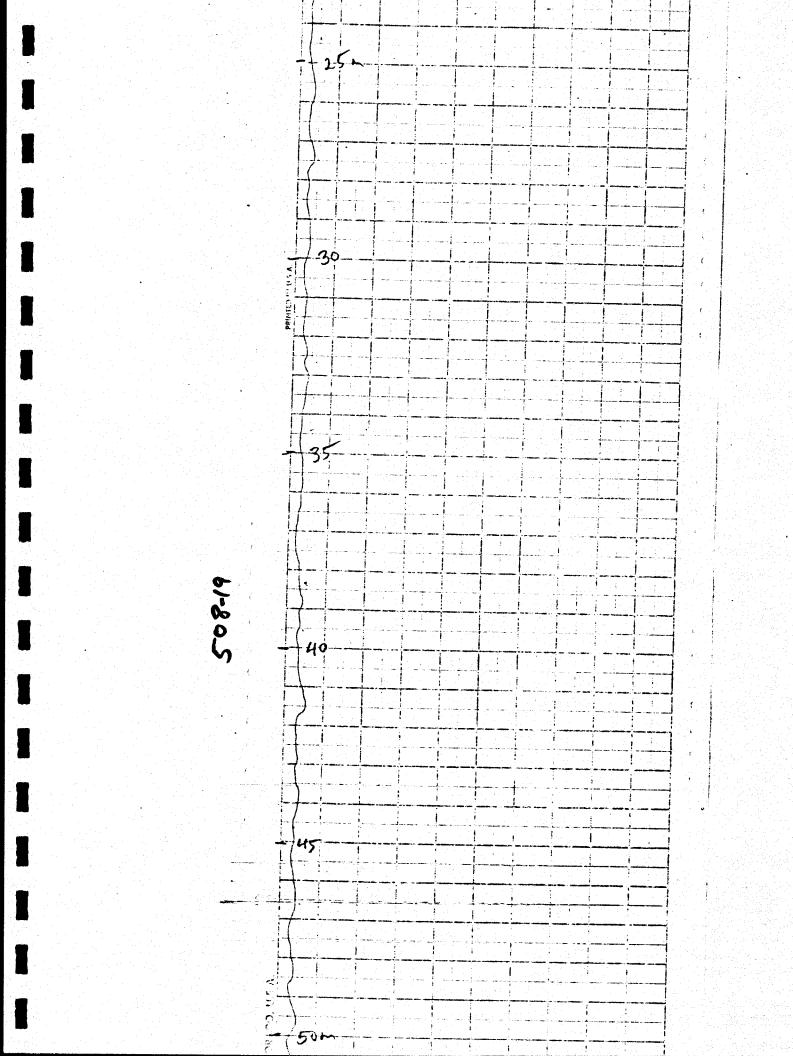

*

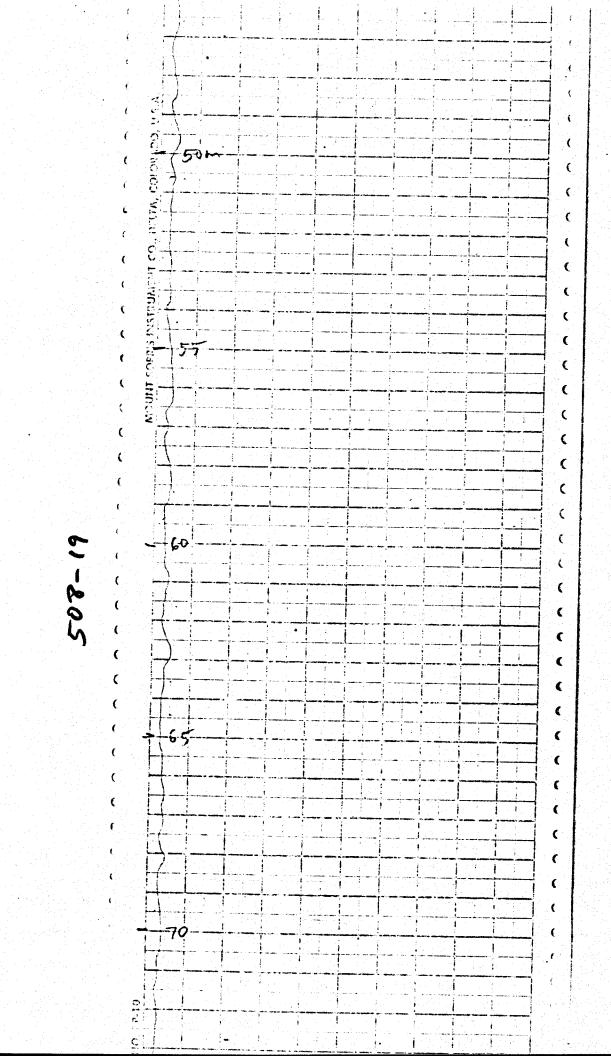

DOWN-HOLE GAMMA-RAY LOGS of DDH^S ##508-17 to 29

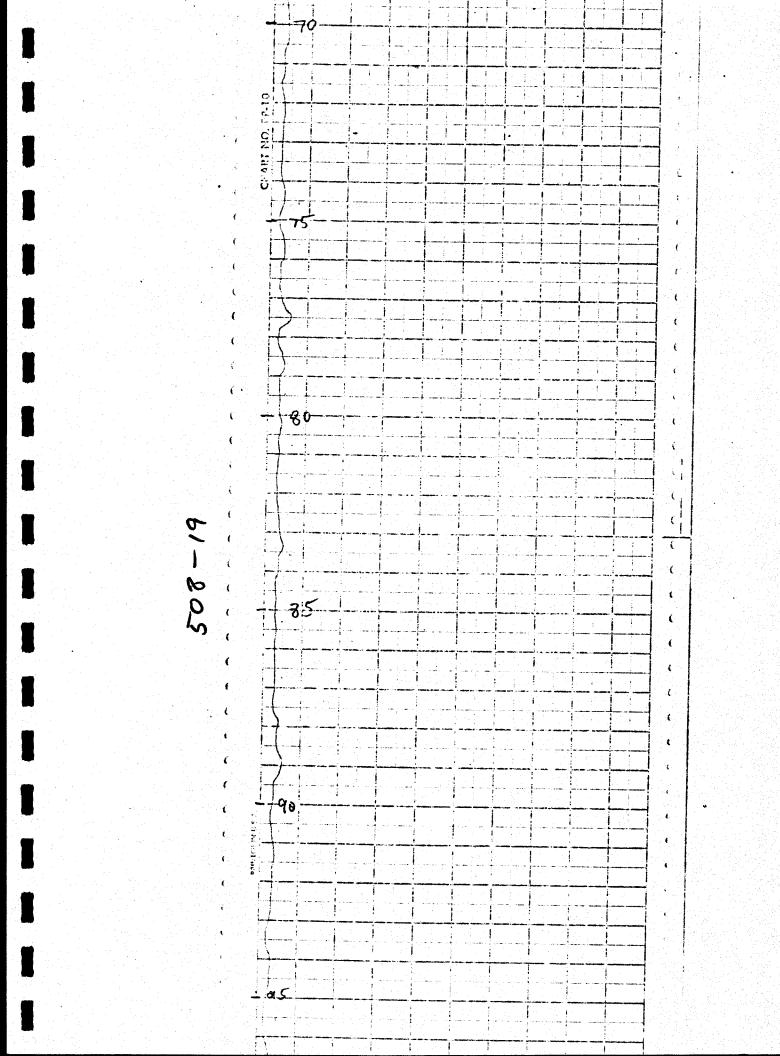
APPENDIX "E"


I


DSH 508-17 Trobol Mia. The FORTUNA March 17, 1978 / H. LAANFLA 15 1000 Pate: 6m C hir. TOTAL Scale: 20cps 8-109 Cŀ 0 6 COES - Winker DD. Propren, 1978 The ; Ref of Marken 10. 62-13 meren ł Ì \$5 1000 ţ i ļ Souris Ю 3 508-3 Jos - Lok 15. 70 E 20 -Ę,


× I DDH 508-18 Prober March 19, 1978 The LAANELA / P. FOF TUNM MT SOPRIS 1000 8-109 5031e: 20 cps/cm relog: 51 m-61 m 50cps/cm 0. 1 0 1 59 ł ſ 5-. i 508-18 ÷ ł 01-41 1 ł ĺ. -----[CHART O ł ŧ 2 i ÷ 4 Ì ł i ł ÷ ł į ł 1 ŀ 4 15. i ì ł ŧ 10





DDH 508-19 Probed March 23, 1978 KG. Mitchell + C. Oppelt Mt. Somis 1000 - Y-ray scale = 20 cps / 10m Speed 6 m / mil İ ł i ÷. lor 51-805 į. • [el rea ġ ļ CHART 1 1 1 Į ÷ 20

ļ.

1015 t £ ŧ C (į. C (d, C 100+ ¢ C ť ¢ : C ť Ć Ŧ ((Ű Ć 105 6 (; ¢ ļ ¢ (Ŧ. 1 6 i ş (ť ÷ € outre solids instruction party, color po, u.s. (C į. (Ċ 1 -110 ¢ C ŀ ¢ € C ŧ (i. (ł ((ŧ (Ç ł. ÷ ÷ (1.0 1 115

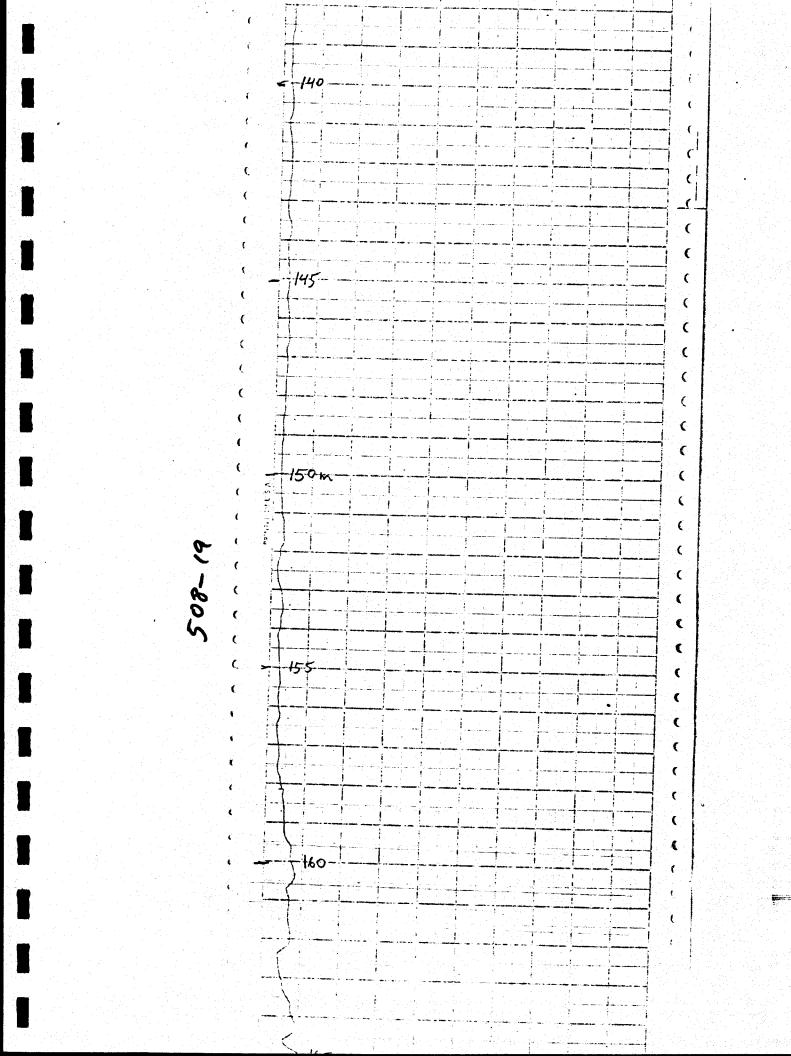
ACTINE SCH ÷ ł i 120 1 ------125 (j, ł 1 -139-! ì ŧ i ł (i . t i 1 ļ ì 1 i 1 ¢ ł 1 i C1-13 ÷ i á. I ţ CI INT NO. ÷ i 1. 1 1 ł 1 ł î. ì 1 +35 1 ŧ ì ì 1 1 1 i ÷. Ł . ì 1 Ĩ ŧ ţ i **f**40 1 : 1

