MAR 19760004: ANDREW LAKE

Received date: Dec 31, 1976

Public release date: Jan 01, 1978

DISCLAIMER

By accessing and using the Alberta Energy website to download or otherwise obtain a scanned mineral assessment report, you ("User") agree to be bound by the following terms and conditions:

- a) Each scanned mineral assessment report that is downloaded or otherwise obtained from Alberta Energy is provided "AS IS", with no warranties or representations of any kind whatsoever from Her Majesty the Queen in Right of Alberta, as represented by the Minister of Energy ("Minister"), expressed or implied, including, but not limited to, no warranties or other representations from the Minister, regarding the content, accuracy, reliability, use or results from the use of or the integrity, completeness, quality or legibility of each such scanned mineral assessment report;
- b) To the fullest extent permitted by applicable laws, the Minister hereby expressly disclaims, and is released from, liability and responsibility for all warranties and conditions, expressed or implied, in relation to each scanned mineral assessment report shown or displayed on the Alberta Energy website including but not limited to warranties as to the satisfactory quality of or the fitness of the scanned mineral assessment reports and warranties as to the non-infringement or other non-violation of the proprietary rights held by any third party in respect of the scanned mineral assessment report;
- c) To the fullest extent permitted by applicable law, the Minister, and the Minister's employees and agents, exclude and disclaim liability to the User for losses and damages of whatsoever nature and howsoever arising including, without limitation, any direct, indirect, special, consequential, punitive or incidental damages, loss of use, loss of data, loss caused by a virus, loss of income or profit, claims of third parties, even if Alberta Energy have been advised of the possibility of such damages or losses, arising out of or in connection with the use of the Alberta Energy website, including the accessing or downloading of the scanned mineral assessment report and the use for any purpose of the scanned mineral assessment report.
- d) User agrees to indemnify and hold harmless the Minister, and the Minister's employees and agents against and from any and all third party claims, losses, liabilities, demands, actions or proceedings related to the downloading, distribution, transmissions, storage, redistribution, reproduction or exploitation of each scanned mineral assessment report obtained by the User from Alberta Energy.

Alberta

Alberta Mineral Assessment Reporting System

GEOLOGICAL & EXPLORATION REPORT

ANDREW LAKE PROJECT, NORTHEASTERN ALBERTA

DEC. 31, 1976

FOR

TACHYON VENTURE MANAGEMENT LTD.

CALGARY, ALBERTA

٢	· · · · · · · · · · · · · · · · · · ·
	ECONOMIC MINERALS
	FILE REPORT NO. 4-AF-1126
	<u>U-4F-113(5)</u>
	U-4F-126(5)

J. R. Allan, P. Geol. Calgary, Alberta

SUMMARY

In June of 1976 the writer was retained by TACHYON VENTURE MANAGEMENT LTD., SACKVILLE OILS & MINERALS LTD., and CONVENTURES LTD. to conduct a detailed geochemical, geophysical and geological exploration programme on Quartz Mineral Exploration Permits No. 182, 183, 184 and 247, hereinafter referred to as the ANDREW LAKE PROJECT. The four contiguous Permits, totalling 86,400 acres, and the immediately adjacent open Crown land are included in a 'farm-out' agreement (with an "area of influence" clause) with AQUARIUS RESOURCES LTD.; Edmonton, Alberta.

The accompanying report is a summary of the 1976 field programme of airborne radiometrics, ground scintillometry, prospecting, uranium geochemistry, Track Etch radon and ground magnetic surveys. This work was successful in delineating three target areas which warrant further exploration. In decreasing order of priority, these are briefly summarized below:

(1.) ANDREW LAKE SOUTH GRID

The Andrew Lake South Grid covers the "Carrot Lake Zone", discovered by HBOG Ltd. in 1969, and a large glacial fluvial sand plain masking its possible northward extension. The grid area covers a distinctive regional aeromagnetic "break", herein postulated as being a major mylonite zone, and its juncture with three regional scale fault lineaments. The structural setting is considered favorable for moderate tonnage, low to moderate grade uranium mineralization.

Twelve anomalous uranium soil geochem zones or areas and three linear Track Etch radon anomalies warrant additional detailed work prior to definition of diamond drill targets.

(2.) PERMIT 247 (CHERRY LAKE PROPERTY)

This property covers the Small Lake, Twin Lakes and Cherry Lake 'C' uranium occurrences previously discovered by McIntyre Mines Ltd., as well as a large glacial fluvial sand plain masking the possible southward continuation of the Carrot Lake Zone. Additional follow-up work is recommended for three areas within or adjacent to the Permit:

- i.) Three sets of airborne radiometric anomalies from the 1976 survey require ground follow-up: 2 isolated anomalies west of Ilo Lake on strike with Track Etch anomaly T-1 on the Andrew Lake South Grid; a cluster of 10 anomalies in the west central portion of the property, and; 13 scattered anomalies over a 1½ square mile area immediately west of the Permit boundary (in the south portion of Permit 182).
- ii.) A reconnaissance radon emanometer survey over the sand plain and muskeg area at the south end of the Carrot Lake Zone is recommended.
- iii.) Assay values obtained from trenching by McIntyre Mines Ltd., did not stand up well to diamond drill testing. Additional ground radiometrics and one or more trench bulk samples of the best mineralized zones is herein recommended. Contingent upon favorable results, these three occurrences may warrant a detailed re-evaluation and further diamond drilling.

(3.) CHARLES LAKE DISTRICT

Ground follow-up of numerous airborne radiometric anomalies from the 1976 survey failed to encounter any significant uranium mineralization. However, the "Arch Lake" and "Raisin" Granites have been tentatively interpreted as being regionally anomalous in their radioactive expression. Their extension west of the survey area and northward into the N.W.T. should be reviewed. Limited rock geochemistry, a re-evaluation of the anomalies east of Selwyn Lakes and some additional prospecting is recommended.

In order to more clearly define the anomalies and assign priority diamond drill targets, a detailed program of radon emanometry, basal overburden geochem sampling, prospecting of selected geochemically anomalous areas and limited trenching is herein proposed. Estimated budget for a 3 week field program for a geologist and 3 senior assistants is \$30,000.00. It is further recommended that such work commence no later than mid-May, 1977.

Upon completion of this phase, and contingent upon a positive evaluation of the subsequent anomalies, a diamond drilling programme in the order of \$100,000 to \$150,000 would be justified. Also, at this time sufficient data will have been acquired to very substantially reduce the land holdings. LIST OF MAPS

MAP NO.	TITLE
76-1	Airborne Radiometric Survey - South Andrew Lake
76-2	Airborne Radiometric Survey - North Andrew Lake
76-3	Airborne Radiometric Survey - Charles Lake District
76-4	Airborne Radiometric Survey - Legend & Weekes Lake
76-5	Andrew Lake South Grid - Geochem & Track Etch Surveys
76-6	Andrew Lake South Grid - Mag. & VLF-E.M. Surveys
76-7	Andrew Lake South Grid - Geochem & Track Etch Surveys
76-8	Andrew Lake South Grid - Mag. Survey
76-9	Hutton Lake Fault Zone - Geology & Geochem Survey
76-10	Hutton Lake Fault Zone - Mag. Survey
76–11	Bonny Fault Zone; Andrew Lake - Split Lakes Sector
76-12	Bonny Fault Zone; Split Lakes - Holmes Lake Sector
76–13	Bonny Fault Zone; Holmes Lake - Murchison Lake Sector
76-14	Bonny Fault Zone; Sedgewick Lake Sector

TABLE OF CONTENTS

Page

INTRODUCTION	1
PROPERTY, LOCATION & ACCESS	3
PHYSIOGRAPHY	5
REGIONAL GEOLOGICAL SETTING	6
LOCAL GEOLOGY	7
STRUCTURAL GEOLOGY	10
ECONOMIC GEOLOGY	12
HISTORY OF EXPLORATION	14
AIRBORNE RADIOMETRIC SURVEY	22
GROUND FOLLOW-UP PROGRAM	25
(1) ANDREW LAKE SOUTH GRID	25
(2) PERMIT 247 (CHERRY LAKE PROPERTY)	.33
(3) BONNY FAULT ZONE	33
(4) HUTTON LAKE FAULT ZONE	34
(5) WAUGH LAKE AREA	35
(6) CHARLES LAKE AREA	35
RECOMMENDED PROGRAM	36
PROPOSED BUDGET	38
CERTIFICATE	39
SELECTED BIBLIOGRAPHY	40

APPENDIX:

...Field Staff

... Expenditures: April - Dec 31, 1976

....SAR-1 Airborne System Specifications

...Assays

... List of Unexamined Airborne Radiometric Anomalies, 1976 Survey

... Track Etch Survey Results & Terradex Report

INTRODUCTION

The Aquarius Resources property, presently under working option to Tachyon Venture Management Ltd., consists of four contiguous Quartz Mineral Exploration Permits, totalling 86,400 acres, located in the extreme northeast corner of Alberta in the Andrew Lake District.

The Andrew Lake District forms a portion of the Churchill structural province of the Canadian Shield which is here comprised of an Archean assemblage of regionally metamorphosed rocks. The western section of the property is underlain by a granite gneiss complex containing numerous northeast trending 'infolded' linear high-grade metasedimentary belts. The eastern portion of the property is underlain by the Waugh Lake Complex (an intercalated sequence of metasedimentary/meta-volcanic rocks), porphyroblastic biotite granite, and massive biotite and leucocratic granites.

Numerous occurrences of weakly to moderately anomalous radioactivity are noted throughout the property as evidenced by previous exploration reports (both private and government). The majority of these anomalies are intimately associated with four specific environments, namely:

- 1) Major faults or shear zones;
- In massive biotite granites and associated pegmatitic phases (anatectic granites);
- 3) In pegmatities;
- And, to a lesser extent, in high-grade metasedimentary belts (where radioactivity is often localized in segrations of biotite + chlorite schist in a host feldspathic quartzite;

Exploration programmes of previous operators were cursory in nature, as little or no work was directed toward delimiting the extent of anomalies beneath overburden covered areas through the use of stripping, trenching, geochemistry, radon gas techniques or geophysics. Economic appraisals to date have been based largely on outcrop examinations.

In the writer's opinion, there is good potential for the discovery of moderate-grade epigenetic vein-type pitchblende deposits associated with major fault structures (i.e. Beaverlodge District type occurrences). Also, there exists a reasonable potential for the discovery of low to moderate grade "porphyry-type" uraninite deposits in the massive biotite and leucocratic granites (alaskites and/or migmatities?) (i.e. Rossing, S.W. Africa type occurrences).

During the period June 19 to September 3, 1976 an eight man field party conducted an exploration program of the Andrew Lake Property as recommended in the writer's proposals of March 30, 1976 (Andrew Lake Proposal) and June 30, 1976 (Cherry Lake Property Proposal). Field work consisted of an airborne radiometric survey, ground radiometric follow-up of the airborne anomalies, and detailed geochemical and geophysical investigations of three specific target areas (namely, the Andrew Lake South Grid, the Bonny Fault Zone, and the Hutton Lake Fault Zone).

Expenditures to December 31, 1976 are estimated at \$129,500.00.

Field work was terminated approximately 10 days prior to completion of the initial objectives because of budgetary limitations. In anticipation of this, the latter portion of the program was devoted almost exclusively to airborne anomaly investigations at the expense of geological mapping and lake bottom geochem sediment sampling.

- 2 -

PROPERTY, LOCATION & ACCESS

The Aquarius Resources Ltd. property presently consists of four contiguous Quartz Mineral Exploration Permits located in the extreme northeast corner of Alberta in an area locally known as the Andrew Lake District (An adjacent claim block in Saskatchewan, CBS 5407, has been allowed to lapse). The centre of the property approximates Latitude 59° 51', Longitude 110° 10'; and the National Topographic System subdivision bounding the permit area is 74-M-16 (c.f. Figure 1).

The property is only accessible by float or ski-equipped aircraft, the nearest settlements being Uranium City, Saskatchewan (a distance of 55 miles to the southeast), and Fort Smith, N.W.T. (approximately 60 miles to the west). Both communities are serviced by regularly scheduled commercial airline flights from Edmonton, Alberta. The nearest commercially used water route is Lake Athabasca, 36 miles south of Andrew Lake, en route to the railhead at MacMurray, Alberta (approximately 220 miles south of the property). Limited hydro power is available from both Fort Smith and Uranium City.

The permits, 3 of which were acquired in 1974 and 1 in 1976, are more specifically described as follows (c.f. Figure 2):

Permit No.	Township,	Range West of 4th Meridian, Section
182	Twp. 123,	Range 2-W4M; NE% Section 34.
July 18, 1974	Twp. 124,	Range 2-W4M; Sections, 1, 2, 3, E½ 9, 10-13 incl., 24, 25, 36.
•	Twp. 124,	Range 1-W4M; Sections 6, 7, 14, 18, 19, N½ 20, N½ 21, 22-36 inclusive.
	Twp. 125,	Range 2-W4M; Sections 1, 5½ 12.
	Twp. 125,	Range l-W4M; Sections l-6 incl., SW¼ 7, NE/SE/SW¼'s of 8, 9-13 incl., SE¼ 14, E½ of 24.

Sub-Total 46 Sections Approximate acreage 29,440

- 3 -

<u>Permit No.</u>	Township, Range West of 4th Meridian, Section
183	Twp. 124, Range 2-W4M; Sections 20, 21, 28, 29, 32, 33, W½ 34.
July 18, 1974	Twp. 125, Range 1-W4M; Sections NWな 7, NWな 8, 17, NE/SE/NWな's of 18, 19, 20, W文 28, 29-33 incl., W≿ 34.
	Twp. 125, Range 2W4M; Sections NW/SW/NEな's of 3, 4, 5, Eな 8, 9, 10, 11, Nな 12, NW/SW/SEな's of 13, 14, 15, 16, Eな 17, 21, 22, 23, NW/SW/NEな's of 24-28 incl., and 33-36 inclusive.
	Twp. 126, Range 1-W4M; Wz Section 4.

TWP. 126, Range 2-W4M; Sections 1, 2, 3, E½ 4, E½ 9, 10-15 incl., E½ 16, 21-28 incl., 33-36 incl.

 Sub-Total
 62½ Sections

 Approximate acreage
 40,000

 184
 Twp. 124, Range 2-W4M; Sections 4, 5, NE¼ 7, 8, W½ 9, 14-18 incl., 22, 23, 26, 27, E½ 34, 35.

 Aug. 23, 1974
 Twp. 125, Range 2-W4M; Sections 2, SE¼ 3.

	Sub Total	15월 Sections
	Approximate acreage	9,920
247 June 30, 1976	Twp. 124, Range 1-W4M; Sections 3, 4 15, 16, 17, 5초 20, 5초 21	4, 5, 8, 9, 10,

Sub-Total10 SectionsApproximate acreage6,400

TOTAL135 SectionsAPPROXIMATE ACREAGE86,400

- 4 -

PHYSIOGRAPHY

Pleistocene glaciation has left a locally rugged terrain generally typical of most of the Precambrian Shield. Maximum relief, about a mean elevation of 1,250' ASL, is in the order of 300'.

Glacial striae indicate that the most recent ice transport was from the ENE.

Bedrock is exposed over approximately 30% of the permits, generally expressed as low rounded hills interspersed by small patches of muskeg and numerous large glacial sand plains.

The drainage, which is either disconnected or poorly connected, is west toward Charles Lake.

REGIONAL GEOLOGICAL SETTING

The Andrew Lake District forms a portion of the Chruchill Structural Province of the Canadian Shield and is underlain by an Archean assemblage of regionally metamorphosed rocks. The dominant structural pattern is characterized by a northeast-trending 'grain' imparted by the Hudsonian orogeny.

The western sector of the property is underlain by a granite gneiss complex containing numerous north-east trending infolded linear belts and remnant patches of high-grade metasedimentary rocks. In the eastern sector, southeast of Andrew Lake, the property is underlain by the low metamorphic grade "Waugh Lake" metasedimentary-metavolcanic complex which, in turn, is spatially related to the "Western granodiorite complex" (dominantly porphyroblastic biotite granites, and massive biotite and leucocratic granites).

Mapping in the area is severely hampered by the lack of good marker horizons and by the homogenizing effects of regional metamorphism, migmatization, and poly-phase deformation. That the area is host to ubiquitous faulting may be readily appreciated from the disrupted aeromagnetic pattern and the large number of prominent lineaments recognizable both on aerial photographs and on the ground. As a consequence, there has been little success to date in regionally correlating these rocks with either the Tazin Group meta-sediments in the Beaverlodge District to the east, or the Nonancho Series in the N.W.T. to the north. Nevertheless, it is herein suggested that the metasedimentary belts in the western part of the property are lithologically similar to, if not time equivalents of, the Tazin Group. Uranium-lead age determinations on Andrew Lake District rocks (Baadsgaard and Godfrey) yielded dates in the order of 1,900 to 2,250 m.y. K-Ar determinations place the earliest deposition of the Tazin Group at 2,370 m.y. and the Waugh Lake Complex/Western Granodiorite Complex somewhat younger at 1,900 m.y. The generally accepted range for the Hudsonian orogeny is in the order of 1,740 m.y. to 1,790 m.y. (K-Ar dates after Beck, 1969). Baadsgaard and Koster (1969) have placed the age of Late-Stage mylonitization and faulting in the Beaverlodge District (which events are spatially related to and coeval with most of the epigenetic uranium deposits of the area) in the range 1,400 to 1,500 m.y.

- 6 -

LOCAL GEOLOGY

For greater detail the reader is referred to the publications of Dr. J. D. Godfrey summarized under History of Exploration.

(a) <u>Granite Gneiss</u>. The Western sector of the property is underlain by the eastern flank of a north-northeast trending, 10 to 15 mile wide band of granite gneiss that extends from the north shore of Lake Athabasca through to the N.W.T. Boundary. The western margin of the band is sharply delimited by the Allan Fault System; and the eastern contact, in the centre of the property, by the Waugh Lake/Western Granodiorite Complexes.

Locally, this unit is comprised of biotite granite gneiss; horneblende granite gneiss; minor narrow, lenticular bands of amphibolite; and a minor pegmatitic phase. The unit as a whole is markedly characterized by its pronounced foliation (generally trending N25E dipping vertically to 80^OW) and intense plastic and cataclastic deformation (large isoclinal folds, drag folds, crenulations, boudinage structure, etc.).

(b) <u>Metasedimentary Belts</u>. Contained within the granite gneiss terrain are numerous isoclinally infolded (?) linear belts and narrow lenticular remnants of high-grade metasedimentary rocks. Regionally, they are generally oriented conformable with the adjacent granite gneiss foliation; locally, however, they often exhibit somewhat more extreme deformation than the host granites.

Metamorphic grade varies from upper greenschist to almandine-amphibolite facies.

Locally, this unit is comprised of meta-quartzite (minor phyllitic, schistose, migmatitic and pegmatitic phases, and again including minor amphibolite and basic phases) and biotite schist. Relict bedding is preserved as colour and mineralogical banding. Variations in the degrees of schistosity and the content of graphite, pink and red garnet, and feldspathic material constitute the main field technique for further sub-dividing the quartzite phase. Six principal belts have been mapped within the permit area:

- 1) along the axis of Andrew Lake;
- 2) the Spider Lake belt, which appears to be correlative with (1) above;
- 3) west of Split Lakes;
- 4) Swinnerton Lake belt;
- 5) the Sedgewick Lake belt; and
- 6) the Eagle Lake Potts Lake belt.

(c) <u>Waugh Lake Complex</u>. (Map unit A) This belt consists of an isoclinally to openly folded (and in places phyllonitized) metasedimentary-metavolcanic sequence predominantly composed of quartzites, greywackes, and biotite and sericite schists about a central core of dominantly basic rocks (greenstone, amphibolite, basalt and gabbro). The metamorphic grade is slightly lower than unit (b) above at middle greenshist facies (minor phases of lower almandineamphibolite at the southern extremity of the belt).

Bedding features and sedimentary structures are often well preserved.

Tourmaline quartz veins, pegmatitic lenses, ferruginous, garnetiferous and graphitic zones are common throughout the quartzite phase.

(d) <u>Western Granodiorite Complex</u>. (Map unit B) (Terminology after Koster and Baadsgaard, 1969) This unit, mapped east of Andrew Lake on the Saskatchewan side by Koster, is tentatively correlated here with Godfrey's (1963) "Porphyroblastic Biotite Granite" and its four local subdivisions.

The most outstanding feature of this unit is its pronounced 'porphyroblastic' feldspar texture. Variable amounts of biotite, horneblende and chlorite facilitate the subdivisions into Godfrey's biotite microgranite and biotite granites type A, B. and C. As elsewhere, minor amounts of amphibolite, pegmatite and aplite are common.

- 8 -

(e) <u>Massive to Foliated</u>, <u>Biotite & Leucocratic Granites</u>. At the SW end of Andrew Lake and extending south to Cherry Lake (c.f. Map 76-1), a 2 to 3 mile wide band of this unit is interspersed between the Granite Gneiss (a + b) and the Waugh Lake/Western Granodiorite Complex (c + d).

Characteristically these rocks are equigranular, coarse-grained and leucocratic, containing from 95 to 99% felsic minerals. Foliation is non-existent to weakly developed.

Minor phases of muscovite granite, biotite granite and muscovite pegmatite are common.

(f) <u>Arch Lake Granite</u>. Two "younger" granite complexes west of Charles Lake were examined on a reconnaissance basis because of their apparent 'regionally anomalous level' of radioactivity as determined by the Texas Instruments airborne survey of 1969 (c.f. Map 76-3). The southernmost of these, the Arch Lake Granite, is described by Godfrey as being characteristically feldspar porphyroblastic (30 to 50%, ½" to 2" megacrysts) and well foliated. Mylonitic banding is common.

(g) <u>Raisin Granite</u>. This unit is located along the northwest shore of Charles Lake and, along with the Arch Lake Granite, forms a chain of "younger" granite stocks which bound the western margin of the Andrew Lake District. The "Raisin Granite" is commonly mottled pink to red with a "distincitive raisin textured (flaser) appearance" of rounded equidimensional feldspar crystals 1/10" to $\frac{1}{4}$ " in size.

Foliation is weakly developed.

The contact of both the Arch Lake and Raisin Granites with the granite gneiss terrain to the east is generally intercalated and/or gradational.

- 9 -

STRUCTURAL GEOLOGY

Two potentially economic structural features (vis a vis. exploration directed toward epigenetic uranium mineralization) are ubiquitous to the permit area, namely faulting and mylonitization. Although regional-scale folds have not been recognized, two or more periods of small-scale deformation are readily apparent from the complexity of the trend lines on the published $1" = \frac{1}{2}$ mile maps. Joints and shears are present in every rock type.

Three major fault sets, generally expressed as pronounced lineaments, are prevalent throughout. In decreasing order of their apparent magnitude (and relevance hereto?) as evidenced by the presence, or absence, of subsidiary faults and shears, degree of wall-rock alteration, brecciation and/or mylonitization, these are:

(1) Northwest to north-northwest set; obliquely transecting the strike of the local geology. In this category the "Bonny Fault" (and its associated features) is the principal such system within the property and is, in fact, a deep-seated fault of regional significance. Recurrent movement on the main fault is probable.

"The main fault plane grades into a fan-shaped fault zone on entering the present map-area from the north (Godfrey, 1961), which suggests a dissipation of magnitude to the southeast. Northwest of Andrew Lake the Bonny Fault strikes north 27 degrees west and it dips 80 degrees southwest at the east end of Hutton Lake. In a well-exposed section on the west shore of Andrew Lake the fault becomes a brecciated fault zone filled with quartz and hematite, up to 500 feet width. Marginal to the breccia zone, parallel shears grade outwards into the country rock. Hematization and chloritization of the country rock are common along the Andrew-Hutton Lakes section of the Bonny Fault.

- 10 -

Branches of the Bonny Fault to the southeast of Andrew Lake trend from southeasterly to easterly. Many branches have apparent horizontal displacements in that bands and bodies of several rocks terminate against the faults. Breccia, mylonite, and mylonitic sheeted structures have been noted in sections along the branch faults." (Godfrey, 1963)

This set of faults is strongly marked by its disruption of the NNE aeromagnetic trend.

(2) North-northeast trending set; parallel to the regional foliation trend. These are often contained within or delimit the margins of the metasedimentary belts. In all likelihood, these magnetically-low areas are bands of mylonite or zones of cataclasis. The Bayonet Lake recrystallized mylonite zone (often ½ to ½ mile wide) along the western boundary of the property is the most outstanding in this category. Recurrent movement is also in evidence here.

(3) A curvilinear set of east-west to east-northeast narrow fault or shear planes. There is little or no evidence of recurrent movement or significant alteration of wall rocks.

ECONOMIC GEOLOGY

Here again, the reader is referred to publications of J. D. Godfrey for detailed descriptions of reported radioactive and sulphide occurrences up to 1963, and to assessment files summarized under History of Exploration.

Minor scattered occurrences of disseminated pyrite and traces of pyrrhotite, arsenopyrite, chalcopyrite, smaltite, galena and molybdenite have been reported throughout the high-grade meta-sedimentary rocks of the Waugh Lake Complex, and less frequently in the meta-sedimentary belts of the western Granite Gneiss terrain. Small gossan zones and rusty patches on foliation planes are also common. A dominantly stratiform genesis is herein suggested for such mineralization. Although many of the sulphide occurrences display an intimate relationship with faulting, shearing, or mylonite zones, such localization appears to be largely indicative of extensive remobilization due to thermal and dynamic metamorphism.

Detailed ground follow-up of airborne EM conductors and gossan zones by MacIntyre Mines Ltd. and HBOG Co. Ltd. revealed a common association of stratibound sulphides and graphite. No potentially significant base-metal occurrences have been discovered to date.

Unique to the Waugh Lake Complex is the presence of extensive tourmalinequartz composite veins. A sample from north of Waugh Lake just east of the Fourth Meridian yielded trace amounts of gold, silver and nickel (Godfrey 1963).

Weakly anomalous radioactivity is widespread throughout the property as evidenced by the discoveries of Godfrey (Map 58-4), airborne survey records of MacIntyre Mines and HBOG, and the prospecting discoveries by Aquarius Resources in 1974. The majority of these anomalies are intimately associated with four specific environments, namely: 1) In massive biotite granites (anatectic granites?) and associated pegmatitic phases. In a broad lithologic sense this may include both the "Cherry Lake" and the "Carrot Lake" radioactive zones. As the apparent strike of both zones clearly transects the geological trend, the radioactivity may, however, be related to a deep-seated southward continuation of the Bonny Fault (the latter masked, in part, by the extensive sand plains at the south end of Andrew Lake);

2) In pegmatites. Radioactivity appears to be preferentially localized in sheared and/or brecciated pegmatites within metasedimentary belts, or within hybrid-type (anatectic?; as in point 1 above) granite gneisses, e.g. north of Andrew Lake Arm;

3) Faults or shear zones. E.g. radioactivity is reported at six locations along the Bonny Fault;

4) The high-grade metasedimentary belts. In a generalized sense, radioactivity is often localized in segregations of biotite (+ chlorite) schist in a host feldspathic quartzite, e.g. the Spider Lake zone (a portion of which was trenched and drilled by MacIntyre); the Andrew Lake Arm belt examined by Rapid River Resources; and, sporadic radioactivity at Dumbell Lake in the Sedgewick Lake Belt.

Radioactive occurences in pegmatites (2) and granite gneiss (1) are occasionally characterized by the presence of weak, secondary uranium staining (carnotite?); e.g. the penninsula at the north end of Andrew Lake (Map 76-2) and east of the south end of Andrew Lake (Map 76-1).

HISTORY OF EXPLORATION

The limited exposure of Precambrian Shield in northeastern Alberta has received considerable attention during the past several decades (albeit of a somewhat cursory nature) as a direct consequence of its apparent geological similarity to uranium, gold and base-metal producing areas in Saskatchewan and elsewhere. Reconnaissance mapping traverses in this district were first undertaken by Tyrell of the G.S.C. in 1892 and subsequently by Alcock (1915-17) and Cameron and Hicks (1929-32). In 1936, Alcock mapped the area adjoining the Andrew Lake district to the east at a scale of 1 inch to 4 miles; and in 1938, Wilson mapped the adjacent N.W.T. sector, again, at 1 inch to 4 miles.

Radioactive occurrences in the Andrew Lake district were first discovered in 1953 by Ferguson of the Research Council of Alberta. In 1954, Collins (RCA) spent several weeks prospecting and examining the previous season's discoveries, including a weakly uraniferous pegmatitic band in metasediments at Spider Lake, 12 miles southwest of Andrew Lake.

The first comprehensive study of the economic potential of the area was undertaken by Dr. J. D. Godfrey (RCA) in 1957, which continuing programme ultimately led to publication of the following series:

Bulletin l		Aerial Photographic Interpretation of Precambrian Structures, north of Lake Athabasca;
Prelim. Rept.	58-3	Geology of the Andrew Lake, North District (Map 58-3A, 1" = ¼ mile);
Prelim. Rept.	58-4	Mineralization in the Andrew Waugh and Johnson Lakes area, northeastern Alberta. (Map 58-4, 1" = 1 mile);
Prelim. Rept.	61-2	Geology of the Andrew Lake, South District (Map 61-2A, 1" = え mile);
Prelim. Rept.	62-1	Geology of the St. Agnes Lake District (Map 62-1A, 1" = ⅔ mile);
Prelim. Rept.	65-6	Geology of the Charles Lake & Ashton Lake Districts (Map 65-6C, 65-6D, $1'' = \frac{1}{2}$ mile).

- 14 -

During the course of the above mentioned work, Godfrey noted several dozen weakly radioactive occurrences as well as numerous interesting gossan zones and sulphide showings. Public release of the data in August of 1958 led to staking of approximately 150 claims on the basis of the molybdenum potential of the area. No significant discoveries resulted from this work and the claims were allowed to lapse.

In 1959, reconnaissance mapping of the entire Alberta portion of Precambrian Shield north of Lake Athabasca was again undertaken by the Geological Survey of Canada. The results of this survey were published as the Fort Fitzgerald Sheet (Map 12-1960, G. C. Riley), at a scale of 1" = 4 miles. The following year, Koster, of the Saskatchewan Department of Mineral Resources, re-mapped the area east of Andrew Lake (Thainka Lake area, west half) at 1 inch to 1 mile (D.M.R. Rept. No. 61).

Aeromagnetic maps at a scale of 1" = 1 mile have been published for all of the Lake Athabasca region.

A second and more intensive period of exploration closely paralleled the heightened uranium activity in Saskatchewan, starting in 1967 and peaking subsequent to the Gulf Minerals Ltd. Rabbit Lake discovery in 1968. At this point in time, most of the Shield area of both provinces was hastily acquired through "Exploration Permits" or "Claim Blocks".

Three dominantly uranium-oriented exploration programmes, briefly summarized below, covered the entirety of the property that now constitutes the Aquarius Resources Permits (c.f. Figure 3). This data has been filed as assessment work and is available for review at the Research Council of Alberta in Edmonton. (1) New Senator - Rouyn Ltd. Option/MacIntyre Porcupine Mines (1967-69)

Permits No. 6 and 7 were acquired by Astrabrun Mines Limited and optioned to New Senator Rouyn Ltd. in April 1967. A reconnaissance prospecting programme was centered mainly about the 'Cherry Lake' zone – scattered, weakly radioactive patches in a north-south trending 400' to 500' wide pegmatitic phase within locally sheared, weakly iron stained granite. Trenches in this vicinity returned assays generally in the range 0.04% to 0.20% U_3O_8 with 0.79% U_3O_8 being the best result. A grab sample of granite gneiss float in a swampy area 800' northeast of the north shore of Cherry Lake assayed 1.76% U_3O_8 .

The property was subsequently acquired by MacIntyre Porcupine Mines Ltd., and, on their behalf, in July 1968, Trigg Woollett & Associates Ltd. conducted an airborne scintillometer survey over the permits utilizing a helicopter-borne Mount Sopis Scintillometer Model 160-12A (total count instrument; time constant - 0.45 sec.; air speed - 45mph; mean terrain clearance - 100'). 503 line miles were flown on an east-west oriented grid at 1/4 mile spacing. Anomalous areas were re-flown at 1/8 mile spacing. A total radioactivity isorad map was compiled at a scale of 1" to 1/2 mile. 44 anomalies were detailed, 43 of which are located within the limits of the Aquarius Property (c.f. Figure 4, appendix).

Under the direction of Mr. W. H. Thorpe, follow-up work during the 1968-69 field seasons (which was based almost exclusively on the airborne scintillometer results) involved propecting, geological mapping, 20 line miles of picket grids, approximately 700 lineal feet of trenching and 17 diamond drill holes totalling 6,298 feet. Of these, 14 holes were collared on the Cherry Lake Property, 2 at Spider Lake on Permit 182, and 1 at Holmes Lake on Permit 183.

