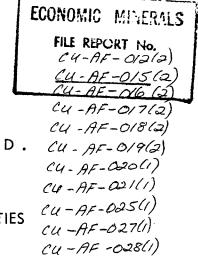
MAR 19710002: CLARK RANGE

Received date: Dec 31, 1971

Public release date: Jan 01, 1973

DISCLAIMER


By accessing and using the Alberta Energy website to download or otherwise obtain a scanned mineral assessment report, you ("User") agree to be bound by the following terms and conditions:

- a) Each scanned mineral assessment report that is downloaded or otherwise obtained from Alberta Energy is provided "AS IS", with no warranties or representations of any kind whatsoever from Her Majesty the Queen in Right of Alberta, as represented by the Minister of Energy ("Minister"), expressed or implied, including, but not limited to, no warranties or other representations from the Minister, regarding the content, accuracy, reliability, use or results from the use of or the integrity, completeness, quality or legibility of each such scanned mineral assessment report;
- b) To the fullest extent permitted by applicable laws, the Minister hereby expressly disclaims, and is released from, liability and responsibility for all warranties and conditions, expressed or implied, in relation to each scanned mineral assessment report shown or displayed on the Alberta Energy website including but not limited to warranties as to the satisfactory quality of or the fitness of the scanned mineral assessment reports and warranties as to the non-infringement or other non-violation of the proprietary rights held by any third party in respect of the scanned mineral assessment report;
- c) To the fullest extent permitted by applicable law, the Minister, and the Minister's employees and agents, exclude and disclaim liability to the User for losses and damages of whatsoever nature and howsoever arising including, without limitation, any direct, indirect, special, consequential, punitive or incidental damages, loss of use, loss of data, loss caused by a virus, loss of income or profit, claims of third parties, even if Alberta Energy have been advised of the possibility of such damages or losses, arising out of or in connection with the use of the Alberta Energy website, including the accessing or downloading of the scanned mineral assessment report and the use for any purpose of the scanned mineral assessment report.
- d) User agrees to indemnify and hold harmless the Minister, and the Minister's employees and agents against and from any and all third party claims, losses, liabilities, demands, actions or proceedings related to the downloading, distribution, transmissions, storage, redistribution, reproduction or exploitation of each scanned mineral assessment report obtained by the User from Alberta Energy.

Alberta

Alberta Mineral Assessment Reporting System

197/0002

ALCOR MINERALS LTD.

٠,

1970 EXPLORATION OF PROPERTIES

IN THE

CLARK RANGE

SOUTHWESTERN ALBERTA

February 6, 1971

L. B. Halferdahl & Associates Ltd. 401 – 10049 Jasper Avenue Edmonton 15, Alberta

ALCOR MINERALS LTD.

1970 EXPLORATION OF PROPERTIES

IN THE

CLARK RANGE

SOUTHWESTERN ALBERTA

Geographic Coordinates 49[°] 15' N 114[°] 15' W

by

L. B. HALFERDAHL, Ph. D., P. Geol.

February 6, 1971

	700322	L. B. Halferdahl & Associates 401 10049 Jasper Avenue Edmonton 15, Alberta 700 236 700 230	Ltd.
	Deserver Radis	700 232 700 234 700 235 700 236	·
INDEYLNG		NOS, 700 241 700244 240 244	L. B. HALFERD

L. B. HALFERDAHL & ASSOCIATES LTD.

ECONOMIC MINERALS

FILE REPORT No. Cu - AF - OI2(2) Cu - AF - OI5(2) Cu - AF - OI6(2) Cu - AF - OI7(2)Cu - AF - OI8(2)

CU - AF - O19(2) CU - AF - O2O(1) CU - AF - O21(1) CU - AF - O25(1)

cu - AF - 027(1) cu - AF - 028(1)

TABLE OF CONTENTS

	Page
Introduction	1
Summary	2
Recommendations	4
Property	6
Geographic Setting	7
Previous Exploration	9
Regional Geology	10
Geochemical Survey	12
Field Tests	13
Analysis of Data	15
Geochemical Anomalies	16
Prospecting	19
Types of Mineralization	20
Mineral Occurrences and Geochemical Anomalies	22
Spionkop Showing	24
Location	24
Stratigraphy and Lithology	24
Igneous Rocks	25
Structure	25
Mineralization	26
Origin of the Mineralization	2 7
Conclusions	31
References	33
Certificate	35

LIST OF TABLES

		<u>Fage</u>
Table 1	Field Test of Stream Water, and Laboratory Analyses of Stream Water and Sediment – Copper	14
Table 2	Geochemical Anomalies	17
	LIST OF APPENDICES	
Appendix 1	Field and Analytical Data on Water Analyses	Al
Appendix 2	Mineral Occurrences	A37
Appendix 3	List of Prospecting Traverses	A46
Appendix 4	Logs of Diamond Drill Holes, Spionkop Ridge	A48
Appendix 5	Certificates of Assay	A77
Appendix 6	Field Crew and Field Time	A8I
	LIST OF ILLUSTRATIONS	
Figure 1	Location Map After	page 35

Figure 2Locations and Sample Numbers
of Geochemical Water SamplesIn pocketFigure 3Histogram of Copper Analyses
of Water SamplesAfter page 35Figure 4Histogram of Lead AnalysesAfter page 35

Histogram of Lead Analyses of Water Samples

Figure 5 Histogram of Zinc Analyses of Water Samples

Figure 6Copper Concentrations in Stream,
Spring, and Loke WatersIn pocketFigure 7Lead Concentrations in Stream,
Spring, and Lake WatersIn pocket

After page 35

Figure 8	Zinc Concentrations in Stream, Spring, and Lake Waters	In pocket
Figure 9	Geochemistry of Stream Sediments, Drywood Mountain	After page 35
Figure 10	Geochemistry of Stream Waters, Tough Creek Area	After page 35
Figure 11	Traverses and Mineral Occurrences	In pocket
Figure 12	Geology, Mineralization, and Topography, Spionkop Showing	In pocket

• -

 $\cdot z l$

INTRODUCTION

Field work on the properties of Alcor Minerals Ltd. in the Clark Range of southwestern Alberta began on June 24, 1970 and was completed on October 29, 1970. The work was divided into 3 parts: conventional prospecting and noting geological structures, geochemical survey, and detailed work including mapping, trenching, and drilling of the Spionkop Showing. The work on the three parts overlapped to some extent, but except for some experimental work on the type of geochemical survey to be conducted, the geochemical work did not receive priority until after the conventional prospecting was completed in late August. This order was determined in part by factors affecting the type of geochemical survey conducted as explained herein, and by the availability of field crew. The conventional prospecting was conducted mostly by undergraduate university students taking geology, while most of the geochemical survey with one or two exceptions was conducted by field men essentially inexperienced in such work. A graduate student under the direction of the writer mapped the Spionkop Showing and supervised the rest of the program until September; then the program was supervised by the writer. The program was designed to evaluate the Alberta property of Alcor Minerals Ltd. so that areas warranting further detailed work would be outlined and to honor a work commitment on the Spionkop Showing. To gain more information on the area, some land outside the Alcor property was included in the program, and some land under option from Alcor at the time of the field work was not included. In late October the geochemical survey was extended to the Alcor property on the British Columbia side of the North Kootenay

Pass. A tent camp was used for the field work except in October, when other accommodation was rented. Two rented 4×4 's equipped with winches and a $\frac{3}{4}$ -ton pickup provided transportation, and were supplemented with other 4-wheel drive vehicles occasionally. 2.

This report describes the evaluation of the Alcor property in the Clark Range, southwestern Alberta based on the exploration undertaken in 1970. It has been supplemented in a few places by reports from Cominco Ltd., Geowest Services Ltd., Kennco Exploration (Western) Limited, from the notes of traverses conducted in 1968 and other information obtained from Akamina Minerals Ltd. The sections on <u>Geographic Setting</u> and <u>Regional Geology</u> have been kept brief. More detailed information on these is available in published reports in the list of references, and on maps available from the Alberta Department of Lands and Forests.

SUMMARY

The properties of Alcor Minerals Ltd. in southwestern Alberta consist of nine wholly owned Exploration Permits totalling 105, 292 acres, two partly owned Exploration Permits totalling 26, 106 acres, four quarter section claims, and 75 optioned mineral claims. These properties lie within and adjacent to the Clark Range, which extends in a northwesterly direction for about 40 miles in Alberta and British Columbia and is about 20 miles wide. It contains mountains rising to elevations greater than 8,000 feet. Access is via provincial highways and gravelled roads, with railways not more than 30 miles from any part of the properties. Exploration in the area has been conducted by Kennco Explorations Limited, Cominco Ltd., Falconbridge Nickel Mines Ltd., and by smaller companies and prospectors. The rocks in the area are Late Precambrian strata of the Purcell Series, which form part of the Lewis Thrust Sheet. They consist of limestones, dolomites, argillites, siltstones, sandstones, quartzites, and andesitic lava flows, and are cut by basic dykes and sills. These Precambrian rocks have been superimposed on younger Paleozoic and Mesozoic strata by the Lewis Thrust.

A geochemical survey involving the collection of more than 1400 samples of stream, spring, and lake waters has outlined 21 anomalous or slightly anomalous areas for one or more of copper, lead, and zinc. The anomalies northeast of Victoria Peak, on Drywood Mountain, on Pincher Ridge, along upper Gardiner Creek, in the Ruby Lake area, north of Whistler Mountain, near Table Mountain, and south of the North Kootenay Pass are considered important.

Forty-two mineral occurrences were found by conventional prospecting and during some previous work; they have been classified into four main types of which some of the Grinnell and siltstone types are important. Many of the Grinnell-type occurrences appear to be related to faults, whereas the siltstone-type occurrences may be related to faults or to a stratigraphic horizon above the Purcell Lava. The more important occurrences coincide with the important geochemical anomalies, except that faulting, but no mineralization was noted at the best geochemical anomaly northeast of Victoria Peak.

Mapping, trenching, and drilling of the Spionkop Showing showed that at least some of the copper mineralization is related to a fault, but is too low grade and not extensive enough to be economically important.

The source of the lead and zinc mineralization is apparently in the Sheppard Formation where what appears to be a sedimentary deposit has

been discovered by Cominco in the Carbondale River area. A similar source for the copper mineralization in strata younger than the Sheppard Formation is favored, with the copper having been leached from it, carried in solution along faults and other channelways, and deposited in suitably porous rocks or other dilatant zones in the Grinnell and other formations.

RECOMMENDATIONS

- 1. Acquire Permit 148 or at least the ground covered by the best geochemical anomaly northeast of Victoria Peak.
- Drop all ground beyond the Lewis Thrust Sheet in Permits 66, 68, 160, and 161, and NE 5-3-30 W4, SW 36-3-1W5. If possible, modify Permit 161 to include all the Lewis Thrust Sheet north of Permit 64.
- Much ground in other Permits can be dropped as well, but this is not urgent.
- 4. No further work should be done on the Goble option.
- 5. Analyse the geochemical data by computer in an effort to identify any favorable mineralized horizons.
- 6. Investigate initially by study of geological reports and subsequently by field examination whether a sedimentary-type copper deposit is present in Purcell Strata younger than the Sheppard Formation.
 If so, such a deposit could extend through a wide area of south-eastern British Columbia and northwestern Montana.
- 7. Conduct a study of aerial photographs to delineate faults in addition to those already identified.

8. Conduct a geochemical survey similar to that of 1970, for the areas of Permits 64, 65, and 148 (when acquired) not covered by the 1970 survey and to include the previously dry streams on Lys Ridge, in the Ruby Lake area, along Jutland Brook, and upper Gardiner Creek.

9. In

Investigate by sampling, mapping and possibly by geophysical survey, trenching, and drilling the important mineral occurrences and geochemical anomalies including

- a) northeast of Victoria Peak
- b) Drywood Mountain,
- c) Pincher Ridge
- d) Ruby Lake area

e) upper Gardiner Creek

f) Lys Ridge

10.

Check the Sheppard Formation for lead-zinc mineralization, particularly north of Whistler Mountain, near Table Mountain, and south of the North Kootenay Pass for the sources of the zinc anomalies at these places.

PROPERTY

 $f \in$

The property in Alberta consists of nine wholly owned Quartz Mineral Exploration Permits totalling 105, 292 acres, two partly owned Quartz Mineral Exploration Permits totalling 26, 106 acres, 4 quarter section claims or parts thereof, and 75 optioned mineral claims, all listed below. Each of the optioned claims was originally located according to the regulations in effect prior to Alberta Regulation 377/67 and so is expected to comprise approximately 51 acres except for Bighorn Fraction 95 which is smaller. None of the claims has been surveyed and none of the claim posts has been checked in the field. Nevertheless they are believed to have been located according to the regulations in effect at the time of their locations.

Quartz Mineral Exploration Permit	No. Acres	Date of Permit
	Wholly Owned	
58	9,453	5 - 7 - 68
64	9,920	29 - 8 - 68
65	9,920	29 - 8 - 68
66	9,440	3 - 10 - 68
67	19,840	3 - 10 - 68
68	9,279	3 - 10 - 68
147	9,600	5 - 2 - 70
160	9,920	28 - 9 - 70
161	17,920	5 - 10 - 70
3	80% Undivided Interest	
70	19,652	7 - 11 - 68
71	6,454	7 - 11 - 68

Claim	Record Number	Record Date					
Quarter Section Claims							
SW 36 - 3 - 1W5 NE 5 - 3 - 30W4 (part SW 26 - 3 - 1W5 (part NW27 - 3 - 1W5		$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$					
Bighor	n Optioned Claims						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	595 to 602 677 and 678 603 and 604 605 to 508 610 to 618 654 and 655 632 to 642 656 and 657 643 to 648 649 to 651 653 682 to 686 696 and 697 687 67	5 - 3 - 68 $16 - 7 - 68$ $5 - 3 - 68$ $5 - 3 - 68$ $31 - 5 - 68$					
81 to 86 87 to 91 92 and 93 Fraction 95 101 to 103	688 to 693 715 to 719 694 and 695 412 420 to 422	13 - 8 - 68 3 - 10 - 68 13 - 8 - 68 17 - 11 - 67 21 - 11 - 67					

GEOGRAPHIC SETTING

The Alberta property lies within and adjacent to the Clark Range of southwestern Alberta. It comprises a large part of this range north of Waterton Lakes National Park in Alberta. The Clark Range forms part of the southern Canadian Rocky Mountains, and straddles the Alberta – British Columbia border for about 40 miles extending northwesterly from the 49th Parallel. It contains many rugged mountains, some rising to elevations greater than 8,000 feet; the elevation of the lower valleys is about 4,500 feet.

R HALFERDAHL & ASSOCIATES LTD.

Parts of the periphery of the Clark Range can be reached by Alberta and British Columbia Highway 3, by Alberta Highways 5 and 6, and by the southern transmountain line of the Canadian Pacific Railway and some of its branch lines in Alberta. Supplies and accommodation can be obtained in Pincher Creek or Waterton Park, Alberta or Fernie, British Columbia. Within the area are a number of all-weather Forestry, gas-well-service, and other gravel roads. In addition, dry-weather and 4-wheel-drive roads, and numerous trails provide access to many of the larger valleys and some of the mountain passes and ridges. Some of the mountain tops are suitable for landing helicopters, but strong winds can seriously hinder their use.

.

Most of the valleys contain streams or rivers of various sizes, the largest being the Flathead and Castle Rivers; hence, ample water is available except on some of the higher mountains.

Most of the lower parts of the mountain slopes are heavily timbered with spruce and other trees. Some parts are being exploited by lumber companies. Parts of the area were burned over many years ago with the resulting deadfall and second growth making travel on foot very slow in some of these areas.

Conventional prospecting, surface geological work, and geochemical field work are possible without serious hindrance from snow and ice during June, July, and August in the Clark Range. Some interruption of work can be expected by snow in September, but delays may be only short through much of September and October. One cannot count on conducting field work in May. July and August, are frequently so hot and dry that the forests are closed because of fire hazard in parts of August and September. Such closures generally apply only to recreational use.

Shell Canada Limited operates a large gas processing plant 12 miles southwest of Pincher Creek. Coal was produced until the 1920's from large deposits near Corbin, which is west of the Flathead Range, the range immediately north of the Clark Range.

PREVIOUS EXPLORATION

The Clark Range and adjoining country have received considerable attention because of the petroleum possibilities in the Paleozoic rocks of the area. This resulted in the discovery of the Waterton gas field in 1957, and the subsequent building of the gas processing plant of Shell Canada Ltd. near Pincher Creek.

For many years the metallic mineral possibilities of the Clark Range appear to have received only cursory attention. Scattered reports of copper occurrences had been made by prospectors, hunters, and trappers over the years, but not unril 1963 and subsequent years did the staking of a number of claims in the vicinity of Yarrow and Spienkop Creeks on the east side of the Range almost adjoining north of Waterton Lake National Park by Frank Goble, his associates, and rivals, begin to attract the attention of mining interests.

In 1966 and 1967, Kennco Explorations Limited prospected, mapped, and drilled some of these claims, north of Yarrow Creek, and prospected several Quartz Mineral Exploration Permits in the Alberta part of the Clark Range, and some claims and adjoining ground in the Commerce Peak area of British Columbia. Subsequently Kennco terminated its interest in the Clark Range.

R HALFERDAHL & 1950CLATES LTD

From time to time other interests have acquired Quartz Mineral Exploration Permits, but little exploration appears to have been conducted.

In 1968, Akamina Minerals Ltd. conducted a program of prospecting, sampling, and trenching, on 75 of the Goble claims, on a number of Quartz Mineral Exploration Permits in Alberta, and on a large number of claims located in British Columbia.

In 1969, Cominco Ltd. mapped, sampled, and trenched parts of Quartz Mineral Exploration Permits No. 64 and 65. Cominco continued this work including the drilling of five holes on the Grizzly Showing in 1970. It also conducted some mapping and drilling on Quartz Mineral Exploration Permit No. 71. In early 1971 it terminated its interest in these three permits.

In late 1969, Falconbridge Nickel Mines Ltd. acquired a large number of claims in the British Columbia part of the Clark Range and in early 1970, Quartz Mineral Exploration Permit No. 148 between permits 64 and 66 in Alberta. It conducted an exploration program on these lands in 1970.

Other interests, some based in Vancouver, have staked claims in the British Columbia part of the Clark Range in 1969 and 1970.

REGIONAL GEOLOGY

The general features of the geology of the Clark Range are well known through mapping by officers of the Geological Survey of Canada and by drilling and other geological investigations by individual companies. In the Clark Range, a block of Late Precambrian dominantly sedimentary rocks known as the Purcell Series forms part of the Lewis Thrust Sheet, a major structure of the Rocky Mountains in the

southern part of Canada and the northern part of the United States. The Lewis Thrust carried the Precambrian rocks and some of the overlying Paleozoic rocks now constituting the Clark Range eastward from the vicinity of Cranbrook, superimposing them on younger Paleozoic and Mesozic strata. The maximum stratigraphic separation is 25,000 feet to 30,000 feet, and the maximum thickness of the sheet is 20,000 feet. Other thrust faults are known particularly close to the Lewis Thrust.

The Flathead Fault is a major southwest-dipping normal fault along the west side of the Clark Range in the Flathead Valley; it extends for 50 miles or more both north and south of the Clark Range. It has dropped the strata of the Lewis Thrust Sheet at least 20,000 feet on its west side.

The Lewis Thrust Sheet in the Clark Range forms a broad synclinorium extending from the Akamina syncline in the southeast near Cameron Lake to a series of smaller synclines and anticlines in the northwest near Mount McCarty. In addition to the structures mentioned above, many smaller folds and faults are present.

Rocks of the Purcell Series have been divided into several formations; from bottom to top as designated by officers of the Geological Survey of Canada they are Waterton, Altyn, Appekunny, Grinnell, Siyeh, Purcell, Sheppard, Gateway, Phillips, and Roosville. If the minimum and maximum thicknesses measured for each formation are totalled, the thickness of the Purcell Series ranges from about 10,000 feet to more than 21,000 feet. The rocks include limestones, dolomites, argillites, siltstones, sandstones, quartzites, and andesitic lava flows. Most are cut by basic dykes and sills which are generally considered to be related to the Moyie intrusions of the Cranbrook area to the west.

L. B. HALFERDAHL & ASSOCIATES LTD.

Work reported herein indicates that some of these intrusions, particularly the sills, contain low grade copper mineralization with local higher grade pockets, but such mineralization is present mostly in the fine grained margins, while very close by are dark basic intrusives essentially barren of copper minerals. While not conclusive, this suggests that there may be two periods of intrusion of basic rocks with the mineralization taking place between them. Douglas (1952) noted the presence of dark green basic sills which locally contain stellate aggregates of feldspar up to 2 inches or more in size. In some of these rocks the writer observed ellipsoidal structures resembling pillows, as well as vesicular tops, features which suggest that some may be lava flows.

Other much younger porphyritic trachytes or syenites have been noted by Price (1962). One of these is shown along La Coulotte Ridge on his map. Sill-like bodies, apparently petrographically similar, were encountered during this project at the west side of the headwaters of the West Castle River, on the ridge north of La Coulotte Peak, and at the south end of Barnaby Ridge southwest of Ruby Lake, all in the lower part of the Gateway Formation. One sill where observed is up to 250 feet thick. It consists of flesh-colored feldspar phenocrysts to 5 mm in size in a very fine grained dark brownish purple groundmass near its contacts. In the central part, the groundmass is grey, with a grain size up to 1 mm and consists of feldspars, some partly altered to epidote and with the ferromagnesium minerals mostly altered to chlorite.

GEOCHEMICAL SURVEY

A geochemical survey involving the collection of more than 1400 samples of stream, spring, and lake waters in the Clark Range and adjacent to it in southwestern Alberta and southeastern British Columbia was conducted in August, September, and October 1970. Previous

geochemical surveys had been conducted in part of the Clark Range by Kennco Exploration (Western) Limited in 1967, and by Cominco Ltd. in 1969. The results of these surveys have not been studied by the writer but they are reported to have been based on stream sediments and soils, and to have been unsuccessful, possibly because of the minimal geochemical dispersion in the Clark Range where rapid mechanical erosion is predominant. If this is accepted, then a geochemical survey was warranted only if it could be based on a type of sample with a reasonable level of geochemical dispersion. Spring and stream waters were a possibility. Although geochemical surveys based on such waters. are known to the writer to have been successful in only a limited number of other places, it was thought that the Clark Range offered a reasonable chance because of the generally hot, dry summers and dry falls, if the sampling was conducted after the streams had subsided from the spring runoff. Accordingly it was decided to defer the geochemical survey until the latter part of the field season after conducting some field tests. During the survey many streams or parts of them were dry, and so could not be sampled. Possibly this could have been avoided if the survey had started in late July. On the other hand, snow in September and October appeared to have little or no effect on the streams except that the accompanying cold froze some at higher elevations.

Field Tests

The field tests consisted of attempts to adopt dithizone field testing methods for stream sediments and soils to stream waters; the concentrations of copper, lead, and zinc are usually measured in parts per million in sediments and soils, but in parts per billion in waters. Analytical results for copper in these field tests along with laboratory analyses of water and stream sediment samples from a stream draining the Grizzly Showing are given in Table 1.

TABLE 1

c			Stream Water tream Water and Sedim	ent – Copper
-			-	· · · · · · · · · · · · · · · · · · ·
ample No.	Field Test of Water P – Detected n – Not Detected		Laboratory Analyses of Water ppb	Laboratory Analyses of Stream Sediment ppm
WI	n		4	20
W 2	P		3	22
W3	Ρ		3	18
W4	Р	•	4	23
W5	P		7	20
. W6	P		7	18
W9	n		5	13
WI2	'n		4	18
WI5	n		4	14
W17	. n		4	21

These results show that copper was detectible in stream waters by the field tests in parts of the streams draining the Grizzly Showing and not detected in other parts. Although the copper concentrations in the stream sediments cannot be correlated with those in the waters determined by laboratory analyses, they may be slightly correlated with the field tests of waters. These and other tests showed that copper could be detected by these field tests and hence that stream waters in the Clark Range appeared suitable for a geochemical survey. However, as the field test results were rather subjective and only semiquantitative, all the samples were sent to a commercial laboratory for analyses by atomic absorption techniques.

In September another attempt was made to use stream sediments. This was done on Drywood Mountain where a copper showing had been previously located and anomalous concentrations of copper in stream waters obtained. The results are shown in Fig. 9: -- possibly two anomalous concentrations of copper and one of lead all at or very close to the copper showing. This appears to confirm the results previously obtained by Kennco and Cominco for stream sediments in the Clark Range. The geochemical survey of stream sediments conducted by Geowest Services Ltd. on the Alcor properties in the Flathead Valley also confirms these results: only two minor copper showings are located by this method, while the more promising copper occurrences located by conventional prospecting were not detected in the stream sediment analyses.

Analysis of Data

Details of the sampling, sample treatment, analytical methods, and the data obtained from the geochemical survey of stream, spring and lake waters are in appendix 1. Sample locations and sample numbers are shown in Fig. 2. Some creeks were resampled for three reasons: to provide check analyses; initial samples were analysed for copper only; one shipment of samples was temporarily misplaced. This resampling accounts for the density of sample locations in a few parts of Fig. 2. In general it was found that smaller tributary streams and springs were more useful. As explained in appendix 1, the geochemical data are ready for analyses by a computer, but time has not permitted such analyses. Instead simple statistical analyses are shown in Fig. 3 to 5. The similarity of geochemical behaviour of copper and lead in waters and the difference of zinc is clearly displayed by the shapes of the histograms in Fig. 3 to 5. Based on these statistical analyses, the analytical data for copper, lead, and zinc have been grouped into background, slightly anomalous, and anomalous. In Fig. 6 to 8, low background values are shown by the sample location only; high background values by arrows indicating the

direction of increasing values. Slightly anomalous and anomalous values are shown by the concentrations of copper, lead, and zinc, in parts per billion. Although this method of analysing the data has detected several anomalous areas, the field tests of the water showed that subtler analytical methods such as those available with a computer may be needed to detect such showings as Grizzly* (occurrence 41, Fig. 11, appendix 2).

Fig. 6 to 8 show data for all water samples collected except for 5 very high copper concentrations omitted from a westerly-flowing tributary of Gardiner Creek on Permit 160. Check analyses failed to confirm these high copper concentrations, although 3 slightly anomalous zinc concentrations were obtained from the same creek. In general, it is thought that copper concentrations much above 100 or 200 parts per billion are probably from contaminated samples. For this reason the high copper concentrations along Jutland Brook in Permit 67 (Fig. 6) were not checked, but for reasons outlined in the section on <u>Origin of Mineralization</u> checking may be warranted. A lead concentration of 1260 parts per billion on a tributary at the head of the West Castle River on Permit 58 (Fig. 7) may also be due to contamination.

Geochemical Anomalies

Anomalous or slightly anomalous areas in Fig. 6 to 8 are listed in Table 2, where each anomalous area is rated for copper, lead, and zinc by scoring 1 for each high background concentration, 3 for each slightly anomalous concentration, and 5 for each anomalous concentration determined.

*In this connection it may be significant that the mineralized strata of the Grizzly Showing are dipping into the side of Barnaby Ridge so that streams flowing down the ridge have minimal contact with the mineralized strata.

TABLE 2: GEOCHEMICAL ANOMALIES

. .

	Anomalous Area	Cu	Pb	Zn
1.	NE of Victoria Peak, Permits 66 and 148	53	60	34
2.	Pincher Ridge N of Drywood Creek, Permit 147	23	2	6
3.	Drywood Mountain, Permit óó and adjoining land	18	26	80
4.	NW 27-3-1W5 [*] and adjoining land	. 7	31	42
5.	SW 26-3-1W5 and adjoining land	9	11	11
٥.	Spionkop Creek, SE corner of Permit 147	. 3	30	23
7.	Spionkop Creek, Goble Option	0	11	23
8.	Blind Canyon, Goble Option	8	15	12
9.	Yarrow Showing, Goble Option	3	0	15
10.	South of Yarrow Creek	0	0	19
11.	South of Victoria Ridge, Permits 70 and 140	2	3	12
12.	Jutland Brook, Permit 67 and adjoining land	25*	0	31
13.	South of Windsor Ridge, Permits 70 and 72	- 5	3	10
14.	S, E, and N of Table Mountain, Permit 161 and adjoining land	0	0	49
15.	North of Whistler Mountain,			
	Permits 64, 161 and adjoining land	0	0	42
16.	Grizzly Creek, N central part of Permit 67	8	0	10
17.	SW side of Barnaby Ridge, Permit 67	5	1	15
18.	Ruby Lake area, Permits 58 and 67	25	0	10
19.	Upper Gardiner Creek, Permit 68	25	2	1
20.	Syncline Brook, Permits 65, 68 and adjoin- ing land	5	1	17
21.	South of N. Kootenay Pass, B.C.	0	0	42

* Samples may have been contaminated

In addition to the anomalous areas in Table 2, there are three other areas slightly anomalous for zinc: west side of Castle River below the confluence of West and South Castle Rivers; O'Hagen Creek area; and the westerly-flowing tributary of Gardiner Creek previously mentioned. These and anomalous areas 9, 10, 11 probably 12, 13, 14, 15, 20, and 21 in Table 2 are anomalous or slightly anomalous for zinc only, with anomalous concentrations of copper and lead being absent or almost absent. The three not included in Table 2 are in Cretaceous strata beyond the limit of the Lewis Thrust. If the zinc which has produced these concentrations originated in the rocks of the Lewis Thrust Sheet, then the geochemical mobility of zinc is clearly demonstrated. The histograms in Fig. 3 to 5 can also be interpreted as showing the mobility of zinc as distinct from that of copper and lead. Fig. 10 shows the results of other samples collected from an area underlain by Cretaceous strata east of Waterton Lakes National Park. One value for zinc is anomalous and another is slightly anomalous; all others are background. These observations on the geochemical mobility of zinc mean that geochemical anomalies in the Clark Range and adjacent regions based only on zinc, particularly in Cretaceous strata, may not be significant unless confirmed by other evidence.

Of the anomalous areas in Table 2, that northeast of Victoria Peak is clearly the best. Other important anomalous areas are Drywood Mountain, Pincher Ridge, Ruby Lake area, and upper Gardiner Creek. Other anomalous areas that <u>may</u> have merit are 4 and 5 in Table 2. The existence of anomalies for all three metals - copper, lead, and zinc - in some of the above areas appears to confirm their significance, and also suggests that the copper, lead, and zinc forming the anomaly may have the same genesis. Further evaluation of the geochemical anomalies based on the results of the prospecting is in the next section.

PRÖSPECTING

Conventional prospecting was conducted during 104 traverses mostly by 2-man parties provided with compasses and altimeters and instructed to note particularly geological structures and other features that might provide clues to the origin of the copper mineralization.* The traverses conducted, the mineral occurrences found, and observations on the structures and other features of the geology are shown in Fig. 11. In Fig. 11 some of the geological formations noted on the traverses do not always coincide with the published geological maps. Such discrepancies are to be expected between maps published at scales of one and two miles to the inch, and the prospectors' traverses. The mineral occurrences found, along with a few obtained from other sources, are numbered in Fig. 11 and in appendix 2, where they are described. A considerable amount of work has been done on four occurrences: 9 - Spionkop (see section headed Spionkop Showing in this report), 10 - Yarrow, 41 - Grizzly, 42 - Whistler.

In addition in Fig. II are several unnumbered copper occurrences whose locations are not precisely known. They have been reported by others not far north of the boundary of Waterton Lakes National Park from Mount Glendowen to Newman Peak and northwest to Bovin Lake and beyond to Victoria Ridge, and in a few other places but details are not available. Some of these occurrences appear to be related to a stratigraphic horizon in the Sheppard Formation. Near the top

* The prospecting had been completed before news of Cominco's find of sphalerite and galena in the Sheppard Formation had leaked out.

of the Sheppard Formation, chalcopyrite very sparsely disseminated in about 6 feet of massive grey, very fine grained, thickly bedded dolomite was found just south of the North Kootenay Pass by the writer in 1968 and in the Carbondale River area by Cominco in 1970. Similar chalcopyrite at the same stratigraphic horizon elsewhere in the Clark Range including Beavertail Valley, Yarrow Creek, Sage Creek, Drywood Creek, Castle River, and North Fork of Kishinena Creek, was reported by Frank Goble in 1968. Assays range from trace to 0.16% copper, but the more reliable assays do not exceed 0.03% copper. Although this type of occurrence in the Sheppard Formation appears to differ considerably from sedimentary copper deposits such as the Kupferschiefer, its fine grained nature and wide areal extent at one stratigraphic horizon suggest that it may well be sedimentary. Even if it is, field examination and assays indicate that, at least where examined and sampled, it is too low grade to be economic.

Types of Mineralization

The occurrences in appendix 2 can be grouped into four main types: Grinnell, sill-margin, siltstone, and vesicle-filling. Grinnell mineralization is characterized by chalcocite in the interstices of quartz grains in sandstone, along contacts of and fractures in green argillite pebbles in sandstone and along bedding planes and fractures in sandstone. In some occurrences the chalcocite is accompanied by bornite and to a lesser extent chalcopyrite. Malachite staining may be abundant or virtually absent. Because malachite is a secondary copper mineral it has been included in appendix 2 in only a few descriptions, although it is present more or less in all. Grinnell-type occurrences also include disseminated chalcopyrite, bornite, and chalcocite in more highly cemented sandstones or quartzites. Many of the occurrences are only a few inches to one foot or so thick, even if they can be traced for

as much as 1/2 mile, most for very much less. Most of these occurrences have been found at various stratigraphic levels in the Grinnell Formation with the better occurrences present at the very top of the formation and a part of the middle. Grinnell-type occurrences are also found in quartzites at the bottom of the Siyeh and at the top of the Appekunny, where chalcopyrite is as common or more so than chalcocite. Most of the occurrences of this type in appendix 2 are minor, but in addition to the four occurrences (9, 10, 41, 42) which have been drilled or trenched, occurrences 16 (Pincher Ridge), 19 and 20 (Drywood Mountain), and possibly 37 (upper Gardiner Creek) appear to have thick enough mineralized zones to warrant additional work.

Sill-margin mineralization, as explained in the section on Origin of the Mineralization, is believed to be genetically related to Grinnell mineralization. It is characterized by disseminated very fine grained chalcopyrite and chalcocite in the margins of green basic sills, for thicknesses seldom exceeding one foot. Its distribution in the sill margins is erratic, and some appears to penetrate locally to the center of the sills along joints. In one sill with this mineralization on Yarrow Creek at or near the top of the Appekunny Formation, the sill margin appeared to have been bleached, and the magnetite present elsewhere in the sill had been destroyed. Grinnell mineralization is common in sandstones adjacent to sills with sill-margin mineralization. In general, sill-margin mineralization is not regarded as economically important.

Siltstone mineralization consists of fine grained chalcocite or chalcopyrite in siltstones or argillites in the Gateway and possibly other formations above the Purcell Lava. Assays of grab samples range from 0.26% to 1.30% copper. The stratigraphic and lateral extents of these

occurrences are not known but occurrences 25 (Lys Ridge west of Grizzly Creek), 26, 31 and 32 (Ruby Lake area), and 40 (North Kootenay Pass), warrant additional work.

Vesicle-filling is fairly common in vesicles in the Purcell Lava. Most of the vesicles in the lava are filled with calcite or chlorite; a few containquartz, and even fewer contain blobs of chalcopyrite up to 5mm in size. Except for the top 2 or 3 inches of the formation, nowhere have the chalcopyrite-filled vesicles been found to be abundant enough to make them economically interesting. In the top few inches they are abundant enough in one or two places, but the mineralized zone is far too thin.

Other types of mineralization include the minor occurrences of chalcopyrite along dolomite contacts in the Waterton Formation, accessary sulfides in basic intrusives, and the sphalerite in occurrence 23 which is interesting but probably of minor extent.

Mineral Occurrences and Geochemical Anomalies

Grinnell mineralization on Drywood Mountain, Pincher Ridge, and upper Gardiner Creek appears to be responsible for the geochemical anomalies in these locations. During the prospecting many of the Grinnell-type occurrences were found to be close to faults, many of which have displacements of up to a few tens of feet. Many of the remaining Grinnell-type occurrences can be related to faults on the published geological maps, possibly even the Whistler Showing. A fault is shown on the published map along the best geochemical anomaly northeast of Victoria Peak and another was found along it during the prospecting, although no mineralization was reported. In summary, most of the more interesting Grinnell-type occurrences are related to faults and coincide with some of the better geochemical anomalies. The best geochemical anomaly is crossed by at least two faults, but base metal mineralization was not noted during the prospecting.

Siltstone mineralization in the Ruby Lake area coincides with scattered anomalous concentrations of copper. Some of these and the occurrence on Lys Ridge appear to be possibly related to a stratigraphic horizon in the Gateway Formation. Published geological maps show faults near some of these occurrences. Hence it is uncertain whether the siltstone mineralization is strata-bound or fault controlled.

Anomalous areas 4 and 5 and a few of the others in Table 2 show more determinations of higher lead and zinc concentrations than copper. Small amounts of galena and sphalerite have been reported from some of the 1970 Alcor traverses and some of the earlier traverses by Frank Goble. The significance of these lead and zinc anomalies can probably be learned from further work on the Drywood Mountain occurrence, which shows both high lead and zinc, and high copper.

Zinc anomalies in the Cretaceous strata have been discussed previously. Those in rocks of the Lewis Thrust Sheet near Table Mountain, north of Whistler Mountain, and south of North Kootenay Pass appear similar. The zinc may have come from nearby lead-zinc occurrences in the Sheppard Formation similar to those discovered by Cominco in the Carbondale River area. Some of the other high background or anomalous lead and zinc concentrations may be similarly explained.

SPIONKOP SHOWING

, t j.

Location

The Spionkop Showing is south of Spionkop Creek, along the northwest side of Spionkop Ridge. Most of it is in Sec. 24, Tp. 3, R. 1, W 5th Mer., Alberta. It is reached by turning west from Alberta Highway No. 6 on the gravel road to the Waterton gas plant of Shell Canada Limited, south just before reaching the plant and following gas-well-service roads up Spionkop Creek. A bulldozed trail about 3 miles long and suitable for 4-wheel drive vehicles leaves this road just north of its crossing of Spionkop Creek and continues to the showing near the top of Spionkop Ridge. Earlier work indicated that the Spionkop Showing extends for several thousand feet along the northwest side of Spionkop Ridge, but the best copper mineralization is in the upper part of the Grinnell Formation at elevations between 6,000 and 6,600 feet at the northeast end of Spionkop Ridge.

Stratigraphy and Lithology

The general features of the geology are shown in Fig. 12. On Spionkop Ridge more than 300 feet of the Grinnell Formation are exposed. The upper part consists of generally thickly bedded white, greenish, or red sandstone with little interbedded argillite or pebbles of argillite. Below this, the Grinnell Formation is dominantly red argillite, and below the red argillite is a sequence of thinly bedded, somewhat argillaceous sandstone. This sequence grades down into interbedded sandstones and dominantly red argillite. The argillite beds become more and more abundant until the strata are mostly argillite with some thin sandstone beds. The foregoing stratigraphy is generalized: more details are in appendix 4. Individual beds can be traced for a few hundred feet, but they change in thickness and character so that correlations without actual tracing are difficult.

Bleaching of the red argillite appears to be related to thin sandstone beds within the argillite. This suggests that the solutions that were responsible for the bleaching may have flowed along the sandstone beds. Bleaching is slightly more common or thicker below the sandstone than above; this may be due to lithological changes in the argillite related to the depositional environment as a sandstone bed is approached, rather than indicating the direction from which the bleaching solutions have come.

Igneous Rocks

Within the Grinnell Formation on Spionkop Ridge is at least one sill up to 8 or 9 feet thick which is generally medium grained with fine grained margins and green in color. Petrographic details are in appendix 4. The sill at the northwest part of Fig. 12 is only 18 inches thick and contains ellipsoidal features 12 to 15 inches across. It may be a lava flow. Some of these sills or lava flows can be traced a few hundred feet before they pinch out.

Adjacent to the easterly-trending fault and possibly intruded along it, is a darker grey basic dyke up to 8 or 10 feet thick, which dips steeply. The relation of this dyke to the sills is not clear, but the dyke appears to be much later.

Structure

With variations the Grinnell strata on Spionkop Ridge strike northwest and dip mostly between 20° and 35° southwest. As shown in Fig. 12, one of the sills and a sandstone bed have been offset at a northerly-trending fault with one or two subsidiary faults. The dips of these faults are not known, but they are believed to be steep. The sills offset by this fault may, in fact, all be part of the same sill.

An easterly-trending fault possibly intruded later by a basic dyke crosses about the centre of Fig. 12. The vertical displacement has been to drop the north side down a few hundred feet. Prior to this fault, the mineralized sandstone bed on its north side may have been part of the one on its south side, and the sill or flow at the northwest of Fig. 12 and near the parking lot may have been part of the sill or sills on its south side.