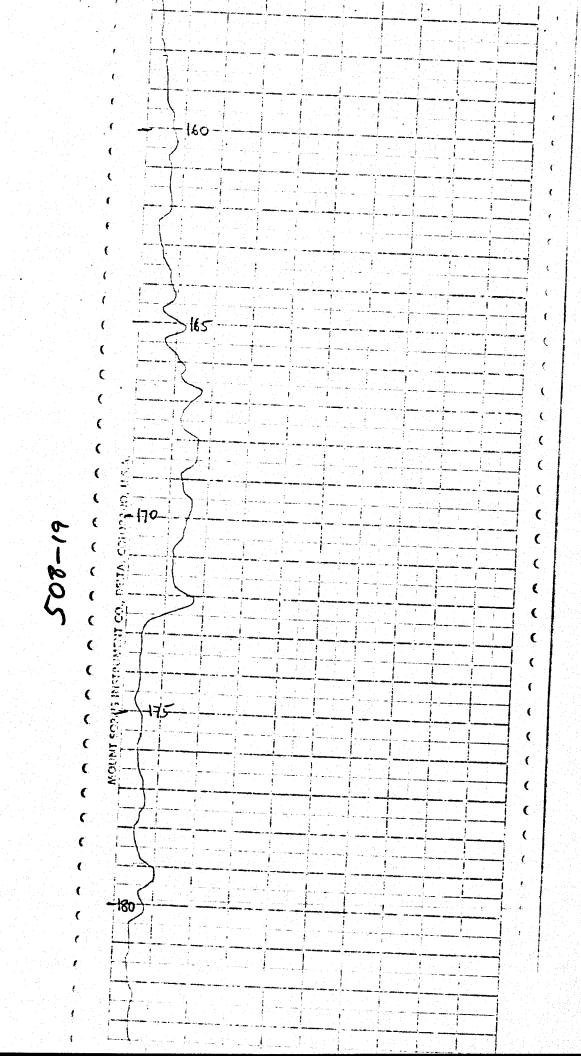
١

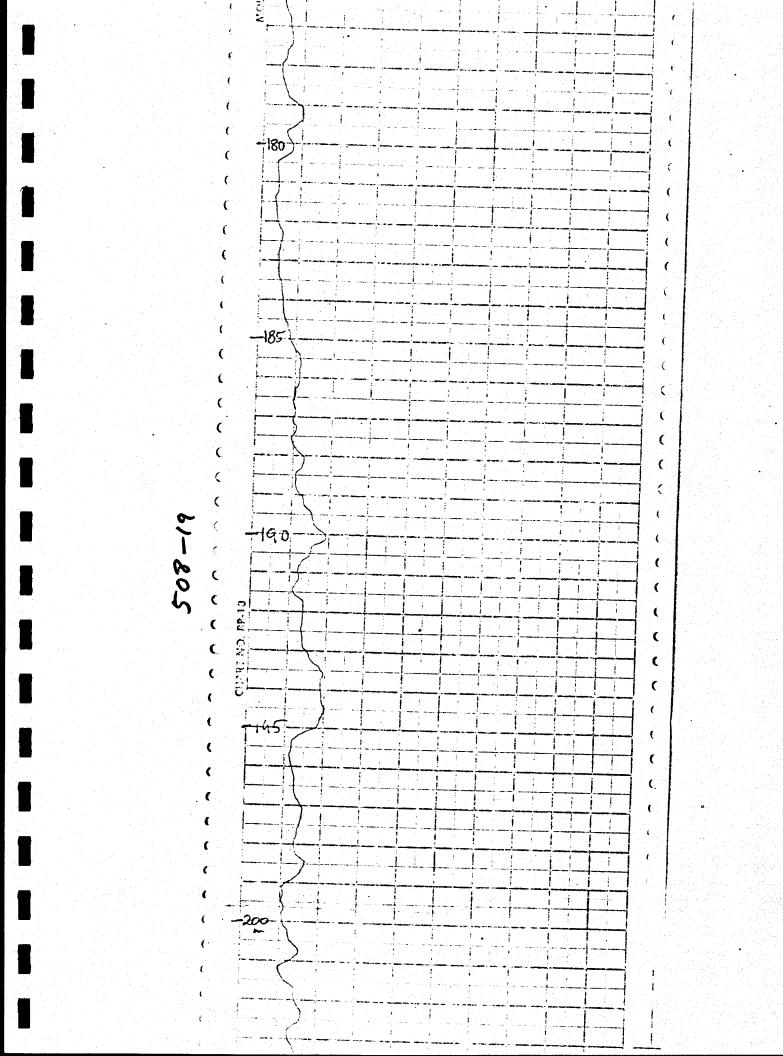
508-

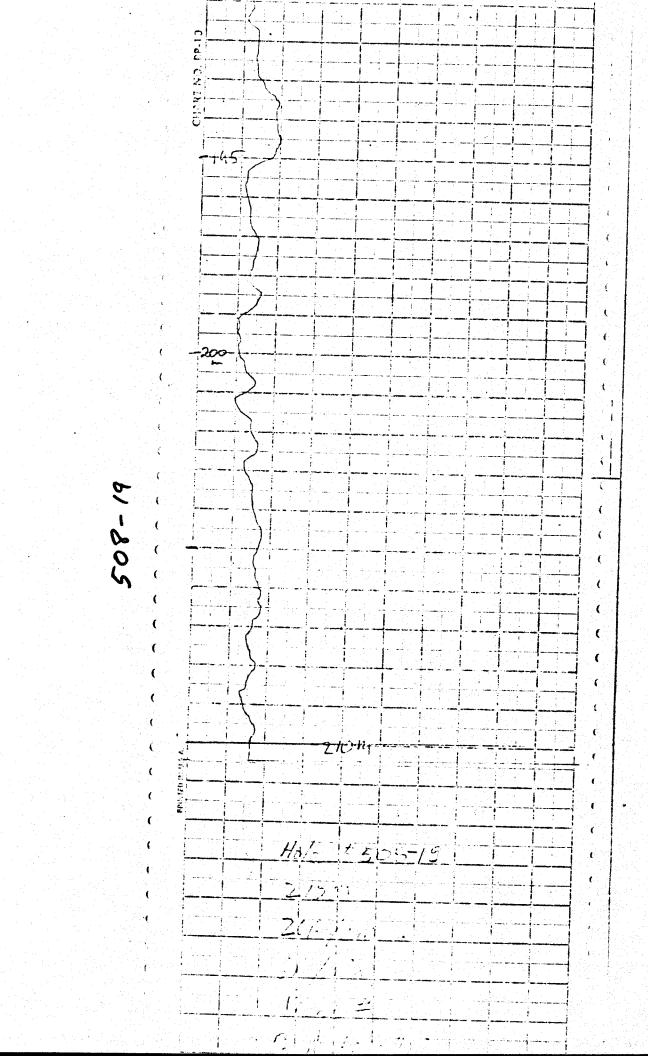
Ċ

t

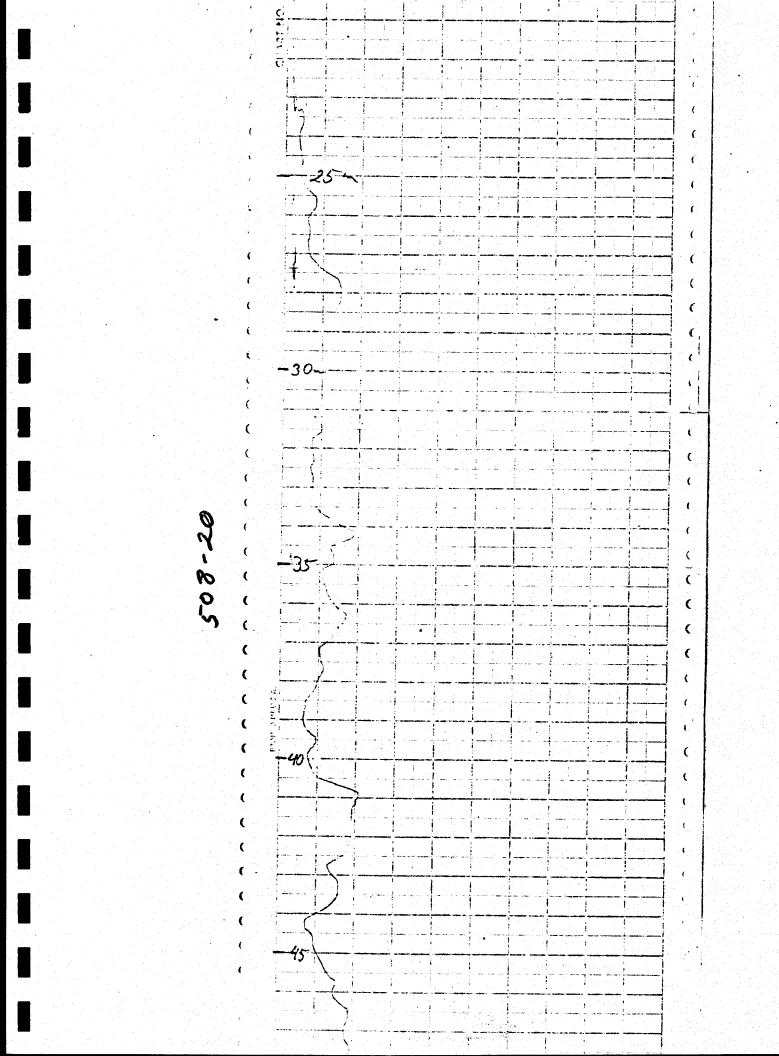

\$

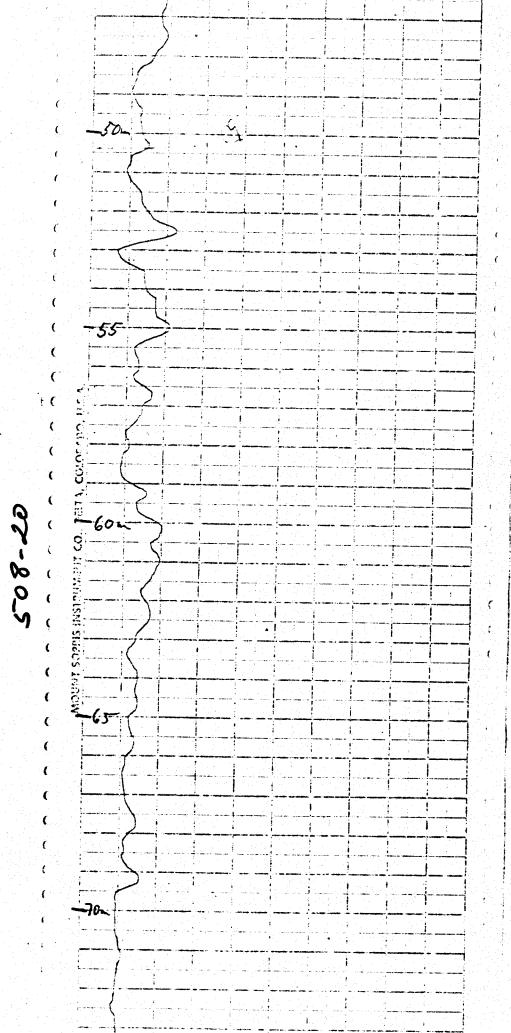

(

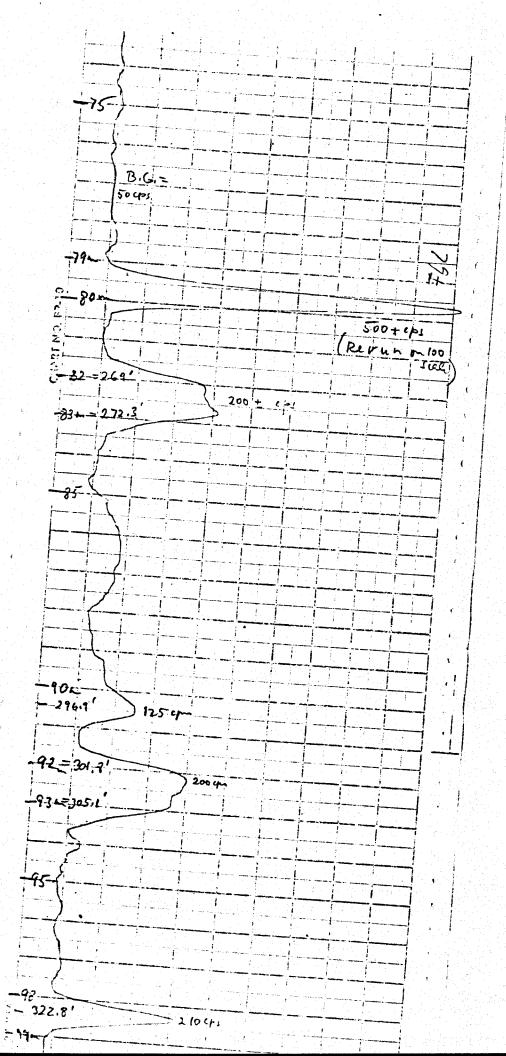

C

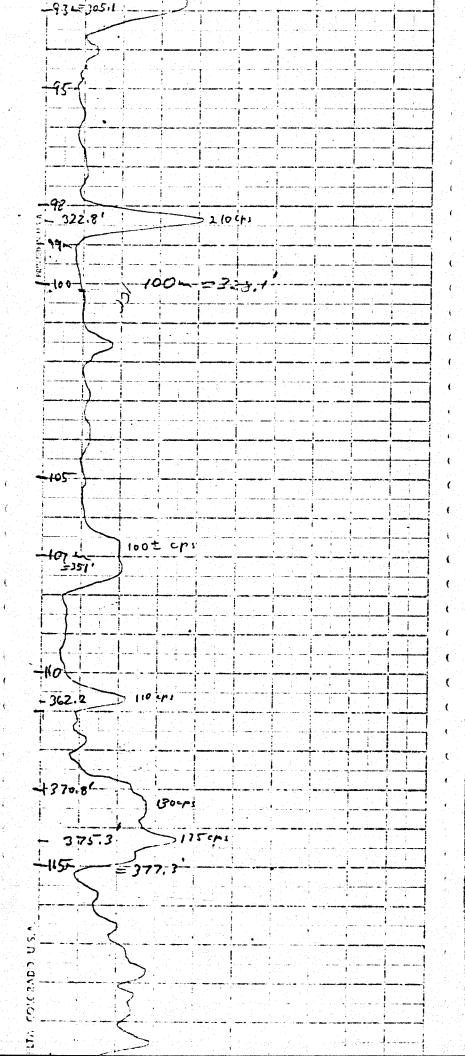

C

$ \begin{array}{l} \left($				
(
C				
				-
C				
5				
e				C III
				e l
CIANT NO. EVID				
4 1 V				
	135			
	140			
		 	a de la companya de la	







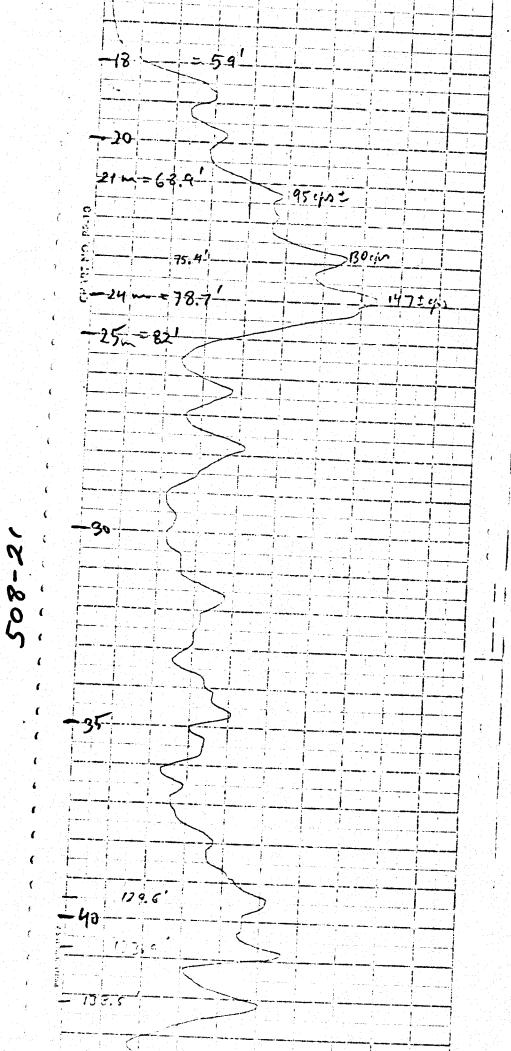


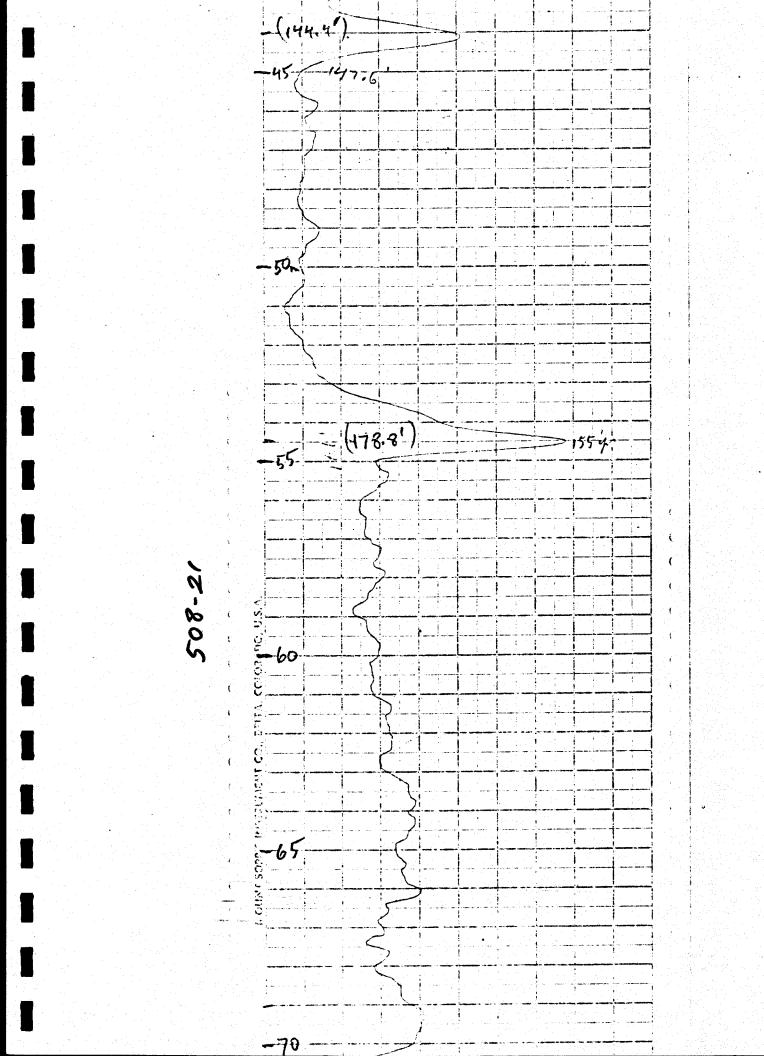
DDH#508-20 Frobed March 30, 1978 (verun Three plastic) MP. Fortime + H. Laenela 174. Sopris 1000 J-ray scale: 1am = 50 gps 1 cm; 1 m Speed 6 m/min. p'= an collar STRUMENT ż 5000 Sille' ţ 508-20 10-4 i 5 ŧ Ť. 5-204-

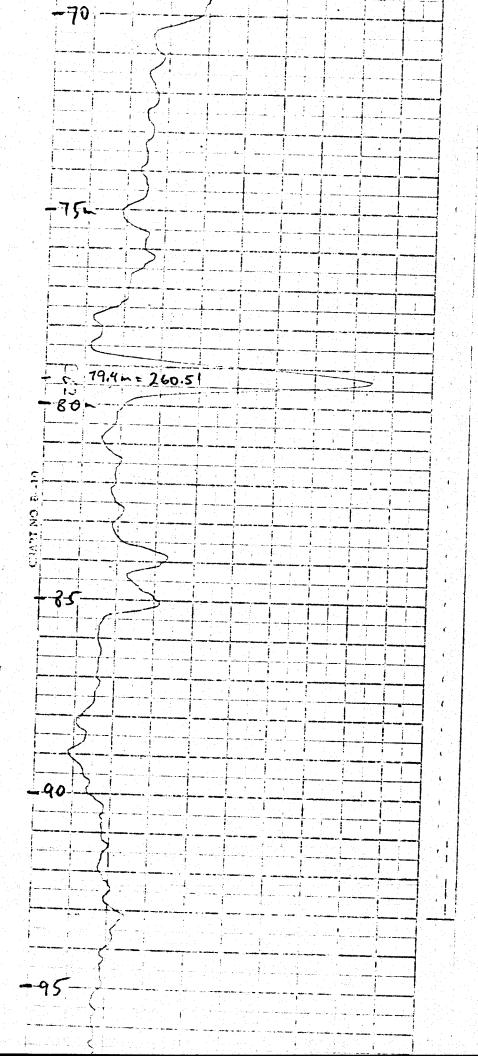
= 311.5 5 i i 1 U.S.U COLASION 1. 1 PELTA, 120 -Ç, i 1 TNENT ł 1 - 398.3 210 . - 3 Ţ ULL SM ----SUPRIS I \subseteq 1 ì -+25=410.1 < ł ŕ - 430405 1 i Ĵ. Ì Í i 1 1 i÷ -130 L . . ÷ i 1 1 İ 1 i 133-= 436.4 1 1.50.491 Í ł 1 +35 ~ i 1 ŝ ţ Í . Ţ *.*• ł 137.5 - 451.1 į 200-225 CPS Σ ŧ ľ ł \langle 1 439.5- =457.7 ç 440 <u>oi</u> - 141.2 = 463.3 5 219675 ł 1

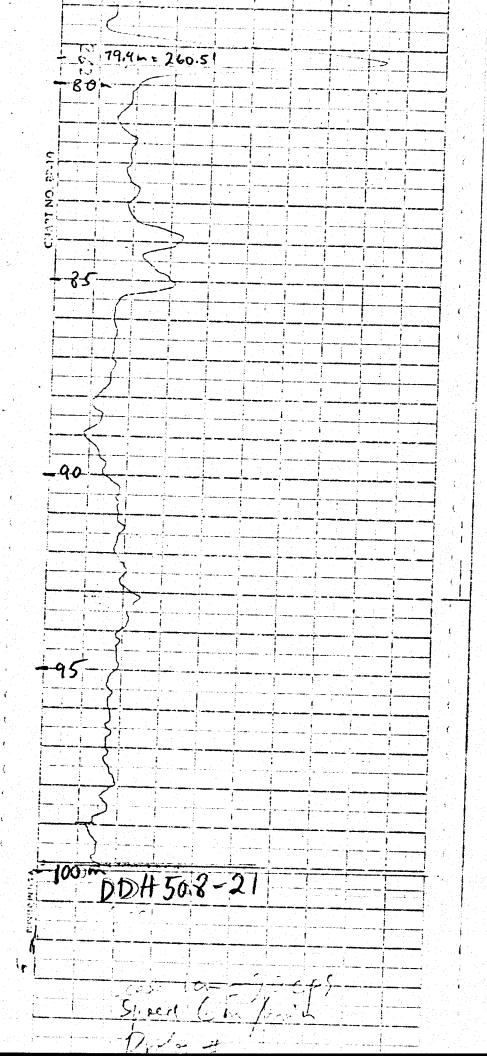
50 05

İ. シ i -130 t • ŧ ţ 133- 436.4 -150202 ŀ i . í ł ť i ł į. ł 135 ŧ 1 I ÷ į ì 1 i ł. 137.5m = 4.51.1 4 200-225 cps 1 4 ÷ ÷ 5. ł i ť i ţ 1 ľ <¢ 439.5 = 457.2 i i. (1 ! i ŝ 01-23 -140 (1 £ <u>;</u> - 141.2 = 463.3 í (Dzigops ł Ć 10 ï ł i ÷ 1 (ŧ 1 i : l (ł ł ł .f ŧ 1. 1 -145-٤. . : 4 i į ¢ ł i e ÷. ÷ ۱, i i 1 ł 1 ŧ 148 (start) 1 ŧ. 1 thur playtic 1 50 cps: reun 1