D.D.H. No.	Length	Bearing	<u>Dip</u>	Assay Results of Significance in $%U_3O_{\beta}$
68-1	447 '	090 ⁰	-47 ⁰	117'-119' (2') 0.053%, granite gneiss
68-2	163 '	135	-45	traces to 0.005% in granite gneiss
68-3	457 '	120	-45	97.5-100 (2.5') 0.02%
68-4	460 '	285	-45	84-86 (2') 0.016% in pegmatite
68-5	163 '	285	-45	trace
·68-6	196 '	105	-45	trace
68-7	526 '	045	-44	No significant results

Permit 247 - Cherry Lake

- 16 -

17 _	-
------	---

D.D.H. No.	Length	Bearing	<u>Dip</u>	Assay Results of Significance in % U_3O_8
68-8 68-9 68-10 68-14	525' 325' 151' 425'	225 ⁰ 090 315 090	-45 ⁰ -44 -45 -45	No significant results No significant results 108.6-110 (1.4') 0.12% in pegmatite 30-35 (5) 0.03%) 35-40 (5) 0.03%) 40-44 (4) 0.02%) Otz fldbio. gneiss 57-58 (1) 0.07%) 71-75 (4) 0.04%) 158.0-161.5 (3.5') 0.06% in pegmatite 161.5-163.3 (1.8') (0.04% 163.3-168.3 (5.0') 0.03% Qtz-fld-bio gneiss 168.3-173.0 (4.7') (0.06%
69-1	482 '	090	-45	199–203 (4') 0.03% 303–310.5 (7.5') 0.05% 454–459 (5') 0.03%
69–2	461'	090	-45	84-88 (4') 0.04% 92-96 (4') 0.03% 163-166 (3') 0.03% 224-226.5 (2.5') 0.04%
69-3	342'	090	-45	216-221 (5') 0.04% 245-246 (1') 0.05%
Permit 182	- Spider	Lake Shc	wings	
68-11 68-12	303 ' 466'	158 ⁰ 133	-45 ⁰ -45	149-154 (5') 0.09% augen gneiss 55-58 (3') (0.04% 58-63 (5') (0.01% qtz-fld-bio gneiss 63-65.5 (2.5')(0.04%
Permit 182	- Holmes	Lake Sho	wings	
68-13	406'	135 ⁰	- 45 ⁰	52-57 (5') 0.03% 77-82 (5') 0.03%

•

In view of the discouraging drilling results (best intersection was 0.12% over 1.4' in. D.D.H. 68-10) the property was allowed to lapse.

(2) Rapid River Resources Ltd. (1968-69)

Six claims (numbers 148 to 153 inclusive), covering a portions of the Andrew Lake Arm metasedimentary belt were prospected in detail under the direction of Dr. K. W. Geiger in 1968.

Approximately 300 scattered radiometric 'spot highs', generally in the order of 5 to 10 times background (i.e. 500 to 1,000 counts/second, SRAT-SPP2 scintillometer) were recorded over an area of 800 acres on the south shore of Andrew Lake Arm. The majority of these anomalies were subsequently resolved into two north-south trending, closely-spaced, relatively discrete zones; both measuring approximately 6,000' x 1,000'. From west to east respectively these are referred to as the "Godfrey" and "Northerly Lineament" Zones.

The radioactivity appears to be intimately associated with numerous small randomly-oriented fractures and with narrow lenses and veins of pegmatitic material.

Two strongly pronounced lineaments (readily recognizable as trough features on aerial photographs), transect the zones - along the east side of the Godfrey Zone and centrally along the axis of the Northerly Lineament Zone. Geiger has postulated that both represent steeply to vertically dipping faults, and that radioactivity is closely related to associated and subsidiary tension fractures, shearing, and injection pegmatite veins. Weak hematization accompanies many of the fractures.

Both zones occur within a complex, rapidly alternating series of metasediments, (locally comprised of quartzite, biotite schist, chlorite schist and amphibolite) and granite gneisses (biotite gneiss and quartzfeldspar-hornblende-biotite gneiss).

During the winter 1969, four holes totalling 1,740' were drilled to test the best surface radioactivity in each of the zones. The only significant intersection was 0.22% U over 3.5' in a brecciated band of biotite schist at a vertical depth of 65' in the Godfrey Zone. A second hole beneath this intersection yielded only weak radioactivity over 1'. In view of these results, the claims were allowed to lapse. (3) Hudson Bay Oil & Gas Co. Ltd. (1968-1971)

Permits 24, 25 and 26, were prospected in considerable detail (both for their uranium and base-metal potential) over a three year period under the direction of Mr. E. C. Burgan.

In 1968, the first airborne scintillometer survey of the area was conducted by Federal Resources Corp. of Salt Lake City, Utah.

- 19 -

Phase I of the HBOG programme consisted of reconnaissance mapping and preliminary ground scintillometer checks of previously reported radioactive and sulphide occurrences. Ground data obtained at this time indicated poor quality control in the Federal Resources survey largely as a result of limited crystal size, only total count recording, and lack of elevation control. Subsequently, in 1969, the permits were reflown by Canadian Aero Surveys, this time with combined electromagnetic, magnetic and radiometric instrumentation (Canadian Aero Canso Mark III IP/OP EM system, 390 HZ; total intensity Model III Fluxgate magnetometer; and an Exploranium DGRS-1000 scintillometer with three 4" x 6" crystals). A total of 1,534 line miles were flown at 1/8 mile spacing (east-west oriented lines), and at a radar altimeter controlled elevation of 150'.

Ground follow-up of the airborne radiometric survey was extremely limited; anomaly selection was based on total-count expressions of moderate amplitude with linear extent of two or more flight lines. Such designated anomalies were prospected with a McPhar TV-1 scintillometer, reconnaissance mapped, trenched and sampled. Numerous radioactive occurrences were discovered in areas lacking airborne expression and, in a re-evaluation of the technical aspects of the survey, the data were concluded to be substantially invalid.

In 1970, the permit areas were again reflown, this time by Geo-X Surveys Ltd. (Exploranium DGRS-2000 scintillometer with three 4" x 6" crystals; eastwest oriented % mile spaced lines; mean terrain clearance of 100' to 150'). Phase II of the HBOG programme consisted of detailed ground scintillometry (McPhar TV-5), trenching and sampling of anomalies selected from Bismuth peaks. Generally, each anomaly location was subjected to a minimum of three 500' spaced traverses plus limited prospecting between lines. This work was successful in locating the "Carrot Lake Zone" (described below). Ground follow-up of the Canadian Aero Survey airborne conductors entailed line cutting, magnetics, vertical loop EM surveying (McPhar M-660 VHEM, broadside configuration, 200' or 300' separation), and, where feasible, trenching and sampling. Conductors masked by overburden were resurveyed with horizontal-loop EM on 400' spaced lines in conjunction with soil sampling at 100' station intervals. Of the 12 anomalies examined "Graphite was found on all the anomalies that were exposed in outcrop or trenching. Several conductors have gossan zones associated with or near the anomaly trace". No drilling was recommended on the basis of this work.

Phase III of the programme consisted of a detailed surface evaluation of the <u>"Carrot Lake Zone</u>", which is located $1\frac{1}{2}$ miles south of Andrew Lake and $2\frac{1}{2}$ miles north of the "Cherry Lake-MacIntyre" occurrence. A McPhar TV-5 scintillometer survey on a closely spaced grid indicated sporadic radioactivity (generally in the order of 2 to 5 times background and rarely to 20 times background) in a WNW trending zone up to 400' wide and with an exposed strike length of approximately one mile (masked by extensive sand cover at either end). A total of 33 trenches were placed along the length of the zone and of 43 obtained samples, most assayed in the order of 0.01% to 0.03% U_3O_8 . The <u>five best samples</u>, at the northern end of the zone, (generally representing a width of approximately 3') assayed from 0.16% to 0.18% U_2O_8 .

In HBOG's "Exploration Report-Andrew Lake Project, 1971", E. C. Burgan summarizes the geology of the zones, which was mapped at a scale of 1" to 50 feet, as follows:

"The predominant rock types are pink and grey granites and granite gneisses with lesser amounts of pegmatite, migmatized schists, metasediments and amphibolite. The textures and structures of individual rock types change over a few feet and as a consequence there is much gradation between lithologic units. In a broad sense, pink granites and foliated granites bound the western part of the Carrot Lake zone. These are bordered on the east by a complex of pink and grey migmatites and gneisses, porphyroblastic gneisses and pegmatites with an increasing content of biotite schist to the north and east. The bulk of the schists and metasediments occupy the more eastern part of the zone...In the southern part of the zone, foliation trends about N10^O-20^OE and dips at an average of 70^O to the west. In the northern part of the zone, where schists are more abundant, the strike of the foliation tends to be more variable but generally assumes a more northerly

- 20 -

trend. Dips range, with a few exceptions, from 80⁰W to vertical with some steep easterly dips recorded. Shearing, flow-folding and jointing are commom minor structures throughout the zone"....

"The mineralization appears to be mainly controlled by structures such as fractures and shear planes" and is generally contained in biotite rich phases of both the gneisses and metasediments in an obliquely transection relationship to local gneissosity. "The best (assay) results are from trenches 27+80N, 22+00N, and 21+00N (in the northern part of the zone west and southwest of Dam Lake) where assays as high as 0.18% U_30_8 were recorded."

The southernmost end of this zone, which is apparently obscured by glacial overburden, is located on the boundary between Sections 20 & 21, Range 1, Twp. 124.

In 1971, HBOG acquired Permit No. 178 in order to protect both the Carrot Lake and Cherry Lake-MacIntyre occurrences. However, no assessment work was filed and they were forced to relinquish both their bond and the Permit.

(4) Aquarius Resources Ltd. (1974-1976)

Permits No. 182, 183 and 184, which supersede the above mentioned permits of MacIntyre, Rapid River Resources Ltd. and HBOG, were again prospected in some detail during July and August of 1974. A six-man prospecting party under the direction of Mr. Joseph Sullivan, P. Eng. conducted closely-spaced scintillometer traverses in the vicinity of most of the previously reported radioactive occurrences.

Numerous weakly radioactive areas, apparently not evident in airborne records of the previous mentioned programmes, were discovered during the course of this work (i.e. the Dumbell Lake area, underlain by the Sedgewick Lake metasedimentary belt, and along the Hutton Lake fault).

- 21 -

INDEX

то

QUARTZ MINERAL EXPLORATION PERMITS

٥

(Figure 3)

Permit No.	Term of Permit	Permit Holder
6,7///	, 1967–69	MacIntyre Porcupine Mines Ltd. (New Senator - Rouyn Ltd. Option)
=247=257=26=	1968-71	Hudson Bay Oil & Gas Co. Ltd.
	1971-72	Hudson Bay Oil & Gas Co. Ltd.
RR (Claims)	1968-69	Rapid River Resources Ltd.
182, 183, 184, 247	1974-present	Aquarius Resources Ltd.

AIRBORNE RADIOMETRIC SURVEY

2,373 line miles of detailed, low-level, airborne radiometric survey were flown over the Andrew Lake Project area during the period July 19th to 31st, under the supervision of the writer. A breakdown of the extent of airborne coverage is presented below:

Permit 182 Alberta	508.34 mi.
Permit 183 Alberta	596.02 mi.
Permit 184 Alberta	124.60 mi.
Permit 247 Alberta	112.13 mi.
Charles Lake Area, Alberta	334.90 mi.
Alberta - Peripheral to above	624.67 mi.
Claim Block CBS 5407, Saskatchewan	65.75 mi.
Saskatchewan - peripheral to CBS 5407	34.15 mi.

TOTAL 2,373.56 miles

Instrumentation

Instrumentation consisted of a modified SAR-1 two-channel gamma ray spectrometer with a 13" diameter by 6" thick Harchaw Na(T1)I detector (796 cubic inch crystal), Ortec electronics, and a Brush 222 two-channel recorder. Electronic specifications are further described in the appendix of this report.

The instrument design modification, installation, calibration and test flying was undertaken by Goldak Exploration Technology Ltd. The entire system was interior mounted in a float-equipped Bell 206B helicopter.

Operating Specifications

Aircraft altitude was monitored with a barometric altimeter, but was not recorded. Navigation was from 1" = 1/4 mile strip photo-mosaics with predetermined flight lines indicated. The flight lines were visually altered on the mosaics during the course of the survey and then subsequently recovered utilizing scale divisions provided by a manually operated fiducial marker on the data tapes.

TEST FLIGHT RESULTS

.73

Ground Location - Andrew Lake South Grid 86+00N - 2+00W Flight Line - West to East (left to right)

Airborne results:100 c.p.s.(U + Th) over a background of 40 c.p.s.Ground survey:160 c.p.s.(U + Th) over a background of 30 to 50 c.p.s.

SURVEY FLIGHT RESULTS

CHANNEL 1	TOTAL COUNT
Integration time	l second
Mean terrain clearance	200'
Air Speed	75 m.p.h.
"Window"	>0.25MeV

CHANNEL 2		U + Th
Integration	time	1/3 second
Mean terrain	clearance	200'
Air Speed		75 m.p.h.
"Window"	1.62MeV -	3.00MeV

CHANNEL 1	TOTAL COUNT
Integration time	l second
Mean terrain clearance	200'
Air Speed	85 m.p.h.
"Window"	>0.25MeV

CHANNEL 2		U + Th
Integration t	ime	1/3 second
Mean terrain d	clearance	200'
Air Speed		85 m.p.h.
"Window"	1.55MeV -	4.00MeV

The instrument was checked daily for anomaly resolution and amplitude over a known radioactive showing at the south end of Andrew Lake (Andrew Lake South Grid; 86 + 00N - 2 + 00W; 6 times background zone) as per the example of the previous page.

Initially, the survey area was flown with the following specifications (flight line numbers 1 to 61 inclusive):

Flight Line Spacing	700'
Mean Terrain Clearance	200' (contour flown where possible)
Average Air Speed	85 m.p.h.
Total Count "Window"	≻ 0.25 MeV
U + Th "Window"	1.55 MeV - 4.00 MeV
Chart Recording - Total Count	full scale of 1,000 c.p.s.
Chart Recording - U + Th	full scale of 300 c.p.s.
Integration Time - Total Count	1 second
Integration Time - U + Th	1/3 second

Subsequent detailed flying over most major structural lineaments, favorable geological settings and most of the obtained anomalies from the above survey were undertaken with the following procedural changes (i.e. lines 62 to 92 inclusive plus the Bonny Fault and Charles Lake flying):

Flight Line Spacing	flight lines generally inter- spersed with previous lines, for an interval of 350'	
Average Air Speed	75 m.p.h.	
U + Th "Window"	1.62 MeV - 3.00 MeV	
Chart Recording - U + Th	full scale of 100 c.p.s.	

A comparison of the resolution and amplitudes obtained by the two procedures is set out on the previous page (i.e. flight line 20W versus line 62W).

Interpretation

Interpretation is largely based on an arbitrary level of uranium plus thorium count with coincidental total count response. Initially, an attempt was made to rate the anomalies on a scale of 1 to 5 based on amplitude above background, absolute U + Th count, and anomaly configuration. However, after the first four days of ground follow-up, this procedure was abandoned. Specifically, the lack of an altitude record during the survey and an accurate topographic/outcrop basemap made it impossible to reliably differentitate between "mass effect" anomalies and "weak spot highs"; and between one and two times background anomalies in high relief areas. Also, in order to substantially increase the resolution for the detailed flying, full-scale chart recording of only 100 counts/second for U + Th (versus 300 c.p.s. full-scale for the first pass survey) resulted in most "anomalous" record being off-scale.

In evaluating the post-field follow-up data, it was felt that the airborne system proved to be highly sensitive, provided excellent resolution, and that anomaly designations, rather than being conservative, were somewhat too numerous.

Survey Results

The airborne survey results are presented on uncontrolled base-maps, compiled from the strip photomosaics, at a scale of 1" = 1,320' (Maps 76-1 to 76-4). Regional scale lithologic units and structural features (after Godfrey, Research Council of Alberta) have been superimposed for ease of interpretation and anomaly classification.

Approximately 95% of the obtained airborne radiometric anomalies on Permits 182, 183, 184, the Charles Lake area, and 20% of the anomalies on Permit 247 were examined by prospecting and ground scintillometry.

The majority of the anomalies were found to be directly related to 'patchy' radioactivity in pegmatitic phases of the granite gneiss terrain; and to the contrast caused by weakly radioactive small, granitic outcrops in muskeg areas, at the edges of overburden areas and along lake shores (i.e.
"Background" values in muskeg and overburden areas are generally in the order of 1,500 to 3,000 counts per minute - McPhar TV-1 spectrometer. An isolated granite outcrop in this environment with a background of 3,000 to 6,000 c.p.m. often yielded an anomalous airborne record of 2X background).

. ¹³

Ground follow-up results of each anomaly are expressed in counts per minute directly adjacent to the anomaly designation on maps 76-1 to 76-4 inclusive. <u>Those anomalies not investigated during the 1976 field season</u> are labelled N.E. and are summarized in the appendix.

No significant uranium mineralization was discovered during the course of this work. However, on the basis of the airborne results, geologic setting, and information obtained from previous exploration programs, six areas were deemed to warrant more detailed investigation. In decreasing order of priority, these are briefly described below:

GROUND FOLLOW-UP PROGRAM

(1) SOUTH ANDREW LAKE GRID

A 40 line mile cut-and-picket grid with 400' spaced lines, covering an area of approximately 4 square miles at the south end of Andrew Lake, was placed to further examine the <u>Carrot Lake Zone</u> and the large glaciofluvia-tile outwash sand plain masking its possible northward extension.

45 line miles of magnetometer survey, 5.7 line miles of VLF EM survey (Maps 76-6, 76-8), a soil geochem survey of approximately 2,000 samples, a Track Etch radon survey of 200 cup emplacements (Maps 76-5, 76-6), and trenching of one outcrop at the south shore of Andrew Lake were conducted over the grid area. Limited ground scintillometry and prospecting of outcrop areas were undertaken in conjunction with the geochem sampling.

ll geochemically anomalous zones and 3 linear Track Etch radon anomalies have been partially delineated and are significantly encouraging to warrant further detailed work.

- 25 -

Regional Geology

The Carrot Lake Zone and the Bl and B2 zones of the Cherry Lake Property (on strike to the south) occur at or subjacent to a regional scale break in the aeromagnetic pattern (G.S.C. maps 2903G "Andrew Lake" and 2892G "Colin Lake"). The sharp, north-south trending demarcation from an area of high magnetic relief with disrupted linear pattern west of Andrew Lake, to an area of low relief and homogenous pattern underlying the lake and eastward into Saskatchewan is postulated to represent a major zone of cataclasis or mylonitization. This break is also representative of a lithological contact of regional significance: the area west of Andrew Lake exhibits a NNE trending fabric and is comprised of a granite gneiss terrain with numerous, isoclinally infolded, narrow metasedimentary belts; whereas the area east of the lake is underlain by massive granites and the younger Waugh Lake metasedimentarymetavolcanic complex.

Both the Carrot Lake and the above mentioned Cherry Lake zones lie amongst a set of regional-scale lineaments; namely the Cherry Lake A, B and C faults, from west to east respectively. It is further hypothesized that the strong north-south mylonite zone along the west shore of Andrew Lake may have deflected the southeast trend of the Bonny Fault to a "horsetailed" southsoutheast trend, and hence that the 3 Cherry Lake faults are correlative with the Bonny Fault.

In summary, the coincidence of the Cherry Lake fault set and the regional north-south trending "mylonite zone?" in the vicinity of Carrot and Cherry Lakes are envisaged as a favorable structural setting for uranium mineralization. Radioactive occurrences in this locale may have a greater significance than elsewhere in the Permit areas.

Soil Geochem Survey Results

As expected at the outset of the field program, the soil geochem sampling technique was only moderately successful, largely as a result of the medium sampled. The paucity of locally derived glacial till and the widespread coverage of the grid area by glacio-fluviatile sands tended to mask geochemical

j,

QUARTZ MINERAL EXPLORATION PERMIT NO. 183

for replant see permit a # 2

QUARTZ MINERAL EXPLORATION PERMIT NO. 184

dispersion.

The optimal sampling medium for a reconnaissance phase, organic rich material from swamps (as well as lake bottom oozes), ultimately provided much more definitive results.

Background value for the sand plain area is less than 1 ppm uranium and values in excess of 3 ppm are considered weakly anomalous. Background value for organic material is in the order of 2 ppm and values in excess of 20 ppm are weakly anomalous.

During the first phase of the geochem lab. analysis only every third sample was submitted for assay. Upon receipt of these results, samples adjacent to and on strike with anomalous values were then assayed (approx. 450 samples have not been submitted to the lab. As most of them were taken from non-anomalous areas of the sand plain, their analysis at this time is not warranted).

Twelve geochemically anomalous zones or areas, labelled A to L, were detected. These are briefly summarized below:

(A.) This moderate to strongly anomalous zone is representative of the ground radiometric definition of the Carrot Lake Zone, and is coincidental with the trace of 4 airborne radiometric anomalies from the 1976 survey. The three narrow mineralized bands mapped in detail by HBOG Ltd. approximately define the centre of the anomaly.

The NNE trending zone exhibits good continuity over a strike length of 5,400' (sand & muskeg covered at both the northern and southern extremities) and a width of 100' to 400'. Geochem values are generally in the range of 2 to 10 ppm uranium.

- (B.) This zone lies parallel to and from 600 to 700' west of (A) and is again coincidental with 2 airborne radiometric anomalies. Good continuity, with values in the range of 2 to 23 ppm, is exhibited over a strike length of 2,500' (open to the south). The width, however, probably averages less than 100'. Most of the anomaly is located on two low, rounded hills with sparse overburden and numerous scattered outcrops.
- (C.) This anomaly is coincidental with an airborne radiometric anomaly at the southeast end of Carrot Lake. Four samples at the end of a survey line (no sampling either north or south) yielded values in the range 66 ppm to 151 ppm. Government mapping indicates that the anomaly occurs

at the south end of a NNW trending outcrop ridge comprised of very weakly foliated to massive leucocratic granite (occasionally biotitic and/or feldspar porphyroblastic). This area was not prospected during the 1976 program, nor is there any record of an evaluation of the east side of Carrot Lake by previous operators.

(D.) Again, this anomaly is only represented by a single survey line; three organic-rich samples in a low-lying muskeg area northeast of Carrot Lake yielded values of 100 to 556 ppm uranium. The values are considered too high to be accounted for by organic scavaging in a normal background area. Also, the sample sites are up drainage from the present dispersal pattern of the Carrot Lake Zone. Hence it is assumed that these values are derived from the above described outcrop ridge along the east shore of Carrot Lake. If such is the case, continuity between (c) and (D) would result in a target zone with a strike length in excess of 3,000' (this trend also appears to be on strike with Cherry Lake fault 'C', further enhancing its potential).

Somewhat surprisingly, the outcrop ridge is not expressed in the 1976 airborne radiometric record.

(E.) This is a low priority anomaly located approximately ½ mile northeast of Carrot Lake. The trend of the zone however, is approximately on strike with (C) & (D) above, thereby necessitating further evaluation. The anomaly has been detected over three survey lines with a width of less than 100' and a strike length in excess of 900' (again, open to the south). Values ranged from 2 to 20 ppm U. Sample #3189 (30 ppm) southwest of the interpreted zone is assumed to be enhanced by organic scavaging. Government mapping indicates scattered outcrop with a lithology similar to that described in (C).

A reconnaissance scintillometer traverse in this vicinity did not detect any significant radioactivity.

- (F.) This low priority anomaly consists of a single, weakly anomalous (4ppm) sample located approximately 400' east of (E) and is possibly indicative of a parallel band of radioactivity.
- (G.) This low priority anomaly is located ½ mile north of Carrot Lake in a scattered outcrop area of granite gneiss. Relatively detailed prospecting (albeit prior to receipt of the geochem data) failed to indicate any significant radioactivity in this area. The zone has fair continuity over a strike length of 1,000'. Width is probably less than 100'. The

- 29 -

geochem values ranged from 2 to 8 ppm U.

The zone accurately reflects the trace of Track Etch anomaly T-3 (later described), and as such warrants additional work.

(H.) Anomaly H is a long northwest trending feature which closely conforms to the attitude of two high outcrop ridges on the east side of the large sand plain. Both ridges are comprised of massive to very weakly foliated, leucocratic, white to grey granite which becomes gradationally more biotitic and dark pink northward. The geochem zone shows good continuity, with values in the order of 2 to 10 ppm U, over a strike length of 3,600'. The width is probably less than 100' throughout.

There are no airborne radiometric anomalies in this vicinity and reconnaissance prospecting did not detect the zone.

The intersection of the geochem anomaly and the north-northeast trending mag. high should be further sampled.

- (I.) This is a low priority zone parallel to, and from 300 to 350' east of H. The anomaly is 1,400' long (cut off at both ends by fair density sampling), less than 100' wide, and is expressed as values from 3 to 20 ppm U. Local geology is similar to that of (H).
- (J.) Once again this is a low priority anomaly 800' east of and parallel to (I). Sample values are in the order of 3 to 15 ppm U. The width is assumed to be less than 100' and the strike length probably greater than 500' (several anomalous values in the muskeg to the southeast may only represent organic enhancement).

Several additional weakly to moderately anomalous values between (H), (I) and (J) may simply represent downslope dispersal.

(K.) Anomaly (K) represents a series of six north-northwest trending weakly radioactive zones (3 to 6 times local background) in a pink, biotitic granite gneiss. Attention was first drawn to the area by two, twice background airborne radiometric anomalies.

Subsequent trenching (trench 76-1) of one of the zones indicated mineralization in the order of $0.01\% U_3 O_8$. Detailed geochem sampling was undertaken in order to determine the distance of transport into the surrounding sand plain.

A detailed spectrometer survey and additional trenching are recommended.

(L.) This is a low priority, weakly anomalous, northwest trending narrow zone

located at the northeasternmost corner of the survey area. Strike length is in excess of 500' (open at both ends).

Although the anomaly is located in an area of scattered outcrop, there is no airborne expression of radioactivity.

Track Etch Survey Results

The central portion of the large glacio-fluviatile sand plain was surveyed with 200 Track Etch cup emplacements at an average spacing of 400'. Cup burial was an an average depth of 30" and emplacement varied from 29 to 30 days. The processed values have been normalized to 30 days time integration. Cup retrieval was 100% (compared to an average survey loss of 1.5 to 2%).

A statistical analysis of the data by Mr. James C. Fisher of Terradex Corporation is appended.

Terradex's computer contoured data is less than encouraging. However, several serious shortfalls in this strictly mathematical approach to the data presentation are evident and for the purposes of this report the values have been 'profiled' instead of 'contoured'. Utilizing this technique and assuming a threshold value of 80.3 T/sq.mm, quite surprisingly 9 out of 12 of the anomalous values of the entire survey fall on a single linear trend. This 'zone' has been labelled T-1. Furthermore, by lowering the threshold to 66.8 T/sq.mm the T-1 zone is further enhanced and more clearly defined; also, 2 additional zones (T-2 and T-3) are now clearly evident, although somewhat less well delineated. This approach of lowering the threshold is well substantiated in this instance as only three values from the whole survey in excess of 66.8 fall outside of the writer's interpreted anomalies (and two of these are in the proximity of anomaly T-1 on line 92N; well within the sphere of dispersion from an intensely fractured zone or strong mineralization).

Anomaly T-1

Anomaly T-1 is a north trending zone of good to fair continuity with a strike length in excess of 7,200' (covered by Andrew Lake to the N and open to the south; two unexplained airborne radiometric anomalies west of Ilo Lake may represent a continuation of this trend). The width varies considerably, from less than 200' to greater than 800'.

- 31 -

Width and continuity variations may, in part, be related to a greater depth of overburden in the central portion of the sand plain. The strong geochemical expression on line 56N (24 to 63 ppm U) may also be related to the same feature (however, these samples were largely organic material and may be contaminated by drainage dispersion from the A geochem zone).

The most encouraging aspect of anomaly T-1 is its good correlation with the sharp regional magnetic break or mylonitic band previously described under Regional Geology.

Anomaly T-2

Anomaly T-2 is weak and somewhat speculative in its represented continuity. Over a strike length of 3,400' (crosscutting 9 survey lines) 2 moderately anomalous and 3 weakly anomalous values were obtained. Width of the zone is consistantly 100' or less. Again, both the strength & continuity of the zone may be dampened by the depth of overburden.

The apparent correlation of a strong geochem anomaly on line 40N (40 to 77.6 ppm U) is probably spurious as these values are almost certainly surface drainage contamination from the A zone.

The T-2 zone is directly on strike with both the A and K geochem zones and is conformable with a very weakly apparent magnetic low. The A/T-2/K zone is indicative of continuous radioactivity over a strike length in excess of two miles.

Anomaly T-3

As above, anomaly T-3 is both weak and ill defined. Over a strike length of 3,400' (transecting 10 survey lines) 1 definitely anomalous and 3 weakly anomalous values were obtained. Width of the zone is consistantly 100' or less.

The orientation of the correlated highs is moderately substantiated as the zone flanks a north trending, narrow, linear mag. high.

T-3 correlates well with geochem anomaly G.

- 32 -

Ground traverses on this Permit were limited to those areas trenched by McIntyre Mines Ltd. and the extreme northern portion of the property. No new data were acquired and, as such, the status of the ground remains virtually the same as at the beginning of the field season. However, two aspects of the potential of this area warrant comment.

Firstly, low to moderate grade mineralization discovered and trenched by McIntyre did not stand up to diamond drill testing. This has been previously explained by the apparent erratic nature of the mineralization and its confinement to narrow lenticular seams of maficrich material in the pegmatitic granite gneisses (as opposed to possible surface secondary enrichment). In the opinion of the writer, neither chip sampling of trenches nor small diameter drill coring will provide adequately reliable representative assays of the character of mineralization encountered in this area. It is subsequently recommended that one or more bulk samples of the best mineralized areas be taken. Contingent upon favorable results, a re-evaluation of the Cherry Lake occurrences - with a view to additional diamond drilling - should be undertaken.

Secondly, the airborne radiometric survey outlined three areas not examined in detail by McIntyre; 6 anomalies west of the Small Lake – Twin Lakes grids, 10 anomalies in the west central portion of the Permit, and 13 anomalies over a 1 square mile area immediately west of the Permit boundary. These definitely warrant coverage by prospecting and ground scintillometry.

(3.) BONNY FAULT ZONE

As previously described, this structure was chosen as a first priority target on the basis of government reported radioactive occurrences along its trace; a weakly mineralized showing at Holmes Lake (drilled by McIntyre Mines); its accompanying intense alteration, brecciation, and mylonitization; and its similarity to host settings of uranium deposits in the Beaverlodge District.

In addition to 5 closely-spaced airborne radiometric survey lines

parallel to the trend of the Bonny Fault Zone, approximately 8.5 miles of the fault were examined in detail on the ground. A baseline was cut parallel to the fault trough and 400' crosslines either cut, or blazed and flagged. The southeasternmost mile of the fault was covered with a reconnaissance magnetic survey in order to further delineate the extent of its width.

Detailed prospecting and scintillometry, a soil geochem survey of 223 samples and 30 lake bottom sediment samples in Bonny Bay (Andrew Lake) failed to encounter any significant uranium mineralization (Maps 76-11 to 76-14).

In view of the discouraging results, no further exploration of this structure is warranted at the present time.

(4) HUTTON LAKE FAULT ZONE

The airborne radiometric survey indicated previously undetected good continuity to a 1½ mile long, twice-background anomaly along the western margin of the Hutton Lake Fault (a subsidiary structure to the Bonny Fault). A 2 mile baseline with 400' spaced blazed-and-flagged crosslines was placed to cover both the airborne anomalies and the fault lineament. Detailed prospecting and scintillometry, a reconnaissance magnetic survey and a soil geochem survey of 114 samples failed to encounter any significant mineralization.

The airborne anomaly is attributed to a north trending highly discontinuous, 50 to 150' wide band of pegmatitic granite gneiss located 200' to 800' west of the fault trace. Radioactivity throughout the zone varied from two to eight times local background. Two grab samples from radioactive 'spot highs' assayed 0.003% of U308 (samples #13014 and 13015).

No further exploration of this structure is warranted at the present time.

- 34 -

(5) WAUGH LAKE AREA

Previously reported gold values associated with tourmaline and quartztourmaline veins in the Waugh Lake metasedimentary-metavolcanic complex justified a reconnaissance prospecting coverage of this environment.

No economic mineralization or significant sulphide occurrences were encountered and, in the opinion of Mr. E. P. McDonough, no additional exploration for either gold or basemetals is warranted.

The airborne radiometric survey indicated a uniformly low background over the entirety of the Waugh Lake Complex and the potential for uranium discoveries in this environment appears remote.

(6) CHARLES LAKE AREA

The 1969 Geo Photo Ltd./Texas Instruments airborne radiometric survey of the Andrew Lake District indicated numerous anomalies associated with both the Charles Lake "mylonite zones" and the "Arch Lake" and "Rasin Granites". Detailed airborne coverage of this area during the 1976 field season corroborated previous results and further delineated their extent within the confines of the survey area.

Prospecting and ground follow-up scintillometry indicated that the majority of the anomalies were associated with topographic highs and/or outcrops of massive porphyroblastic granite with radioactivity of two to four times the regional background.

A series of anomalies to 35,000 c.p.m. (McPhar TV-1) in narrow bands of biotite schist 3/4 mile east of Selwyn Lake (NE sector of the Charles Lake area) require detailed evaluation. These anomalies are further described in the appendix.

In view of the pronounced airborne radioactive expression of those portions of the "Arch Lake" and "Rasin" granites examined, additional limited rock geochemistry and prospecting is recommended. Such work should be directed toward both favorable structures transecting the granites and contacts with metasedimentary and gneissic units.

RECOMMENDED PROGRAM

Andrew Lake South Grid

In view of the highly encouraging geochem and Track Etch results, additional exploration is definitely warranted. Specifically, the evidence of good continuity of radioactivity in a favorable structural environment over a strike length of three miles from the south shore of Andrew Lake to the south end of the Carrot Lake Zone (possibly 4½ miles if continuity is indicated between the Carrot Lake Zone and the Cherry Lake "B" occurrences) is thought to be most significant. Also, the possibility of ore grade tenor is evidenced by the trench results at the north end of the Carrot Lake Zone and at Small Lake.

Prior to diamond drill testing however, further delineation of the anomalies in both a quantitative and spatial sense is required. With the orientation data provided by the Track Etch survey, detailed radon emanometry over the Track Etch anomalies (and geochem anomalies A, G and K) is suggested. Also, basal overburden geochem sampling with a Pionjar drill is recommended to further test the above obtained radon anomalies.