Mineralization

The mineralization is present in sandstone beds and sills, which as just explained may, prior to faulting, have been one sandstone interval and one sill. Chalcocite is present in the interstices of quartz grains of the green sandstone, and with bornite, as aggregates in the sandstone, in fractures in the sandstone and green argillite, and along the contacts of sandstone and green argillite pebbles. Chalcocite and chalcopyrite are present erratically in the fine grained margins and possibly along fractures of the green sills. Fig. 12 shows that the mineralization south of the easterly-trending fault, at least, is closely related to the northerly-trending fault. All is too low grade and not extensive enough to be of economic interest. This was recognized after the mapping and trenching had been completed: drilling was undertaken to honor a work commitment.

After deposition of the Grinnell strata with the intercalated flow, or intrusion of the slightly younger sill, faulting on the northerlytrending fault is believed to have occurred. This fault provided access for

the mineralizing solutions which spread out from it and deposited copper sulfides in suitable rocks: porous sandstone and along the contacts of the sills or flows. Later displacement along the easterly-trending fault took place, and subsequently intrusion of the basic dyke along it.

ORIGIN OF THE MINERALIZATION

Any theories postulated to explain the copper and other mineralization in the Clark Range are restricted by the following observations: 1. Copper occurrences have been found in most of the Beltian rocks throughout the whole extent of the Clark Range in Canada, and south into the United States, an area of more than 40 miles by 20 miles.

Most of the known copper occurrences have been found in white or greenish sandstone of the Grinnell Formation, and sills or flows within it. Some are present in similar rocks at or near the top of the Appekunny Formation.

3.

4.

Copper mineralization in sendstone is found in different stratigraphic units of the Grinnell Formation in different parts of the area. On Spionkop, Whistler, and on Sage Creek in the Flathead Valley, it is in the middle Grinnell. On Drywood Mountain, Pincher Ridge, and Grizzly, it is in the upper Grinnell. In several places beds generally not more than one foot thick are mineralized at or near the contact of the Appekunny. The sandstone units that are mineralized are generally not over 5 feet thick and in many places the mineralization is confined to one bed only a few inches to one foot thick.

The mineralized beds can seldom be traced for more than a few hundred feet or perhaps 1000 feet, although a sparsely mineralized bed from 6 to 12 inches just below the bottom of the Grinnell was traced for more than 3000 feet on Pincher Ridge, and mineralized intervals from 2-1/2 to 17 feet thick at the top of the Grinnell Formation were traced in Cominco's drilling of the Grizzly Showing for about 3000 feet.

5.

- In the Grinnell Formation generally the more porous sandstones many of which show ripple marks contain chalcocite in the interstices between subrounded grains of quartz.
- 7. In the Grinnell Formation chalcocite and bornite are present in fractures in sandstone and green argillites, and along the borders of pebbles of green argillite within the white quartzites.
- Assays of the green and grey argillite adjacent to mineralized sandstone beds in the Grinnell Formation at the Spionkop Showing show only traces of copper.
- 9. Many of the red argillites of the Grinnell Formation are irregularly bleached to green. Much of this bleaching is found above and below white or green sandstone beds or laminae, with that below the sandstone being somewhat more extensive.
- 10. Most of the copper sulfide minerals in the sills or flows in the Grinnell Formation or near it in the Appekunny Formation consist of chalcopyrite and chalcocite. They are present mostly along the margins of the sills, but also along fractures and joints in the sills. Their distribution in the sill margins is errotic.
- Some of the sills contain a moderate amount of magnetite which appears to have been destroyed in the mineralized parts of their margins.

L. B. HALFERDAHL & ASSOCIATES LTD

- 12. On Spionkop the mineralization is clearly related to an apparently steeply dipping early fault. On Grizzly, Cominco's drill holes are along the trend of what is believed to be a fault. Those holes close to the fault encountered richer mineralized intervals than those farther away. In one place on Drywood, sparse copper mineralization is present near a small fault and decreases to nil within 100 feet of the fault.
- 13. Chalcopyrite, chalcocite, and bornite have been found in sandsiones at the top of the Appekinny Formation and at the bottom of the Siyeh Formation.
- 14. Small amounts of galena and sphalerite have been noted with the copper minerals in some occurrences in the Grinnell Formation.
- 15. Chalcopyrite fills vesicles in the Purcell Lava, but in most places those containing chalcopyrite are not numerous. In one place near the North Kootenay Pass a layer a few inches thick at the top of the lava is moderately well mineralized.
- 16. A zone with fine grained lead and zinc has been found in the Sheppard Formation north of the North Kootenay Pass.
- 17. A few occurrences of a chalcocite-bearing siltstone have been found in the Upper Gateway Formation. At one of these near a sill, chalcopyrite not chalcocite was present.
- Where examined, the Altyn and Waterton Formations are almost barren of copper minerals.
- 19. All three of copper, lead, and zinc are present in geochemical anomalies based on water samples. Many of these anomalies coincide with copper occurrences in the Grinnell Formation.

- 20. Scattered anomalous copper concentrations are related to copper occurrences in Precambrian strata younger than the Purcell Lava.
- 21. Some zinc anomalies are spatially related to areas of outcrop of the Sheppard Formation, others are found in areas now underlain by Creteceous strata.

These observations clearly indicate to the writer that the copper mineralization in the Grinnell and nearby formations is epigenitic, that is, it was introduced after the deposition of the Grinnell. The source of this copper is not yet certain. Its haphazard distribution and relation to faults indicate that it was deposited from solutions which permeated much of the region. The bleaching of the red argillites, and the destruction of magnetite in some of the sills suggest that these solutions might be hydrothermal whose source was a magma at depth. However, there is no direct evidence that the bleaching occurred at high temperatures or even that it is related to the copper mineralization. Furthermore, there is little replacement of the type that might be expected by hot mineralizing solutions. Also the carbonates of the Waterton and Altyn Formations which might be a more acceptable host for ore deposits, where examined, are almost barren of copper minerals.

An alternative is that a chalcocite-bearing siltstone unit of the Upper Gateway Formation, or similar unit above the Purcell Lava is the source of the copper. If so, it means that essentially meteoric waters leached the copper from these strata, percolated downwards along faults and other channelways and deposited it in porous rocks or other dilatant regions that were encountered. If this is correct, any high temperature effects such as the destruction of magnetite would have to be explained as the result of local intrusion, local hot hydrothermal solutions, or

possibly deep burial. Such a source for the copper might explain the high geochemical copper concentrations along Jutland Brook previously thought to be due to contamination. It seems most likely that the source of the lead and zinc is in the Sheppard Formation. A similar source for the copper might explain why lead and zinc are present with copper in some of the geochemical anomalies. The zinc anomalies in Cretaceous strata might merely be the result of the greater geochemical mobility of zinc.

CONCLUSIONS

An extensive geochemical survey of streams, springs, and lake waters in the Clark Range detected more than 21 areas with anomalous and slightly anomalous concentrations of one or more of copper, lead, and zinc.

Prospecting and previous investigations have located more than 42 mineral occurrences, mostly of copper. Most of these are minor, but many of them, even some of the minor ones can be closely correlated with some of the geochemical anomalies. Many of the occurrences can be related to faults. No mineralization was noted at the best geochemical anomaly, but it is crossed by two faults.

Occurrences and anomalies regarded as important are northeast of Victoria Peak, Drywood Mountain, Pincher Ridge, upper Gardiner Creek, Ruby Lake area, part of Lys Ridge, north of Whistler Mountain, near Table Mountain, and south of the North Kootenay Pass. Mapping, trenching and drilling of the Spionkop Showing showed that at least some of the mineralization is related to a fault, and that there it is too low grade, and not extensive enough to be economic. Three probably unimportant, slightly anomalous concentrations of zinc are present in 3 or 4 areas underlain by Cretaceous strata beyond the Lewis Thrust Sheet.

Respectfully submitted

L. B. Halferdahl, P. Geol.

Edmonton, Alberta February 6, 1971

REFERENCES

Douglas, R.J.W., (1952) - Preliminary map, Waterton, Alberta, Geol. Surv. Can., Paper 52–10.

Duncan, N. J. (1970) - Report on exploration permits and claims in the Clark Range, southwestern Alberta and southeastern British Columbia; Canford Engineering Limited, Edmonton, 20 p, 3 maps, unpublished.

Hage, C.O. (1943) - Beaver Mines, Geol. Surv. Can., Map 739A.

 Halferdahl, L. B. (1969) – Geological notes on the property of Akamina Minerals Ltd., Clark Range southwestern Alberta and southeastern British Columbia; L. B. Halferdahl & Associates Ltd., Edmonton, 26 p, 1 map, unpublished.

Heddle, D. W. (1969) Progress report, Akamina option (permits 64 and 65) for the period August 25 -- September 30, 1969; Cominco Ltd., Vancouver, 2 p, unpublished.

Mawer, A. B. (1970) -- Final report, Carbondale project - 1970, Cominco Ltd., Vancouver, 9 p, 1 map, drill logs and sections, unpublished.

Murphy, J. G. and Sproule, J.C. (1968) – Curscry field examination, mineral showings, Clark Range, southwestern Alberta and southeastern British Columbia; J. C. Sproule and Associates Ltd., Calgary, 7 p, 1 map, unpublished.

Nagy, L.J. (1970) – Progress report, Whistler (Akamina), September 1 – December 31, 1969; Cominco Ltd., Vancouver, 1 p, unpublished.

Nagy, L. J. (1970) – Progress report – August, 1970, Akamina option, Cominco Ltd., Vancouver, 4 p, 1 map, unpublished.

Norris, D. K. (1959) - Carbondale River; Geol. Surv. Can., Map 5 - 1959.

Price, R.A. (1962) – Fernie map-area, east half, Alberta and British Columbia; Geol. Surv. Can. Paper 61–24, 65 p, 1 map. Price, R.A. (1965) – Flathead map-area, British Columbia and Alberta; Geol. Surv. Can., Mem. 336, 221 p, 5 maps.

Sinclair, A. J. (1968) – Mineralographic report for Akamina Minerals; 3 p, unpublished.

Stevenson, R. W. (1968) - Final report - 1967, Waterton copper project, Waterton area, Alberta: Kennco Explorations (Western) Limited, Vancouver, 20 p, 2 appendices, 2 maps, unpublished.

Trueman, E. A. G. (1970) – Exploration – 1970 Flathead project, Fort Steele Mining Division, British Columbia; Geowest Services Ltd., Edmonton, 18 p, 5 appendices, 15 maps, unpublished.

Unknown (1967) - Commerce Creek examination, Kennco Explorations (Western) Limited, Vancouver, 1 p, 1 map, unpublished.

Unknown (1969) - Internal report to the board of management, Akamina Minerals Limited, copper project - Clark Range, British Columbia - Alberta, 50 p, 1 appendix, 5 maps, unpublished.

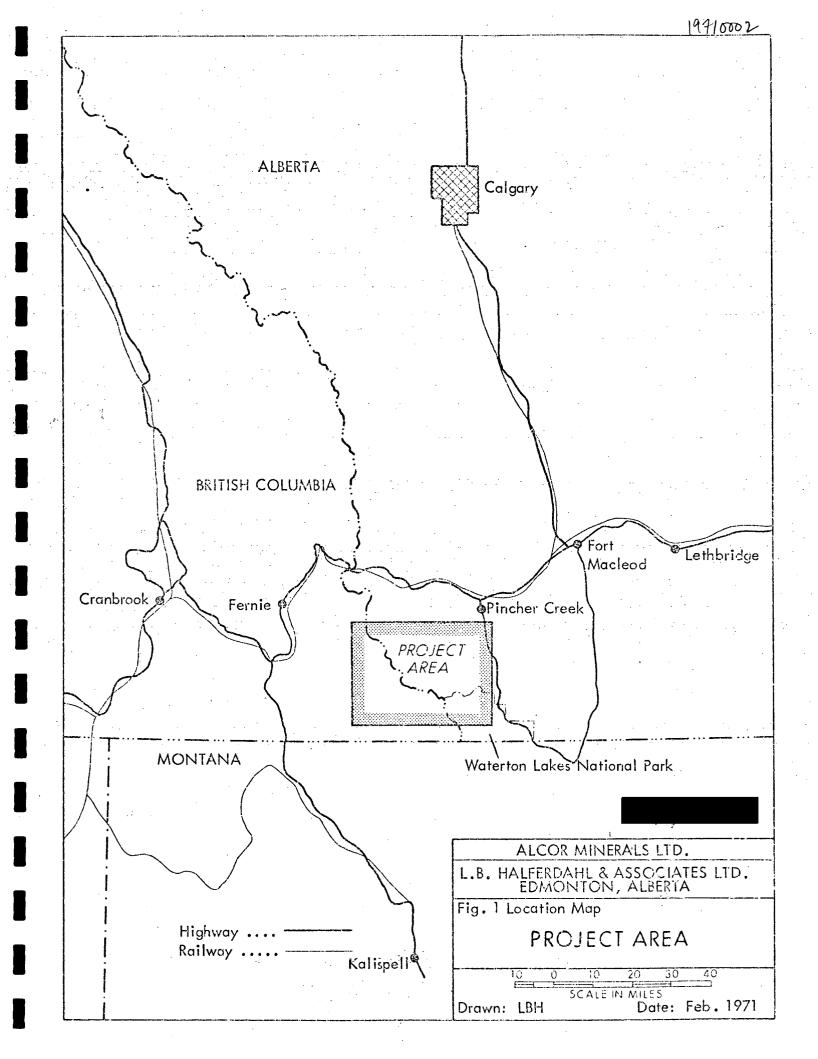
CERTIFICATE

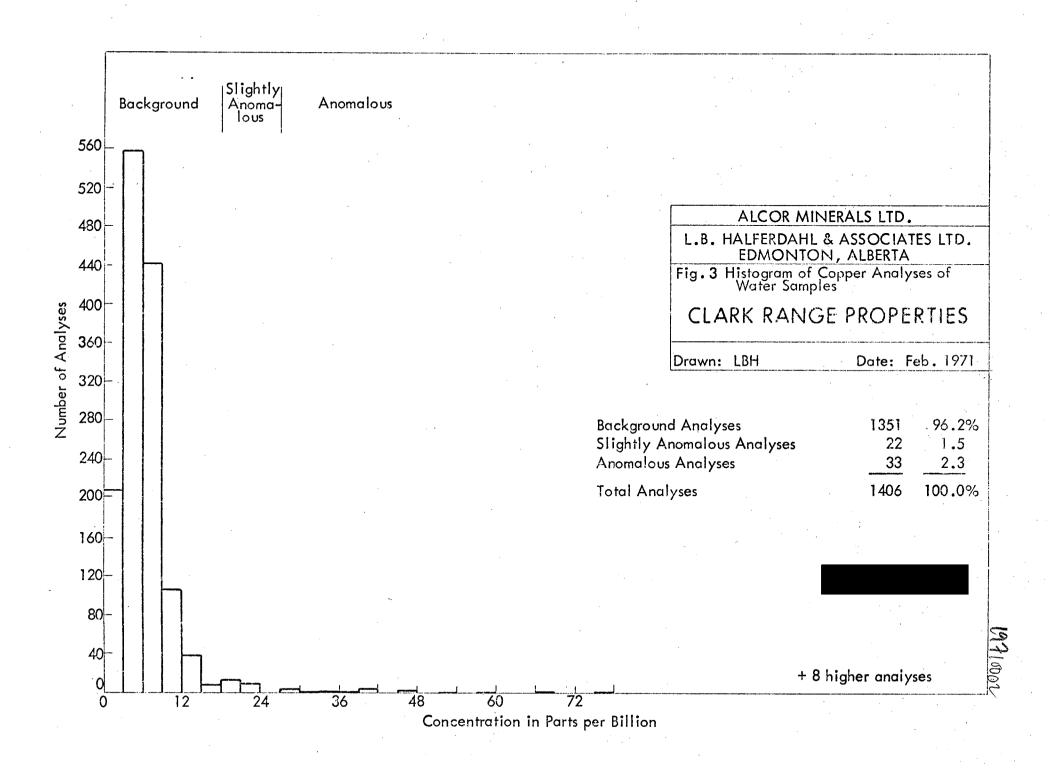
I, Laurence B. Halferdahl, with business and residence addresses in Edmonton, Alberta do hereby certify that

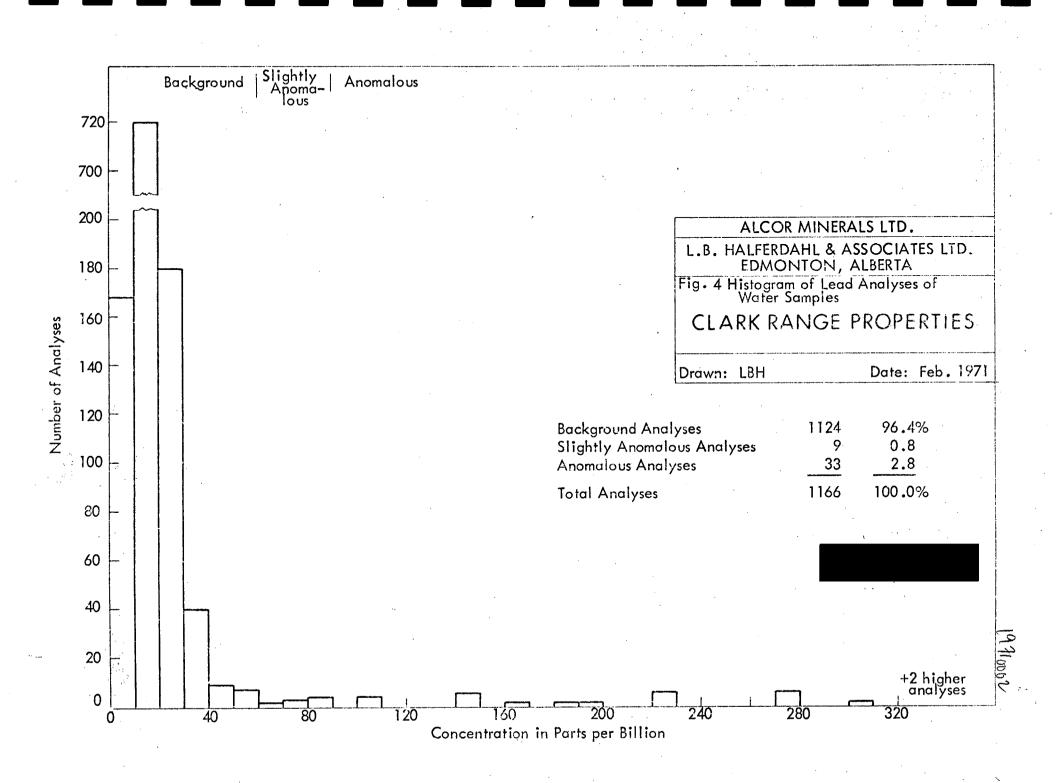
1. I am a consulting geological and mineralogical engineer.

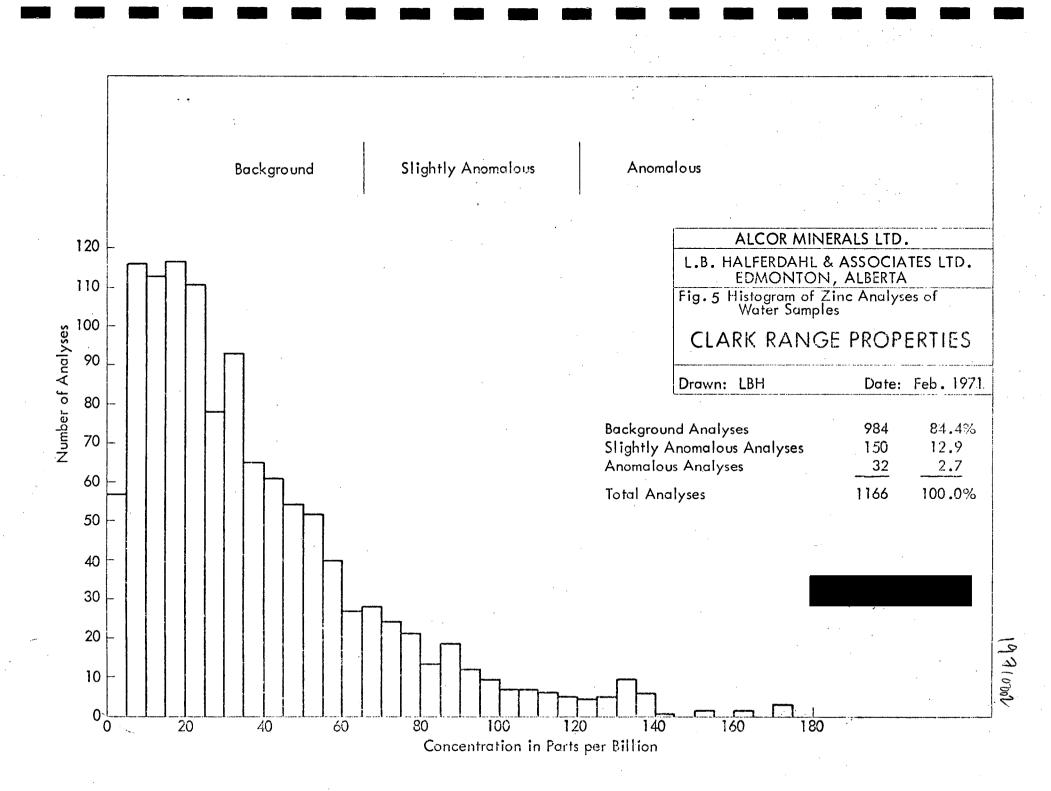
- 2. 1 am a licensed Professional Geologist in the Province of Alberta and a licensed Professional Engineer in the Province of British Columbia.
- I am a graduate of Queen's University, Kingston, Ontario (B. Sc. in 1952 and M. Sc. in 1954 in Geological Sciences in the Faculty of Applied Science) and of The Johns Hopkins University, Baltimore, Maryland (Ph. D. in 1959 in the Department of Geology).
- 4. From 1957 to 1969 I was on the staff of the Research Council of Alberta as a mineralogist and geologist where I was in charge of the mineralogy laboratory and conducted various field and laboratory investigations.

5. Prior to 1955 | obtained experience in mineral exploration and mining geology with a number of mining companies.

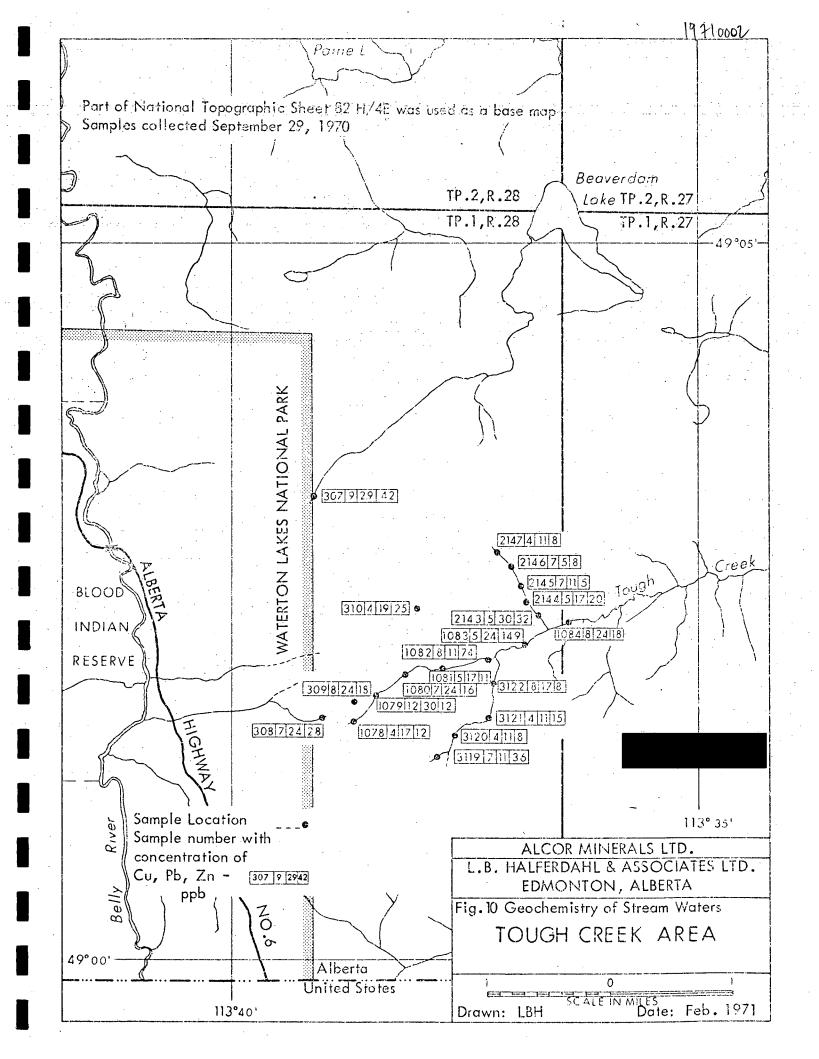

 The data in this report were obtained from published and unpublished reports and by personal direction of the field program on which it is based from June 24 to October 29, 1970.


Edmonton, Alberta February 6, 1971


L. B. Haiferdahl, P. Geol.


Respectfully submitted,


35.



APPENDIX 1: FIELD AND ANALYTICAL DATA ON WATER ANALYSES

EXPLANATORY NOTES

The data in this appendix was reproduced by computer because it is the least expensive way of so doing. Although time has not yet permitted sophisticated statistical or other analyses of the data by use of a computer, the data were punched in cards and subsequently reproduced herein so that for most types of analyses that have been anticipated as providing useful information, little or no additional punching of cards is required, even to the extent of having the data plotted by computer. The column headings in the computer print-out are explained below.

MAN - Samples were collected by 13 different field men each designated by a letter from A to L.

SAMP[#] - Sample numbers as designated in the field and in the analytical reports. A few sample numbers in the sequences are missing due to accidents to the samples, inadvertent gaps in the field notes, check analyses that indicated that some samples had been contaminated, and samples collected in areas not shown in Fig. 2, and 6 to 8.

X and Y CORD - Coordinates are based on the One Thousand Metre Universal Tranverse Mercator Grid. The Grid Zone Designation is 11U. The X coordinate is measured east, and the Y, measured north. Although both are recorded to the nearest 10 metres, the locations of the sample points on the maps are probably not much better than 100 metres.

ELEV - Elevations were obtained from topographic maps with scale 1:50,000 and contour intervals of 100 feet and by means of pocket altimeters. Figures are in feet above mean sea level.

FORM - Geological formations as shown on the geological maps for the area published by the Geological Survey of Canada. The formations are coded as follows: 1 - Waterton, 2 - Altyn, 3 - Appekunny, 4 - Grinnell, 5 - Siyeh, 6 - Purcell Lava, 7 - Sheppard, 8 - Lower Gateway, 9 - Upper Gateway, 10 - Phillips, 11 - Roosville, 12 - Cambrian formations, 13 - Devonian formations, 14 - Lower Cretaceous formations, 15 - Upper Cretaceous formations. Where two of the above numbers are separated by a dash, the location of that sample is at or near the contact of the two formations.

- TEMP Temperatures of the waters sampled were measured with pocket thermometers mostly to the nearest one-half degree Centigrade, although the thermometers could be read to the nearest one-tenth degree, and were by the samplers on some days.
- FLOW This refers to the flow of the stream or spring. These figures are in gallons per minute as estimated in the field by the samplers; only one or two figures are significant. They are regarded as rather subjective but the estimates should be relative to each other for each sampler.
- SIZE This refers to the size of the stream. This was measured or estimated in the field by the samplers. All figures are in inches but only two figures are significant. The first is the breadth of the water surface, and the second is the maximum depth. These measurements are given as a more objective means of estimating the flow at each sample site than the estimated flow discussed above even though the flows estimated from them will depend on the average stream velocity which was not measured.
- CU, PB, ZN These refer to the concentrations in parts per billion of copper, lead and zinc in the waters sampled. Samples were collected in wide mouth 10 cz. or 16 oz polyethylene bottles with bakelite caps, lined with cardboard and waterproof paper. Before use each bottle and cap was thoroughly rinsed, (at least 6 times) with the water to be sampled; then the sample was collected; the bottle tightly closed, and numbered, and notes made. Bottles were reused as many as three times.

At the field camp, most turbid samples were filtered, and then all samples were acidified with concentrated HCl about 12 N at approximately 5 cc of acid per 300 ml of sample. An effort was made to adhere closely to this amount of acid so that any copper, lead, or zinc present in the acid would be added at the same concentration to each sample. In all, four winchesters of HCl were used. Samples were then shipped to Loring Laboratories Ltd., Calgary for analyses.

Initially only copper was determined, but copper, lead, and zinc were determined in most of the samples. At the laboratory, 200 ml of sample were A2

Ì

evaporated to dryness in carefully cleaned glassware, the residue taken up with 25 ml of HCl and analyzed by standard atomic absorption techniques. In samples with appreciable concentrations of copper, lead, or zinc a portion of the sample as received was checked against the concentrated sample. This precaution ensured that any serious contamination of samples occurring in the laboratory was detected, but not contamination during collection or acidification. Loring Laboratories Ltd. has stated that the detection limits for samples evaporated as above for copper, lead, and zinc are 2, 9, and 2, ppb respectively, so that zeros in the data means concentrations below these limits. In spite of this, concentrations as low as 5 ppb for lead have been reported.

ACID - This refers to which winchester of HCI was used for acidification of the samples as explained above.

TYPE - This refers to the type of water sampled and is coded as follows: 1 - stream, 2 - spring or well, 3 - lake.

TURB - This refers to whether the water sample was clear or turbid and to the treatment of turbid samples. It is coded as follows: 1 - clear, 2 - turbid and filtered, 3 - turbid and not filtered. Turbidity was caused mostly by organic material, but also by inorganic clays and silts in a few samples.

PH - The pH was measured in the field by means of alkacid test paper. Most pH measurements were between 5¹/₂ and 6; this is the pH interval between the ranges of pH covered by two rolls of alkacid paper with adjacent ranges of pH and is designated 5.8.

An N in the table means that data so designated were not obtained.

Astericks in the last column indicate that not easily codible data is given at the end of the computer print-out. In this additional data, the date is given as day – month – year.

(MAN	SAMPS	X CORD	Y CORD	ELEV	FORM	TEMP	FLOW	SIZE	ເປ	P3	ZN	ACID	TYPE	TURS	PH		
- ·]																		
		W1	E 93.45	546418	5010	4	4 <u>.</u> C	5.00	N	4	N ·	N	1	2	1	6.5		
		N Z	59339	546409	5080	4	N	N	N	3	N	N	1	1	1	5.8		
1		W 3	69330	546332	5150	4	4.5	N	18X 3.0	3	N	N	1	1	1	5.8		
≻		WO	<u> </u>	546460	5200	4- 5	3.0	5.00	N		<u>N</u>	<u>N</u>		- <u> </u>		645		
- 1		NS NG	69293	546470	5100	4 4	3.0	5.00	. N 76760	7	N	N	1	1.	1	6.5		
		N 10 147	69304	546472 546499	5100 4830	4	6.0 5.0	N N	36X 6.0 30X 5.0	7	N	N N	1	1	1	5.8		
-	<u>_</u>	WB	<u>69336</u> 69353	546420	4950	4	5.5	N	24X 3.0	<u>/</u> 7	N N	N			1	<u>-5.8</u> _ 5.E		
		¥3	63387	546330	5000	4-5	7.5	N	96X 6.0	5	N	Ň	1	1	-1	5.8	:	
	Ā	W1C	69355	546400	4975	4	7.5		96X 6.0	5	N	Ň	i.	. i	î	5.8		
	4	WII	69354	546431	4925	4	6.0	N	48% 6.0	4	N	N	1	1	1	5.8		
	۰.	₩12	69351	546433	4920	4	7.0	N	36X10.0	4	N	Ň	1	1	1	5.8		· .
	4	W13	69342	546458	4900	4	7.0	N	95X 8.0	<u> </u>	N	N	1	1				
		¥14	69329	54(490	4900	4	6.5	N	36X 8.0	9	N	N	1	1	1	5.9		
	A	¥15	63332	546506	4850	4	7.5	N	84X 8.C	4	N	N	1	1	1	5.8		
-	<u>A</u>	<u>¥16</u>	E 9340	546525	4820	4	8_C	N	6CX1C.C	1	<u>N</u>	N_				5 - 8		
	4	¥17	69344	546552	4790	4-5	7.5	N	72814.0	4	14	N	1	1	1	5.9		
1	A .	61	59159 69155	546130	5310	5 5	N	N	N	5	N	N	1	1	1	5.8	1	•
\vdash	4 A	<u>62</u> 63	<u>69145</u> 69130	<u>546135</u> 546200	<u>5400</u> 5390	5	N	NNNNNN	N	<u> </u>	N	<u>. N</u> . N	1		·····			
		69	69110	546210	5300	5 5	. N . N	N	N	20	r: N	N	1	1	1	5.∎6 5.∎8:		
	Ā	65	E9085	546201	5300	5	. N	N	N	6	N	N	1	1	1	_ <u>5.8</u>		
L L	4	66	69055	546211	50.90	4	N	N	N	6	N	N	1	1	1	5.8		
		67	690:70	546201	5020	4	N	N	N	7	11	36	ī	ī	ī	5.8		
	Ą.	63	69091	546130	5000	4	N	N	<u> </u>		N		1	1	1	5.2		
		G 9	69148	546179	5110	4	N	N	N	. 5	N	, N	1	1	1	5.8		
		610	69130	546168	5100	4	N	N	14	62	N -	N	1	1	1	5.8		
ŀ	8	<u>J1</u>	689:70	546360	5200		N	N	N		N	N				-5+8-	•	
	8	12	69250	545290	5500	5	N	N	N	8	N	N	1	1	1	5.8		
	B	1d 13	69108 69160	546280 546251	5900 6100	5 5	N N	N N	N N	3	N	N N	1	1	1	5.E 	-	
H	9	J5 -	69119	546276	5960	5	N	NN	N	q 6	N	N	1	1	1	5.8		
	a	121	69876	546030	4900	11	7.0	N	72 N	8	N	N	i	1	i	5.8		
	5	J22	69869	546013	5050	11	6.0	N	84X 5.0	6	N	N		1	1	5.8_		
	8	J23	69899	545985	5050	11	8.0	N	24X 6.0	6	N	N	1	1	1	5.8		
	- B	J24	69994	545950	5020	11	5.0	N	18X 2.0	3	N	N	1	1	1	5.8		
	8.	J?5	69398	545991	4830	11	7.0	N	0.61X00	2	N	N.	1	1	1	5 • 3		
	з	J26	699;91	546020	4900		9.0	N	54 N	5	N	N	1	1	1	5.8		
	8	J7	69870	546213		11	6.0	N	24X 2.0	4	N	ħ1	1	1	. 1	5.9		
-	<u> </u>	<u>J9</u>	63322	546220	4650		5.5	N	3EX 2.0	3	N			<u>_</u>	<u>l</u>	-5.5-		
	3	1 <u>9</u>	69805	545245		10	5.0	N N	24X 4.0 1	35	N N	N N	1	1	1	5.8		
	9 C	J10 2	69751 59705	546222 546229	5010 5175	10	4.0 N-	8.00	48X 7.0	2	N	N	1	1	1	5.8		
- I-	Č.		69285	545616	5175	8	8.5	23.00	120×12.0	2	N	N	1	1	1	5.8		
	Č.		69315	546105	5275	5	N	2 J C C O	N	4	N	N	ī	î	i	5.8		
1	č	.5:	£ 9321	545427	570.0		9.0	2.00	72X50.0	6	· N	N	<u>l</u>	ī	1	5.3		
ſ	C	6	64310	545410	6000	7- 9	3.0	10.00	36%24.0	4	N	N	1	1	1	5.2		
		7	69260	545774	5200	5	7.0	1.00	N	4	N	Ň	1	2	1	5.8		
·]-	<u> </u>	8	69270	545785	5150	<u>5</u>	6.5	75.00	120835.0		iNi	FN			1	5_8_	······································	
	c	9	69246	545771	5225	F.	6.5	75.00	240X60.0	3	N	N	1	1	1	5.8		
	c c	10	69241 59235	545760 545745	5250 5275	6 6	5.C 6.C	75.00 63.00	96X24.0 48X12.0	3	N	N	1	1	1	5-8 5-8		
- 1 -		12	69231	545731	5300	6	<u>Б.С</u>	75.00	7212.0	10	N	N	1	1	1	5.8		
		13	69226	545721	5325	۳	6.0	75.00	50X12.0	2	N	N	ĩ	1	ī	5.8		A .
- ; [-													-	-			⊷
~																		

<u>51042</u>

1.5

1		5 M D A	X CORD	Y CORD	ELEV	FORM	TEMP	FLOW	SI76	<u>ເ</u>	F 8	ZN	ACIC	TYPE	TURB	PH	
- [FAN	SANPR	X CORD	T LORU	ELEV.	FURM	IEAP	FLVW	2110	L	Fo	218	MCIC		IUND		
- 1	с	19	69232	54572D	5400	7	5.0	6.00	N	. 4	N	N	1	2	i i	5.8	
		15	69230	545710	5450	7 -	9.5	•50	N	5	N	N	1	2	1	5.8	
ŀ	-	16	69209	545709	5425	7	7.0	10.00	N .	ŝ	5 N	N	1	2	1	5.9	,
- t	-	17	69219	545710	5375	7	7.0	75.00	240X12+C	3	Ň		<u> </u>	<u> </u>	Ì	5.8	
7	c	19	69212	545704	5400	7	.7.0	75.00	60X24.0.	6	N ·	N	1	1	1	5.8	·
		19	6924C	545698	5400	7 .	7.0	75.00	190X24.0	ĉ	N	N	1	1	1	5.8	
	C	20	59202	545639	5450	7	5.0	75.00	240X12-0	6	N			1	1	_5.3	
		21	5 91 90	545680	5560	7	6.0	75.00	180X48.C	8	N	N	1	1	1	5.2	;
		22	69170	545630	5660	7	6.0	1.00	N	11	N	N	1	2	1	5.8	
L L	<u> </u>	23	69176	5456.66	5575		6.0	75.00	24PX24.0	<u> </u>	<u></u>	N	<u>I</u>	<u> </u>		5_3_	
	c	24	69161	545650	5625	7	6.0	75.00	180X24.0	6	N - N	N N	1 1	1	1	5.8 5.8	
1		25	69150	545645	5530	7	6.0	50.00 50.00	180X12.0 95X12.0	2		N N	1	1		5.8 _5.8	
ļ.	<u> </u>	2.5	63140	545635	5550	6	<u>5.0</u> 5.0	37.00		¥ 3	<u>N</u> N		1	 i	1	a 5./8′	
	Ċ	27	69135	545530 545519	5675 5700	6	6.0 6.0	.50	N N	42	N		1	2	i	5.6	
1	с с	29 29	69125 69119	545612	5800	с с	6.0	1.00	N .	5	א	N	î	2	1 .	5.8	
ŀ		30	69(35	545595	6000	5	9.5	38.00	120×24.0			N	1.	1	1	5.8	
	c	30	69078	545528	6200	5	8.0	25.00	3EX12.0	. 6	N	N	1	i	i	5.8	
1	c	32	69065	545620	6300	5	8.0	25.00	24X 6:0	<u>4</u>	N	<u>N</u>	<u> </u>		Ī	_5.8	ndersension, was de later a constant a lager part en regel e la constant provincipation (de la constant a const
1	č	33	69041	545609	€'325	5	12.0	19.00	24×24.0	4	N	N	1	1	1	5.8	
1	č.	34	69021	545613	6400	5	12.5	.10	N	6	N	N	1	Z	1	5.8	
	с	35	69009	_595611	<u>5500</u>		9.0	5.00	2#X12.C			N		1			
Γ	С	35	68998	545510	6600	.5	12.5	2.00	36X12.0	4	N	N	1	1	1	5.8	
	с	37	€ 91 95	545070	5000	5	9.0	8.00	95X3J.Q	7	11	43	1	1	1.	5.8	
	C	32	59173	548058	5200	5	3.0.	50,00	N	3	11	56_	1	l	<u> </u>		
1	- C	.39	83150	546028	5525	5	6.0	50.00	£00X5C.0	4	15	41	1	1 -	1	5.8	
	C	40	69130	546021	5600	5	7.0	10.00	240x36+0	3	11	21	1	1	1	5.8 	
-	<u> </u>	41	<u> </u>	546010	5675		7.C	5.00	N	<u>3</u>	<u>18</u> 11	21	<u>-</u> 1	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<u>1</u>	5-5- 5-8	an anna ann ann ann an an an an ann an a
i	c	4 Z	69155	545995	6175	5.	0.01 10.01	2.00	48X24.0	3	11		- 1	1		5.8	
	с с	43 44	69150	.545988 545538	6300 5030	8-1	9.0_	5,00	7.2X12.0	7	5	19_	î	i	i	5.2	
ŀ	<u> </u>	45	<u>63340</u> 69854		5500	<u>- 5</u>	<u>9.0</u>	150.00	360 X 50.0	3	11	5	1	1	1	5.8	
i	c	45	69852	545468	5900	9	7.0	75.00	240X60.0	7	11	ŝ	ī	1	ī	5.8	
	· č	47	59545	545430	6175	3	9.0	75.00	6CX12.C	. 8	11	25	<u> </u>	ī			
, t	č	43	67991	547092	6100	2	8.0	5.00	N	7	N	N	1	2	1	5.3	
	č	49	68080	547072	6110	2	8.0	8.00	N ·	- 4	N	N	1	2	2	5.8	
	· C	50	59092	547099	<u>590C</u>	~ ~	8.0	25.00	50X12+0	4	N	N	1		1	<u>5.</u> .A.	
ſ	С	51	58182	547120	5650	.2	8.0	18.00	120X24.0	3	N	N	1	1	1	5.8	
1	с	32	63161	547130	5590	3 .	8.0	25.00	8 E X 1 2 + D	4	N	N	1	1	1	5.8	
1	<u> </u>	53	68305	547128	51(0	3	<u>7.n</u>	15.00	N	<u>59</u>	<u>ti</u>	Ы_	<u>l</u>	2	<u>_</u>	<u>5.</u> £	
	c	54	68155	547520	4950		6.0	100.00	50X24.0	3	N 11	N	1	1	1	5.8	
1	c	\$5	66190	577515	5075	14	6.0	50.00	36X 6.0	4	- N	N	1	1	1	5.8	
1	<u> </u>	55	68210	577505	<u>5175</u> 5400		<u> </u>	<u>50.00</u> 5.00	<u>48x24•Ú</u> N	't ?	N	N	1	2	1	5.8	
1	C	57 59	69244 63245	577485 577478	5400 5400	14	9.0	2.00	ti .	7	TN IN	n N	1	ź	1	:5.8	
	c c	59 59	68235	577485	5300	14	5.5	75,00	<u>60X24.0</u>	4			<u>i</u>				
ŀ	<u>c</u>	60	<u> </u>	577455	5500	14	5.5	.75.00	60X 6.0	2	N	N	1	1	1	5.8	
	c	61	68250	577465			6.0	2.00	N	-4	N	N	ī	Ż	1	5.8	
	č	62	63251	577449	5625	-	7.0	3.20_	N		N	N	<u>1</u>	2		.5.8	
1	<u> </u>	63	68252	577441	5700		6.0	.50	N	3.	N	N	1	2	1	5.2	
2	c	54	63245	577429	5750		7 • D	.25	N	3	N	N	1	Z	1	5.9	
_ i i	<u> </u>	65	E8245	577421	5 2 0 0	1.4	<u> </u>	2.00_		2_				2			
	С	65	6-9.24C	577412	5825		3 • C	3.60	- N	4	N	N	1	2	1	5.8	
51	C	67	68221	577414	5875	19	6.0	50.00	60X 6.0	3	14	N	1	1	1	5.8	A S
. · I			، ، ، ،	a state of the sta			· · ·									·`. ;	and a second to