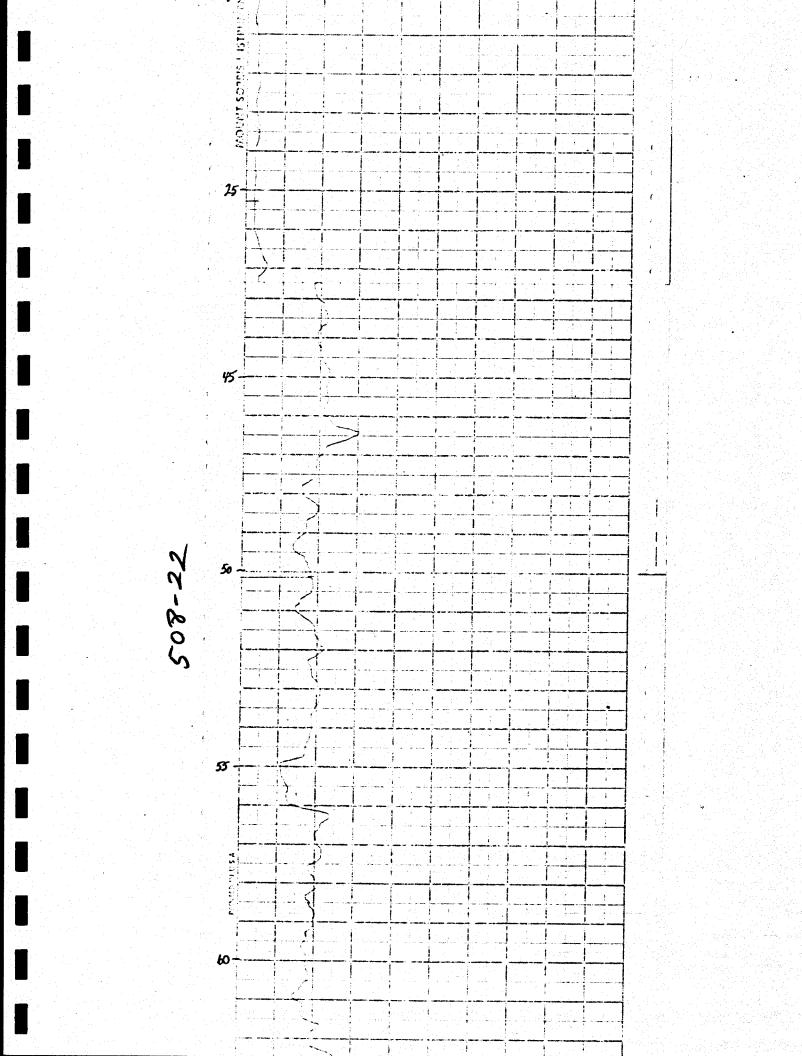

508-20

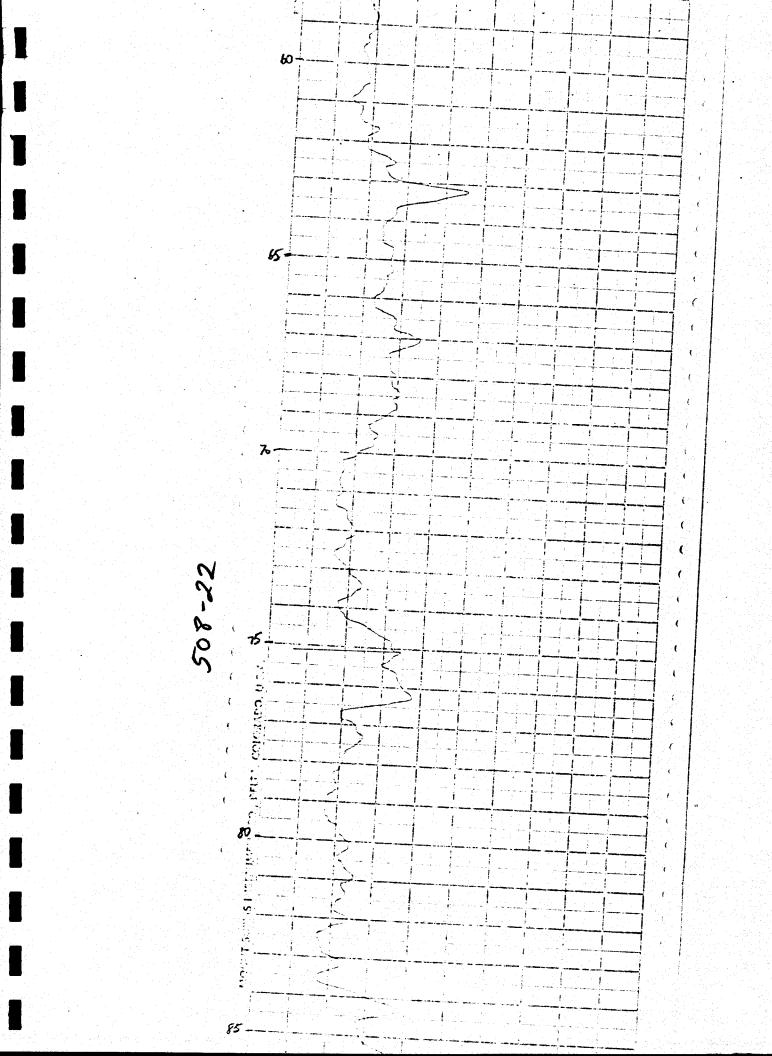

£

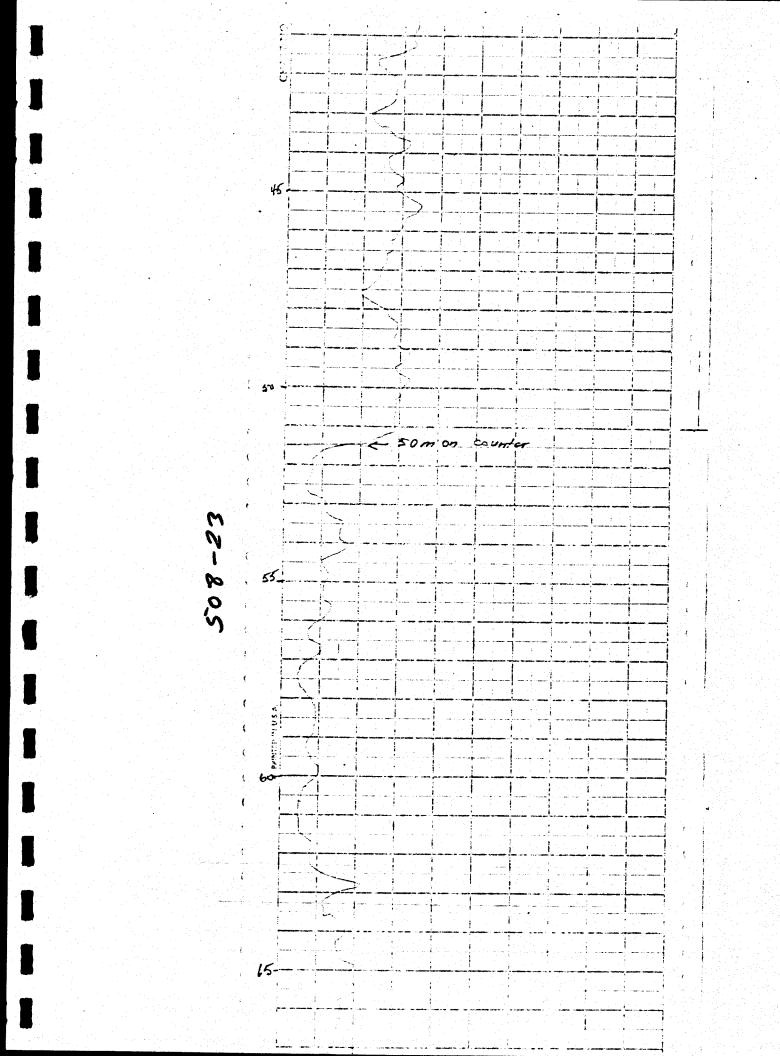

È


DDH=500-20 Probed March 39,1978 (verun II the plastic.) YH. Casula T. P. Forh Mt: Sopris 1000' I veg scale; Im = 100 cps 'ai 70-VSD NI GLANGS Ì į ÷ Î ţ į 1 BGF 250cps 508-20 (ra-ru 1 ĺ. 79m=259.2 ~370455 -30 =262,5 82 - 269-±200 cps i -271.7 85% BG= 50-80 405 < 90, (start reren! fon -0 DR 1A DDH#508-20 Rate Im = 100 cps R- rerum 8

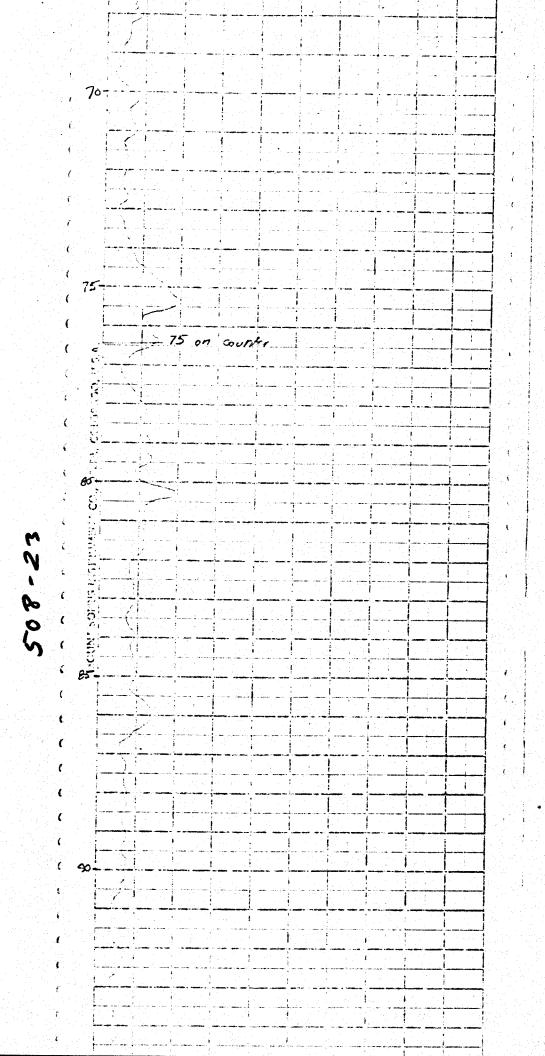
DDH #208-21 March 24, 1978 All by G. Mikell/Allend Rate: 1 cm = 20 cps V logged the cesing & rods 0 Sce 4 ł 0 8 | h . . . CELTA ŧ 0. i Í 5 NIGTE ŧ ç 119101 508-2 d. i ţ ŧ 10 m 1 1 ŧ ŧ. ÷, 1 . Ć 1 5 1 ŧ i 1 18 59 i 7 4. ł -20

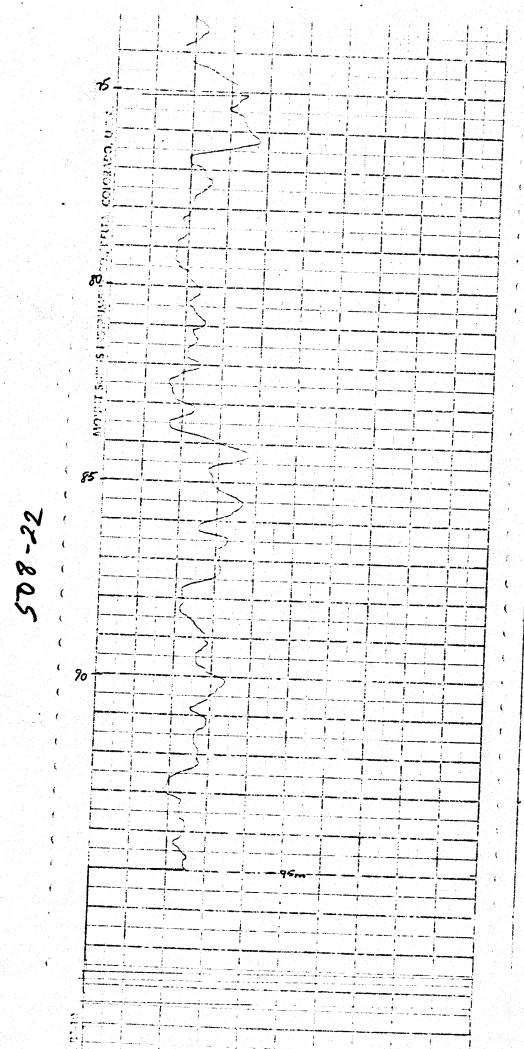


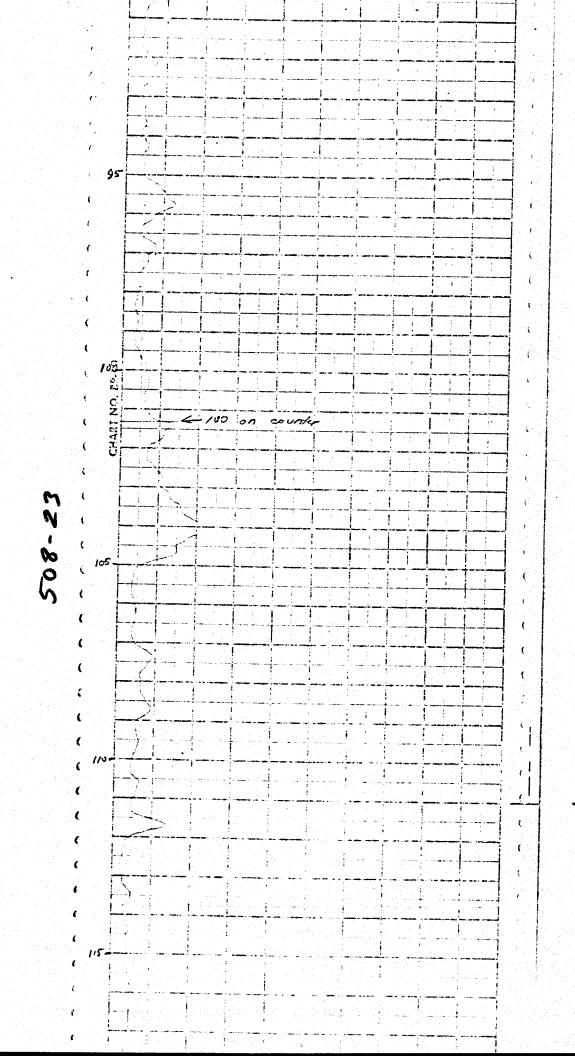




DDH 508-22 Probid April 1, 1978 T P. FORTING / S. STEPHEN MT-SOPRIS-1000 8-log Scale: 20 cps/div. -0.1 m 5 508-22 10 Б <. ⇒ -20ł







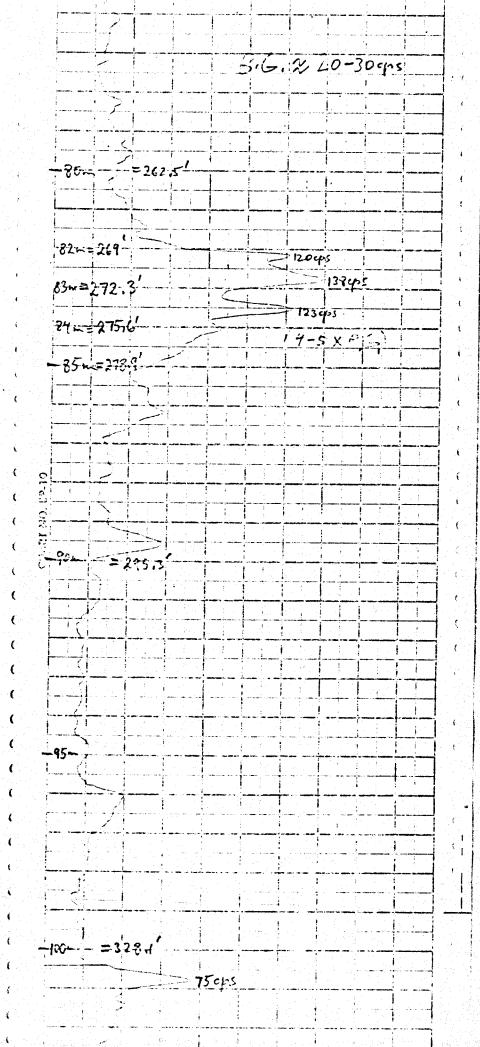
10101 22-1.1 Ţ, ••••• CONTRACT CO ħ, 235 ŧ ٤ e25mon counter đ, 1.1 1 4 ŧ 30----£ (ŧ. ł ì. 1 - 1 ŧ (ć i. 1 1 ì ; 45 \geq_{i} \sim 1 ł . . 1 ż ł ľ 1 ŝ 1 1 İ. ì ŧ , t į -ţ C *** i i an 1 ł ł 1

DDH 508-23 Probad April 5, 1978 TA S. STEPHEN / P. FORTUNA Mr. Suppus 1000 (007) Seale: 20 cps/div. 5-109 - 0.6 in on counter 4 508-23 ł 1 ÷ ł ıŚ 025 ŧ 1 Ì

120 ۰. 1 1 Ę ł ; ~ (125 -۰, --125 cm scunter ÷ 1 ŧ. ٢ (4 (4 (135 1 f í ł 1 Í. (ì ļ ÷ (÷. ł ÷ ·--iq ÷ 1 1 1 135 ŧ ((ļÍ. 1 5 . ł CO103 400 1 A Ed 1 Ĩ ï 00 <u>م</u>يند ł NUNUX 1 ł ź 1 2 S Ţ

M 8 5

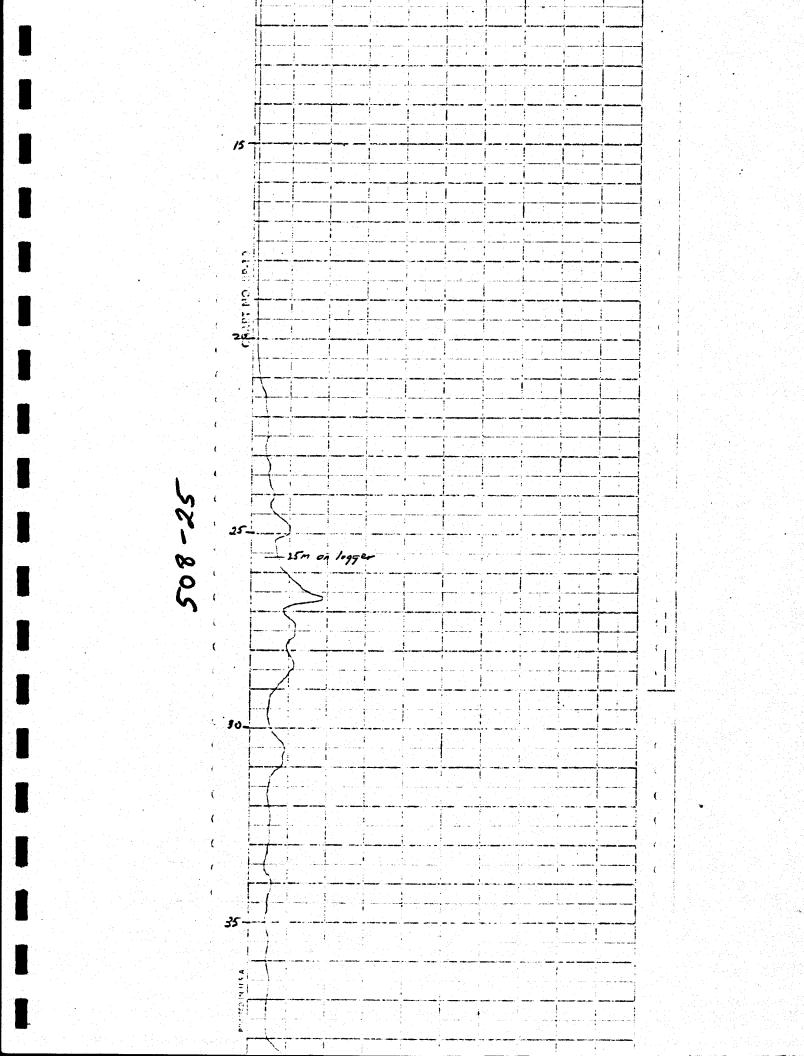
É

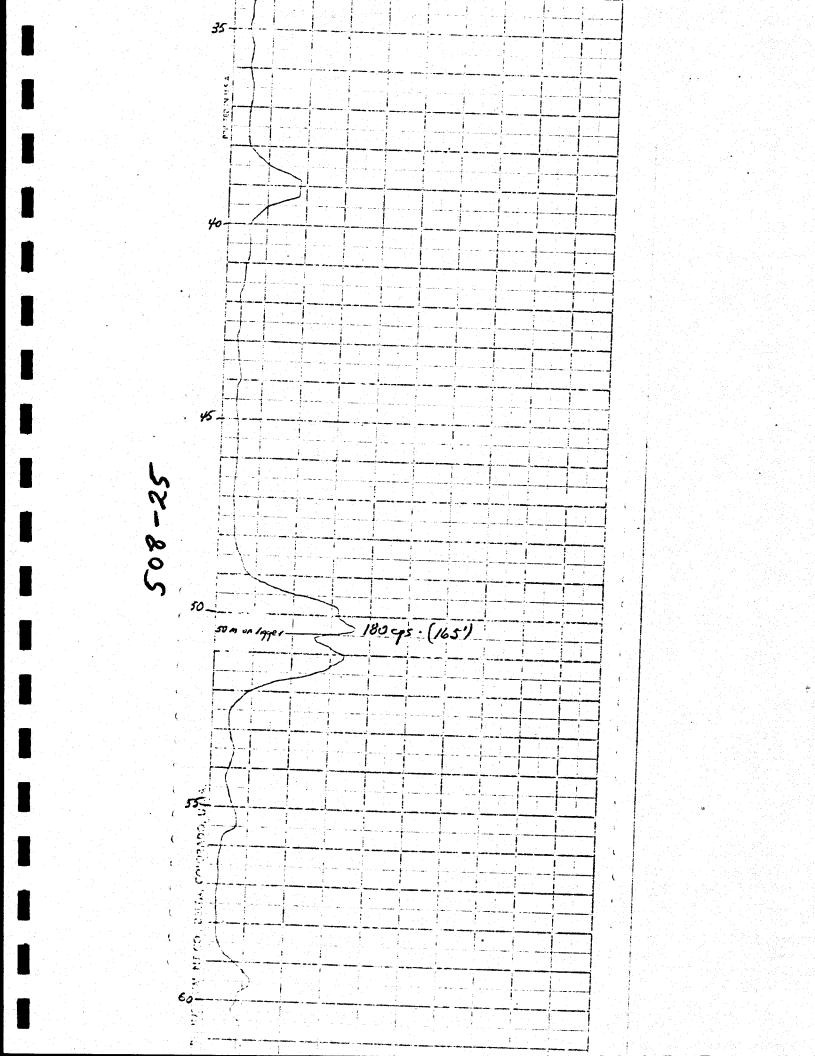

125 -1 -125 on counter i, . 1 `~ . 4 133 Ŧ 4 ŧ ł į 135 ł £ İ ¢ í . (COLO3 4 PO U S. A. 508-23 (1 ſ 1 ł Ŷ ţ 4 Ľ, 1 Ç PELTA. ì ť Ì ł ÷ ć ť COLINE SOUSH INCLUMENT CO. į é ł C ł t 1 ¢ 1 t L (. i 6 Ĵ, ŧ. C ٦ ł ł İ ٦ 145 1. . . £ 147 motors 200-ps-•