Several of the geochem anomalies along the east margin of the grid and west of the Carrot Lake Zone occur within areas of scattered outcrop. These may be evaluated simply by prospecting and ground scintillometry.

Permit 247

Evaluation of the Permit, as outlined in the Summary of this report, is recommended.

Charles Lake Area

A reconnaissance evaluation of the Charles Lake area and the balance of the unexamined airborne radiometric anomalies (c.f. appendix) is recommended. In some instances ground prospecting and scintillometry may prove to be sufficient to evaluate the present results. However, it is suggested that a limited (1 day helicopter time) lake bottom sediment geochem sampling program be undertaken at the beginning of the project in order that the assay results may be evaluated prior to demobilization.

- 36 -

It is estimated that the above work will require approximately 22 field days for a four man party. A proposed budget of \$30,000 is appended overpage.

. . .

Field work should commence in early May, 1977 to allow for evaluation of the results and the subsequent reduction of land holdings prior to the earliest Permit renewal date.

PROPOSED BUDGET

ANDREW LAKE PROJECT

(22 days field time, 2 days travel time)

Commencement: May 15, 1977

SALARIES: EQUIPMENT RENTAL:	<pre>Senior geologist/supervisor @ \$200/ 2 senior prospectors @ \$250/day x 2 1 junior prospectors @ \$ 80/day x 2 1 junior assistant @ \$50/day x 24 1 Differential Spectrometer \$ 3 Scintillometers @ \$150 each 1 Cobra rock drill + steel 1 Radiotelephone 1 Crone Radem VLF E.M. 1 Radon Emanometer + degassing system + ancillary equipment 1 Pionjar Overburden Drill + steel 1 Lake Sediment Sampler Camp equipment rental @ \$8/man/day_</pre>	day x 24 days 2 + 8 days trav 4 300.00 450.00 300.00 150.00 100.00 500.00 750.00 100.00 700.00	\$ 4,800.00 vel 7,500.00 1,920.00 1,200.00
		3,350.00	3,350.00
F00D:	\$10/man/day x 5 x 24		1,200.00
DISPOSABLE SUPPLIES:	powder & fuse, lumber, flagging, sa bags, sample bottles, batteries, et	mple c.	500.00
ASSAYS:	400 geochem assays @ 3.25 each 50 rock assays @ \$15.00 each	1,300.00 750.00	
		2,050.00	2,050.00
FREIGHT:	geochem & bulk sample shipment		350.00
MOBILIZATION & DEMOB	:+ travel expenses (contingent upon of Pionjar Overburden drill crew)	origin	4,000.00
CAMP MOVE:	Andrew Lake to Cherry Lake + 1 fuel	flight	700.00
HELICOPTER:	15 hours @`\$155/hr. + fuel cost		2,700.00
OFFICE EXPENSES:	stationery, drafting, telephone and	l radio calls	600.00
	SU	IB-TOTAL	30,870.00
PREPARATION OF FINAL	REPORT: 6 days x \$200/day + drafti uction costs	ng & reprod-	1,500.00
ADMINISTRATION:	0 5% of third party expenses, est.	JB-TOTAL	33,100.00-
CONTINGENCY ALLOWANC	E: Time lost due to weather, etc.	•	3,400.00
	' . т(DTAL	\$ 36,500.00

J. R. Allan, April 19,-1977

CERTIFICATE

I, JAMES RUPERT ALLAN of the City of Calgary, in the Province of Alberta, hereby certify:

- that I am a consulting geologist residing at Calgary, Alberta;
- 2.) that I graduated from the University of Alberta with a B. Sc. in Geology in 1969, and that I have been practicing my profession continuously since that date;
- 3.) that I am registered as a Professional Geologist with the Association of Professional Engineers, Geologists & Geophysicists of Alberta, and that I am a Fellow of the Geological Association of Canada;
- 4.) that I have no interest, either directly or indirectly, in the properties or securities of Tachyon Venture Management Ltd., Tormex Resources Ltd., Sackville Oils & Minerals Ltd. or Aquarius Resources Ltd., nor do I expect to receive any interest therein;
- 5.) that this report is based on a review of published and unpublished literature referred to in the bibliography of this report;
- 6.) that I personally supervised and participated in the exploration of the "Andrew Lake Project" during the periods June 19-22, July 5
 Aug. 2, and Aug. 11 Sept. 3, 1976;
- 7.) that I have prepared this report at the request of Mr. J. M. Brady, President of Tachyon Venture Management Ltd.

ΕO R. Allan, P. Geol. F.G.A.C.

Calgary, Alberta December 31, 1976

SELECTED BIBLIOGRAPHY

Allan, J. R. "1976 Exploration Proposal on the Aquarius Mines Ltd. Andrew Lake Property", March 30, 1976

______ "1976 Exploration Proposal on the Tachyon Venture Management Cherry Lake Property", June 30, 1976

- Beck, L. S. "Genesis of Uranium in the Athasbasca Region and Its Significance in Exploration" CIMM Annual Meeting, April 1969
- *Burgan, E. C. "Exploration Report Andrew Lake Project 1971" Hudson Bay Oil & Gas Co. Ltd.
- *Geiger, K. W. "Progress Report on Claims 148-153, Andrew Lake District" on behalf of Rapid River Resources Ltd., 1971
- G.S.C. Aeromagnetic map 2903G Andrew Lake, 1" = 1 mi.,1964
- Aeromagnetic map 2892G Colin Lake, 1" = 1 mi.,1964
- _____ Aeromagnetic map 2904G Charles Lake, 1" = 1 mi.,1964
- Godfrey, J. D. Bulletin 1 "Aerial Photographic Interpretation of Precambrian Structures, north of Lake Athabasca"
 - _____ Prelim. Rept. 58-3 "Geology of the Andrew Lake, North District" (Map 58-3A, 1" = ½ mile)
- Prelim. Rept. 58-4 "Mineralization in the Andrew Waugh and Johnson Lakes area, northeastern Alberta" (map 58-4, 1" = 1 mile)
 - _____ Prelim. Rept. 61-2 "Geology of the Andrew Lake, South District" (Map 61-2A, 1" = ½ mile)
 - Prelim. Rept. 62-1 "Geology of the St. Agnes Lake District" (Map 62-1A, 1" = ½ mile)
- _____ Prelim. Rept. 65-6 "Geology of the Charles Lake & Ashton Lake Districts" (Map 65-6C, 65-6D, 1" = ½ mile)
- Koster, F. "The Geology of the Thainka Lake Area (W ½) Saskatchewan" 1961, Saskatchewan Dept. of Min. Resources Report No. 61

- Koster, F. and Baadsgard, H. "On the Geology and Geochronology of the Tazin Lake Region, Northwestern Saskatchewan" Saskatchewan Precambrian Conference, Regina; October 31, 1969
- Riley, G. C. Map 12-1960 "Geology Fort Fitzgerald, Alberta 1960" 1" = 4 mi., Geological Survey of Canada
- *Thorpe, W. H. "Summary Report, Permits No. 6 and 7, Andrew Lake District" MacIntyre Mines Ltd., Feb., 1969
- Watanabe, R. Y. "Geology of the Waugh Lake Metasedimentary Complex, Northeastern Alberta"; Sept., 1961. Unpublished M. Sc. thesis, University of Alberta
- "Petrology of Cataclastic Rocks of Northeastern Alberta"; Nov., 1965. Unpublished Ph.D. thesis, University of Alberta

* Reports filed for assessment credit - Research Council of Alberta, Edmonton.

APPENDIX

, *i* '

Ľ

FIELD STAFF

J. R. Allan:	Geologist/Supervisor Alta.	
	June 19-22, July 2-31, Aug. 1, 2, 9-31, Sept. 1-3	62
E.P. McDonough:	Geologist Toronto, Ont. June 21 - Sept. 3	45
F. Hussey:	Prospector/Instrument Operator Agincourt, Ont. June 12 - Sept. 4	84
G. Beier:	Prospector/Instrument Operator Don Mills, Ont. June 12 - Sept. 4	84
J. Gledhill:	Junior Assistant Don Mills, Ont. June 19 - July 6	18
P. Gledhill:	Junior Assistant Don Mills, Ont. July 17 - Aug. 24	39
A. Atlin:	Junior Assistant Thorndale, Ont. June 19 - Aug. 11	53
M. Fisher:	Junior Assistant Toronto, Ont. July 17 - Aug. 10	25
B. McDonough:	Junior Assistant Toronto, Ont. July 22 - Aug. 24	34

TOTAL

444 man days

1976 ANDREW LAKE PROJECT

2. 2.

EXPENDITURES TO DEC. 31, 1976

(Unaudited)

PREFIELD & OFFICE EXPENSES (Including final reports)

1.)	Purchase of confidential airborne gamma-ray spectrometer survey results over the project area. Survey flown by Texas Instruments Ltd. on behalf of Geophoto Services Ltd., Calgary, in 1969.		\$2,470.95
2.)	Consulting, project planning, expediting and equipment selection:		
	i.) consulting geophysicist; airborne equipment selection & travel expenses, Toronto - Calgary & return.		
	May, 1976.	\$721.00	
	<pre>ii.) geological report; Sept., 1976</pre>	3,430.00	
	<pre>iii) consulting geologist; project planning, expediting and one supervisory trip Calgary - Andrew Lake and return; including fees, airfare, travel expenses</pre>		
	& miscellaneous: MarApr.	964.78	
	May	1,000.00	
	June	3,303.90	
	Sept.	200.00	
	OctDec.	2,800.00	
		\$8,268.68	
	iv) consulting and travel expenses, Toronto to		
	Calgary & return	494.00	
	Sub-total	12,913.68	12,913.68
3.)	Telephone, radio-telephone & postage:		
	Wollex invoice	632.79	
	Gledhill invoice	654.60	
		1,287.39	1,287.39
4.)	Printing, xeroxing, drafting film & supplies, contract drafting services:		
	Wollex invoice " pending Gledhill invoice	738.61 1,700.00	
		2,595.26	2,595.26
5.)	Photomosaic preparation, enlargements & prints	-	505.34
6.)	Airphotos, maps (geology & aeromagnetic). and		
·	geological reports	x	46.50

7.)	Administrative charges:		
	Wollex Exploration Ltd 5% of third party expen	ises	
	Gledhill Consultants Inc 10% of third party ex	-	
	penses, exclusive of equipment rental charges.		
	Wollex	\$1,775.00	4
	Gledhill	319.94	
		2,094.94	\$2,094.94
			C21 011 00
		SUB-IUIAL	<i>921,914</i> .00
MOBI	LIZATION, DEMOBILIZATION & FIELD EXPENSES		
8)	Airborne sustems rental. SAR-1 airborne gamma rau		x
0.7	spectrometer (Goldak Exploration Technology Ltd.)		
	1 month rental	\$4.750.00	
	Short term insurance	795.00	
	Helicopter installation calibration & orient-	. , , , , , , , , , , , , , , , , , , ,	
	ation survey servicing, recorder namer		
	and miscellaneous supplies	1.472.96	N
		7.017.96	7.017.91
		,,-1,.50	,,,,,,,,,,
9.)	Geophysical instruments and equipment rentals:		
	1 E.D.A. RD200 portable Radon Emanometer, 2 mo	o. 928.04	
	<i>l Crone Radem VLF-EM, 3 mo.</i>	782.07	
	1 SRAT SPP2 Scintillometer, 2 mo.	300.00	
	2 Exploranium Scintillometers x 2½ mo. each	1,075.00	
	l Exploranium DISA 400 Spectrometer, 1 mo.	856.00	
	l Scintrex GIS-2 Spectrometer, 3 mo.	900.00	
	l Scintrex Scintillometer, 1½ mo.	300.00	
	2 Canadian Marconi radio-telephones, 3 mo.	600.00	
	Antennaes, servicing & installation of		
	4 frequency crystals	538.42	
	4 tents	200.00	
	l Atlas Copco 'Cobra' rock drill, l mo.	200.00	
	l Ponar grab sampler & l Flagen core sampler		
	<pre>(both for lake-bottom sediment sampling)</pre>	200.00	
		6,879.53	6,879.5
10.)	Camp equipment, tools, lumber, disposable supplie	S	
•	Wollex Exploration invoice	1,302.91	
	Gledhill Consultants invoice	814.21	
		2,117.12	2,117.12
11.)	Travel expenses, room & board, airfare, etc.		
/	Toronto - Andrew Lake & return for Gledbill		
	crew & camp equipment Calgary - Andrew I		
	f return twice J R Allen Air freight on		
	equinment & geochem samples Travel expenses		
	to Ft Smith & Uranium City on ownediting		
	Sackville Oil & Minerals	50 A5	
	T Cledhill invoices) 967 NG	
	Nolley Fyplocotion invoices	2,307.00	
	wollex Exploration involces	1,297.95	
		4,324.46	4,324.46

	· · ·		
			[*]
			``
	Andrew Lake Lodge basecamp		\$7,741.00
	13.) Food & disposable supplies, Andrew Lake flycan	np	2,560.67
	14.) Boats, outboard motors & gas; rental from Andr	rew Lake Lodge	2,390.00
	15.) Fuel, aviation gas, boat gas, naphtha & oil		1,834.57
	<pre>16.) Flying costs: Apex Helicopters; Bell 206B (airborne survey pickup and placement) Can Air; Canso - fuel drum return to Uranium City & 1 emergency trip to Uranium City Fort Smith Air Services; Cessna 185 & Turbo- Beaver - mob., demob., service flights & crew placement & pickup during radiometri Survey ground follow-up</pre>	§ & crew 16,390.00 467.00	
	Survey ground 10110w- u p Norcanair Ltd.; Twin Otter, Single Otter & Cessna 185 - fuel placement from Uranium	6,376.20	,
	City, service flights	2,432.00 25,665.20	25,665.20
	17.) Salaries; field & travel time geologist/project supervisor geologist instrument operator/prospector junior assistant	9,425.00 3,633.10 8,350.00 8,350.00	
		<u>8,243.75</u> 38,001.85	38,001.85
.4	18.) Assays: Loring Labs, Calgary; 981 soil geochem sampl 15 rock samples Chemes Labs, Calgary; 943 soil geochem sampl	es es	6,292.80
	19.) Track Etch Cups, Terradex Corp. 200 cups x \$13.93 each		2.786.00
	-		
		SUB-TOTAL	\$107,611.16
		TOTAL	\$129,525.22
	``````````````````````````````````````		· · ·

## GOLDAK EXPLORATION TECHNOLOGY LTD.

#### SAR-1 SYSTEM FOR AIRBORNE RADIOMETRY

The SAR-1 incorporates a large 13" dia. by 6" thick Harshaw Na(T1)I detector for a total crystal volume of 796 cubic inches. The electronics are all Ortec nuclear modules - these equal or exceed the specifications of most airborne systems in use today. The sum of all drifts and nonlinearities is less than the width of the recorder pen line. All modules are field replaceable in a few seconds.

The SAR-1 is a two-channel system, each channel being settable from 10 KeV to 10 MeV. For the purposes of this survey, the two channels employed were Channel 1 - total count (greater than 0.25 MeV) and Channel 2 - uranium + thorium (1.62 MeV - 3.00 MeV).

Dual linear/logarithmic analog ratemeters are provided with both background suppression from 0 to 100% and an audible alarm with adjustable threshold and volume. A high-quality Brush 222 recorder records the two channels of analog data. An inverter powers the electronics from the 24-28 vdc aircraft battery.

The entire system was conveniently mounted inside a Bell 206 B Jet Ranger float-equipped helicopter.

<u>Crystal Detector</u> - 13" diameter, 6" thick Harshaw NaI(T1) crystal viewed by four selected RCA 8055 5" diameter photomultipliers with parallel voltage divider harness. Detector set in polyethylene foam thermal insulation. Weight 146 lbs.

<u>Preamplifier</u> - Charge sensitive, input capacity 0, 100, 200 or 500 pf. Nonlinearity better than 0.25%.

<u>Amplifier</u> - Active filter pole-zero cancellation shaping type amplifier with variable gain (1 to 640) and variable shaping characteristics. Unipolar or bipolar output. Linearity <u>+0.15%</u>, temperature stability 0.02%/^OC, operating temperature 0 to 50^oC.

<u>Single-Channel Analyzer</u>-Accepts uni or bi-polar pulses from amplifier, 0 to 10V. Upper and lower energy discrimination levels adjustable 0 to 10V with 10 turn potentiometer. Less than 10 millivolts width variation over linear 0 to 10V range. Nonlinearity less than <u>+</u> 0.25%. Temperature stability 0.01%. Temperature range 0 to 50°C. <u>Integral Discriminator</u>- Accepts uni or bi-polar pulses from amplifier. Energy discrimination level adjustable 0 to 10V by 10 turn potentiometer, 0.1% resettability. Stability better than 1.25 mv/°C. Nonlinearity better than 0.25% over entire range. Operating temperature 0 to 50°C.

Log/Lin Ratemeter -

Eleven linear ranges from 10 to  $10^6$  counts/sec. full scale. Temperature stability better than  $\pm 0.05\%/^{\circ}C$ in range 0 to  $50^{\circ}C$ . Output nonlinearity less than  $\pm 0.15\%$  of full scale. One logarithmic 5-decade range from  $10^1$  to  $10^6$  cps. Analog output 0 to 10V, 100 ohms. Zero-suppression control enables subtraction of background. Audible output can be set for threshold and volume.

High Voltage Supply -

Output 0 to 3000 V, 10 ma. Regulation better than 0.0025%. Stability better than 0.03% per 24 hours. Ripple less than 10 mv peak to peak. Resettability better than 0.1%. Temperature stability better than 50 parts per million per  $^{\circ}C$ .

<u>Weight</u> -

Recorder -

Weight of entire electronics package approximately 76 lbs.

Brush 222 Battery Powered (12 to 30 vdc from helicopter battery). Two channel recorder with pressure-ink system. Two additional event markers. Nonlinearity  $\pm 0.5\%$  full scale. Chart speeds 1, 2, 5, 10, 25, 50 mm/sec. by push button selector. Zero and gain instability better than  $\pm 0.05\%$  per 8 hours. Weight 26 lbs.

Inverter -

Topaz GZ-250, 250 watt sine wave inverter, 1%frequency stability,  $-20^{\circ}C$  to  $+50^{\circ}C$  operating range. Inputs reverse polarity protected and outputs protected against overload and short circuit. Output regulation + 2%. Weight 39 lbs. Airborne Anomalies Not Field Examined During 1976 Field Season

Sheet	Anomaly No.	Location	Priority
76-1	28F-A	k mi W of Morris Lake Sask	Third
, 0 1	28W-B	"	"
	20W-R	1 mi WNW of Ungor Lake Sack	"
	67E-B	I MIL WINN OF Unger Lake, Sask.	,,
	07E-B	SE corner of CBS-5407	
	85W-C		
	862-0		
	8/W-B,C.D		
	8E-D		
	87E-A,D		
	8W-C	South end of Permit 182	
	9W-A	1½ to 3 mi. W. of	First
	9E-B	Cherry Lake	
	89W-B		
	10W-C		
	10E-A		
	28W-B,C	South	
	11W-A	え mi. N. of Spider Lake, Permit 182	First
	70W-C	· · · · · · · · · · · · · · · · · · ·	"
	7 <i>E-</i> A	n n .	"
	12W-B	な mi. W. of Ilo Lake, Permit 182	First
	7 <i>0</i> W-B	" Permit 247	"
	8E-C	1월 mi. S.E. of Pans Lake, Permit 184	Second
	12 <b>W-</b> C	え mi. N.E. of Pans Lake, open ground	"
	15 <b>W-</b> D	l mi. N. of Pans Lake, open ground	"
	66E-A	1¼ mi. N.E. of Carrot Lake, Permit 182	First
	68E-C	3/4 mi. ENE " "	. 11
	14W-B	* mi. ENE " "	. 11
		 / mi. S.E. " Permit 247	"
	39W-A	3/4 mi. NW of Flagon Lake open ground	Third
	80F-B	k mi W of W shore of Andrew Lake	Second
	008-0	along S.E. boundary of Permit 183	Secona

i

`.^{''}

Terradex Corporation 1900 Olympic Boulevard Walnut Creek, California 94596 Phone: (415) 938-2545 Telex: 33-7793

October 18, 1976

J. R. Allan Wollex Exploration Ltd. Ste 810, Norcen Tower 715 - 5th Avenue S.W. Calgary, Alberta T2P On2 Canada

Dear Mr. Allan,

I am enclosing a set of final tabulated data from your recent 200 cup Track Etch survey of the Andrew Lake Area. The Track Etch readings are reported in units of tracks per square millimeter (T/sq.mm) and they are normalized to equivalent 30 day exposures. The data have been tabulated in two different ways for easy use; firstly by ascending Track Etch readings and secondly, by ascending serial numbers. The readings ranged from 3.1 to 143.5 T/sq.mm and the mean of the background distribution for the area was 38.5 T/sq.mm. The standard deviation of the background mean was 19.8 T/sq.mm or 52%.

The background mean and its standard deviation are related to shallow mineralization of uranium at ppm levels. The value is slightly high compared to the range of other values for your area. High ranking points may be expressed in terms of "Z", the number of standard deviations above background. Rudimentary statistics imply that values with Z greater than three have a very low probability of belonging to the background distribution and hence are anomalous. The ranges of "Z" for the high ranking points in your survey are shown below together with the more conventional ratio to background.

Range of Z	<u># of Points</u>	Range of T/sq.mm	Range of Ratio to Background
2 - 3	7	80.3 - 97.0	2.1 - 2.5
3 - 4	3	100.2 - 115.8	2.6 - 3.0
3 - 4	1	119.6	3.1
over 5	1	143.5	3.7

It is highly improbable that points with Z greater than 3 are part of the background distribution; hence they are almost certainly Page 2

Wollex Exploration Ltd. October 18, 1976

anomalous. In this survey 5 points have a Z greater than 3, or 2.5% of the total. This, in our experience, is a fairly low percentage and is indicative of a slight potential for mineralization, unless there occurs a strong spatial clustering of high ranking points.

The Track Etch radon contour map was computer generated using a 6 point weighted average computer smoothing routine and it was drawn with 10 T/sq.mm contour intervals. With this technique you may find some higher contour intervals between the actual data points but this is usual since the computer attempts to interpolate intermediate values based on the general average values measured in the area. Short incomplete contour lines may appear on the map without identifying numbers but their values can usually be determined from adjacent contour values. The contour map shows small +'s at the locations where the field cups were located. This map was drawn to the same scale as the field location map you supplied us so it can be used by overlaying on your base map.

The map shows one good multi-point anomaly centered around cup number 18212. Support for this high point may come from cups 18180, 18214 and possibly a trend to the southeast including cups 18270 and 18274. A lesser multipoint anomaly may occur in the area of cups 18340 and 18350 with support from 18336.

It has been a pleasure to work with you on this program and we look forward to serving you in the future.

Sincerely,

(James C. Fisher Senior Geologist

JCF/kem Enclosures

1.1.7.1

これのことができたが、たいとうとうとう

	WOLLEX ANDRE	W LAKE						
CUP	DETECTOR				•		•	
SERIAL	KEHDING (TYCO MM )				DOTO			
NOPEER	y 1730, mm, 7	FIELU	NULES	HHU	DHIH			
~~~~~~~						·		
18151	45 649	1.24N	24F					
18152	31 519	L24N	20E					
18153	72 606	L24N	16E					
18154.	28, 259	L24N	12E					
18155.	33, 693	L24N	8E					
18156.	67.386	L24N	4E					
18157.	44, 562	L24N	BL					
18158.	36, 954	L28N	214					
18159.	20. 651	L28N	2E					
18160.	33, 693	L28N	6E			•		
18161.	22, 824	L28N	10E					
18162.	46, 736	L28N	14E					
18163.	30, 433 -	L28N	18E					
.181,64.	41.301	L28N	22E					
18165.	33.693	L32N	20E					
18166.	19.564	LIZN	16E					
10107.	27.346 17.700	LIZON	125					
10100.	17.370 27.979	LOZN	OE AE					
19165.	63,039 10,011	U ZON	21.1					·
18171	29 346	L ROM	2F					
18172	24, 998	L32N	6E					
18173.	31, 519	L32N	10E					
18174.	44, 562	LB6N	8E					
18175.	35, 867	L32W	48M				•	
18176.	24, 998	L32W	4414					
18177.	33, 693	L32W	40W					
18178.	52.170	L32W	36W					
18179.	41.301	L32W	32W					
18189.	119.556	LS2W	280					•
18181.	44, 562	LISZW	24M					
18182.	40, 707 02 005	LIDAN	ZZM OCU					
10103.	20.000	LOON	20M 20U					
18185	56 518	L REN	30M R4U					
18186.	29, 346	LIGN	380					•
18187.	65. 212	L36N	42W					
18188.	15, 216	LBEN	46M					
18189.	51.083	L40N	44W					
18190.	34, 780	L40N	40M					
18191.	31, 519	L40N	36N					
18192.	68. 473	L40N	32W					
18193.	57.604	L40N	28W					
18194.	22, 824	L40N	24M 2011					
18195.	31.519 22.245	L40N	2년M 4.6년					
18196. 19197	ンビ、ンサン マランオフィ	LHUN Lagn	EN TOM					
18198	30.476 78 606	140N	2M 2M					

CUP	DETECTOR (									
SERIAL	REHUING		Notes	ON IS	вото					
NUMBER	CTZ50, PP0, 2	FIELU	NUTES	HND		 		_		
40400	17 779	1 40N	2E							
10177.	11.130 00.747	LAGN	EE EE							
10200.	00.372 15 651	LAGN	0E 10E							
10201.	10.001 47.927	1 4 GN	14F							
10202.	73.023 79 <i>21</i> 9	LAAN	165							
10285. 40004	32.642 77 560	1 관객에	10E							
10204. 10005	21, 302 21, 776	1 <u>4</u> 4N	SE							
18200. 1920s	21 911	1 4 4 N	4F							•
10200.	17 778	1 4 4 M	BI							
10201.	77 560	1.4.4.14	416							*
10200.	51 127	1 3 3 1	еы							
10202.	57 797	1 4 4 1	1.211							
10210.	57.307 54 744	1 2 2 1	226							
10211.	147 459	1 4 4 M	265							
19212.	E5 212	1441	2014							
19213.	95 E45	1 4 4 M	зон R4Ы							
19215	54 744	144N	RBM							
10210.	46 202	L T T G	20M							
10210.	10, 303 26, 085	1 4 4 N	4en 1en							
10210	.20.000 11 956	1 ddN	500							
10210.	72 745	LASN	52M							
10217.	17 564	LAGN	495 495				•			
10220.	79 549	L 4 QM	40M 440							
10221.	39.049 49.040	1 4 9 N	406							
10222.	42.040 59 474	1 49N	76M ZEM							
10223.	77 078	1 49N	20H 72U							
19225	29 215	1.48N	280							
18226	44 866	1.48N	246							
18227	49 040	1.48N	180							
18228	66. 778	L48N	100							
18229	52 170	L48N	бW							
18230	43.823	L48N	18E							
18231	41. 301	L48N	214							
18232.	14. 129	L48N	2E							
18233.	7.608	L48N	6E							
18234.	34, 780	L48N	14E				•			
18235.	52.170	L52N	12E							
18236.	13, 564	L52N	8E							
18237.	19.825	L52N	4E							
18238.	40, 693	L52N	BL				•			
18239.	47, 996	L52N	4W							
18240.	44, 866	L52N	8M							
18241.	35, 476	L52N	120							
18242.	47, 996	L52N	16W						4	
18243.	36, 519	L52N	20W							
18244.	59, 474	L52N	26W							
18245.	73.038	L52N	BOM							
18246.	54, 257	L52N	34W							
18247.	52, 170	L52N	38W							
18248.	30, 259 j	L52N	4214							