-

		•										-						
_													• • • • •	TUC0				
("	AN SAMPS	X CORD	Y CORD	ELEV	FORM	TENP	FLOW	SIZE	CU	PB	ZN	ACIC	TYPE	TURB	PH			
	C :63	63219	57740.8	5900	14	9.0		N	4	N	N	1	2	1	5.8			
	C 69	68219	577401	5925	14	10.0	- 1.00	N	3	N	M	1	2	1	5.0			
	c 70	69219	577391	5925	14	12.0	1.50	N	1	9	40	2	2	1	5.8			
<u> </u>	C 71	<u> </u>	577390	5900	14	12.0	.50	N	- 23-4	1	11 N	1	1	<u>2</u> 1	5.8			
	C 72	63231	577'372	6000	14	7.0	25.00 5.00	. 48X24•9 48X12•0	. 3	N N	Ň	1	1	1	5.8			
	C 73 C 74	69532 69546	545556 545555	6500 6500	9	6.0 5.5	25.00	60X60-D	7			1		1				
	<u>C 75</u>	69555	545530	6200	- 9	6.5	75.00	300X48.0	4	N	. N	1	1	1	5.8			
	C 75	69595	545510	6000	9	7.0	2.00	N	2	N	N	1	2	1	5.8			:
	<u> </u>	69570	545507	0103	.9.	<u> </u>		N	2	N	<u>N</u>	1	2	1	_5.8_			
1	C 78	69579	545,509	6000	9	6.5	50.00	180X35.0	4	N	N	1	1	1	5.8			
i	C 79	69584	545501	5900	9	8.0	. 25	NN	6	14 [°]	135 N	2	2	1	5.8 5.8			
	<u>C 86</u>	69589	545499	<u> </u>	9	<u> </u>	.25	N	4	N	N	1	2	1	5.8			
	C 81 C 87	69594	545499 545500	5900	9	7.0	.75	N .	8	N	N	1	z	ī	5.8			
	C 87	69610	545436	5800		2.0		N	<u>7</u>	N	N_			ł:	5 • 8			
	C 84	69620	545501	5775	9	7.0	63.00	96X24.D	7	N	N	1	1	1	5.8			
·	C 85	69635	545502	5725	9	8.0	• 25	N -	40	N	N	1	2	1	5.8			
	<u>C 85</u>	51648	545499	5600		1.0		60XZ4 •0	······································				2		5£ 5:8			
	C 87	69662	545503	5500	9	8.D 8.D	2.00	N 360X48.0	4	N N	N. −N	1	1	1	5. 8 5. 8			,
	C 89	69582 69726	545503	5400 5200.	9			60X12.0.		5			î	1				
	C 90	63884	546285	4750	3	6.0	150.00	120X1240	7	N	N	1	1	1	5.8		1	
	C 91	63861	546273	4825	ŝ	0.0	150.00	144X24.0	7	N	N	1	1	1	5.8			
	<u>c 97</u>	63353	546269	4 925	3			N			N.	11	2	<u> </u>	53			
	C 9.3	58839	546246	4975	3	6.0	156.00	120X48.0	7	N	N	1	1	- 1	5.8			
1:	C 94	68812	545217	5160	2	· 6.0	100.00	96×12•0	7	N	N	1	1	• 1	5.3			
	C93	63805			2	<u>9.C</u> 6.5	. <u></u>	N		<u> </u>	N	1	1	J I				
	C 95 C 97	69310 65800	546201 546198	5200 5200	2 2	7.0	5.00	50X 6.0	9	N	N	ī	1	1	5.6			
	C 97 C 99	68735	546200	5200	2		75.0C_	96X24.0	5	N	<u>N</u>	<u>1</u>	i		5.8			
	C 99	63760	546200	5300	2	4.0	1.00	N	11	Ň	Ň	1	. 2	1	5.8			
ł	C 100	63740	546132	5400	2.	5.5	50.00	144X24.C	11	N	N	1	1	- 1	5.8			
	c 101	6.8717	546158	5500	2	<u> </u>		<u>N</u>	<u> </u>	<u> </u>		1		1	5.8			
41	C 102	69708	546165	5500	2	5.5	5.00	120X24.0 48X24.0	7 8	N N	N		1	1	5.8			
	C 103	6,86,92	546175	5600	2	7.0 5.0	13.00		8		N	1	î	1		· · ·		
	C 104 C 105	<u>5967.2</u> E8535	546125	5710	1	6.0	8.00	96X24.0	9	N	٠N	1	1	1	5.8			
ļ	C 106	69912	545692	5350	10	7.0	5.00	N .	6	9	32	2	2	1	5.8			1.1.1
	C 107	69902	5457.01	5300	10	<u> </u>	13.00	84X E.C	<u> </u>	19	34	2	<u> </u>					
	C 108	69898	545702	5450	10	7.0	.10	: N	9	5	15		2	1	5.8 5.8			
	C 109	69892	545596	5400	10	7.0	10.00	36X12.0	4 7	19	40 48	2,	1	1	5.8			
	<u>c 110</u>	69878	545690	<u>5500</u> 5075	<u> </u>	<u>7.0</u> 6.0	<u>9,00</u> 100,00	<u>36X 4.0</u> 120X12.0	<i>I</i> 9	9	40		1	1	5.8			
	C 111 C 112	719C8 71911	545312 545291	5200	4	6.5		36X 60	6	9	11	2	ī	ī	5.8			
	C 112	71911	545272	5425	4	6.0	75.00	144X12.C	7	14	25		1	1				
	C 114	71903	545255	5500	4	E.C		36X24.0	9	28	43		1	1	5.8			
	C 115	71908	545238	5550	4	4.0	5.00	N.	3	23	23		2	.1	5.8			
-	C 116	71890	545231	5575	5	5.0		60X24.0 180X36.0	66	23 19	10			· 1	5.8		•	
	C 117	71975	545212	5600 5900	5 5	5.C 4.O		181°X36 • U N	4	19	61		2	1	5.8			
	C 113 C 119	71879 71855	545191 545191	5800	5 5	5.0		9EX12.0	4	23	20		ī	ī	55			
	c 120	71333	545130	5900		5.0		60X 6.0	6	28	23	· 2	1	1	5.8			•
E.	C 121	71821	545150	6150	Ę	5.5		24×12.0	5	14	23	2	1	1	548			A6
:					:										1	· · ·		· .
1							·									•		
1															· .			

Г

.

.

	SAMPE	X CORD	Y CORD	ELEV	FORM	TEMP	FLOW	S I ZE	ี เม	PB	74/	ACID	TYPE	TURE	PH			
29.01	24028	A LURD	I LURD	ELEV	PURE	ILAP	FLUW	5126	66	P3	ZN	ACIU	1186	TURE	**			
	122	71819	545101	6275	5	5.0	50.00	60X12.0	4	9	33	2	1	1	5.8			
С	123	71807	545080	6375	5	. 5.0	50.00	24X12.0	5	14	71	2	1	1	5.8			
C	124	71846	545163	6000	5	5.0	25.00	60X 6.U	7	- 19	133	2	1	1	5.8	•		
0	201	E 9372	545460	5500	88	5.0	2.00	EX 2.0	10	N	N	1	2	1	5.8.			
D	202	69402	545462	5900	8	3.5	1.00	3X 2.D	9	N	N	1	2	1	5.8			
D	203	69399	545475	5900	-9	5.0	1.00	N	3	N	N	1	2	1	5.8			
0	-204	69373	545471	5500	8	5.0	2.00	8X 2.0	<u>8</u>	<u>N</u>	Ŋ	1	2	1	<u>S_8</u>			
S	205	E 9373	545485	5500	·8	6.0	3.00	12× 2.0	9	N	N	1	2	1	5.8		;	
D	206	69396	545436	5925	9	4.0	1.00	N	12	N	N	1	2	1	5.8			
0	207	<u> </u>	545554	5400		4.5	6.00	24X 4.0	<u>9</u>	N		<u> </u>		i	5.8		· · · · · · · · · · · · · · · · · · ·	
D	20.9	69365	545562	5425	8	4 • C	6.00	24X 4.0	9	N	N	1	1	. 1	5.8			
D	209	69465	545647	6700	10	7.0	•10	N -	29	N	"N	1	2.	1	6.5	· + +(+		
0	.210	69435	545638	6400	10	11.0	.10	N	31	N	N	<u>l</u>		1		·····	ده ماد بو مسربه . بود مطرب د ب ر و	
C	211	69410	545635	6000	9	5 • C	2.00	12X 2.0	4	N	N	1	2	. 1	6.5			
D	212	69422	545620	620,0	.9	4.5	1.00	6X 2.0	3	• N .	N	1	2	1.	5.5			
0	213	59376	545632	5700	8	2.5	1.00	<u>4X 2-C</u>		N				<u>1</u>				
D	214	63380	545648	5500	8	8.0	3.00	12X 4.0	5	N	N	1	1	1	6.5			
Ð	215	69356	545548	5500	8	5.0	2.00	6X 2.0	40	N	'N	1	1	1	6.5			
_ <u>p</u>	216	<u> </u>	545668	5990	5	<u> </u>	2.00	6X_1.U		N	NL	·						
D	217	69320	545670	5700	8	8.5	10.00	24X 6.0	6	N	N	1	1	1.	5.R		•	
D O	213	63354	545535	5300	8	4.0	4.00	24X 2.0	. 4	11	16 51	1	1	1	5.8		· · ·	
	219	6.9375	545538	5600.	à	3.5	1.56	<u>PX_2_D</u>	<u>5</u>	11			2		_5.8_		· · · · · · · · · · · · · · · · · · ·	
0	220		545530	5600	8	2.5 4.0	2.00 1.00	8X 4.C 2X 1.D	:3 4	11 18	20 43	1	2 2	1	5.8			
0 0	2,21 222	69370	545518 545509	5500 5400	8	4.U 6.D	2.50	6X 3.0	4	18 :13_	45	1	2	- 1	5.8			
 D	223	<u>69.365</u> 69390	545510	5900		3.0	1.50	120X 5	<u>4</u>	18	36	1	2	1	5.8			
0	223	69399	545520	5900	8	4.0	1.50	24X 5		10	20	1		L	5.8			
0	225	<u>68290</u>	545520	5150	7	11.0	10.00	46X 8.C		N	N_	1 .	2	1				
<u>v</u>	226	63282	547075	5175	3	9.0	4.00	5X 2.0	5		N	1	1	· 1	5.8			
D	227	68273	547036	5300	3	5.0	4.00	5X 2.0	7	. N	N	1 1	2	- 1 1	5.8			
D	228	63308	547038	5475	3	100		24X_6.C	, u	N	N.	1	1	1				
D	223	E6315	546980	5575	-3		5.00	N	47	N	N	1	2	1	- 5.8	* *:*	· ·	
0.	230	68320	546940	5675	2.	10.0	7.00	24X 4.0	5	N	N	i	ĩ	- î	5.8	,-		
õ	231	65335	546905	5790	2	10.0	7.00	24X 4.C	5	N	M	.1	- î	î				
0	232	68354	546375	5900	2	5.0	€.00	24X 8.0	2000	N	N	1	1	i	5.8			
õ	233	68375	546808	6100	2	9.0	6.00	36X 2.0	. 8	N	.N	1	ī	ĩ	5.8			
D	239	63353	546780	6350	2	9.0		241.6.0		N	N	ī		i				
0	235	68365	546755	6400	2	9.0	4.00	1X 3.0	47	N	N	1	1	1	5.8		,	
Ð	292	70163	545570	5000	11	7.D	55-00	240X36.0	931	N	N	ī	ī	ī	5.8	÷ .	· .	
0	243	70150	545550	5100		5.C_	45.00	24CX3E.0	425	N	N	<u>ı</u>	1	1	5.8		<u></u>	
D	244	70145	545520	5225	11	5.0	20.00	240x36.0	15	N	N	1.	1	1	5.8			
C	245	70107	545390	5375		7.0	30.00	N	1200	N	· N	1	1	1	5.8		•	
D	24.6	70101	545330	5450	11		25.00	190X60.0		N		<u>1</u>	1					
D	247	70101	545311	5500		ε.C	10.00	96X36.C	16	N	N	1	1.	· 1	5•B	5 . F	1	
D.	248	70100	545311	5500		5.0	15.00	240X480	4	N	N	1	1	1	5.8			
D	249	70095	545305	5550	_11	6.0	8.00	N	5	<u> </u>	<u>N</u>	1			5.8_			
ວ່	250	73101	545239	5700		.5.0	9.00	N	9	N	· N	1.	1	1	5.8			
D	251	75115	545301	5600	11	5.0	10.00	72 X.48 . D	53	N	N	1	1	1	5.8			
	252	70110	545342	5460		0.6	2.00	29X 1.C	9	N	N	1		1				
D	253	70140	545560	5200	11 .	4.0	4.00	24X 6.0	ß	N	N	1	2	1	5.8			
0	254	63975	546039	5950	3	3.0	16.00	50X12.0	-3	N	· N	1	1	1	5.8			
<u> </u>	255	68854	546241	5900		4.0	<u> </u>	<u></u>	<u> </u>	N		<u></u>			5.8	& ±'.±		
0	255	63880	546053	5850	3	5.0	6.00	. N	3	N	N	1	2	1	5.8	***		ħ
D	257	.68890	546056	5775	3	4.0	4.00	N	9	· N	N	1	2	1	5.8	* *!*		P.

. . .

										-	21.4				
MAN SAMPE	X CORD	Y CORD	ELEV	FORM	TEMP	FLOW	SIZE	CU	PB	ZN	ACIC	TYPE	TURB	РH	
0 259	68880	546065	5900	3	6.0	6,.07	120X24.0	9	N	N	1	1	1	5.8	
D 260	68915	546075	5550	- 3	7.5	25.00	144 N	7	N	N	1	1	1	5.8	· · · · ·
D 251	63925	546104	5375	3	8.0	15.CD	120X60.0	7	N	N	1	1	1	5.8	
0 262	68936	546128	5250	3	10.0	15.00	96X36.C		N	<u>N</u>	1		1	5.E	
0 253	70050	545628	5650	10	8.0	2.00	. 24X 8.D	9	23	10	2	2	1	5.8	
D 254	70070	545670	5200	11	8.0	3.00	24X 1.0	6	9	42	2	1	1	5.8	
0 285	70093	545675	5000	11		3-00	24X 1.0		14	61			1		
E 301	71213	546107	5500	5	5.P	10.00	10× 2.0	9	5	11	3	1	1	5.8	
E 302	71232	5460 7 6	6300	5	4 - 0	5.00	6X 1.0	5	N	2	3	-1	1	5.8	
E 303	71271	546055	6390	5	4 • C	5.00	<u> </u>	5	<u> </u>	<u> </u>		l	l	5•8	• • •
E 304	71275	545043	7175	6	2.0	5.00	N	9	25	6	3	1	1	58	•••
E 305	71260	546045	7000	6	2.0	5.00	6X 1.0	4	11	64 33	3	1	1	5.8 	
<u> </u>	71230	546110	5625	<u>5</u>	5.0	5.00	<u> </u>	<u>15</u> 7	<u> </u>	23	1	2	1	5.8	
F 400	68870	545950	6300	3 4	2.5	5.00 3.00	18X 2.0 10X 2.0	ý	11	93	1	i	i	5.8	
F 401	68901	545955 545989	6300 €200	7	3.5 5.C	5.00	20% 2.0	- -		51	î	. i			
F 403	<u> </u>	545974	<u></u>	3	7.5	8.00	24X 2.0	8	11	25	1	1	1	5.3	· · ·
· F 4624	68975	545981	6000	3	8.0	.12	N	ĝ	- 11	18	ī	ī	1	5.5	**.*
F 405	63940	546008	5800	3	10.0	4.00	20X 2.0	7	1	15		1	<u> </u>	5.8	
F 406	68942	546014	5775	3	9.0	1.00	4X 2.0	5	11	16	1	1	1 ·	5.8	
F 407	68932	546015	5850	3	8.5	-10	N	8	11	35	1	2	1	5.3	
F 4C3	E 6 9 4 6	546021	5700	3	8.5	10	!4	9	11	53	<u> </u>	2	<u>i</u>		
F 409	68343	546028	5700	3	8.0	1.00	8X 2.C	8	18	8	1	Έ	1	6.5	
F 410	E 8950	546040	5600	3	10.5	10.00	24X 3.0	2	18	45	1	1	1	5 • B	
F 411	63251	546050	5500	3	9.0	.50	<u> </u>	11	18	33	1			52.	
F 412	68950	546141	5200	3	11.0	20.00	24X 3.0	7	11	8	1	1	1	5.8	
F 413	71551	546050	5175	15	4.0	20.00	120%24.0	10	9	199	2	1	1	5.8	
<u>F 414</u>	71508	546076	5550	3	4.0	20.00	6CX28.C	7	1.4	112_		<u>i</u>	<u>i</u>	5.8 5.2	
F 415	71475	546035	5900	3	4.0	20.00	48X13.0	23 11	19 28	10.9 71	2 2	1	1	5.8	
F 416	71462	546097	6003	4	.5.0	15.00 <u>5.00</u>	60X12.0	20	23		2	1	î	5.8	***
F 417 F 418	71460	<u>546102</u> 546109	<u>6250</u> 6250	4	<u> </u>	1.00	6X 2.0	18	14	137	2 .	2 .	1	5.8	
F 418 F 419	71464	545109	6250	4	9.0	2.00	4X 2.0	13	19	35	2	2	ì	5.3	
F 420	71455	545108	6300	4	8.0	N	N	58	9	79_		2	1	5. 2	<u>•</u> •••
F 421	71447	546105	6300	4	8.0	15.00	144%12.0	22	9	122	2	1	1	5.8	
F 422	71435	546111	6500	4 - 5	4.0	5.00	24×12.0	7	9	117	2	1,	1	5 . R	
F 423	71430	546115	6650	5	4.0	10,00	49112.0	11	٩	109	2	1	1	5.8.	
F 424	71430	546120	E900	5	4.0	6.00	35X12.0	9	. 9	105	2	1	1	5.8	
F 425	71432 -	546125	6800		4.0	4.00	24X12.0	12	9	171	2	1	1	5.8	• • •
F 426	71429	546128	<u>€725</u>	5	4.0	2.00_	12X12_0	<u>°</u>	19	85_		<u></u>	<u> </u>	<u>5+8</u> 5.3	
F 427	71405	546086	7000		5.0	5.00	24X12.0	4	9	36	· 2	1	-	5•8	
F 428	71410	546085	6.850		5.0	10.00	36X12.0 36X12.0	8	96 230	117 175_	2	1	1		
F 479	71419	546060	<u>6300</u> E400		7.0_ 7.0	10.00	36X12.0	6	81	135	2	1	1	5.8	
F 430	714.41	546070 545050	6200		6.0	5.00	36X12.0	13	272	133	2	1	ī	5.8	
F 431 F 432	71419 71435	545050	5200		<u> </u>	30.00	6CX24_C	6		9.9_	2	i	<u>ī</u>		
F 433	71475	546010	5450		7.0		120X36.0	6	272	133	2	1	1	5.8	
F 434	71385	54586D	5400		4.0	5.00	24×12.0	4	34	41	2	1	i	5.8	
F 435	71374	545362	5850		4.0	N	N		37	28_	2	2	2	5.8	<u></u>
F 436	71381	545861	5650	5	4.0	N	N	6	230	105	2	2	- 1	5.8	
F 437	71416	545360	5600		4.0		6CX24.0	8	306	. 99	2	1	1	5.9	
F 433	71415	545843	0031		4.0	<u> 10 00 </u>	120X24.C		169		~ ?		4	<u>5-8</u> 5.8	
F 439	71419	545338	5875		8.0		24X12.0	14	57	155	2 2	1	1	5.8	
F 440	71423	545330	5900	5	7.0	3 . rin	48X24.U	11	230	161	6	1	1	1000	· 60

.

Γ

LL NAME CAMPE	¥ 6000	Y CORD	ELEV	FORM	TEMP	FLOW	SIZE	CU	PB	ZN	ACID	TYPE T	URB	PH		
MAN SAMPR	X CORD	I LURD		rvkn	LENE	I LOW					,					
F 491	71439	545818	6100	5	7.0	3.00	60×12-0	9	85	72	2	-		•8		
F 442	71329	545890	5600	- 5	9.5	10.00	72X12.C	13	77	. 133	2		· ·	•6		
F 443	71330	545907	5750	5	9.0	10.00	60X12-0	9	38	74	2	1		•8		
F 949	71325	545945	6450	. 5	9.0	12.00	84X12.0	9	150	112_		<u>I</u>		•8		
6 600	63678	547105	4600		N	700.00	-96X 6.0	3	N	-N	1	1 .		-8-		
6 601	68860	547115	4650		N	40.00	48X 2.C	5	N	N	1	1		• 8		
<u>G 602</u>	<u>68930</u>	547120	4675	15	N.		60X 4.0	5	N	N_				•8		· · · · · · · · · · · · · · · · · · ·
G 6C3	68849	547150	4800		N	700.00	84X 7.0	4	N	N N	1	1		• 8		;
G 604	68820	547173	4900	15		1000.00	96X 6.0	5	N					• 8'		
<u>6 605</u>	60799				N		96X_5.0				1	1		• 8		
G 606.	68791	547201	5250	15	N	700.00	96X 4.0	5	N N-	N N	· 1	1		•8		
G 607	68766	547210	5375		N	00.00	96X 4.D	10		N N	1	1		• 0 • 9		
G 6 <u>0</u> 8	68760	547212	5400_		N	20.00	<u>24X 1.0</u>	<u> </u>	<u> </u>	0 N	<u>1</u>	1		• 8		
6 6 6 6 6	68753	547201	5400		N	700.00	96 X 4 D 6 X 5	6	N N	N	i	2		.8		
G 610'	63716	547195	5675	14	N N	2.00	96X 4.0	ь 5	N	N_	i	1		.8		
<u> </u>	<u> 68740</u>	547185	5500			700.00	N			N	1	1			• • •	
G 612 ···	68721	547170	5600		N N	20.00	18X 2.0	8	N	N	- 1	1 .		• 6		
G 613.	68715	547150	5650 5650	1	N	10.00	N	Š		Ň	1	2	-	• G		
<u> </u>	63710	547150	5750		0	306.00	GDX 4 0		N	N	1	1	1 5	. 8		
G 615	66690	547155 547169	· 5850	1	Ň	30.00	24X 1.0	5	N	: N	ī	ī		- B -		
G 616	68692	547155	5830	1	N	300.00	60X 3.0	5	N.	N	<u>ī</u> _	ī	1 5	• 8		
<u> </u>	68595	547146	5700	1	N	200.00	24X 1.0	5	N	N	1	1	1 5	.0		
G 618 ·	63731	547090	4575	15		1200.00	96X10.0	5	N	N	ī	-1		. 8		
6 619	69890			. 4	N	20.00	N	2 7		·	· . ī	2			\$.\$ £	
<u> </u>	68890	546359_	4675	4	N	200.00	109X10.0	4	N	Ň	1	1		. 8		
6 621	68830	546352 545713	4960	10	N	10.00	N	14	43	. 74	1	2		• 6	***	
G 622 G 623	59982 69685	545392	5500	40	NI NI	10.00	242 1.5	9	11	56.	1	1	-15			
G 624	£9665	545339	5725	9	N		48% 2.0	9	24	31	1	1	1 5			
6 625	69670	545303	5900	9	N	5.00	2X 5	8	11	31	1	. 2	1 5	3.		
6 525	69555	54531.3_	5800	, q	N	30.00	48X 1.0	9	11		1	1	. 1 5			
G 627	69610	545370	5890	9	N	N	N	7	11	10	1	3	1 5	• 8		
6 628	69611	545399	5800	é	N	150.00	N	7	18	29	1	1	1 5	.0	***	
6 629	69635	545408	5700	9	N	10.00	N ¹	4	12	11			-	.8		
G 630	69540	545417	5600	9	N	300.00	N	10	18	41	1	1	1 5	8.	*** -	
G 631	69651	545426	5500	9	N	10.00	24X 5	8	57	E 3.	1	1,		5 • Č	· ·	
6 632	<u>69661</u>	545427	5450	9	N		60X 5	4	11	39	1	1		i • 3		
G 633	69676	545425	5300	9	N	250.00	48X 5	4	5	49	1	1		3 . E		
G 634	69690	545430	5200	9	N	300.00	48X 1.0	5	11	31	1	1		.3		
6 635	69714	545455	.5150		N	5.00	<u>6X 5</u>	3	18	25		1		i.e		
6 636	69739	545490	5125	8	N	20.00	. CX 5	4	11	16	. 1	1	-	5.8		
4 800	68820	547000	4650	3	N		12X 1+G	4	N	N	1	1	1	8.0		
<u> </u>	68791	547028	4900	3	N	50.00	<u>12X 3.0</u>	8	N	N		l		D = D		
A 802	68745	547040	5100	3	N		24X 3.0	6	N	N		1		5.8		•
4 803	68732	547042	5300	3	N		36X 2.0	8	N		- 1	1		5.8 5.8		
A 804	68738	547050	5400	3	N	4.00	<u>36X 1.0</u>	<u>></u>	N	N	1	<u>1</u> 1		5•8		
4 905	68739	547050	5400	3	· N		24X 6.0	5	N	N		2		5.8		
4 8CĢ	68740	547070	5600	3	N		N	4	N N	. N		2		5.8		
A . SO 7	69730	547070_	5600	3	N	10.00	N	<u>y</u>	N	N	-	2			* *!*	
A 808	68712	547080	5650	3	N		N	-	N N	N N		ź		5.8	· •,-	
4 809	63703	547085	5700	3	N		N ov E	11	11	4.5	1	2 1		5.8		
A 810	68500	546632	5075	k	N	5.00	<u> </u>	5	11	50	1	1		5.8		
A 511	63473	546640	5500	2	N		4X I-0	5	11	. 50 49		1		5.8		A9
4 812	58446	546648	5700	2	N	20.00	1CX 2.0	2	1 1	. 49		•	•			~

Ξ.

;--

 \mathbf{i}

MAN SAMPS	X CORD	Y CORD	ELEV	FORM	TEMP	FLOW	5 I ZE	CU.	PB	ZN	ACID	TYPE	TURB	PH		
4 813	68410	546560	5850	2	N	200.00	24× 5.0	S	11	39	1	1	1	5.8		
4 814	55930	546560	5700	2	N	200.00	35X 6.C	7	5	74	1	1	1	5.8		
A 815	68450	546560	5400	2	N	200.00	24X 4.0	9	18	21	1	1	1	5.8		
<u>A 815</u>	<u> </u>	546560	5125	1	N_	_200.00	24X 4.0		11	21	1	1	1	_5.8.		
4 817	63478	546547	5100	1	N	50.00	24X 2.0	7	13	41	1	1	1.	5.8	· · · ·	•
A 818	E8500	546530	5200	1	N	100.00	12X 3.0	5	11	21	1	1	1	5.8		
4319	69439	546498	5400	1	N_	50.00_	12X 2.0		18		11	1		. 5.8		: :
4 820 4 821	. 634'80	546470	5600	2	N	50.00	12X 2.0	5	.11	69	1	1	1	5.8	· .	
4 821 4 622	69500	546431	5925	2	N	40.00	12X 2.0	9	5	. 35	. 1	1	1	5.8		
A 873	68465 69470		5400_ 5400	<u>1</u>	N	10.00	EX 1.0		11						a and a second	
4 824	68472	546509	5300	,	N		60X 2.0	8	11	25	1	1	. 1	5.8		
A 825	63479	546521	5200	1	N N	100.00	36X 5.0	7	11	- 11	1	1	1	5.8		
4 825	<u> </u>	546539	5150	1		<u>100.00</u> 10.00	36X3_D	<u>s</u>	11	23					· · · · · · · · · · · · · · · · · · ·	
. 4 8,27	68500	546570	5025	2	N N	200.00	18X 2.0 36X 5.0	5 4	11	31	1	1	1	5.8		
4 825	69515	546607	5000	2	N	200.00	<u>48X 6.C</u>	8	5	54	1	1	1.	5.8	· · · · ·	
4 8,29	63523	546632	4900	2	N	250.00	36X 6.0	7	11 5	<u> </u>	1	<u>i</u>		-5 8	· · · · · · · · · · · · · · · · · · ·	
A 8-30	68590	546664	4900	ź	N	250.00	36X 6.0	4	11	11	1	1	1	5.8		
A 831	68365	547100	5400	3	N	40.60	8X_3.0	7	N	1 I N	1	, I	1	5.8		
A 8:32	6 8 3 7 8	547081	5700	3- 4	N	20.00	8X 1.0		N	N	1	1	1	-5.2 5.8		
4 833	68389	547071	5900	4 - 5	N	10.00	4X 1.0	8	N	Ň	i	i	· 1	5.8		
A 834	69457	546040	5875	5		200.00	24X 4.0	ġ	N	N	i	÷.	1	-5+8-		•
4 835.	63449	546095	5700	5	N	200.00	36X 5.0	9	. N	N	1	1	1	5.8		
A 8⊴36	89451	546140	5600	5	·N	200.00	24X12.C	9	N	N	1	ī	î	5.8		
<u> 4 837</u>	69445	546190	5375	5	N	200.00	3EX_5.0	7		N		<u> </u>	ī	5.8	· · · · · · · · · · · · · · · · · · ·	
4 638	69436	546229	5275	5	N	250.00	36X 6.0	9	- N	N	1	1	1	5.6		
A 833	63420	546270	5200	5	N	250.00	72X12.0	13	. N	N	· 1	1	1	5.8		
A 240	E9410 /	546315	5100	5	N	300.00	48X 8.0	7	A	N		_ 1 :		-S.a.		
A 841	69390,	546356	5050	5	N	300.00	96X (6.D	131	N	N	1	1	ĩ	5.8		
A 8.9.2	63464	546180	5700	5	N	15.00	SX 1.0	9	N	N	1	1	1	5.8		
<u>A 844</u>	62503	545110	62C0	7	N	15.00	5X 3.0		N	N	<u> </u>		1			
A 8,45	69778	545530	5100	8	N	100.00	19X 3.0	4	N	N	1	1	1	5.8		
4 946	697/70	545575	5400	9	N	150,00	24× 6.0	8	48	32	2	1	1	5.8		
<u> </u>	<u> </u>	545618	5950	9	N	100.00	<u>13X 7.0</u>	8	N	N	1	1	i			
A 848 A 849	69731 6/9692	545608	6000	9	N	100.00	18X 2.0	7	N	N	1	1	1	5.8		
4 850	69.540	545621 545632	6500 6550	10 9	N	75.00	18X 3.D	200	N	N	1	1,	1	5.8		•
A 851	/69497	545719	6700	9	N N		N	8	<u> </u>	N	<u> </u>	3		5.8_		
4 852	69501	545803	6590	8	N	10.00	N. 8X 5	14	N	· N	1	3	3	5.8	* *!*	
A 851 /	69978	545841	6390	5		50.00	12X E.D	9	N	N	1	1	1	5.8		- ¹
4 854 /	69452	545394	6390	6		75.00	46X 3.0	5	N	N	1	· 1	···· 1	-5+8-		
A 855	69443	545897	E390	6	N	.13	40X 5-0	5	N	N N	1	1	1	5.8	- - -	
A 855/	69435	545349	6020	S		_125.00	48X_3_C	5	N		1	1	1	5•8 	* * *	
4 857/	69821	546353	5100	3	N	•C6	1 X 5	9	N	N	1	1	1	5.8		
4 858	65818	546292	5400	3	N		2X 5	ĩ	. N	N	1	1	1	5.8		
4 859	<u> </u>	546275	5800	3	N	.06	1X 5			N	1		3	5.8		
4 8,5 D	68795	546271	5600	3	N	10.00	6X 1.0	7	N	N	1	1	1	5.8		
4 6 6 1	68840	546260	5000	3	N	50.00	εx 3.0	7	N	N	1	1	ī	5.8		
<u> 4 852</u>	71731	545725	5500	4	9.0	40,00	6X 3.0	<u> </u>	57	130		1	1	5.8	·	
4 853	71736	545700	5600	4	8.0	10.00	3X 1.0	4	48	125	2	1	1	5.8		
4 954	71748	545700	5675	4	8.0	2.00	1X 5	11	67	171	2	1	1	5.8		
<u> </u>	71.750	545672	6000	4	8.0	2.00	<u>2X 5</u>	6	106	99	2	1	1	5.8		
4 000	71738	545670	6000	4	6.0	1.00	1X 5	9	.77	138	2	1	1	5.8		
4 867	71455	545545	6150	5	6.0	30.00	36 X 5	8	145	79	2	1	1	5. - 0	01 A	
														,	0	•

-

ŧ.