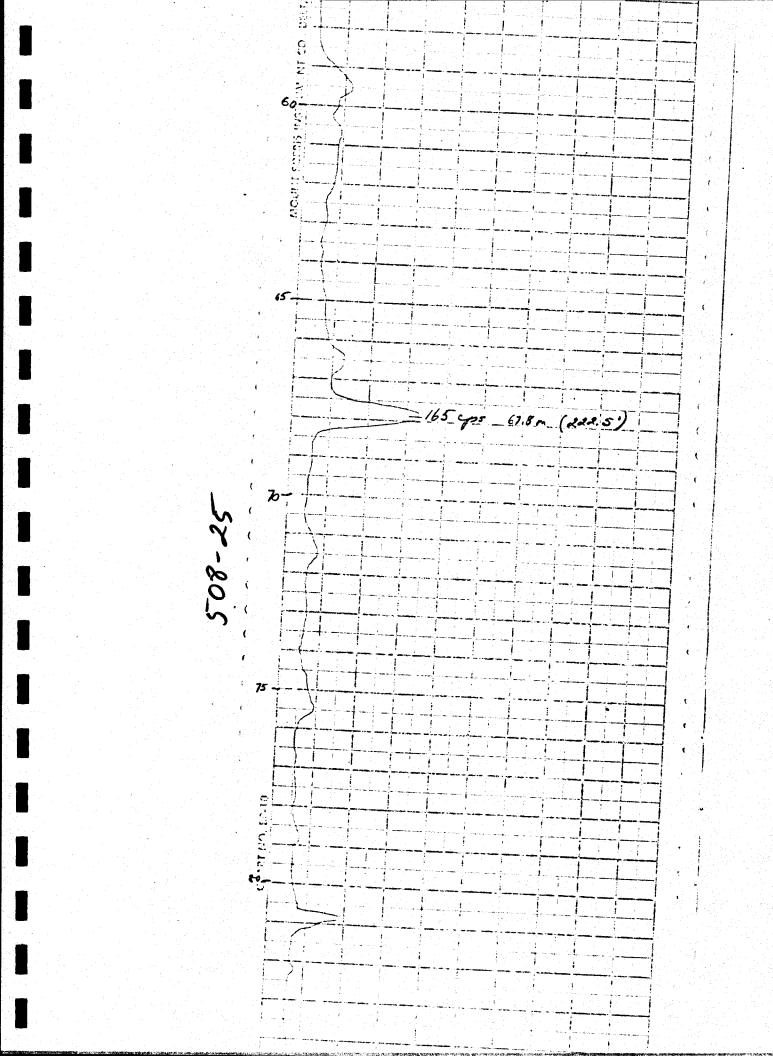
DDH-508-24 ÷9+ -0 - (7 54 Probert - April 9,1978 TA-FORTUNA/LARNELA 20 cps/diu 8 - lig Probed fringe rods --51 + casing COLOR/ - <u>(</u> ; Ĵ Ē i 1 õ -15m ; 1 ï i ì - 20---२५ - 125-

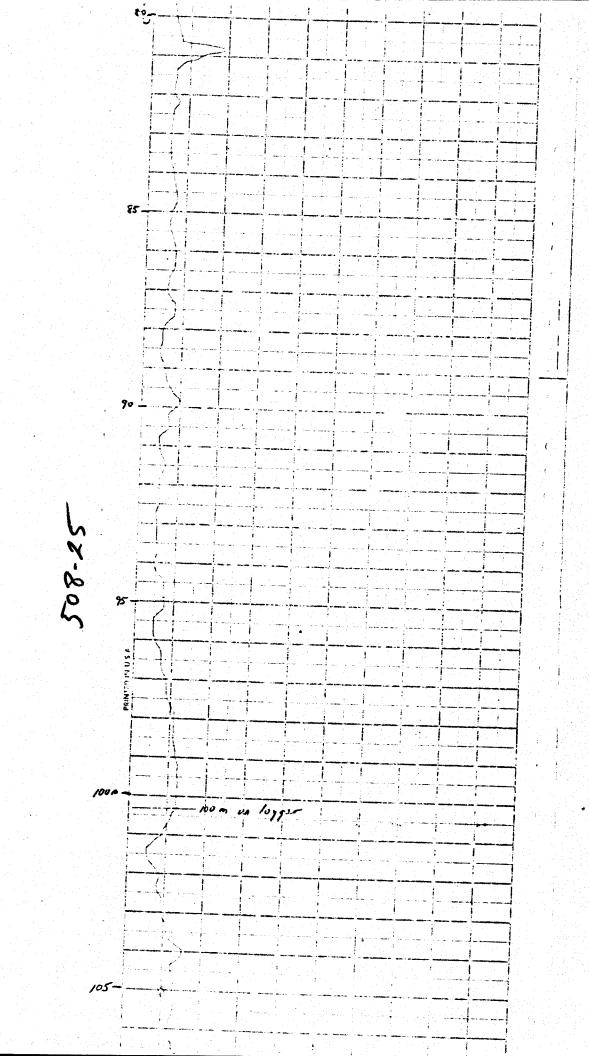
ł 1.0. Pa. 10 Ľ 1 ÷ --301 ; i 1 . ļ ł ţ I† ł ł ć . ł 1 Ì Ŷ i ł 1 (ļ ŧ (354 £ ť. 1 4 ł ť i ţ Ţ i 1 í ا را ł ŧ, ŧ **(** , , ć ĩ Č (· ¢ (C 11 (٢ (ł. ¢ ٢. (. • C C ŧ £ 1 (i ł ť V STANDARY t ţ (1 ÷ ٦ ____ (ġ. Ç (n skolov F Ċ ł -50

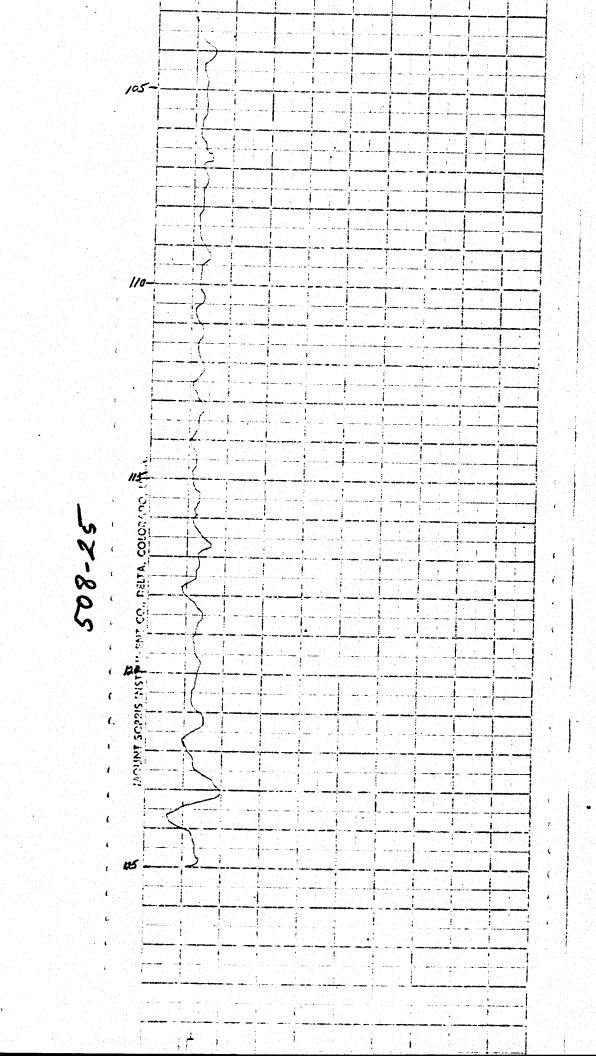
508-24

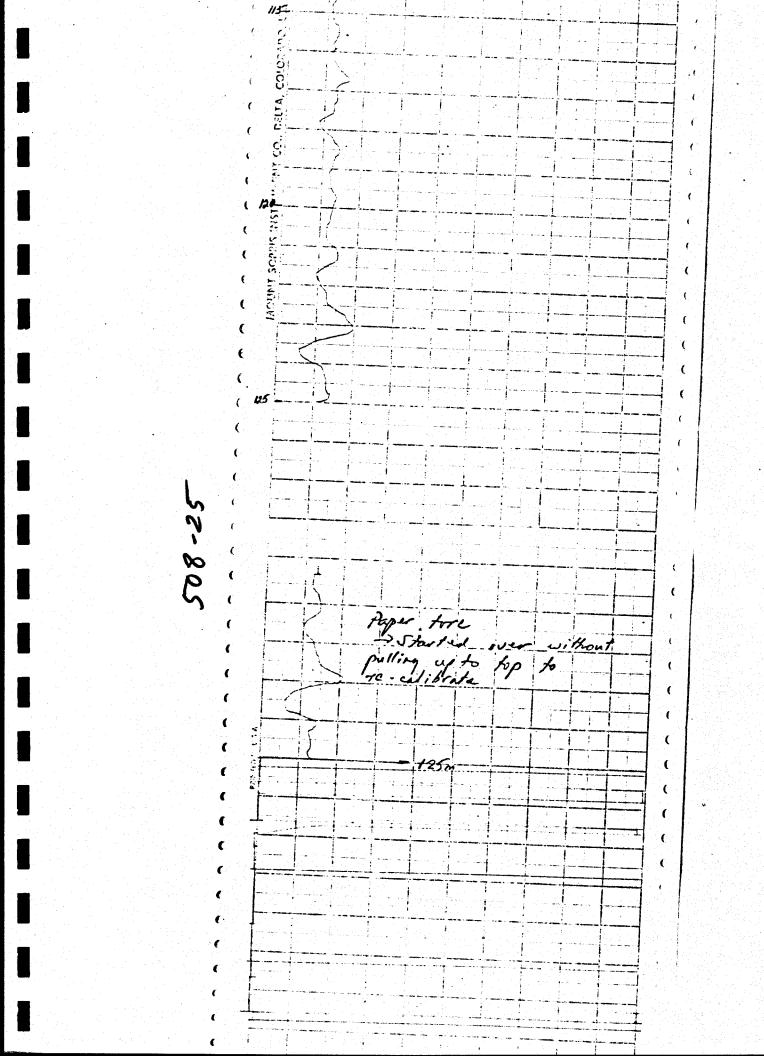

į. 1 ŧ 55= LF juirs-×¥-534 =173.9 e'm 55 60- = 196.9 t, stat wing 2 202'= 61.6m F -65-Ś 0.00 2 ŧ DELTA. 4 1 ł ŝ 5 =229.7 70-JISNI SIJAOS Ì ÷ ŧ /! 191102 1 l - i $\left| \right\rangle$ 1Į 5 -75m 1 516.2: 20-30 cps ł . 1

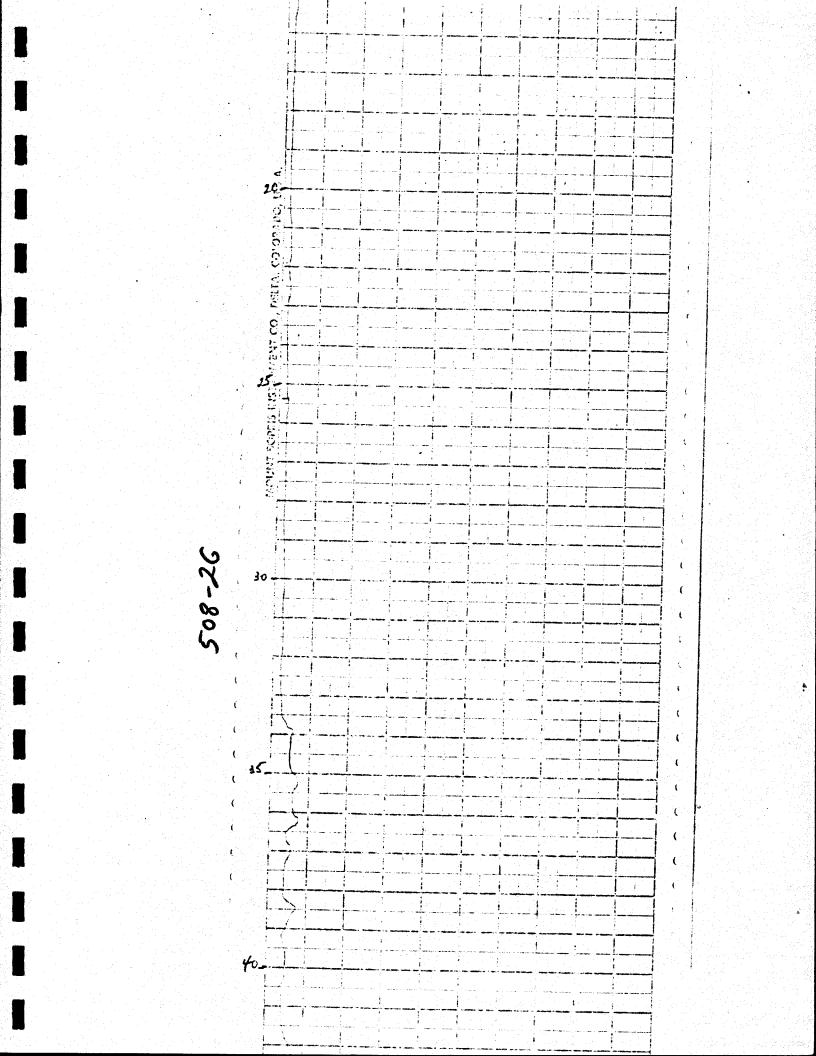


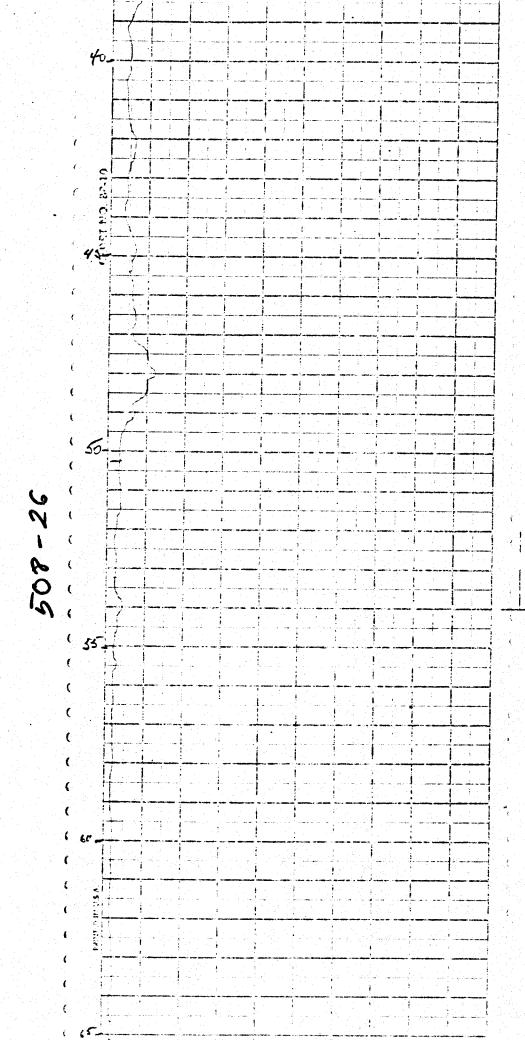

Ţ Í. ļ -105ł _____ 17 ł iVEN IN STATE ł. į È. -1+0-\$ ł \sum ! 1 1) . لي 3 -115 508-29 Ę ŧ ł ŀ . i 1 - - -• Í t -1 (ł 1 C į ; 68 45ł -120n = 393.7 ÷ . į. ï £ -(ì 1 1 (:/ ł 1 4 5 129 ţ CO., USITA, CONORADO, 1 i ł C *** ì ľ ! 5 ŧ., international a >1

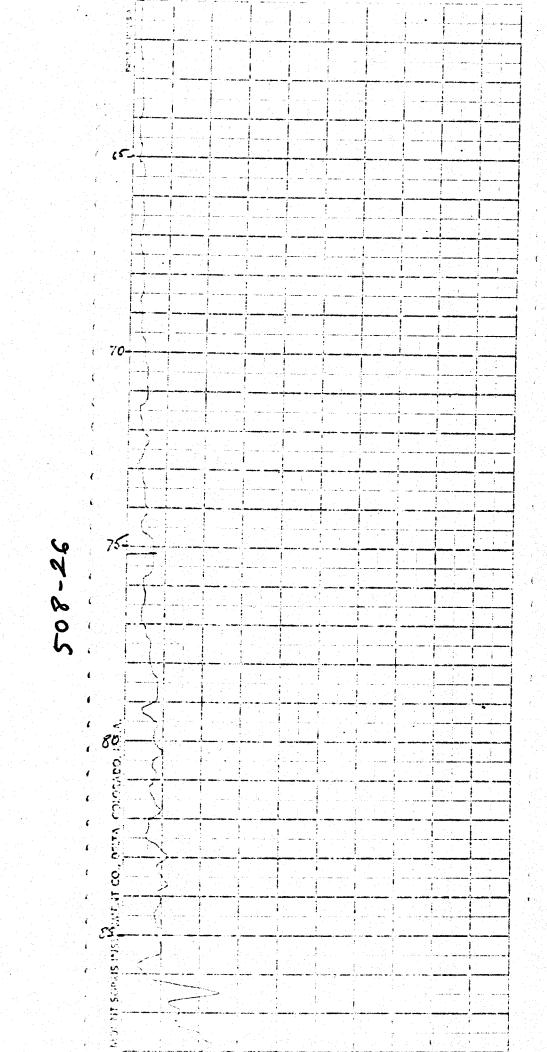

-40-.... 1 *ζ*. Ĵ i ţ i ł ļ -115~ 4 \leq ł ł. i ł \$ 69.005 -120~=313.7 i. . Ì Ĩ 508-24 1 t i 1 Ì 5-125-č ; 1 ł COPIS PERTURENT CO., BEITA, COLORADO, 1. ł Ć. (į 1 Į. Ĵ, ----ł t 4 Ĩ İ start-logg-=4265 <u></u>до. L • • • ŧ ł ţ į 1 1 Ĩ ÷

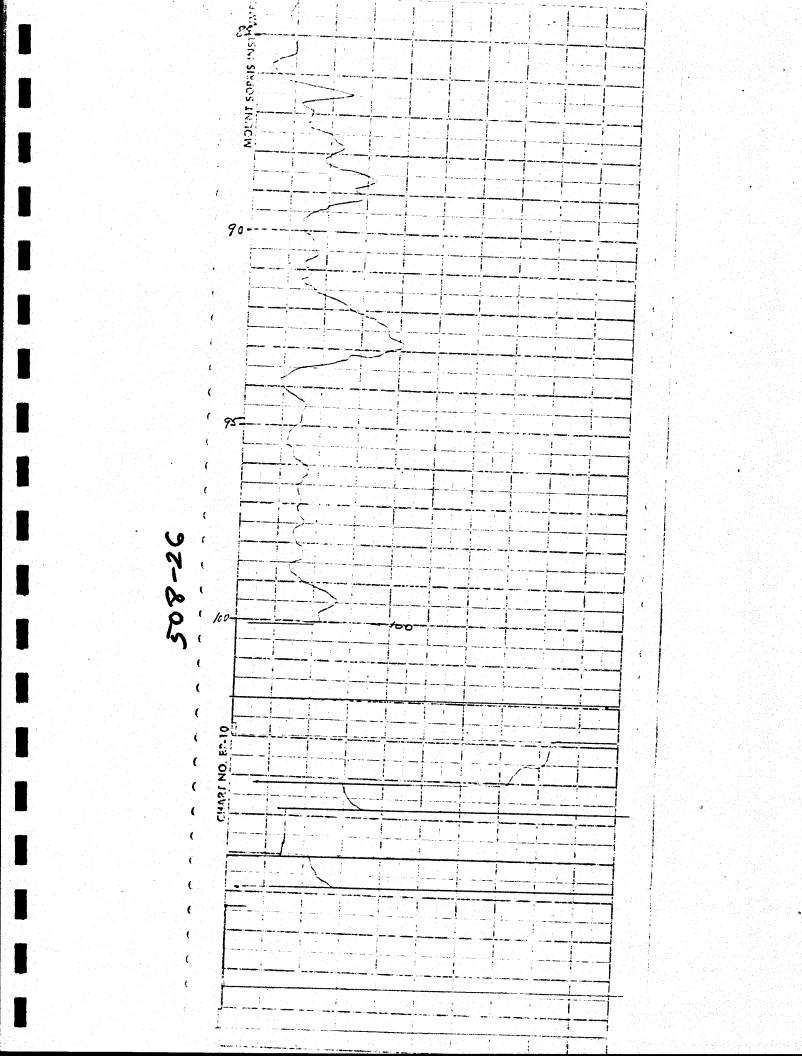

DDH 508-25 Probed April 15,1978 The S.Stephen P.Fortun Mt. Soprie 1000 8 log Scale: 50cps fdi U. thra plastic pipe & casing (85) 8 to on logger Sop-P 22 n 5_ i 10