WOLLEX ANDREW LAKE

1111       1111       1111         1111       1111       1111         1111       1111       1111         1111       1111       1111         1111       1111       1111         1111       1111       1111         1111       1111       1111         1111       1111       1111         1111       1111       1111         1111       1111       1111         1111       1111       1111         1111       1111       1111         1111       1111       11111         1111       1111       1111         1111       1111       1111         1111       1111       11111         1111       1111       11111         1111       1111       11111         1111       11111       11111         1111       1111       11111         1111       11111       11111         1111       11111       11111         1111       11111       11111         1111       11111       11111         1111       11111       11111         1111       111	NUMPER	READING (T2S0_MM_)	FIFID	NOTES	AND D	ате		·	
224.925.042L52N $46W$ 225019.564L52N $56W$ 225150.083L56N $18W$ 225227.128L56N $14W$ 225327.128L56N $14W$ 225433.389L56N $6W$ 225629.215L56N $6E$ 225744.866L56N $6E$ 225828.172L56N $14E$ 226030.259L66N $14E$ 226131.302L66N $12E$ 226227.128L66N $8E$ 226337.562L66N $8W$ 226445.910L66N $8W$ 226555.300L66N $8W$ 226635.476L66N $8W$ 226727.128L66N $8W$ 22689.391L66N $8W$ 226936.519L64N $20W$ 2270100.166L66N $24W$ 227126.685L64N $18W$ 227239.649L64N22749.966L64N227529.215L64N228069.908L64N228138.606L68N228232.566L68N228338.606L68N228449.940228558.430228449.940228528.430238446.942385519238446.942385519238461238626.91<								 	
2250       19, 564       LS2N       500         3251       50       083       LS6N       140         3252       27, 128       LS6N       140         3253       27, 128       LS6N       140         3254       33       389       LS6N       60         3255       45, 910       LS6N       20         3257       .44, 866       LS6N       2E         3257       .44, 866       LS6N       2E         3258       .28, 172       LS6N       14E         3260       30, 259       L60N       14E         3261       31, 302       L60N       12E         3262, 27, 128       L60N       8E         3263       37, 562       L60N       8U         3264       45, 910       L60N       8U         3265       53, 90       L60N       8U         3267       27, 128       L60N       8U         3267       27, 128       L60N       8U         3268       9, 391       L60N       12U         3269       36, 519       L64N       2EU         3272       29, 649       L64N       2EU      3	18249.	25, 042	L52N	46M					
2251.       50       082       L56N       184         2252.       27.       128       L56N       144         2253.       27.       128       L56N       164         2254.       33.       389       L56N       64         2254.       33.       389       L56N       64         2257.       44.       866       L56N       26         2257.       44.       866       L56N       16E         2258.       28.       172       L56N       16E         2260.       30.       259       L60N       14E         2262.       27.       128       L60N       14E         2263.       37.       562       L60N       8E         2264.       45.       910       L60N       44         2265.       55.       200       L60N       84         2266.       37.       47.       L60N       84         2267.       100.       166       L60N       24H         2270.       100.       166       L60N       24H         2271.       26.       64N       26H       27F         27.       39.	18250.	19.564	L52N	50W					
2252.       27. 128       L56N       14W         2253.       27. 128       L56N       16W         2254.       33. 399       L56N       6W         2255.       45. 910       L56N       2W         2257.       44. 866       L56N       6E         2258.       28. 172       L56N       14E         2260.       30. 259       L60N       14E         2261.       31. 302       L60N       12E         2262.       27. 128       L60N       9E         2263.       37. 562       L60N       4E         2264.       45. 910       L60N       9         2265.       55. 300       L60N       4H         2267.       27. 128       L60N       16H         2268.       9. 391       L60N       16H         2269.       36. 519       L64N       20H         2271.       26. 055       L64N       20H         2272.       29. 649       L64N       22H         2273.       36. 519       L64N       22H         2274.       93. 906       L64N       18W         2275.       29. 215       L64N       24H	18251.	50,083	L56N	180					
223.       27.       128       L56A       100         2254.       33       329       L56A       214         2255.       45.       910       L56A       214         2257.       44.       866       L56A       6E         2258.       28.       172       L56A       16E         2259.       67.       821       L56A       16E         2260.       30.       259       L60A       16E         2261.       31.       302       L60A       4E         2262.       27.       128       L60A       4E         2264.       45.       910       L60A       4E         2265.       55.       300       L60A       4H         2266.       37.       752       L60A       8H         2267.       128       L60A       12H         2268.       9.391       L60A       20H         2272.       39.645       L64A       20H         2271.       26.085       L64A       20H         2272.       39.645       L64A       22H         2274.       93.906       L64A       22H         2275.	18252.	27.128	L56N	1414					
2257       325       325       325         2256       23       215       L56N       2E         2257       24       266       L56N       6E         2258       221       L56N       18E         2259       67       821       L56N       18E         2260       30       259       L60N       12E         2262       27       122       L60N       12E         2262       27       122       L60N       8E         2263       37       562       L60N       4E         2264       45       910       L60N       8         2265       55       306       L60N       4H         2266       3       75       L60N       12H         2268       9       391       L60N       20H         2271       26       065       L64N       20H         2272       36       519       L64N       22H         2272       36       519       L64N       22H         2272       36       L64N       22H         2274       93       906       L64N       6H         2277	18203. 19254	27.128 77.709	LOBN	10M Chi					•
2256       29       215       L56N       2E         2257       44       866       L56N       6E         2258       28       172       L56N       14E         2260       30       259       L60N       16E         2261       13       302       L60N       12E         2262       27       128       L60N       8E         2263       37       562       L60N       4E         2264       45       916       L60N       4E         2264       53       306       L60N       4H         2264       53       306       L60N       4H         2266       35       376       L60N       12W         2268       9       391       L60N       20W         2269       36       519       L64N       21W         2272       39       L64N       22W         2272       39       L64N       22W         2275       29       215       L64N       18W         2277       36       519       L64N       18W         2277       45       910       L64N       22W	18255.	45,910	LSEN	2W					
2257.       44.966       L56N       10E         2258.       28.172       L56N       14E         2260.       30.259       L60N       14E         2261.       31.302       L60N       12E         2262.       27.128       L60N       8E         2263.       37.562       L60N       4E         2264.       45.910       L60N       8E         2265.       55.300       L60N       4H         2266.       35.476       L60N       8H         2267.       27.128       L60N       12H         2268.       9.391       L60N       20H         2270.       100.166       L60N       20H         2272.       39.649       L64N       20H         2272.       39.649       L64N       22H         2273.36       519       L64N       12H         2274.93       906       L64N       18H         2275.29       215       L64N       16H         2277.45       910       L64N       6H         2277.31       30.2       L64N       2E         2280.69       908       L64N       2E         2281.46<	18256.	29, 215	L56N	2E					
2258       28       172       L55N       106         3259       67       821       L56N       14E         3260       30       259       L60N       12E         3261       31       302       L60N       12E         3262       27       128       L60N       4E         3263       37       562       L60N       4E         3264       45       910       L60N       0         3265       55       300       L60N       4H         3266       25       45       16N       18H         3267       27       128       L60N       16H         3268       9       391       L60N       20H         3267       27       128       L60N       20H         3267       27       128       L60N       20H         3267       26       160       20H       22H         3268       35       19       L64N       22H         3272       29       215       L64H       18H         3275       29       215       L64H       18H         3278       30       259       L64H	18257.	.44, 866	L56N	6E					
3239       57. 821       L564       146         3260       30.259       L60N       12E         3261       31.302       L60N       8E         3263       37.562       L60N       4E         3264       45.910       L60N       0         3265       55.300       L60N       4H         3266       35.476       L60N       8H         3267       27.128       L60N       12H         3268       9.391       L60N       12H         3269       36.519       L60N       24H         3270       100.166       L60N       24H         3271       26.085       L64N       26H         3272       39.649       L64N       22H         3273       36.519       L64N       22H         3274       93.906       L64N       18H         3275       29.215       L64N       18H         3275       29.215       L64N       18H         3278       30.259       L64N       28H         3279       31.302       L64N       28H         3281       46.953       L64N       48H         3281	18258.	28, 172	L56N	10E					
2261.       31.302       L60N       13L         2262.       27.128       L60N       8E         2263.       37.562       L60N       4E         2264.       45.910       L60N       6         3265.       55.300       L60N       4H         3266.       35.476       L60N       8H         3267.       27.128       L60N       12H         3268.       9.391       L60N       16H         3269.       36.519       L60N       2H         3270.       100.166       L60N       2H         3271.       26.055       L64N       2H         3272.       39.649       L64N       2H         3274.       39.6519       L64N       2H         3275.       29.215       L64N       18H         3277.       30.259       L64N       2H         3278.       30.259       L64N       2H         3280.       69.908       L64N       2E         3281.       46.953       L64N       2E         3282.       32.345       L68N       8H         3284.       49.040       L68N       6H         3287.	18239. 19259	67,821 78 259	LOGN	14E 165					
2262.       27       128       L60N       SE         2263.       37       552       L60N       4E         2264.       45       918       L60N       0         2265.       55.       300       L60N       4H         2366.       35.       476       L60N       8H         2367.       27       128       L60N       12H         2368.       9.391       L60N       20H         2369.       36.519       L60N       20H         2371.       26.085       L64N       20H         2372.       39.649       L64N       22H         2373.       36.519       L64N       22H         2374.       93.906       L64N       18H         2375.       29.215       L64N       14H         2376.       37.552       L64N       10H         2377.       45.910       L64N       6H         2377.       45.910       L64N       2E         2381.       46.953       L64N       2E         2382.       32.345       L68N       8E         2383.       38.606       L68N       4H         2384.	18261.	30.202	LEGN	10E 12E					
3263 $37, 562$ $L60N$ $4E$ $3264$ $45, 910$ $L60N$ $9$ $3265$ $55, 300$ $L60N$ $8W$ $3266$ $35, 476$ $L60N$ $8W$ $3267$ $27, 123$ $L60N$ $12W$ $3269$ $36, 519$ $L60N$ $20W$ $3269$ $36, 519$ $L60N$ $20W$ $3272$ $36, 649$ $L64N$ $20W$ $3272$ $36, 649$ $L64N$ $20W$ $3272$ $36, 649$ $L64N$ $22W$ $3272$ $36, 6519$ $L64N$ $22W$ $3272$ $39, 66$ $L64N$ $18W$ $3275$ $29, 215$ $L64N$ $14W$ $3277$ $45, 910$ $L64N$ $2E$ $3280$ $69, 903$ $L64N$ $2E$ $3281$ $46, 953$ $L64N$ $4E$ $3282$ $32, 345$ $L68N$ $8E$ $3284$ $49, 040$ $L68N$ $6W$ $3286$ $519$ $L68N$ <	18262.	27. 128	LEØN	ŞE					
$\begin{array}{llllllllllllllllllllllllllllllllllll$	18263.	37, 562	L60N	4E					
2265. $35.300$ $160N$ $4W$ $2266.$ $25.476$ $160N$ $12W$ $2267.$ $27.128$ $160N$ $16W$ $2269.$ $36.519$ $160N$ $20W$ $2270.$ $100.166$ $166N$ $24W$ $2271.$ $26.085$ $164N$ $26W$ $2272.$ $39.649$ $164N$ $26W$ $2274.$ $93.906$ $164N$ $26W$ $2274.$ $93.906$ $164N$ $28W$ $2275.$ $29.215$ $164N$ $18W$ $2275.$ $29.215$ $164N$ $18W$ $2276.$ $37.562$ $164N$ $18W$ $2279.$ $21.302$ $164N$ $2W$ $3279.$ $31.302$ $164N$ $2E$ $2280.$ $69.908$ $164N$ $2E$ $2282.$ $32.455$ $164N$ $4E$ $2282.$ $32.455$ $168N$ $8E$ $2285.$ $58.430$ $168N$ $4W$ $2286.$ $29.215$ $168N$ $8W$ $2290.$ $29.215$ $168N$ $28W$ $2290.$ $29.215$ $168N$ $28W$ $2292.$ $43.823$ $162N$	18264.	45.910	L60N	Ø					
2267.       27.128       L60N       12W         3268.       9.391       L60N       16W         3269.       36.519       L60N       20W         3270.       100.166       L60N       24W         3271.       26.085       L64N       30W         3272.       39.649       L64N       26W         3273.       36.519       L64N       22W         3274.       93.906       L64N       18W         3275.       29.215       L64N       18W         3277.       45.910       L64N       6W         3277.       45.910       L64N       2E         3280.       69.908       L64N       2E         3280.       69.908       L64N       2E         3281.       46.953       L64N       10E         3282.       32.345       L68N       8E         3283.       38.606       L68N       4W         3284.       49.040       L68N       6         3285.       58.430       L68N       16W         3286.       29.215       L68N       16W         3289.       62.604       L68N       28W         329	18260. 19266	- 00.300 75.476	LEUN	4м ЭМ		•			
32689 $391$ L60N $164$ $3269$ $36$ $519$ L60N $204$ $3271$ $26$ $085$ L64N $304$ $3271$ $26$ $085$ L64N $304$ $3272$ $39$ $649$ L64N $224$ $3273$ $36$ $519$ L64N $224$ $3274$ $93$ $906$ L64N $184$ $3275$ $29$ $215$ L64N $184$ $3275$ $29$ $215$ L64N $104$ $3277$ $45$ $910$ L64N $64$ $3277$ $45$ $910$ L64N $244$ $3278$ $30$ $259$ L64N $244$ $3284$ $46$ $953$ L64N $228$ $3283$ $38$ $606$ L68N $48$ $3284$ $49$ $040$ L68N $6$ $3285$ $58$ $430$ L68N $444$ $3286$ $29$ $215$ L68N $814$ $3286$ $29$ $215$ L68N $814$ $3287$ $26$ $625$ L68N $1644$ $3286$ $29$ $215$ L68N $2844$ $3289$ $62$ $604$ L68N $2844$ $3290$ $29$ $215$ L68N $32444$ <td< td=""><td>18267.</td><td>27. 128</td><td>LEON</td><td>12W</td><td></td><td></td><td></td><td></td><td></td></td<>	18267.	27. 128	LEON	12W					
3259 $36, 519$ $160N$ $20N$ $3270$ $100.166$ $166N$ $24N$ $3271$ $26, 085$ $164N$ $30N$ $3272$ $39, 649$ $164N$ $26N$ $3273$ $36, 519$ $164N$ $22N$ $3274$ $93, 906$ $164N$ $22N$ $3274$ $93, 906$ $164N$ $18N$ $3275$ $29, 215$ $164N$ $14N$ $3276$ $37, 562$ $164N$ $16N$ $3277$ $35, 910$ $164N$ $6N$ $3277$ $31, 302$ $164N$ $2E$ $3278$ $30, 259$ $164N$ $2E$ $3280, 69, 908$ $164N$ $2E$ $3281, 46, 953$ $164N$ $6E$ $3283, 38, 606$ $168N$ $4E$ $3284, 49, 040$ $168N$ $0$ $3285, 58, 430$ $168N$ $4N$ $3289, 62, 604$ $168N$ $16N$ $3289, 62, 604$ $168N$ $20N$ $3290, 29, 215$ $168N$ $28N$ $3290, 29, 215$ $168N$ $28N$ $3291, 9, 391$ $168N$ $28N$ $3292, 43, 823$ $168N$ $32N$ $3293, 28, 172$ $172N$ $28N$ $3294, 14, 608$ $172N$ $28N$ $3295, 32, 345$ $172N$ $3295, 32, 345$ $172N$ $3295, 32, 345$ $172N$ $3295, 32, 345$ $172N$ $3296, 31, 302$ $172N$ $3297, 18, 781$ $172N$	- 18268.	9, 391	LEON	16M					
3270 $100.166$ $164N$ $24N$ $3271$ $26.085$ $164N$ $30N$ $3272$ $39.649$ $164N$ $22N$ $3273$ $36.519$ $164N$ $22N$ $3274$ $93.906$ $164N$ $18N$ $3275$ $29.215$ $164N$ $18N$ $3276$ $37.562$ $164N$ $10N$ $3277$ $45.910$ $164N$ $6N$ $3277$ $39.0259$ $164N$ $2W$ $3277$ $30.259$ $164N$ $2W$ $3277$ $30.259$ $164N$ $2W$ $3277$ $30.259$ $164N$ $2W$ $3278$ $30.259$ $164N$ $2E$ $3281$ $46.953$ $164N$ $8E$ $3282$ $38.606$ $168N$ $4E$ $3284$ $49.040$ $168N$ $4E$ $3287$ $26.085$ $168N$ $8W$ $3287$ $26.085$ $168N$ $8W$ $3287$ $26.604$ $168N$ $28W$	18269.	36. 519	LEØN	200					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	18270.		LEON	24M					
2273.       36.519       L64N       22N         3274.       93.906       L64N       18W         3275.       29.215       L64N       14W         3276.       37.562       L64N       16W         3277.       45.910       L64N       6W         3278.       30.259       L64N       2W         3279.       31.302       L64N       2E         3280.       69.908       L64N       4E         3281.       46.953       L64N       10E         3282.       32.345       L68N       8E         3283.       38.606       L68N       4E         3284.       49.040       L68N       4H         3285.       58.430       L68N       4H         3286.       29.215       L68N       8W         3287.       26.085       L68N       16W         3288.       36.519       L68N       28W         3290.       29.215       L68N       28W         3291.       L68N       28W       3291         3292.       43.823       L68N       32W         3293.       28.172       L72N       30W         3293.<	18271. 18272	26.080	LEAN LEAN	26M 26M					
3274.       93.906       L64N       18W         3275.       29.215       L64N       14W         3276.       37.562       L64N       10W         3277.       45.910       L64N       6W         3278.       30.259       L64N       2W         3279.       31.302       L64N       2E         3280.       69.903       L64N       6E         3281.       46.953       L64N       10E         3282.       32.345       L68N       8E         3283.       38.606       L68N       4E         3284.       49.040       L68N       0         3285.       58.430       L68N       4U         3287.       26.085       L68N       4U         3288.       36.519       L68N       12W         3289.       62.604       L68N       20W         3289.       62.604       L68N       20W         3290.       29.215       L68N       28W         3291.       9.391       L68N       32W         3292.       43.823       L68N       32W         3293.       28.172       L72N       30W         3293.<	18273.	36. 519	L64N	22W					
$\begin{array}{llllllllllllllllllllllllllllllllllll$	18274.	93, 906	L64N	180					
$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	18275.	29, 215	L64N	14W					
3277. $43.518$ $1.64N$ $6W$ $3278.$ $30.259$ $1.64N$ $2W$ $3279.$ $31.302$ $1.64N$ $2E$ $3280.$ $69.908$ $1.64N$ $2E$ $3281.$ $46.953$ $1.64N$ $10E$ $3282.$ $32.345$ $1.68N$ $8E$ $3283.$ $38.606$ $1.68N$ $4E$ $3284.$ $49.040$ $1.68N$ $4W$ $3285.$ $58.430$ $1.68N$ $4W$ $3286.$ $29.215$ $1.68N$ $8W$ $3287.$ $26.085$ $1.68N$ $12W$ $3288.$ $36.519$ $1.68N$ $28W$ $3290.$ $29.215$ $1.68N$ $28W$ $3290.$ $29.215$ $1.68N$ $28W$ $3292.$ $43.823$ $1.68N$ $28W$ $3293.$ $28.172$ $1.28W$ $3293.$ $3294.$ $14.608$ $1.72N$ $30W$ $3295.$ $32.345$ $1.72N$ $22W$ $3296.$ $31.302$	18276.	37.562	L64N LCAN	100 GU					
3279.       31.302       L64N       2E         3280.       69.908       L64N       6E         3281.       46.953       L64N       10E         3282.       32.345       L68N       8E         3283.       38.606       L68N       4E         3284.       49.040       L68N       0         3285.       58.430       L68N       4W         3286.       29.215       L68N       8W         3287.       26.085       L68N       12W         3288.       36.519       L68N       12W         3289.       62.604       L68N       20W         3290.       29.215       L68N       28W         3291.       9.391       L68N       28W         3292.       43.823       L68N       32W         3293.       28.172       L72N       30W         3294.       14.608       L72N       26W         3295.       32.345       L72N       26W         3296.       31.302       L72N       18W         3296.       31.302       L72N       18W         3297.       18.781       L72N       14W	18278	40.910 30.259	L64M	ом 20					
3280.       69.908       L64N       6E         3281.       46.953       L64N       10E         3282.       32.345       L68N       8E         3283.       38.606       L68N       4E         3284.       49.040       L68N       0         3285.       58.430       L68N       4W         3286.       29.215       L68N       8W         3287.       26.085       L68N       12W         3288.       36.519       L68N       20W         3289.       62.604       L68N       28W         3290.       29.215       L68N       28W         3291.       9.391       L68N       28W         3292.       43.823       L68N       32W         3293.       28.172       L72N       30W         3293.       28.172       L72N       30W         3294.       14.608       L72N       26W         3295.       32.345       L72N       22W         3295.       31.302       L72N       18W         3297.       18.781       L72N       14W	18279.	31. 302	L64N	2E					
3281.       46.953       L64N       10E         3282.       32.345       L68N       8E         3283.       38.606       L68N       4E         3284.       49.040       L68N       0         3285.       58.430       L68N       4W         3286.       29.215       L68N       8W         3287.       26.085       L68N       12W         3288.       36.519       L68N       16W         3289.       62.604       L68N       20W         3290.       29.215       L68N       28W         3291.       9.391       L68N       28W         3292.       43.823       L68N       32W         3293.       28.172       L72N       30W         3294.       14.608       L72N       26W         3295.       32.345       L72N       26W         3295.       32.345       L72N       28W         3295.       31.302       L72N       18W         3296.       31.302       L72N       18W	18280.	<b>69</b> , 908	L64N	6E					
3282.       32.345       L68N       8E         3283.       38.606       L68N       4E         3284.       49.040       L68N       0         3285.       58.430       L68N       4W         3286.       29.215       L68N       8W         3287.       26.085       L68N       12W         3288.       36.519       L68N       12W         3289.       62.604       L68N       20W         3290.       29.215       L68N       28W         3291.       9.391       L68N       28W         3292.       43.823       L68N       32W         3293.       28.172       L72N       30W         3294.       14.608       L72N       26W         3295.       32.345       L72N       26W         3295.       32.345       L72N       26W         3295.       32.345       L72N       26W         3296.       31.302       L72N       18W         3297.       18.781       L72N       14W	18281.	46. 953	L64N	10E					
3283.       36.000       L68N       4L         3284.       49.040       L68N       0         3285.       58.430       L68N       4W         3286.       29.215       L68N       8W         3287.       26.085       L68N       12W         3288.       36.519       L68N       16W         3289.       62.604       L68N       20W         3290.       29.215       L68N       28W         3290.       29.215       L68N       28W         3291.       9.391       L68N       28W         3292.       43.823       L68N       32W         3293.       28.172       L72N       30W         3294.       14.608       L72N       26W         3295.       32.345       L72N       26W         3296.       31.302       L72N       18W         3297.       18.781       L72N       14W	18282.	32,345 70 EBE	L68N L59M	8E 4E					
3285.       58.430       L68N       4W         3286.       29.215       L68N       8W         3287.       26.085       L68N       12W         3288.       36.519       L68N       16W         3289.       62.604       L68N       20W         3290.       29.215       L68N       28W         3291.       9.391       L68N       28W         3292.       43.823       L68N       32W         3293.       28.172       L72N       30W         3294.       14.608       L72N       26W         3295.       32.345       L72N       26W         3295.       32.345       L72N       28W         3297.       18.781       L72N       18W	18284.	49, 040	L68N	ч <u>с</u> 0					
3286.       29.215       L68N       8W         3287.       26.085       L68N       12W         3288.       36.519       L68N       16W         3289.       62.604       L68N       20W         3290.       29.215       L68N       28W         3291.       9.391       L68N       28W         3292.       43.823       L68N       32W         3293.       28.172       L72N       30W         3294.       14.608       L72N       26W         3295.       32.345       L72N       26W         3296.       31.302       L72N       18W         3297.       18.781       L72N       14W	18285.	58, 430	L68N	4W					$\overline{\}$
3287.       26.085       L68N       12W         3288.       36.519       L68N       16W         3289.       62.604       L68N       20W         3290.       29.215       L68N       28W         3291.       9.391       L68N       28W         3292.       43.823       L68N       32W         3293.       28.172       L72N       30W         3294.       14.608       L72N       26W         3295.       32.345       L72N       26W         3296.       31.302       L72N       18W         3297.       18.781       L72N       14W	18286.	29. 215	L68N	8W					)
3288.       36.519       L68N       16W         3289.       62.604       L68N       20W         3290.       29.215       L68N       28W         3291.       9.391       L68N       28W         3292.       43.823       L68N       32W         3293.       28.172       L72N       30W         3294.       14.608       L72N       26W         3295.       32.345       L72N       26W         3296.       31.302       L72N       18W         3297.       18.781       L72N       14W	18287.	26.085 26.540	L68N	120					j
2257. 62.684 L68N 28W 3290. 29.215 L68N 28W 3291. 9.391 L68N 28W 3292. 43.823 L68N 32W 3293. 28.172 L72N 30W 3294. 14.608 L72N 30W 3295. 32.345 L72N 26W 3295. 31.302 L72N 28W 3296. 31.302 L72N 18W	18288.	36,519 20 204	LESN LCON	16M 200					 $\bigcirc$
3291.       9.391       L68N       28W         3292.       43.823       L68N       32W         3293.       28.172       L72N       30W         3294.       14.608       L72N       26W         3295.       32.345       L72N       22W         3296.       31.302       L72N       18W         3297.       18.781       L72N       14W	18289. 18290	62.604 29.215	LESN	20M 28N	•	,			
3292. 43.823 L68N 32W 3293. 28.172 L72N 30W 3294. 14.608 L72N 26W 3295. 32.345 L72N 22W 3296. 31.302 L72N 18W 3297. 18.781 L72N 14W	18291.	9.391	L68N	28W					
3293. 28.172 L72N 30W 3294. 14.608 L72N 26W 3295. 32.345 L72N 22W 3296. 31.302 L72N 18W 3297. 18.781 L72N 14W	18292.	43, 823	LESN	32W					
3294. 14.608 L72N 26W 3295. 32.345 L72N 22W 3296. 31.302 L72N 18W 3297. 18.781 L72N 14W	18293.	28, 172	L72N	30W					
3296. 31.302 L72N 18W 3297. 18.781 L72N 14W	18294. 19295	14.608 72 745	L72N 172M	26M 200					
3297. 18.781 L72N 14W	18296.	31.302	L72N	18W			<b>`</b> .		
	18297.	18.781	L72N	14W					
3298. 20.868 L72N 10W	18298.	20, 868	L72N	. 100					

· · ·									
0.05	AULLEA HAURE	M LANE				•			
CUP	DETECTOR								
SERIHL	REHDING			-	<b>DATA</b>				
NUMBER	(TZSQ. MM. )	FIELD	NULES	HND	DHIH				
18299.	36, 519	L72N	eм						
18300.	11. 477	L72N	2W						
18301.	14.608	L72N	2E						
18302.	40.693	L72N	6E						
18303.	18, 781	L72N	10E						
18304.	43, 823	1276N	12E		•				
18395	4.174	L76N	8E						
18306	6 260	L76N	4E						
19707	82 429	LZEN	El						
10301.	17 778	L ZEN	21.J						
10300.	97 075		OLI C						
10307.	57.030 E4 407								
18310.	JI. 12( DD 050		1214						
18311.	30.209		16M 00U						
18312.	44.866	L76N	ZOM						
18313.	41.736	L76N	24W						
18314.	26.085	LSØN	22W						
18315.	27, 128	LSON	18W						
18316.	29, 215	LSØN	12W						
18317.	10.434	LSØN	8M						
18318.	6, 260	LSØN	4回						
18319.	39, 649	LSON	214						
18320.	33, 389	LSON	2E						
18321.	62, 604	- L80N	6E (						
18322.	43, 823	LSØN	10E						
18323.	25, 042	L80N	14E		•				
18324.	10, 434	L84N	20E						
18325.	7. 304	L84N	16E						
18326.	20, 868	L84N	12E						
18327.	34, 432	LS4N	8E		•				•
18328.	8. 347	L84N	4E						
18329.	15, 651	L84N	BL						
18770	20 868	1.84N	4W						
19331	57 217	1.84N	8Ы						
18772	3 170	1 84N	126						
18777	8 747	1.84N	166						
19774	41 776	LSSN	1.814						
10334.	54 257	LOON	4 414						
10330.	07 EAE	LOON	4.66						
10330.	07.040 74 700	LOON	TOM CU						
10337.	SI. 302 E0 470	LOON	ON Di						
10330.	J2. 170 40. 207	LOON	신다					*	•
18339. 40349	40.073 445 047	LOON	4M OU						
10340.	11J.017 DE 477	LJZN	400						
18341.	30.475 20.000	LOON	포르찌 카르마						
18342.	69.908	LUZEN	TOM						
1834 <i>3</i> .	64.691	L92N	SGM						
18344.	95, 993	L92N	2414						
18345.	15.651	L96N	22W						
18346.	7. 304	L96N	18W						
18347.	38.606	L96N	14W						
18348.	69, 908	L96N	10W						

ı.

1.

CUP	WOLLEX ANDRE	W LAKE	
SERIAL	READING		
NUMBER	(TZSQ.MM, )	FIELD	NOTES AND DATA
	· · · · · · · · · · · · · · · · · · ·		
18349.	57. 387	L96N	6W ·
18350.	108.514	L96N	2W
	<b>N</b> .		•

· .

•

1

•

· .

.

•
WOLLEX ANDREW LAKE

___

DETECTOR CUP

READING SERIAL

(TZSQ. MM. ) NUMBER _____

.

FIELD NOTES AND DATA

١

Ų

3.130	18332.	L84N	12W
4.174	18305.	L76N	8E
6, 260	18306.	L76N	4E
6, 260	18318.	LSON	414
7, 304	18325.	L84N	16E
7.304	18346.	L96N	18W
7.608	18233.	L48N	6E
8.347	18333.	L84N	16M
8.347	18328.	L84N	4E
9. 391	18291.	L68N	284
9.391	18268.	L60N	16W
10.434	18317.	L80N	8M
10.434	18324.	L84N	20E
11. 477	18300.	L72N	20
11, 956	18218.	L44N	50M
13.564	18220.	L48N	48M
13, 564	18236.1	L52N	8E
14, 129	18232.	L48N	2E
14.608	18301.	L72N	2E
14.608	18294.	L72N	26W
15, 216	18188.	LBEN	46W
15. 651	18345.	L96N	22W
15 651	18201	L40N	10E
15.651	18329.	L84N	BL
16 303	18216	L44N	42W
17 390	18168	I R2N	SE
17 738	18199	1400	2E
17 738	18207	1 44N	BI
17 738	18398	176N	4U
18 781	18707	1.72N	10F
18 781	18297	1.72N	141
19 564	18166	1 72N	16F
19 564	18250		SAU
19 925	18277	L 52N	dF
20 651	12159	LOEN LOEN	25
20.001	18726	I SAN	125
20.000	10320.	1.70M	400
20.000	19778	1.040	- 10M - 4U
20.000	10330.	E040 E3.30	카파
21.711 00 004	10200.	1.000	역도 김 교도
22.024	10101.	1.4000	246
22.027	10104	LIZEN	294
22.024	10104.	1.2004	2014
24.220	18172	L Z DM	
27.220	10212.	LOGN	4.45
20.042 25.042	10323.	L60M 150M	고역은
20,042 96 ros	10247. 10107	L 72M	- HOM Deli
20.000 76 Ros	10103. 10047		골 이번 김 같다
20. VOJ	LOCI(.	C++14	чом

HOLLI	EX ANDREL	I LAKE							
DETECTOR	CUP								
(TZSQ. MM.)	NUMBER	FIELD	NOTES	AND	DATA				
	<u></u>								
			4 (5) 1						
26.085 26.085	18287.	L68N LCAN	12M 20M						
26,085	18271. 4974 <i>4</i>	LOAN	20M 20M						
26.00J 97 198	18319.	LOON LSON	18U						
27, 128	18267.	LEON	120						
27. 128	18253.	L56N	10W						
27, 128	18262.	LEGN	8E						
27, 128	18252.	L56N	14W						
28. 172	18293.	L72N	300						
28:172	18258.	LOON	10E 40E						
28,209	18104.	L2400 1 <i>24</i> 00	표준 작전년						
27.21J 29.215	19275	1.49N	286 286						
29 215	18256.	L56N	2E						
29. 215	18286.	LESN	814						
29, 215	18316.	LSON	120						
29, 215	18290.	LESN	28W						
29.346	18171.	L32N	2E						
29.346	18167.	LSZN LBCN	12E 700						
29.345 De 250	18186.	LISON UZEM	20M 4 EN						
20.207	18248	1.52N	42M						
30.200 30.259	18260.	LEON	16E						
30, 259	18278.	L64N	2W						
30.433	18163.	L28N	18E						
31, 302	18279.	L64N	2E						
31.302	18261.	LEØN	12E						
<u>31.302</u> 74.202	18337. 19795	LOON	ом 4 ЭЫ					- '	
SI. 502 74 549	18195	140N	20N						
31, 519	18191.	L40N	36N						
31, 519	18173.	L32N	10E						
31, 519	18152.	L24N	20E						
32, 345	18219	L48N	52W						
32, 345,	18295.	L72N	224						
32, 345 20, 245	18282.	LESN	SE 4 GU						
- <u>32</u> .340 72.606	18153	L 94N	16F			/			
33, 389	18254.	L56N	6W						
33, 389	18320.	LSØN	2E						
33, 693	18155.	L24N	8E						
33. 693	18165.	L32N	20E						
33, 693	18177.	L32M	4년교 스토						
33.693 74 470	18168. 40707	LZSN Loam	DE QE				-		
34.432 R4 780	18190	L40N	40N						
34, 780	18234	L48N	14E					-	
35, 476	18341.	L92N	124						
35. 476	18197.	L40N	6М						
35, 476	18241.	L52N	120						

s.

READING (T/SQ.MM.)	SERIAL NUMBER	FIELD	NOTES	AND	DATA		 			
75 476	19266	LEON	9M							
30.470 75.067	19200.	1.252	-04 -495							
30.001 76 519	18299	LOEM LZON	EU				-			
30.012 76 519	18288	LESN	1£U							
20.012 76 519	19247	1 52N	2011							
30.012 76 519	18269	LEGN	20M 20U	•					·	
30.013 76 519	18273	1 64N	22N							
76 954	18158	L28N	26							`
20. 204 27 562	18208	1 44N	410							
37 562	18276	1 64N	106							
77 562	19267	LEAN	4F							
27.562 27.562	18203	LOOK	125							
20 EQE	19297	LESN	12C 4F							
20.000 79 EGE	19199	LOON	213							
30.000 78 606	18747	L 96N	146							
79 649	18272	L 64N	260							
79 649	18221	148N	440							
79 649	18203	1 44N	16E							
· 79.649	18319	LSON	20							
40 214	18170	L32N	214							
4 <u>9</u> .693	18302.	L72N	6E							
40, 693	18238.	L52N	BL							
49, 693	18339.	L92N	 4년							
41 301	18164	L28N	22F							
41 301	18231	1.48N	20							
41.301	18179.	L32W	32W							
41 736	18334.	LSSN	180							
41.736	18205	L44N	SE ·							
41.736	18313.	L76N	24W							
43.823	18304.	L76N	12E							
43, 823	18230.	L48N	18E					•		
43 823	18292	L68N	32W							
47 827	18322	I SØN	10F		·					
47 827	18202	L40N	14E							
44 562	18181	L32W	24W							
44 562	18157	L24N	BL				•		3	
44, 562	18174.	L36N	8E							
44, 866	18257.	LS6N	6E							
44, 866	18312.	L76N	200							
44 866	18240.	L52N	80							
44 866	18226.	L48N	24W						•	
45 649	18151	1.24N	24E							
45 910	18277.	L64N	ธม							
45.910	18255.	L56N	2W							
45.910	18264.	LEON	Ø			,				
46. 736	18162	.L28N	- 14E							
46, 953	18281	L64N	10E							
47. 996	18239	L52N	4W							
47. 996	18242.	L52N	16W							
<u>40 000</u>	40400	1. 3.44								

ς.

	NOLL	EX ANDREI	I LAKE							
	DETECTOR	CUP								
	READING	SERIAL		Nores	CALLS.	BOTO				
	C1250, PP. 2	NUNBER	FIELD	NUTES	HND		1			
	49 040	18227	1.48N	186	÷					
	49 040	18284	LESN	й И			·			
	49 040	18222	1.48N	- 406						
	50, 083	18251.	LSEN	184			•			
	51.983	18189	L40N	44W						
	51, 127	18209.	L44N	8W						,
	51, 127	18310.	L76N	120						
	52, 170	18229.	L48N	6М						
	52, 170	18235.	L52N	12E						
	52.170	18338.	L92N	BL						
	52.170	18247.	L52N	38M						
·	52.170	18178.	LIZM	.≾6W OU						
	03.213 E4 057	18331. 40046	LS4N LSON	3M 7411						•
,	04.207 54.057	10245.	LOZN	그만M 작년년						
	54 744	19211	LOOM	226						. '
	54 244	18215	1 44N	ZEM ZBU						
	55, 300	18265.1	LEØN	414						
	56. 518	18185	L36N	34N						
	57. 387	18210.	L44N	120						
	57. 387	18349.	L96N	6W						
	57.604	18193.	L40N	28W						
	58,430	18285.	L68N	4년						
	59.474	18244.	L52N	26W	•					
	59.474	18223.	L48N	36M Oolu						
	62.604 50 504	10207. 10701	LOON	20M 20				•		
	62.604 67 079	10321.	LOON	0E 4F		•				
	64 691	18747	192N	20U						
	65 212	18187.	LIGEN	42W						
	65. 212	18213.	L44N	300						
	. 66. 778	18228.	L48N ·	10W						
	67. 386	18156.	L24N	4E						
	67.821	18259.	L56N	14E						
	68, 473	18192.	L40N	32W						
	69, 988	18280.	L64N	6E 4 OU						
	69.908 CO 000	18348. 40740	LOON	工程网						
	63.300 77 079	10342. 19224	LZZN LZQN	20M 10M			•			
	73.030 77.078	18245	1.52N	RAN					 •	
	80.342	18200	L40N	6E						
	82, 429	18307.	L76N	BL						
	87. 646	18336.	LSSN	10W						
	93, 906	18274.	L64N	18W _/						
	95, 645	18214.	L44N	34W						
	95. 993	18344.	L92N	24W		•				
	97.036	18309.	L76N	8W 8						
	100.166	18270.	LEUN	24W 200						
	108.514 445 047	18358.	LOON	군원 이번						
	115.817	18340.	LHZN	8M M						

 $\sqrt{2}$ 

WOLL	EX ANDRE	W LAKE					
DETECTOR	CUP		•				
READING	SERIAL					•	
(TZSQ. MM. )	NUMBER	FIELD	NOTES	AND	DATA		
119, 556	18180.	L32W	28W				
143, 468	18212.	L44N	26W				

To: WOLLEX EXPLORATIONS LTD.,

806 Norcen Tower,	
15 - 5th Ave. S.W.,	
Calgary, Alberta T2P 0X8	

ATTN: Murray Pyke



File No.	11853	
Date	August 14, 1976	V.8
Samples	Chip	

LORING LABORATORIES LTD.

ASSAY

SAMPLE No.	Chemical % U308	
``·		
"Chip Samples"		
13001	•002	
13002	•005	
13003	•011	
13004	•009	
13005	•006	
13006	•001	
13007	•006	
13008	•112	;
13009	•004	
13010	•152	
13011	3•490	
13012	•074	
13013	•088	
13014	•003	
13015	•003	
	I Hereby Certify that the above results are those	
	ASSAYS MADE BY ME UPON THE HEREIN DESCRIBED SAMPLES	

**Rejects Retained one month.** 

Pulps Retained one month unless specific arrangements made in advance.