.

an the second second

MAN SAMPE	X CORD	Y CORD	ELEV	FORM	TEMP	FLOW	SIZE	CU	PB	ZN	ACID	TYPE	TURB	PH			
							1.	_						·			
A 85.8	71420	545503	6350	5	10.0	N	N	5	150	66	2	1	1	5-8			
A 859	71561	545510	7250	5	7.0	5.00	5X 1.0	9	57	25	2	1	1	5.8			
A 87C	71579	545530	7000	5	7.0	20.00	12X 3.0	4	19	10	2	1	1	5.8			
A 871	71584	545551	6800	5	7.0	2.00	<u>3X 5</u>	5	9	3_				5.8			
A 872	71534	545670	5800	5	5.0	50.00	12X 1.0	6	9	26	2	1	1	5.8			
A 873 A 874	71519	545689	6000	5	8.0	10.00	EX 1.0	9	19	11	2	1	1	5.8		•	
	71508	545701	6300	5	7.0	40.00	<u>60X 5</u>		38	24		<u>}</u>	<u>_</u>	_5.8_			
	71509	545722	6550	5	7.0	15.00	12X 1.0	8	19	89	2	1	1	5.8			
A 876 A 877	71500	545722	6600	5 6	7.C 6.D	20.00	10X 1.0	21	34	133	2	1	1	5.8			
	71476	545752	7500	5		5.00	2X 2.0	8	14	56			<u> </u>	8	· · · · ·	·	
A 878	71530	545765	7350	5	6.0	20.00	10X12-0	39	306	48	2	2	1	5.8			
A 879 A 830	71550	545790	7350 8750	5	5.0 6.0	16.00	EX 5 EX 5	14	23	30 12	2	1 .	. 1	5.8			
	<u>71569</u> 71568	545791	<u>6750</u> 6350	5	6.0			9 B	<u>38</u> 19			·····	<u>}</u>		······································		
4 861 4 832		545780	5400	2 4	5.0	20.00	SX12.0 20X 1.0	+		10	2	1	1	5.8			
	71679	545750		5		40.00		11	169	79	2	1	1	5.8			
<u>A 88-3</u>	71385	545570	5850		<u> </u>	25.00	12X 1.0	99	10	76		·····					~~~~
A 534	71371	545535	6100	5	8.0	75.00	36X 2.0	11	190	92	2	1	1	5.8			
A 895	71363	545597	6460	5 5	6.0	40.00	20X 1.0	12	230	12	2	1	1	5.8	•		
A 855	71347	545610	6550		<u> </u>	20,00	<u>15X 1.0</u>	<u>9</u> _	272				<u>`</u>				
A 897 A 888	71317	545611	6900	6	8.0	10.00	10X 2.0	. 9	81	22	2	1	1	5.8			
A 888 A 889	71309	545631	6900	5 6	7.0 8.0	10.00	6X 1.0	13	57	56	2.	1	1	5.0			
	71392	545650	6900	5		5.00	<u>6X 1.0</u>	22	38	155		<u>-</u>		_5.8_	·····		
	71412	545641	6550	5	8.0	10.00	10X 1.0	9	19	18	2	1	1	5.8		•	
	71430	545619	5975		9.0	20.00	10X 5 15X 5	15	14	94	2	1	1	5.8			
A 892	71450	545609		<u>5</u>	9.0 9.0	5.00_	<u>15X 5</u> 3X 5			53		<u> </u>	3				
A 892 4 893	71514	546240	5690	15 3.	3.0	10.00 100.00	35X 1.C	5 6	24	48	2	2		5.8	* 0;*		
4 894 A 894	71506	546193 546235	5850 					م م	17	48	.2	1	1	5.8			
A 995	71572		5175		<u> </u>	<u>25.60</u> 20.00	<u> </u>	. 8	12	28		······	1				
4 896	71621 71635	54529D 546268	5125	15 15	5.5	20.00	12X 1.C	8	12 37	30 37	- 2 2	. 2	3				
A 397		546308	5125	<u>5</u>	7.0	50.00	10X 1.0	22		35	2	1	•	5.8 5.8		· .	
4 838	70858	546318	0003	5	8.0	35.00	10X 1.0	22	12	67	2	1	1	5.8			
4 89,9	70832	545329	6250	S	5.0	15.00	4X 1.0	15	12	33	2	1	· 1	5.8			
4 900	70852	546324	6525	6	-6.0	35.00	12X 2.0	4	12	35	2	1		5.8			
r A 901	70736	546252	6500	8	3.0	2.00	2X 5	17	31	25	2	1	1	5.8	· · · · · ·		
A 902	70770	546240	6200	8	3.0	ZC.00	6X 1.0	8	12	10	ž	1,	1	5.8			
A 903	70777	546219	6000	8	4.0	30.00	12X10	4	49	12	. ,	· · ·	1	5.8			
A 904	70802	546218	5800	7	4.0	35.00	12X 2.0	 4	24	15	2	1	1.	5.8		······································	
A 905	71475	546169	6100	3	4.0	15.00	4X 1.0	8	12	12	2	- 1	1	5.8			
4 906	71447	546157	6400	4	3.C	15.00	.6X 1.0	ã	12	19	2	. î	1	5.8			
4 90,7	71387	546162	6400	4-5		2.00	1X 5	6	12	47	2	1	· 1	5.8		· · · · · · · · · · · · · · · · · · ·	
4 908	71419	546229	6200	3	4.0	10.00	5X 1.0	8	12	33	2	ī	1	5.8		_	
4 90 9	71389	546239	5800	3	4.0	15.00	1CX 5	<u> </u>	24	86	2	1	1	5.8			
A 910	71386	546202	60038	3	5.0	30.00	12×12.0	4	24	51	2	1	1	5.8			
A 911	71 382	546231	5800	3	5.0	30.00	6× 2.0	9	12	53	2	1	ī	5.8			
A 912	71376	546247	5700	3	5.0	45.00	12X 1.C	15	12	86	2	1	1	5.8			
A 91-3	71370	546258	5600	3	5.0	20.00	10× 1.0	11	12	49	2	1	1	5.8			
A 91,4	71341	546277	5375	3	4.0	Z • 00	2X 5	8	24	53	2	1	. 1	5.8		•	
A 91/5	71856	.545575	5500	3	6.0	100.00	24X 2.0	9	29	38	22	1	1	5.8			
A 916	71628	545591	5600	4	5.0	75.00	16X 1.0	11	9	48	2	1	.1	5.8			
A 917	71312	545587	5700	4	4.0	15.00	6X 5	2	19	28	2	1	1	5.8			
4 918	71804	545583	5825	4	4.0	25.00	96X12.0	6	150	57	2	1	1	5,8	······		
4 91 9	71780	545568	6500	5	6.0	10.00	3X 5	8	29	2 9	2	1	1	5.8		· · ·	
5 A 920	71785	545561	6200	5	6.5	10.00	EX 1.0	8	34	51	2	1	1	5.8		≥ I	
· [······································		
4																	

÷-

×.,

																	<u>`</u>		-
1	MAN	SAMP#	X CORD	Y CORD	ELEV	FORM	TEMP	FLOW	SIZE	CU	P8	ZN	ACIO	TYPE	TURB	PH			
- 1										<u>,</u>	• •		•						
		921	717.38	545528	6100	4- 5	5.0	20.00	8X 1.0	8	14	23	2	1	1	5.8			
- 1		922	71789	545495	6000	4	4.0	20.00	10X 1.0	10	14	58	2.	1	1	5.8			
1		923	7,17.92	545493	6000	4	3.0	30.00	14X 1.0	S	19	56	2	1	-1	5.8			
		924	71809	545516	5700	4	5.0	60.00	24% 2.0	<u> </u>	<u> 19 </u>	21_			<u></u>	5.8			\prec
- (4	925	71828	545457	6300	5	4.0	30.0.0	12X 2.0	8	9	30	2	1	1	5.8			
i	. Q	926	71239	545471	6000	5	4.0	40.00	16X 1.0	3	9	41	2	1	1	5.8			
1	<u>A ·</u>	927	71855	545463	5700	5	-5.0	5.00	<u>3X 5</u>	3	14	23	2		1			·····	
- 1	4	928	71845	545483	5625	4	5.0	50.00	10X 3.0	6	9	17	2	1	1	5.8		:	
- 1	4	929	71850	545485	5500	4	6.0	2.00	1X 5	8	19	21	2.	1	1	5.8		•	
1	<u> </u>	930	71850	54554C	5475	3-4	5.0	75.00	14X 5.C	3	19	30		i	<u>l</u>	5.8			
	Ą	931	71840	545545	5400	4	5.0	100.00	24X 3.0	6	29	34	2	1	1	5.8			
	4	932	71653	545554	5300	3	6 . D	200.00	36X 5.0	6	9	17	2	1	1 .	5.8			1
	4	933	71092	546596	57.00	5	5.0	3.00	2X 1.0	4.8	14	46	2	1	1	5.8			
- 1	A	934	71098	546573	5500	15	5.0	25.00	9x 1.C	77	19	63	2	1	1	5.8			
- 1	Δ.	935	71117	546544	5225	15	6.0	15.00	3X 1.O	5 [.]	29	48	2	1	1	5.8	ъ.		
	4	935	71211	545534	5625	7	3.0	50.00	14X ?.0	6	29	17	2	<u>1</u>	1				
	4	937 💈	71180	545545	6900	7	1.0	40.00	18X 1.0	5	24	30	2	1	1	5.+8			
- 1	4	938	71200	545530	6700	7	2.0	2.00	1X 5	11	19	15	2	1	1	5.6			1
ļ	A	939	71220	545520	6400	6	3.0	60.00	12X 2.0		29	35	Z	<u>1</u>	l				
	A	940	71236	545498	6175	5	3.0	25.60	10× 1.0	6	14	16	2	1	1	5.8			
	4	941	71301	545500	6000	5	4.0	200-00	36X 4.0	10	48	10	2	1	1	5.8			-
_	4	942	71165	545181	6800	6	2.5	100.00	<u>24X 3.0</u>	10	19	55_	2	1	<u> </u>				
	4.	94,3	71143	545190	7000	7	1.0	25.00	10% 1.0	6	14	57	2	1	1	5.8.			j.
- 1	A	944	71143	545157	6850	6	5	35-68	15X 1.C	12	19	41	2	1	I	5.8)
. 1	4	945	71202	545200	6650	5	5.0	N	N	88	19	30	2	3	1	5.8	***		
	Ą	946	71253	545235	6575	5	3.0	200.00	48X 7.0	8	9	28	2	1	1	5.8			
·.	A	947	71310	54527C	6400	5	3.0	200.00	36X1/0.0	13	19	35	2 .	1	1	5.8			
	A	948	71353	545300	6250	5	3.0	250.00	3FX 8.0	<u> </u>	9	53	2	1		5.8			
·	4	94 3	71391	545325	6300	5	4.0	20.00	6Y 1.0	5	19	33	2	2	1	5.8			i
	A	950	71410	545315	E100	5	3.5	300.00	50X 6.0	6	19	44	2	1	1	5.8			
1	A	951	71461	545326	6000	5	4.0	300.00	36X 8.0	8	19	3C	2	1	1	5.8			لسنسا
	A	952	71500	545350	5975	5	4.5	15.00	4X 1.0	3	19	25	2 '	1	1	5.8			
_ !	A	953	71510	545349	5875	5	4.0	360.00	4SX 5.0	10	24	30	2	1	1	5.8			
- 1	Δ	954	71541	545364	5700	5	4.5	350.00	48X 6.0	2	24	25	2	1	_1	5.8			
]	4	955	71575	545372	5575	5	5.0	375.00	48X10.0	4	19	15	2	1	1	5.8			
- 1	Ą	956	71560	545390	5800	5	6.0	10.00	5X 1.0	4	24	12	2	1.,	1	5.8			
- 1	Ą	957	71551	545418	6100	5	5.0	45.00	10X 2.0	13	24	7	2	1	1	5.8			
	A	958	71541	545440	6500	5	5.0	15.00	6X 1.0	12	24	10	2	1	1	5.8			
	Ą	959	70980	545570	E 8 0 0	8	4.0	10.00	5X 1.0	8	14	43	Z	1	1	5.8			
1	A	960	70990	545581	6600	8	2.0	15.00	3X 1.0	2	19	15	2	2	1	5.8			
	A	951	70990	545610	6700	8	4.0	30.00	102 1.0	8	14	15	2	1	1	5.8			
	A	952	71011	545570	6600	7	3.0	20.00	5X I.O	6	14	28	2	2	1	5.8		· ·	
	Ą	95 3	71-020	545640	6400	7	4.0	50.00	20X 3.0	11	14	12	2	. 1	1	5.3		· · · · · · · · · · · · · · · · · · ·	
	A ·	954	71041	545670	6300	7	4.i	100.00	24X 4.0	5	9	50	2	1	1	5.8			
	Α	955	71179	545681	6375	5-6	2.0	10.00	5X 1.0	- 11	19	44	2	1.	1	5.8			
	Δ.	966	71160	545708	6175	5	3.0	35.00	10X 2.0	13	19	15_	2	1	11	5.8			
	Ą	967	71155	545729	6625	5	3.0	25.00	4X 1.0	8	- 24	20	2 '	1	1	5.8		•	
	A	968	70857	545706	€500	10	4.0	N	N	8	18	97	2	3	1	5.8	***		
	A	96 9	70861	545736	6375	9	3.0	10.00	6X 1.0	7	18	15	2	1	1	5.8			
	A	970	70880	545762	6300	9	3.0	75.00	24X 2.0	5	18	23	z	1	1	5.8			
•	۵	971	70900	545790	6225	5	3.0	150.00	36X 6.0	7	30	58	2	1	1	5.8			
	A	972	70780	545800	6880	9	N	15.00	<u> 5X 1.0</u>	12	18	79	2	1	1	5.8			
1	Ą	973	70320	545801	6700	9	N	25.00	10X 2.0	4	11	46	2	1	, 1	5.8			
3	4	974	70860	5457,98	6500	8	N	50.00	20X 4.0	9	18	21	2	1	1	5.8	•	A12	
ŗ													•					N	
••														·					ŕ,
																		· ·	

.

Γ

.

でしょたと

MAN SAMPS X CORD Y CORD ELEV FORM TEMP FLOW SIZE 2บ PB ZN TYPE TURB ACID PH A: 975 S N 20.00 10X 1.0 5.8 A 3.0 75.00 24X 3.0 .18 5.8 A 3.0 250.00 36X 6.0 5.8 2.0 10.00 4X 5 5.8 3.0 300.00 36X 6.0 5.8 A 4.0 375.00 45X 3.0 5.8 4.0 500.00 48X 4.0 5.8 A 4.0 500.00 48X 6.0 5.8 2.0 5.00 2X 5 5.8 3.0 20.00 5X 2.0 q 5.8 4.0 500.00 72X 4.0 5.8 500.00 8**6** N ECX 6.0 z 5.8 1CX 1.0 54E018 3.0 25.00 A 5.8 A 4.0 175.00 25X 2.0 -4 5.8 7 50.00 60X 8.0 A 939 7~ 4.0 5.8 - 2 Δ 5.730 4.0 750.00 42X 6.0 5.8 750.00 4.0 48% 5.0 5.8 A 4.0 75.00 12X 2.0 5.8 75.00 A 4.0 1CX 2.0 5.8 60:00 3.0 25.00 5X 1.0 A -5 5.8 A 3.0 30.00 6X 2.0 5.8 *** 3.0 20.00 4X 1.0 5.8 2.0 30.00 10X 2.0 5.0 4X 1.0 1.0 15.00 a 5.0 1.0 5.00 4X 5 5.0 1.0 .13 1X 5 5.8 18X 2.0 2.0 25.00 Δ 5.0 2.0 75,00 20X 3.0 5.0 N q 2.0 175.00 35X 4.0 5.0 2.5 200.00 48X C.O 5.0 A 707.93 2.0 15.00 5X 1.0 5.0 Ą 70/792 3.0 250.00 40X 5.0 5.0 2.5 20.00 6X 1.0 5.0 л A 3.0 10.00 3X 5 5.0 3.0 300.00 60X 3.0 в 5.0 A 1010 300.00 48X 8.C 3.0 5.0 3.0 300.00 6CX 8.0 3.5 5.0 24X 1.0 Δ 2.0 20.00 6.5 20.00 6X 2.0 S 1.0 6.5 Δ 1.5 15.00 6X 1.0 6.5 Δ 5. 2.0 30.00 8X 2.0 -1 6.5 2.0 150.00 36X 4.0 6.5 2.0 200.00 24X 5.0 6.5 A 200.00 48X 4.0 3.0 5.8 30.00 6X 2.0 5.8 Δ 2.0 Δ 2.0 20.00 4X 1.0 5.8. 1.5 5.00 4X 1.0 1.2 -1 5.8 3.0 250.00 48X 6.C Τ. 6.5 A A 54636Z 3.0 15.00 3X 1.0 -4 5.8 . 3.0 40.20 10X 2.0 u 5.8 Α N N 5.8 ... 45.00 FX 3.0 2.0 5.8 A A 2.0 20.00 6X 1.0 5.8

14X 3.0

5.8

-

Δ

2.0

75.00

. -

≻

A 1 A 1 A 1 A 1 A 1 A 1 A 1 A 1 A 1 A 1 A 1 A 1 A 1 A 1 A 1 A 1	AMP # 029 030 031 033 034 035 035 037 037	X CORD 70575 70548 70520 70482 68359 68366 69371	Y CORD 546380 546394 546418 546429 546730	ELEV 6180 5950 5600	FORM 7 7	TEMP 2.5	FLOW	SIZE	cu	P8	2N .	ACIC	TYPE	TURB	PH				
A 1 A 1 A 1 A 1 A 1 A 1 A 1 A 1 A 1 A 1 A 1 A 1 A 1 A 1 A 1 A 1	030 031 032 033 034 035 035 035 035	70548 70520 <u>70482</u> 68359 68366	546394 546418 546429	5950 5600	7		100.00												
A 1 A 1 A 1 A 1 A 1 A 1 A 1 A 1 A 1 A 1 A 1 A 1 A 1 A 1 A 1 A 1	030 031 032 033 034 035 035 035 035	70548 70520 <u>70482</u> 68359 68366	546394 546418 546429	5950 5600	7		T C C C C C	20X 4.0	2	29	20	3	1	1	5.8				
A 1 A 1 A 1 A 1 A 1 A 1 A 1 A 1 A 1 A 1	0 31 0 32 0 33 0 34 0 35 0 35 0 37	70520 70482 68359 68366	546429			3.0	100.00	25X 4.0	2	24	30	3	1	1	5.8				
A 1 A 1 A 1 A 1 A 1 A 1 A 1 A 1 A 1 A 1	C32 033 034 035 C36 037	68359 68366			5.	3.0	125.00	24X 5.0	Z,	19	44	3	1	1	5.8:				
4 1 4 1 4 1 4 1 4 1	034 035 036 037	68366	546780	<u>5350</u>	5	3.0	125.00	18X 5.0	5_	2°	51	3			5.8_			· · · ·	
4 1 4 1 4 1 4 1	035 C36 037		540750	6350	2	2.0	•50	. 1X .5	8	12	51	3	1	3	5.8				
A 1 4 1 4 1	C36 037	69771	546800	E 175-	2	2.5	- 15.00	4X 5	. 8	12	2.9	3	1	1	5.8				
4 1 4 1	037		546770	6290	2	2.0	25.00	6X 1.0	6	<u> </u>	23_		<u>i</u> :		_5.8_				
4 1		E8375	545812	6100	2	2.0	65.00	14X 2.0	8	N	30	3	1	1	5.8			,	
		68389	546328	6150	2-3	3.0	15.00	SX 1.0	4	. 12	25	3	1	1	5.8			,	
A 1		68380	546840	6100	2-3	3.0	30.00	91 2.0	6	12	217		1		5.8				
	039	63410	546840	6550	3	2.5	15.00	3X 1°+0 5X 1+0	. 8	31	7	3	1	1,	5.8				
	C40	68492	546859	6300 6500	3 3	2.0 3.0	20.00 20.00	5X .5			9	3	1.	1	5.8				
	041	69496	<u>546888</u> 545912	6425	3.	2.0	15.00	6 X 🐄 5	5	19	15	3	1	1	5.8				
	042	68495 68490	546920	6425	3	2.0	25.00	Z4X 5	5	12.	23	3	i .	- î -	5.8				
	043	69470	546911	6200	3	3.0	75.00	18X 3.0	4	- 31_	17	3.5	i		5.8			: 	
	045	68450	546907	5900	3	3.0	100.00	24X 3.C	6	12	20	3	1	1	5.3				
	045	68535	547527	4800	15	6.0	50.00	10X 3.0	4	24	47	3	1	1	5.8				
	047	63579	547504	4900	15	6.0	35.00	3X 2-0	4				1						
	C18	68610	547490	5000	15	5.0	20.00	5X 1.0	4	18	2%	3	1	1,	5.8				
	649	63625	547480	5050	15	5.5	10.00	8X 5	. 5	24	82	3	1	1	5.9				
	050	68635	547515	5200	15	5.0	10.00	4X 1.0		24	23:	3	1						
	051	65480	547550	4900	15	3.0	3.00	37 5	7	11	5	3	1	3	5.8				
	052	E 8456	547515	5125	15	3.0	1.00	2X 5	- 5	17	5	3.	1 .	1	5 • 8				
	053	63680	547755	5050	15	6.0	<u>N</u>	. N	9_		12	3	2			÷		<i></i>	
A 1	1054	68680	547763	5000	15	7.0	N	 N 	. 5	11	2	3	1	1	2.8	* *'2			
A 1	1055	63255	547,636	5000	15	5.0	20.00	7X 1.5	9	N	8	3	1	1	5.8				
A 1	055	68260	547600.	52.80	15	4.0	5.00	<u> </u>	3	11	N	3							
	1057	68218	547600	5100	15	4 + Q	5.00	2X 1.0	3	-11	N-		1	1	5.8				
A 1	1058	63205	547650	4800	15	€.0	20.00	EX 1.0	7	17	- 3	3 -	1	1	5.8				
	059	68230	547655	4800	15	<u> </u>	35.00	10X 2.0		17	18	3		<u>↓</u>	5.9				
	1060	69470	545960	6250	8	3.0	5.00	2X 1.0	4	17	N	-	1	1	5.8				
	061	69476	545950	6,300	5-7	3.5	15.00	4X 1.0	5	11	N	3	1	1.	5.8 5.8		1 - E		
	1762	69470	545930	<u> </u>	<u>6-7</u>	<u>4.C</u>	.13	1X 5	5	17	<u> </u>	3	2	1	5.8				
	1063	69538	545517	6950	9	3.0	45.00	6X 1.0 6X 1.0	3	. 17	2	3	2	1	5.8	· · · · ·		· ·	
	064	69485	545929	6400	.7-8. 6-7	2.5 3.0	45.00 30.00	4X 1.0	4	· 11	· 2	7	2	1	5.8				
	1065	69484	545940	<u>6300</u> 5900	5	2.0	5.00	3X 1.0	4	11	3	3	2	1	5.8				
	1066	69455	546C25 545652	5500	8 [.]	4.0	65.00	14X 1.0	7	- 17	18	3	ī	i	5.8				
	1057	69362	545648	5700	8 ·	3.0	36.00	EX 1.0	٩	17_		3	1	. 1	5.8				
	1068	<u>69385</u> 69393	545662	6003	3	6.0	20.00	2X 1.0	. 4	17	11	3	2	1	5.8				
	1070	69410	545630	6000	9	3.0	25.00	6X 1.0	. 7	11	.41	3.	1	1	5.8				
	1672	69417	545632	6100	10	3.0	20.00	5X 1.0	7	11	18	3		1	5.8	***	· ·		· • • • • • • • • • • • • • • • • • • •
	1073	69450	545640	6700		4.0	5.00	3X 5	.4	11	25	3	1	1	. 5.8				
	1074	69439	545546	6550		4.0	15.00	6X 1.0	2	11	18	3	1	1 -	5.8				
	1075	69443	545652	E700		3.0	3.00	<u>2 X 5</u>	5	. 11	15	3	1	1	5.8				
	1076	69437	545668	6800	10	4.0	10.00	3X 1.0	· 3	11	23	3	2	Î	5.8				
A 1	1077	69332	545569	5250	8	4.0	80.00	24X 250	7	11	. 9	3.	1	1	5.8				
A 1	1055	68693	546810	4725	5	8.0	25.00	10X 1.0	·8	24	10				5.8				·
4 1	1686	68665	546820	505 0	5	7.0	35.00	5X 2,0	. 7	24	15	3	1	1	5.8				
	1087	63636	546938	5500		7.0	10.00	5X,1.0	7	11	10	3	1	1	5.8				
	1088	68679	546840	5150	5	6.0	15.00	4 X 2 . C	8	17	6_		<u> </u>	i	5.8				
	1089	58711	546529	4750	5	8.0	40.00	12X 1.0	5	17	21	3	1	1	5.8			ť	» '
A 1	1090	69164	545414	5725	5	1.0	10.00	EX 1.6	. 8	11	98	3	1	1	5 • Ŗ		· · ·	A 14	
								· · ·			· · · · · · · · ·						· · · · · · · · · · · · · · · · · · ·		

•

. 1 .

1

Γ

-i -B

<u>77</u>0011

ſ	MAN	SAMP#	X CORD	Y CORD	ELEV	FORM	TEMP	FLOW	SIZE	CU	PB	ZN	ACIC	TYPE	TURB	PH			
	A	1091	69190	545437	5625	5	1.0	50.00	8X 2.0	7	30	15	3	1	1	5.8			
	4	1092	69216	545466	5500	5	1.0	75.00	8X 2.D	4	17	10	3	1	1	5.8			
	4	1093	69241	545492	5475	6	1.5	120.00	14X 2.0	7	24	73	3	1	1	5.8			1
L	<u>A</u>	1094	69260	545521	5425	7	1.5	150.00	25X 2.0		17	66	3	<u> </u>	1	5.8			2
ſ	4	1095	69278	545560	5400	8	2.0	200.00	. 16X 3.0	8	17	59	3	1	1	5.8). '
	A	1096	69290	545605	5200	. 8	3.0	200.00	46X 2.0	8	11	66	3	1	1	5.8			
- I-	4	1097	69298	545646	5125	7	3.0	225.00	36X 4.0	7	24	9	<u>· 3</u>	1	1	5.8			
	4	1098	6.9357	545441	5400	8	2.0	200.00	40X 4.0	8	17	23	3	. 1	1	5.8		;	
	A A	1099	69380	54541C	5550	8	2.0	150.00	4CX 3.0 4X 5	9	24	121	3	1	1	5.3	:		·
-	A	1100	69402 69397	545388 545376	<u>5775</u> 5700	8	1.5	20.00	30X 3.0	<u></u>	24	<u>89</u> 32	3	1		5.8		· · · · · · · · · · · · · · · · · · ·	-1
- 1	Â	1102	65420	545350	5975	9	1.0	55.00	15X 2.0	3	19	10	3.	,	1	5.8 5.8			ľ
	Å	1103	69442	545322	6200	9	1.0	40.00	10X 1.0	2	19	70	3	1	1			• • •	
-	Ā	1104	69445	545351	6200		1.0	10.00	3X 1.0	<u> </u>	19	8	3	1	1	<u>5.8</u>	and the second		
	Ā	1105	69176	546046	5200	5	1.0	15.00	3X 1.0	4	11	47	3	i	1	5.8			ĺ
	Â	1105	69150	546020	5700	· 5	1.0	25.00	6X 2.0	7	24	64	3	ī	ī	5.8			
	4	1107	69115	546000	6025	5	1.0	10.00	6% 1.0		5	56	3	1	1	5.8			
	A	1108	69131	545941	6375	5	2.0	N	N	8	11	39	3	.3	1	5.8	* *!*		1.
	A	1109	69155	545955	5200	5	1.0	15.00	8× 5	7	17	48	3	1	1	_5.8_			į
1	A	1:10	69167	546010	5690	5	1.0	5.00	3X 5	. 12	17 ·	59	3	1	1	5.8			1
	A	1111	697.20	545491	5200	9	2.0	180.00	20X 2.0	3	5	11	3	1	1	5.9			
L	Ą	1112	E9702	545515	5400	9	2.5	.25	1X 5	4	17	32	3	2	3	5.8	والمراجع والمحافظة والمتحفظ والمحافظ		_
	Ą	1113	69681	545502	5400	9.	1.5	150.00	24X 3.0	5	17	26	3	1	1	5.8			
1	A	1114	69643	545498	5500	9	1.0	100.00	24X 3.0	3	5	57	3	1	1	5.8			ł
1-	<u>A</u> .	1115	69636	545502	5700	3	1.0	10.00	40X 5	3	· 19	11_		2		5.8	***		
1	A	1116	69605	545500	5860	9	1.0	75.00	18X 2.0	5	14	6	3	1	1	5.8			
	Ą	1117	69562	545520	5100	9	1.0	40.00	12X 3.0	7	3	, 18	3	1	1	5.8			
- }-	<u>Α</u> Δ	1118	69550	545549	6300	9	1.0	15.60	10X 1.0	3	19	9		<u>+</u>	<u>1</u>	58			
	4	1119 1120	69346 69860	545439 545480	6050 5850	9	1.0 1.0	20.00 50.00	15X 1.0 7 AX 3.0	7 9	14	19 15	3	1	1	5.8 5.0			1
	Â	1121	69845	545516	5300	9	1.0	50.00	2CX 2.0	5	17	22_	.3 7	1	1	5.8			
- 1-	Δ	1122	69835	545540	5050	9	1.5	15.00	6x 2.0	4	14	8	3		1	5.8			
	Ā	1123	68375	547757	4990	15	1.5	10.00	3X 1.0	, 7	24	22	3	i	î	5.8			
	A	1124	68320	547736	4280	15.	2.0	20.00	FX 5	5	24	64	3	i	ī	5.8			
. F	A	1125	63495	547640	4720	15	2.0	5.00	2× 1.0	7	30	. 35	3 ·	1	1	5.8			\neg
1	A	1126	69545	547539	4800	15	1.5	15.00	5X 1.0	3	24	41	3	1	1	5.8			- J. J.
	A	1127	63570	547537	4950	15	1.0	15.00	3X 1.0		17	5.3	3		1	5.8			
1	A	1128	68598	547542	5100	15	1.0	15.00	5X 5	4	17	23	3	1	3	5.8			
	4	1129	69472	546127	5750	5	1.5	50.00	18X 1.0	4	17	20	4	1.	1	5.9			1
1_	<u> </u>	1130	69502	546115	6100	66	1.0	30.00	7X 2.C	4	1?	39			1	5.8			
÷	A	1131	69530	546030	6500	8	1.0	15.00	4X 1.0	4	17	64	4	1	1	5.8			Ľ
	A	1132	69472	546180	5760	5	1.5	30.00	63 1.0	3	11	59	4	1	1	5.8			I.
ļ.	4	1133	69507	546182	6100	6	1.5	20.00	<u> </u>	2	11	20	4			5_8			\rightarrow
	A	1134	69520	546186	6400	7	1.0	7.00	6X 1.0	3	17	33	4	1	1	5.8			ì
1		1135 1136	69536 70079	546175 545410	6500 5700	9 11	1.0	10.00	5X 5 20X 5	3	11	29 68.	4	1	1	5.8 5.8			
H	Δ	1136	70075	545339	5700	11	1.0	25.00	6X 1.5		17	14	4	1	1		······································		ΞŶ.
	Ā	1138	70091	545361	5500	11	2.0	20.00	3X 1.0	7	11	135	4	-2	1	5.8			
	à	1139	70106	545311	5500	11	1.5	150.00	16X 3.0	3	17	133	4	้า	1	5.8			.]
	A	1140	70108	545301	5575	11	2.0	5.00	2X 5	3	11	38	4	2	1	5.8			
•	A	1141	70120	545299	5700	11	1.5	50.00	10X 2.0	4	11	20	4	-1	ī	5.8			
	A	1142	70119	545289	5700	11	1.5	100.00	24X 2.0	3	1	5	4	1	1	5.8] `
-it	A	1143	70139	545272	6100	11	1.0	65.00	18X 1.0	4	11	68	4	.1	1.	5.8			d
3	A	1144	70160	545255	6300	11	1.0	15.00	5X 1.0	8	17	93	4	1	1 .	5.8	·	A15	1
- 1																		<u></u>	!
1																			

Γ,

											. (
MAN SAMPS	X CORD	Y CORD	ELEV	FORM	TEMP	FLOW	SIZE	CU	PB	ZN	ACID	TYPE	TURB	PH		, , , , , , , , , , , , , , , , , , , ,
A 1145	70118	545201	6200	11	1.0	15.00	4X 2.0	7	17	36	9	1	1	5.8		
4 1196	70097	545210		11	1.0	20.00	4X 1.C	8	17	73	4	ĩ	ī	5.8		
A 1147	70090	545230		11	1.0	50.00	10X 1.0	8	11	εī	4	ī	- î -	5.8		
A 1148	70079	545225		11	1.0	20.00	5X 1.0	3	11	27	4	i	1	5.8		
4 1149	70059	545216		11	1.0	5.00	2X 5	7	11	41	4	1	1	5.8		
4 1150	70012	545179		11	1.0	50.00	18X 1.0	3	5	2	¢.	1	1	5.8		
A 1151	70040	545228		11	1.5	20.00	12X 1.0	3		43	4	1	1	5.8		
A 1152	70053	545250		11	1.0	50.00	24X 2.0	3	5	8	4	1	1	Š.8		
A 1153	70060	545260	5900	11	1.0	20.00	5. 2.0	4	11	6	4	1	1	5.8		:
A 1154	70080	545291	5700	11	1.0	100.00	20X 2.0	7	11	39	4	1		5.8		
A 1155	70079	545299	5700	11	1.5	100.00	36X 2.0	4	11	71	4	1	1	5.8		
A 1156	67645	546955	5475	5	1.5	15.00	4X 1.0	5	11	76	eş 🖉	1	1	5.0		
A 1157	67611	546396	5150	13	2-0	30.00	15X 1.0	5	5	69	4	1	1	<u> </u>		
4 1158	67599	546588		13	1.0	5.00	2X 5	6	11	87	4	2	2	5.0		
A 1159	67572	546876	5050	13	1.0	.50	1X 5	. 3	11	19	4	2	2	5.0		
4 1160	67546	546860	4950	13	2.0	60.00	20X 2.0	4 <u>;</u>	18			1	<u> </u>	5_5		
A 1161	67851	545970	5125	2	1.5	15.00	3X 5	6	11	80	4	2	2	5.0		
A 1162	67830	546978	5300	2	1.5	20.00	7X 1.0	5	11	59	4	1	2	5.0		
<u> </u>	67793	547013	5900	3	1.0	10.00	<u>4X 1.0</u>	4	11	15	4	. 1				
4 1164	67745	546972	5800	3	1.0	15.00	5X 5	5	5	. 76	4	1	1	5.0		
A 1165	67732	546965	5800	3	1.5	20.00	6X 1.0	4	5	69	, d	1	1	5.0		
A 1166	67762	545949	<u>54CO</u>	3	1.5	55.00	<u>10X 1.5</u>	<u>6</u>	11	106	4		<u>1</u>	-5-0		
4 1167	67782	546926	5150	3	1.5	25.00	8X 1.0	5	11	107	4	1	1	5.0		
4 1168	67690	547097	6350	4	1.0	1.00	3X 5	8	5	66	4	1	2	5.0		
<u>4 1159</u> <u>4 1170</u>	<u> 67590</u>	547011	6400	<u> 4 </u>	1.0	20,00	<u> 10X 1 0 </u>	<u>5</u> 7	5	23				5.0		
1	67:745 67748	547121 547133	6100 6200	3 3	1.0	25.00 5.00	5X 1.0 5X 5	, 7	11 5	11 31	4	1	1.	5.0 5.0		
A 1171 A 1172	67:760	547133 54714C	6200	3	1.0	20.00	6X 1.0	5	5	21	4	1	1	5.U		
A 1173	677.90	547150	6200	2	1.0	2,00	2X 5	4	N	28	4	1	1	5.0		
A 1174	67790	547105	5550	ź	1.0	45.00	15x 1.0	. 5	5	79	ių.	i	1	5.0	e	
4 1175	57778	547034	5525	2	1.5	3.00	3X 5	4	.5	23	4	2	1	5.0		
A 1176	67763	547095	5125	2	1.5	7.00	4 % 5	4	5	35	4	2	1	5.0		
A 1177	67770	547080	5510	2	1.0	50.00	5X 2.0	7	5	53	4	1	ī	5.0		
A 1178	69128	547495	4900	15	1.5	1.00	3X 5	6	18	74	4		1	5,8		
A 1179	69269	547575	4450	15	1.0	.25	1X 5	6	18	· 38	4	1	2	5.8		
A 1180	69190	547549	4690	15	1.5	1.00	3X 5	14	11	87	4	1	3	5.8		
-4 1181	69271	547539	4550	15	1.5	5.00	8X 1.0	9	13	98	4	1	<u> </u>	5.8		
A 11.82	69230	547587	4600	15	1.0	N	N	9	18	76	4	1	3	5.8	* *)*	•
4 1183	69260	547521	4450	15	1.0	1.00	1X 5	6	11	59	4	1	3 '	5.8		
A 1189	69250	547537	4430	15	1.0	1.00	<u>2X 5</u>	11	24	72	4		3	<u>5.E</u>		<u>`</u>
A 1135	69275	547510	4590	15	1.5	2.00	3X 5	9	18	36	4	1	3	5.8		
A 1186	£916D	547610	4880	15	1.0	1.00	1X 5	5	24	49	4	1	1	5.8		
<u>4 1197</u>	69201	547634	4760	15	1.5	3,00	2X_1.0	11	24	162	4		1	5.8	·····	
I 2000	71050	54.5618	5950	5	4.0	5.00	24X 3.C	8	19	33	2	1	1	5.8	,	
I 2001	71019	546619	6300	7	4.0	5.00	18X 2.0	11	38	46	2	1	1	5.8		
I 2002 I 2003	71005	545634	<u>6400</u>	<u>7-8</u>	4.0	2.00	24X 7.0 24X 2.0	<u>13</u> 8	<u>19</u> 34	<u>53</u> 38	2 2	1	1	<u>5.8</u> 5.8	·····	· · ·
I 2003 I 2004	71004 71018	546623 546734	6400	8 6-7	4.0 4.0	2.00 2.00	24X 2.0 24X 1.0	8	29	29	2	1	1	5.8		
I 2004	71018	546732	6200	5-6	4.0	2.00	30X 2.0_	11	29	35	ź	,	1	5.0		
I 2005	71036	546708	5690	15	4.0	5.00	36X 1.C	26	29	15	2	1	1	5.8		
I 2007	71107	546712	5710	15	4.0	5.00	12X 2.0	8	34	15	2	2	1	5.8		1
I 2008	71128	546700	5550	15	4.0	10.00	48X 6.0	8	2.9	53	2	ī	i	5_8		•
I 2009	71151	546698	5460	15	4.0	10.00	48X 5.0	29	38	66	2	1	1	5.8	,	
I 2010	71180	546668	5380	15	6.0	8.00	36X 3.0	11	19	2.8	2	1	1	5.8		₽
						•										A16

Ē.

ノミ

(MAN	SAMPA	X CORD	Y CORD	ELEV	FORM	TEMP	FLOW	SIZE	CU	PB	ZN	1124	TYPE	TURB	PH			
	I	2011	71210	546659	5280	15	6.0	5.00	18X 3.0	8	30	20	2	1	1	5.8		:	1
	ī	2012	71240	546638	5125	15	6.0	.50	12X 1.0	11	34	45	2	1	1	5.8			
	Ĩ	2013	71286	546327	5300	3	5.0	5.00	12X 2.0	20	24	2.8	2	1	1	5.8			
1	I	2014	71278	546332	5500	3	5.0	5.00	12X 2.0	13	29	25		<u> </u>	1	5.8			
(I	2015	71262	546331	5650	3	4.0	2.00	24X 1.0	. 12	57	46	2	i	1	5.8			·)
	I	2016	71248	546323	5900	. 3	4.0	2.00	12X 1.C	13	19	17	2	1	1	5.8			:
	I	2017	71242	546332	5950	3	4.0	2.00	<u>6X 5</u>	8	34	17		<u>l</u>	1	5.8			
	I	2018	71228	546338	6250	4	4.0	2.00	12X 1.0	. 15	29	45	, 2 .	I.	1	5.8		· · ·	1
i	I	2019	71221	546291	6200	4-5	7.0	1.00 N	12X 5 3X 5	6 52	23 14	37	2	2	1	5.8 5.8	***		•
	<u> </u>	2020	71223	<u>546289</u> 546276	<u>0003</u> 6000	5	<u> </u>	2.00	12X 2.0	11	14	86	2	1	1	5.8	· · · · · · · · · · · · · · · · · · ·		
	I	2021	71210	546276	6000	5	5.0	2.00	18x 2.0	11	29	61	2	2	1	5.8			:
	Ī	2023	71226	546252	5750	4	5.0	2.00	19X 2.0	3	24	46	2	2	1	5.8	•		
		2024	71215	545267	5800	5	5.0	2.00	12X 2.C	20	29	45	?	2	1	5.8			4
	Ī	2025	71244	546246	5450	4	5.0	10.00	48X 2.0	. 3	14	35	2	ī	. 1	5.8			
	ī	2026	71257	546237	5250	3- 4	5.0	5.00	24X 2.0	8	14	5.3	?	1		5.5			
1	I	2027	71 920	545510	5060	5	6.0	1.00	12X 1.0	20	190	S7	S	1	1	5.8	• • • • •	• • •	
:	Ĩ	2028	71917	545578	5200	5	6.0	1.00	24X.1.0	11	9	23	.2	1	1	5.8			:
	I	2029	71930	545563	5300	3-5	3.0	1.00	4X 5	6.8	230	80	2	1	1				
	I	2030	71920	545560	5300	3	3.0	4.00	24X 1.0	13	2.4	48	2	1	1	5°. 8			1
	I	2031	71911	545543	5500	-3	4.0	1.00	6X, 5	8	ŝ	23	Z	2	1 1	5.8			•
	I	2040	71985	5454-20	<u>5550</u>	3	7.0	N	NN	19	26	105	<u> </u>	?	1	_5.8.	+ s'a		
	Ţ	2041	71490	545990	5210	3	8 . C	10.00	24× 4•0	10	19	53	2	1	1	5.8			1
	1	2042	71477	546010	548C	3	6.0	15.00	18X 1.0	10	12	27	2	1	1	5.6			
	I	2043	71452	546021	5600	3- 4	<u>6.0</u>	10.00	24X 6.0		12	94_	2						
	1	2044	71753	545278	5300	5	3.0	50.00	72X 6.0	5	12	48	2 :	1	1	5.8			· · · · ·
	I	2045	71727	545250	5490	5	3.0	175.00	216X30.0	4	19	23	2	1	1	5.8			
ĺ	<u> </u>	2146	71702	545231	5600	<u> </u>	<u> </u>	150.00	<u>120X 4.0</u> 12X 5	<u>6</u>	<u> </u>	<u>67</u> 12	2	2	<u>k</u>	3×8- 5.8			
	i T	2047	71696 71690	545193 545170	5800 5850	5 5	3.0	.50	8X 5	4	26	15	ź	2	1	5.6			
	1	2048 2049	71690	545170	5900	5	3.0	75.00	96X 6.0	5	12	43	.2	i	1	5.9			j
		2050	71655	545107	6210	5	3.0	50.00	72 % 7.0		31	51	2	1	1	5.9			
	Ť	2051	71633	545072	6310	5	3.0	10.00	24X 2.0	2	19	109	2	2.	· 1	5.8			,
	ī	2052	71518	545074	6300	5	3.0	N	N	-4	31	28	2	1	1		* *'*		
- 1	1	2053	71603	545064	6350	5	3.0	50.00	60x 3.0	5	31	24	2	1	1	5.8			
• F	Ī	2054	71632	545093	6310	5	3.0	.50	24X 5	11	12	107	2	2	1	5 - 8			•
	I	2055	71260	545850	.56.90	5	5.0	2.00	12X 1.0	4	19		2	1	1	5.8_			· · ·
	I	2056	71247	545870	5950	. 5	4.0	10.00	36 X 🖓 5	8	19	15	2	1	1	5.8			
	Ĩ	2057	71230	545390	6300	6	4 . Ņ	10.00	30X 1.0	6	12	6	2	1	1	5.8			
1	<u> </u>	2058	71232	545977	6550	5	6.0	.50	<u> </u>	5	6	12	2	2	1	5.8			
	I	2059	71199	545380	7150	7	9.0	.50	12X 5	8	12	87	2 2	2	1	5.9			
	I	2060	71110	545914	698.0		1.0	30.00	36X 8.0 60X 5.0	8	12	51	2	4	1	5.8			-
		2061	71124	<u>545936</u> 545980	6800 6300		<u> </u>	50.00 5.00	1FX 2+0	O4	49 ,6		2	<u>1</u>	1	5.8			
	Ī	2062	71141 71156	546629	6100	5	3.0	5.00	12x 1.5	5	12	33	ź	ż	i	5.8	· .		
	I	2063 2064	71156	546060	5900	5	4.0	2.00	6 X 5		6	5		1	ī	5.5			
		2065	71156	546074	5890	5	4.0	5.00	12X 5	6	12	6	2	2	1	5.8			
•	I	2065	71168	546092	5700	. 5	4.0	20.00	24% 4.0	8	12	12	ź	1	ī	5.8			•
	Ť	2070	70954	546417	5450	3	4.0	10.00	12X 1.0	8	11	94	2	i		5.8			
-	i	2071	70921	546422	5750	4	4.0	10.00	18X 1.C	4	18	12	2	1	1	5.8	· · · ·		
5	·I	2072	70089	546423	6110	4- 5		15.00	12X 2.0	-7	18	74	2	1	1	5.8			
1	.I	2073	700 90	546419	5950	4-5	4.0	10.00	.2X 5	3		45	. 2	1	1	5.8			
	I	2674	70972	546411	6460		4.0	10.001	19X 51	. 7	30	51	2	1	1 1	5.8			
1	I	2075	70859	546412	6700	5	3.0	1.00	3X 5	7	11	37	2	1	1	5.5		4	
्र	·																	······································	-
-	1										•	:					· · · · ·		