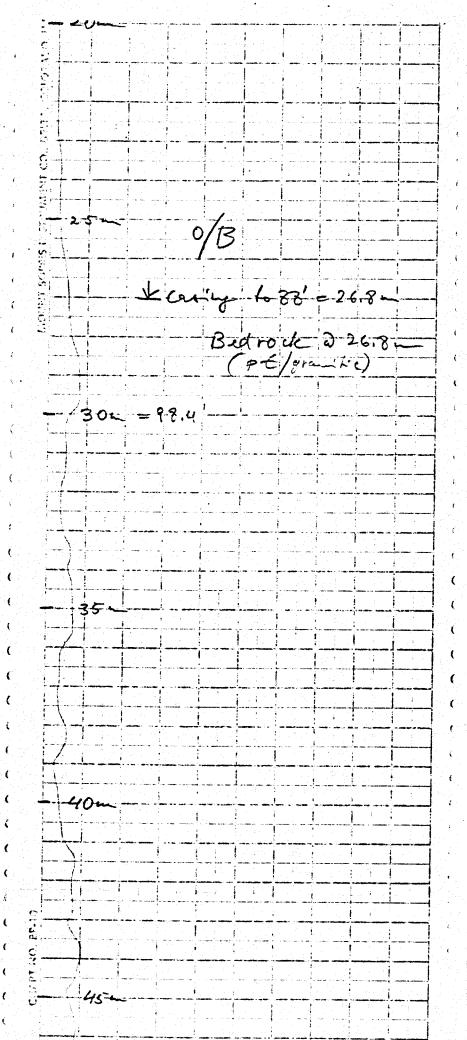


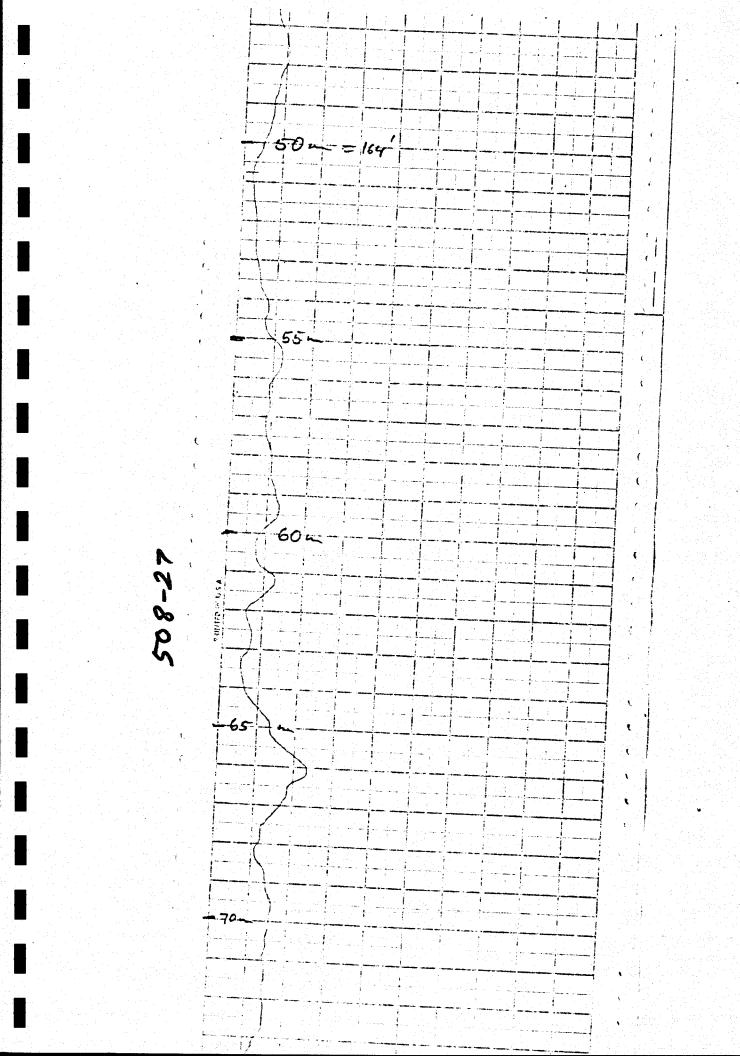




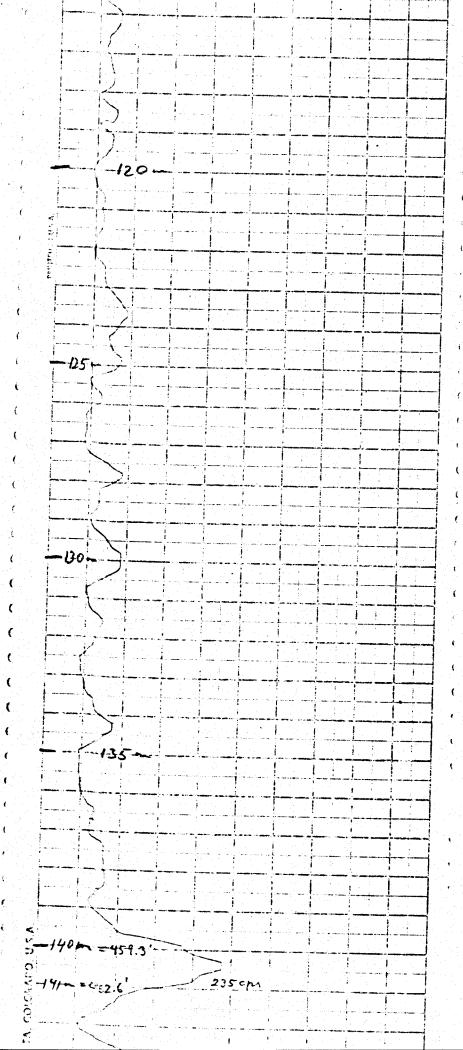


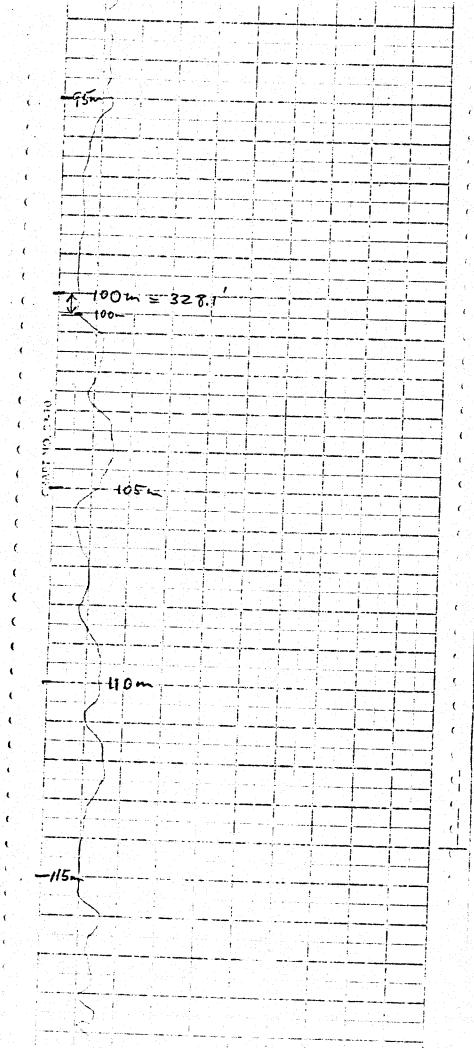
DAH 508-26 Pro bed April 17, 1970 The P. FORTUNA J.S. STEPHEN Mt. Sopris 1000 J-log Scale: 20 cps / div NOTE: thry rods & casing = 0 on counter 1111 1 ł i 5-÷. 10-K-



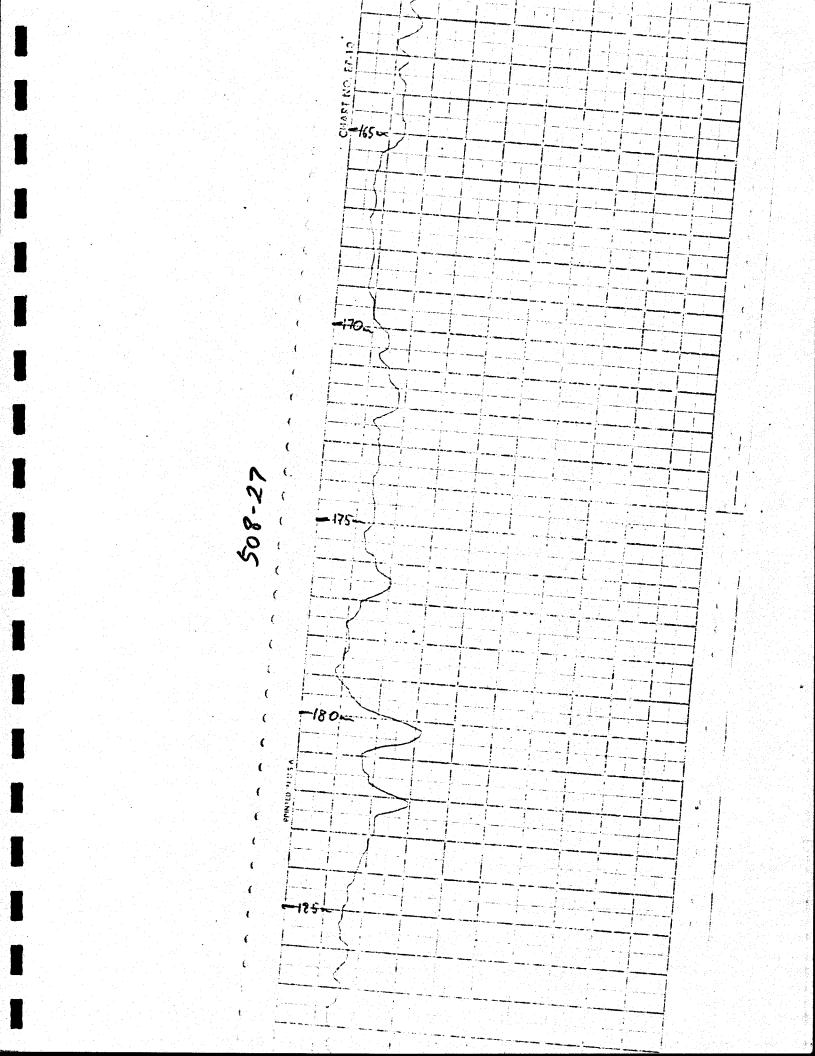


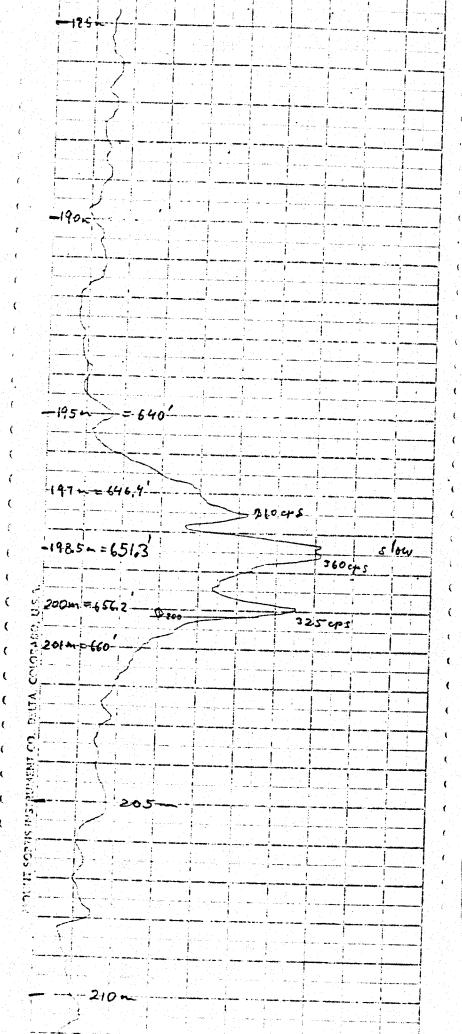
Probed : Ppril 27, 1978 TR P. FORTUNA, H.LAANELA 8-109 Scale: 50 cps / div. M1. Sopris 1000 thru: casing & plastic pipe Om (collar) Om on los 1 O/R 10 20


508-27



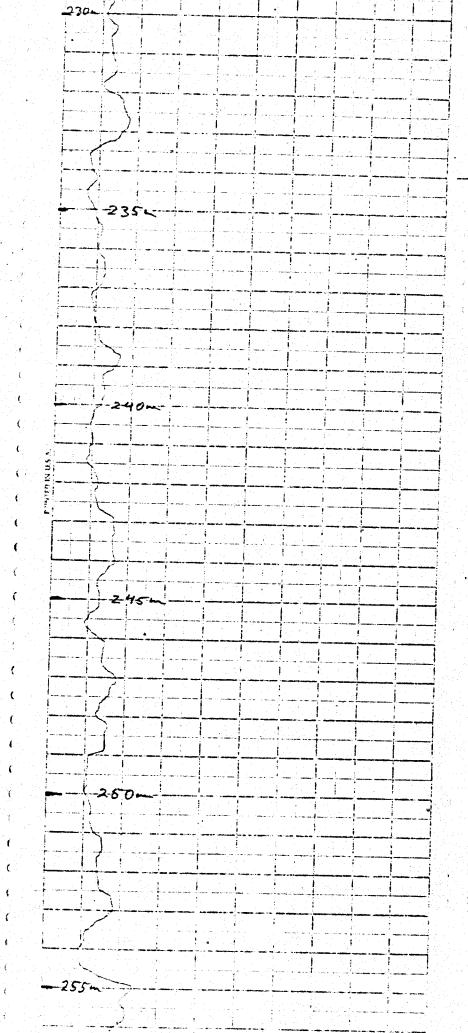
508-27

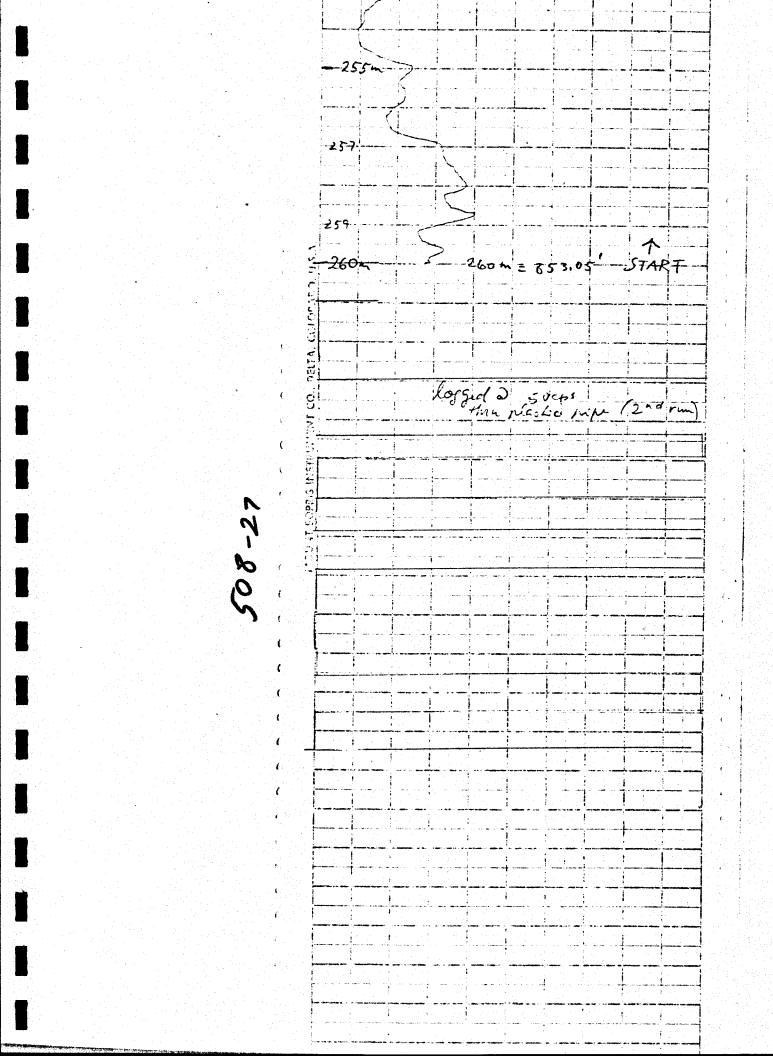

1 ţ 70. 7 1 \tilde{l} • 11: 75 ì -• ÷ ì t. 7 í 1 1/ 1 !) | zam C L (COLORA £ 1 C (2___ 1 **V** 4 -27 È ţ S ł 508 Ę Wondiski Stres Lynow ~ t, C 85 С. ς. 6 (1 . . 1 1 90-J. ť 1 1 ÷ 1 R. 3 , 1 1 , **a** 1 ţ



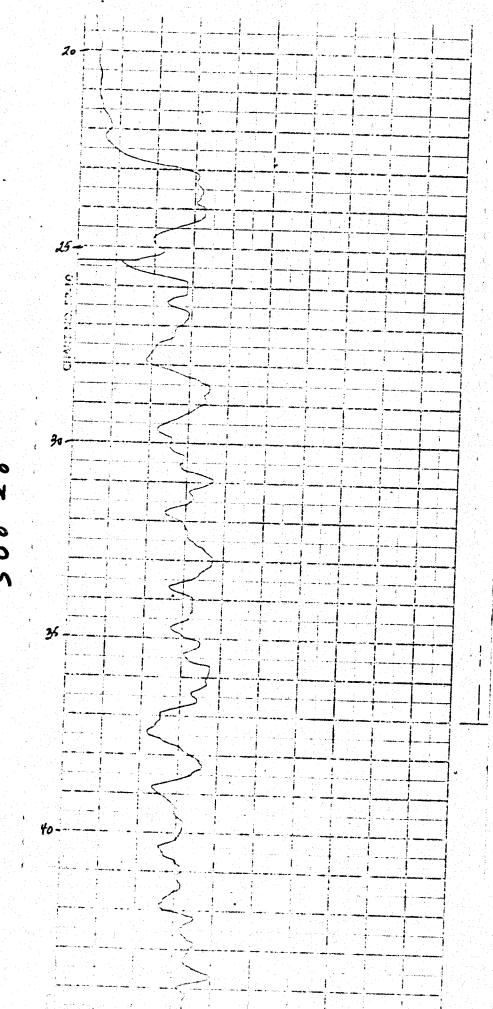
	21-1			
5 <u>-140</u> 0 5 <u>-140</u> 5 -140 5 -140 5 -140 5 -140 5 -140 5 5 -140 5 5 -140 5 5 	•			
	462.6	235	crs	
8		> 200 cp s		
	-5-			
50 51 51 51 51 51 51 51 51 51 51 51 51 51				
	>			
	<u> </u>			
1 150	50~			
]
S IC			 4 and replace or conservation of large 	