LABS (ALBERTA) LTD.

ANALYTICAL AND CONSULTING CHEMISTS

2021 - 41 AVE. N.E. Calgary, Canada T2E 6P2 TELEPHONE: 403-276-9627 TELEX: 038-25541 

• MINERAL	• GAS	• WATER	• OIL	• SOILS	• VEGETATION	• ENVIRONMENTAL ANALYSIS 348-04-01 PROJECT NO.

Location	U (ppm)
H-41	<0.5
A2	<0.5
43	<0.5
<b>4</b> 4	<0.5
-45	-<0.5
$A_{\rm const}$	<0.5
47	1.0
-48	<0.5
49	<0.5
-+	<0.5
-51	<0.5
<b></b>	<0.5
	<0.5
54	<0.5
	1.0
A-43	<0.5
	<0.5
「構築」	1.0
46	6.5
***	
44 77 100 - 25	
· 관련· · · · · · · · · · · · · · · · · · · ·	
	・ イト () - ()
el al. Bit in	2.4 U D E
しし 町分	айна) П. Д
i dani kuji Katali kuji	
- 1993	1 0
57	1.0 20.5
58	<0.5
59	5.0
A-60	6.5
.61	2.5
62	<0.5
.63	<0.5
64	<0.5
65	<0.5
66	9.5
67	2.5





348-04-01

2021 - 41 AVE. N.E. Calgary, Canada T2E 6P2

TELEX: 038-25541

TELEPHONE: 403-276-9627

۰,²³

LABS (ALBERTA) LTD.

ANALYTICAL AND CONSULTING CHEMISTS

HEMEX

MINERAL	• GAS	• WATER	• OIL	<ul> <li>SOILS</li> </ul>	<ul> <li>VEGETATION</li> </ul>	ENVIRONMENT	TAL ANALYSIS
	Wollex P	Exploration				PROJECT NO.	348-04-

Wollex Exploration 715 - 5th AVenue S.W. Calgary, Alberta

Location U (ppm) <0.5 2 <0.5 3 <0.5 A <0.5 5 <0.5 6 <0.5 7 <0.5 8 <0.5 9 <0..5 H-10 <0.5 11 <0.5 12 <0.5 13 <0.5 14-<0.5 15 <0.5 1.6<0.5 17 <0.5 13 <0.5 4.2 -<0<del>-</del>5-H-20 <0.5 21 <0.5 22 <0.5 23 <0.5 24 <del><05</del>5 25<0.5 26<0.5 27 <0.5 28 <0.5 29-<075 H-30 <0.5 31 <0.5 32 <0.5 33 <0.5 34 4.5 35 1.0 36 1.0 37 <0.5 38 <0.5 39 <0.5 H--40 <0.5



MEMBER CANADIAN TESTING ASSOCIATION

2021 - 41 AVE. N.E. Calgary, Canada T2E 6P2 TELEPHONE: 403-276-9627 TELEX: 038-25541

LABS (ALBERTA) LTD. ANALYTICAL AND CONSULTING CHEMISTS

EX

MINERAL	• GAS	• WATER	• OIL	• SOILS	<ul> <li>VEGETATION</li> </ul>

• ENVIRONMENTAL ANALYSIS 348-04-01 PROJECT NO.

, : ÷ .

Location	·	U	(ppm)
'A-68	•	1.0	· · · · · · · · · · · · · · · · · · ·
69		2.5	
A-70		<0.5	Ü –
71	-	<0 ↓ 5	
7.2		<075	Descent de la constant de
73	-	2.5	
74		3.5	
25		<0.0	
73		4.0	
		1.0	
78		<0,5	5
/ Y		1.5	
- A-180	•	<0,5	j · · · ·
81	•	<0.5	j
- 00 x		<075	
<b>0</b> .0		<0.5	i se
©	•	3.5	
0.0 0.1		<0.5	1
C(C) - (3-2)		60.0	
1997 - 1 1999:		¥∢⊖ ≉ ∧	
.00 .00		1.*0	
207 AOA		1.4V 20. m	
01 01		- KV+0 - 1 - A	
-0-7		1 + V 	
974		- <u>&gt;</u> 0∢0 ∠∆ ≂	
A-94		1.0	
BLS BLW 2E	Sample No.	A.5	
BLS 4NO <b>BL</b>	5-1	<0.5	
BES AN 1W	5-2	<0.5	
BLS 4N 2W 5	5-3	3,5	
BLS 4N 3W	5-4	2.5	
BLS 4N 4W	5.5	3.5	
BLS AN 1E	5-6	_0.5_	
BLS 4N 2E	5-7	1.0	
BLS 4N 3E	5-8	<0.5	
BLS AN 4E	5-9	<0.5	
KLS SN Q	5-10	0.5	
BES SN 1W	5-11	1.0	
BLS SN 2W	5'-152	1.5	

CTA

Certified by



ANALYTICAL AND CONSULTING CHEMISTS

2021 - 41 AVE. N.E. Calgary, Canada T2E 6P2 TELEPHONE: 403-276-9627 TELEX: 038-25541 . .

MINERAL	• GAS	WATER	• OIL	• SOILS	<ul> <li>VEGETATION</li> </ul>	• ENVIRONMENTAL ANALYSIS
						PROJECT NO. 348-04-01

Location Sample N	o. U (ppm	n )	•		· ·	
ELS 3N 411 5-13	1.0					
HLS 8N 1F 5-14	<0.5					
BLS SN 2E .5.15	<0.5			,		
BIS SN 3E 5-16	<0.5					
-BIS-BN -AF		Naganista - karar - mmanara - a - militar Analasia - s		1. 1991 1992 1994 1994 1996 1996 1996 1996 1996 1997 1997 1997		
BUS 12N 0 5-18	<0.5			• · · · ·		1
BIS 12N 11 5-19	<0.5					
RIS 12N 2H 5-20	1.0			,		
BLS 12N 3W 5-21	<0.5					
B.S. 1-2N-44 5-22	< 0 75				······	
BLS 12N 1E 5-23	<0.5					
BLS 12N 2E 5-24	<0.5					
BLS 12N 3E 5-25	<0.5					· · ·
BLS 12N 4E 5-36	<0.5					
-BES-1-2N-5E					****	
BLS 12N 6E 5-28	1.0					
BLS 16N 1W 5-30	<0.5					
-BUS 16N 2W 5-3/	<0.5		·	,	•	
BLS 16N 3W 5-32	<0.5					
-61-5-16N-4W-5-33-	05					
BLS C 16E 0 5-29	<0.5				·	
116N 1E 5-34	1.0					;
16N 3E 5-35	1.0					
10N 4E 5-36	<0.5					
S = 37	<0.5					
$14MOE \leq 39$	<0.5 <0.5					
14M OF 5-40						
$\frac{1000}{810} \frac{71}{2000} \frac{5}{2} \frac{4}{4}$	NO+0. ∠A ©	·				
201 11 5-42	20.5					
20N 2W 5-43	<0.5					
201 34 5-44	<0.5					
20N 4W 5-45	<0.5					
20N 1E 5-46	<0.5					
20N 2E 5-47	<0.5	ne na fine a standing gang gantan ka ka ka ka ka ka				
20N 3E 5-48	<0.5					
20N 4E 5-49	<0.5					
20N 5E 5-50	<0.5				•	
-						
20N 6E 5-51	<0.5					

CTA

LABS (ALBERTA) LTD.

HEMEX

C

2021 - 41 AVE. N.E. Calgary, Canada T2E 6P2 TELEPHONE: 403-276-9627 TELEX: 038-25541

MINERAL	• GAS	WATER	• OIL	• SOILS	<ul> <li>VEGETATION</li> </ul>	<ul> <li>ENVIRONMENTAL ANALYSIS 348-04-01</li> </ul>
						PROJECT NO.

			<u> </u>	<u></u>	 <u>.</u>	
Location	Sample Number	U (ppm)			 	
BLS 20N 88	5-53	<0.5				
off	5-54	<0.5				•
1.0E	5-55	<0.5				
BLS 24N O	5-56	<0.5				
	5-57	~0.5	and which is the second state of the second st		 	1. 1.1.1
20	.5-58	<0.5				
3W	5-59	<0.5				· ·
4 W	5-60	<0.5				• •
24N 1E	5-61	<0.5				
-2E	5-62	~0.5			 · · · · · · · · · · · · · · · · · · ·	
3E	5-63	<0.5				
- 4E	5-64	<0.5				
28N 0	5-65	<0.5				
-1.W	5-66	<0.5				
	5-6-7	1.0			 	
36	5-68	<0.5				· · ·
4.0	5-69	<0.5				
.28N 1E	5-70	<0.5				
12E	5-71	<0.5				
-38	5-72	<0.5			 	
4E	5-13	1.0				
44N 3W	5-104	<0.5				· · ·
~^\!!!	5-123	<0.5				
48N 0	5-110	1.0				
-1W	5-11/	<0.5	an - and a fundamental and a state of the second	an a dan da an ann an a		
J2W	5-112	<0.5				
3W	5-113	<0.5				
40	5-114	<0.5				
1E	5 - 115 	<0.5			 	
2E	5-117	<0.5		•		
3E	5117	<0.5				
4E	5-118	1.0			•	
52N 0	3-119	1.0				•
1.W	5-120	<0.5				
22 W	5-121	2,5				÷
3W ALI	5-10-2	<0.5				
49 W	5-183	<0.5				
	5-124	<0.5 Z0.5				
at E.	5-125	<u>&lt;0.5</u>			 	·. · · · · · · · · · · · · · · · · · ·
<u>عاد</u>	5-126	<0.5				



2021 - 41 AVE. N.E. Calgary, Canada T2E 6P2 TELEPHONE: 403-276-9627 TELEX: 038-25541 . - -

LABS (ALBERTA) LTD.

ANALYTICAL AND CONSULTING CHEMISTS .

CHEMEX

MINERAL	• GAS	WATER	• OIL	<ul> <li>SOILS</li> </ul>	<ul> <li>VEGETATION</li> </ul>	ENVIRONMEN	ITAL ANALYSIS
						PROJECT NO.	348-04-01

Location	Sample	(mag) U	
	Number	· · · · · · · · · · · · · · · · · · ·	
BLS 4E	5-127	<0.5	
S 32N-0	5-74	<0.5	
-1 W	5-75	10	
20	5-76	4.0	
3W	5-77	- <0.5	
40	5-78	5,5	
1E	5-79	1.0	· · · · · · · · · · · · · · · · · · ·
2E	5-80	1.5	
3E	5-81	2.0	
4E.	5-82		
391 0	5-83	<0.5	
-1W	5-84	4.0	
12W	5-85	0.5	
30	5-86	4.0	
.36N4W	5-87	-5.5	
36N 1E	5-88	3.5	
	5-90	3.5	• •
3 <u>11</u>	5-91	<0.5	
	5.97	0.5	· · · · ·
-()()/()() 1 1.:	5-93		1
20	5-94	a.↓0 	
171,f	5-95		
A1.	5-96	 	
1.5	-5-97		
2E	5-98	20 5	
3E	5-91	<0.5	
4E	5-100	<0.5	
S 44N 0	5-101	<0.5	
1 E	-5-106	<0.5	
2E	5-107	<0.5	
3E	5-108	<0.5	
4E	5-109	<0.5	
S 44N 1W	5-102	<0.5	
20	5-103	<0.5	
SS 1		6.5	
4		0.5	
5		<0.5	
6		<0.5	· ·
8		<0.5	

2021 - 41 AVE. N.E. Calgary, Canada T2E 6P2 TELEPHONE: 403-276-9627 TELEX: 038-25541 -

LABS (ALBERTA) LTD. ANALYTICAL AND CONSULTING CHEMISTS

**HEMEX** 

MINERAL	• GAS	• WATER	• OIL	• SOILS	<ul> <li>VEGETATION</li> </ul>	• ENVIRONMENTAL ANALYSIS 348-04-01
						PROJECT NO.

Location	U (ppm)	 		
SS-9 11 12 13	<0.5 0.5 0.5 <0.5			
44 15 16 17 18	<0.5 <0.5 <0.5 <0.5 <0.5	•		
19 20 21 22 23	<0.5 2.0 <0.5 <0.5 <0.5 <0.5	 		
25 26 88 32	<0.5 <0.5 <0.5			
				L,
•				
		 	·····	



LABS (ALBERTA) LTD.

ANALYTICAL AND CONSULTING CHEMISTS

HEMEX

2021 - 41 AVE. N.E. Calgary, Canada T2E 6P2 TELEPHONE: 403-276-9627 TELEX: 038-25541 

MINERAL	• GAS	<ul> <li>WATER</li> </ul>	• OIL	<ul> <li>SOILS</li> </ul>	<ul> <li>VEGETATION</li> </ul>	• ENVIRONME	NTAL ANALYSIS
Wolles	c Explor	cation		÷		PROJECT NO.	348-04-02
Suite	810, No	orcen Towe	r .				

715 - 5 Ave. S.W. Calgary, Alberta

· I		Sample		0 1 -	· · · · · · · · · · · · · · · · · · ·
	Parameter	Number	U (ppm)	Soil Type	· ·
Lind	0-3W	3450	1.0	CTS	· · ·
	0-5W	3152	1.0	5	
	0-6W	3453	<0.5	5	
	0-8W	3455	1.0	S	
	0-9W	3456	<0.5	5	
	0-114	3458	<0.5	5	
	0-120	3459	<0.5	C + 5	
	0-14W	3461	<0.5	5	
	0-15W	3462	<0.5	<b>S</b> .	
	0-17W	3464	<0.5	<u>.</u>	
	0-18W	3465	1.0	C	
	0-19W	3466	<0.5	C	
,	0-20W	3467	>100.0	st organic	
Line	8N B.L.O.	3391	5.0	C	
	-8N1E	-3-3-92		<u>ر</u>	
	8N 3E	3394	4.0	C+ organic	
	8N 4E	33 95	0.5	c + organic	
	8N 6E	3397	<0.5	ک	
	8N 1W	3390	<0.5	C	
	-8N2N	- 3389		<u> </u>	
	8N 3W	3388	8.0	C	
	8N 5W	3386	<0.5	5	
	SN 6W	338J 2379	<0.5	S	•
	SN 120	307/	2.5	C	
	80-150-	3376	<0.5	<u> </u>	
	W 17W	3374	<0.5	C C	
	SN ZIW	3367	<u>80.</u> 0	C + Organic	
Line	12N B.L.U.	3348 2249	<0.5	C	
	12 14 1.00		<0.5	<u>ح</u>	
		3361	×V+3 ⊠A E	-	
		3351	<u.j⊡ 1 ∧</u.j⊡ 	S	
	10 XI ZM	3350		S · ·	
	12 R OW	3357	- ×V∓J - ∠∆ ⊂		
		3335	<u> </u>	CTS	
	12 N 3E	3345	1,0	C + Organic	· ·
	12 N 11E	3337	<0.5	5	
	12 N 12E	3336	<0.5	Ct organic	
	12 N 14E	3334	<0,5	5	
	12 N 15F	3233	<0.5	c + 5	
	يتنافس بداعا سخيف		5 57 <b>T</b> 52		· · · · ·



2021 - 41 AVE. N.E. Calgary, Canada T2E 6P2 TELEPHONE: 403-276-9627 TELEX: 038-25541

LABS (ALBERTA) LTD. ANALYTICAL AND CONSULTING CHEMISTS

MINERAL	• GAS	WATER	• OIL	<ul> <li>SOILS</li> </ul>	<ul> <li>VEGETATION</li> </ul>	• ENVIRONMENTAL ANALYSIS

PROJECT NO.

348-04-02

, (÷

Wollex Exploration

			Sample						
	Para	meter	Num ber	U	(ppm)	Soil Type			•
•	12N	17E	3331		1.0	C			
	12N	18E	3330		100	C + organic			
Line	16N	2W	3285		4.0		•		
Line	20N	4W	3251		<0.5	5		analise of a statement of the statement of	
	20N	50	3232		4.0	St organic			
	20N	7W	3254		<0.5	5		•	
	20N	8W	3255		<0.5	C + 5		•	
	20N	1.0W	3257		<0 <u>.</u> 5	ک			
	20N	11W	3258		2.5	C+ organic			
	20N	13W	3260		<0.5	C+ 5			
	20N	14W	3261		<0.5	C			
	20N	16W	3263		< <u>0.5</u>	C+ Organic			
•	20N	19W	3266	."	<0.5	ct organic			
	20N	20W	3267		0.5	с	······		
	20N	29W	3276		<0.5	c + s			
	20N	31W	3278		<0.5	5		,	
line	2 <b>8</b> N	11W	3178		30,0	organic		,	
	28N	25E	3142		<0.5	C			
	28N	26E	3141		<0.5	<u>с</u>			·
	28N	28E	3139		<0.5	c		•	
:	28N	29E	3138		<0.5	C			
	28N	31E	3136		1.0	c + organic			
	28N	32E	3135		<0.5	C + 5			
	28N	34E	3133		35.0	organic	1		
	28N	35E	3132		16.5	organic			
	28N	1. O W	3177		85.0	organic			
Line	32N	B.L.O.	3078		<0.5	5			
	32N	2W	3080		<0.5	S			
	32N	<u> </u>		•	_<05_	S		waannee	
	32N	13W	3091		<0.5	S		,	
	32N	15W	´ 3093		<0.5	5			•
	32N	16W	3094		2.5	5			
	32N	18W	3096	•	<0.5	C75			
	324-	- <u>22</u> W			-<0+5	<u>S</u>			i
	32N	49W	3127		0.5	5			
Line	36N	4E	2965		1.0	cts	· .		
	35N	5E	2964		1.0	C		. •	
	36N	5W	2974		3.5	5	•		
-	3614	<del>_7W</del>	2976		-4+0	S			
	36N	8W	2977		1.0	S			



2021 - 41 AVE. N.E. Calgary, Canada T2E 6P2 TELEPHONE: 403-276-9627 TELEX: 038-25541 LABS (ALBERTA) LTD. ANALYTICAL AND CONSULTING CHEMISTS

HEMEX

• MINERAL	• GAS	• WATER	• 01L	• SOILS	<ul> <li>VEGETATION</li> </ul>	• ENVIRONMENT	AL ANALYSIS
Wollex	Explor	ation				PROJECT NO.	348-04-02

•			Somple		0	,			
	Para	ameter	Number	U (ppm)	Soil	TYPE			
Line	36N	11W	2980	1.0	5				
	36N	14W	2983	6.5	C +	organic			· .
	36N	16W	2985	<0.5	С				
	36N	17W	2986	0.5	Ċ				
	36N-	19W			5				-
	36N	20W	2989	1.0	5		·		
	36N	22W	2991	<0.5	ک	P. I			-
	36N	34W	3003	<0.5	54	fine gravel		· ·	
	36N	49W	3018	<0.5	"	1		1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -	
	36N-	50W	301.9			-			
	36N	59W	3028	1.0	ک				
	39M	61W	3030	<0,5	5			· · · ·	·
Line	40N	2E	2893	<0.5	· C				
	40N	3E	2892	<0.5	2	•		· · ·	
	40N-	-5E	2890-	<0-,5	C	an a	ang a an ang mana manananang ang ang ang ang ang ang ang an		
	40N	6E	2889	<0.5	C				
	40N	7E	2888	<0.5	C				2
	40N	16E	2879	<0.5	5	fine acquel	· · · ·		
	40N	16 +	811 2818	<0.5	57	- The grade			
	40N-	- <del>6</del> w	2901		C	Pinnel		ν	
:	401	7 W 013	2902	1.0	57	Fine graver			
	40N	70	2 904	<0.5 <0.5	С				·
	40N	1.00	2903	×0+0	с 0 ~	- anic			
	40N 	3. x2.14 	2907	4 <u>0+0</u>		ganic			•
	4UN AOM-		2900	2010	or	gunic			
1:00	40N 44M	3.094 17:57	2813	20.5	· _ C			· · · ·	
LINE	A A XI	0E. AE	2012	<0.5	5 5				
	A A M	or	20°C 2808	<0.5	5				
	2223			<0.5	C				
	441	185	2798	<0.5	s + fi	ne gravel			
	441	25F	2791	<0.5	C+ or	ganic	•		
	44N	31E	2785	<0.5	С	•			
	44N	34E	2782	<0.5	C		· .		
	441	¢IJ.	2825	0.5	CtS				
	44N	44	2860	<0.5	5				
	44N	4ó₩	2862	<0.5	S				
	44N	-50W	2866	<0.5	5	2 			· · ·
	44M	52W	2 868	<0.5	5				
	44N	54W	2870	<0.5	5				





ANALYTICAL AND CONSULTING CHEMISTS

2021 - 41 AVE. N.E. Calgary, Canada T2E 6P2 TELEPHONE: 403-276-9627 TELEX: 038-25541 ....

• MINERAL • GAS • WATER

• 01L

SOILS

VEGETATION

• ENVIRONMENTAL ANALYSIS PROJECT NO. 348-04-02

Wollex Exploration

	Parameter	Somple Number	U (ppm)	Soil type				. •		
Lind	44N 56W	2872	2.00	5	· · · · · · · · · · · · · · · · · · ·	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		· · ·		
	44N 57W	2873	<0.5	5	_					
	44N 78W		<0.5 🖛	- No such lu	ocation					
· ·	45 B.L.O.	3478	<0.5	5						
	45 1E	3477	5.0	5						
	45-3E	3475	8.0	C+S						
	45 4E	34.74	<0.5	5						
	4 <b>5</b> 6E	3472	<0.5	5			•			
	45 7E	3471	<0.5	C+5						
	45 9E	3469	<0.5	5					:	
	-45 10E	3468	<0.5	Cts				•	•	
	45 2W	3480	<0.Ş	S						1
	∴4 <b>5</b> 3W	3481	<0.5	5						
	4 <b>S</b> 5W	3483	<0.5	C + S					1	
	4 <b>5</b> 6W	3484	<0.5	CtS						
	4 <b>S</b> 8W	3486	1.0	5					:	
	⇒4 <b>5</b> 9₩	3487	<0.5	C					:	:
	4 <b>S</b> 11W	3489	<0.5	5				·.	1	
	-4 <b>S</b> 12W	3490	2.5	c						
	4 <b>5</b> 14W	3492	2.5	5					]	
	4 <b>S</b> 15W	3493	0.5	5					11	
: •	4 <b>S</b> 17W	34.95	<0.5	C+S			4			Т. н
	4 <b>S</b> 18W	3496	<0.5	S						
Line	48N 4E	2706	<0.5	5					:	
	48N 5E	2705	<0.5	5						
	48N 7E	2703	<0.5	S						
	48N 8E	2702	<0.5	5						
	48N 22E	2688	<0.5	· 5				•	:	
	-48N 23E	2687	1.0	5			•			
	48N 25E	2685	1.5	Ct S						
	48N 26E	2684	<0.5	5						,
	48N 28E	2682	1.0	5					}	
	48N 29E	2681	0.5	C+5					,	.
	48N_31E	2679	<0.5	5					:	
	<u>48N_32E</u>	2678		C			·			
	48N 13W	2723	<0.5	ک						
	48N 16W	2726	1.0	5						-
	48N 17W	2727	<0.5	С				•	,	
	-48N 20W	2730	3.5	С					• • •	
	49N 22W	-2732	-1.0						;	



• OIL

LABS (ALBERTA) LTD.

ANALYTICAL AND CONSULTING CHEMISTS

2021 - 41 AVE. N.E. Calgary, Canada T2E 6P2 TELEPHONE: 403-276-9627 TELEX: 038-25541

• ENVIRONMENTAL ANALYSIS

#### MINERAL

WATER

**IEX** 

• SOILS • VE

VEGETATION

Wollex Exploration

• GAS

PROJECT NO.

348-04-02

. . .

	1	Page	5		•	
	[		Sample		-	
	Par	amet	er Number	U (prm)	Soil Type	·
line	AON	A "71.1	2777	1.5	s + fine gravel	
2	ASM	207 W	2778	<0.5	5	
line	5.4M	3E	2465	<0.5	5	
	56N	4E	2464	<0.5	5	
	56N	-6E	2462	<075		
	56N	7E	2461	<0.5	S	
	56N	13E	2455	<0.5	St fine gravel	
	56N	18E	2450	<0.5	C	· .
. '	53N	19E	2449	<0.5	С	
	53N	-21E-	2447	<0.5		
	56N	22E	2446	8.5	С	
	56N	24E	2444	<0.5	C	
	56N	25E	2443	<0.5	C	
	53N	27E	2441	17.5	c + organic	
	56N	-28E	2440	4.0	c	
	56N	30E	2438	1.0	C	
	56N	31E	2437	<0.5	C	
. '	56N	32E	2436	<0.5	C	•
	56N		2435	<u> &lt;0,5</u>	c	
	DON EVA	34E	2437	<0.0		
:	JON EVA	302	2432		C+ Dryanic	· · · · · · · · · · · · · · · · · · ·
•	NOC	37E 40E	2428	<0.5	s + Fine graver	
	DON EXM	407	2120	<0+5 <0 5	S. Pier and	· .
	5 CM	1011	2705	<u>&lt;0.5</u>	St fine graver	
,	5 AN	2014	2488	<0.5	C .	
	5AN	216	(1-2489)	<0.5	C ·	
	5AN	24.5	(1-2492)	24.0	C + Organic	· · · ·
	56N	236	2491	26.0	C+ organic	
	56N	24W	(?) 34 W	50,0	# 2502 / c+ organi	c
	56N	27W	2495	50.0	C+ organic	
.•	56N	28W	2496	60.0	C+ organic	
	56N	31₩	2499	30.0	c+ organic	
	56N	<u>32W</u>	2500	10.5	C + organic	
	56N	35W	2503	17.5	c + organic	
	56N	38M	2506	18.5	C + organic	
	56N	40W	2308	16.0.	c+ organic	
	53N	41W	2309	20.0	c + organic	
	156N	<u> 440</u>	2512	<u> </u>	C + OFGEDIC	
,	53N	45U	2513	1.0	C+ Organic	· · · · · · · · · · · · · · · · · · ·



. .

2021 - 41 AVE. N.E. Calgary, Canada T2E 6P2 TELEPHONE: 403-276-9627 TELEX: 038-25541 , [†]

ANALYTICAL AND CONSULTING CHEMISTS	

**EMEX** 

<ul> <li>MINERAL</li> </ul>	• GAS	<ul> <li>WATER</li> </ul>	• OIL	<ul> <li>SOILS</li> </ul>	<ul> <li>VEGETATION</li> </ul>	<ul> <li>ENVIRONMENTAL ANALYSIS</li> </ul>

Wollex Exploration

LABS (ALBERTA) LTD.

PROJECT NO. 348-04-02

	Parameter	Sample U Number	(ppm)	Soil type	
line	56N 47W	2515	1.5	ک :	<u></u>
	56N 48W	2516	1.5	5	
	EAN SOW	2518	<0.5	5	· · ·
	56N 51W	2519	<0.5	5	
	56N 53W	2521	<0.5	5	
	56N 66W	2534	<0.5	S	r
	53N 68W	2536	<0.5	5	
	56N 69W	2537	<0.5	5	
•	55N 71W	2539	<0.5	5	
	56N 74W	2542	<0.5	S	
	56N 75W	2543	3.5	5	
Line	64N 12E	2228	<0.5	5	
	64N 15E	2225	3.0	Cts	
	64N 16E	2224	<0.5	5 + Organic	
	64N 20E	2220	>100	organic	
	64N 21E	2219	2.5	5 + organic	
	64N 23E	2217	<0.5	5	
	64N 24E	2216	<0.5	C + S	
	64N 26E	2214	<0.5	5	· · · · · · · · · · · · · · · · · · ·
	54N 27E		_<0.5	5	
	64N 29E	2211	<0.5	c	
:	64N 30E	2210	<0.5	5	
	64N 40E	2200	<0.5	5	
	64N 41E	2199	<0.5	. 5	
	64N-33W	36-09		St fine gravel	
64N ?	56N 34W	3610	<0.5 🖌	"	
	64N 50W	3612	<0.5	c + organic	
	64N 51W	3613	<0.5	. 1/	
	64N 53W	3615	<0.5	11	
	51N 51W	3616	13.5		
	64N 56W	3618	10.5	" P	
.•	64N 57W	2297	<0.5	Statine gravel	· ·
	64N 58W	2298	<0.5	"	
:	6AN 670	2307	<0.5	-5	
Line	68N 13E	2180	<0.5	C+S	
	68N 14E	2181	6.5	C+5	· ·
	68N 17E	2183	<0.5	5	
	68N 18E	2184	<0.5	5	· · ·
	48N 20E	2186	1.0	5	· · · · · · · · · · · · · · · · · · ·
	68N 21E	1 2187	<0.5	5	
	1				



#### **CERTIFICATE OF ANALYSIS** EX 2021 - 41 AVE. N.E. Calgary, Canada T2E 6P2 LABS (ALBERTA) LTD. TELEPHONE: 403-276-9627 TELEX: 038-25541 ANALYTICAL AND CONSULTING CHEMISTS • OIL • SOILS VEGETATION • ENVIRONMENTAL ANALYSIS • MINERAL • GAS • WATER 348-04-02 PROJECT NO.

Wollex Exploration

Page 7

÷۲

	Para	meter	Sample Number	U (ppm)	Soil type	
Line	68N	23E	2189	1.5	5	
	68N	24E	2190	<0.5	St. Fine gravel	
	68N	26E	2192	<0.5	C	
	68N	22E(27	E?) 2193	<0.5 +	5	
•	68N	29E	2195	<0.5	5	
	68N	31E	2196	1.0	5	
	68N	34W 👘	2133	1.0	5	
	68N	36M	2132	<u>1.0</u>	st organic	
	68N	42W	2127	1.0	S	
	<u>68N</u>	43W	2126	<0.5	5	
	68N	450	2124	2.5	5	
·	69N	46W	2123	1.0	5	· · · · ·
	68N	55W	2115	5.5	5	
	68N	56W	2114	4.0	5	
Line	<u>72N</u>	<u>13E</u>	2036	3.5	5	
	72N	14E	2035	3.0	C	
	72N	19E	2030	1.0	C	
	72N	20E	2029	<0,5	С .	
	72N	7W	2056	<0.5	5	
	72N_	8W	2057	_<0.5	5	
	72N	100	2059	2.5	5	
:	72N	51W	2097	2.5	'C	
Line	76N	B.L.O.	1959	0.5	5	
	76N	1 E	1958	<0.5	S	
	7.6N-	9E	1950	50	S+ Fine gravel	
	76N.	10E	1944	5.5	5	
	76N	12E	1947	<0.5	5	
•	76N	13E	1946	<0.5	3	
	76N	15E	1944	<0.5	C <del>7</del> 5	
	7-6N-	165		<0-+5	S fine anal	
	76N	2₩	1961	<0.5	S + + The graver	
<i>.</i> •	76N	30	1962	3.0		
	76N	8₩	1961	<0.5	5	
	76N	250	1984	4.0	5	
	76N-	280		<0.5	<u> </u>	
	7.6N	39W	1998	3.0	C	
	ZGN	40W	1999	<0.5	C	
	76N	42W	2001	4.0	5	
	76N	550	2014	1.0	st time gravel	•
Line	ROW	/t.	1877	<0+0	5	

CTA

LABS (ALBERTA) LTD.