1.1.1

							•				10					
MAN SAMP#	X CORD	Y CORD	ELEV	FORM	TEMP	FLOW	SIZE	CU	P 9	ZN	ACIC	TYPE	TURB	РН		· · · · · · · · · · · · · · · · · · ·
I 2076	71098	546399	5580	3	3.0	100.00	48X 3.0	10	24	48	2	1	1	5.8		
I 2077	71170	546322	6200	3	2.0	1.00	24X 5	. 8	24	38	2	1	1	5.8		
I 2078	71152	546345	5900	3	2.0	100	6X 5	5	19	6	Z	- 1	.1	5.8		
I 2079	71209	546384	6100	2	55	1.00	<u>2X 5</u>	5	19	37	2	1	1	5.8		
I 2080	71219	546395	6100	1	1.0	.50.	1X 5	6	19.	20	2	1	1	5.8		
I 2081 I 2082	71196	546402	5800	1	3.0	10.00	12X 1.5	8	14	27	2	1	1	5.8	1	· · · · · · · · · · · · · · · · · · ·
I 2082 I 2083	71173	<u>546409</u> 546372	56CD 5700	1 2	<u> </u>	<u>15.00</u> 5.00	<u>12X 1.0</u> 13X 1.0	<u>5</u> 8	<u> </u>	<u>48</u> 19	2	1	<u>1</u>	<u>5.8</u>		
I 2085	71145	545399	5550	1	2.0		12X 1.5	5	19	89	2	1	1	5.8		t 0
I 2085	71149	546431	5400	1	4.0	25.00	75X 2.C	ε	14	27	2	1 -	1	_5.8		· · ·
I 2005	71122	545424	5460	1	4.0	50.00	42X 3.0	5	9	39	2	1	1	5.8		
I 2087	71160	548456	5325	3	4.0	50.00	42X 3.C	6	. 14	37	2	1.	1	5.9		
<u>I 2038</u>	71192	546439	5250	15	4.0	100.00	60X 4.C	14	19	17_	2	1		<u></u>		
I 2089	71247	546516	5225	15	3.0	50.00	24X 3.0	6	19	47	2	1	1	5.8		
I 2090	71276	546562	5025	15	3.0	100.00	72X 4.0	8	19	62	2.	1	1	5.8		
I 2091	70912	546733	<u>6100</u>	8	3.0	1.00	<u>5 x 5</u> 2x 5	<u> </u>	14	27	2	<u>1</u>		5_8		
I 2092 I 2093	70900 70885	545742 546726	6200 5900	8 8	5.0 3.0	.50 5.00	2X 5 12X 1.5	4	14 14	25 15	2	2 1	. 1	5.8 5.8		
I 2094	70862	546748	5900	7	3.0	20.00	36X 2.0	4	9	35	2	1	1	5.8		
I 2095	70831	546739	5600	7	3.0	10.00	30 X 1.5	6	9	10	2	1	1	5.8	·····	
I 2096	70316	546744	5600	7	4.0	.25	1X 5	10	14	35	2	2	i	5.8		
I 2097	70798	546723	5450	8	3.0	50.00	60X 2.0	6	19	42	2	1	1	5.8		
I 2098	70860	545679	5700	8	3.0	2.00	12X 5	6	9	29	2	1	1	5.8		
I 2099	78813	546682	5490	8	3.0	5.00	12X 1.0	6	9	32	2	1	1	5.8		
<u>I 2100</u>	70734	546700	5400	8	3.0	36.00	35X 3.0	4	9	25	2	1		5.8		
I 2101	70758	546683	5270	8	3.0	20.00	36X 1.0	10	14	74	2	- 1	1	5.3		
I 2102 I 2103	70736	546678	5250	8	3.0	10.00	24X 1.5	3	ġ	32	2	1	1	5.8		
I 2103 I 2104	<u>70891</u> 70883	<u>546811</u> 546836	<u>6300</u> 6000	7	2.0	<u>.50</u> 5.00	<u> </u>	<u>3</u> 6	<u>19</u> 19	<u>43</u> 24	2	1	1	<u>5.8</u> 5.3		
I 2104	70874	546863	5750	6	3.0	10.00	12X 2.C	4	19	11	2	1	1	5.8		
I 2106	70944	545969	6100	6	3.0	-50	4X 5	3	9	35	2	î		5.8		•
I 2107.	70938	546899	5900	7	4.0	•50	87.5	4	9	30	2	1	1	5.8		
I 2108	70713	546917	5080	6	4.0	10.00	18X 1.C	6	14	21	2	ī	ĩ	5.8		
I 2109	79718	546880	5200	. 7	4.0	5.00	12X 2.0	5	14	19	2	1	1	5.8		
I 2110	70734	546390	5200	7	4.0	15.00	30X 2.0	. 8	. 9	25	2	1	. 1	5.8		
I 2111	70732	546875	5350	7	4.0	2.00	6X 1.0	4	9	30	2	2,	1	5.8		
<u>I 2112</u>	70758	546855	5500	7	4.0	2.00	12X 1.0	4	9	38			<u>l</u>	58		
I 2113 I 2114	68495	547283 547256	5090 5325	14	N N	10.00 20.00	24X 2.0 48X 2.0	3	9 14	28 23	3	1	1	5.8 5.8		
I 2114	69510 68539	547244	550 0	1	N N	15.00	18X 2.0	. उ र	14	23	3	1	1	5.8		
I 2115	58571	547213	5800	4	N	20.00			17	38	3	1	1	 5.8	;	· · · · · · · · · · · · · · · · · · ·
I 2117	68480	547188	6000	3	N	.50	3X 5	6	11	35	3	2.	i	5.8	•	
I 2118	63474	547137	5700	3	N	1.00	2X 5	4	11	24	3	1	1	5.8		
I 2119	68468	547126	5850	3	N	5.0.00	12X 3.C	9	N	8	3	1.	· 1	5.8		
I 2120	65456	547166	5490	3	N	50.00	60X 2.0	. 8	5	9	3	1	1	5.8		
<u>I 2121</u>	68427	547176	5190	3	<u>N</u>	50.00	48X 2.C	9	5	9				5.8		
I 2122	68871	547419	5053	15	6.0	5.00	12X 3.0	9	5	8	3	1	1	5.8		
I 2123 I 2124	68900 68907	547444 547480	5000 4990	15 15	7.C 7.D	5.00 2.00	24X 3.0 12X 5	8 8	5 N	15 94	3 3	1	1	5.8 5.8		
<u> </u>	65895	547512	4990	15	, 6.C	5.00	18X 2.0	13	N 5	74	3	1	1	5.8		
I 2125	58901	547565	4900	15	5.0	5.00	13X 1.C	10	5	75	3	1	1	5.8		
I 2127	68699	547610	4880	15	F.C	3.00	24X 2.0	. 8	11	64	3	1	ī	5.8	•	
I 2128	63921	547650	4730	15	6.0	.50	12X 1.0	9	5	42	3	1	1	5.8		
I 2129	68541	546379	5350	5	6.C	N	N	4	11	11	3	1	1	5.8	• **•	A 18
1 1 2123																

. C

MAN SAMPR X CORD Y CORD ELEV FORM TEMP FLOW SIZE CU PB ZN ACIC TYPE TURB PH 7.0 2X 5 24 5.8 68943 546390 5850 5 -13 9 1 ... I 2130 - 3 1 68943 596400 5750 5 7.0 .13 2 X 1.1 18 3 1 1 5.8 * *!* I 2131 - 5 -3 -I 2132 68941 546418 5500 5 9.0 2.00 12X 5 7 11 9 1 1 5.8 I 2133 69343 54.5586 5280 6.0 5.00 12X 1.5 11 5.8 8 3 3 I 2134 69358 545530 5380 4 X 17 2 3 2 1 5.8 Ŕ 5.0 2.00 5 3 I 2135 69373 545592 5600 8 4.0 1.00 12X 5 3 17 2 3 2 1 5.8 I 2136 69313 545475 6210 5.0 1.00 SX 1.0 4 11 5.8 2 5 2 5 1 2137 69377 545497 5600 8 7.0 1.00 12 X 2 - 3 2 1 5.8 3 X 5 24 20 3 2 2 5.8 545465 5650 5.0 • • 50 3 I 2138 69384 - 8 ах 5 9 10 69390 545455 5700 4.0 3.00 5 2 5.8 I 2139 8 2.00 5610 6% 1.0 7 11 3 2 1 5.8 545445 4.0 18 I 2140 69384 8 5.0 2.00 12X 5 3 5 Ν 2 1 5.8 69368 545425 5620 3 I 2141 8 545404 5 5.8 I 2142 69392 5690 8 9.0 2.00 12% ш 11 Ν 2 11 8 I 215C E8610 546746 4900 3 . 8.0 30.00 60X 3.0 5 3 1 1 5.8 I 2151 63590 546770 5100 7.0 25.00 36X 3.0 3 19 9 3 1 1 5.8 -4 68565 546778 5300 20.00 18X 3.0 11 T 2152 3 7.j 8 5.8 I 2153 68540 546795 5550 3- 4 6.0 20.00 24X 2.0 5 17 3 3 1 5.8 1 2154 68540 546812 5900 4 9.0 .50 4X 5 9 17 53 - 3 1 1 5 - 8 I 68524 546816 5900 6.0 20.00 24X 2.0 5..8 2155 9 11 8 23 5.8 I 2156 68505 64'00 4 7.0 15.00 12X 2.0 5 17 - 3 1 1 546841 17 24 1 5.8 I 2157 68830 546729 4750 - 3 8.0 5.00 12X 5 4 3 1 2458 70700 546993 4900 2.0 5.00 18X 2.0 24 11 5. B T 15 70680 547010 4800 2.0 2.00 12x 2.0 24 10 - 7 1 1 5.8 I 2159 15 7 I 2160 δX 5 5 11 16 3 1 5.8 70705 547250 4610 15 3.0 .50 1 545258 6000 9-10 3.0 25.00 36X 4.0 11 140 5.8 I 2161 59635 3 5 1 5.8 545299 5900 3.0 20.00 30X 3.0 0 9 3 1 I 2162 69860 9 45.00 35X 6.0 5 11 47 3 1 1 5.8 I 2163 69669 545342 5700 9 2..0 45:00 72X 3.0 47 5.8 545350 5400 9 2.0 11 I 2164 69692 9 3.0 N 5 30 12 3 3 1 5.8 I 2165 69603 545380 5870 N 545400 5800 9 2.0 10.00 12X 1.0 a 24 38 3 1 1 5.8 I 216E 69615 545398 5800 9 3.0 .50 18X 5 43 7 5.8 I 2167 69622 5600 3.0 20.00 18X 2.0 5 29 28 3 1 1 5.8 545416 9 I 2168 69640 5500 9 3.0 10.00 12% 2.0 5 17 4 3 1 1 5.8 69659 545421 I 2169 30.00 2170 69662 545427 5400 9 2.0 18X 2.C 11 10 5.8 T I 2171 69690 545430 5220 9 3.0 5.00 6X 5 а 19 20 3 1 1 5.8 I 2172 6 817 8 0 546628 4610 5 3.0 1.00 24X 2.0 8 19 25 3 1, 1 5.8 I 2173 587.49 546612 5000 3.0 N N 24 59 5.8 ... I 2179 6 8:74 9 546627 5000 5 3.0 N N 5 29 25 3 1 1 5.8 4.414 10.00 36X 2.0 3 45 3 1 5.8 2175 68745 546590 5000 5 3.0 19 1 T 5465.92 5300 12X 5 64 T 2176 68728 4 3.0 5.00 19 5.8 5300 2.0 2.00 £X 5 4 14 10 3 1 5.8 I 2177 68723 546582 4 1 5.00 12X 2.0 19 33 3 5.8 69920 546015 4850 -11 5.0 4 1 1 I 2178 3.0 .50 12X 5 14 21 5.8 I 2179 69850 546024 5100 11 I 2160 69890 546045 4900 11 N 2.00 18X 1.0 -5 14 11 3 2 1 5.8 29 20 3 2 1 5.8 N 7 I 2181 69925 546080 4800 11 N N 1.00 2X 1.0 5.8. I 2182 E9815 546230 4900 10 2.0 11 4 12X 1.0 5 11 69 3 1 5.8 I 2183 69791 546210 5060 10 1.0 1.00 1 I 2184 69:749 546152 5350 11 1.5 N 36X 3.0 12 11 76 3 1 1 5.8 69195 546195 5400 2.0 36X.2.D 9 11 113 5.8 ... T 2185 5 N 3X 5 11 . 1 5.8 I 2185 E 9132 546170 5110 2.0 .13 ų 11 4 1 -4 30X 2.0 -1 2.0 10.00 10 11 10 4 5.8 I 21.97 69100 546190 5100 1 4 10.00 36X 3.0 5.8 69115 546215 5400 1.0 5 17 18 T 2188 5 5425 3.00 5X 1.0 3 14 4 1 5.8 T 2139 69106 546221 5 1.0 5 1 ≥ 2.0 5.00 8X 1.0 7 17 41 -4 1 1 5.8 I 2190 69080 546191 5050 -4

.

. •

		,									•			· ·		
MAN SAMPA	X CORD	Y CORD	ELEV	FORM	TEMP	FLOW	SIZE	CU	P 5	ZN	ACID	TYPE	TURB	РН		· · · ·
				-				-					· ·			
I 2191	69080	546222	5200	5	2.0	45.00	72X 5.0	3	11	8	4	1	1	5.8		
I 2192	69099	546240	5500	5	2.0	45.00	3CX 3.0	. 5	11 .	26	4	1	1	5.8		
I 2193	69180	546239	6000	5 5	N	20.00	30X 5 36X 5	8	11	103	4	1	1	5.8		
$\begin{array}{c c} I & 2194 \\ \hline I & 2195 \end{array}$	69165	54F260 546270	<u>6300</u> 6350	5	<u>1.0</u> N	.13	<u>36X 5</u> 48X 5	<u> </u>	<u>11</u> 5	<u>31_</u> 16	4	1	1	5 <u>.8</u> 5.8	* *' *	
I 2195	69156 69142	546277	5250	5	1.0	10.00	36X 5	8	11	50	4	1	1	5.8		
I 2197	69132	546290	6450	5	2.0	15.00	12X 1.0	8	11	83	- -	1	1	5.8		· · · ·
I 2198	69180	546301	6400	5	2.0	15.00	12X 1.0	4	11	51	4 .	1	1	5.8	an ang ang ang an ang ang ang ang ang an	
I 2199	69099	546307	6250	5	2.0	2.00	12X 5	5	11	63	4	1	ī	5.8	· · ·	:
I 2200	63720	546462	9600	â	1.0	15.00	18X 1.0	4	17	42	a	i	i	5.8		
1 2201	69760	546476	4950	8	5	50.00	72X 1.0	8	11	31	4	1	1	5.8		
I 2252	69508	546475	5100	8	1.0	40.00	36X 6.0	7	17	23	4	1	1	5.8		
I 2703	69835	546489	5275	7	1.0	40.00	4.8X 4.0	3	17	23	4	1	1	5.3		· .
I 2204	69870	546503	5490	6	1.0	25.00	3F.X 2.0	4	11	15	4	1	1	5.8	•	
I 2205	69905	546503	5700	7	1.0	-13	36X 5	11	17	41	4	1.	1	5.8		
I 2206	69937	546497	6.00.0	8	1.0	1.00_	12X 1.0	3	17	20	4	1	1	_5.8		
I 2207	69935	546480	5900	8	1.0	1.00	12X 1.0	. 7	24	51	4	1	1	5.8		
8 JI 2208	69970	546470	6400	9	1.0	• 50	3X 5	4	24	38	4	1	1	5.8		
I 2209	68512	546630	4990	22	3.0	1.00	<u>3X 5</u>	4	24	14	4	1	1	5.8		· · · · · · · · · · · · · · · · · · ·
I 2210	68489	546551	5090	1	2.0	15.00	60X 1.0	4	24	20	4	1	1	5.8		
I 2211	69491	546541	5100	1	5	10.00	24X 3.0	7	17	23	4	1	1	5.3		
I 2212	68502	546530	5300	<u> </u>	1.5	<u>N</u>	<u> N </u>	2	17	32	4	2	<u>1</u>	5.8	* *'*	
I 2213	68500	546510	5350	2	5	45.00	96X 5	4	17	5		1	1	5.8		
I 2214	68601	546508	5400	2	1.0	N	N	2	30	9	4	2	1	5.8	* * *	
I 2215	68599	546408	5400	2	3.0	1.00	<u>3X 5</u>	<u>z</u>	24	19		<u>i</u>				
I 2215	69486	546478	5550	. 2	1.0	15.00	24× 3.0	7	24	31	4	1	1	5.8		
I 2217 I 2218	68490 68509	546442 546430	5890 5990	2 2	1.0 1.0	10.30 15.00	24X 3.0	10	11	51 10	4	1	1	5.8 5.8		
I 2210	68462	546491	5400	1	1.5		<u>36X 2.0</u> 72X 2.0	10	17	39	<u>9</u> 4	1	1			
I 2220	68461	546509	5400	1	3.0	N	N 2.0	7	11	8	4	ž	2	5.8		
I 2221	68477	546518	5725	î	2.0	45.00	36X 1.D	9	17	57	4	ĩ	1	5.8		
I 2222	68478	546510	5190	1	2.0	20.00	24X 1.0	38	17	59	4	1	1	5.8		
I 2023	63477	546560	5190	ī	3.0	25.00	35× 2.0	- 4	30	5	4	- ī	ī	5.8		
I 2224	68446	546560	5550	2	3.0	10.00	36X J.D	2	30	60	ų	1	-1	5.8		
I 2225	68406	546561	5830	2	4.0	10.00	24X 1.5	4	11	51	4	1 .	1	5.8	,	
I 2226	68361	546560	6200	2	3.0	5.00	24X 2.D	7	24	41	4	1	1	5.8		
I 2227	70530	545430	5190	9	2.0	75.00	72X 2.0	7	24	20	4		1	5.8		· · · · · · · · · · · · · · · · · · ·
I 2228	70615	545453	5300	· 8	1.0	75.00	48X 4.0	3	36	21	4	2	ì	5.8		
I 2229	70622	545460	5300	- 8	4.0	.13	4X 5	. 7	36	21	4	2	1	5.8		
I 2530	70639	545478	5350	6	2.5	50.00	49X 4.0	7	17	15	4	1	1.	5.8		
I 2231	70662	545490	5425	8	2.5	40.00	96X 6.0	. 7	24	42	4	1	1	5.8	,	
I 2232	76671	545503	5500	8	2.5	50.00	4EX 2.0	3	. 24	17	4	1	1	5.8		
I 2?33	70661	545529	5600	9	2.0	50.00	36X 3.0	4	17	38	4		1	5.8		
I 2235	70665	545570	5800	9	2.0	35.00	. 43X 1.0	3	24	31	4	1	1	5.8	· · · · · ·	
I 2736	70666	545590	5990	. 9	2.0	20.00	30X 2.0	. 4	36	17	4	1	1	5.8	,	
<u>I 2237</u>	70689	545498	5500	<u>8</u>	2.0	50.00	48X 3.0	<u>11</u> 7	30	<u>111</u> 85	<u>4</u> 4.		<u>1</u>	5.8		
I 2238 I 2239	70714 70750	545506 545518	5550 5675	_ В В	2.0	40.00 40.00	36X 3.0	14	24 24	50	4. 11	1	1	5.8 5.8		
I 2239 I 2240	707.80	545545	5800	8	2.0	30.00	35X 2.0	14	11	43	- u	1	1	5.8		
I 2240	70790	545533	6003	8	2.0	<u> </u>	<u> </u>	9	11	17	4	2	1	5.8		
I 2242	70800	545560	5900	. 8	1.0	20.00	24X 2.0	13	24	50	4	1	ī	5.8		
I 2243	70801	545589	60033	. 8	1.0	5.00	12X 1.0	13	24	9	4	1	1	5.8		
I 2244	70819	545533	6100	8	1.0	5.00	12X 1.0	9	17	15	4	1	1	5.8		
I 2245	70004	546020		11	2.0	25.00	30X 2.0	13	17	54	4	1	1	5.8		A
											· · · ·	-	-			5

Ľ

50.LL

(MAN	SAMP #	X CORD	Y CORD	ELEV	FORM	TEMP	FLOW	SIZE	CU.	P8	ZN	ACID	TYPE	TURB	PH	· · ·	<u>.</u>	
	I	2246	70030	546031	5100	11	2.0	50.00	36X 1.0	10	17 -	59	· 4	1	1	5.8			
	Ľ	2247	70049	546031	5300	12	3.0	5.00	6X 5	12	17	5,4	4	2	1	5.8			. [
	I	2248	70045	546041	5310	12	3.5	.13	3X 5	10	24	43	4	2	1	5.8			ł
્	I	2249	70050	546050	5310	12	3.0	N	N	9	24	12	4	2	1	5.8	8.8'8	·	
Ì	I.	2250	76659	546050	5300	12	2.5	50.00	. 24X 1.5	5	17	10	4	1	1	5.8			· · ·)
	I	2251	70066	546060	5360	12	3.0	•50	3X 1.0	- 8	24	18	4	Z	1	5 - 8			
	I	2252	70072	546070	5450	12	3.0	5.00	3X 1.5	4	17	23	4	2	1	5.8			
- 1	I	2253	700 82	546077	5500	12	2.0	2.00	12X 1.0	2	17	8	4	1	1	5.8			
	I	2254	70030	546072	5300	11	2.0	5.00	12X 1.0	2	17	37	4	1	1	5.8		•	
L	I	2255	70005	546055	5050	11	2.0	5.00	12X 1.0	11	30	62	4	1	1	5.8		<u> </u>	
1	I	2256	69281	547125	4500	15	1:•5	10.00	18X 1.0	4	11	19	4	1	1	5.8			į
	I	2257	69270	547120	4600	15	3.0	• C G	2X 5	6	11	15	4	2	2	5.8			1
	I	2258	69240	547102	4600	15	2.0	15.00	48X 3.0	5	11	38	4	<u> </u>		5.8			
	I	2259	€9235	547090	4625	15	3.5	2.00	4X 5	. 5	18	20	4	2	1	5.8			-
	I	2260	69213	547059	4700	15	2.0	10.00	48X 6.0	4	5	34	4	1	1	5.8			1
L	<u> </u>	2261	69210	547059	4710	15	1.5	1.00	<u>2X 5</u>	<u>_</u>		10				5.8			
:1	I	2262	69179	547049	4800	15	1.0	20.00	36X 2.0	3	11	11	4	1	1	5.8.			
	I	2263	69142	547022	4900	15	1.0	15.00	30X 2.0	4	11	18	4	1	1	5.8			1
1.	I	2254	69112	547008	5025	14	2.0	20.00	36X 2.5	5	. 11	23	4	1		5.8			
	I	2265	69284	546985	5180	14	5	26.00	24X 1.0	4	11	10	4	1	1	5.8			
	I	2266	69045	546940	5700	3	1.0	30.00	48X 4.0	5	5	25	4.	1	. 1	5.8			
-	<u> </u>	2767	69040	546867	6020	<u> </u>	5	20.00	36X 2.0	4		?	<u>4</u>	<u>_</u>	k			·····	
· ·	· I	2263	69025	546310	6280	5	5	N	N N	6	18	21 33	4	3 1	1 .	5.8 5.8			
- 1	I	2269	69319	546964	4590	15	2.0	5.00	12% 1.0	5	18	10	4	.1	1	5.8			1
- 1-	<u> </u>	2270	69282	546952	4725	15	2.0	5.00	12× 1.0	4	11		- 4	1		5.8			
	I.	2271	69735	547292	4810	15	1.5	1.00	2X 5		11	18	4		1]
. 1	I	2272	69776	547275	4960	1,5	2.0	1.00	12X 1.0	3	11	8	4	1	1	5.8			1
	<u> </u>	2273	69799	547259	5090	15	2.0	50	<u> </u>	3	18	12	4						
1	Ĩ	2274	69685	547215	4825	15	1.0	3.00	12X 1.5	3	. 11	29	4	2	1	5.8			
	I	2275	69655	547194	4810	15	2.0	1.50	36X 1.0	3	11	25	4	2	1	5.8 5.8			
- I.	<u> </u>	2276	69632	547160	4790	15	1.5	1.00	<u>4X 5</u>	4	11	36							
1	I	2277	69280	547030	4590	15	2.0	20.00	35X 2.0	5.	11	25	4	1	1	5.8	1		į
- 1	Ĩ	2278	69240	547002	4700	15	2.0	20.00	36X 2.0	6 4	24 5	19	4	1	1	5.8			· .
-	<u> </u>	2279	59225	546986	4750	15	3.0	5.00	12X 1.0	4	11	<u>15</u> 31	4	<u>2</u> 1		<u>5.8</u> 5.8			
	I	2280	69201	546970	4890	15	2.0	10.00 5.00	24X 1-0	. 6	11	38	4	2	1	5.8			
	I I	2281	69190	546960 546916	4885	14 1	3.0 2.0	5.00	12X 1.0 12X 5	. 6	11	12	5	1 '	1	5.8			
-	<u> </u>	2282	<u>69169</u> 70010	546890	5300		5	50.00	96X 4.0		11	57	 4	1	1	5.8			
	Ĩ	2284	69986	546875	5390	7	5	30.00	72X 4.0	6	11	66	4.	ī	i	5.8			
	I		69950	546830	5450	é	5	30.00	48X 3.0	2	18	16	4	-1	• ·	5.8			
ł	<u></u>	2285	63915	546800	5590	5	5	20.00	36X 3.0	3	· 11	41	4	1		5.8	····		
	î	2287	69893	546785	5600	รี	Š	30.00	72X 4.0	ž	11	37	. 4	- ī	1	5.8			
	ī	2258	70012	546900	5300	8	5	25.00	48X 4.0	2	. 11	53	4	1	ī.	5.8		• •	
ł	— <u>i</u>	2289	69980	546905	5500	7	5	20.00	36X 2.0	2	. 5	15	4	1	1	5.8			
1	î	2290	69955	546910	5600	5	5	20.00	36X 2.0	2	11	55	ų	1	1 i	5.8			
- 1	ī	2291	69945	546933	5900	7	5	5.00	12× 1.0	- 3	11	105	4	-1	1	5.8			· .
ł	—î	2792	70360	547130	4900	15	5	.50	4X 5	4	11	31	4	2	1	5.8			
	ī	2293	70355	547070	4825	15	1.5	•06	8X 5	4	11	28	4	2	1	5.8			
	ī	22.94	70390	547106	4800	15	5	.13	6X 5	9	11	97	4	2	1	5.8	•		
- 1		2295	70363	547155	4850	15	2.0	.13	4X 5	6	18	ġ4	4	2	1	5.8			
	Ī	2296	70365	546950	4875	6	4.0	5.00	48X 1.5	5	11	65	4	1	1	5.8			:
	ī	2297	70350	546955	4900	7	4.5	2.00	36X.1.0	5	5	43	<u>4</u>	2	1	5.8			
ì	Ī	2298	70345	546945	5000	7	5.0	N	48X 3.0	14	18	53	4	1	1	5.8			
	Ī	2299	70338	546972	5050	7	3.5	3.00	12X 1.0	3	11	12	4	2	1	5.8		2	A 21
- ; }				-					· · ·			· · ·							<u> </u>
																			I

										•							
	•		PH	TURB	TYPE	ACIC	ZN	P8	CU	SIZE	FLOW	TEMP	FORM	ELEV	Y CORD	X CORD	AN SAMP#
						· •						_					
			5.8	1	2	4	59	11	9	36X 3.0	5.00	5	6	4950	546987	70350	1 2300
			5.8	1	1	4,	31	18	2	48X 3.0	16.00	5	15	4900	547499	58582	I 2361
			5 A	- 1	1	4	39	11	3	36X 1.5	10.00	5	15	4980	547520	68560	I 2302
		***	5.8	2	2	4	<u>119</u> 38	11	<u>4</u> 5	36X 3.0 18X 2.0	15.00 N	4.0	15	4700	547540	<u>68510</u> 70045	<u>I 2303</u> I 2304
		•••	5.8 5.8	1	1	2	125	190	58	48X12.0	2.00	2.5	3	5400	546433	70973	J 3000
			5.8	1	1	2	39	272	34	12X 2.0	- N	2.5	\ <u>3</u>	5700	546454	70946	J 3001
		* *)*	5.8	1	1	2	4.9	230	42	N	N	4.5	3	60033	546469	70943	J 3002
•	÷		5.8	ī	ĩ	- Z	69	159	78	65X12.0	N	3.0	3	5800	546462	70918	J 3003
			5.8	1	1	2	49	272	20	30X 4.0	1.50	3.0	3	6000	546481	70903	J_3004
			5.8	. 1	1	2	49	110	28	8X 5	1.00	4.0	3	6170	546499	70900	J 3005
•			5.8	1	1	2	39	116	22	24× 4.0	•50	4.0	.8	6 E O O	546662	70952	J 3006
				1			60	110	19	48X 6.0	2.00	5.0	77	6500	546641	70946	J 3007
			5.8	1	1	2	135	150	29	12X 2.0	2.00	5.0	S	6400	546628	70939	J 3008
			5.8	1	1	2	117	73	16	1.2X 5	2.00	5.0	7	E300	546591	70932	J 3009
	·····					. 2	25	273	16	<u>18x 2.5</u>	1.50	6.0	7	6250	546558	70981	J 3010
			5.8	1	2	2	115	184	11	5X 2.0	1.00	5.0	6	6000	546546	70989	J 3011 J 3012
			5.8	1	1	2	47	19	10	24X18.0 84X 5.0	3.CO 6.DO	5.0	6 3	5800	54653D	71000	
			5.8	1	1	22	<u>67</u> 12	<u>38</u> 34	<u> </u>	60X 6.0	6.00	<u> </u>	3	<u>5560</u> 5490	<u>546498</u> 546487	70390 70999	J 3013 J 3014
			5.8	1	1	2	20	14	4	N ST	•67	3.0	5	6600	546239	71169	J 3015
			5.8	1	2	2	32	34	21	N	• 33	3.0	5	6500	546248	71174	J 3015
			5.8	1	1.	2	35	29	19	18X 5.C	1.00	3.0	5	6300	545242	71179	J 3017
			5.8	î	1	2	45	38	ÊĔ	12X 2.0	1.50	6.0	5	6050	546240	71191	J 3018
			5.8	1	1	2	53	14	2	24X 3.0	3.00	4.0	5	5550	545231	71223	J 3019
			5.8	1	1	2	42	9	6	24X 3.0	3.00	5.0	4	5360	546202	71281	J 3020
			5.8	1	1	2	38	29	5	36X 3.0	3.00	5.5	4	5500	546187	71295	J 3021
			5.8	1	1	2	15	14	11	48X E.C	4.00	5.0	4-5	5800	546170	71329	J 3022
			5.8	1	1	2	9	19	5	24X 5.0	2.00	2.5	4	5960	546165	71345	J 3023
			5.8	1	1	2	18	29	3	18X 7.0	3.00	3.0	5	6200	546149	71330	J 3024
			_5_8	<u>1</u>		2	65	29		24X 5.0	2.00	3.0	5	6600	546134	71329	J 3025
			5.8	1	1	2	24	14	3	18X 6.0	2.00	3.0	5	6500	546138	71372	J 3026
			5.8	1	1	2	52	19	. 2	12X 2.0	1.00	3.0	5	6560	546128	71350	J 3027
			5.8	<u> </u>	1	2	71	31	9	12X 2.0	1.00	7.0	15	4950	545540	71970	J 3028
			5.8	1			6D 35	12		5X 3.0 12X 1.0	. 1.00	0.9 8.0	15 4	5010 5200	545560 545580	71957	J 3029 J 3030
		• • •	5.8 5.8	1	• 1	2	38	12	8 8	12X 6.0	2.00	8.0	7	5600	545550	71920 71845	J 3031
	··		5.8	1	1	2	48	12	<u>6</u>	18X 1.0	1.00	8.0		6050	545646	71830	J 3032
		***	5.8	1	1	2	81	17	4	N	N	9.0	3	6100	545678	71833	J 3033
			5.8	ī	ī	2	53	17	. 9	60X24.0	3.00	8.0	3	5500	545548	71660	J 3C34
			5.8	1	1	2	33	12	8	12X 5	.33	8.0	3	5700	545555	71850	J 3035
			5.8	1	1	2	43	24	6	18X 2.0	10.50	6.0	3	5310	545560	71579	J 303E
			5.8	1	1'	2	37	14	11	12X 6.0	3.00	7.0	4	5500	545365	71900	J 3037
•	· ·		5.8	1	1	2	72	11	5	18X 6.D	2.00	7.0	4-5	5800	545376	71850	J 3638
			5.8	1	1	2	32	14	6	18X 6.0	2.00	8.0	4	5900	545385	71981	J 3039
			<u>_5.e</u>		1	2	48	14	6	<u>4 X 5</u>		6.0	5	5950	545380	71872	J 3040
	· · · ·	•	5.8	1	1	2	78	24	11	18X 1.0	2.00	7.0	4	5550	545373	71905	J 3041
	· .		5.8	1	1	2	89 82	9	8	12X 5	2.00	7.0	4	5950	545397	71899	J 3042 J 3043
			5.8 5.8	1	1	2 2	<u>86</u> 43	<u> </u>	4 3	12X 5 N	3.00	5.0	5 4-5	<u>6100</u> 5900	<u>545370</u> 545354	71850	J 3043 J 3044
•			5.8 5.8	1	1	2	43	14	3	N 24X 3.0	2.00	5.0	4-5	5250	545354 545337	71855 71870	J 3044 J 3045
			5.8	÷	1	5	55	14	8	E0X15.0	3.00	7.0	4	5250	545353	71912	J 3045
		***	5.8	1	2	2	43	11	10	N	N	11.0	5	5600	545230	71612	J 3047
≥.	A22		5.8	1	1	2	21	11	5	66X18.0	50.00	3.5	5	5700	545299	71607	J 3048
	· N				-				-								-,

Ę.

÷.

ರುಭಗಗ

ł

ñ							•							
MAN SAMP# X CORD	Y CORD EL	EV FORM	TEMP	FLOW	SIZE	CU	PB	ZN	ACID	TYPE	TURB	PH		
J 3049 71600		850 5	9.0	20.00	12X 6.0	13	36	61	<u>2</u> .	2	1	5.8		
J 3050 71564		150 5	4.0	50.00	96X18.C	5	11	12	2	1	1	5.8	•	
J 3051 71580		050 5	2.0	N	N	4	11	29	2	2	1	5.8	*** .	••
J 3052 71491		100 5	2.0	45.00	5X 1.0	10	<u> </u>	<u>53</u> 27	<u></u> 2	2 1	i	_5.8 5.8		<u>.</u>
J 3053 71455 J 3054 71430		690 5 690 5	2.0 2.0	50.00 20.00	12X 2.0 36X12.0	8	17	51	2	1	1	5.8		
J 3055 71460		500 5	2.0	45.00	42X 6.0	6	11	56	2	2	· 1	5.8		
J 3056 71480		490 5	4.0	50.00	72X 5.0	3	11	10	2	1	1	5.8		Ban ben filmelet Kannen van spennen van de seren in de seren de seren de seren de seren de seren de seren de s
J 30,57 71679		410 5	4.0	50.00	12×12.0	5	11	35	2	ī	1	5.8		
J 3C58 71069		525 6	4.0	50.00	60X 3.0	9	11	19	~ 2	1	1	5.8		
J 3059 71058	546142 62	200 7	9.0	10.00	12X 5	4	11	14	2	2	- 1	5.8		, ,
J 3CED 71051	546131 E1	100 7	3.5	50.00	48X 6.0	5	11	12	2	1	1	5.8		
	546163 64	450 8	7.0	<u>N</u>	48X 1.0	5	11	20	2	1	1	5.8	***	
J 3062 71130		050 5	3.5	10.00	40X 3.C	8	17	19	2	1	1	5.8		
J 3063 71142		650 5	5.5	N	12X 1.0	4	11	8	2	1	1	5.8	***	•
J 3764 70996		875 8	2.0	50.00	72X 1.0	24	11	25	2		<u> </u>	<u>5.e</u>		
J 3065 70906		500 8	1.0	50.00	60X 1.0	9	24	27	-	1	1	5.6		
J 3056 70955		490 8 350 4	2.0	50.00 30.00	36X 6.0 36X 2.0	14 11	11	137 71	2 2	1	1	5.8 5.28		
J 3067 71459 J 3068 71480		350 4 800 5	2.0	16.00	12X 1.0	7	24	50	2	1	1	5.8		
J 3068 71480 J 3069 71473		800 5	2.0	5.00	12X 1.0	24	- 11	50 69	2	1	1	5.8		
J 3070 71478		950 : 5	2.0	3.00	36X 5.0	11	11	97	2	i	1	5.8		· · ·
J 3071 71478		<u>350 5</u>	<u> </u>	<u>3.00</u>	<u> </u>	11	24	29	2	1	1	5.3		
J 3072 71493		500 5	N	N	N ·	·· • •	11	64	2	i	i	5.8		
J 3073 71506		400 3	3.0	10.00	24X 4.0	6	N ·	30	2	1	1	5.8		. /
J 3074 71576		690 3	2.0	25.00	167 1.5	4	11	19	2	1	1	5.8		
J 3075 71590		680 4	1.5	7.00	12X 1.0	. 8	11	32	2	1	ī	5.8		
J 3076 71585		790 3	2.0	5.00	17X 2.0	9	11	35	2	1	1	.5.8		· · · · · · · · · · · · · · · · · · ·
J 30,77 71591		700 3	1.0	5.00	18X 6.0	21	11	33	2	1	1	5.8		
J 3078 71593		700 1 -	1.0	3.00	6X 2.0	8	17	32	2	1	1	5.8	•	
J 3079 71605	and an an a fact day with first succession and any succession of	525 5	1.5	20.00	6CX 1.0	6	17	25			<u>1</u>	5.8	· · · · · · · · · · · · · · · · · · ·	
J 3080 71591		490 5	4.0	5.00	42X 4.0	. 5	11	30	2	1	1	5.8		
J 3081 71560		160 15	4.0	5.00	36X 6.0	8	11	12	2	1	1	5.8		
J 3082 70828		<u>ECO 3</u>	2.0	50.00	48X 5.0	6		60	2			5.8		
J 3093 70742		700 4	2.5	50.00	50X 6.0	• 4	N	8	2	1	.1	5.8		
J.3084 70753 J.3085 70738		325 8	3.0 3.0	50.00 10.00	96X G.D 36X 4.D	. 6 5	11	10 21	2	1,	1	5.8 5.8		
	and designed of the state of th	750 8 650 8	3.0	5.00	12X 2.0	6	<u>11</u> N	10	2	2	1	5.8		······································
J 3086 70726 J 3087 70.540		650 8 200 9	3.0	5.00	48x 2.0	9	.11	56	2	1	1.	5.6		
J 3087 70578		000 7	2.5	25.00	12× 2.0	4	11	10	ž	î	1	5.8		·
J 3089 70542		100 7	3.0	1.00	12X 1.5	9	24	10	2	1	1	5.8		
J 3090 68600		000 3-4		50.00	72X 3.0	9	24	27	3	1	.1	5.8		
J 3091 68590 -	547088 6	110 4	2.0	1.00	12X 1.0	15	11	23	3	2	<u> </u>	5.8_		· · · · · · · · · · · · · · · · · · ·
J 3092 68588	547070 6	150 5	2.0	5.00	18X 3.0	5	17	27	3	2	. 1 ·	5 • 8		,
J 3093 63570		200 5	2.0	50.00	49X 6.0	4	24	20	3	1	1	5.8		
J 3094 68555		<u>sna 5</u>	4.0	50.00	5CX12.0	2	24					8		
J 30.95 68541		£10 5	. 4.0	1.00	18X 2.0	2	11.	19	3	2	1	5.8		•
J 3096 69533		600 5 CND 5	5.0	10.00	48X 6.0	2	11	14	3	1 7	1	5.8		
J 3097 58530 J 3098 68505	Contraction of the second seco	630 <u>5</u> COO 5	<u> </u>	10.00 15.00	12X 6.0 24X12.0	<u> </u>	<u> </u>	20	3	2	1	5.8		······································
		850 5	1.5	5.00	12X 1.0	<u>د</u> 5	11	10	3	ź	1	5.8		
J 3099 68502 J 3100 68508		775 5	2.5	10.00	18X 6.C	. 3	17	33	3	ĩ	1	5.8		· · · ·
J 3101 68313		500 3	4.5	50.00	72X 6.0	7		8	3	<u> </u>	1	5.8		
		100 3	6.5	1.00	6X 1.0	10	11	. 28	ž	2	· .	5.6		A 23
J 3102 63340	54760.0 5	1.00 5												