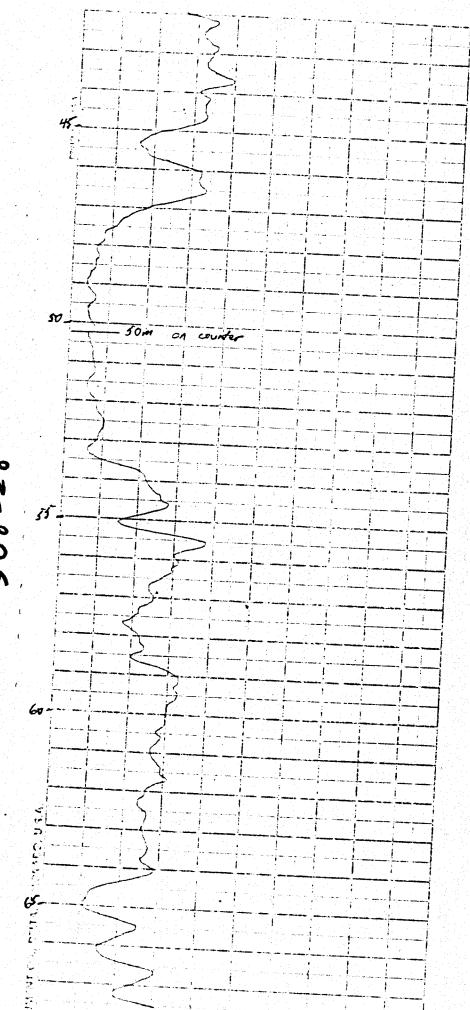
-205



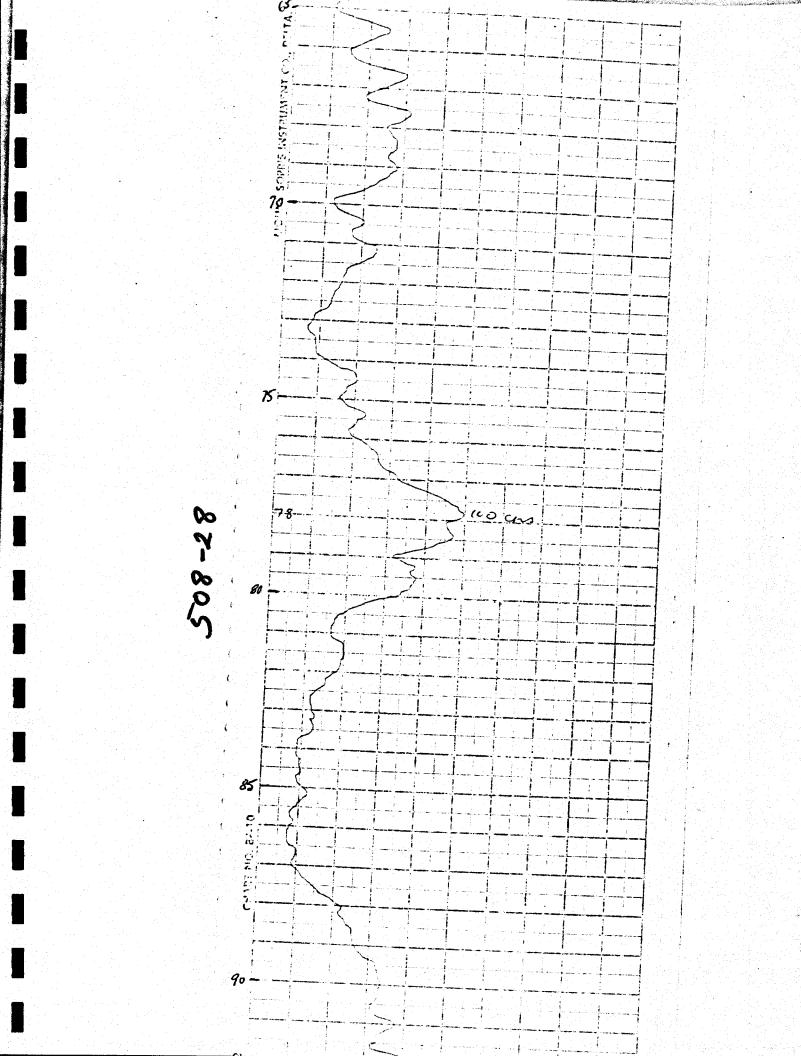

508-27

((

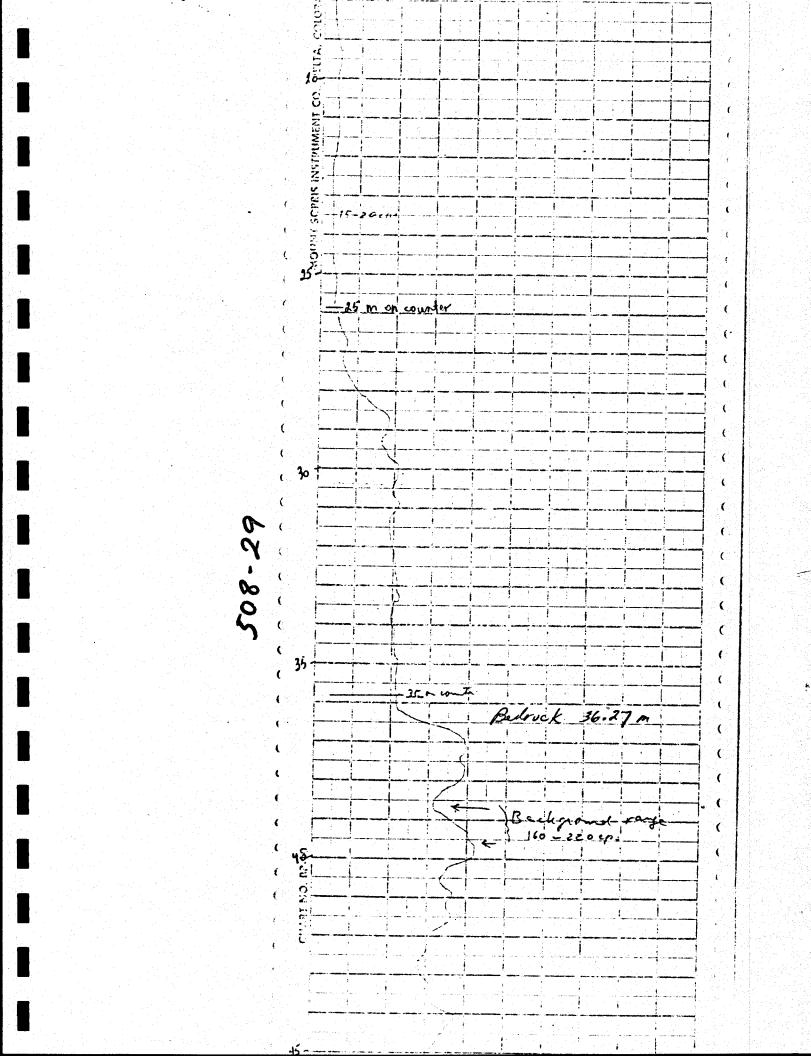

	ić si		1		•	1						·	
	ň,		<u> </u>		1 	• • •		1					
andre and the second second second second second second second second second second second second second second				• •• •• •• •• •• ••	} 		: 	í 		<u></u>	<u></u>	1	
								• •			<u>;</u>	_	
			21	0 m.			••••			• • • • • • • • • • • • • • • • • • • •	!		
			<u> </u>						:	1			
		<u> </u>	×				- 1						
a a 🗃 tanàna minina mandritra dia kaominina minina mandritra dia kaominina minina Geodrona minina minina minina minina minina minina minina minina minina minina minina minina minina minina mi								·					
			1-	ر. 	·						Í		
			حد . مُد							+			
						ر استیک میں ان ان ان ان ان ان ان ان ان ان ان ان ان ا							
				· · · · · · · · · · · · · · · · · · ·	1999		*****	!					
		-215+	اغ الح : د مسلور م		بالمستر الم			۰					
			\rightarrow										
		••••••••••••••••••••••••••••••••••••••			s - v auvera			• • • • • • • • • • • • • • • • • • •	····			ť	
			$\int \frac{1}{2} \frac{1}{2} \frac{1}{2}$						بر ایک کرد د				
			tī	• • • • • • •	÷	••••• • •••••• • •••••							
			11				••••• •••• •••••	•	بىي. بەرمىيە مەرمە			ana 1979. Ngana 198	
	•									i			
	6 <u>_</u>				ew - 11-10-10-10					!			
			- <u>}</u> !		- <u></u> -								
	11 T		-22	om.			•••,•••••	- <u>-</u>					
	, F							····· •····	-				
	,	N		1									
. 📲			L								1		
		<i>\</i>			· · · · · · · · · · · · · · · · · · ·								
· 슬람이 이 것은 이 사람이 가지? '이 아이지?' 아이지? '이 아이지?' 아이지? '이 아이지?' 아이지? '이 아이지?' 아이지? '이 아이지?' 아이지? '이 아이지?' 아이지? '이 아이지	23-10		}										
			j					2010 - 19 					
	0						<u>+ +</u> 						
a an an Anna an Anna an Anna an Anna an Anna Anna Anna Anna Anna Anna Anna Anna Anna Anna Anna Anna Anna Anna A Anna Anna			21-										i i se el como de la como de la como de la como de la como de la como de la como de la como de la como de la c La como de la como de la como de la como de la como de la como de la como de la como de la como de la como de la
			V	225-				1	·				
승규는 것 같은 것이 가 물러 있는 것을	• –		1										
	, –		· · · · · · · · · · · · · · · · · · ·										
물건 이 가장 제가 가장 가지?													
			an san an an an an an an an an an an an an a			-		ing and the second	<u>n n n</u> Si n t				
	, <u> </u>	1	Ť			 							
					· · · · · · · · · · · · · · · · · · ·								
						1		· · · · · · · · · · · · · · · · · · ·					
	230	n {-			 .								
		- 7											
			••••••••••••••••••••••••••••••••••••••		• • • • • • • • • • • • • • • • • • •				jame i maaaayaa j				
물통 전에 도난 알려질 문화되었습니?	an an an an an an an an an an an an an a			in a sin	ter en la la				$\label{eq:started} \begin{split} & = \sum_{k=1}^{n-1} \sum_{i=1}^{n-1} \sum_{j=1}^{n-1} \sum_{i=1}^{n-1} \sum_{j=1}^{n-1} \sum_{i=1}^{n-1} \sum_{j=1}^{n-1} \sum_{j=1}^{n-1} \sum_{i=1}^{n-1} \sum_{j=1}^{n-1} \sum_{i=1}^{n-1} \sum_{j=1}^{n-1} \sum_{j=1}^{n-1} \sum_{i=1}^{n-1} \sum_{j=1}^{n-1} \sum_{i=1}^{n-1} \sum_{j=1}^{n-1} \sum_{i=1}^{n-1} \sum_{j=1}^{n-1} \sum_{j=1}^{n-1} \sum_{i=1}^{n-1} \sum_{j=1}^{n-1} \sum_{i=1}^{n-1} \sum_{j=1}^{n-1} \sum_{i=1}^{n-1} \sum_{j=1}^{n-1} \sum_{j=1}^{n-1} \sum_{i=1}^{n-1} \sum_{j=1}^{n-1} \sum_{i=1}^{n-1} \sum_{j=1}^{n-1} \sum_{j=1}^{n-1} \sum_{i=1}^{n-1} \sum_{j=1}^{n-1} \sum_{i=1}^{n-1} \sum_{j=1}^{n-1} \sum_{j=1}^{n-1} \sum_{j=1}^{n-1} \sum_{j=1}^{n-1} \sum_{i=1}^{n-1} \sum_{j=1}^{n-1} \sum_{$	• 12 	·		
					•••				-				
		•	ريني غرار سيت ريچ م	n an an an an an an an an an an an an an	. <u> </u>	-							
	n na ana	Jack Street							1				
		- t			ر المالية من الم								

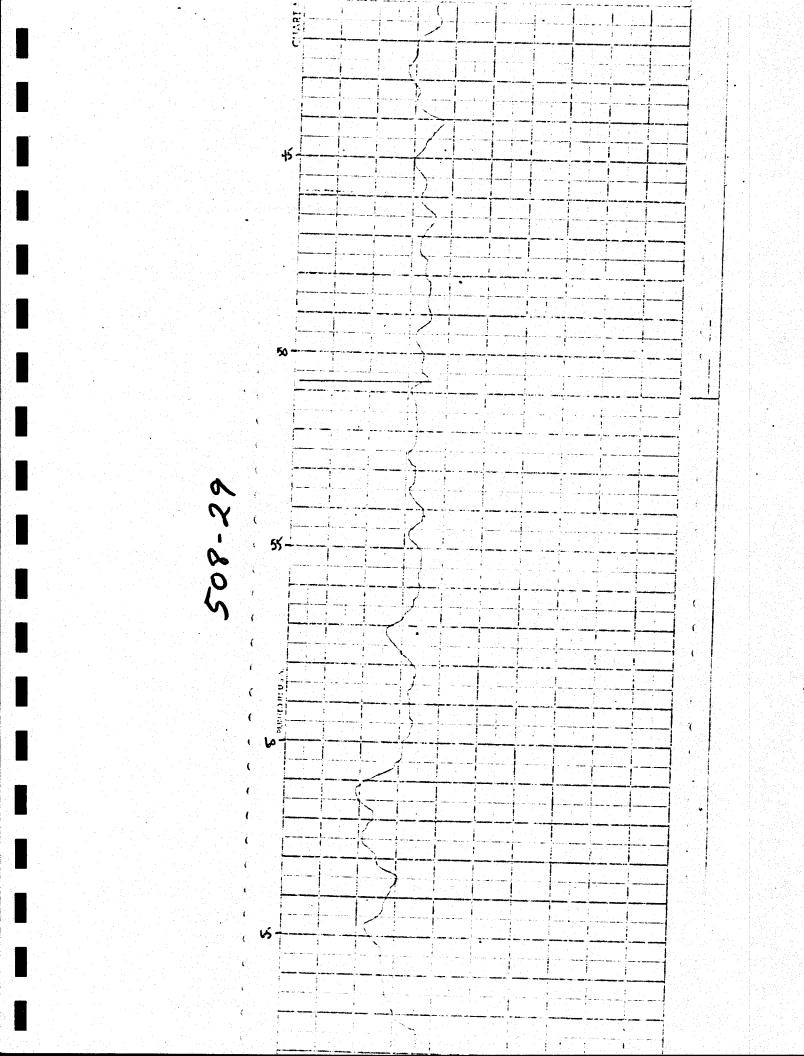


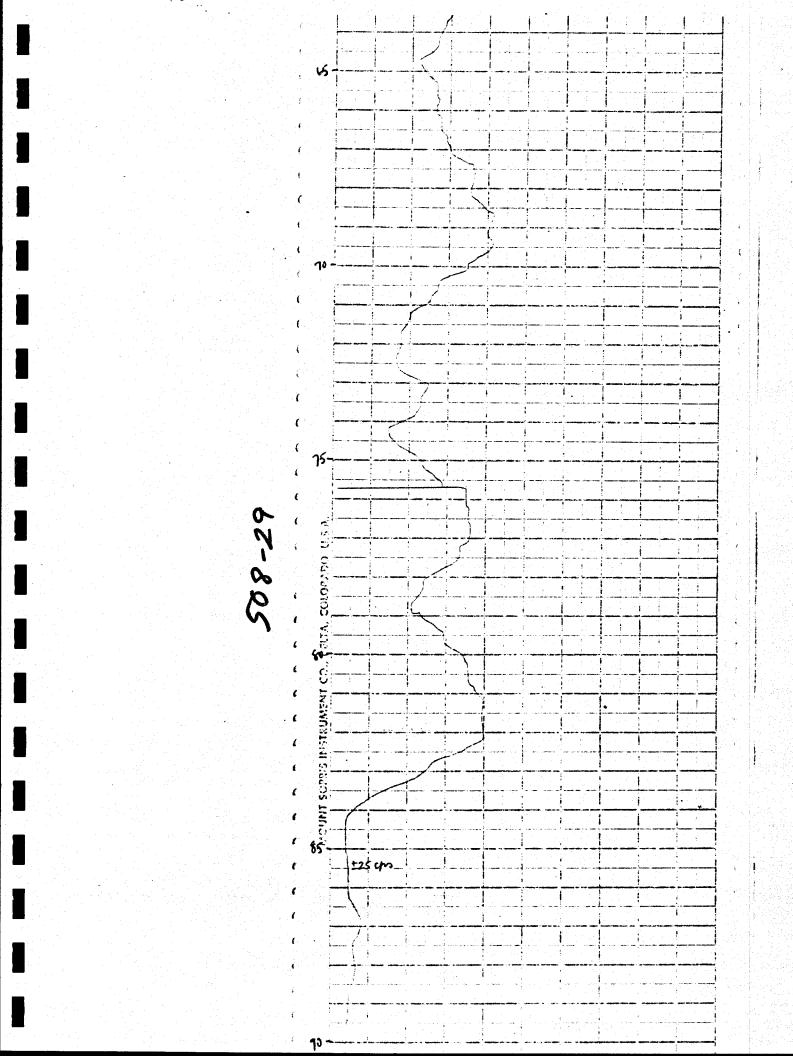
ŧ.

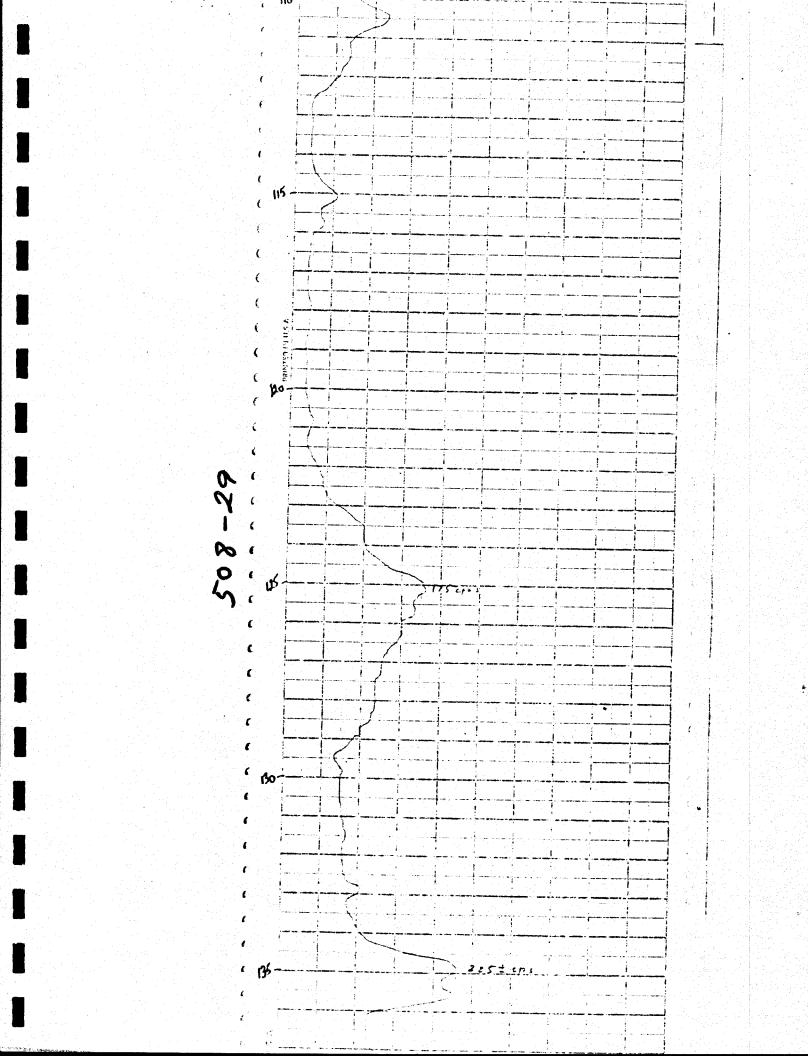


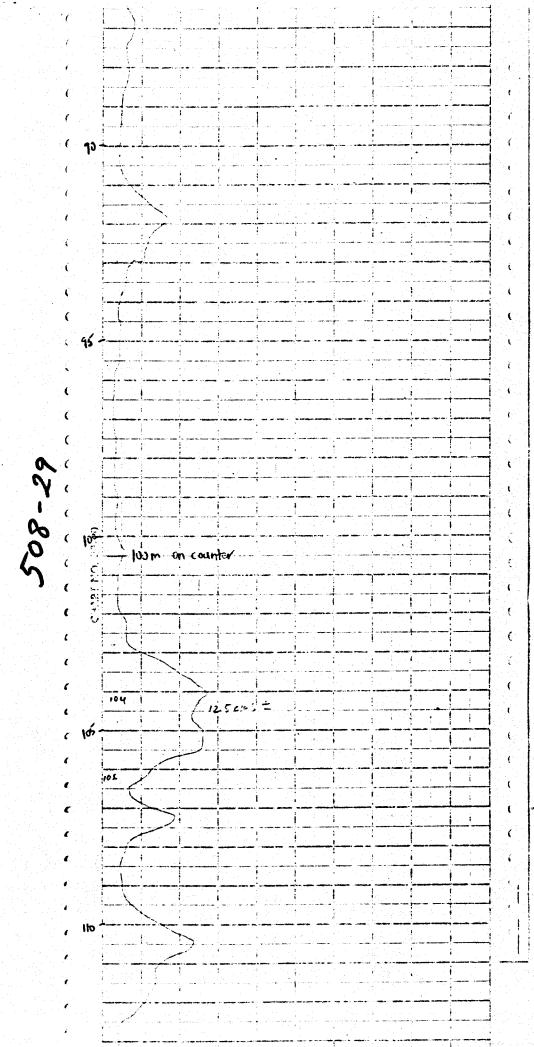
DAH 508-28 probed April 26,1970 The H. Laanela, P. Fortuna 8-log Scale 20 ps/cliv MI. Supris /000 0 probed thru casing and plastic pipe -9.5 --< -VOIDE ADO. DELT'N g 5 . 1121-1 1 5 సే 10- $\langle \rangle$ ł ļ 805 ì ł 15 20