ANALYTICAL AND CONSULTING CHEMISTS

EM

IEX

2021 - 41 AVE. N.E. Calgary, Canada T2E 6P2 TELEPHONE: 403-276-9627 TELEX: 038-25541 , 2¹²

MINERAL	• GAS	WATER	• OIL	• SOILS	VEGETATION	ENVIRONMEN	ITAL ANALYSIS
Wollex E	xplorati	on				PROJECT NO.	348-04-02

	Parameter	Sample Number	U (ppm)	Soil type	
Line	BON BE	1876	<0.5	s + fine gravel	
	80N 10E	1874	2.5	2	
	80N 11E	1873	<0.5	5	•
	80N 13E	1871	2.5	<b>S</b>	
	80N 14E	1870	<0.5	5	
	80N 16E	1868	<0.5	5	
	80N 17E	1867	1.0	C + S	·
	80N 19E	1865	1.0	C	
	80N 20E	186.4	<0.5	C+S	·
	80N 4W	1888	1.5	S	1
	80N 5W	1889	1.0		
	80N 25W	1909	<0.5	5	
	80N 26W	1910	<0.5	5	•
	80N 28W	1912	<0.5	5	İ
	80N 27W	1913	<0.5	S	
	80N 35W	3622	<0.5	S + organic	
	BON ZAH	3621	<0.5	S	
	SON 38H	3619	<0.5	5	
	80N 47H	1927	<0.5	s + fine gravel	
1 inc	84N 0	1820	2.5	5	
<u> </u>	84N 2W	1822	<0.5	٢	
:	84N 3W	1823	<0.5	5	
	84N 5W	1825	<0.5	S	
	84N 30W	1849	<0.5	5	
	84N 38W	1850	<0.5	S	
	84N 50W	1862	<0.5	<b>S</b>	
	84N 1E	1819	<0.5	5	
	84N 3E	1817	<0.5	5	
	84N 13E	1807	<0.5	5	
	-84N-15E		_<0.5	S	
Line	85 B.L.O.	3510	<0.5	C	
	8 <b>5</b> 2E	3508	<0.5	C	
.•	8 <b>5</b> 3E	3507	<0.5	C C	
	8 <b>5</b> 5E	3505	<0.5	C	
	-8 <b>5</b> 6E				
	8 <b>5</b> 8E	3502	30.0 -	C + organic	
	8 <b>5</b> 9E	3501	4.0	ct organic	
	8 <b>5</b> 11E	3499	<0.5	5 ~	
	8 <b>5</b> 12E	3 498	3.5	S	
	<del>85 10</del>	3511	2.5	C+ organic	



**EX** LABS (ALBERTA) LTD.

ANALYTICAL AND CONSULTING CHEMISTS

EM

2021 - 41 AVE. N.E. Calgary, Canada T2E 6P2 TELEPHONE: 403-276-9627 TELEX: 038-25541

MINERAL	• GAS	<ul> <li>WATER</li> </ul>	• OIL	<ul> <li>SOILS</li> </ul>	<ul> <li>VEGETATION</li> </ul>	• ENVIRONMENT	NTAL ANALYSIS
Wollex E	xplorati	on				PROJECT NO.	348-04-02

			-		
	Para	ameter	Sample Number	U (ppm)	Soil type
Line	85	36	3513	2.5	С
	85	414	3514	<0.5	<i>c</i>
	85	 АШ	3516	14.5	C
	8 <b>5</b>	7W	3517	<0.5	C
	85	9W	3.519	4.0	C
	85	100	3520	<0.5	C
	85	12W	3522	0.5	C
	8 <b>S</b>	13W	3523	1.0	C
	85	150	3525	<0.5	C
	85	160	3526	13.0	S
Line	85N	B.L.O.	2018	<0.5	c + organic
	83N	30	2106	<0.5	Organic
	86N	40.	2107	0.5	S
Line	88N	ТW	1749	<0.5	2
	88N	2W	1750	<0.5	د
	88N	4W	1752	6.5	C
	88N	54	1753	<0.5	C
	88N	27W	1774	<0.5	S + organic
	83N	28W	3624	<0.5	5
	88N_	29W	3625		5
	88N	31W	3627	<0.5	5
:	88N	32W	3628	<0.5	5
	88N	50ZW	1791	<0.5 🗸	5
	88N	2E	1746	<0.5	5
	88N_	_3E	1745	<0.5	5
?	88N.	17E 16E	1732	<0.5	5
?	88N	198E 17E	1731	<0.5	5
?	88N	20E 19E	1729	<0.5	s + fine gravel, in swamp
	88N	28E	1728	1.0	C
	88N-	-30E	1726	<05	
	88N	31E	1725	<0.5	<i>c</i>
	88N	33E	1723	<0.5	C
	88N	34E	1722	3.5	C
	88M	37E	1719	<0.5	5
,	88N-	-40E		<0.5	
Line	90N	E.L.O.	2548	<0.5	s + fine gravel
	90N	2E	2550	1,0	C+ Organic
	90N	1.W	2547	1.0	organic
	190N	30	2545	<0.5	C
	<b>9</b> 0%-	40	2544	1.0	C

CTA

**IEX** 

ET

LABS (ALBERTA) LTD.

ANALYTICAL AND CONSULTING CHEMISTS

2021 - 41 AVE. N.E. Calgary, Canada T2E 6P2 TELEPHONE: 403-276-9627 TELEX: 038-25541 . .

MINERAL	• GAS	• WATER	• 01L	• SOILS	<ul> <li>VEGETATION</li> </ul>	ENVIRONMEN	TAL ANALYSIS
Wollex E	xplorati	on				PROJECT NO.	348-04-02

	D	Sample		0.1.4	
	Parameter	Number	U (ppm)	Soil Type	
Line	92N 1E	1683	1.0	5	
	92N 15E	1695	2.5	5	
	92N 17E	1697	2.5	s + time graver	
	92N 18E	1698	<0.5	5	
	<u>92N_26E</u>	1700	5.0	5 + organic	
	92N 27E	1701	20.0	5 + Bryunie	
	92N 32E	1706	4.0	C	
	92N 33E	1707	1.0	3	
	92N 35E	1709	<0.5	<u>،</u>	
	92N 36E	1710	<0.5	٢	
	92N 38E	1712	0.5	Cts	
	92N 39E	1713	<0.5	C+5	
	92N 0	1682	<0.5	5	
	92N 2W	1680	<0.5	2	
	92N_3W	1679	1.0	S	
	92N 11W	1671	4.0	5	
	92N 18W	1664	<0.5	5	
	92N 20W	1662	<0.5	5	
	92N 27W	1655	< <u>0.</u> 5	s + organic	
	92N_30W		1 <u></u>	-5 + organic	
	92N 34W	1649	<0.5	5	
:	92N 36W	1641	<0.5	5	
	92N 37W	1646	<0.5	5	
	92N 39W	1644	<0.5	5	
	92N-46W		< <u>Q</u> 5	st-organic	
Line	125 1E	3542	<0.5	e	
	125 2E	3541	<0.5	C	
	125 4E	3339	<0.5	C	
	125 SE	3538	<0.5	C	
	125-7E	3536	35-0		
	125 8E	3535	<0.5	organic	
	125 10E	3533	<0.5	C + Organie	
	125 11E	3332	<0.5	6	
	125 13E	3330	<0.0	C	
		3527		~	
	TSO TM	2515	<v+0 4 ∧</v+0 		
		3343 3517	20 5		х. Х
		33+1 7610	NU+01 1 A		
	120 00	3040			· · ·
	1750 NM	3 550	<v+0< th=""><th>C</th><th></th></v+0<>	C	



LABS (ALBERTA) LTD.

ANALYTICAL AND CONSULTING CHEMISTS

2021 - 41 AVE. N.E. Calgary, Canada T2E 6P2 TELEPHONE: 403-276-9627 TELEX: 038-25541

. 2

 WATER • GAS

HEMEX

SOILS

• OIL

VEGETATION

ENVIRONMENTAL ANALYSIS

348-04-02

PROJECT NO.

Wollex Exploration

MINERAL

<u>Page ll</u> Sample Soil type Number Parameter U (ppm) 3551 С Line <0.5 12**5** 8W 125 3553 2.5 C 10W 3554 <0.5 125 11W C 3556 C+ organic 50.0 12**5** 13W 125-14W 355.7. 4.0 fine grave 5 + 125 16W 3559 6,0 c125 17W 2.5 3560 ک <0.5 Line 165 16W 3606 5 16**5** 17W 3607 1.0 BE0--0+00 ÷S S 3446 1.0 0+00 1E C+5 3444 <0.5 0+00 3E C+5 0+00 4E 3443 <0.5 ک 0.5 0+00 6E 3441 C+S 2.5 0+00N-7E-3440 ک 0+00 20 3449 4.0 32N 1E A 3041 3.0 5 2.5 5 32N 3E A 3039 5 3038 .1.0 32N 4E ۵ <u>.</u> 3036 <0.532N-6E-A 2 32N 7E A 3035 5.0 5 32N 9E A 3033 1.0 ٢ 3032 <0.5 32N 10E A C + 5 2.5 32N 4E B 3074 32N SE B 1.0 c+-5 3072 0.5 2 32N 7E B 3071 32N 24E B 3054 4.5 5 32N 25E 3053 2.5 5 Б <0.5 32N 27E B 3051 2 5000 32N 28E 3050 <0.5 B 3048 32N 30E 3.0 В 3047 8.0 32N 31E  $\mathbf{E}$ 5 3045 1.5 32N 33E B 5 2.5 32N 34E B 3044 10.5 5 36E B 32N 3042 A-1 5.0 A-2 2.5 A-3 10.5 6-4 <0.5 A-5 2.5





2021 - 41 AVE. N.E. Calgary, Canada T2E 6P2 TELEPHONE: 403-276-9627 TELEX: 038-25541 .

ANALYTICAL AND CONSULTING CHEMISTS

MINERAL	• GAS	• WATER	• OIL	<ul> <li>SOILS</li> </ul>	<ul> <li>VEGETATION</li> </ul>	ENVIRONMENTAL ANALYSIS

Wollex Exploration

PROJECT NO. 348-04-02

Desemption	II (nnm)	
Parameter		
A=0	1.0	
	<0.5	
44	<0.5	
10	<0.5	
	14.5	
1.5	20 S	
4 ET	· · · · · · · · · · · · · · · · · · ·	
10		
10	20.5	
+ 0	<u></u>	
10	<0.5	
1. 1.7 A	<0.5	
01	<0.5	
22.1 00	<0.5	
23	<0.5	
24	<0.5	
25	<0.5	
24	17.5	
<u></u>	<0.5	
28	<0.5	
29	<0.5	
-4-30	<0.5	<b>`</b>
31	<0.5	· · ·
34	<0.5	
35	<0.5	· · ·
36	<0.5	
37	1.0	
	0+5	
39	<0.5	
A-40	4.5	
A-41	4.0	
A-42	1.0	
E-1	9.5	
B-2	>100.0	
-B-3	24.0	
B-4	20.0	
B-5	8.5	
B-6	0.5	



		С	ERTIFIC	ATE OF AN	NALYSIS	
LABS (AL ANALYTICAL AN	HEN BERTA	LTD.				2021 - 41 AVE. N.E. Calgary, Canada T2E 6P2 TELEPHONE: 403-276-9627 TELEX: 038-25541
MINERAL	• GAS	• WATER	• OIL	• SOILS	• VEGETATION	• ENVIRONMENTAL ANALYSIS

Wollex Exploration

PROJECT NO. 348-04-02

.

rarameter	U (ppm)	
B-7	5.0	
B-8	1.5	$\cdot$
B-9	2.0	
B-10	16.0	
	1.0	
12	10.0	
1.3	<0.5	
14	<0.5	
15	9.0	
16	1.0	
17	16.0	
18	1.0	
19	7.0	
B-20	8+0	
21	21.5	
22	0.5	
23	3.0	
24	3.0	
25	- 6+5	
27	2.0	
28	13.5	
29	8.0	
B-30	2.0	
32 77		
30	<0+U	
38		
3/	2.+V 20.57	
5-40	<u+0 ZA E</u+0 	
4) J.	×0+0 ×	·
· · · · · · · · · · · · · · · · · · ·	4V+U 20 5	
44 Ú		
. 竹竹 A町		
44 J A 2		
40 A7	<0.5	
^? / TI		······





ANALYTICAL AND CONSULTING CHEMISTS

.

.2021 - 41 AVE. N.E. Calgary, Canada T2E 6P2 TELEPHONE: 403-276-9627 TELEX: 038-25541

MINERAL	• GAS	• WATER	• 01L	• SOILS	<ul> <li>VEGETATION</li> </ul>	ENVIRONMENTAL ANALYSIS
						PROJECT NO.

Wollex Exploration

348-04-02

1

Page 14		
Darameter	II (nom)	
R-49	<u> </u>	
8-50	>100.0	
51	<0.5	
52	<0.5	
53	<0.5	1
54	0.5	
55	<0.5	
56	<0.5	
57	<0.5	
58	1.0	
59	<0.5	
B-60	<0.5	
61	<0.5	
62	<0,5	
63	<0.5	
64	2.5	
.65	6.5	
66	7.0	
67	. 9.5	
69	<0.5	
*B-20	<0.5 <0.5	
	<0.5	
/2	<v+0 Z0 8</v+0 	
	7.∔U Z ⊑	
7 J	0+0 5 A	
70	U+V 1 馬	
// 		
70	<0.5	
	<0.5	
	<0.5	
- 85 	<0.5	
83	3.5	;
84	<0.5	
85	<0.5	
86	<0.5	
	8.0	
R-SS	<0.5	



LABS (ALBERTA) LTD. ANALYTICAL AND CONSULTING CHEMISTS

2021 - 41 AVE. N.E. Calgary, Canada T2E 6P2 TELEPHONE: 403-276-9627 TELEX: 038-25541 1

MINERAL	• GAS	• WATER	• 01L	• SOILS	<ul> <li>VEGETATION</li> </ul>	ENVIRONMENT	AL ANALYSIS
						PROJECT NO.	348-04-02
Wollex Ex	xplorati	ion				•	510 01 02

B-89       <0.5         B-90       <0.5         91       <0.5         92       <0.5         93       <0.5         94       <0.5         95 $5.5$ 96 $6.5$ 97 $5.0$ 98       10.5         99 $7.5$ B-100       <0.5         101       <0.5         102       <0.5         103       <0.5         104       <0.5         105       <0.5         106       <0.5         107 $6.5$ 108       18.5         109       <0.5         B-111       <0.5         B-112       <0.5         B-144       <0.5         B-144       <0.5	Parameter	U (ppm)	
$\begin{array}{llllllllllllllllllllllllllllllllllll$	B-89	<0.5	
91 $<0.5$ 92 $<0.5$ 93 $<0.5$ 94 $<0.5$ 95 $5.5$ 96 $6.5$ 97 $5.0$ 98 $10.5$ 99 $7.5$ $B-100$ $<0.5$ $101$ $<0.5$ $102$ $<0.5$ $103$ $<0.5$ $104$ $<0.5$ $105$ $<0.5$ $106$ $<0.5$ $107$ $6.5$ $108$ $18.5$ $109$ $<0.5$ $B-110$ $<0.5$ $B-111$ $<0.5$ $B-112$ $<0.5$ $B-112$ $<0.5$ $B-114$ $<0.5$ $B-114$ $<0.5$ $A0N$ $4E$ $1.0$ (ALSO-NUMBERED B-34)	B-90	<0.5	
92 $<0.5$ 93 $<0.5$ 94 $<0.5$ 95 $5.5$ 96 $6.5$ 97 $5.0$ 98 $10.5$ 99 $7.5$ B-100 $<0.5$ $101$ $<0.5$ $102$ $<0.5$ $103$ $<0.5$ $104$ $<0.5$ $105$ $<0.5$ $106$ $<0.5$ $106$ $<0.5$ $107$ $6.5$ $108$ $18.5$ $109$ $<0.5$ $B-111$ $<0.5$ $B-112$ $<0.5$ $B-111$ $<0.5$ $B-112$ $<0.5$ $B-114$ $<0.5$ $B-114$ $<0.5$ $AON$ $& & & & & & & & & & & & & & & & & & & $	91	<0.5	
93 $<0,5$ $94$ $<0.5$ $95$ $5.5$ $96$ $6.5$ $97$ $5.0$ $98$ $10.5$ $99$ $7.5$ $B-100$ $<0.5$ $101$ $<0.5$ $102$ $<0.5$ $102$ $<0.5$ $103$ $<0.5$ $104$ $<0.5$ $105$ $<0.5$ $106$ $<0.5$ $107$ $<6.5$ $107$ $<6.5$ $109$ $<0.5$ $B-110$ $<0.5$ $B-111$ $<0.5$ $B-112$ $<0.5$ $B-112$ $<0.5$ $B-114$ $<0.5$ $40N$ $6E$ $1.0$ $<(ALSO-NUMBERED B-34)$ $(ALSO-NUMBERED B-34)$	92	<0.5	
94 $< 0.5$ 95 $5.5$ 96 $6.5$ 97 $5.0$ 98 $10.5$ 99 $7.5$ B-100 $< 0.5$ 101 $< 0.5$ 102 $< 0.5$ 103 $< 0.5$ 104 $< 0.5$ 105 $< 0.5$ 106 $< 0.5$ 107 $6.5$ 108 $18.5$ 109 $< 0.5$ B-110 $< 0.5$ B-111 $< 0.5$ B-112 $< 0.5$ B-114 $< 0.5$ B-114 $< 0.5$ B-114 $< 0.5$		<0.5	,
95 $5.5$ 96 $6.5$ 97 $5.0$ 98 $10.5$ 99 $7.5$ B-100 $<0.5$ 101 $<0.5$ 102 $<0.5$ 103 $<0.5$ 104 $<0.5$ 105 $<0.5$ 106 $<0.5$ 107 $<0.5$ 108 $18.5$ 109 $<0.5$ B-110 $<0.5$ B-111 $<0.5$ B-112 $<0.5$ B-114 $<0.5$ B-114 $<0.5$ P-114 $<0.5$	94	<0.5	
96 $6.5$ $97$ $5.0$ $98$ $10.5$ $97$ $7.5$ $B-100$ $<0.5$ $101$ $<0.5$ $102$ $<0.5$ $103$ $<0.5$ $104$ $<0.5$ $104$ $<0.5$ $104$ $<0.5$ $106$ $<0.5$ $107$ $6.5$ $108$ $18.5$ $109$ $<0.5$ $B-110$ $<0.5$ $B-111$ $<0.5$ $B-112$ $<0.5$ $B-112$ $<0.5$ $B-114$ $<0.5$ $B-114$ $<0.5$ $40N$ $6E$ $1.0$ $<0.4ESD-NUMBERED - B-34)$ $<0.5$	° 95	5.5	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ዎሪ	6+5	
98       10.5         99       7.5         B-100 $<0.5$ 101 $<0.5$ 102 $<0.5$ 103 $<0.5$ 104 $<0.5$ 105 $<0.5$ 106 $<0.5$ 107 $6.5$ 108       18.5         109 $<0.5$ B-110 $<0.5$ B-111 $<0.5$ B-112 $<0.5$ B-113 $<0.5$ B-143 $<0.5$ 40N 6E $1.0$ '(AESD-NUMBERED-B-34)	97	5.0	
99       7.5         B-100       <0.5		10.5	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	99	7.5	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	B-100	<0.5	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	101	<0.5	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	102	<0.5	
$ \begin{array}{rcrcrcr} 104 & <0.5 \\ 105 & <0.5 \\ 106 & <0.5 \\ 107 & 6.5 \\ 108 & 18.5 \\ 109 & <0.5 \\ B-110 & <0.5 \\ B-111 & <0.5 \\ B-112 & <0.5 \\ B-143 & <0.5 \\ B-144 & <0.5 \\ \end{array} $		<05	
$105$ <0.5	104	<0.5	
$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	105	<0.5	
107 6.5 108 18.5 109 <0.5 B-110 <0.5 B-111 <0.5 B-112 <0.5 B-143 <0.5 B-144 <0.5 40N 6E 1.0 (ALSO-NUMBERED-B-34)	106	<0.5	
108       18.5         109       <0.5	107	6.5	
109       <0.5		18.j	
B-110       <0.5	109	<0.5	
B-111 (0.5 B-112 (0.5 B-143 (0.5 B-114 (0.5 B-114 (0.5 B-114 (0.5 B-114 (0.5 B-114 (0.5) B-114 (0.5 B-114 (0.5) B-114 (0.5) B-	R-110		
B-112 (0.5 B-143 (0.5 B-144 (0.5 Comparison of the second s	B-111		
B-113 B-114 <0.5 40N SE 1.0 -(ALSO-NUMBERED B-34)	B-112		
B-114 (0.5 40N 6E 1.0 (ALSO-NUMBERED-B-34)	-K-1-1-3		
40N SE 1.0 -(ALSO-NUMBERED-B-34)	B-144	<b>₹0</b> +0	· ·
40N 6E 1.0 -(AESO-NUMBERED-B-34)			
40N SE 1+0 -(AESO-NUMBERED-B-34)		1 0	
(ALSU NUMBERED D-34)	AVN OL -AAI-OONUMUEDEE		
	VAESU-NUMBEREL	( D-34)	•
,			
,			



Contraction of the local division of the loc

.

	To: WOLLEX EXPLORATIONS LTD.,
	806 Norcen Tower,
(	715 - 5th Ave. S.W.,
	Calgary, Alberta
	ATTN: Murray Pyke