_

						,										
MAN SAMP#	X CORD	Y CORD	ELEV	FORM	TEMP	FLOW	S I ZE	CU	PB	ZN	ACID	TYPE	TURB	PH		
J 3103	63350	546992	6000	3	4.5	50.00	84X 6.0	8	5	2	3	1	i	5.8		
J 3104	6 8 3 7 0	546995	E 4 0 0	4	4.5	25.00	36X 1.0	8	11	. 23	3.	1	1	5.8		
J 3105	65390	546994	6800	5	4.0	25.00	24X 3.0	7	N	5	3	ī	ī	5.8		
J 3106	69411	546999	7300	5	5.0	25.00	35X 6.D	7	11	8	3	1	_1	5.8		
J 3107	68475	547033	6500	. 4	3.0	5.00	. 12X 1+0	9	11	8	3	1	1	5.8		
J 3108	68378	547048	6400	. 4	3.0	5.00	36X 1.D	7	11	N	3	2	1	5 - 8		
J 3109	68393	547065	6000	4	4.5	5.00	12x 1.0	8	5	33		1	i	5.8		
J 3110	68375	547090	5600	3	4.0	10.00	18X 2.D	7	N	И	3	1	1	5.8		:
J 3111 J 3112	68339	547125	6250	. <u>5</u>	3.0	25.00	12X 3.0	.5	11	3	3	1	1	5.8		
J 3112 J 3113	69213 69201	546419	<u>6725</u> 5500	5	4.5	25.00	18% 2.0 6% 1.0	<u>11</u> 4	<u> </u>	<u>15</u> 10	<u>3</u> 3	1	1	<u>5.8</u> 5.8	· · · · · · ·	
J 3114	59269	546430-	5050	5 4	4.5	5.00	12X 2.0	4	17	28	3	1	1	5.8 5.8		
J 3115	69135	545630	5680	6	8.5	50.00	96X 8.0	7	17	18	3	1	1	5.8		
J 3116	E 9170	545680	5600	7	5.0	2.00	12X 2.0	9	24	37	3	2	<u>1</u>	5.8		
J 3117	69239	545751	5360	6	8.0	50.00	72×12.0	5	11	25	3	1	i	5.8		
J 3118	69290	545800	5050	5	6.0	50.00	132 X 18.0	5	17	10	3	1	1	_5.6		
J 3123	71106	546947	5400	15	<u></u>	15.00	36X 1+0	7	11	16	-3	1	1			· · · · · · · · · · · · · · · · · · ·
J 3124	71133	547057	4920	15	1.0	1.00	24X 2.0	. 9	29	18	3	1	i	5.8		
J 3125	71246	547068	4880	15	3.0	2.00	72X 1.0	7	29	25	3	1	i	5.8		
J 3126	71278	547072	4850	15	1.0	1.00	12X 1.C	7	34	15	3	1	1	5.8		
J 3127	71220	546983	5000	15	N	i.00	24X 3.0	12	19	11	3	1	1	5.8		
J 3128	71164	546917	5280	15	1.0	1.00	12X 2.0	4	14	<u> </u>	3	1	1	5.8		
J 3129 -	69645	545625	6680	. 9	N	N	N	5	14	51	.3	3.	1 -	5.8		· .
J 3130	69696	545620	6500	9	1.0	25.00	60X 6.D	4	9	41	. 3	1	1	5 🖬 8		-
J 3131	69700	545650	6580	9-10	1.0	10.00	36X 3.0	3	19	6		1	1	5.8		
J 3132	69717	545629	6350	9	1.5	.10	N	5	9	50	3	2	1	5.8		
J 3133	69740	545620	6000	9	5	10.00	84× 6.0	8	24	15	3	1	1	5.8		
J 3134	E9756	545598	5690	9	1.0	50.00	60X 3.0	7	9	12				5.8		·
J 3135	69770	545572	5400	- 8	1.0	50.00,	6CX 6.0	11	24	25	3	1	1	5.8		
J 3136	69780	545525	5100	8	1.5	10.00	24X 6.C	4	14	15	3	1	1	5.8		
J 3137	68931	546360	5000	.5	2.5	.10	12X 3.0	7	9			<u>l</u>	<u> </u>	5.8		
J 3138	69002	546363	5500	5	1.0	.50	2X 1.0	9	23	41	3	1	1	5-8		1
J 3139 J 3140	69040 69070	546375 546381	6100 6800	5	5 2.0	1.00	60X 3.0 1X 3.0	10	11 24	74 17	3 3	1	1	5.8		
J 3140	69069	546396	6980	5	3.5	.10	1X 5	8	$\frac{24}{11}$			1	<u>1</u>	<u>5.8</u> 5.8		
J 3142	69090	546333	6500	5	2.0	10.00	24X 3.0	8	24	21	3	î,	1	5.8		
J 3143	69071	546307	5920	· 5	1.0	1.00	12X 2.0	5.	24	8	3 .	1	Î	5.8		
J 3144	69015	546261	5000	4	1.0	1.00	24X 3.0	4	36	31	3	1	1	5.8		
J 3145	69889	545945	5150	11	2.0	25.00	6CX12.0	10	11	28	.3	1	1	5.8	•	
J 3146	69712	546305	5000	10	N	N	N	7_	11	15	3	1	3	5.8		
J 3147	69610	546430	4900	8	1.0	1.00	36X Z.O	3	17	10	3	2	1	5.8		
J 3148	69615	546449	4750	. 8	1.0	1.00	36 X 2.0	8	24	33	4	2	1	5.8		
J 3149	69270	546170	5850	5	2.0	3.00	5X 1.0	4	5	21	4	1	1	5.8		
J 3150	69265	546196	6500	5	2.0	5.00	6X 1.0	4	17	81	4 -	1	1	5.8		
J 3151	69221	546230	6350	5	2.0	5.00	6X 1.0	3	11	32	4	1	1	5.8		
J 3152	£9179	546182	4900	5	2.0	<u> </u>	12X 1.0	5	24	20	4	1	1	5.8		······
J 3153	69184	- 546180	5410	5	2.0	5.00	12X 1.0	3	11	_5	4	1	1	5.8		* -
J 3154	69175	546160	5260	5	2.0	5.00	12X 1.0	7	11	29	4	1	1	5.8		
J 3155	70250	545541	5100	11	2.0	<u>N</u>	24X 2.0	32	24	47	4	1		5.8		
J 3156	70232	545581	5260 4990	11	2.0	·N.	60X12.0	3	17	6 3	4	1	1	5.8 5.8	***	
J 3157 J 3158	70150 70151	545680 545700	5050	11 11	2.5 2.0	•10 N	12X 1.0 6X 1.0	7	11	· 23	4	2	,	5.8		
J 3158	70395	545460	5100	10	3.0	10.00	35X 6.0	15	17	87	4	1	1	5.8		
	70319	545430	5250	10	2.5	.10	12X 2.0	3	11	17	4	2	1	5.8		A2
J 3160						÷		-				•	-			

_

)

50322

	MAN	SAMPS	X CORD	Y CORD	FLEV	FORM	TEMP	FLOW	SIZE	CU	PB	ZN	ACIC	TYPE	TURB	РН	······
		•															
	J	3161	70330	545528	5400	11	3.0	.05	12X 1.0	. 5	5	5	4	2	1	5.8	
	J	3162	70329	54554D		11	3.0	-10	18X 2.C	5	11	11	4	2	1	5.8	· .
	J	3163	70328	545561	5910	11	3.0	:10	12X 1.0	4	11	43	4	2	1	5.8	:
	بر	3154	70345	545581	5920		3.0	50.00	24X 3.0	10	11	15	<u> </u>			5.8	
1	L J	3165	68668	547151	5820 5810	1	N 5	50.00 20	72X18.0 18X 2.0	11 14	.30 24	33 51	4	1 2	1	5.8 5.8	
	L L	3166 3167	68682 68709	54716C 547151	5710	1	2.0	1.00	24X 2.0	8	11	2	4	2.	ţ	5.8	
		3168	68781	547200	5200	1	2.0	50.00	60X 6.0	3	5	32	9.	1	1	5.8	
	Ĵ	3169	68859	547120	4660	15	2.0	50.00	72X 6.0	8	5	78	4	ī	ī	5.8	
	J	3170	71014	544960	6250	8	1.0	10.00	60X 3.0	4.	24	42	4	1	1	5.8	
	J	3171	71020	544978	6230	8	1.5	.10	30X 7.0	7	24	79	4	1	. 1	5.8	
·	J	3172	71024	544994	6290	8	2.5	÷50	18X 2.0	8	17	28	4	2	3.	5.8	· ·
	J	3173	71004	544978	6250	. 8	2.5	•33	24X 1.0	7	11	20	4	2	3	5.8	
	J	3174	70960	545037	6000	· 8	1.0	50.00	36 X 12 . D	9 -	17	46	4	1	1	5.8	
i	J	3175	70970	545051	5900	8	1.0	50.00	42X 5.0	11	11	24 31	·4	1 .	1	5.8 5.8	
1		3176	70932	545090	5700	<u>8</u> 8	1.5	50.00	<u>30% 7.0</u> 43X 5.0	<u> </u>	<u>11</u> 17	29	4	1	1	5.8	
	J	3177 3178	70892 70772	545130 545170	5450	8	1.0	50.00	43X 5.0	10	11	73	4	1 2	1	5.8.	and the second
	L J	3178	707.29	545201	5350	8	1.0	50.00	49X 8.0	10	17	76	4	1	1	5.8	
		3150	70040	545993	5050	12	2.0	50.00	96 X 12 . 0	9	17	33	4	1	1	5.8	
	J	3181	70078	545986	5200	12	2.0	50.00	144X30.0	11	24	2.9	4	1)	1.	5.8	
	J	3182	76125	545988	5450	13	1.0	50.00	96×24.0_	11	17	105	4	1	ī	5.8	- · ·
	J	3183	70108	545389	5400	13	2.0	25.00	60X 3.0		24	54	4	1	1	5.8	•
	Ĵ	3194	70101	545995	5300	12-13	2.5	. 50	2X 1.0	4	5 E	75	4	2	1	5.8	•
	J	31 85	70144	545980	5300	12	1.5	3.00	<u> </u>	9		20	4	2		5_8,	
	J	3186	70160	545972	5500	12	2.0	3.00	3X 5	10	36	20	4	2	1	5.8	· · ·
	J	31 37	70178	545959	5600	12	1.5	3.00	48X 5	9	24	24	4	1	1	5.8	· . ·
	J	3188	70210	545923	5700		1.0				24		4	1	1	. 5.8.	······································
	J	3139	70240	545398	5900		1.0	3.00	SOX 5	9	36	2.3	4	1.	1	5.8	
	J	3190	70264	545888	6300		1.0 N	2.00 2.50	48X 5 60X 6.C	2	11	10 31	4'	1	1	5.8 5.8	
	J	3191 3192	70290	545850 545825	6510 6350		<u> </u>	3.00	48X 5	7		16	4	1	1		
	J	3193	70150	545992	5550		1.0.		72X 6.0	12	17	29	4	î	i	5.8	
	Ĵ	3194 .	70160	545994	5610	12	1.5	.10	12X 2.0	- 4	3.5	9_	4	2	1	5.8	
,	J	31 95	70179	546007	5700		1.0	50.00	109×12.0	4	43	56	4	1	1	5.8	
	Ĵ	3195	702.12	546017	5950	12	1.0	.05	EX 2.0	4	30	2,3	4	2,	-1	5.8	
	J	3197	70228	546029	6000	12		50.00	36X 8.0			10		1	<u> </u>		
	J	3198	70245	546017	6190		1.0	•05	18X 6.0	3	11	15	4	2	1	5.8	
	J	3199	70266	546009	6300		1.5	•C5	.N 1.0	2	11	28	4	2	1	5.8	
	J	3200	70280	545008	6350	12	1.5	.05	EX 1.0	3	11	50				<u>5.8</u> 5.8	
	L	3201	70295	545998 545999	6500 6550		1.5 1.0	.50 .50	48X 3.0 24X 2.0	· 9 11	30. 24	27 74	4	2 2	1	5.8	1
	J	3202 3203	70318 70328	546004	6590	12	1.0	50.00	48X 3.0	7.	11	54	ц.	1	1	5.8	• · · · · · · · · · · · · · · · · · · ·
	<u> </u>	3204	70188	546028	5600	12	2.5	25.00	60X 4.0	16	24	42	4	1	1	5.8	and an a second while the second s
1	Ĵ	3205	69620	546942	5300	5	N	50.00	35X 7.0	2	18	80	4	1	1	5.8	•
	Ĵ	3206	69610	546921	5700	5	5	50.00	48X 5.0	2	18	69	4	1	<u> </u>	5.8	· · · · · · · · · · · · · · · · · · ·
	J	3207	69607	546886	5900	5	. N	30.00	30X 3.0	2	11	32	4	1	1	5.8	
	J	3208	69595	546905	6000	5	3.0	.10	12X 2.0	6	11	69	4	2	1	5.8	
		3209	69613	546965	5210	.5	1.0	50.00	49X1:2.0		11	66	4	<u> </u>		5.8	
•	J	3210	69592	547013	50.00	15	2.0	50.00	60X 8.0	2	11	28	4	1	1	5.8 5.8	
-	l j	3211	69540	547060	4800	15 5	2•5 5	50.00 1.50	36X 6.0 72X 8.0	3 8	5	87 129	4	1	.1	5.8 5.8	
- 1		3212 3213	<u>69635</u> 69650	546920 546905	<u>5450</u> 5500	5	5N	1.50	72X 8.0	9	11	94	4	1	1	5.8	
	J	3214	69650 69679	546888	5800	5	N	.75	18X 6.0	7	5	145	4	ī	1	5.8	
	1		0,000	5.0000	5000	5					-				·		A25
- '																	
	L																

Ē.

NAM SIMP COU PIC CU PIC								· ·										
J 2216 6970 94052 9500 5 N 1.20 60X 8.2 0 7 5 93 4. 1 5.8 J 3217 6970 94052 9500 5 N .23 27X 5 7 11 16 4 1 5.8 J 3218 6969 94030 5910 5 N .23 27X 5 7 11 16 4 1 5.8 J 3221 6973 94062 6710 5 N .25 27X 5 7 11 16 4 1 5.8 J 3221 6973 94062 6710 5 N .25 27X 5 7 1 1 25 4 1 5 5 1 5 100 J 3222 6973 9406 6225 5 N .22 27X 5 7 4 10 22 4 1 1 5.8 J 3222 6973 9406 6225 5 N .22 27X 5 7 4 10 22 4 1 1 5.8 J 3222 6973 9406 6227 640 0 10 -13 5X 5 4 10 22 4 2 1 5.8 J 3222 6973 9406 627 640 0 5 1 -0 -13 5X 5 4 10 22 4 2 1 5.8 J 3222 6973 9406 627 640 0 10 -12 7 10 5X 5 4 10 20 4 2 1 5.8 J 3222 6973 940 0 10 4.5 3.0 0 12 7 10 5 4 2 2 1 5.8 J 3227 6995 94627 4500 40 0 5 0 10 1.0 .10 172 0 5 5 2 2 2 1 5.8 J 3227 6995 94627 4500 40 0 10 5 0 10 1.0 .68 N -5 5 3 33 4 1 5 5 5 -2 1 5.8 J 3227 6995 94627 4500 4500 10 5 2.0 127 2.0 2 4 11 85 4 2 1 5.8 J 3227 6995 94627 4500 10 5 2.0 127 2.0 0 2 4 11 8 7 4 2 1 5.8 J 3227 6995 94627 4500 10 5 2.0 120 0.0 2 4 2 5 5 -2 5 1 25.8 J 3227 6995 94627 4500 4500 10 5 2.0 127 2.0 0 4 11 8 7 4 2 1 5.8 J 3227 6995 94627 4500 10 1 0 0.0 0 2.4 0 2 1 1 87 4 2 1 5.8 J 3227 1010 5 4706 500 1 5 2.6 12.0 0 12 2.0 2 4 2 5 5 -2 5 1 2.5 8 J 3237 70010 5 4706 500 1 5 2.6 12.0 0 2 4 2 5 5 -2 2 5 5 -2 5 -2 5 -2 5 -2 5	MAN SAMPE	X CORD	Y CORD	ELEV	FORM	TEMP	FLOW	SIZE	CU	PB	ZN	ACID	TYPE	TURB	РН			
J 2216 6970 94052 9500 5 N 1.20 60X 8.2 0 7 5 93 4. 1 5.8 J 3217 6970 94052 9500 5 N .23 27X 5 7 11 16 4 1 5.8 J 3218 6969 94030 5910 5 N .23 27X 5 7 11 16 4 1 5.8 J 3221 6973 94062 6710 5 N .25 27X 5 7 11 16 4 1 5.8 J 3221 6973 94062 6710 5 N .25 27X 5 7 1 1 25 4 1 5 5 1 5 100 J 3222 6973 9406 6225 5 N .22 27X 5 7 4 10 22 4 1 1 5.8 J 3222 6973 9406 6225 5 N .22 27X 5 7 4 10 22 4 1 1 5.8 J 3222 6973 9406 6227 640 0 10 -13 5X 5 4 10 22 4 2 1 5.8 J 3222 6973 9406 627 640 0 5 1 -0 -13 5X 5 4 10 22 4 2 1 5.8 J 3222 6973 9406 627 640 0 10 -12 7 10 5X 5 4 10 20 4 2 1 5.8 J 3222 6973 940 0 10 4.5 3.0 0 12 7 10 5 4 2 2 1 5.8 J 3227 6995 94627 4500 40 0 5 0 10 1.0 .10 172 0 5 5 2 2 2 1 5.8 J 3227 6995 94627 4500 40 0 10 5 0 10 1.0 .68 N -5 5 3 33 4 1 5 5 5 -2 1 5.8 J 3227 6995 94627 4500 4500 10 5 2.0 127 2.0 2 4 11 85 4 2 1 5.8 J 3227 6995 94627 4500 10 5 2.0 127 2.0 0 2 4 11 8 7 4 2 1 5.8 J 3227 6995 94627 4500 10 5 2.0 120 0.0 2 4 2 5 5 -2 5 1 25.8 J 3227 6995 94627 4500 4500 10 5 2.0 127 2.0 0 4 11 8 7 4 2 1 5.8 J 3227 6995 94627 4500 10 1 0 0.0 0 2.4 0 2 1 1 87 4 2 1 5.8 J 3227 1010 5 4706 500 1 5 2.6 12.0 0 12 2.0 2 4 2 5 5 -2 5 1 2.5 8 J 3237 70010 5 4706 500 1 5 2.6 12.0 0 2 4 2 5 5 -2 2 5 5 -2 5 -2 5 -2 5 -2 5	J 3715	69712	546915	6300	5	N	-38	48X17.0	9	19	89	4	1	1	5-8			
J 2117 69670 S4652 5950 5 N +25 24% 5 7 11 16 4 1 5.4 J 2126 6969 5464 5910 5 5 N +225 24% 5 7 11 11 16 4 1 5.4 J 2126 6969 5464 5910 5 5 N + 1.22 72% 5.0 5 113 7 4 1 2 5.6 J 3217 69715 54643 5910 5 N + 1.22 72% 5.0 5 113 7 4 1 2 5.6 J 3217 6973 54643 5610 6225 5 N + 2.25 22% 5.0 5 113 7 4 1 2 5.6 J 3227 6973 54643 5 6190 5 1.0 1.2 5 N + 2.5 2 4 5.0 4 11 28 4 1 1 5.8 J 3227 6973 54643 5 6190 10 2.5 N + 3.25 22% 5.0 4 11 28 4 1 1 5.8 J 3228 6975 54677 6450 400 10 2.5 N + 3.8 35% 5 4 1 12 0 4 2 2 5.8 J 3227 6973 546670 400 10 2.5 N + 3.8 35% 5 4 1 12 0 4 2 2 5.8 J 3227 6973 54670 400 10 2.5 N + 3.8 35% 5 4 1 12 0 4 2 2 5.8 J 3227 6973 54670 400 10 2.5 N + 3.8 35% 5 4 1 12 0 4 2 2 5.8 J 3227 6973 54670 400 10 5.5 C 1.0 117 2.0 5 1 5 5 8 2 1 5.8 J 3227 6978 54627 6450 10 - 1.0 1.0 12% 2.0 5 1 5 5 8 2 1 5.8 J 3227 6978 546270 4500 10 - 1.0 1.0 12% 2.0 5 1 5 5 8 2 1 5.8 J 3227 6978 546270 4500 10 - 1.0 0 1.0 2.8 N - 5 5 3.3 4 1 1 5.8 J 3228 70110 54706 500 7 5 30.00 72% 7.0 4 11 39 4 1 5.8 J 3237 7079 54706 500 7 5 30.00 72% 7.0 4 11 69 4 1 5.8 J 3237 7079 54706 500 7 5 2.6 0 100 2.4 2.0 2 3 10 64 4 2 1 5.8 J 3237 70790 54706 500 7 5 2.6 0 10 2.4 2.0 2 3 10 64 4 2 1 5.8 J 3237 70790 54706 500 7 5 2.6 0 10 2.4 2.0 2 11 23 4 1 5 8 J 3238 70790 54706 500 7 2 5 605 12 1.2 0 2 11 2 3 4 1 5 8 J 3238 70790 54706 500 7 2 5 6 500 7 2 1 1 2 3 0 4 11 5.8 J 3238 70790 54706 500 7 2 5 6 500 7 2 2.5 0 5 2 12 1.0 2 4 1 1 5.8 J 3238 70790 54706 500 15 7 4 2.0 12.0 2 4 1 1 2 3 4 1 5 8 J 3238 70790 547073 5050 15 7 4 5 0.0 16.0 12 4 1.0 4 11 6 3 4 2 1 5.8 J 3238 70790 547073 5050 15 7 4 5 0.0 16.0 12 4 1.0 4 11 6 3 4 2 1 5.8 J 3238 70733 5468 5200 7 2.5 6.0 16.0 12 6.0 2 4 2 1 1 2 3 4 1 5 8 J 3238 70733 5468 5200 7 2.5 6.0 0 10 7 4 2.0 11 23 4 1 1 5.8 J 3248 70713 5468 5200 7 1 2.5 0.0 15 7 1.2 0 4 11 3 3 4 1 1 5.8 J 3248 70738 54761 4800 15 1 5 0.0 0 10 7 4 2.0 11 23 4 1 1 5.8 J 3248 70738 54761 4800 15 1 5 0.0 0 10 7 4 2.0 11 23 0 4 1 1 5.8 J 3248 70738 54761 6800 7 1 0.0 0 50 42.0 0 48 1.0 4 11 3 4 1																		
J. 31:19 6 2712 5 % 6 33 5 330 S N 1.25 7 2X 8.0 S 1 37 4 1 2 J. 3220 6 3735 5 % 6 40 5100 5 105 4 1 5.6 J. 3221 6 3735 5 % 6 405 6 100 5 N 4.52 241 & K.0 2 5 1 5.6 J. 3223 6 5735 5 % 615 6 10 1.15 5 % 5 4 1 2.6 6 J. 3225 6 5873 5 % 626 100 1.2 3.100 1.16 × 6.0 7 1 5 4 2 1 5.6 J. 3227 6 5835 546255 6 900 10 1.6 1.10 2.20 5			546852	5850	5	N	.25	24X 5	7	11	16	4	1	1	5.8		•	
J 1220 69736 246940 610 5 N .50 60X 8.C 8 5 105 4 1 1 5.8 J 3721 68734 54626 610 5 N .22 24X 5.C 8 5 102 4 1 5.8 J 3222 68734 54626 610 5 1.0 .13 5X 5 4 18 20 4 2 1 5.8 J 3223 69735 546276 110 2.5 1.0 18 2.0 3 11 20 4 2 1 5.8 J 3223 69735 546276 10 4.5 19 0 1.0 2.5 1.0 18 2.0 3 11 20 4 2 2 5.8 J 3223 69735 546276 10 4.5 19 0 1.0 2.5 1.0 18 2.0 3 11 20 4 2 2 5.8 J 3223 69735 546270 4400 10 2 5 1.0 18 2.0 3 11 20 4 2 2 5.8 J 3223 69755 546270 4800 10 4.5 3.00 18 2.0 3 11 5 4 2 2 5.8 J 3227 69755 546270 4800 10 5.2 10 18 2.0 5 5 33 4 1 5.8 J 3228 70110 54748 5000 7 5 33.00 72 2.2 0 4 11 89 4 1 1 5.8 J 3227 70110 54748 5000 7 5 33.00 72 2.2 0 4 11 89 4 1 1 5.8 J 3237 70110 54748 5000 7 5 33.00 72 2.2 0 4 11 89 4 1 1 5.8 J 3331 7021 54706 515 2.0 70.00 24X 5.0 2 11 87 4 2 2 5.8 J 3331 7021 54706 515 2.0 70.00 24X 5.0 2 11 87 4 1 1 5.8 J 3331 70204 54706 515 2.0 70.00 72 2.2 0 4 11 87 4 1 1 5.8 J 3331 70204 54706 515 2.0 70.00 72 2.4 0.0 2 11 87 4 1 1 5.8 J 3331 70204 54706 515 2.0 70.00 72 2.4 0 4 11 83 4 2 1 5.8 J 3333 70205 54706 515 2.0 70.00 72 2.4 0.0 2 11 87 4 1 1 5.8 J 3333 70208 547078 550 15 2.4 0.5 0.10 70.2 2.4 0.0 2 11 87 4 1 1 5.8 J 3333 70208 547078 550 15 2.5 0.50 70 7 2.5 4.00 2 11 87 4 1 1 5.8 J 3333 70208 547078 550 15 2.5 0.00 70 2.2 2.0 4 11 85 4 2 1 5.8 J 3333 70208 547078 550 15 1.5 2.0 0.00 7022 4 4.0 5 18 55 4 2 1 5.8 J 3333 70208 547078 550 15 1.5 0.0 10.00 24X 6.0 5 18 55 4 2 1 5.8 J 3333 7028 5400 7 3.5 10.00 12X 2.0 4 11 55 4 2 1 5.8 J 3349 70713 54686 5500 7 2.5 40.00 7 2.2 2.0 4 11 55 4 2 1 5.8 J 3349 70713 54686 5500 7 2.5 40.00 5 10.00 12X 2.0 4 11 55 4 2 1 5.8 J 3240 70713 54686 5500 7 2.5 40.00 5 10.00 12X 2.0 4 11 55 4 1 1 5.8 J 3240 70713 54686 5500 7 2.5 40.00 50 14.0 3 12 2.0 2 1 1 5.8 J 3240 70713 54686 5500 7 2.5 40.00 50 14.0 5 2.0 2 11 5.8 J 3240 70713 54686 5500 7 2.5 40.00 50 14.0 5 2.0 2 1 1 5.8 J 3240 7051 547196 547196 5500 15 1.0 100 12X 2.0 6 18 55 4 1 1 5.8 J 3246 7053 547196 5470 50 50 15 1.0 100 12X 2.0 5 17 3 2 1 1 5.8 H 4002 70348													1	1			<u></u>	
J 3 2 2 2 2 2 2 4 1 5.8 J 3 2 6 6 7 5 4 10 2 1 5.8 J 3 2 6 6 7 6 4 1 1 5 8 J 3 2 6 6 7 6 4 1 1 5 8 - 5 <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>4</td> <td>-</td> <td></td> <td></td> <td>,</td> <td>•</td> <td></td>					-							4	-			,	•	
J 3:22 6973 546815 6100 5 . N 1:00 60X 7.0 4 11 20 4 1 1 5.8 J 3:22 6973 546815 6100 5 1.0 13 5X 5 4 18 20 4 2 1 5.8 J 3:22 6973 54615 6100 10 2.5 1.00 13 5X 5 4 18 20 4 2 1 5.8 J 3:22 6973 54615 6100 10 2.5 1.00 13 X 1.0 3 11 20 4 2 2 5.8 J 3:25 6985 54625 4890 10 4.6 2 3.00 118 8.0 7 11 5 4 2 1 5.8 J 3:25 6985 54625 4890 10 4.6 5 3.00 118 8.0 7 11 5 4 2 1 5.8 J 3:25 6985 54625 4890 10 4.6 5 3.00 118 8.0 7 11 5 5 4 2 1 5.8 J 3:25 7 7110 54706 5400 47 10 - 10 4.6 5 8 4 2 1 5.8 J 3:25 7 7110 54706 5400 15 2.0 10 72 X 7.0 4 11 83 4 1 1 5.8 J 3:25 7 7032 54706 5500 15 2.0 7 1.0 24X 3.0 2 11 87 4 1 1 5.8 J 3:23 70078 54706 5400 15 2.0 70.7 2 4 4 6 2 1 5.8 J 3:33 70071 55706 5400 15 2.0 7 0.5 24 4 6.0 2 11 87 4 1 1 5.8 J 3:33 70078 54706 5400 15 2.0 7 0.5 24 4 6.0 2 11 87 4 1 1 5.8 J 3:33 70078 54706 5400 15 2.0 10 24X 3.0 2 11 87 4 1 1 5.8 J 3:33 7010 54706 5400 15 1 2.2 5 0.5 12 24 4 6.0 2 11 85 4 2 1 5.8 J 3:33 7018 54706 5400 15 1 1 1 2 24 3.0 2 11 85 4 2 1 5.8 J 3:33 7018 54706 5400 15 1 1 1 2 24 3.0 2 11 85 4 2 1 5.8 J 3:33 7018 54706 5400 15 1 1 1 2 24 3.0 2 11 85 4 2 1 5.8 J 3:33 7018 54706 5100 15 1 1 1 1 22 4 3 4 1 1 5.8 J 3:33 7018 54706 5100 15 5 10 10 22 43 5.0 2 11 85 4 2 1 5.8 J 3:33 7018 54706 5100 15 5 10 10 22 43 5.0 2 11 85 4 2 1 5.8 J 3:33 7018 54706 5100 15 5 10 10 22 43 5.0 2 11 85 4 2 1 5.8 J 3:33 7018 54766 5100 15 5 10 10 22 43 5.0 2 11 85 4 2 1 5.8 J 3:34 7028 547256 4800 15 5 5 10 10 22 43 5.0 2 11 85 4 2 1 5.8 J 3:34 70212 546895 4910 7 3.5 10 10 22 43 5.0 2 11 55 4 1 1 5.8 J 3:34 70212 546895 4910 7 3.5 10 12 24 7.0 4 11 56 4 1 1 5.8 J 3:34 70215 547256 4800 15 5 1 1.0 12 4 1.0 4 11 50 4 1 1 5.8 J 3:44 7024 74250 547256 15 3.5 10.0 12 4 1.0 4 11 50 4 1 1 5.8 J 3:44 7024 7015 54718 5200 15 5 5.00 24 4 5.0 24 50 1 1 5 5.8 J 3:44 7024 7025 54736 4800 15 5 . 0 2.00 24 2.0 540 18 3 3 4 1 1 5.8 J 3:44 7024 7025 54736 4800 15 5 . 0 2.00 24 4 2.0 1 1 5.8 J 3:44 7024 7025 54736 4800 15 5 . 0 2.00 24 4 2.0 1 1 5.8 J 3:44 7025 70118 54518 6700 7 2 .00 500 4400 51 7 1												4	1	1			· · ·	
J 3223 69733 546415 6190 5 1.0 +13 5x 5 4 18 20 4 2 1 5.8 J 3224 69765 5477 6457 6 457 6 457 6 457 7 6457 10 4.5 3.0 15x 5.4 7 11 5 4 2 2 5.8 J 3225 6985 546270 4970 10 4.5 3.0 15x 5.0 7 11 5 4 2 1 5.8 J 3227 5985 546270 4970 10 5.0 10 12x 1.0 3 11 20 4 2 2 5.8 J 3227 5985 546270 4970 10 4.5 3.0 15x 5.0 7 11 5 4 2 1 5.8 J 3227 59710 54704 5400 17 5 30.0 17 7 5 30.0 17 7 7 0 5 1 1 30 4 1 1 5.8 J 3227 7012 54705 5210 7 5 30.0 17 7 7 8 30.0 12 7 2.0 5 1 1 30 4 1 1 5.8 J 3227 7012 54705 5210 7 8 7.0 15 2.0 10 24X 3.0 3 11 5 5 4 2 1 5.8 J 3237 70071 55706 5210 15 2.0 10 24X 3.0 2 11 87 4 1 1 5.8 J 3237 70078 54706 550 15 2.0 15 2.0 122 1.2 0 2 11 87 4 1 1 5.8 J 3238 70096 54706 550 15 2.0 15 2.0 0 24X 3.0 4 11 87 4 1 1 5.8 J 3238 70096 54706 50 15 2.0 15 0.0 12X 3.0 2 11 87 4 1 1 5.8 J 3238 70096 54706 50 15 2.0 15 0.0 12X 3.0 2 11 87 4 1 1 5.8 J 3238 70096 54706 510 0 5 1 4 2.0 0 24X 3.0 4 11 83 4 2 1 5.6 J 3238 70096 54703 510 0 15 3.0 10 0 12X 3.0 2 11 85 4 2 1 5.6 J 3238 70018 54706 510 0 5 1 5 3.0 10 0 24X 3.0 4 11 83 4 2 1 5.8 J 3238 70018 54706 510 0 5 1 5 0.0 527 12X 1.0 8 11 58 4 2 1 5.8 J 3239 7013 54668 5200 7 2 3.5 40500 24X 6.0 4 11 85 4 2 1 5.8 J 3240 7013 54710 5100 15 5 10.0 12X 3.0 6 18 50 4 1 1 5.8 J 3240 7013 54688 5200 7 2 3.5 40500 24X 6.0 4 11 50 4 1 1 5.8 J 3240 7015 54713 5000 15 5 15.00 12X 3.0 6 18 50 4 1 1 5.8 J 3240 7015 54713 5000 15 5 15.00 12X 3.0 6 18 50 4 1 1 5.8 J 3240 7015 54713 5000 15 5 15.00 12X 3.0 6 18 50 4 1 1 5.8 J 3244 7018 54713 5000 15 5 15.00 12X 2.0 8 11 50 4 1 1 5.8 J 3244 7018 54713 5000 15 5 10.0 1.00 12X 1.0 4 11 90 4 1 1 5.8 J 3244 7018 54713 5000 15 5 10.0 1.00 12X 1.0 4 11 90 4 1 1 5.8 J 3244 7018 54713 5000 15 5 2.00 154 1.0 24X 2.0 511 55 4 1 5.8 J 3244 7018 54713 5500 15 1.0 0 100 12X 1.0 4 11 90 4 1 1 5.8 J 3244 7018 54713 5500 15 1.0 0 100 12X 1.0 4 11 90 4 1 1 5.8 H 4001 70910 54726 5400 5 1.0 0 5.00 24X 2.0 5 11 5 5 18 5.00 155 2.0 0 24X 2.0 5 11 5 5 8.8 H 4002 70113 54718 5450 650 7 1.0 5.00 24X 2.0 5 11 5 5 18 5.0 18 5.8 H										Contraction of Contraction		<u> </u>	1	<u>_</u>		·····		
J J														-	-			
J 3:226 6:9895 5:46:25 4:80 10 4:5 3:20 1:1 5 4 2 1 5:8 J 3:227 6:9825 5:46:20 4:80 10 1:0				6450	3	N	. 38					4	1	<u> </u>				
J 2:27 6:28:5 5:46:20 4:50:0 1:0 1:8:2.0 5 2:3:3 2:1 5:4 J 3:22:6 6:92:5 5:44:20 4:0:0 1:1 5:6 •••• J 3:22:3 70:110 5:47:06 5:0:0 7 5:0:0 7:23:7:00 4:1 1:8:9 4:1 1:5:6 •••• J 3:31 70:71 5:77:06 5:70:00 2:72:0 3:11 75:4 2:1 5:4 J 3:33 70:70:1 5:77:06 5:70:06 5:70:06 2:72:0 4:1 1:5:5 9:2 2:5:4 J 3:33:7 70:06 5:70:06 1:70:04 5:0:0 1:72:4:0 4:1 1:75:4 2:1 5:4 J 3:32:7 70:184 5:46:01 1:7 5:0:00 6:73:4:0 4:11 5:3:4 4:1 1:5:4 J 3:32:7 70:13:5 5:4:5:0:0 5:0:0:0 1:2:4:0:0 4:11 5:3:4 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>									-									
J 3223 6 2925 5 5 426C 4 10 1.0 5 5 33 4 1 5.6 J 3224 70110 5 47068 5100 7 N 5.00 728 2.2 3 11 75 4 2 1 5.6 J 3331 70071 5 47068 5210 15 2.0 1.00 244 3.6 3 11 75 4 2 1 5.6 J 3333 70073 5 47068 5201 15 2.0 1.00 244 3.6 0 1 1 5.6 3 3 4 1 1 5.6 J 3235 70184 5 47066 510 5 1.00 244 6.0 5 1 5 6 1 1 5 6 1 5 6 1 1 5 6 1 1 5 6 1 1 5 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>4</td><td>2</td><td>1 .</td><td></td><td></td><td></td><td></td></t<>												4	2	1 .				
J 3229 70110 547048 5000 7 5 30.00 72% 7.0 4 11 89 4 1 5.8 J 3231 70071 547068 5210 15 2.0 1.00 24% 3.0 3 11 75 4 2 1 5.8 J 3233 70070 547046 5050 15 2.0 2.0 24% 3.0 3 11 75 4 2 1 5.8 J 3237 70070 547046 5050 15 2.5 1.00 12% 3.0 4 11 83 4 2 1 5.6 J 3237 70070 547046 5050 15 3.0 45.0 12% 1.0 2 4 11 83 4 2 1 5.6 J 3238 70594 546735 5650 15 3.0 45.0 12% 1.0 4 11 83 4 2 1 5.6 J 3238 70594 546735 5650 15 3.0 45.0 12% 1.0 4 11 83 4 2 1 5.6 J 3238 70594 546735 5650 15 3.0 45.0 12% 1.0 4 11 83 4 2 1 5.6 J 3239 70535 5466 510 6 5 1.5 50.00 6 67X4.0 4 11 83 4 2 1 5.6 J 3239 70713 54688 5200 7 2.5 46.00 60X4.0 4 11 53 4 2 1 5.6 J 3239 70713 54688 5200 7 2.5 46.00 60X4.0 4 11 53 4 2 1 5.6 J 3240 70230 547268 4400 15 5 15.0 15 3 10.0 12% 1.0 4 11 54 4 1 1 5.8 J 3240 70230 547268 4400 15 5 15.0 12% 1.0 4 11 54 4 1 1 5.8 J 3240 70230 547258 4400 15 5 15.0 12% 1.0 4 11 56 4 1 1 5.8 J 3240 70230 547258 4400 15 5 15.0 136 1.2 1.0 12% 1.0 4 11 56 4 1 1 5.8 J 3244 70145 547195 5150 15 1.0 1.0 12% 1.0 4 11 56 4 1 1 5.8 J 3244 70234 547213 5500 15 5 2.00 14% 1.0 12% 1.0 4 11 56 4 1 5.8 J 3244 70234 547213 5500 15 5 2.00 14% 1.0 12% 1.0 4 11 56 4 1 5.8 J 3245 70165 547196 5150 15 5 2.00 14% 1.0 12% 1.0 4 11 56 4 1 5.8 J 3246 70236 547264 5900 15 5 5.00 24% 2.0 6 11 56 4 1 5.8 J 3247 70153 547195 5000 15 5 5.00 24% 2.0 6 11 56 4 1 5.8 J 3248 7024 7023 547264 5900 15 5 5.00 24% 2.0 6 11 56 4 1 5.8 J 3246 7023 547185 4700 15 2.0 2.0 0 18% 1.0 4 21 1 5.8 H 4001 70510 547264 5470 15 3.0 0 24 2.0 6 11 56 4 1 5.8 H 4004 71013 546273 6500 5 2.0 0 18% 1.0 4 24 12 0 1 5 5.8 H 4004 71013 546273 6500 5 2.0 0 16% 1.0 12% 2.0 6 11 56 4 1 5.8 H 4004 71013 54673 6500 5 2.0 0 6.0 24% 2.0 6 11 55 2 1 5.8 H 4004 71013 54673 6500 5 2.0 0 6.0 24% 2.0 6 11 55 2 1 5.8 H 4004 71013 54673 6500 5 2.0 0 6.0 0 24% 2.0 6 11 5.8 H 4004 71013 54673 6500 5 2.0 0 6.0 0 24% 2.0 5 11 3 5.8 H 4004 71013 54673 6500 5 2.0 0 6.0 0 24% 2.0 5 11 5.8 H 4014 7121 65453 6600 7 1.0 0 500 24% 2.0 5 11 5.8 H 4014 7121 654531 6500 6 7 1.0 0 500 24%												9		<u>I</u>				
J 3230 70092 547068 5100 7 N 5.00 12X 2.6 3 10 56 4 2 1 5.6 J 3331 70071 547066 5400 5400 5400 5400 5400 5400 5400 5400 5400 5400 5400 5500 15 2.0 1000 24X 3.0 8 1 1 5.6 J 3333 70108 547060 5400 15 3.0 10.00 12X 3.0 4 11 83 4 2 1 5.8 J 3335 70184 54620 10.00 24X 6.0 5 13.35 4 2 1 5.8 J 3333 70113 54688 5200 7 2.5 40.00 12X 1.0 4 11 5.8 2.2 1.0 3.3 2.2 1.0 3.3 2.2 1.0 3.3 2.2 1.0 3.3																•••		
J 3231 70C71 547068 5210 15 2.C 1.202 24X 2.C 3 11 75 4 2 1 5.6 J 3233 70100 547069 5500 15 2.5 .655 12X 1.0 8 11 65 9 2 5.6 J 3235 70103 547165 5150 15 2.0 10.0 12X 2.0 2 11 83 4 2 1 5.6 J 3235 70138 54716 5100 6 3.0 10.00 22X 2.0 4 1 5.8 J 3235 70213 546882 9300 7 3.5 .9.5 32X12.0 4 11 5.8 2 1.5 5.8 J 3240 70213 54736 4000 15 5 15.00 3.7X 2.2 4 11 2.8 2 1.5 <td></td> <td>.4</td> <td>2</td> <td>i</td> <td></td> <td></td> <td></td> <td></td>												.4	2	i				
J 3:2:2 700:8 5470.69 1:5 2.0 70:00 2 11 87 4 1 1 5.s J 3:2:1 70:00 5470.64 5:00 15 3.0 10.00 12X 3.0 2 11 23 4 1 1 5.s J 3:2:5 70:24 547160 5:0 15 N 2.000 12X 3.0 2 11 2.3 4 1 5.s J 3:2:5 70:24 547160 5:00 6 1.5 5.0.00 6 1.2 3.8 4 1 5.s J 3:2:5 70:13 546352 4:00 7 2.5 4:5 0.0 4 11 5.s 5.s J 3:2:0 70:25 547157 500 15 5 10:00 12X 1.0 4 1 1 5.s J 3:2:4 70:15 5:15 1.0 1.00 12X 1.0 4 11 1 5.s J 3:2:4 70:15												4	2	1				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$												4	1	1	5 5.			
J 3235 70108 547160 5180 15 N 2:00 12X 3.0 2 11 23 4 1 1 5.8 J 3237 70138 54691 2400 6 1.5 50.00 67X12.0 4 11 38 4 1 1 5.8 J 3237 70138 54698 5200 7 2.5 40.00 67X2.0 4 11 65 4 2 1 5.8 J 3239 70172 546932 4910 7 3.5 10.0 6 18 50 4 1 5 4 2 1 5.8 J 3241 70163 547197 5000 15 5 10.0 6 12X 3.0 6 18 50 4 1 1 5.8 J 324 70116 547197 5000 15 5 10.0 7 3.7 2.2 4 11 70 4 1 1 5.8 J 324 70163 547197 5000 15 5 10.0 7 3.7 2.2 4 11 70 4 1 1 5.8 J 324 70163 547196 5200 15 5 10.0 7 3.7 2.2 4 11 70 4 1 1 5.8 J 324 70014 547196 5200 15 5 10.0 1 12X 1.0 4 11 90 4 1 1 5.8 J 324 70034 547196 5200 15 5 5.00 24X 2.0 6 18 55 4 1 1 5.8 J 324 70034 547196 5200 15 5 5.00 24X 2.0 6 18 55 4 1 1 5.8 J 324 70034 547196 5200 15 5 5.00 24X 2.0 6 18 55 4 1 1 5.8 J 324 70034 547196 5200 15 5 2.00 15 4 2.0 16 12X 1.0 4 11 90 4 1 1 5.8 J 324 70034 547196 5200 15 5 2.00 16 X 1.0 24 1.0 4 11 95 4 1 1 5.8 J 324 70054 547196 5200 15 5 2.00 24X 2.0 6 18 55 4 1 1 5.8 J 324 70054 547196 5200 15 2 0.0 24X 2.0 6 18 55 4 1 1 5.8 J 324 66992 547361 450 15 2.0 2.00 14X 6.0 4 18 33 4 1 1 5.8 J 324 70653 547345 4700 15 2.0 2.00 14X 6.0 4 18 33 4 1 1 5.8 J 324 70653 547345 4700 15 2.0 2.00 14X 6.0 4 18 33 4 1 1 5.8 H 4001 70910 546254 6020 5 1.0 5.00 24X 2.0 5 17 41 2 1 1 5.8 H 4003 70966 546198 6620 7 2.0 0 8X 1.0 4 17 36 2 1 . 1 5.8 H 4003 70966 546198 6620 5 1.0 5.00 24X 2.0 4 17 36 2 1 . 1 5.8 H 4005 71012 546250 6550 6 1.0 8.00 43X 1.0 4 24 41 2 1 1 5.8 H 4005 71012 546250 6550 6 1.0 8.00 35X 1.0 4 24 41 2 1 1 5.8 H 4005 71012 546250 6550 6 1.0 8.00 43X 1.0 4 24 41 2 1 5.8 H 4005 71012 546250 55 0 6 1.0 8.00 45X 1.0 4 24 41 2 1 5.8 H 4005 71012 546250 6550 6 1.0 8.00 45X 1.0 5 24 20 2 1 1 5.8 H 4005 71012 546250 6550 6 1.0 8.00 45X 1.0 5 24 20 2 1 1 5.8 H 4005 71012 546250 6550 6 1.0 8.00 45X 1.0 5 24 20 2 1 1 5.8 H 4005 71012 546250 6550 6 1.0 8.00 45X 1.0 5 24 20 2 1 1 5.8 H 4005 71012 546250 6550 6 1.0 8.00 45X 2.0 4 24 40 2 1 1 5.8 H 4005 71125 54651 6600 7 1.0 0.000 6X 5.0 0 4 24 20 2 1 1 5.8 H 4007 71125 546518 6600 5 1.0 0												4	2	2				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $																		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$,				4	1	1				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $							THE REAL PROPERTY OF A DESCRIPTION					4	2	1				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $														-			÷	• *
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $				4910	7		.0.5		4	11	53	4	2		5.8			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $																		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $									-					1				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$														<u>l</u>				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$																		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$. 5						4	1	i				:
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						3.5						4	1	1.				
K 4C02 70 928 546238 6250 7 2.0 5.00 24x 2.0 5 17 41 2 1 5.8 K 4C03 70 966 546232 6850 5 1.0 5.00 24x 2.0 4 17 36 2 1 1 5.8 K 4C05 71012 546232 6850 6 1.0 8.00 36X 1.0 4 19 65 2 1 5.8 K 4C05 71012 546237 6300 5 2.0 6.00 35X 1.0 5 24 35 2 1 5.8 K 4C06 71018 546318 5960 5 3.0 8.00 36X 2.0 4 24 41 2 1 5.8 K 4C08 71038 546318 5960 5 3.0 8.00 36X 6.0 4 24 20 1 5.8 K 4C08 71130 545470 6200 5 4.0 9.0 6X 5 6												4	1	1	5.8			
K 4 003 70966 546198 6600 5 1.0 5.00 24×2.0 4 17 36 2 1 1 5.8 K 4004 71013 546232 6850 7 1.0 8.00 36x 1.0 4 19 65 2 1 1 5.8 K 4006 71012 546250 6550 6 1.0 8.00 36×1.0 4 24 41 2 1 1 5.8 K 4006 71012 546273 6300 5 2.0 6.00 36 × 1.0 5 24 35 2 1 5.8 K 4006 71038 546318 5900 3 4.00 3.00 8.00 300 300 8.00 300 500 24 400 24 46 2 1 1 5.8 K 4008 71038 546391 5600 3 4.00 3.00 620 2 1 1 5.8 K 4010 71												2	1`	<u> </u>				
K 4004 71013 546232 6850 7 1.0 8.00 36X 1.0 4 19 65 2 1 5.8 K 4005 71012 546232 6850 6 1.0 8.00 36X 1.0 4 24 41 2 1 1 5.8 K 4006 71018 546273 6300 5 2.0 6.00 36X 1.0 5 24 35 2 1 1 5.8 K 4008 71036 546391 5900 3 4.0 3.00 36X 6.0 6 24 46 2 1 1 5.8 K 4008 71031 546391 5600 3 4.0 3.00 36X 6.0 6 24 18 2 1 1 5.8 K 4010 71130 545791 6250 5 4.0 1.00 6X 5 6 300 33 2 1 1 5.8 K 4																		•
K4 CC5710125 4 5 2 506 5 5061.08.004 8 X 1.042 44 12115.8K4 C0671 C185 4 6 2 135 9 5 0 53.08.003 5 X 1.0524352115.8K4 C0771 C 3 85 4 6 3185 9 5 0 034.03 6 0 03 5 X 2.0424462115.9K4 C0871 C 3 95 4 6 3 3 15 6 0 034.03 6 062 4182115.8K4 C0 971 1 3 05 4 6 3 3 45 4 0 054.04.004 8 X 6 0424262115.8K4 0.1071 1 3 05 4 5 7 9 16 2 0 054.04.004 8 X 6 0424202115.8K4 0.1071 1 3 05 4 5 7 9 16 2 0 054.01.006 X5630312115.8K4 0.1271 2 4 85 4 5 5 1 6 2 8 051.05 0 06 X 2 041117215 .8K4 0.1471 2 1 05 4 5 4 5 16 3 5 051.0100 0 0 06 X 4 .0517322115 .8K4 0.1471 2 1 05 4 5 3 2 051.0100 0 0 06 X 4 .051732 <td></td> <td>1.</td> <td>1.</td> <td></td> <td></td> <td></td> <td></td>													1.	1.				
K 4006 71018 546273 6300 5 2.0 6.00 $36X$ 1.0 5 24 35 2 1 1 5.8 K 4008 71038 546318 5900 3 4.0 3.00 $36X$ 2.0 4 24 46 2 1 1 5.8 K 4008 71038 546391 5600 3 4.0 3.00 $36X$ 6.0 6 24 18 2 1 1 5.8 K 4008 71141 546434 5400 5 4.0 4.00 $48X$ 6.0 4 24 26 2 1 1 5.8 K 4010 71130 545791 6200 5 4.0 1.00 $6X$ 5 24 50 2 1 5.8 K 4011 71130 545791 6250 $6-7$ 4.1 1.00 $6X$ 5 61 33 2 1 1 5.8 K 4012 71248 545460 6200 5 1.0 5.00 $24X$ 1.0 5 11 23 2 1 1 5.8 K 4014 71211 545457 6280 5 1.0 100.00 $60X$ 4.0 5 17 32 2 1 5.8 K 4014 71211 545451 6360 5 1.0 100.00 5 17 52 1 5.8 <td></td> <td><u>4</u></td> <td><u>1</u></td> <td></td> <td></td> <td></td> <td></td>													<u>4</u>	<u>1</u>				
K 4°C? 71/38 546318 5°EC 5 3,0 8.00 3EY 2.0 4 24 46 2 1 5.2 K 4008 71038 546391 5600 3 4.0 3.00 8.60 4 24 46 2 1 5.2 K 4008 71038 546391 5400 5 4.0 4.00 48% 6.0 4 24 26 2 1 5.8 K 4010 71130 545791 6250 6-7 4.0 1.00 6% 5 5 24 50 2 1 5.8 K 4011 71130 545791 6250 6-7 4.0 1.00 6% 5 5 24 50 2 1 5.8 K 4012 71248 545460 6200 5 1.0 5.00 24% 1 1 7 2 1 5.8 K 4013 7120 545451 6360 5 1.0 100.00 60%																		•
K 4008 71093 546391 5600 3 4.0 3.00 36X 6.0 6 24 18 2 1 1 5.8 K 4009 71141 546434 5400 5 4.0 4.00 48X 6.00 4 24 20 2 1 1 5.8 K 4010 71130 545770 6200 5 4.0 1.00 6X 5 5 24 50 2 1 5.8 K 4012 71130 545791 6200 5 1.00 6X 5 6 300 33 2 1 5.8 K 4012 71248 545457 6220 5 1.00 5.00 24X 1.0 5 11 23 2 1 5.8 K 4014 71211 545451 6360 5 1.0 100.400 60X 4.0 5 17 32 2 1 5.8 K 4015 71162 545451 6700 </td <td></td> <td>ī</td> <td>1</td> <td></td> <td></td> <td></td> <td></td>													ī	1				
K 4010 71130 545770 6200 5 4.0 1.00 6X 5 5 24 50 2 1 5.8 K 4011 71130 545791 6850 6-7 4.0 1.00 6X 5 6 30 33 2 1 1 5.8 K 4012 71230 5454560 6200 5 1.0 5.00 24X 1.0 5 11 23 2 1 1 5.8 K 4012 71230 545457 6200 5 1.0 5.00 24X 1.0 5 11 23 2 1 1 5.8 K 4013 71230 545457 6200 5 1.0 5.00 60X 4.0 5 17 32 2 1 5.8 K 4016 71141 545424 6260 6 1.0 25.00 60X 4.0 5 17 5 2 1 5.8 K 4016 71141	≮ 4008			5600	3		3.00	36X 8.0										
K 4C11 71130 545791 6250 6-7 4.J 1.00 6X 5 6 30 33 2 1 1 5.8 K 4012 71248 545460 6200 5 1.0 5.00 24X 1.0 5 11 23 2 1 1 5.8 K 4013 71230 545457 6280 5 1.0 5.00 6X 2.0 4 11 17 2 1 5.8 K 4014 71211 545451 6360 5 1.0 100.00 60X 4.0 5 17 32 2 1 5.8 K 4016 71141 545424 6690 5 17 52 1 5.8 K 4016 71141 545424 6690 7 1.0 10.600 36X 2.0 5 11 3 2 1 5.8 K 4018 71162 545399 6.800 7 1.0 10.600 36X <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1</td><td>1</td><td></td><td></td><td></td><td></td></th<>													1	1				
K 4512 71248 545460 6200 5 1.0 5.00 24X 1.0 5 11 23 2 1 5.8 K 4C13 71230 545457 6200 5 1.0 5.00 EX 2.0 4 11 17 2 1 5.8 K 4C14 71210 545451 6300 5 1.0 100.00 60X 4.0 5 17 32 2 1 5.8 K 4C15 71162 545451 6300 7 1.0 100.00 60X 4.0 5 17 52 1 1 5.8 K 4C15 71162 545424 660 7 1.0 10.0 12X 1.0 3 11 20 2 1 5.8 K 4C17 71120 545399 6.800 7 1.0 10.600 36X 2.0 5 11 3 2 1 5.8 K 4C17 71120 545396 6900													<u>i</u>	1		······		
K 4C13 71230 545457 6280 5 1.0 5.00 £X 2.0 4 11 17 2 1 5.8 K 4014 71211 545451 6360 5 1.0 100.00 60X 4.0 5 17 32 2 1 1 5.8 K 4015 71162 545424 £690 6 1.0 25.00 60X 4.0 5 17 5 2 1 1 5.8 K 4016 71141 545412 6700 7 1.0 5.60 12X 1.0 3 11 20 2 1 5.8 K 4017 71120 545399 6.820 7 1.0 10.600 36X 2.0 5 11 3 2 1 5.8 K 4018 71101 545391 6900 7 1.0 15.00 36X 2.0 4 17 10 2 1 5.8 K 4018 71101 54538														-			-	
K 4014 71211 545451 6360 5 1.0 100.00 60X 4.0 5 17 32 2 1 1 5.8 K 4015 71162 545424 €€90 6 1.0 25.00 60X 4.0 5 17 5 2 1 1 5.8 K 4016 71141 545412 6700 7 1.0 5.60 12X 1.0 3 11 20 2 1 1 5.8 K 4017 71120 545399 6.820 7 1.0 10.60 36X 2.0 5 11 3 2 1 1 5.8 K 4018 71101 545396 6900 7 1.0 15.00 36X 2.0 4 17 10 2 1 5.8 K 4018 71101 545381 6550 5 - 6 1.0 N 6 30 11 2 1 5.8 K 4020 71189 545330 </td <td></td> <td>1</td> <td>1 .</td> <td></td> <td></td> <td>• •</td> <td>1</td>													1	1 .			• •	1
K 4015 71162 545424 €€90 6 1.0 25.00 60X 4.0 5 17 5 2 1 5.8 K 4016 71141 545412 6700 7 1.0 5.00 12X 1.0 3 11 20 2 1 5.8 K 4016 71141 545412 6700 7 1.0 10.10 36X 2.0 5 11 3 2 1 1 5.8 K 4018 71101 545399 6.880 7 1.0 10.60 36X 2.0 5 11 3 2 1 1 5.8 K 4018 71101 545391 6.950 7 1.0 15.00 36X 2.0 4 17 10 2 1 5.8 K 4018 71109 545381 6.550 5 - 6 1.0 N 6 30 11 2 1 5.8 K 4020 71139 545330 6525 6 1.0 5.00 12X 1.0													1	1				
K 4C17 7112C 545399 6.680 7 1.0 10.60 36x 2.0 5 11 3 2 1 5.8 K 4018 71101 545396 6900 7 1.0 15.00 36x 2.0 4 17 10 2 1 5.8 K 4019 71199 545381 6550 5-6 1.0 N N 6 30 11 2 1 5.8 K 4020 71139 545330 6525 6 1.0 5.00 12x 1.0 4 11 8 2 1 5.8																	÷	
K 4018 71101 545396 6900 7 1.0 15.00 36X 2.0 4 17 10 2 1 5.8 K 4019 71199 545381 6550 5-6 1.0 N 6 30 11 2 1 5.8 K 4020 71139 545330 6525 6 1.0 5.00 12X 1.0 4 11 8 2 1 5.8													1	1		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	
K 4C19 71199 545381 6550 5-6 1.0 N 6 30 11 2 1 3 5.8 *** K 4020 71139 545330 6525 6 1.0 5.00 12x 1.0 4 11 8 2 1 5.8											-						•	
K 4020 71139 545330 6525 6 1.0 5.00 12x 1.0 4 11 8 2 1 1 5.8										-		2	1		-			
													1.					
<u> </u>														· ·			;	⊳
									-					-		• .		8
														2				
							. 1	· · · · · · · · · · · · · · · · · · ·						: :			:	
			· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·													.	