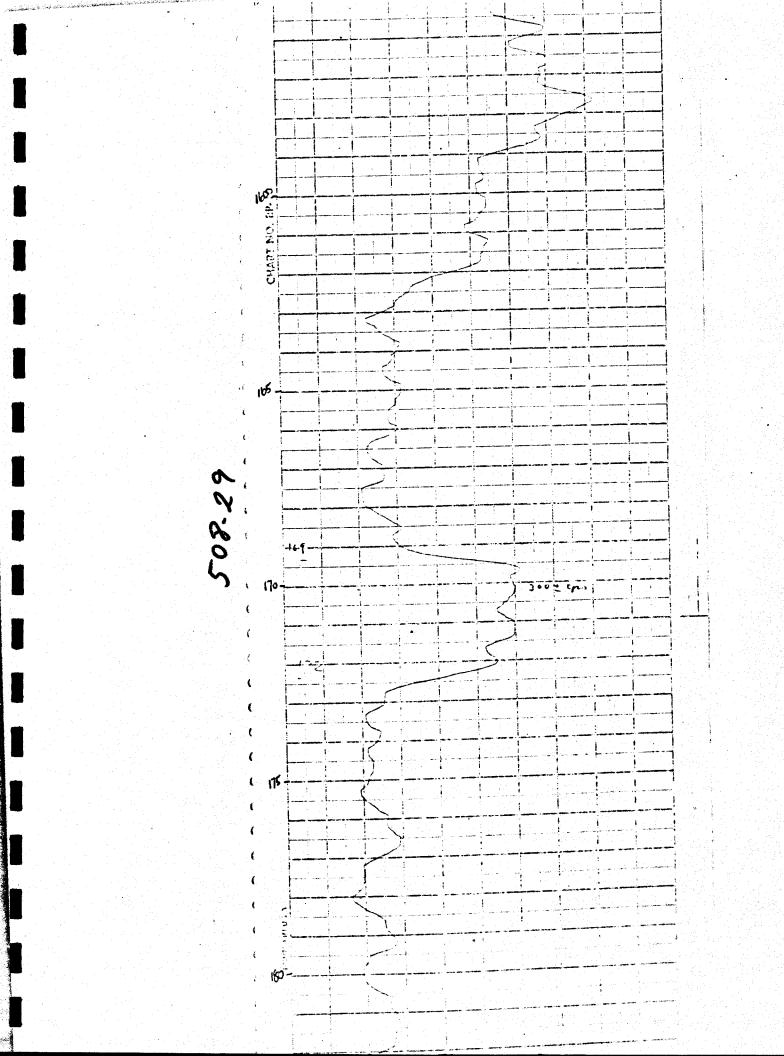

87-805 208-2805

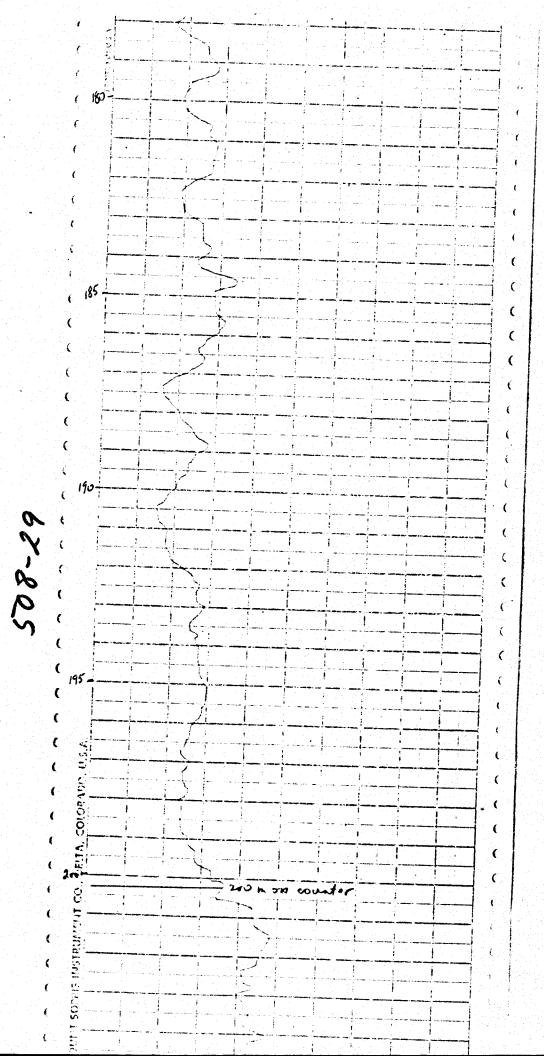


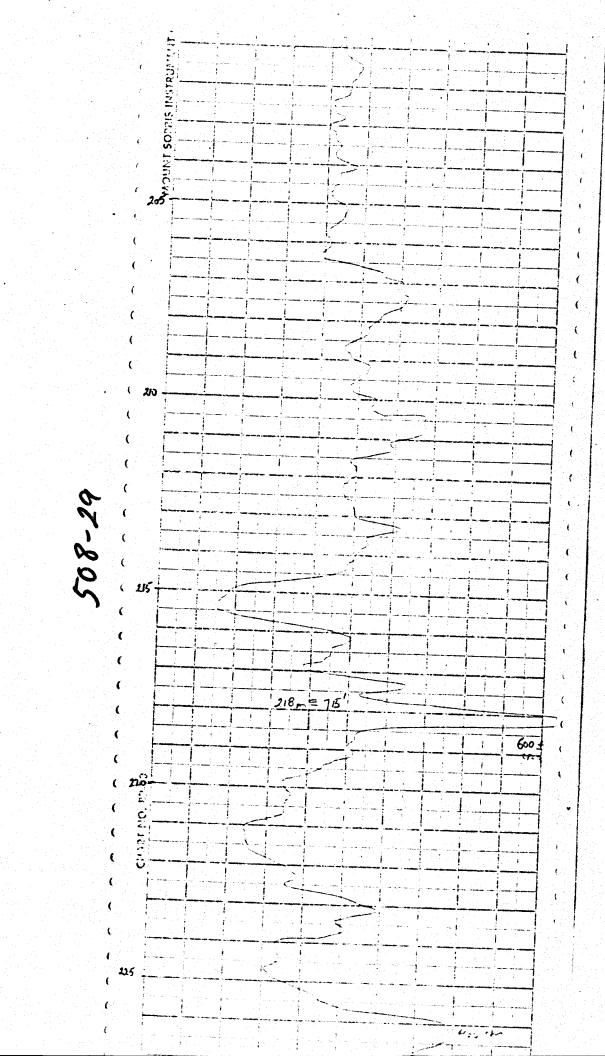


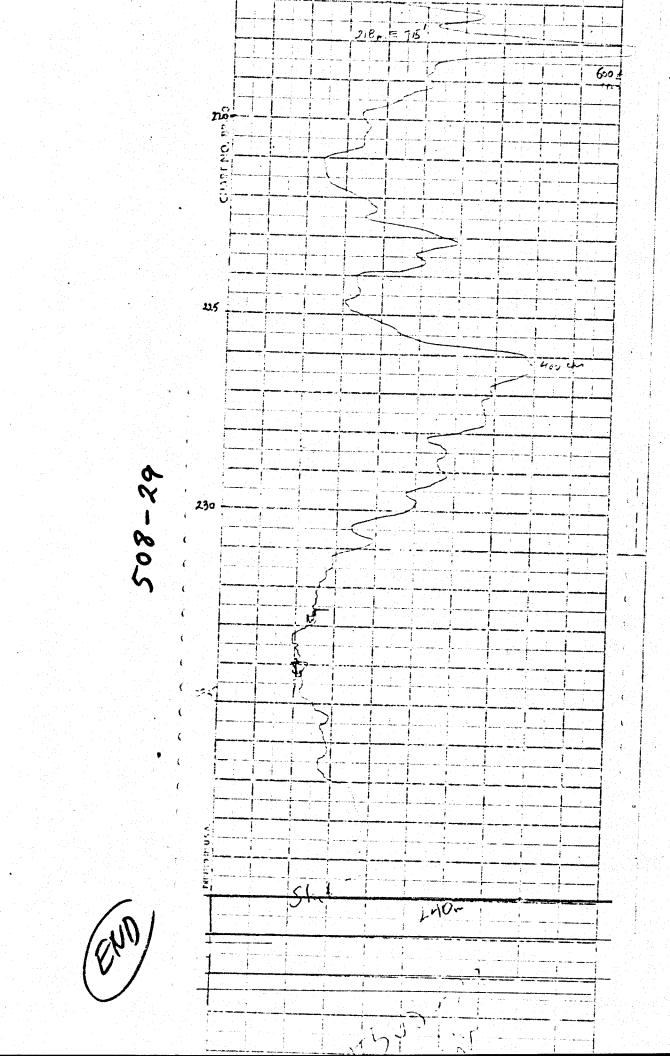

ş

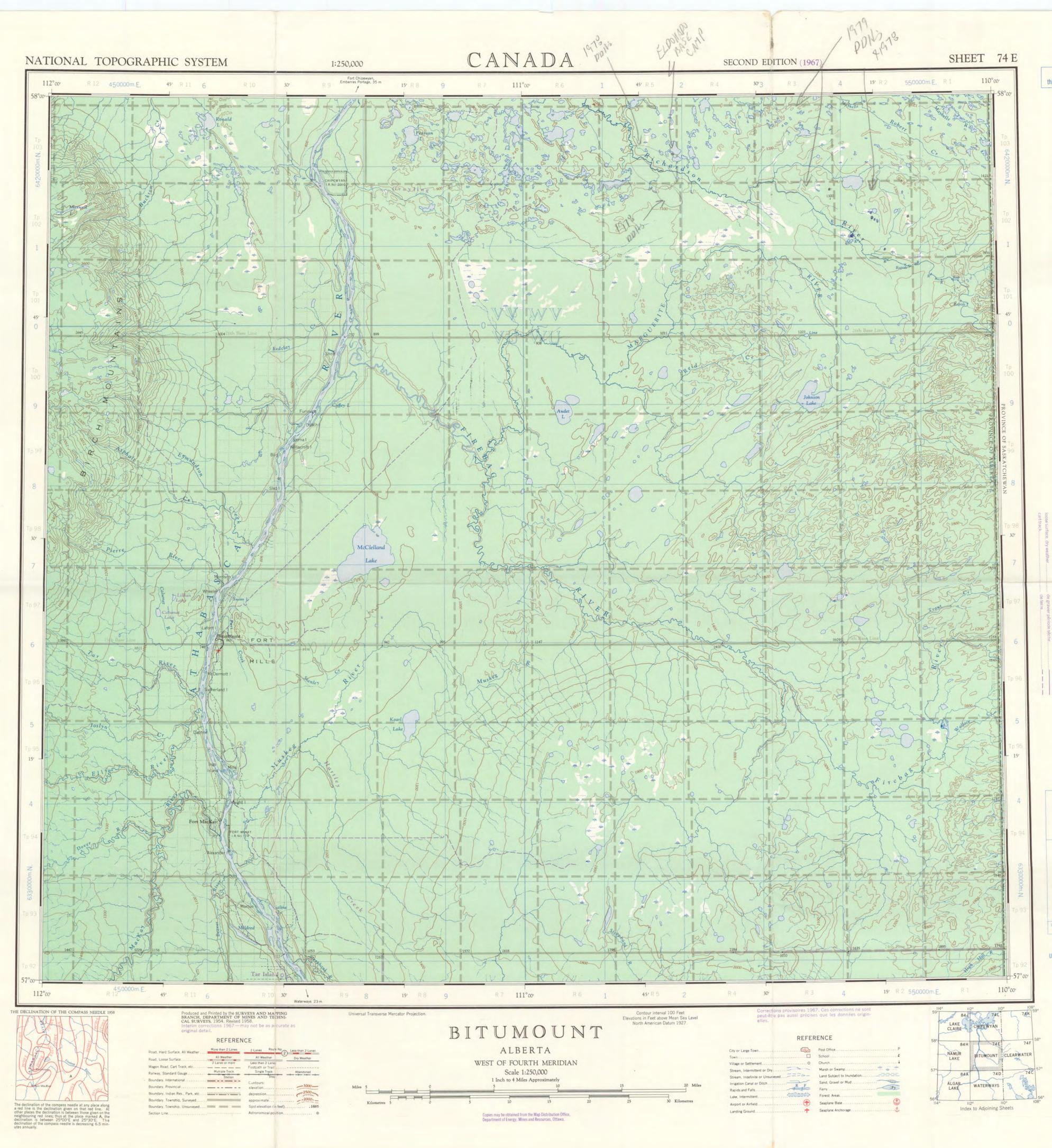

DDH # 508 - 29 8-ray mole 2-50 cfst tim Steed 6m/min A H. Lanela / N. Michskill April 301-1978 Probed thun plastic fubiy ٥ Om-on-counter A 508-2 10 15











DISTRUCTED BY THE FRENCHERS, DIVISION AUGUSTA FRENCY AND DATURAL RESOURCES

Refer to	74 E					
Refer to	EDITION 2 ASE					
is map as:	SERIES A 502					

U-AF- 141(3) 19780005

ELDORADO NUCLEAR LIMITED Exploration Division

PROJECT 508

PROPOSAL TO REDUCE PERMIT AREAS

Oct. 19, 1978

Peter A. Fortuna, Exploration Geologist

ELDORADO NUCLEAR LIMITED EXPLORATION DIVISION

PROJECT 508 PROPOSAL TO REDUCE PERMIT AREAS

The Project 508 Quartz Mineral Exploration Permits (Nos. 214, 215, 216, 217 and 218) expire on February 2, 1979. At this time, leases must be applied for. The rates are as follows:

- \$0.25/acre/year for the first 5 years
- \$1.00/acre/year for the remainder of the
 - 21 year term.

By mutual consent of the joint venture partners, the option on Permit 207 was not exercised, and the property was returned to Ram-Vipond in October, 1978.

Exploration programmes on Project 508 and the increasing knowledge and understanding of uranium deposits associated with the Athabasca Basin provide a basis on which the economic potential of Project 508 can be evaluated. These geologic facts and interpretations are:

- 1. The basement Athabasca sandstone unconformity crosses the permit area.
- The basement rocks are metasediments containing graphitic zones. This association is noted in all the major uranium deposits in the Athabasca Basin.
- 3. A major tectonic structure offsets the basement rocks in the permit area and appears to have both pre- and post-Athabasca movement.
- 4. This structure has a large zone of brecciated and altered basement rocks associated with it.
- A veinlet of quartz containing sooty pitchblende was encountered in DDH #2, which was drilled through this alteration zone.

. 2

- The projected intersection of this major fault and the edge of the Athabasca sandstone occurs near an area where graphitic zones exist.
- 7. The basement rocks in the eastern permits are apparently the same as those encountered in Cluff Lake (regional magnetic interpretation).

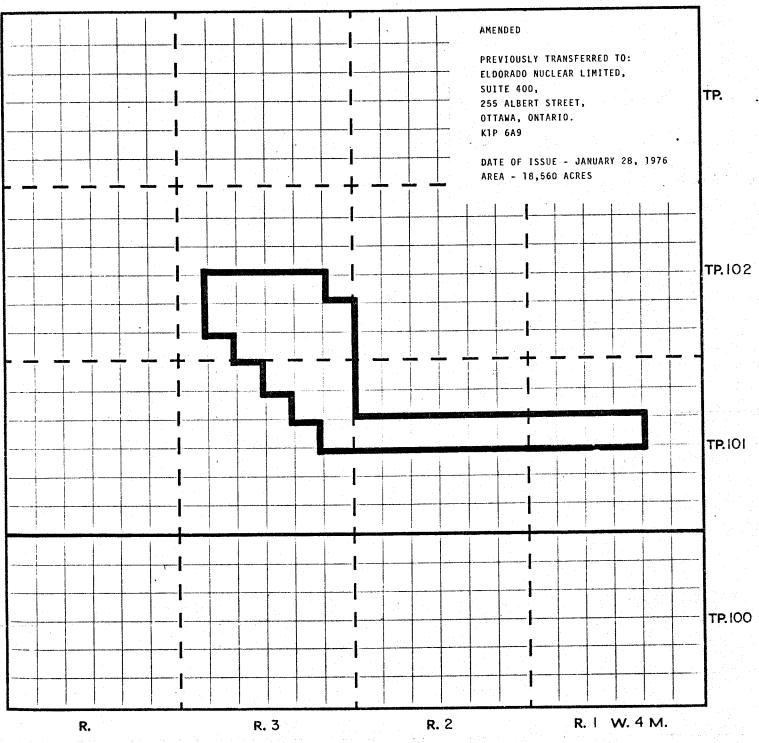
Based on these facts, it is suggested that the most favourable land in Project 508 is

-that portion which is underlain by sandstone, and -a strip along the projected strike of the major fault. Figure 1 illustrates the proposed change in the Project 508 property holdings.

The location of the sandstone edge is not exact, having been extrapolated from drill hole data. All the land underlain by sandstone and any that lies within 2 km (min) of the edge should be retained. The area in Permit 214 where the projected trace of the fault intersects the edge of the sandstone is near graphitic zones found by drilling. The merger of these features makes this an interesting area.

In considering the sandstone edge in the north part of Permit 216, there is little besides the presence of sandstone to keep our interest in this area. Overburden is quite thick (at least 70m locally) and there are no geochemical or geophysical anomalies.