File No.	11890
Date	August 24, 1976
Samples	Soil Geochems

```

LORING LABORATORIES LTD.

| | | Page # 1 | · |
|----------------------------|--|--|------------|
| SAMPLE No. | | РРМ
U308 | |
| "Soil Geochems" | | | |
| J - 1715 -S | Line BBN | 1.2 | |
| J -1 718 c | | 0.5 | |
| J - 1721 5 | | 0.7 | |
| J-1724 с | | 2.3 | |
| J-1727 c | | 1.2 | |
| J -1 730 5 | | 1.5 | |
| J - 1733 ≤ | | 0 . 5 | |
| J -1 736 5 | | 0.3 | |
| J-1 739 <i>≤</i> | | 0.3 | |
| J - 1742 S | | 1.2 | · , |
| J-1745 S | | 0.5 | |
| J -1 748 5 | | 3.2 | • |
| J - 1751 <i>S</i> | | 2.2 | |
| J - 1754 <i>-</i> 5 | | 0.5 | |
| J - 1757 ک | | 0.7 | |
| J - 1760 5 | · · | 0.5 | |
| J-1763 5 | | 0.8 | |
| J - 1766 ≤ | | 0.2 | |
| J-1769 C | | 0.5 | |
| J - 1772 c | | 0.5 | |
| J - 1775 S | | 0.7 | |
| J - 1778 ح | | 0.7 | |
| J - 1781 5 | | 0.7 | |
| J - 1784 -5 | | 0.8 | |
| J - 1787 5 | | 1.2 | |
| J-17 <u>90</u> | V | 1.0 | |
| J-3031 St fine gr | aver Line SEN | 1.7 | |
| J− 3034 <i>≤</i> | | 1.5 | |
| J - 3037 5 | V . | 7.7 | |
| | J Hereby Certify
assays made by me upon t | THAT THE ABOVE RESULTS
The Herein Described Sat | GARE THOSE |

Rejects Retained one month.

Pulps Retained one month unless specific arrangements made in advance.

| To: | WOLLEX | EXPLORATIONS | LTD. |
|-----|--------|--------------|------|
| | | | |

| 806 Norcen Tower, |
|----------------------|
| ■15 - 5th Ave. S.W., |
| Calgary, Alberta |

ATTN: Murray Pyke

| File No | 11890 | |
|---------|-----------------|--|
| Date | August 24, 1976 | |
| Samples | Soil Geochems | |

er vificate ASSAY LORING LABORATORIES LTD.

Page # 2 PPM SAMPLE No. **U30**8 Line 32N 1.0 J-3040 ى J-3043 5 1.0 5 2.3 J-3046 0.8 5 J-3049 4.3 J-3052 5 С 1.0 J-3055 0.8 Ś J-3058 1.0 J-3061 5 5 1.0 J-3064 0.7 J-3067 ک 0.6 J-3070 S 0.2 J-3073 ح 0.4 S J-3076 3.4 J-3079 5 c+s J-3087 0.4 7.2 J-3092 С 5 J-3095 3.8 J-3098 C+ S NIL J-3101 5 NIL 0.2 J-3104 ى 0.4 5 J-3107 5 0.6 J-3110 0.2 J-3113 5 5 NIL J-3116 0.4 J-3119 S 0.4 J-3122 5 J-3125 0.4 5 Line 45 0.2 J-3470 5 5 0.6 J-3473 1.8 5 J-3476 4.8 J-3479 5

J Mereby Clertify that the above results are those assays made by me upon the herein described samples . . .

Rejects Retained one month.

Pulps Retained one month unless specific arrangements made in advance.

| , |
|-------------------------------|
| To: WOLLEX EXPLORATIONS LTD., |
| 806 Norcen Tower, |
| 715 - 5th Ave. S.W., |
| Calgary, Alberta |
| |
| ATTN: Murray Pyke |

| File N | lo | 11890 |) | |
|--------|----|-------|--------|------|
| Date . | | Augus | st 24, | 1976 |
| Sampl | es | Soil | Geoche | ems |

, V

x if icate 0× ASSAY

LORING LABORATORIES LTD.

| | | Page # 3 | |
|-----------------------------|------------------------|-----------------------------|-------|
| SAMPLE No. | | PPM
U308 | · · · |
| - 0/00 | 1:00 45 | | |
| J=3482 S | | 1.0 | |
| J-3485 3 | | 2 . 0 | |
| J-3488 5 | | 1.2 | |
| J-3491 3 | | 6.6 | |
| J-3494 C 7 3 | | 0.8 | |
| J-3497 3 | ¥ | 1.2 | |
| J-3500 S | Line 85 | 0.6 | |
| J-3503 S | | 1.2 | |
| J-3506 5 | | 0.8 | |
| J-3509 C | | <u> </u> | |
| J-3512 c + Fine grave | Line 85 | 6.6 | |
| J-3515 C | | 5.6 | |
| J-3518 C | | 3.8 | |
| J - 3521 <i><</i> | | 1.8 | |
| J-3524 C | · | 0•4 | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| · · | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | I Hereby Certify | THAT THE ABOVE RESULTS ARE | THOSE |
| | ASSAYS MADE BY ME UPON | THE HEREIN DESCRIBED SAMPLE | S |
| | - | | |

..

Rejects Retained one month.

Pulps Retained one month unless specific arrangements made in advance.

| To: WOLLEX EXPLORATIONS LTD., |
|-------------------------------|
| 806 Norcen Tower, |
| 215 - 5th Ave. S.W., |
| Calgary, Alberta |
| ATTN: Murray Pyke |

| File No. | 11898 |
|----------|-----------------|
| Date | August 25, 1976 |
| Samples | Soil Geochems |

LORING LABORATORIES LTD.

| | Page # 1 | |
|---------------------------|---|-------------------|
| SAMPLE No. | PPM
U209 | |
| | 0308 | |
| "Soil Geochems" | | |
| | | |
| J - 1636 5 | Line 92N 1.3 | |
| J - 1639 S | 0.7 | |
| J - 1642 <i>S</i> | 0.9 | |
| J - 1645 5 | 1.6 | |
| J - 1648 <i>≤</i> | 1.6 | |
| J-1651 5 | 0.9 | |
| J-1654 5+0190016 | 0.9 | |
| J - 1657 5 | 0.2 | |
| J-1660 S | 0.7 | |
| J-1663 5 | 4.2 | |
| J-1666 sandy soil | 1.1 | |
| J−1 669 ≤ | 0.4 | |
| J - 1672 <i>S</i> | 0.4 | |
| J - 1675 5 | 0.2 | |
| J - 1678 <i>S</i> | 0.4 | |
| J -1 681 <i>S</i> | 1.1 | |
| J - 1684 <i>S</i> | 0.4 | |
| J-1687 5 | 0.4 | |
| J-1690 St fine gra | 0.2 | |
| J-1 693 ≤ | 0.7 | |
| J - 1696 5 | 3.1 | |
| J-1699 - | 10.2 | |
| J - 1702 <i>-5</i> | 1.3 | |
| J - 1705 C | 0.7 | |
| J-1708 5 | 1.6 | |
| J - 1711 5 | 1.6 | |
| J-1714 St fine 9 + 4 | <i>lel</i> ↓ 0.7 | |
| J-1800 5 | Line 84N - 20+00E 1.1 | |
| J-1803 5 | '' - 17 + 00 E = 0.9 | · · · |
| | I Mereby Certify that the above | RESULTS ARE THOSE |
| | ASSAYS MADE BY ME UPON THE HEREIN DESCR | IBED SAMPLES |
| | | |

......

Rejects Retained one month.

Pulps Retained one month unless specific arrangements made in advance.

To: WOLLEX EXPLORATIONS LTD.,

| 806 Norcen Tower, |
|----------------------|
| 715 - 5th Ave. S.W., |
| Calgary, Alberta |
| ATTN: Murray Pyke |

| File No. | 11898 |
|----------|-----------------|
| Date | August 25, 1976 |
| Samples | Soil Geochems |

LORING LABORATORIES LTD.

| | | Page # 2 | |
|---------------------------|---------------------|---------------------------------|-------|
| SAMPLE No. | | ррм
U308 | |
| J - 1806 5 | Line 84 N | 1.3 | |
| J-1809 5 | | 0.9 | |
| J - 1812 <i>S</i> | | 0.9 | |
| J - 1815 ≤ | | 0.9 | |
| ح J _ 1818 ح | | 0.7 | |
| J - 1821 <i>S</i> | | 1.6 | |
| J -1 824 <i>S</i> | | 1.1 | |
| J - 1827 <i>S</i> | | 1.3 | |
| J-1830 ≤ | | 0.9 | |
| J-1833 S | | 0.9 | , |
| J-1836 5 | | 0.9 | |
| J - 1839 <i>-5</i> | | 0.8 | |
| J - 1842 <i>S</i> | | 0.6 | |
| J-1845 <i>s</i> | | 0.8 | |
| J - 1848 5 | | 0.8 | |
| J - 1851 ≤ | | 0.8 | |
| J - 1854 <i>S</i> | | 0.6 | |
| J -1 857 <i>S</i> | | 0.5 | |
| J-1860 5 | | 0.9 | |
| J-2019 5+05 | anic Line 64 N | <u>1.</u> 1 | |
| J-2022 " | | 0.6 | |
| J-2025 C+ 3 | | 0.8 | |
| J - 2028 5 | | 0.5 | |
| J - 2031 <i>S</i> | | 0.3 | |
| J - 2034 ⊂ | | 0.6 | |
| J-2037 5+fi | ng gravel | 0.5 | |
| J=2040 S | | 0.5 | |
| J - 2043 <i>S</i> | | 0.8 | 1 |
| J - 2046 <i>S</i> | | 0.5 | |
| J-2049 5 | | 1.2 | |
| J - 2052 < | \checkmark | 0.6 | |
| | I Merchn Mer | ifn that the above results are | THOSE |
| | ASSAYS MADE BY ME U | PON THE HEREIN DESCRIBED SAMPLE | S |
| | | | |

Rejects Retained one month.

Pulps Retained one month unless specific arrangements made in advance.

| To: WOLLEX EXPLORATIONS LTD., |
|--|
| 806 Norcen Tower. |
| |
| 715-5th Ave. S.W. |
| CALGARY, Alta. |
| ATTN: Murray Pyke |
| ······································ |
| |

| File No. | 11899 | |
|----------|-----------------|--|
| Date | August 26, 1976 | |
| Samples | Soil Geochems | |

LORING LABORATORIES LTD.

6

PAGE # 1

| | | РРМ |
|---------------------------------------|--------------------------|----------------------------------|
| SAMPLE NO. | l · · · · · | 1308 |
| T 1963 5400 | anic Line BON | 1.8 |
| J=1805 G, C, S | | |
| J=1800 - | | 0 • 0 |
| J-1009 S | | 1 2 |
| J=10/2 \$ | | 1 8 |
| J=10/J 3 | | |
| J=10/0 J | | |
| J=1001 <sup>2</sup> | | 0.6 |
| J=1004 S | | |
| J-1887 5 | | |
| J=1890 > | | |
| J-1893 ≤ | | |
| J-1896 3 | | |
| J-1899 S | | |
| J=1902 S | | 0.6 |
| J-1905 S | | 0.6 |
| J-1908 S | | 1.2 |
| J-1911 S | | 2.0 |
| J-1914 S | | 0.2 |
| J=1917 C+ org | in ic | 0.8 |
| ح J - 1920 | | 0.6 |
| J - 1923 5 | | 0.2 |
| J-1926 S+ fine | graver v | 1.0 |
| J−19 33 S | Line 76N | 1.2 |
| J - 1936 S | | 0.6 |
| J - 1939 | | 1.2 |
| J−19 42 –≤ | | 0.6 |
| J - 1945 <i>S</i> | | 1.2 |
| J - 1948 5 | | 5-2 |
| J - 1951 <i>S</i> | | 0.6 |
| ح J -1 954 | | 0.6 |
| ک J - 1957 | ¥ | 0.8 |
| | I Therehn Mertifn | THAT THE ABOVE RESULTS ARE THOSE |
| | | |
| _ | ASSATS MADE DI ME UPUN I | |
| · · · · · · · · · · · · · · · · · · · | | |

Rejects Retained one month.

Pulps Retained one month unless specific arrangements made in advance.

Licensed Assayer of British Columbia

.

| File No. | 11899 | |
|-----------|-----------------|---|
| Date | August 26, 1976 | ŗ |
| Samples . | Soil Geochems | |

LORING LABORATORIES LTD.

ASSAY

PPM SAMPLE No. **U308** Line 76 N J-1960 5 3.6 J-1963 5 0.6 S J-1966 0.6 J-1969 2 0.8 5 J-1970 1.0 5 J-1973 0.6 ح J-1976 0.6 5 J-1979 0.6 . ک J-1982 0.6 **J-1985** C + 5 0.6 5 J-1988 0.6 5 J-1991 1.4 J-1994 C+5 0.4 J-1997 5 0.8 5+ fine g **J-2000** 1.8 11 J-2003 0.4 J-2006 // 0.8 J-2009 5 0.6 S + fine bravel J-2012 0.4 J-2015 11 0.4 ? Location (?) 76N - 57W J-2016 0.6 5 Line 68N - 62W J-2110 0.4 5 **J-2113** 0.6 5 J-2116 0.6 J-2119 5 0.2 ح J-2122 0.2 ى J-2125 1.6 J-2128 بح 0.2 J-2131 6BN Line 5 0.8 J-2134 ى 0.6 2 J-2137 0.8 I Hereby Certify that the above results are those ASSAYS MADE BY ME UPON THE HEREIN DESCRIBED SAMPLES

PAGE # 2

Rejects Retained one month.

Pulps Retained one month unless specific arrangements made in advance.

| File No. | 11899 |
|----------|-----------------|
| Date | August 26, 1976 |
| Samples | Soil_Geochems |

et tificate ASSAY LORING LABORATORIES LTD.

PAGE # 3

| SAMPLE No. | PPM
U308 |
|----------------------------|---|
| T 21/0 5 | |
| J=2140 | |
| J=2143 3 | |
| J=2140 S | |
| J=2149 S | 1.0 |
| J=2152 S | |
| J-2155 5 | |
| J-2158 - | |
| J=2161 S | |
| J=2164 S | |
| J-216/ 5 | |
| J-2170 s | 0.6 |
| J-21/3 S | |
| J-21/6 S | |
| J-2179 2 4 3 | 0.6 |
| J-2182 5 | |
| J-2185 S | 0.6 |
| J-2188 S | 1.8 |
| J-2191 S | 0.8 |
| J - 2194 <i>≤</i> | 0.6 |
| <u>J-2197</u> C | <u> </u> |
| J-2201 C+ 5 | Line G4N = 0.8 |
| J-2204 - | 0.8 |
| J-2206 C+S | 0.6 |
| J-2208 C | 0.6 |
| J-2211 C | 0.8 |
| J- 2214 ≤ | 1.0 |
| J - 2217 ≤ | 0.8 |
| J-2222 5+0+94 | nic <u>15.8</u> |
| J - 2225 <i>c+s</i> | 0.8 |
| J - 2228 5 | 0.2 |
| J - 2231 S | v 0 . 4 |
| | J Hereby Certify that the above results are those assays made by me upon the herein described samples |
| | |

Rejects Retained one month.

Pulps Retained one month unless specific arrangements made in advance.

| File No. | 11899 |
|----------|-------------------------|
| Date | August 26 , 1976 |
| Samples | Soil Geochems |

PAGE # 4

| | | | РРМ | | · · · · | |
|-----------------|------------|----------------|--|--------------------|---------|---|
| SAMPLE | No. | | U308 | | | |
| | | 1 | | | <u></u> | |
| J - 2234 | C | Line G4N | 0.8 | | | |
| J - 2237 | 5 + Fine g | raver | • 0.6 | | | |
| J - 2240 | 5 | | 1.0 | | | |
| J - 2243 | 5 | | 0.6 | | | |
| J - 2246 | 5 | · · | 0.4 | | | |
| J - 2249 | 5 | | 0.8 | | | |
| J - 2252 | ک | | 1.2 | | | |
| J → 2255 | 5 | | 0.8 | | | |
| J - 2258 | 5 | | 0.4 | | | · |
| J - 2261 | 5 | | 0.8 | | | |
| J - 2264 | C + S | | 0.4 | | | |
| J - 2267 | 5 | | 0.4 | | | |
| J - 2270 | C + 5 | | 0.2 | | | |
| J - 2275 | 5 | | 0.2 | | | |
| J - 2278 | 5 | | 0.8 | • | | |
| J - 2281 | 5 | | 0.6 | | | |
| J - 2284 | 5 | | 0.8 | | | |
| J - 2287 | 5 | | 0.8 | | | |
| J - 2299 | C | | 0.8 | | | |
| J - 2302 | 5 | | 0.2 | 1 | | |
| J-2305 | 5 | ¥ | 0.6 | | | |
| J → 3247 | organic | Line 20 N | 84.0 | | | , |
| J-3250 | ک | | 0.8 | | | |
| J - 3253 | .C | | 1.0 | | | |
| J-3256 | 5 | | 0.8 | | | |
| J - 3259 | C | | 1.0 | | | |
| J-3262 | C | | 1.2 | | | |
| J - 3265 | C | | 1.2 | | | |
| J - 3268 | C | | 1.4 | | | |
| J-3271 | G | | 0.6 | | | |
| J-3274 | C | · · · | 0.4 | | | |
| | | I Herehn | Certify that the | E ABOVE RESULTS AR | E THOSE | |
| | | ASSAVS MADE BY | ME LIPON THE HEREI | N DESCRIBED SAMPL | ES | |
| | | | The of one the next | CONTRACT SAME | | |
| | | l | ······································ | | ····· | |

Rejects Retained one month.

Pulps Retained one month unless specific arrangements made in advance.

| File No. | 11899 |
|----------|-----------------|
| Date | August 26, 1976 |
| Samples | Soil Geochems |

0×

PAGE # 5

| | ······································ | | | · · · · · · · · · · · · · · · · · · · | |
|-------------------|--|-------------------------|-------------------|---------------------------------------|--|
| | | PPM | | | |
| SAMPLE NO. | • | U308 | | | |
| T 3277 C | Line 20 N | 0.6 | | | |
| J=J277 C | | 0.6 | | | |
| J=J200 C | | | | | |
| J=5205 C | line pp | | | | |
| J = 3437 | | 0.4 | | | |
| J=J442 2 / J | · | 1 2 | | | |
| J=3445 S | | 1.2 | | | |
| J=3440 S | | | | | |
| J=54J1 5 | | 2.0 | | | |
| J = 3454 3 | | 1.0 | | | |
| J=5457 2 | | J•4
/. /. | | | |
| J=3400 3 | | 4.4 | | | |
| T 3528 of article | line IPS | 5.6 | | | |
| J=JJZ0 D/June | | <u>J</u> •0 | | | |
| J = 3534 | | 24 | | | |
| T_3537 // | | 95.2 | | | |
| τ_3540 .s | | 1.4 | | | |
| 1-3543 C | | 1 / | | | |
| T-3546 C | | 1 4 7
2 8 | | | |
| T=3549 | | 3.4 | · | | |
| .T=3552 | | 1-8 | | | |
| .T=3555 C+S | | 20.0 | | | |
| .T=3558 ≤ | | 2.8 | | | |
| J-3561 C | 4 | 0.8 | | | |
| | , | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | | | | | |
| | · · · · · | | | | |
| | I Thavahn M | antifn turt the | ADOVE DECINTS AD | E THOSE | |
| | y greteny U | | ABOVE RESULTS AR | 50 | |
| | , ASSAYS MADE BY ME | UPON THE HEREI | N DESCRIBED SAMPL | £5 | |
| | | | | | |

Rejects Retained one month.

Pulps Retained one month unless specific arrangements made in advance.

| To: WOLLEX EXPLORATIONS LTD., |
|-------------------------------|
| 806 Norcen Tower, |
| ▲5 - 5th Ave. S.W., |
| Calgary, Alberta |
| ATTN: Murray Pyke |

| File No. | 11898 |
|----------|-----------------|
| Date | August 25, 1976 |
| Samples | Soil Geochems |

Ser ASSAY or

.

| And the second | | | |
|--|---|--|--|
| | РРМ | | |
| SAMPLE NO. | | U308 | |
| T 2055 C | Line TRN DE | | |
| J=2055 S | | 0. J | |
| J=2038 - | | . 4.1 | |
| J=2061 3 | | 0.9 | |
| J-2064 S | | 0.8 | |
| · J=2067 3 | | 0.8 | |
| J-2070 S | | 0.3 | |
| J-2073 5 | | 0.3 | |
| J-2076 S | | 0.3 | |
| J-2079 C | | 0.5 | |
| J-2082 C | 1 | 0.5 | |
| J-2085 ⊂ | | NIL | |
| J-2088 <i>క</i> | | 0.3 | |
| J-2091 S | | 0•3 | |
| J-2094 S | | 0.5 | |
| J - 2100 5 | | 1.1 | |
| J-2103 5+ find | gravel | 0.5 | |
| J-2427 C+ 07 | ganic Line 56N | 11.1 | |
| J − 2430 <i>⊂</i> | | 0.5 | |
| J-2433 Cror | ganic | 1 <u>6.6</u> | |
| J - 2436 ⊂ | | 0.8 | |
| J-2439 C | | 4.8 | |
| J-2442 C | | 0.2 | |
| J-2445 € + 05 | panic | 2 <u>•0</u> | |
| J-2448 C | | 7.2 | |
| J-2451 C | | 0.8 | |
| J - 2454 <i>S</i> | | 0.2 | |
| J - 2457 <i>S</i> | | 0.4 | |
| J - 2460 <i>S</i> | | 0.4 | |
| J - 2463 S | | 1.8 | |
| J-2466 5 | | NIL | |
| J-2469 ح | Ŵ | 0.2 | |
| | I Thoughn (| Tantifu That The ADOVE DECLUTE ADE THOSE | |
| . | n Herend 6 | ACTITIO INAL INE ABOAE KESOLIS AKE INDSE | |
| | ASSAYS MADE BY ME UPON THE HEREIN DESCRIBED SAMPLES | | |
| | | | |

Page # 3

Rejects Retained one month.

Pulps Retained one month unless specific arrangements made in advance.

| To: WOLLEX EXPLORATIONS LTD., |
|-------------------------------|
| 806 Norcen Tower, |
| 15 - 5th Ave. S.W., |
| Calgary, Alberta |
| ATTN: Murray Pyke |

| File No. | 11898 |
|----------|-----------------|
| Date | August 25, 1976 |
| Samples | Soil Geochems |

| | | Page # 4 | |
|--------------------------|--------------------------|----------------------------------|--|
| ŚAMPLE No. | | PPM
U308 | |
| | | 0500 | |
| J - 2472 <i>S</i> | Line 36 W | 0.6 | |
| J - 2475 <i>≤</i> | 1 | 1.4 | |
| J-2478 5 | | 0.6 | |
| J ≟ 2481 <i>5</i> | | 1.2 | |
| J-2484 5 | | NIL | |
| J - 2487 <i>S</i> | | 11.2 | |
| J −2490 ⊂ | | 0.2 | |
| J=2494 c+orpanic | Ì | <u>45.0</u> | |
| J-2498 " | | 63.4 | |
| J 2501 " | | 12.2 | |
| J - 2504 ″ | | <u>36.0</u> | |
| J-2507 4 | | 42.0 | |
| J-2511 " | | <u>1.2</u> | |
| J-2514 " | | <u>1.8</u> | |
| J-2517 St Fine gravel | | 2.6 | |
| J - 2520 5 | • | 1.4 | |
| J - 2523 <i>5</i> | | 1.4 | |
| J - 2526 <i>5</i> | | 1.0 | |
| J - 2529 5 | | 0.8 | |
| J - 2532 5 | | 0.6 | |
| J - 2535 <i>S</i> | | 0.6 | |
| J-2538 5 | | 1.0 | |
| J - 2541 5 | V | 0.6 | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| - | I Hereby Certify | THAT THE ABOVE RESULTS ARE THOSE | |
| | ASSAYS MADE BY ME UPON T | HE HEREIN DESCRIBED SAMPLES | |
| '''' | | | |

Rejects Retained one month.

Pulps Retained one month unless specific arrangements made in advance.

| Licensed | Assaye | r of | British | Columbia |
|----------|--------|------|---------|----------|
| | | | | |

.\

| To: WOLLEX EXPLORATIONS LTD., |
|-------------------------------|
| 806 Norcen Tower, |
| ▲5 - 5th Ave. S.W., |
| Calgary, Alberta |
| ATTN: Murray Pyke |

| File No. | 11879 |
|----------|-----------------|
| Date | August 19, 1976 |
| Samples | Soil Geochems |

Servificate ASSAY % LORING LABORATORIES LTD.

| | Page # 1 | |
|---|--|--|
| SAMPLE No. | ррм
U308 | |
| "Soil Geochems" | | |
| J-2958 5 Line 36N | 0•4 | |
| J - 2960 <i>≤</i> | 0.6 | |
| J-2963 5 | 0.6 | |
| J_2966 ≤ | 0.2 | |
| J_2969 ≤ | 0.6 | |
| I-2972 5 | 0.2 | |
| $T_{-2975} c + or or or all c$ | 32-8 | |
| T_2978 - | 0.2 | |
| $T_{-2981} c + preanic$ | 72-6 | |
| T_2984 " | 0-6 | |
| T-2987 C | 1.0 | |
| T_2990 _S | 0.6 | |
| T_2003 S | 1_0 | |
| J-2995 | 1.2 | |
| T_2000 -5 | 1 - 2 | |
| I-3002 St fine grave | 1.4 | |
| T_3005 // | 1• • | |
| J-3008 5 | 0.8 | |
| J-5008 - | 1 0 | |
| J=J011 J | 0.6 | |
| J=J014 C | | |
| J-JUIN C
J 2020 St fine Grave | 1.2 | |
| J=3020 S / /// V | | |
| J=3025 S | | |
| J-3020 - | 106 | |
| J-3029 3 | 0 | |
| J = J = J = J = J = J = J = J = J = J = | | |
| | | |
| | 1 o Z | |
| J Hereby Cen
assays made by me | tify that the above results are those upon the herein described samples | |

Rejects Retained one month.

Pulps Retained one month unless specific arrangements made in advance.

.

To: WOLLEX EXPLORATIONS LTD.,

| 806 Norcen Tower, |
|---------------------|
| 15 - 5th Ave. S.W., |
| Calgary, Alberta |
| ATTN: Murray Pyke |

| File No. | 11879 |
|----------|-----------------|
| Date | August 19, 1976 |
| Samples | Soil Geochems |

Ser ASSAV 0×

LORING LABORATORIES LTD.

| | | Page # 2 | |
|--|-------------------------------------|--|--------------------|
| SAMPLE No. | | РРМ
• U308 | |
| J-3381 S
J-3384 S
J-3387 C
J-3390 C
J-3393 C
J-3396 S
J-3399 S
J-3402 S
J-3405 S | Line BN | NIL
0.2
0.4
3.8
1.2
0.4
0.6
NIL
NIL | |
| | | | |
| | | | |
| | · · · · | | |
| | | · | · |
| | | | |
| | I Hereby Cer
assays made by me u | tity that the above results pon the herein described same | ARE THOSE
MPLES |

Rejects Retained one month.

| Τo | WOLLEX | EXPLORATIONS | LTD. |
|----|--------|--------------|------|
| | | | |

| 8 | 06 Norcen Tower, |
|-----|-------------------|
| .7. | 15-5th Ave. S.W., |
| c | ALGARY, Alta. |
| A | TTN: Murray Pyke |

| File No. | 11908 |
|----------|-----------------|
| Date | August 27, 1976 |
| Samples | Geochems - Soil |

ASSAY \* 6

PAGE # 1

| | ······································ | ····· | | |
|----------------------------|--|-----------------------------------|---|---|
| SAMPLE No | | PPM | | |
| SAMFLE NO. | | U308 | | |
| J - 1928 - 5 | 86+00 N - 7+00 W | 0•4 | | |
| J - 1930 5 | 90+00N-0+00W | 0.4 | | |
| J- 2017 с | 86+00N - 1+00W | 1.2 | | |
| J 2105 ح | " -2+00W | 6.6 | | |
| J - 2108 <i>S</i> | " - 5+00W | 0.8 | | |
| J-2546 ct organi | 90+00N - 2+00W | 6.4 | | |
| J - 2549 č | 11 - 1 + 00 E | 3.8 | | |
| J - 2552 ≤ | " - 4+00 E | 0.8 | | |
| J - 2554 <i>-</i> ≤ | " - 6 + 00 E | 0.4 | | |
| J-2674 c+≤ | Line 48 N | 0.2 | | • |
| J-2677 C+5 | - | 0.6 | | |
| J - 2680 <i>≤</i> | | 1.2 | | |
| J-2683 5 | | 1.0 | | |
| J - 2686 5 | | 5.2 | | |
| J-2689 5 | | 0.8 | | |
| J - 2692 <i>S</i> | | 0•4 | | |
| J - 2695 <i>S</i> | | 0.4 | | |
| J- 2698 <i>≤</i> | | 0.8 | | |
| J - 2701 5 | | 0.8 | | |
| ح J - 2704 ح | | 0.8 | | |
| J - 2707 -5 | | 1.4 | | |
| J - 2710 5 | | 0.6 | | |
| J - 2713 5 | | 0.4 | | |
| J - 2716 <i>S</i> | | 0.4 | | |
| J - 2719 5 | | 0.4 | | |
| J - 2722 5 | | 0.4 | | |
| J-2725 st fine g | avel | 0.2 | | |
| J-2728 5 | | 0.4 | | |
| J-2731 Cナゴ | | Nil | | |
| J-2734 C+S | Ý | 0.2 | | |
| J - 2737 .≤ | | 0.2 | · · | |
| | J Hereby
assays made by | Certify that t
Me upon the her | THE ABOVE RESULTS ARE THOSE
REIN DESCRIBED SAMPLES | |

Rejects Retained one month.

Pulps Retained one month unless specific arrangements made in advance.

| To: | WOLLEX EXPLORATIONS LTD., |
|-----|---------------------------|
| | 806 Norcen Tower |
| | 715-5th Ave. S.W., |
| | Calgary, Alta. |
| | ATTN: Murray Pyke |

| File No. | 11908 |
|----------|-------------------------|
| Date | August 27 , 1976 |
| Samples | Soil Geochems |

PAGE # 2

| SAMPLE No. | РРМ
U308 | ` |
|------------------------------|---|---|
| J - 2740 ≤ | Line 48N Nil | |
| J =2743 ≤ | 0.2 | |
| J-2746 <i>S</i> | 0•2 | |
| J - 2749 ≤ | Nil | |
| J - 2752 S | 0.6 | |
| J-2755 S | 0.2 | • |
| J - 2758 ٢ | 0•2 | |
| J - 2761 5 | 0.4 | |
| J - 2764 <i>S</i> | 0.4 | |
| J-2767 <i>≤</i> | 0.4 | |
| J - 2770 ≤ | Nil | |
| J-2773 5 | 0.8 | |
| J-2776 5 | 0•2 | |
| J-2779 5+ 01900 | cs y 2.0 | |
| J-2781 ≤ | Line 44 N 0.2 | |
| J - 2784 ⊂ | 0.2 | |
| J=2787 ¢≠≤ | Nil | |
| J=2790 6+ 0592 | <i>ics</i> 1 <u>.</u> 2 | |
| J-2793 " | 14 | |
| J-2796 5+ orga | <i>0.2</i> | |
| J-2802 C | 0.8 | |
| J-2805 C | 0.2 | |
| J-2808 5 | 0•4 | |
| J-2811 S | 0.6 | |
| J-2814 5 | 0.6 | |
| J-2817 5 | 0•4 | |
| J-2820 5 | 0.6 | |
| J-2823 C+ S | 0.4 | |
| J-2827 5 | Nil | |
| J-2830 5 | Nil | |
| J-2834 د | Ý 0.2 | |
| | J Gereby Certify that the above results are those assays made by me upon the herein described samples | |

Rejects Retained one month.

Pulps Retained one month unless specific arrangements made in advance.

To:WOLLEX EXPLORATIONS LTD.,

| 806 Norcen Tower, |
|--------------------|
| 715-5th Ave. S.W., |
| Calgary, Alta. |
| ATTN: Murray Pyke |

| File No. | . 11908 |
|----------|-------------------------|
| Date | August 27 , 1976 |
| Samples | Soil Geochems |

Servificate Assau 0× LORING LABORATORIES LTD.

PAGE # 3

| SAMPLE NO | PPM | |
|----------------------------|---|--|
| | <u>U308</u> | |
| J-2837 с | L 44 N Nil | |
| J- 2840 с | 0.6 | |
| J-2842 C | Nil Nil | |
| J-2846 5 | Nil | |
| J - 2849 ⊂ | 0.2 | |
| J-2852 5 | Nil | |
| J-2855 5 | 0.2 | |
| J-2858 5 | 0.4 | |
| J-28 <u>64 s</u> | V Nil | |
| J− 2874 ≤ | 90+00N 8+00E Nil | |
| J-2877 <i>s</i> | 11 + 00E 0.2 | |
| J-2881 5+ Grave | e/ L 40 N 0.2 | |
| J- 2884 <i>"</i> // | 0.6 | |
| J-2887 с | 0.4 | |
| J − 2890 ⊂ | Nil | |
| J-2891 St fine 9 | gravel 3.4 | |
| J-2894 C | 0.4 | |
| J-2897 s + fine | gravel 0.6 | |
| J-2900 c | 0.4 | |
| J-2903 S | 0.6 | |
| J −2906 ⊂ | 0.4 | |
| J-2909 0-9 ani | 77.6 | |
| J-2912 ⊂ | 0.6 | |
| J-2915 с | 0.6 | |
| J - 2918 <i>s</i> | 0.6 | |
| J - 2921 ⊂ | 0.2 | |
| J - 2924 .≤ | 0.6 | |
| J-2927 S | 0.8 | |
| J-2930 <i>C + S</i> | 0.6 | |
| J- 2932 ≤ | 0.6 | |
| J - 2936 <i>S</i> | 0.4 | |
| J-2939 5 | I Thankhy Martifu That the ADOVE DECHUTE ADE THOSE | |
| | J BETEIN VETILIN THAT THE ABOVE RESULTS ARE THUSE | |
| | ASSAYS MADE BY ME UPON THE HEREIN DESCRIBED SAMPLES | |
| | i | |

Rejects Retained one month.

Pulps Retained one month unless specific arrangements made in advance.

| | 806 Norcen Tower, |
|-------|--------------------|
| • | 715-5th Ave. S.W., |
| ••••• | Calgary, Alta. |
| | ATTN: Murray Pyke |

| File No. | 11908 |
|----------|-----------------|
| Date | August 27, 1976 |
| Samples | Soil Geochems |

ex rificate ASSAY 0x 6

PAGE # 4

| SAMDIE NO | PPM PPM | |
|---|---|---|
| SAMFLE NO. | U308 | |
| . I-294 2 S | L 40 N 0.8 | |
| 1-2946 etfine 9 | avel 1.0 | |
| I_2948 ⊂ | 1.0 | |
| I_2951 C | 0.6 | |
| I_2954 | 0.8 | |
| J-2957 -5 | 1.4 | |
| K=3131 0rganic | L 28 N 36.4 | |
| I-3134 C | 1.0 | |
| .T=3137 ⊂ | 2.6 | |
| I-3140 G | 1.4 | |
| 1-3143 64 fine 4 | aravel 0.4 | |
| .T=3146 5 | 0.2 | |
| .T-3149 - | 0.4 | · |
| . I-315 2 5 | 0.6 | |
| J-3155 5 | 0.4 | |
| حتاجة المحتاجة | 0.4 | |
| J-3161 C | 0.4 | |
| J-3164 St fine 9 | rave/ 0.4 | |
| J-3167 C | 0.4 | |
| J-3170 C+5 | 0.4 | |
| J-3173 6+5 | 0.2 | |
| J-3176 C | 1.0 | |
| J-3179 C | ↓ 0.8 | |
| J-3329 C+ 0rganiz | Line IZN 556.0 | |
| J-3332 " | 117.0 | |
| J- 3335 | 0.8 | |
| J-3338 5 | Nil | |
| J-3341 S | Nil | |
| J - 3344 5 | Nil | |
| J-3347 C+ organ | c <u>244.0</u> | |
| J - 3353 <i>< + 5</i> | 2.0 | |
| | 71 Thereby Martifu ruis your province and succe | |
| | a Marenn Cectify That the above Results are those | |
| | ASSAYS MADE BY ME UPON THE HEREIN DESCRIBED SAMPLES | |
| | | |

Rejects Retained one month.

Pulps Retained one month unless specific arrangements made in advance.

.

| File No. | 11908 |
|----------|-------------------|
| Date | August 27, 1976 · |
| Samples | Soil Geochems |

ASSAY

PAGE # 5

1×

| SAMPLE NO. | | PPM | | |
|------------------|----------------|--------------------|-------------------------|---|
| | | 0308 | | |
| J-3356 ⊂ | Line IZN | 0•4 | | |
| J-3359 C | | 0.4 | | |
| J-3362 5 | | 0.8 | | |
| J-3365 S | | 0.4 | | |
| J-3 <u>368</u> ⊂ | ¥ | Nil | | |
| J-3605 ≤ | Line 165 | Nil | | |
| J-3608 5 | <u> </u> | Nil | | |
| J-3611 crotgan | ie Line 64N | Nil | | |
| J-3614 " | | <u>U_4</u> . | | |
| J-3617 " | ¥ | 13.8 | | |
| J-3620 S | 2100 80 1 | 2 0 | | , |
| J-3025 0740002 | Line BBN | 0.4 | | |
| J=3020 S | | 0.4 | | |
| 5=5027 | • | | | |
| | | | | |
| | | | | |
| · · · | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | | | | |
| | • | | | |
| | · . | | | |
| | | | | |
| | | | | |
| | 71 76 L. L. | 17 . | | |
| 1 | a Werend (| Lecility that the | ABOVE RESULTS ARE THOSE | |
| | ASSAYS MADE BY | ME UPON THE HEREIN | N DESCRIBED SAMPLES | |
| | | | | |

.....

Rejects Retained one month.

| | To: WOLLEX EXPLORATIONS LTD., |
|---|-------------------------------|
| | 806 Norcen Tower, |
| 4 | 15 - 5th Ave. S.W., |
| | Calgary, Alberta |
| | ATTN: Murray Pyke |

| File No. | 11877 |
|----------|-------------------------|
| Date | August 19 , 1976 |
| Samples | Soil Geochems |

| | | Page # 1 | |
|------------------------------|---------------|--|--|
| | PPM | | |
| SAMPLE NO. | U308 | | |
| "Soil Geochems" | | | |
| <i>ک</i> J - 1590 | Line 96 | GN NIL | |
| J - 1591 <i>5</i> | | NIL | |
| ح J - 1592 | | NIL | |
| ح J - 1593 | | NIL | |
| J - 1594 S | | NIL | |
| J - 1595 <i>S</i> | | 2.4 | |
| J=1596 <i>c + S</i> | | NIL | |
| J-1597 S | | NIL | |
| J - 1598 <sup>s</sup> | | NIL | |
| J - 1599 (9W) 8 | 5 | NIL | |
| J-1599 (10W)A | 5 | 0.6 | |
| J - 1600 <i>S</i> | | 0.4 | |
| J - 1601 S | | NIL | |
| J - 1602 S | | NIL | |
| J - 1603 5 | · · · · · · | NIL | |
| J-1604 S | | NIL | |
| J - 1605 <i>S</i> | | NIL | |
| J - 1606 <i>S</i> | | NIL | |
| ح J - 1607 ح | | NIL | |
| J - 1608 5 | · · · | 0•4 | |
| J-1 609 د | | NIL | |
| J - 1610 S | | NIL | |
| J - 1611 ≤ | | 0•2 | |
| J-1612 S | | 0.6 | |
| J - 1613 ≤ | | 0.2 | |
| J - 1614 5 | | NIL | |
| J-1615-5+059 | anic | 1.0 | |
| J-1616 organ | ie , | 0_6 | |
| J-1617 5+ fine | gravel | 0.8 | |
| | I Berehn | Certify that the above results are those | |
| | ASSAVS MADE R | BY ME UPON THE HEREIN DESCRIBED SAMPLES | |
| | | | |

Rejects Retained one month.

Pulps Retained one month unless specific arrangements made in advance.

| To: WOLLEX EXPLORATIONS LTD., |
|-------------------------------|
| 806 Norcen Tower, |
| 215 - 5th Ave. S.W., |
| Calgary, Alberta |
| ATTN: Murray Pyke |

| File No. | 11877 |
|----------|-----------------|
| Date | August 19, 1976 |
| Samples | Soil Geochems |

| | | Page # 2 | | · · · · · · · · · · · · · · · · · · · |
|------------------------------|-----------|------------------------|----------------------|---------------------------------------|
| SAMPLE No | | PPM | | |
| | | U308 | | 4
 |
| J-1618 St fine gra | avel Line | 96N 1.8 | | |
| J-1619 5+ 059 27 | ic | NIL | | |
| J-1620 5 | | NIL | | |
| J - 1621 <i>S</i> | | NIL | | · |
| J - 1622 5 | | 1.0 | | |
| J - 1623 -5 | | NIL | | |
| J-1624 5 | | 0.2 | | |
| J - 1625 5 | | 0.6 | | |