55024

(HAN	SAMP	X CORD	Y CORD	ELEV	FORM	TEMP	FLOW	SIZE	CU	P8	ZN	ACIO	TYPE	TURB	PH		
	к	4022	71244	545399	6400	5	1.0	5.00	2X 2.0	4	11	30	2	2	1	5.8		
	ĸ	4023	71260	545411	6390	5	2.0	15.00	24X 2.0	4	11	28	ž	1	ī	5.8		
	к	4024	71280	545445	6210	5	2.0	15.00	24X 2.0	5	17	18	z	ī	ī	5.8	***	
- L	ĸ	4025	71275	545472	6090	5	3.0	80.00	35X 4.0	- 3	11	8	2	1	1	5.8		.)
(ĸ	4026	70526	546271	5725	9	3.0	•50	2X 5	:4	11	56	2	1	1	5.8		· · · · · · · · · · · · · · · · · · ·
	ĸ	4 C 2 7	68527	547418	5200	15	2.0	8.00	24X 2.0	5	17	33	3	1	1	5.8		
- 1	<u> </u>	4028	68576	547375	5400	15	2.0	4.00	<u>12X 5</u>	4	17	21	<u> </u>	1	1	5.8		
	ĸ	4029	68586	547373	5500	15	2.0	10,00	24× 2.0	4	17	16	3	1	1	5.8		
	ĸ	4030	69608	547330	5300	15	2.0	5.00	12% 2.0	3	24	2,4	3	1	1	5.8		•
ł	<u> </u>	4031	68620	547315	5200	15	2.0	1.00	<u>12X 1.0</u>	3	17	28	3	2		5.8		
	K	4032	63572 68432	547340 547385	5100 5000	15 14	2.0 4.0	2.00 1.60	6X 5 12X 5	.2	24 30	17 16	3		1	5.8 5.8		· · · ·
	ĸ	4034	68451	547375	5100	15	4.0	3.00	24X 1.0	.6 5	24	33	נ ד	1	-1	5.8		
ł	<u> </u>	4035	68895	547790	4700	15	5.0	1.00	12 X 5	11	11	53	3	1	1	5.8		
	ĸ	4036	63316	547795	4650	15	3.0	N	N-	. 9	5	12	3	3	3	5.8	***	· · · · · · · · · · · · · · · · · · ·
	к	4037	68925	547720	4750	15	5.0	1.00	12X 5	7	5	2.3	3	,	1	5.8		
- t	к	4039	68890	547623	4890	15	5.0	1.00	121 5	10	.1 1	16	3	1	1	5.4		
	- K	4039	E9450	546295	5550	5	3.0	•50	6X 5	4	11	2,4	3	1	1	5.8		
- 1	×	4040	69470	546295	6000	5	2.0	•13	<u>5X 5.</u>	8	11	5	3	<u> l </u>	1	5.3	+ * *	
- 1	ĸ	4641	69479	546297	6250	5	2.0	1.00	6X 1.0	9	11	69	3	1	1	5.8		
	ĸ	40,42	69456	546348	57,80	5	2.0	5.00	24X 1.0	7	11	20	3	1	1	5.8		
ļ	ĸ	4043	69440	546348	5510	5	2.0	1.00	<u>12X 1.0</u>	4	17	5_	3	1		5.8		
· 1	. K	4044	69428	546345	4850	5	3.0	5.00	24X 1.0	.18	11	138	3	1	1	5.8		
	ĸ	4045	69412	546344	4690	5	3.0	1.00	12X 5	9	5	21	3	1	1	5.8		
	<u></u>	4046	69500	546275	6700	5-6	4.0	5.00	<u>5X 1+D</u>		1	3	<u>_</u>					
1	ĸ	4047	69495	546240	5650	5 5	. 4.0	5.00	6X 1.0	9	5	20	3	1	1	5.8		
	Ŕ	4049 4049	69475 69450	546241 546230	5750 6150	5	5.0 5.0	10.00 20.00	12X 2.0 24X 2.0	7	.11 	27	3	1	1	5.9		
ł	<u>r</u>	4050	69345	545450	5400	8	3.0	15.00	30X 2.0	11	24	18	3	1				
	· ĸ	4051	69322	545428	5700	-8	3.0	500	12X 1.0	<u>_</u>	11	10	3	1	1	5.8	·	
	к	4052	69295	545395	6100	7	4.0	15.00	24X 3.0	7	1260	18	3	Ĩ	ī	5.3		
1	ĸ	4053	69277	545365	6225	7	6.0	N	N-	3	11	N	3	3	1	5.8	***	
	ĸ	4054	69289	545370	6200	7	4.0	2.00	12X 5	- 8	24	14	3	1	1 .	5.8		
1	ĸ	4055	69339	545286	6360	8	11.0	N	. N		11	11	3	3	1	5.8	• **•	
- t [ĸ	4056	69385	545342	6000	. 9	6.0	N	N	12	11	5	3	1	1	5.8	***	
· ·	ĸ	4057	69385	545355	5900	8	6.0	. N	i N	8	17	20	3	1.	1	5.8		
- 1	<u> </u>	4058	69382	545373	5700	8	4.0	10.00	12X 3.0	7	11	26	3	1	1	5.8	······································	· · · · · ·
- 1	×	4059	69370	545409	5500	8	4.0	5.00	6X 2.0	2	11	N	3	1	1	5 B		
	ĸ	4060	69362	545431	5450	8	5.0	N E CO	N.	8 5	24	5.3	3	1	1	5-8	***	
ļ	- <u>K</u>	4061	<u>68507</u> 68530	<u>546567</u> 546555	<u>5100</u>	2	4.0	<u>5.00</u> 10.00	<u> </u>	<u> </u>	<u>11</u> 11	23	3	1	i	<u>5.8</u> 5.8		
.	ĸ	4062	68551	546558	5900	2	4.0	3.00	N.	8	-11	- 15	3	1	.1	5.8		
1	ĸ	4055	71178	546330	5450	15	1.0	5102 N	N	8	11	12	3	i	1	5.8	***	
1	ĸ	4065	69886	545147	6000	11	1.0	1.00	12X 5	2	11	6	3	1	1	5.8		
	ĸ	4066	69870	545155	5890	11	1.0	.50	12X 5	12	.11	11	3	ī	ī	5.8		
- 1	к	4067	69863	545150	5910	11	1.0	10.00	24X 2.0	5	30	20	3	1	1	5.8		
1	ĸ	4368	69342	545133	6200	11	. 1.0	4.00	12X 2.0	5	17	5	3	1.	1 :	5.8		,
	к	4069	69820	545110	£49C	11	1.0	1.00	1X 5	5	17	11	3	1	1.	5.8		
- 1	K	4070	69345	545193	5710	10-11	1.0	50	12X 5	<u> </u>	17	11	3		<u>1</u>	_5.8_		· · · · · · · · · · · · · · · · · · ·
	ĸ	4071	69825	545216	5650	10	1.0	2.00	12X 1.0	4	-30	28	3	1	.1	5.8		:
- 8	ĸ	4072	69780	545222	5800	10	1.0	5.00	12X 1.0	4	24	5	3	1	1	5.8		
	<u>K</u>	4073	<u>69760</u> 69752	545188	<u>6290</u> 6500	11	1.0	5.00	12× 1.0 12× 1.0	<u>5</u> 7	24	10	<u> </u>	<u>1</u>	1	<u>5.8</u> 5.8		
	ĸ	4074	69752	545176 546545	4750	4	1.0	5.00 50.00	187 148 367 6.0	./ 8	1/ 24	10 54	3	1	1	ວ.8 5.8		· • • •
- 31		4015	00130	5-07-5		-	1.0	20.000	JON COU	v	1. 7		-	• •	•			A 27
-									· · · · · · · · · · · · · · · · · · ·									

Г

N SAHPE	X CORD	Y CORD	ELEV	FORM	TEMP	FLOW	SIZE	CU	P6 -	ZN	ACIC	TYPE	TURB	PH	······································	,
4076	63762	546520	4990	3	1.0	50.00	36X 6.0	7	11	45	3	1	1.	5.8		
4077	68740	546500	5200	3	1.0	4.00	24X 5	9	11	8	3 -	1	1	5.8		
4078	68745	546482	5100	3	1.0	30.00	36X 3.0	5	24	31	3	î	1 -	5.9	· ·	- 11 - 11 - 11 - 11 - 11 - 11 - 11 - 1
4079	68.700	596426	5590	2	1.0	25.00	48X 1.0	5	29	47	3	1	ī	5.8	· · ·	
4080	68591	546340	4890	2	1.0	· N	. N	10	17	93	3	3	1	5.8	***	
4081	69897	546111	4810	11	3.0	2.00	12X 2.0	5	11	20	3	1	1	5.8		. '
4082	59280	546155	5750	5	1.0	N	1X 5	10	17	56	3	_1	1	5.9	***	
4083	69290	546170	6100	5	1.0	.50	2X 5	9	24	59	4	1	1	5.8		
4024	69910	546314	5300	10	5.0	•50	12X 5	7	11	14	4	2	1	5.8		:
4085	69920	546320	5500	10	5.0	1.00	<u>24X 5</u>	4	11	6	4	2	i	5.8	· · · · · · · · · · · · · · · · · · ·	
< 40ss	69930	546335	5600	10	5.0	• 5 0	24X 5	5	17	41	4	2	1	5.8		
4087	69896	546355	5310	10	3.0	3.00	12X 1.0	3	5	2	4	2	1	5.8		
4088	69928	546390	5700	10	5.0	5.00	2X 2.0	4	11	19	4			58		
4 189	69890	546390	5300	10	5.0	20.00	48X 6.0	3	5	56	4	1	1	5.8		
4090	69850	546359	4990	9	5.0	35.00	48X 1.0	4	11	33	4	1	1	5.8		
4091	69819	546360	4800	<u> </u>	5.0	5.00	<u>36X 5</u>	<u> </u>	1	45	<u>4</u>					÷
4092	69871	546385	5300	9	5.0	20.00	24X 3.0	4	5	8	4	1	1	5.8		
4093	69880	546407	5500	9	5.0	10.00	12X 1.0	4	5	49	9	1	1	5.8		
<u>(4094</u>	67519	547046	5250	<u> </u>	2.0	15.00	<u>6X 1.0</u>	<u> </u>	<u>18</u> 11	<u>122</u> 57	4	1	1	S3 5.8		
4095	67486	547070	5250	-	2.0	5.00	4X 5				•		-			
K 4096 K 4097	67435	547040	5050	14 13	2.0	20.00	24X 1.0	5	18	· 85	4	1	1	5.3 		
	67393	546941	5000	3	<u>4.0</u> 3.0	<u>N</u>	<u>N</u>	<u> </u>	<u>18</u> 5	27		1	1			
4098	67764	546866	5090			10.00	24X 1.0 24X 1.5	5	5		4	1	-	5.8		
K 4099	67722	546868	5300	3 4	3.0			5		25	4	1	1	5.8 		
·	67697	546368	5550		<u>3,C</u>	5.00		/7	<u>5</u> 5		¥	2	1			· · · · · · · · · · · · · · · · · · ·
4102	67703	546852	5590 5500	4 5	3.0 3.0	2.00 5.00	2X 1.0 12X 1.0	3	11	36 51	4	1	1	5.8 5.8		•
K 9103 K 4104	67692	546735 5463C8	5160	3	3.0	5.00	12X 1.0	-	18		4	1	2	5.8. 		
× 4105	<u>67740</u> 67870	546971	5150	2	2.0	<u>5.00</u>	5X 1.0	<u>5</u>	11	38	4 	1	1	5.8		
4105	67933	546962	5990	ź	2.0	3.00	6X 5	4	18	20	4	1	i	5.8	· · · · · · · · · · · · · · · · · · ·	
K 4107	67962	546939	5900	í	2.0	5.00	12X 5	7	11	42	ä	3.	÷	5.8		
4108	67950	546908	5550	1	2.0	1.00	6X 5	4	11	25	4	1	1	5.6		
K 4109	67911	546993	5290	î	2.0	2.00	12X 5	3	11	38	ų.	· ī	ī	5.8		· · · ·
4110	67868	546858	5150	2	2.0	1.00	12X 5	3	11	35	4	1	1	5.8		<u> </u>
K 4111	67349	546828	50.50	3	2.0	5.00	12X 1.0	4	5	51	4	1	1	5.8		
4112	67210	546800	4950	3	2.0	10.00	12X 2.0	3	11	25	4	1	1	5.8		
K 4113	70151	547093	5000	15	1.0	1.00	2X 1.0	2	11	25	4	1	1	5.8		
4114	70193	547053	5500	5	1.0	2.00	6X 5	3	11	6 1	4	1	1	5.8		,
K 4115	70177	547013	5550	6	1.0	2.00	4X 1.0	5	11	85	4	1	1	5.8		
4115	70170	546974	5670		1.0	4.00	EX 1.C	4	11	85	4	1	11	5.8		
K 4117	70106	545828	5680	8	1.0	5.00	6X).0	5	11	69	4	1	1	5.8		
4 1 1 8	70043	548344	5375	8	1.0	N	N	7	17	23	4	1	1	5.8	* *!*	
<u> 4119</u>	70093	547003	5090	5	1.0	5,00	6X 1.0	10	17	130	4	1	1	5.8		
L 5000	68829	546990	4600	3	1.5	5.00	6X 1.0	7	11	66	4	1	1	5 - 8		
L 5001	68810	547002	4700	3	2.0	10.00	12% 1.0	9	17	69	4	1	1	5.8	and the second second	
L5002	68790	547019	4900	3	3.0	15.00	18X 1.0	9	30	17_				5.8.		
L 5003	63769	547030	5100	3	. 3.0	15.00	18X 1.0	9	11	38	4	1	1	5.8		
L 5004	68755	547039	5250	3	2.0	•06	5X 5	11	36	97	4	2	1	5.8		
L 5005	63729	547071	5600	3	3.0	10.00	<u>12X 1.0</u>	3		23_				5.8		
L 5005	68731	547041	5400	3	3.0	5.00	6X 1.0	5	11	23	4	1	1	5.8		
L 5007	68699	547090	5800	- 3	3.0	5.00	6X 1.0	7	36	51	4	1	1	5.8		
L 5008	70750	545397	5300	9	2.5	25.00	24X 1.5	8	17	<u>31</u> 32	<u>4</u> 4	<u> </u>	i	5.8		· · · · · · · · · · · · · · · · · · ·
L 5009	70765	545410	5390	9	2.5	30.00	24X 2.0	8	17 5	32 37	4	1	1		,	▶ .
L 5010	70799	545430	5750	8	3.0	5.00	6X 5	5	5	51	4	1	1	5.8		A28

-

έ.