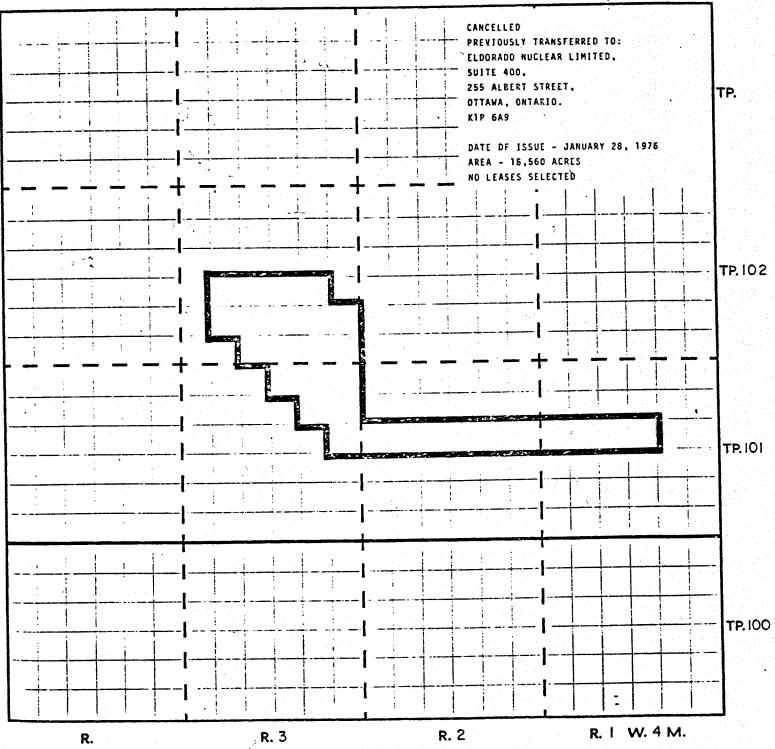
The presence of sooty pitchblende (DDH #2) in the alteration zone related to the major fault structure (see Figure) is significant, as it shows the fault acted as a channelway for uranium-bearing fluids. A sizeable portion of land along the

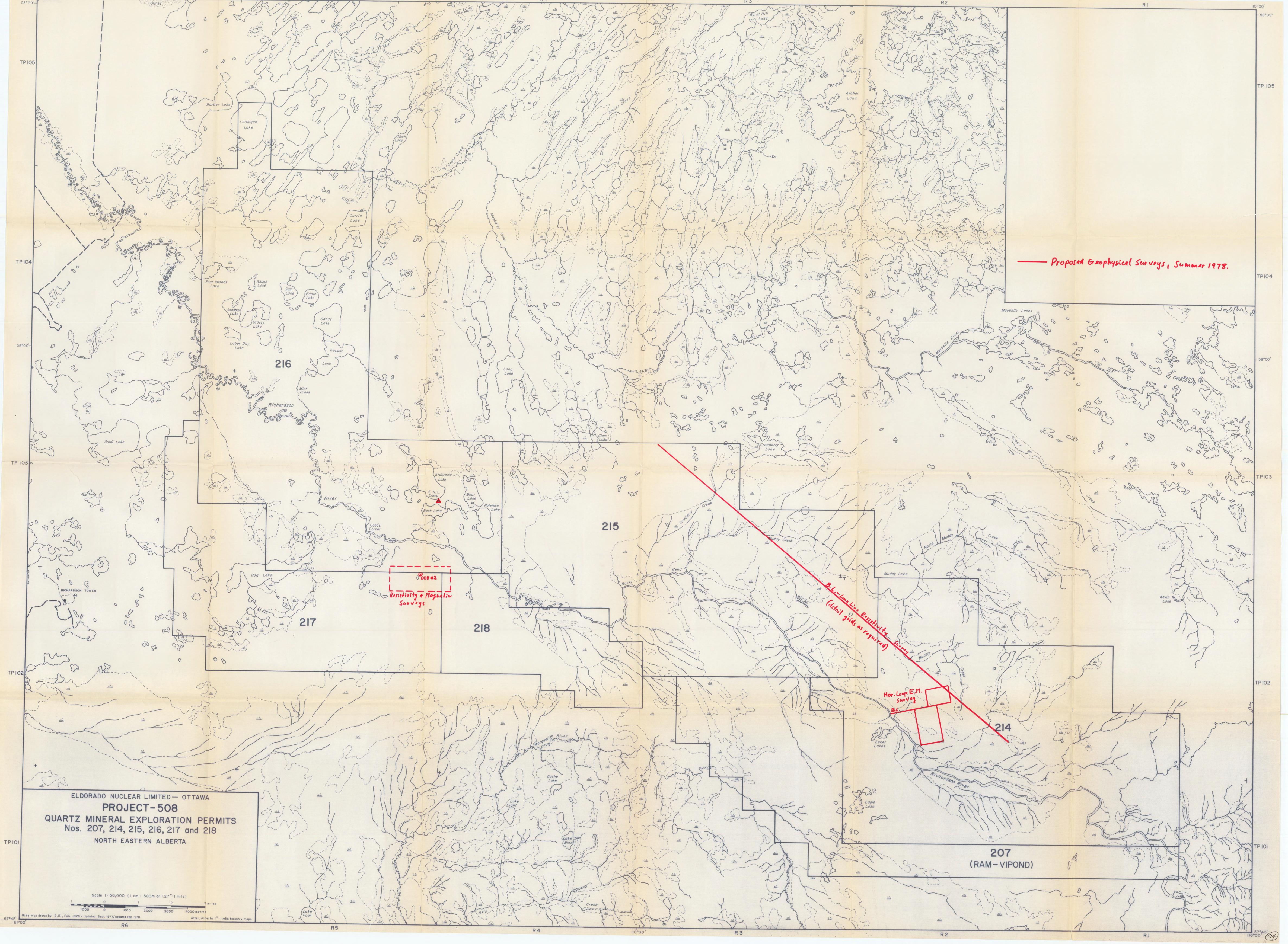

.....3

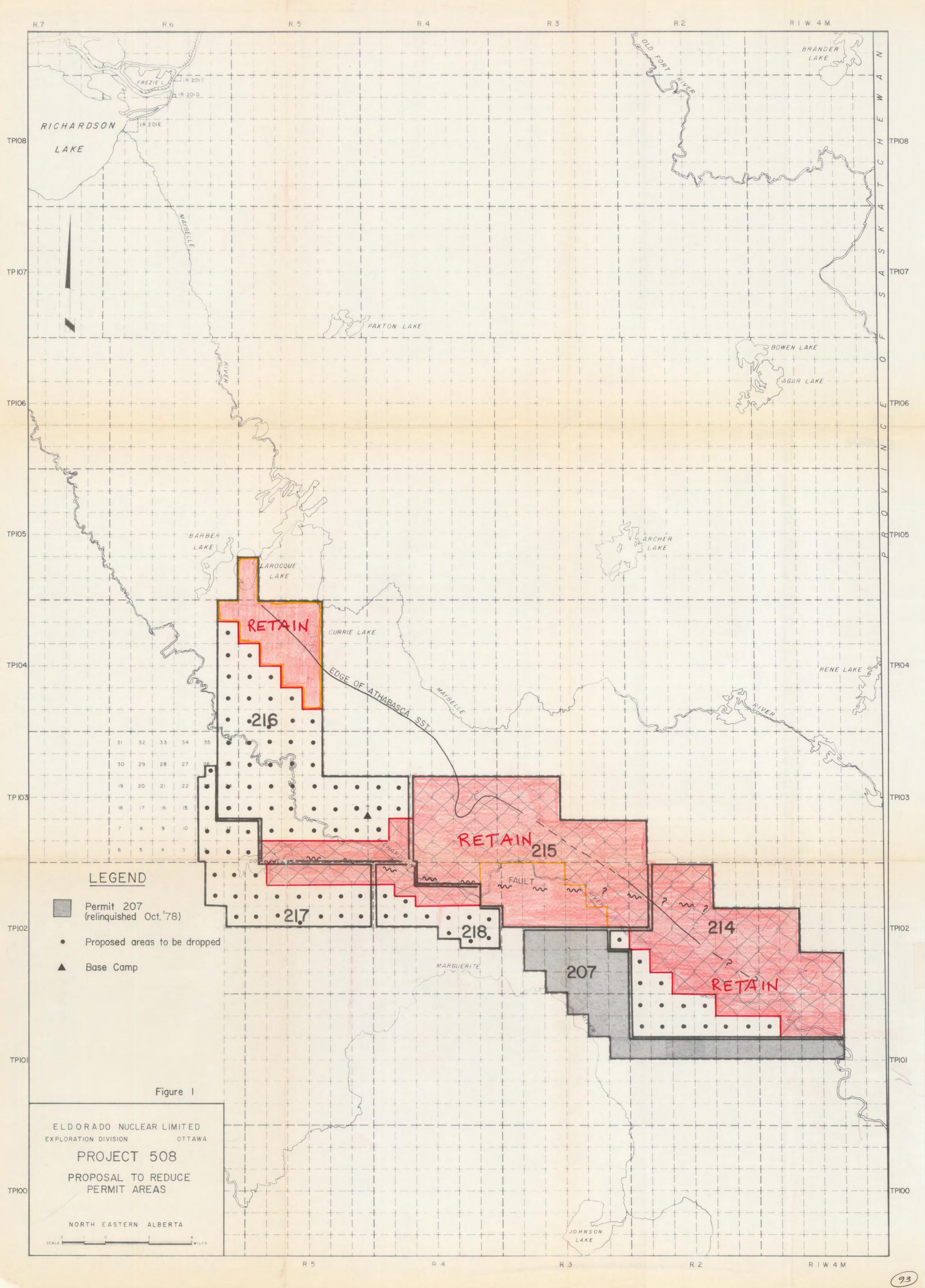
- 2 -

strike of this fault should be retained.

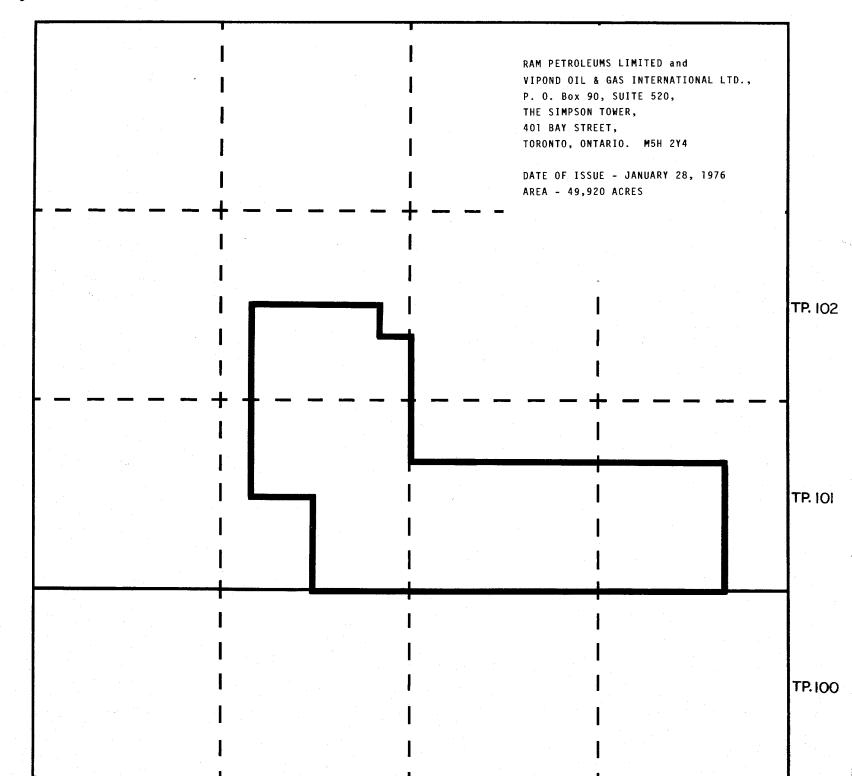
The following table summarizes the proposed land retention and tabulated costs.

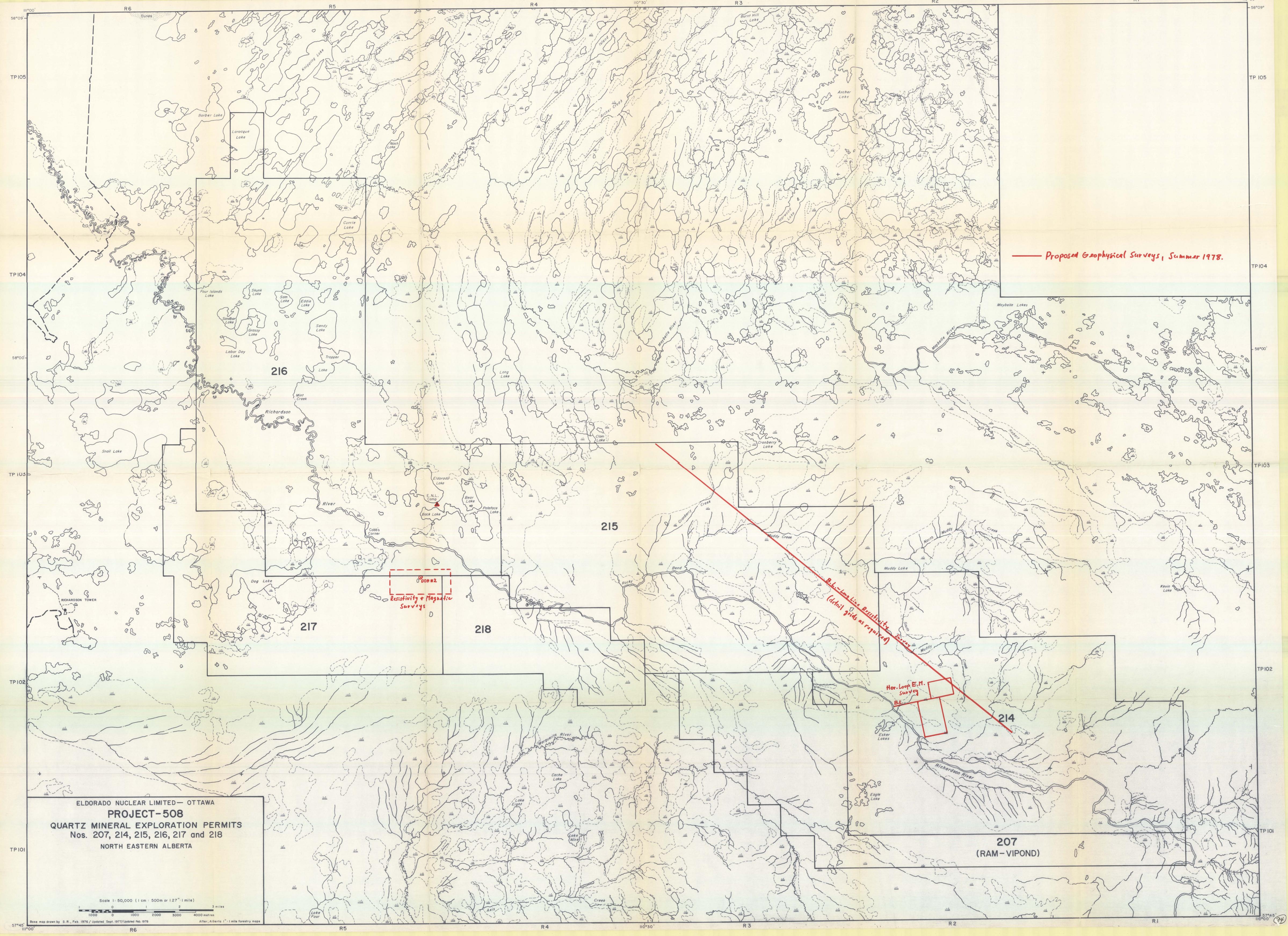

Permit Present Acreage		Proposed Reduced Acreage	Cost @ 25¢/acre		
214	39,680	30,080	\$7520		
215	39,680	No reduction 39,680	\$9920		
216	47,360	16,000	\$4000		
217	20,000	3,200	\$ 800		
218	9,920	3,520	\$ 880		
TOTAL	156,640	92,480	\$23,120		

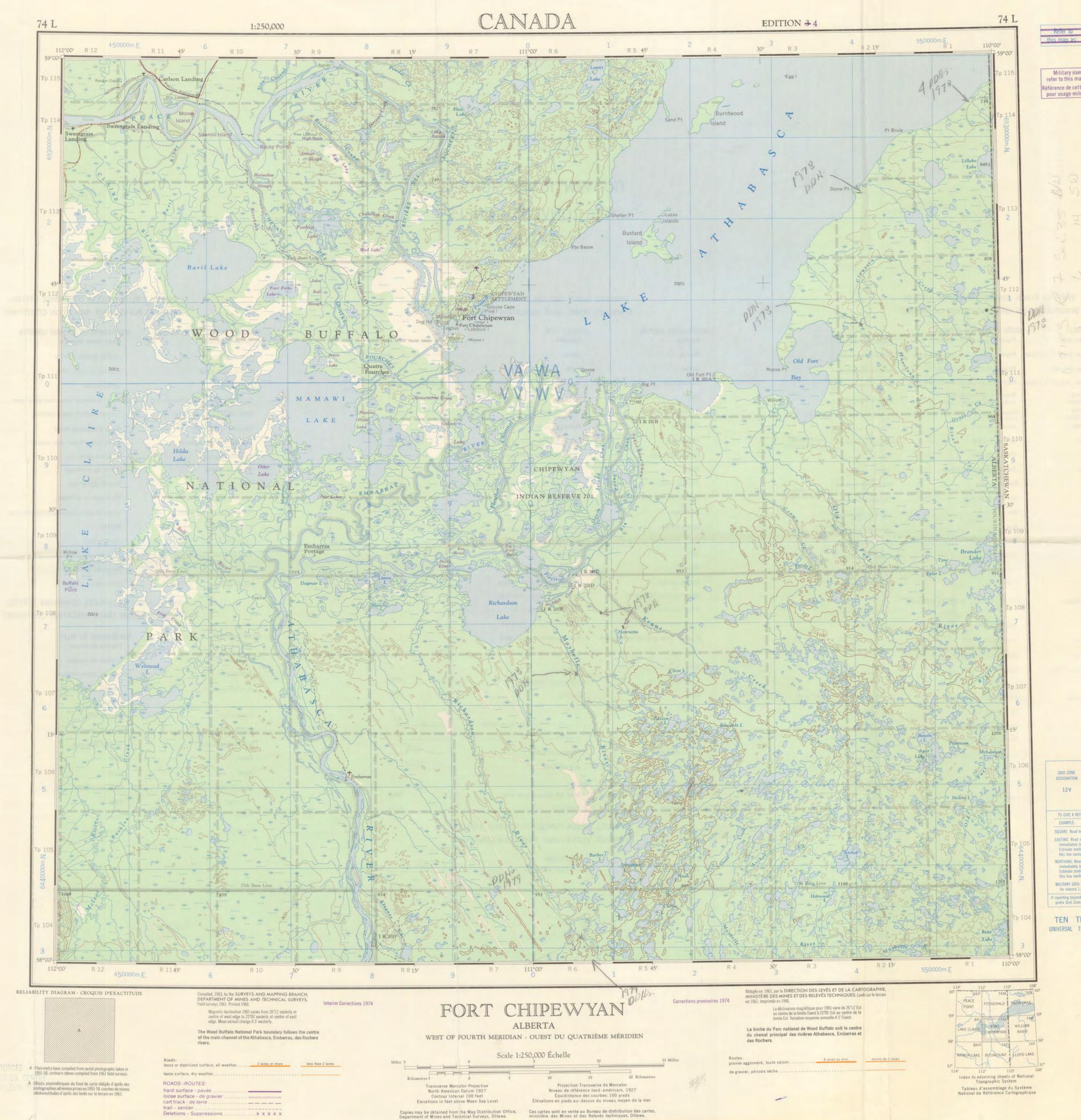

QUARTZ MINERAL EXPLORATION PERMIT NO. 207


QUARTZ MINERAL EXPLORATION PERMIT NO. 207

place




-



QUARTZ MINERAL EXPLORATION PERMIT No. 207

trail - sentier x x x x x Deletions - Suppressions ...

Military users, refer to this map as: Référence de cette carte pour usage militaire: SERIES A502 SÉRIE MAP 74 L CARTE EDITION 4 MCE ÉDITION 100,000 M. SQUARE IDENTIFICATION VA WA VV WV 65 5 TO GIVE A REFERENCE TO NEAREST 1000 METRES EXAMPLE: CABIN SQUARE: Read letters of 100,000 m. square VV EASTING: Read number on grid line immediately to left of point Estimate tenths of a square from this line eastward to point. NORTHING: Read number on grid line immediately below point Estimate tenths of a square from this line northward to point. MILITARY GRID REFERENCE (to nearest 1,000 metres) VV6773 If reporting beyond 18° in any direction, prefix Grid Zone Designation as: 12VVV6773 TEN THOUSAND METRE UNIVERSAL TRANSVERSE MERCATOR GRID ZONE 12 FORT CHIPEWYAN 74 L EDITION 3 EDITION 4