| J-1626 S | | 0.2 | | |
| J - 1627 5 | | 0.2 | | |
| J-1628 5 | | 1.0 | | |
| J-1629 5 | | 0.8 | | |
| J−1630 ≤ | | · 1•0 | | |
| J-1631 5 | | 1.0 | | |
| J-1632 5+ organic | - | 1 <u>•</u> 4 | | |
| J-1633 5+ fine 9+ | avel | 1.4 | | 1 |
| J - 1634 <i>S</i> | | v 1 . 0 | | |
| J-1636 5 | Line 92. | N 48+00W 5.0 | | |
| J - 1792 ≤ | Line 86 | <i>N</i> 1.0 | | |
| J - 1793 ≤ | | 1.0 | | |
| J - 1794 ≤ | | 1.6 | | |
| J-1795 <i>S</i> | | 1.4 | | |
| J- 1796 -≤ | | 0.6 | | |
| J- 1797 ≤ | | 0.6 | | |
| J-1798 S | | , 84•4 | | |
| J-1799 c + organic | ÷¥ | 3.6 | - | |
| J− 2308 <i>≤</i> | Line 60 | 0.8 | | |
| J-2309 5 | | 0.8 | | |
| J− 2310 ≤ | | 0.6 | | |
| J - 2311 <i>C ≁ 5</i> | | 0.6 | | |
| J - 2312 <i>S</i> | | ¥ 0.6 | | |
| | J Hereby | U Certify THAT THE ABO | VE RESULTS ARE THOSE | |

Rejects Retained one month.

Pulps Retained one month unless specific arrangements made in advance.

| To: WOLLEX EXPLORATIONS LTD. |
|------------------------------|
| 806 Norcen Tower, |
| 15 - 5th Ave. S.W., |
| Calgary, Alberta |

ATTN: Murray Pyke

| File No. | 11877 |
|----------|-----------------|
| Date | August 19, 1976 |
| Samples | Soil Geochems |

Ser ASSAY %

LORING LABORATORIES LTD.

| • | | Page # 3 | |
|--------------------------|-----------------------|------------------------------|-----------|
| | | РРМ | |
| SAMPLE NO. | | U308 | |
| J-2313 5 | Line GON | 0.8 | |
| J - 2314 ≤ | \sim - 1 | 1.2 | |
| J - 2315 S | | 0.8 | |
| J-2316 C+0592, | nic | 0•4 | |
| J-2317 C+5 | | 0.6 | |
| J-2318 S | | 6.6 | |
| J-2319 5+0102. | nic | 1.0 | |
| J-2320 5+ fine 9 | ravel | 3.4 | |
| J-2321 🖌 🎽 | | 1.0 | |
| J-2322 5+ fine 5 | ravel | 1.8 | |
| J-2323 Storpa | nic | <u>1.8</u> | |
| J - 2324 <i>-</i> | | 1.0 | |
| J - 2325 S | | 5.0 | |
| J-2326 5+ fine_ | gravel | 13•4 | |
| J-2327 " | · · · | 3.4 | |
| J-2329 ″ | | 10.8 | |
| J-2330 " | | 3.8 | |
| J-2331 5 | | 16.2 | |
| J-2332 S | | 0.6 | |
| J=2333 C + Fine 9 | iravel | 114.0 | |
| J-2334 C | | 9.6 | |
| J - 2335 S | | 1.4 | |
| J - 2336 S | | 0.6 | |
| J - 2337 5 | | 0•4 | |
| J - 2338 5 | | 3.0 | |
| J-2339 5 | , | 2 . 6 | |
| J-2340 5+ Find 9 | ravel | 0.8 | |
| J-2341 " | | 0•4 | |
| J-2342 5 | , | 0.4 | |
| J-2343 5+ Find 9 | rave/ | 0•4 | |
| J - 2344 5 | Ý | 0.2 | |
| | I Merehn Merti | fn that the above results | ARE THOSE |
| | ASSAVE MADE BY ME LID | THE HEREIN DESCRIPED SAM | PLES |
| | ASSATS MADE DE ME UPO | DIN THE HEREIN DESCRIDED SAM | |
| | | ····· | |

Rejects Retained one month.

Licensed Assayer of British Columbia

| To: WOLLEX EXPLORATIONS LTD., |
|-------------------------------|
| 806 Norcen Tower, |
| 15 - 5th Ave. S.W., |
| Calgary, Alberta |
| ATTN: Murray Pyke |

| File No. | 11877 |
|----------|-----------------|
| Date | August 19, 1976 |
| Samples | Soil Geochems |

| | | Page # 4 | |
|---------------------|------|---|-----------------|
| | | PPM | |
| SAMPLE NO |). | U308 | |
| J - 2345 | 5 | Line 60N NIL | |
| J - 2346 | 5 | 0.2 | |
| J - 2347 | 5 | 0.8 | |
| J - 2348 | 2 | 0.2 | |
| J - 2349 | 5 | 0.4 | |
| J - 2350 | 5 | 0.2 | |
| J - 2351 | 5 | 0.6 | |
| J - 2352 | 5 | NIL | |
| J - 2353 | 5 | 0.2 | |
| J - 2354 | 5 | 0.6 | |
| J - 2355 | 5 | 0.6 | |
| J - 2356 | 5 | 0.8 | |
| J - 2357 ≤ ≁ | fine | grave 0.2 | |
| J - 2358 | 5 | 0.2 | |
| J - 2359 | 5 | 0.2 | |
| J - 2360 | 5 | 0.4 | |
| J - 2361 | 5 | NIL | |
| J - 2362 | 5 | 0.4 | |
| J - 2363 | 5 | NIL | |
| J - 2364 | 5 | 0.2 | |
| J - 2365 | 5 | 0.4 | |
| J - 2366 | ک | 0.2 | |
| J-2367 | 5 | 0•4 | |
| J - 2368 | 5 | NIL | |
| J - 2369 | 5 | NIL | |
| J - 2370 | 5 | . 0.6 | |
| ∫ _ 2371 | 5 | 1.0 | |
| J - 2372 C | + 5 | 0.6 | |
| J - 2373 | 5 | 1.0 | |
| J - 2374 | 5 | 0.8 | |
| J - 2375 | S | ↓ 1.0 | |
| | | I Thereby Clertify that the above RI | SULTS ARE THOSE |
| | | ASSAYS MADE BY ME HONN THE HEREIN DESCRIB | ED SAMPLES |
| | | | |

Rejects Retained one month.

| To: WOLLEX EXPLORATIONS LTD., |
|-------------------------------|
| 806 Norcen Tower, |
| 15 - 5th Ave. S.W., |
| Calgary, Alberta |
| ATTN: Murray Pyke |

| File No. | 11877 |
|----------|-------------------------|
| Date | August 19 , 1976 |
| Samples | Soil Geochems |

| | Page # 5 | |
|---------------------------|---|--|
| SAMPLE No. | РРМ
- U308 | |
| J-2 376 | S Line GON 0.6 | |
| J- 2377 <i>≤</i> ≁ | organic 0.4 | |
| J-2378 < | + 5 | |
| J-2379 | 5 0.4 | |
| J- 2380 ≤≁ | fine gravel . 4.2 | |
| J-2 381 | " 0 <sub>•</sub> 8 | |
| J− 2382 5≁ | organic 0.8 | |
| J- 2384 ≤≁ | fine gravel 2.4 | |
| J - 2385 | <i>·</i> / 0•4 | |
| J-2 386 | 5 0.6 | |
| J - 2387 | <i>s</i> 1.4 | |
| J-2 388 | 5 0.6 | |
| J- 2389 | 5 0.8 | |
| J- 2390 | <i>S</i> 0,6 | |
| J- 2391 | <i>S</i> 0,6 | |
| J- 2392 | 5 1.0 | |
| J-2393 51 | fine gravel 1.0 | |
| J- 2394 | 5 1.4 | |
| J-2395 ≤r | fine gravel 0.8 | |
| J→ 2396 | <i>S</i> 0.8 | |
| J - 2397 | <i>s</i> . 0•4 | |
| J- 2398 | 5 0.6 | |
| J - 2399 ≤ ≁ | fine gravel 0.6 | |
| J-2400 0 | gania <u>56.8</u> | |
| J-2401 ≤ ≁ | organic 47.4 | |
| J− 2403 <i>S</i> + | fine gravel 13.1 | |
| J - 2404 57 | organic 13.6 | |
| J= 2405 ≤≁ | fine gravel 1.8 | |
| J- 2406 | ″ ľ 1.4 | |
| J-2407 | 5 0.8 | |
| J-2408 Sr | Fine gravel V 1.6 | |
| | J Mereby Certify that the above results are those assays made by me upon the herein described samples | |

Rejects Retained one month.

| To: WOLLEX EXPLORATIONS LTD., |
|-------------------------------|
| 806 Norcen Tower, |
| 715 - 5th Ave. S.W., |
| Calgary, Alberta |
| ATTN: Murray Pyke |

| File No. | 11877 |
|----------|-------------------------|
| Date | August 19 , 1976 |
| Samples | Soil Geochems |

| | Page # 6 |
|---|--|
| SAMPLE No. | PPM
U308 |
| SAMPLE No. $J-2409 \ s + fin$ $J-2410 \ s$ $J-2410 \ s$ $J-2411 \ s$ $J-2412 \ s$ $J-2413 \ s$ $J-2414 \ s + fin$ $J-2415 \ s$ $J-2416 \ s$ $J-2416 \ s$ $J-2418 \ s$ $J-2419 \ s$ $J-2420 \ s$ $J-2421 \ s$ $J-2423 \ s$ $J-2424 \ s + fine$ | PPM
U308
gravel Line GON 0.6
1.0
0.8
0.6
0.8
0.6
0.8
0.6
0.6
1.0
1.0
1.0
0.8
0.6
0.6
1.0
1.0
0.8
0.6
0.8
0.6
0.8
0.6
0.8
0.6
0.8
0.6
0.8
0.6
0.8
0.6
0.8
0.6
0.8
0.6
0.8
0.6
0.8
0.6
0.8
0.6
0.8
0.6
0.8
0.6
0.8
0.6
0.8
0.6
0.8
0.6
0.8
0.6
0.8
0.6
0.8
0.6
0.8
0.6
0.8
0.6
0.8
0.6
0.8
0.6
0.8
0.6
0.8
0.6
0.8
0.6
0.8
0.6
0.6
0.8
0.6
0.8
0.6
0.6
0.8
0.8
0.6
0.6
0.8
0.8
0.8
0.8
0.8
0.8
0.8
0.8 |
| | I Thereby Certify that the above results are those assays made by me upon the herein described samples |

Rejects Retained one month.

Pulps Retained one month unless specific arrangements made in advance.

To: WOLLEX EXPLORATIONS LTD.,

| 806 Norcen Tower, |
|----------------------|
| 715 - 5th Ave. S.W., |
| Calgary, Alberta |
| ATTN: Murray Pyke |

| File No. | 11875 |
|----------|-----------------|
| Date | August 19, 1976 |
| Samples | Soil Geochems |

Ser ASSAY or

LORING LABORATORIES LTD.

| | | | | | Page | # 4 | | | |
|-----------------|-------------|--------|---------------------|---------------------------|-----------------------------|---------------------------|----------------------------|--------|--|
| SAMPLE | No | | | | | PPM | | | |
| SAMILL I | V U. | | | | Ŭ | 308 | | | |
| J - 2649 | Organi | E | Line | 52N | | 0.2 | | | |
| J- 2650 | 5 | | | | | 0.6 | | | |
| J - 2651 | s+ fine | gravel | | | | 0•4 | | | |
| J- 2652 | 11 | T | | | | 0.8 | | | |
| J-265 3 | 11 | | | | | 0.6 | | | |
| J - 2654 | " | | | | | 1•4 | | | |
| J - 2655 | // | | | | | 0.8 | | | |
| J - 2656 | " | | | | | 0.8 | | | |
| J - 2657 | " | | | | | 0.8 | | | |
| J - 2658 | // | | | | | 1.0 | * | | |
| J - 2659 | 5 | | | | | 0.6 | | | |
| J - 2660 | s + fine | gravel | | | | 1.0 | | | |
| J - 2661 | 5 | ř | | | | 0.6 | | | |
| J - 2662 | 5 | | | | | 0.6 | | | |
| J - 2663 | 5 | | | | | 1.0 | | | |
| J - 2664 | -2 | | | | | 0.6 | | | |
| J - 2665 | 5 | | | | | 0.6 | | | |
| J - 2666 | ٢ | | | | | 0.8 | | | |
| J - 2667 | Ś | | | | | 0.8 | | | |
| J-2668 | 5 | | | | | 0.8 | | | |
| J - 2669 | 5 | | | | | 1.0 | | | |
| J - 2670 | 5 | | | | | 1.2 | | | |
| J-2671 | 5 | | | | | 0.6 | | | |
| J - 2672 | 5 | | | ¥ | | 0.6 | | | |
| J - 3562 | C+ Org | anic | Line | 165 | 6 | 6.0 | | - | |
| J- 3563 | // | | | | 7 | 4.4 | | | |
| J- 3564 | 11. | | | | 15 | 1.0 | | | |
| J - 3565 | " | | | | 8 | 4.6 | | | |
| J 3566 | C+finc | gravel | | | - | 7.3 | | | |
| J- 3567 | 5 | | | | 1 | .8•1 | | | |
| J - 3568 | C | | ¥ | | | 5.1 | | | |
| | | | J Heri
Issays ma | еby Certi
.de by ме up | ify that th
PON THE HERE | E ABOVE RE
In describe | SULTS ARE THO
D SAMPLES | SE
 | |

......

Rejects Retained one month.

Pulps Retained one month unless specific arrangements made in advance.

| To: WOLLEX EXPLORATIONS LTD., |
|-------------------------------|
| 806 Norcen Tower, |
| 15 - 5th Ave. S.W., |
| Calgary, Alberta |
| ATTN: Murray Pyke |

| File No. | 11875 |
|----------|-----------------|
| Date | August 19, 1976 |
| Samples | Soil Geochems |

Ser ASSAY 0×

| | | Page # 5 | |
|-----------------------------|--|-----------------------------|---------------------------------------|
| SAMPLE NO | | PPM | |
| SAMI LE INS. | | U308 | |
| J-3569 C+S | Line | 165 2.6- | |
| ∽ J - 3570 ح | | 2.0 - | |
| J-3571 5 | | 2.0 🖬 | |
| J - 3572 ≤ | | 2.2 - 2 | |
| J− 3573 ⊂ | | 1.2 | |
| J - 3574 <i>S</i> | | 1.2 | |
| J - 3575 <i>S</i> | | 2.4 🚥 | • |
| ј- 3576 <i>s</i> | | 0.6 | |
| J- 3577 క | | 0.6 | |
| J-3578 C+ 0rg | panic | 14.2 | |
| J-3580 0+gan | ie de la companya de | 7.2 | , |
| J-3582 c+ orga | nic | 20.4- | · · · · · · · · · · · · · · · · · · · |
| J− 3583 ⊂ | | 1.6 📼 | , |
| J - 3584 C | | 0.4 | |
| J - 3585 C | | 8.2 - | • |
| J - 3586 ⊂ | | 3.2- | • |
| J − 3587 ⊂ | | 2.0 | |
| J - 3588 ⊂ | | 1.4 | |
| J-3590 ⊂ | | 1.8 📾 | • |
| J-3591 C | | 6.6 - | • .
_ |
| J − 3592 <i><</i> | | 1.6 | |
| J-3593 C | | | • |
| J-3594 E | | 2.0 ∞ | A |
| J-3595 C | | 5.0~ | |
| J-3596 5 | | 23.0 | |
| J-3597 2 | | | 3 |
| J-3598 C | | 10.8 - | |
| J-3599 2 | oravel | | <u>~</u> |
| J=3600 277/ | graner | | |
| J=3602 C- | | | - |
| J=3002 | ~ ~ ~ ~ | | - |
| | 1 9 Herel | by Certity that the abov | E RESULTS ARE THOSE |
| | ASSAYS MAD | E BY ME UPON THE HEREIN DES | CRIBED SAMPLES |
| | L | • | · · · · · · · · · · · · · · · · · · · |

Rejects Retained one month.

Pulps Retained one month unless specific arrangements made in advance.

| To: WOLLEX EXPLORATIONS LTD. |
|------------------------------|
| 806 Norcen Tower, |
| 715 - 5th Ave. S.W., |
| Calgary, Alberta |
| ATTN: Murray Pyke |

| File No. | 11875 |
|-----------|-----------------|
| Date | August 19, 1976 |
| Samples . | Soil Geochems |

Ser ASSAY ?

| | | Page # 6 | |
|----------------------|--|--|---------|
| SAMPLE No. | | РРМ
U308 | <u></u> |
| J-3603 c
J-3604 C | Line 165 | 1.2
2.0 mm | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | | |
| | | ••• | |
| | I Hereby Certify
assays made by me upon | THAT THE ABOVE RESULTS ARE THOSE
THE HEREIN DESCRIBED SAMPLES | |

Rejects Retained one month.

| To: WOLLEX EXPLORATIONS LTD., |
|-------------------------------|
| 806 Norcen Tower, |
| 715 - 5th Ave. S.W., |
| Calgary, Alberta T2P 0X8 |
| ATTN: Murray Pyke |

| File No. | 11875 |
|----------|-----------------|
| Date | August 19, 1976 |
| Samples | Soil Geochems |

LORING LABORATORIES LTD.

6

| | | Page # 1 | |
|---------------------------------|-------------|--|---------------------------------------|
| | | PPM | |
| SAIVIPLE INO. | | U308 | |
| "Soil Geochems" | | | |
| | | | |
| J-2556 0rgania | Line - | $5 \ge N$ <u>6.6</u> | |
| J-2557 " | | 0.2 | |
| J-2558 " | | 0.2 | |
| J-2559 // | | 1 <u>4.</u> 8 | |
| J - 2560 <i>S</i> | | 0.8 | |
| J-2561 c+ orga | nic | 0.6 | |
| J - 2562 - | | 0.6 | |
| J − 2563 ⊂ | | 0.6 | |
| J-2564 S + OF | anic | 0.8 | · |
| J-2565 5+ fi | ne gravel | 0.8 | |
| J-2566 c + org | anic | <u>0.4</u> | |
| J-2567 5+ fin | gravel | 0.4 | |
| J - 2568 C | | 0.6 | |
| J-2569 5+ 05 | ganic | 0.6 | |
| J - 2570 - | | 41.0 | · · · · · · · · · · · · · · · · · · · |
| J-2571 5 + Fin | e gravel | . 4.0 | · |
| J-2572 C+ 04 | panic | <u>1.0</u> | |
| J-2573 C+ Fi | e gravel | 0.6 | |
| J - 2574 <i>≤ + ⊳_</i> 3 | anic | 8.0 | |
| J-2575 C+ Fil | = gravel | 0.2 | |
| J - 2576 <i>S</i> | | 1.6 | |
| J - 2577 🗠 🗠 | | 0.6 | |
| J-2578 5+0 | panic | 1.2 | |
| J-2579 c+fin | e gravel | 1.2 | |
| J - 2580 <i>に</i> | ÷ | 0.6 | |
| ح J - 2581 | | 0.6 | |
| J - 2582 5 | | 0.8 | |
| J - 2583 5 | | 0.6 | |
| J-2584 5+ Fi | e gravel V | 0.8 | |
| | I Hereb | v Certify that the above | RESULTS ARE THOSE |
| | ASSAYS MADE | BY ME UPON THE HEREIN DESCI | RIBED SAMPLES |
| | | ······································ | |

Rejects Retained one month.

Pulps Retained one month unless specific arrangements made in advance.

| To: WOLLEX EXPLORATIO | NS LTD., |
|-----------------------|----------|
| 806 Norcen Tower, | |
| 15 - 5th Ave. S.W., | |
| Calgary, Alberta T | 2P 0X8 |
| ATTN: Murray Pyke | |

.

| File No. | 11875 |
|----------|-----------------|
| Date | August 19, 1976 |
| Samples | Soil Geochems |

LORING LABORATORIES LTD.

| | | · · · · · · · · · · · · · · · · · · · | Page # 2 |
|---------------------|----------|---------------------------------------|---|
| SAMPLE | No. | | РРМ
U308 |
| J - 2585 | 5 | Line 52N | 0.6 |
| J-2586 | 5 | | 0.6 |
| J - 2587 | 5 | | 1.2 |
| J - 2588 | 5 | | 1.4 |
| J - 2589 | C+5 | | 0.6 |
| J - 2590 | 5 | | 0.6 |
| J ~ 2591 | s + fine | gravel | 0.4 |
| J - 2592 | ک | ř | 0.4 |
| J-2593 | 5 | | 2.0 |
| J - 2594 | 5 | | 0.6 |
| J - 2595 | 5 | | 0.6 |
| J - 2596 | 5 | | NIL |
| J - 2597 | 5 | | NIL |
| J-2598 | 5 | | NIL |
| J - 2599 | 5 | | NIL |
| J− 2600 | S+fin | e gravel | 0.2 |
| J - 2601 | 5 | Ť | 0.2 |
| J - 2602 | 5 | | 0.2 |
| J - 2603 | c | | NIL |
| J - 2604 | 5 | | NIL |
| J - 2605 | 5 | | 0.2 |
| J - 2606 | ٢ | | 0.4 |
| J - 2607 | 5 | | 0.2 |
| J - 2608 | 5 | | NIL |
| J - 2610 | 5 | | 0.2 |
| J - 2611 | C + S | | 0.2 |
| J - 2612 | 5 | | 0.4 |
| J-2613 | 5 | | NIL |
| J - 2614 | 5 | | NIL |
| J-2615 | 5 | | 0.6 |
| J-2616 | 5 | • | 0.2 |
| | _ | J Hereby C
assays made by m | ertify that the above results are those e upon the herein described samples |

Rejects Retained one month.

Pulps Retained one month unless specific arrangements made in advance.

| | To: WOLLEX EXPLORATIONS LTD., |
|---|-------------------------------|
| | 806 Norcen Tower, |
| - | 15 - 5th Ave. S.W., |
| | Calgary, Alberta T2P 0X8 |
| | ATTN: Murray Pyke |

| File No | 11875 |
|---------|-----------------|
| Date | August 19, 1976 |
| Samples | Soil Geochems |

St ASSAY or

LORING LABORATORIES LTD.

| | | Page # 3 | |
|-----------------|---------|---|---|
| SAMPLE | No. | РРМ
U308 | · |
| J - 2617 | 5 | Line SEN NIL | |
| J - 2618 | 5+fine | gravel 0.8 | |
| J→ 2620 | С | NIL | |
| J - 2621 | С | 0.2 | |
| J- 2622 | 5 | 0.2 | |
| J- 2623 | c | NIL | |
| J- 2624 | C | 0.2 | |
| J- 2625 | C | 0.2 | |
| J - 2626 | C | 0.6 | |
| J - 2627 | C+5 | 0.2 | |
| J - 2628 | 5 | 1.0 | |
| J- 2629 | 5 | 0.8 | |
| J-2630 | s+ fine | gravel 1.0 | |
| J-2631 | ڪ | 0.2 | |
| J- 2632 | 5 | 0,2 | |
| J - 2633 | C | 0.2 | |
| J- 2634 | 5 | 0.8 | |
| J-2635 | S | 2.2 | |
| J-2636 | 5 | 0.6 | |
| J-2637 | ى | 0.8 | |
| J-2638 | 5 | 0.8 | |
| J-2639 | st fine | gravel 0.8 | |
| J-2640 | 5 | 0.6 | |
| J-2641 | s+ find | gravel 0.6 | |
| J-2642 | // | 0.8 | |
| J- 2643 | 11 | 0.4 | |
| J- 2644 | " | 0.8 | |
| J - 2645 | 5 | 1.2 | |
| J- 2646 | 5 | 0.6 | |
| J- 2647 | 5 | , 0.8 | |
| J- 2648 | organic | 0.2 | |
| | - | I hereby Certify that the above results are those assays made by me upon the herein described samples | |

Rejects Retained one month.

| To: WOLLEX EXPLORATIONS LTD., |
|-------------------------------|
| 806 Norcen Tower, |
| 715 - 5th Ave. S.W., |
| Calgary, Alberta |
| ATTN: Murray Pyke |

| File No. | 11869 |
|----------|-----------------|
| Date | August 18, 1976 |
| Samples | Soil Geochems |

| | Page # 1 | |
|--------------------------------|---|---|
| | PPM | |
| SAMPLE NO. | U308 | |
| "Soil Geochems" | | |
| J-3181 Sr fine 3 | pravel Line 24N 0.2 | |
| J - 3182 ⊂ | 0.6 | |
| ح J-3183 د | 0.8 | |
| J-3184 <i>c</i> ≠ <sup>s</sup> | 0.6 | |
| J-3185 c + fine | gravel 1.4 | |
| J-3186 C | 0.2 | |
| J-3187 C | NIL | |
| J-3188 C+ organ. | ic <u>11.4</u> | |
| J-3189 Ž | 30.0 | |
| ح J − 3190 | 0•2 | |
| J-3191 Craine | NIL | |
| J- 3192 C | NIL | |
| J - 3193 ⊂ | NIL | |
| J-3194 c | NIL | |
| J- 3195 с | NIL | • |
| J-3196 C | NIL | |
| J - 3197 ≤ | NIL | |
| J-3198 C | NIL | |
| J-3199 C+ fine | gravel NIL | |
| J-3200 C | NIL | |
| J-3201 C | 0•2 | |
| J-3202 C | 0.2 | |
| J-3203 5+ fine | gravel 0.2 | |
| J - 3204 5 | NIL | |
| J - 3205 ⊂ | NIL | |
| J-3206 5 | NIL | |
| J-3207 - | NIL | |
| J=3208 <i>∠≠≤</i> | NIL | |
| <i>ک</i> J - 3209 | V NIL | |
| | I hereby Certify that the above results are those | |
| | ASSAYS MADE BY ME UPON THE HEREIN DESCRIBED SAMPLES | |
| | | |

.....

Rejects Retained one month.

| Licensed A | Assayer | of | British | Columbia |
|------------|---------|----|---------|----------|
|------------|---------|----|---------|----------|

| To: WOLLEX EXPLORATIONS LTD., |
|-------------------------------|
| 806 Norcen Tower, |
| 15 - 5th Ave. S.W., |
| Calgary, Alberta |
| ATTN: Murray Pyke |

ļ

| File No. | 11869 |
|----------|-----------------|
| Date | August 18, 1976 |
| Samples | Soil Geochems |

Ser ASSAY or

LORING LABORATORIES LTD.

| | Page # 2 |
|----------------------|---|
| SAMPLE No | PPM |
| | U308 |
| J-3210 St fine grave | ' Line 24N 1.4 |
| J-3211 S | NIL . |
| J-3212 C | NIL |
| J-3213 C | NIL |
| J=3214 C+fine grar | e/ NIL |
| J-3215 S | NIL |
| J-3216 S+ fine grave | / NIL |
| J=3217 C+ Fine grave | / NIL |
| J-3218 Sy Fine grav | e/ NIL |
| J-3219 c | NIL |
| J-3220 Organic | 73.4 |
| J-3222 ~ ″ | 2.0 |
| J-3223 " | 1.4 |
| J-3224 🖌 | 0.8 |
| J-3225 🖌 | 18.2 |
| J-3226 ″ | 16.2 |
| J-3227 " | 21_8 |
| J-3228 ″ | 62.7 |
| J-3229 5 + organic | 3.2 |
| J-3230 C+ organic | 0.8 |
| J-3231 CFS | 1.4 |
| J-3232 C | 1.2 |
| J-3233 6 + 05 ganit | 1.6 |
| J-3234 S+ Fine grav | 0.8 |
| J-3235 C + Find grav | <i>el</i> 0,8 |
| J-3236 C | 1.4 |
| J-3237 C | 1.6 |
| J-3238 C≠S | 0.6 |
| J-3239 C | 0.6 |
| .I-3240 C | 0.6 |
| J-3241 C | V 0.6 |
| | I Thoraby Montifu that the above desults are those |
| | J MULLELL UELLILU INAL INE ADOVE RESULTS ARE INUSE |
| | ASSATS MADE BY ME UPON THE HEREIN DESCRIBED SAMPLES |

Rejects Retained one month.

Pulps Retained one month unless specific arrangements made in advance.

| . |
|----------|
| 1 |

| 806 Norcen Tower, | |
|----------------------|-----|
| ➡15 - 5th Ave. S.W., | |
| Calgary, Alberta | |
| | ••• |

ATTN: Murray Pyke

| File No. | 11869 |
|----------|-----------------|
| Date | August 18, 1976 |
| Samples | Soil Geochems |

St ASSAY \*

LORING LABORATORIES LTD.

| | | Page # 3 | |
|--|----------------------------------|--|--------------|
| SAMPLE | No. | РРМ
U308 | |
| J-3242
J-3243
J-3244
J-3245
J-3246 | c
c
c + fine
c
c + 5 | Line 24N 0.6
gravel 0.2
0.8
0.6 | |
| | | | |
| | | | : |
| •
•
• | | | |
| | | | |
| | | J Gereby Certify that the above resul | TS ARE THOSE |

Rejects Retained one month.

Pulps Retained one month unless specific arrangements made in advance.

To: WOLLEX EXPLORATIONS LTD.

| 806 Norcen Tower, | |
|--------------------------|---|
| 715 - 5th Ave. S.W., | • |
| Calgary, Alberta T2P 0X8 | |
| ATTN: Murray Pyke | |

| File No. | 11865 |
|----------|-----------------|
| Date | August 18, 1976 |
| Samples | Soil Geochems |

ASSAY 0,

LORING LABORATORIES LTD.

Page # 1

| | SAMPLE No. | · · | PPM | | |
|---|--------------------|-------------|------------------|---------------------------------------|--|
| | | | U308 | · · · · · · · · · · · · · · · · · · · | |
| | "Soil Geochems" | | | | |
| ľ | J 3284 A orga | nic Line 16 | +00N - B.L. 0.8 | | |
| | J 3284 B orga | nic Line 16 | +00N - 1+00W 5.2 | | |
| | J 3285 C | Line | 16N 0.6 | | |
| | J 3286 | | 0-2 | | |
| | J 3287 C | | 0.6 | | |
| | J 3288 C+ fine | gravel | 0_6 | | |
| | J 3289 C | ~ | 0.2 | | |
| | J 3290 C | | 0.2 | | |
| | J 3291 C+S | | 0.4 | | |
| | J 3292 c≠s | | 0.4 | | |
| | J 3293 C | | 0.4 | | |
| | J 3294 C | | 0.8 | | |
| | J 3295 C | | 0.8 | | |
| | J 3296 C | | 0.6 | | |
| | J 3297 C | • | 0.8 | | |
| | J 3298 C | | 1.6 | | |
| | J 3299 C | | 0.4 | | |
| | J 3300 ح | | 0.8 | | |
| | J 3301 C≁S | | 0.8 | | |
| | J 3302 C | | 0.8 | | |
| | , J 3303 c+ fine | gravel | 0.8 | | |
| | J 3304 C+ organ | 16 | 0.8 | | |
| | J 3305 St fine | gravel | 0.8 | | |
| | J 3306 <i>にナ S</i> | | 0.6 | | |
| | J 3307 C | | 1.0 | | |
| | J 3308 C+5 | | 0.6 | | |
| | T 3309 5+ fine | gravel | 0.6 | | |

J Hereby Certify that the above results are those assays made by me upon the herein described samples

0.4

0.6

Rejects Retained one month.

J 3310

J 3311

11

C+ 5

To: WOLLEX EXPLORATIONS LTD.,

| 715 - 5th Ave. S.W.,
Calgary, Alberta T2P 0X8 | 000 Noice | n rower, | | | |
|--|-----------|-----------|-----|-----|--|
| Calgary, Alberta T2P 0X8 | 715 - 5th | Ave. S.W. | • , | | |
| | Calgary, | Alberta | T2P | 0x8 | |

ATTN: Murray Pyke

| File No. | 11865 |
|----------|-----------------|
| Date | August 18, 1976 |
| Samples | Soil Geochems |

LORING LABORATORIES LTD.

| | | | Page # 2 | |
|---|----------|------------|--|--|
| | | | PPM | |
| SAWFLE NU. | | | U308 | |
| J 3312 | 6+5 | Line | 16 N 0.8 | |
| J 3313 | c+ fine | gravel | 0.4 | |
| J 3314 | 5 | | 0.2 | |
| J 3315 | st orgo | enic | 5.0 | |
| J 3316 | c+ fine | gravel | $\overline{0.8}$ | |
| J 3317 | Ct s | U III | 0.6 | |
| J 3318 | C + 5 | | 0.8 | |
| J 3319 | 5 + fine | gravel | 0.6 | |
| J 3320 | C+ 5 | ř – | 0•4 | |
| J 3321 | c | | 0.2 | |
| J 3322 | С | | 1.0 | |
| J 3323 | 6+5 | , | 0.8 | |
| J 3324 | 5+ finc | gravel | 0.8 | |
| J 3325 | C + 8 | | 0.8 | |
| J 3326 | S | | 0.8 | |
| J 3327 | CtS | | 0.6 | |
| J 3 <u>328</u> | 5 | V | 0.4 | |
| J 3407 | ک | Line | 4 N 0.2 | |
| J 3408 | 5 | | 0•2 | |
| J 3409 | 5 | | 1.0 | |
| J 3410 | 5 | | 236.0 pert | |
| J 3411 | 5 | | 1.6 10 00 | |
| J 3412 | 5 | | 1.6 | |
| J 3413 | 5 | | 1.2 | |
| J 3414 | 5 | | 0.6 | |
| J 3415 | C | | 0.6 | |
| J 3416 | C | | 0.4 | |
| J 3417 | C | | 0.4 | |
| J 3418 | С | | 0.6 | |
| J 3419 | С | | 2.8 | |
| J 3420 | 5 | | V 6.6 | |
| | | 71 Thank | hn (Contifn that the above been to abe those | |
| I MELEUN VELITIN INAT THE ABOVE RESULTS ARE THOSE | | | | |
| | | ASSAYS MAD | E BY ME UPON THE HEREIN DESCRIBED SAMPLES | |
| · · · · · | | | | |

.....

Rejects Retained one month.

| To: WOLLEX EXPLORATIONS LTD., |
|-------------------------------|
| 806 Norcen Tower, |
| 715 - 5th Ave. S.W., |
| Calgary, Alberta T2P 0X8 |
| ATTN: Murray Pyke |

| File No. | 11865 |
|----------|-----------------|
| Date | August 18, 1976 |
| Samples | Soil Geochems |

| | Page # 3 | | | | | |
|--|--|--|--|--|--|--|
| | PPM | | | | | |
| SAIVIPLE INU. | U308 | | | | | |
| J 3421 C | Line 4N 0.6 | | | | | |
| J 3422 C | 0,2 | | | | | |
| J 3423 C | 1.0 | | | | | |
| J 3424 · C | 0.6 | | | | | |
| J 3425 C | 0.8 | | | | | |
| J 3426 C | 0.8 | | | | | |
| J 3427 C | 0.6 | | | | | |
| J 3428 <i>S</i> | 1.6 | | | | | |
| J 3429 5 | 0.8 | | | | | |
| J 3430 ≤ | 0.6 | | | | | |
| J 3431 C | 1.4 | | | | | |
| J 3432 C | 4.2 | | | | | |
| J 3433 C | 1.0 | | | | | |
| J 3434 · C | 0 . 4 | | | | | |
| J 3435 C | · 0₀4 | | | | | |
| J 3436 C | · 1.0 | | | | | |
| J 3437 C+0-90 | p/c 1.2 | | | | | |
| J 3438 Cr orga | $\frac{23.6}{2}$ | | | | | |
| | · · · · · | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| , | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | | | | | | |
| | I Thereby Vertify that the above results are those | | | | | |
| ASSAYS MADE BY ME LIPON THE HEREIN DESCRIBED SAMPLES | | | | | | |
| | | | | | | |
| | L | | | | | |

.....

Rejects Retained one month.

Pulps Retained one month unless specific arrangements made in advance.

Alberta Government

Disclaimer

This page was inserted by the Coal and Minerals Development Branch, to provide a reference that the map 3 of 4 associated with this report is not contained in the assessment report on file.

| _ | |
|----------------------------------|--|
| A | WAUGH LAKE COMPLEX |
| | Locally comprised of biotite granite gneiss & hornblende biotite gneiss;
with minor hornblende granite gneiss, amphibolite & pegmatite.
Characterized by its pronounced foliation. |
| в | WESTERN GRANODIORITE COMPLEX - PORPHYROBLASTIC BIOTITE GRANITE |
| | Feldspar porphyroblastic biotite granite with varying amounts of biotite,
hornblende & chlorite; minor amphibolite, pegmatite & aplite.
Massive to very weakly foliated. |
| | METASEDIMENTARY BELTS |
| | Meta-quartzite & biotite schist; minor phyllitic, schistose & pegmatitic
phases. Also includes minor amphibolite and granite gneiss.
Metamorphic grade varies from upper greenschist to almandine-amphibolite. |
| 1. 1. 1. 1. 1.
1. 1. 1. 1. 1. | GRANITE PEGMATITE - LEUCOCRATIC GRANITES |
| | Minor phases of muscovite granite, muscovite pegmatite & biotite granite.
Characteristically, these rocks are equigranular, coarse grained and
leucocratic. Massive to weakly developed foliation. |
| | GRANTTE GNEISS COMPLEX |
| | Locally comprised of biotite granite gneiss & hornblende biotite gneiss;
with minor hornblende granite gneiss, amphibolite & pegmatite.
Characterized by its pronounced foliation. |
| 143 | ARCH LAKE GRANITE |
| | Leucocratic, coarsely feldspar porphyroblastic granite. Weakly to moderately well folfated. |
| XXXX | RAISIN GRANITE |
| | Finely feldspar porphyroblastic granite with a chloritic, moderately to well foliated matrix. |
| | MYLONITE ZONES |
| | FAULTS, SHEAR ZONES, AIR PHOTO LINEAMENTS: UNDIFFERENTIATED |
| ~ | |

| report for description of | | | |
|---|--|--|--|
| | | | |
| <pre>700' 200' (contour flown where possible) 85 m.p.h. > 0.25 MeV 1.55 MeV = 4.00 MeV full scale of 1.000 c.p.s. full scale of 300 c.p.s. 1 second 1/3 second</pre> | | | |
| B-3n & 1S to 22S incl. | | | |
| flight line generally interspersed
with previous lines, for an interval
of 350' | | | |
| 75 m.p.h.
1.62 MeV - 3.00 MeV
full scale of 100 c.p.s. | Note Basemap compiled fro | | |
| PRIORITY RATINGS) | TAQUE LITE | | |
| line number, direction and anomaly designation respectively. | | | |
| Scintrex 101 Scintillameter } Total Count Re
Scintrex 101 Scintillameter | ANDREW LAK | | |
| e d' | AIRBORNE
SI
DRAWN : NOVEMBER 30, 1976 | | |
| | <pre>Y
report for description of
700'
200' (contour flown where possible)
85 m.p.h.
> 0.25 MeV
1.55 MeV = 4.00 MeV
full scale of 1,000 m.p.s.
full scale of 1,000 m.p.s.
full scale of 1,000 m.p.s.
1 second
1/3 second
0 B-3m & 1S to 22S incl.
flight line generally interspersed
with previous lines, for an interval
of 350'
75 m.p.h.
1.62 MeV = 3.00 MeV
full scale of 100 m.p.s.
0 PRIORITY RATINGS)
nd anomaly designation respectively.
mts/minute {</pre> | | |

LAKE LAKE \* / LAKE LEGEND MAGNETOMETER SURVEY VLF E.M. SURVEY Crone Radem Instrument: Mc Phar M700 flugate magnetometer Station : Dip angle : Seattle, Washington Operators : Contouring : Contour interval: F. Hussey , G. Beier J.R. Allan O to 500 gammas, 100 gamma contours, 750, 1000 & 2000 gamma contours "= 20° dip tast - negative values dip West - positive values G. Beier Operator: VLF data filtered after Fraser technique VLF E.M. trends; possible weak shears or Magnetic station, reading in gammas; reliability ± 25gammas lithological contacts. No significant conductivity-detected. Magnetic low +VALUES TACHYON VENTURE MANAGEMENT LTD. ANDREW LAKE PROJECT, ALBERTA SOUTH ANDREW LAKE GRID MAGNETOMETER SURVEY RECONNAISSANCE VLF E.M. SURVEY NOV. 30, 1976

NOTE: Pace & Compass controlled grid ; flagged stations

TACHYON VENTURE MANAGEMENT LTD.

ANDREW LAKE PROJECT

BONNY FAULT ZONE SEDGEWICK LAKE SECTOR

SOIL GEOCHEM & SCINTILLOMETER SURVEY 76-14 Nov. 30, 1976

19760004