TUULL

l an e

1 L 5011 70239 54542 5500 8 2.2 5 5 1 8 1 1 5.6 L 5013 70138 54542 5 5 1 2.0 8 1 5.6 L 5013 70138 54542 5 1 2.0 1 5.6	. 1	HAN	SAMP#	X CORD	Y CORD	ELEV	FORM	TEMP	FLOW	SI ZE	CU	PB	ZN A	CID TYPE	TURB.	PH	· · ·	· · ·]
$ \begin{array}{c} 1 & 50.13 & 773.58 & 545.40 & 570.6 & 9 & 3.00 & 20.40 & 128.1.5 & 7 & 11 & 20 & 4 & 1 & 1 & 5.6 \\ \hline 1 & 51.6 & 770.78 & 545.40 & 610.6 & 9 & 2.0 & 16.40 & 728.1.6 & 7 & 11 & 93 & 4 & 1 & 1 & 5.6 \\ \hline 1 & 51.6 & 770.88 & 545.40 & 610.6 & 9 & 2.0 & 16.40 & 728.1.6 & 7 & 11 & 93 & 4 & 1 & 1 & 5.6 \\ \hline 1 & 51.6 & 770.88 & 545.40 & 610.6 & 9 & 2.0 & 16.40 & 728.1.6 & 7 & 11 & 93 & 4 & 1 & 1 & 5.6 \\ \hline 1 & 50.18 & 700.81 & 545.40 & 610.6 & 9 & 2.0 & 16.40 & 724.5 & 5 & 12 & 46 & 4 & 1 & 1 & 5.6 \\ \hline 1 & 50.18 & 700.81 & 545.40 & 610.6 & 9 & 2.0 & 16.40 & 724.5 & 5 & 426 & 64 & 1 & 1 & 5.6 \\ \hline 1 & 50.18 & 700.81 & 545.40 & 610.6 & 9 & 2.0 & 16.40 & 724.5 & 5 & 426 & 64 & 1 & 1 & 5.6 \\ \hline 1 & 50.21 & 770.946 & 545.40 & 610.6 & 9 & 2.0 & 76.40 & 128.1.5 & 17 & 37 & 4 & 1 & 1 & 5.6 \\ \hline 1 & 50.22 & 770.97 & 545.40 & 510.6 & 9 & 2.0 & 76.40 & 128.1.5 & 17 & 37 & 4 & 1 & 1 & 5.6 \\ \hline 1 & 50.22 & 770.97 & 545.40 & 510.6 & 9 & 2.0 & 76.40 & 128.1.5 & 17 & 37 & 4 & 1 & 1 & 5.6 \\ \hline 1 & 50.22 & 770.97 & 545.40 & 510.6 & 9 & 2.0 & 76.40 & 128.1.5 & 111 & 10 & 4 & 2 & 1 & 5.6 \\ \hline 1 & 50.22 & 770.97 & 545.40 & 510.6 & 5 & 2.0 & 12.6 & 4 & 2.1 & 5.6 \\ \hline 1 & 50.27 & 770.97 & 545.40 & 510.6 & 5 & 5 & 5 & 10 & 4 & 1 & 1 & 5.6 \\ \hline 1 & 50.27 & 631.31 & 546.410 & 570.6 & 5 & 5 & 5 & 5 & 10 & 4 & 1 & 1 & 5.6 \\ \hline 1 & 50.27 & 631.31 & 546.410 & 570.6 & 5 & 5 & 5 & 5 & 10 & 4 & 1 & 1 & 5.6 \\ \hline 1 & 50.27 & 631.31 & 546.410 & 570.6 & 5 & 5 & 5 & 5 & 10 & 4 & 1 & 1 & 5.6 \\ \hline 1 & 50.27 & 631.31 & 546.210 & 550.5 & 570.6 & 5 & 5 & 5 & 5 & 10 & 4 & 1 & 1 & 5.6 \\ \hline 1 & 50.27 & 631.31 & 546.70 & 5 & 5 & 5 & 5 & 6 & 10 & 4 & 1 & 1 & 5.6 \\ \hline 1 & 50.27 & 631.31 & 546.70 & 5 & 5 & 5 & 5 & 10 & 4 & 1 & 1 & 5.6 \\ \hline 1 & 50.27 & 631.5 & 547.07 & 500.5 & 5 & 5.0 & 126 & 5 & 5 & 11 & 26 & 4 & 1 & 1 & 5.6 \\ \hline 1 & 50.27 & 631.5 & 547.07 & 500.5 & 5 & 1.0 & 550.6 & 5 & 11 & 1 & 56 & 1 & 5.6 \\ \hline 1 & 50.27 & 547.50 & 547.50 & 550.50 & 570.6 & 5 & 5 & 11 & 20 & 4 & 1 & 1 & 5.6 \\ \hline 1 & 50.27 & 547.50 & 547.50 & 550.20 & 570.20 & 570.20 & 570.20 & 57 & 57 & 11 & 20$	1	L	5011	70799	545420	5500	8	2.0	30.00	24X 2.0	3	5	19	4 1	1	5.8			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	·	L	5012	70820	545412	5600	8	2.5	30.00	24X 2.0	5	5	11	4. 1	1	5.8			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		٤.		70938		5700	9		20.00	18X 1.5	7	11	20	4 1	1	5.8			
L 5016 70884 54530 6300 8 2.0 10.00 121 1.0 4 43 51 4 1 5.6 L 5017 70830 54544 600 8 2.0 10.00 221 1.0 4 36 35 4 1 5.6 L 5019 70350 545430 6500 8 2.0 510 121 5 5 2 4 7 4 1 5.6 L 5019 70350 545430 6500 8 2.0 510 122 5 2 2 4 31 4 1 5.6 L 5027 70350 545430 6500 8 2.0 510 122 5 2 2 4 31 4 1 5.6 L 5027 70350 545430 6200 8 2.0 510 124 5 3 124 31 4 1 5.6 L 5027 70350 545430 6200 8 2.0 510 124 5 3 124 31 4 1 5.6 L 5027 70350 545430 5200 8 2.0 510 124 5 3 124 31 4 1 5.6 L 5027 70350 545430 5200 8 2.0 510 124 5 3 124 31 4 1 5.6 L 5027 60310 545434 5200 8 2.0 510 124 5 3 124 31 4 1 5.6 L 5027 60310 545434 5200 8 2.0 510 124 5 3 11 4 31 4 1 1 5.6 L 5027 60310 545434 5200 8 2.0 510 124 5 4 11 0 4 2 5 5.6 L 5027 60310 545434 5200 8 2.0 12.0 12.0 12.0 14 1.5 4 11 0 4 2 5.6 L 5027 60310 545434 5200 8 2.0 15 3 0.0 71 500 72 54 5.0 2 11 1 19 4 1 1 5.6 L 5028 60310 545434 5200 8 5 0 3 0.0 75 500 74 5 4 11 8 4 1 1 5.6 L 5028 60310 545434 5200 8 5 0 3 0.0 75 500 74 5 4 11 19 4 1 5 4 1 5.6 L 5028 60310 545434 5200 670 5 5 -500 74 5 4 5 5 1 11 19 4 1 5 .6 L 5028 6030 54075 5400 15 0 0 75 500 74 5 4 0 1 1 1 5 4 1 1 5.6 L 5028 6050 54077 5000 15 0 0 75 62 62 0 2 11 1 10 4 1 5 .6 L 5028 5660 540772 5000 15 0 0 25 10 0 25 1 1 1 10 4 1 5 .6 L 5028 5660 540772 5000 15 0 0 25 10 0 25 1 2 0 2 11 1 10 4 1 5 .6 L 5028 5660 540772 5000 15 0 0 25 2.0 2 11 1 10 4 1 5 .6 L 5028 5660 540772 5000 15 0 0 0 55 4 5 5 1 1 5 4 1 5 .6 L 5028 56610 540720 5400 7 1 0 0 10 0 0 22 2.0 2 11 1 10 4 1 5 .6 L 5028 56610 540720 5400 7 0 10 0 10 0 0 22 2.0 2 11 1 10 4 1 5 .6 L 5028 54646 6700 7 1 0 0 10 0 0 22 2.0 2 11 1 10 4 1 5 .6 L 5028 54630 54060 7 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	i	L									4			4 1	1				~~~
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	1	ſĽ									7			-					Ì
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		L									4			4 1	1				
$ \begin{array}{c} 1 & 5119 & 70950 & 58430 & 6500 & 8 & 2.0 & 10.00 & 248 & 5 & 5 & 43 & 63 & 9 & 1 & 1 & 5.6 \\ \hline 1 & 5120 & 70956 & 548300 & 5300 & 8 & 2.0 & 5.60 & 122 & 5 & 9 & 24 & 21 & 4 & 1 & 1 & 5.6 \\ \hline 1 & 5120 & 70956 & 584800 & 5300 & 8 & 2.0 & 5.60 & 122 & 5 & 9 & 24 & 21 & 4 & 1 & 1 & 5.6 \\ \hline 1 & 5120 & 70956 & 584800 & 5300 & 8 & 2.0 & 7.60 & 122 & 5 & 9 & 24 & 21 & 4 & 1 & 1 & 5.6 \\ \hline 1 & 5024 & 65120 & 584800 & 5260 & 4 & 7.6 & 16.00 & 122 & 1.0 & 3 & 11 & 41 & 4 & 1 & 1 & 5.6 \\ \hline 1 & 5025 & 65130 & 584810 & 5260 & 4 & 7.6 & 16.00 & 122 & 1.0 & 3 & 11 & 41 & 4 & 1 & 1 & 5.6 \\ \hline 1 & 5026 & 65130 & 584810 & 5260 & 4 & 7.6 & 16.00 & 122 & 1.0 & 3 & 11 & 41 & 4 & 1 & 1 & 5.6 \\ \hline 1 & 5026 & 65130 & 584810 & 5260 & 5 & 2.0 & 10.6 & 212 & 1.0 & 3 & 5 & 47 & 4 & 1 & 1 & 5.6 \\ \hline 1 & 5026 & 65130 & 584250 & 500 & 5 & 5 & 50 & 64 & 5 & 5 & 5 & 13 & 8 & 1 & 1 & 5.6 \\ \hline 1 & 5026 & 65130 & 584250 & 500 & 5 & 5 & 500 & 248 & 5 & 5 & 13 & 8 & 1 & 1 & 5.8 \\ \hline 1 & 5026 & 65130 & 584250 & 500 & 5 & 5 & 500 & 248 & 5 & 2 & 11 & 26 & 8 \\ \hline 1 & 5026 & 65871 & 584700 & 15 & 3.0 & 7.6 & 64 & 5 & 5 & 2 & 11 & 26 & 8 & 2 & 1 & 5.8 \\ \hline 1 & 5036 & 58625 & 547110 & 4800 & 15 & 3.0 & 7.6 & 248 & 5 & 2 & 11 & 26 & 8 & 2 & 1 & 5.8 \\ \hline 1 & 5036 & 58620 & 547110 & 5300 & 15 & 3.0 & 36.00 & 422 & 2.0 & 2 & 11 & 16 & 4 & 1 & 1 & 5.8 \\ \hline 1 & 5036 & 58620 & 547072 & 5000 & 15 & 3.0 & 36.00 & 422 & 2.0 & 2 & 11 & 15 & 4 & 1 & 1 & 5.8 \\ \hline 1 & 5036 & 56870 & 547072 & 5000 & 15 & 3.0 & 36.00 & 422 & 2.0 & 2 & 11 & 15 & 4 & 1 & 1 & 5.8 \\ \hline 1 & 5036 & 56870 & 547072 & 5260 & 15 & 3.0 & 36.00 & 422 & 2.0 & 2 & 11 & 15 & 4 & 1 & 1 & 5.8 \\ \hline 1 & 5038 & 56870 & 547072 & 5260 & 15 & 3.0 & 36.00 & 422 & 2.0 & 2 & 11 & 15 & 4 & 1 & 1 & 5.8 \\ \hline 1 & 5038 & 56870 & 54707 & 5260 & 15 & 2.0 & 20.00 & 64 & 5 & 3 & 11 & 15 & 4 & 1 & 1 & 5.8 \\ \hline 1 & 5043 & 649710 & 54702 & 5400 & 7 & 1 & 0 & 64 & 5 & 5 & 11 & 0 & 4 & 1 & 1 & 5.6 \\ \hline 1 & 5043 & 64971 & 54700 & 5400 & 7 & 1 & 0 & 0 & 64 & 5 & 3 & 11 & 10 & 4 & 1 & 1 & 5.6 \\ \hline 1 & 5044 & 649760 & 54700 & 5400 & 7 & 1$											4			4 1	!				
L 5720 76926 948370 6200 8 220 5.00 122 5 9 24 37 4 1 1 5.6 L 5727 77926 94870 5400 8 2.0 5.00 122 5 9 24 37 4 1 1 5.6 L 5727 778926 94970 5400 8 2.0 5.00 124 1.5 9 24 47 4 1 1 5.6 L 5727 778926 94970 54670 5 2.0 124 1.5 9 27 4 1 1 5.6 L 5727 778926 94970 54670 5 2.0 124 1.5 9 27 4 1 1 5.6 L 5727 778926 94970 54670 5 2.0 124 1.6 9 2 13 4 1 1 5.6 L 5727 6311 546375 5400 5 1.0 250 647 5 5 5 10 4 1 1 5 4 L 5727 6311 546375 5400 5 1.0 250 647 5 5 5 10 4 1 1 5 4 L 5727 6311 546375 5400 5 1.0 250 647 5 5 5 10 4 1 1 5 4 L 5727 6311 546375 5400 5 1.0 250 647 5 5 5 10 4 1 1 5 4 L 5726 6315 54713 4670 15 3.0 2750 647 5 5 5 10 4 1 1 5 4 L 5710 6460 54713 4670 15 3.0 2750 647 5 1 5 2 1 5 4 1 1 5 4 L 5710 6460 54713 4670 15 3.0 2750 647 5 2 11 128 4 1 1 5.6 L 5712 6470 54713 4670 15 3.0 2750 2477 20 2 11 5 4 1 1 5.6 L 5712 6470 54713 4670 15 3.0 2750 247 20 2 11 5 4 1 1 5.6 L 5712 6470 54713 4670 15 3.0 2750 247 20 2 11 5 4 1 1 5.6 L 5712 6470 54713 4670 15 3.0 2500 547 20 2 11 5 4 1 1 5.6 L 5712 6470 54710 5200 15 3.0 100 647 2.0 2 11 16 4 1 1 5.6 L 5718 6450 54717 5700 15 3.0 100 647 2.0 2 11 16 4 1 1 5.6 L 5719 6450 54707 5700 15 3.0 100 127 2.0 2 11 16 4 1 1 5.6 L 5719 6450 54707 5700 15 3.0 100 127 2.0 2 11 15 4 1 1 5.6 L 5719 6490 54707 5700 15 3.0 100 127 2.0 2 11 15 4 1 1 5.6 L 5719 65915 54702 6600 7 1.0 100 124 5 3 3 11 11 4 1 1 5.6 L 5719 65915 54702 6600 7 1.0 100 124 5 3 11 15 4 1 1 5.6 L 5719 65915 54702 6600 7 1.0 100 124 5 3 11 15 4 1 1 5.6 L 5719 65915 54702 6600 7 1.0 100 124 5 3 13 11 15 4 1 1 5.6 L 5719 65915 54702 5400 5 1.0 127 73 3 5 12 4 1 1 5.6 L 5719 65915 54702 5400 5 1.0 0 127 1.0 3 15 12 4 1 1 5.6 L 5744 6922 54805 6400 7 2.0 0 577 73 5 5 11 0 5 1 0 1 1 5 4 1 1 5.6 L 5744 6925 548707 5400 5 1 0 0 127 1.0 3 11 10 4 1 1 5.6 L 5745 64750 548770 5400 5 2.0 0 2.0 0 127 1.0 3 11 0 4 1 1 5.6 L 5746 69750 548770 5400 5 2.0 0 127 1.0 2 1.0 3 11 14 4 1 1 5.6 L 5746 69750 548770 5500 5 2.0 0 127 1.0 2 1.0 3 11 10 4 1 1 5.6 L 5746 69750 548770 5500 5 7.0 0 127 1.0 2 1.0 3 11							-				-							11	
L 5:21 70346 58360 4300 8 2.0 5.00 121 5 3 1.7 37 4 1 1 5.0 L 5:22 7083 54538 5460 576 3 3.2 70 10 121 15 1 2 1 5 3 17 37 4 1 1 5.0 L 5:23 7037 59400 5760 3 3.2 70 121 15 1 5 3 10 121 15 5 2 1 31 4 1 1 5.0 L 5:25 65335 54610 5760 1 2 1 1 1 1 0 4 1 1 5.0 L 5:25 65335 54610 5 5250 4 3.0 70 121 10 8 1 4 1 1 0 4 1 1 5.0 L 5:25 65335 54610 5 1 1 0 1 2 1 1 0 8 1 1 1 0 4 1 1 5.0 L 5:25 65335 54610 5 5 5 1 0 4 1 5 1 0 1 0 1 1 1 0 1 1 5 1 0 1 0 1 1 1 0 1 1 5 0 1 0 1											-				1				
L 5122 70693 545399 5650 8 2.0 70.00 1471.5 4 22 33 4 1 1 5.8 L 5723 70770 59500 5780 5 3.0 720 0 170 123 1.0 3 11 40 4 1 1 5.8 L 5726 69330 546480 5060 4 7.0 160 123 1.0 3 11 40 4 1 1 5.8 L 5726 69330 546480 5060 4 7.0 160 123 1.0 3 11 40 4 1 1 5.8 L 5726 69330 546480 5060 5 1.0 1.0 100 123 1.0 4 1 1 5.8 L 5027 69311 546275 5400 5 1.0 1.0 100 123 1.0 3 1 14 40 4 1 1 5.8 L 5028 69300 546235 5400 5 5 .0 64 5 5 .5 0 64 5 4 1 1 5 4 1 1 5.6 L 5028 69300 546235 5400 5 5 .5 0 64 5 5 .5 0 64 1 1 5 .4 1 1 5.6 L 5028 69300 546235 5400 5 5 .5 0 64 5 5 .5 0 64 1 1 5 .4 1 1 5.6 L 5028 6930 546235 5400 5 1 0 1 0 100 123 1.0 2 11 138 4 1 1 5.6 L 5028 6930 54711 4800 15 2.0 7 2.4 6 1 0 12 1 10 4 1 1 5.6 L 5028 6930 54711 4800 15 2.0 7 2.4 6 1 1 138 4 1 1 5.4 L 5032 64035 54711 4800 15 3.0 30.0 42 2.0 2 11 36 4 1 1 5.4 L 5033 64235 54702 500 15 3.0 30.0 42 2.0 2 11 36 4 1 1 5.4 L 5035 64075 54703 660 1 5 3.0 30.00 42 2.0 2 11 36 4 1 1 5.4 L 5035 64075 54704 5200 6 2.1 0 30.0 42 2.0 2 11 36 4 1 1 5.4 L 5035 64075 54704 5200 6 2.1 0 30.0 42 2.0 2 11 35 4 1 1 5.4 L 5035 64075 54704 5200 6 2.1 0 30.0 42 2.0 2 11 51 4 1 1 5.4 L 5035 64075 54704 5200 6 2.1 0 30.0 42 2.0 2 11 51 4 1 1 5.4 L 5035 64075 54704 620 15 3.0 30.00 42 2.0 2 11 51 4 1 1 5.4 L 5036 64075 54704 620 15 3.0 0 50.0 42 2.0 2 11 51 4 1 1 5.4 L 5036 64075 54704 6200 7 1 1.0 1.00 62 5 4 5 11 51 4 1 1 5.4 L 5036 64075 54704 6200 7 1 1.0 1.00 62 5 4 5 11 51 4 1 1 5.4 L 5046 64076 54076 520 6 1 0 .20 71 0.0 1.00 62 5 4 1 1 51 4 1 1 5.4 L 5046 64076 54076 520 6 1 0 .20 71 0.0 1.00 62 5 4 1 1 51 4 1 1 5.4 L 5046 64076 54076 54070 520 7 1.0 1.00 62 5 4 1 1 51 4 1 1 5.4 L 5046 64076 54707 570 500 5 1.0 0 200 244 2.0 4 11 100 4 1 5.4 L 5046 64076 54070 7 1.0 1.0 0 62 5 7 4 1 1 100 4 1 5.4 L 5046 64076 54070 520 5 1.0 0 200 244 2.0 4 11 100 4 1 5.4 L 5045 64070 5400 5500 5 1.0 0 200 244 2.0 4 11 100 4 1 5.4 L 5045 64070 5400 560 5 1 0.0 200 244 2.0 4 11 100 4 1 5.4 L 5045 64070 5400 15 0.0 10 2.0 0 200 244 2.0 4 11 10 4 1 5.4 L 5045 64070 5400 5															····· * ·····				
L 5723 77370 595400 5797 8 3.0 2000 152 1.2 4 2 134 1 1 5.5 L 5725 59333 384010 5250 4 3.0 1.3 33 5 4 11 10 4 2 1 5.6 L 5725 69333 384010 5250 4 3.0 1.3 33 5 4 11 10 4 2 1 5.6 L 5725 69333 586015 520 4 3.0 1.0 12 10 8 5 47 4 1 1 5.6 L 5725 69353 586235 6800 5 10 62 12 10 8 5 4 1 1 0 4 1 1 5.6 L 5725 69355 586230 6900 5 5 .50 64 5 4 1 1 8 4 1 1 5.6 L 5725 69355 586230 6900 5 5 .50 64 5 2 1 1 8 4 1 1 5.6 L 5725 69355 586230 6900 15 3.0 70.00 744 2.0 3 11 19 4 1 1 5.6 L 5725 69355 586230 5900 15 3.0 70.00 744 2.0 2 1 1 26 4 1 1 5.6 L 5725 69355 586230 5900 15 3.0 70.00 744 2.0 2 1 1 26 4 1 1 5.6 L 5725 69355 59713 4620 15 3.0 70.00 744 2.0 2 1 1 26 4 1 1 5.6 L 5725 69355 59713 4200 15 3.0 70.00 744 2.0 2 1 1 26 4 1 1 5.6 L 5725 69355 59713 4200 15 3.0 30.00 474 2.0 2 1 1 26 4 1 1 5.6 L 5725 69355 597736 100 15 3.0 30.00 472 2.0 2 1 1 14 1 5.6 L 5725 69365 597736 4100 15 3.0 30.00 472 2.0 2 1 1 14 1 5.6 L 5725 69365 597758 7400 15 3.0 30.00 472 2.0 2 1 1 11 4 1 5.6 L 5725 69365 597728 6100 15 3.0 30.00 472 2.0 2 1 1 11 4 1 5.6 L 5727 69803 586930 6310 6 1.0 10.00 67 5 8 13 18 12 4 1 5.6 L 5736 69315 597720 6600 7 4 1.0 1.00 67 5 8 13 18 12 4 1 5.6 L 5746 69315 597720 6600 7 1 0 0 10 67 5 8 13 18 51 2 4 1 5.6 L 5746 69315 597702 6600 7 1 0 0 1.00 67 5 8 11 1 5 1 2 4 1 5.6 L 5746 69315 597702 5 1.0 0 1.0 1.00 67 5 8 11 1 5 1 2 4 1 5.6 L 5748 69355 597755 57705 5 1.0 0 12 1.0 1.00 67 5 8 11 1 5 1 5.6 L 5746 69315 597705 5 1.0 0 12 1.0 0 67 5 9 11 1 5 1 2 4 1 5.6 L 5748 69355 597705 5 1.0 0 7 1.0 1.00 67 5 5 1 1 2 4 1 5.6 L 5748 69355 597705 5 1.0 0 10 10 0 18 43 4 1 5.6 L 5748 69355 597705 5 1.0 0 10 0 0 47 2.0 0 11 10 4 1 5.6 L 5749 69355 59795 510 5 2.0 0 20.00 0 74 2.0 11 10 4 1 5.6 L 5759 69355 59795 510 5 2.0 0 20.00 74 2.0 0 11 13 44 1 5.6 L 5759 69355 59795 510 5 2.0 0 20.00 74 2.0 0 11 13 44 1 5.6 L 5759 69355 59795 510 5200 5 2.0 0 20.00 74 2.0 0 11 13 44 1 5.6 L 5759 69355 59795 510 500 11 2.0 0 100 07 5 2 0 11 2.0 0 17 3.0 0 11 3 10 4 1 5.6 L 5759 69355 59776 59776 500 11 2.0														-					
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		_									4			4 1	i				
L 5725 69338 54410 5250 4 5.0 1.10 .13 37 5 4 11 10 4 2 1 5.4 L 5727 69311 544735 5400 5 1.0 0.00 127 1.0 5 47 9 1 1 5.4 L 5727 69316 54755 5400 5 1.0 2.0 127 1.0 5 4 1 5 4 1 1 5.4 L 5727 69316 54757 5400 5 1 2.2 1.0 2.2 1 1 29 4 1 1 5.4 L 5728 69306 547257 5400 5 2 2.0 12 2.0 4 1 1 5.4 L 5738 6950 54757 5470 15 2.0 2.1 129 4 1 1 5.4 L 5738 6950 54757 5470 15 2.0 2.0 2.0 2 11 29 4 1 1 5.4 L 5738 6950 54757 5470 15 2.0 36720 2 11 29 4 1 1 5.4 L 5738 6950 547153 547110 5270 15 3.0 30.00 427 2.0 2 11 20 4 1 1 5.4 L 5738 6950 547153 54701 5 3.0 30.00 427 2.0 2 11 10 4 1 1 5.4 L 5738 5470 5470 15 3.0 30.00 427 2.0 2 11 11 4 1 1 5.4 L 5738 5470 5470 15 3.0 30.00 427 2.0 2 11 11 4 1 1 5.4 L 5738 5470 5470 5500 15 3.0 30.00 427 2.0 2 11 11 4 1 1 5.4 L 5738 54665 5477 54704 5280 6 2.0 354 2.0 2 11 11 4 1 1 5.4 L 5748 5480 5410 510 61 -0 1.00 127 5 3 11 11 4 1 1 5.4 L 5748 5480 5410 5410 7 -0 1.0 100 127 5 3 11 11 4 1 1 5.4 L 5748 5480 544079 5600 7 -0 1.0 100 127 5 3 11 11 4 1 1 5.4 L 5748 5481 54400 6600 7 -0 1.0 100 127 5 3 11 31 4 1 1 5.4 L 5748 54810 547074 5600 6 7 0 7 -0 1.0 100 127 5 3 11 31 4 1 1 5.4 L 5748 54810 547074 5600 6 7 0 7 -0 1.0 100 57 5 7 11 22 4 1 1 5.4 L 5748 54315 5446174 5600 6 7 0 0 7 1.0 1.00 57 5 7 11 22 4 1 1 5.4 L 5748 54315 5446174 5600 6 2.0 05.00 127 1.0 3 5 12 4 1 1 5.4 L 5748 54315 544675 6400 6 2.0 05.00 127 1.0 3 5 12 4 1 1 5.4 L 5748 54315 544675 6400 6 2.0 05.00 127 1.0 3 5 12 4 1 1 5.4 L 5748 54315 544675 6400 6 2.0 05.00 127 1.0 3 5 12 4 1 1 5.4 L 5755 543675 6400 5426 52 0.0 02 2.0 247 2.0 4 11 10 4 1 1 5.4 L 5755 5496 54315 54071 54070 52 2.0 02 02 127 1.0 3 5 12 4 1 1 5.4 L 5755 5439 546975 6100 6 2.0 0 127 1.0 3 5 12 4 1 1 5.4 L 5755 5439 546975 6100 6 2.0 0 127 1.0 3 5 12 4 1 1 5.4 L 5755 54395 546971 1 1.0 0.00 127 1.0 3 11 10 4 1 1 5.4 L 5755 54375 54070 5405 52 0.00 127 1.0 3 11 10 4 1 1 5.4 L 5755 54875 54775 5400 540 520 5 1.0 0 2.0 0 27 2.0 1 11 10 4 1 1 5.4 L 5755 54875 5477 5410 5400 11 1.0 0 10 27 3.0 2 11 10 4 1 1 5.4 L 5755 548778 5		L	5024	€9320	546408	5080	4		second se		3			4 1	1		n yanga gan, dan selilan yang perteksion yang ada ang dala king berata yang dari king berakan.		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		L	5025	59338	546410	5250	4	3.0	. 13	3X 5	4	11	10	4 2					
L 5228 63380 546255 6400 5 5 .50 67 4 11 8 4 1 1 5.6 L 5229 6335 546255 6400 5 5 .50 67 4 5 4 1 1 5.4 L 5630 66601 547131 4800 15 3.0 26.00 247 2.0 3 11 19 4 1 1 5.6 L 5632 64625 547057 4500 15 3.0 26.00 357 2.0 2 11 26 4 2 1 5.8 L 5632 64625 547057 4500 15 3.0 25.00 357 2.0 2 11 20 4 1 1 5.8 L 5035 64625 547057 4500 15 3.0 25.00 357 2.0 2 11 20 4 1 1 5.8 L 5035 64665 547057 4500 15 3.0 25.00 357 2.0 2 11 20 4 1 1 5.4 L 5035 64655 547058 5100 15 3.0 350.00 427 2.0 2 11 20 4 1 1 5.4 L 5035 64655 547058 5100 15 3.0 350.00 427 2.0 2 11 11 4 1 1 5.8 L 5036 6457 547754 7500 5250 6 2 .0 50.00 427 2.0 2 11 15 4 1 1 5.4 L 5037 64665 547058 5100 17 1.0 10.00 127 5 3 11 11 4 1 1 5.6 L 5038 64610 54700 6600 7 1.0 1.00 67 5 4 5 12 4 1 1 5.4 L 5739 65315 547020 6600 7 1.0 1.00 67 5 4 5 12 4 1 1 5.4 L 574 6338 547316 6600 7 1.0 1.00 67 5 4 11 5 .4 L 574 6338 547316 6600 7 1.0 1.00 67 5 7 11 25 4 1 1 5.4 L 574 6338 547316 6600 7 1.0 1.00 67 5 7 11 25 4 1 1 5.4 L 574 6338 547316 6600 7 1.0 1.00 67 5 7 11 25 4 1 1 5.4 L 574 6338 547316 6600 7 1.0 1.00 67 5 7 11 25 4 1 1 5.4 L 574 6338 547316 6600 7 1.0 1.00 67 5 7 11 25 4 1 1 5.4 L 574 6338 54731 6600 7 1.0 1.00 67 5 7 11 25 4 1 1 5.4 L 574 6338 54731 6600 7 1.0 1.00 67 5 7 11 25 4 1 1 5.4 L 574 6338 54731 6600 7 1.0 1.00 67 5 7 11 25 4 1 1 5.4 L 574 6338 54731 6600 7 2.0 2.0 2.0 124 2.0 4 11 1 0 4 1 1 5.4 L 574 6338 54731 6600 7 2.0 2.0 2.0 2.4 2.0 4 11 1 0 4 1 1 5.4 L 574 6338 54731 6600 7 2.0 2.0 2.0 2.4 2.0 4 11 1 0 4 1 1 5.4 L 574 6338 54731 6600 7 2.0 2.0 2.0 2.4 2.0 4 11 1 0 4 1 1 5.4 L 576 63970 54605 52 5.0 2.0 2.0 2.0 2.0 24 2.0 4 11 1 0 4 1 1 5.4 L 576 63970 54605 52 5.0 2.0 2.0 2.0 0.0 24 2.0 4 11 1 0 4 1 1 5.4 L 576 64970 54605 57 2.0 2.0 2.0 0.0 24 2.0 4 11 1 0 4 1 1 5.4 L 576 64970 54605 57 2.0 2.0 2.0 0.0 24 2.0 4 11 1 0 4 1 1 5.4 L 576 64970 54700 5500 5 2.0 2.0 2.0 0.0 24 2.0 4 11 1 0 4 1 1 5.4 L 576 64970 54700 5500 5 2.0 2.0 2.0 0.0 24 2.0 0 11 1 2.0 18 4 0 1 5.4 L 576 64970 54700 5500 5 2.0 2.0 2.0 2.0 2.0 2.0 12 2.0 0 4 11 3		Ł	5026	69330	546384	5200	5	2.0	10.00	12X 1.0		5	47	4 1	1	5.8			
L 5023 63355 546250 5900 5 5 5 0.07 CX 5 4 5 51 4 1 5.4 L 5031 65613 547130 4830 15 3.0 27.00 24X 2.0 2 11 28 4 2 1 5.4 L 5031 63613 547130 4830 15 3.0 25.00 35X 2.0 2 11 28 4 2 1 5.4 L 5033 63623 547037 4900 15 3.0 36.02 4X 2.0 2 11 20 4 1 1 5.4 L 5035 63665 547027 5000 15 3.0 36.02 42X 2.0 2 11 16 4 1 1 5.4 L 5035 63665 547025 5000 15 3.0 36.02 42X 2.0 2 11 16 4 1 1 5.4 L 5035 63667 547054 5400 15 3.0 36.02 42X 2.0 2 11 16 4 1 1 5.4 L 5035 63667 547054 5400 15 3.0 36.02 42X 2.0 2 11 16 4 1 1 5.4 L 5035 63667 547054 5400 15 3.0 36.00 42X 2.0 2 11 15 4 1 1 5.4 L 5035 63667 547054 5400 17 1.0 15.00 12 5 3 11 15 4 1 1 5.4 L 5035 6467 54700 6400 7 1.0 15.00 12 5 3 11 15 4 1 1 5.4 L 5035 54700 6400 7 1.0 1.00 16 5 3 4 10 1.0 15.4 L 5035 54700 6400 7 1.0 1.00 16 5 5 4 18 5 4 1 5 4 1 5.4 L 5035 54700 6400 7 1.0 1.00 16 5 5 4 18 5 4 1 5 4 1 5.4 L 5040 6934 54703 6600 7 1.0 1.00 16 5 5 4 18 5 12 4 1 5.4 L 5043 6355 54700 6400 7 1.0 1.00 16 5 5 5 N 12 4 1 5.4 L 5044 6932 54696 6700 7 1.0 1.00 16 5 5 5 N 12 4 1 5.4 L 5044 6932 54696 6700 7 1.0 1.00 16 5 5 5 N 12 4 1 5.4 L 5043 6385 549703 5600 6 1.0 1.00 16 5 5 5 N 12 4 1 1 5.4 L 5043 6385 549705 6100 6 2.0 15.00 12 X 1.0 3 5 10 4 1 1 5.4 L 5043 6385 549705 610 6 2.0 15.00 12 X 1.0 3 5 10 4 1 1 5.4 L 5044 6932 54696 5700 7 1.0 1.00 5 8 5 5 N 12 4 1 1 5.4 L 5044 6932 54696 500 5 1.0 20.00 24X 2.0 4 11 10 4 1 1 5.4 L 5045 6713 54696 5700 5 2.0 20.00 24X 2.0 4 11 10 4 1 5.4 L 5046 6976 54696 500 5 2.0 20.00 24X 2.0 4 11 10 4 1 5.4 L 5046 6976 54696 520 5 2.0 20.00 54 2.4 2.4 11 1 5.4 L 5057 66935 54000 5 2.0 20.00 54 2.4 2.4 11 1 5.4 L 5058 6400 54742 5402 5460 5 2.0 20.00 54 2.4 2.4 11 1 5.4 L 5059 64960 54742 515 N 1.00 54 2.4 2.4 11 1 14 4 1 5.4 L 5059 64960 54742 515 N 1.00 54 2.4 2.4 11 1 14 4 1 5.4 L 5054 64976 54742 4472 515 N 1.00 54 2.4 2.4 11 1 14 4 1 5.4 L 5055 6480 547442 4490 15 N 3.00 127 2.0 2 11 10 4 1 1 5.4 L 5055 6480 547442 4490 15 N 3.00 127 2.0 2 11 10 4 1 1 5.4 L 5056 768545 547441 4900 15 N 3.00 127 2.0 7 17 81 4 1 1 5	: 1	L		69311			5		.50		5	5	10	4 1	1 .	5.8			
L 5030 6501 547131 4600 15 3.0 27.00 244 2.0 3 11 19 4 1 1 5.8 L 5031 65613 547131 4800 15 3.0 25.00 354 2.0 2 11 28 4 2 1 5.8 L 5032 6562 54707 54704 15 3.0 325.0 354 2.0 2 11 20 4 1 5.8 L 5033 6565 54707 54704 5200 15 3.0 32.0 422 2.0 2 11 16 4 1 5.8 L 5035 6565 54707 54704 5200 15 3.0 32.0 422 2.0 2 11 16 4 1 5.8 L 5035 6565 54707 54704 5200 6 2.0 334.2 0 422 2.0 2 11 15 4 1 5.8 L 5036 6567 54704 5200 6 2.0 334.2 0 422 2.0 2 11 55 4 1 5.8 L 5036 65677 54704 5200 6 2.0 334.2 0 422 2.0 2 11 55 4 1 5.8 L 5036 65677 54704 5200 6 2.0 30.00 422 2.0 2 11 55 4 1 5.8 L 5036 65615 547020 6600 7 1.0 10.00 6X 5 4 5 4 5 12 4 1 5.8 L 5036 6515 547020 6600 7 1.0 1.00 6X 5 4 5 12 4 1 5.8 L 5036 69334 547036 6800 7 1 0 1.00 6X 5 4 18 5.2 4 1 5.8 L 5031 69354 547020 6600 7 1.0 1.00 6X 5 4 18 5.2 4 1 5.8 L 5031 69354 547026 6600 7 1 0 5.00 6X 5 4 18 5.2 4 1 5.8 L 5042 6934 547036 6800 7 1 0 5.00 6X 5 4 18 5.2 4 1 5.8 L 5042 6934 547036 6800 7 1 0 5.00 6X 5 5 N 12 4 1 5.8 L 5042 69354 54703 6600 7 1 0 5.00 6X 5 5 N 12 4 1 5.8 L 5042 69354 547026 6600 7 1 0 5.00 621 5 1 10 2 4 1 5.8 L 5042 69466 5400 7 1 0 5.00 621 5 1 10 2 4 1 5.8 L 5045 69700 5600 5 1.0 20.00 124 2.0 4 11 5.8 L 5046 6970 5469 5900 5 1 0 20.00 124 2.0 4 1 1 5.8 L 5046 6970 5405 55 10 0 6 2.0 15.00 124 2.0 4 1 1 5.8 L 5046 6970 5409 580 5 1 0 20.00 124 2.0 4 1 1 5.8 L 5046 6970 5409 580 5 1 0 20.00 124 2.0 4 1 1 5.8 L 5046 6970 5400 560 5 1.0 20.00 124 2.0 4 1 1 10 4 1 1 5.8 L 5046 6970 5409 580 5 1 0 20.00 124 2.0 4 1 1 10 4 1 1 5.8 L 5046 6970 5409 580 5 1 0 20.00 124 2.0 4 1 1 10 4 1 1 5.8 L 5057 6463 54702 5450 5 2.00 2540 0 374 2.0 4 11 10 4 1 1 5.8 L 5059 6945 54700 5600 5 1 1 0 20.00 124 2.0 4 11 10 4 1 1 5.8 L 5059 6945 54702 5450 5 2.00 20 30.00 6X 5 3 3 11 15 4 1 1 5.8 L 5059 6945 54702 5500 5 1 1 0 0 010 124 2.0 3 10 13 1 4 1 5.8 L 5058 69305 54702 5500 5 1 1 0 0 0122 2.0 7 1 13 4 1 5.8 L 5058 69305 54702 5500 11 2.0 30.00 122 2.0 4 17 3 18 4 1 5.8 L 5058 69305 54700 5500 15 N 3.00 122 2.0 7 17 8 18 4 1 1 5.8 L 5058 6											4			4 1	1	5.8			
L 5011 63619 54710 4830 15 3.0 .0.6 6K 5 2 11 28 4 2 1 5.8 L 5023 6562 547087 4930 15 3.0 25.00 3KX 2.0 2 11 20 4 1 1 5.8 L 5033 65629 547087 4930 15 3.0 330.00 42X 2.0 2 11 20 4 1 1 5.8 L 5035 6565 547072 5000 15 3.0 30.00 42X 2.0 2 11 10 4 1 1 5.8 L 5035 6565 547070 54704 5260 6 2.0 30.00 42X 2.0 2 11 15 4 1 1 5.8 L 5035 6567 547070 54704 5260 6 2.0 30.00 42X 2.0 2 11 15 4 1 1 5.8 L 5035 6567 547070 54704 5260 6 2.0 30.00 42X 2.0 2 11 15 4 1 1 5.8 L 5035 6561 547020 6430 510 6 2.0 30.00 42X 2.0 2 11 12 4 1 5.8 L 5036 6510 547020 6430 7 1.0 5.00 6X 5 4 18 52 4 1 5.8 L 5038 65315 547028 6600 7 8 1.0 1.0 6X 5 4 18 52 4 1 5.8 L 5039 63315 547028 6600 7 8 1.0 1.0 6X 5 4 1 15.9 L 5042 6535 547028 6600 7 8 1.0 1.0 6X 5 4 1 1 5.8 L 5039 63315 547028 6600 7 1 1.0 1.00 6X 5 4 1 1 5.8 L 5049 6335 547028 6600 7 1 1.0 1.00 6X 5 4 1 1 5.8 L 5049 6335 547028 6600 7 1 1.0 1.00 6X 5 4 1 1 5.8 L 5049 6335 547028 6600 7 1 1.0 1.00 6X 5 4 1 1 5.8 L 5049 6335 547028 6600 7 1 1.0 1.00 6X 5 4 1 1 5.8 L 5049 6373 54637 5610 6 2.0 15.00 12X 1.0 3 5 12 4 1 1 5.8 L 5048 65769 54665 6400 6 2.0 15.00 12X 1.0 3 5 12 4 1 1 5.8 L 5048 65769 54636 5400 7 1 1.0 1.00 6X 5 5 N 122 4 1 1 5.8 L 5048 65769 54636 5400 6 2.0 15.00 12X 1.0 3 5 12 4 1 1 5.8 L 5048 65731 547020 550 5 1.0 20.00 244 2.0 4 11 10 4 1 . 5.8 L 5048 65731 547020 550 5 2.0 20.00 244 2.0 4 11 10 4 1 . 5.8 L 5048 65731 547020 550 5 2.0 20.00 244 2.0 4 11 10 4 1 . 5.8 L 5048 69731 547020 550 5 2.0 20.00 244 2.0 4 11 10 4 1 . 5.8 L 5059 65935 547029 4725 15 N 1.0 20.2 2.0 20 11 1.0 4 1 . 5.8 L 5059 65935 547029 510 1 1 1.0 50 7X 5 3 11 10 4 1 1 5.8 L 5059 65935 547029 510 1 1 1.0 50 7X 5 3 11 21 9 1 1 5.8 L 5059 65935 547029 5450 51 1 1 1.0 50 7X 5 3 11 21 9 1 1 5.8 L 5059 65935 547029 515 N 1.00 12X 1.0 3 11 31 4 2 5.8 L 5059 65935 547029 515 N 1.00 12X 2.0 3 11 31 4 1 5.8 L 5059 6585 547472 5000 15 N 3.00 12X 2.0 2 11 30 4 1 1 5.8 L 5059 6585 54740 5000 15 N 3.00 12X 2.0 2 11 30 4 1 1 5.8 L 5059 6585 54740 5000 15 N 3.00 12X 2.0 2 11 30 4 1 1 5.8											4			4 1	1				<u></u>
L 5012 69670 597111 4970 15 2.0 22.0 22.1 6 4 1 1 5.8 L 5033 69653 547072 5000 15 3.0 36.00 422.0 2 11 120 4 1 1 5.8 L 5035 69655 547072 5000 15 3.0 36.00 422.0 2 11 15 4 1 5.8 L 5035 69675 547040 5250 6 2.0 30.00 422.0 2 11 15 4 1 5.8 L 5035 696975 547040 5250 6 2.0 30.00 422.0 2 11 55 4 1 5.8 L 5035 69697 547040 5250 6 2.0 30.00 422.0 2 11 55 4 1 5.8 L 5035 69697 547040 5250 6 2.0 30.00 422.0 2 11 55 4 1 5.8 L 5035 69693 6315 547020 6600 7 1.0 5.00 6X 5 4 512 4 1 5.8 L 5036 69834 54703 6600 7 1.0 1.00 6X 5 4 512 4 1 5.8 L 5041 69834 54703 6600 7 1.0 1.00 6X 5 4 512 4 1 5.8 L 5041 69834 54703 6600 7 1.0 1.00 6X 5 4 1 5.8 L 5041 69834 54703 6600 7 1.0 1.00 6X 5 4 1 5.8 L 5041 69834 54703 6600 7 1.0 1.00 6X 5 4 1 5.8 L 5042 6886 5460 7 2 0 6 0 7 1 0 0 1.00 6X 5 5 1 12 4 1 5.8 L 5042 6886 5460 7 0 1 0 0 0 0 22 2 0 0 2 4 2 0 4 1 5.8 L 5042 69834 54703 6600 7 0 1.0 0 6X 5 5 1 1 25 4 1 5.8 L 5042 69834 54703 6600 7 0 1.0 0 6X 5 5 1 12 5 4 1 5.8 L 5042 69834 5466 6700 7 0 1.0 0 6X 5 5 1 12 5 4 1 5.8 L 5045 69733 54696 5700 5 2.0 20.00 244 2.0 4 11 10 4 1 5.8 L 5046 69731 54696 5900 5 1.0 20.00 244 2.0 4 11 0 4 1 5.8 L 5049 69731 546700 5500 5 2.0 220.00 244 2.0 4 11 10 4 1 5.8 L 5049 69731 54700 550 5 2.0 220.00 244 2.0 4 11 10 4 1 5.8 L 5059 69330 54530 610 6 5 2.0 35.00 124 2.0 4 11 10 4 1 5.8 L 5059 69345 54700 550 5 2.0 220.00 244 2.0 4 11 10 4 1 5.8 L 5059 69350 54530 6150 1 1 0.0 1.00 6X 5 3 118 6 4 1 1 5.8 L 5059 6935 54700 550 5 2.0 220.00 244 2.0 4 11 10 4 1 5.8 L 5059 6935 54700 550 6 1 1 0.0 1.0 50 3X 5 2 11 10 4 1 1 5.8 L 5059 6935 54700 550 6 1 1 0 0 1.0 0 52 3 1 13 6 4 1 5.8 L 5059 6935 54700 550 6 1 1 0 0 1.0 2 50 3X 5 2 11 10 4 1 1 5.8 L 5059 6935 54700 550 6 11 1.0 1.00 6X 5 3 18 6 4 1 1 5.8 L 5059 6935 54700 550 6 11 1.0 50 00 122 3.0 2 11 10 4 1 1 5.8 L 5059 6935 547429 4725 15 N 1.00 6X 5 3 118 6 4 1 1 5.8 L 5059 6935 547429 5005 11 2.0 10 00 122 3.0 2 11 10 4 1 1 5.8 L 5059 76149 54740 5200 15 1 N 3.00 122 1.0 2 18 28 4 1 1 5.8 L 5059 76149 54740 5200 15 1 N 3.00																			1
L 5633 69650 54702 5400 15 3.0 22.00 352.0 2 11 20 4 1 1 5.8 L 5634 69650 54702 5600 15 3.0 30.00 427 2.0 2 11 16 4 1 1 5.8 L 5635 69650 54702 5600 15 3.0 30.00 427 2.0 2 11 11 4 1 5.8 L 5635 69657 54704 5250 6 2.0 30.00 427 2.0 2 11 11 4 1 5.8 L 5635 69657 54704 5250 6 2.0 30.00 427 2.0 2 11 11 4 1 5.8 L 5635 69815 547020 6490 7 1.0 5.00 67 5 4 15 1.0 5.8 L 5636 69815 547020 6490 7 1.0 5.00 67 5 4 15 1.0 5.8 L 5646 69815 547020 6490 7 1.0 1.00 67 5 4 15 1.2 4 1 5.8 L 5646 69815 547020 6490 7 1.0 1.00 67 5 4 19 4 1 5.8 L 5647 69815 547020 6490 7 1.0 1.00 67 5 5 N 12 4 1 5.8 L 5642 69845 547020 6490 7 1.0 1.00 67 5 5 N 12 4 1 5.8 L 5642 69845 547020 6400 7 - 8 1.0 1.00 67 5 5 N 12 4 1 5.8 L 5642 69845 547020 6490 7 1.0 1.00 67 5 5 N 12 4 1 5.8 L 5642 69835 547020 6490 7 1.0 1.00 67 5 5 N 12 4 1 5.8 L 5642 69835 5466 6700 7 1.0 1.00 67 5 5 N 12 4 1 5.8 L 5642 69735 54656 6700 5 1.0 20.00 12X 1.0 3 5 12 4 1 5.8 L 5646 69780 54695 5600 5 1.0 20.00 22X 2.0 4 11 10 4 1 5.8 L 5646 69735 546376 5200 5 1.0 20.00 22X 2.0 4 11 10 4 1 5.8 L 5646 69731 54700 560 5 2.0 22.00 224 2.0 4 11 10 4 1 5.8 L 5646 69735 546376 52.00 22.00 224 2.0 4 11 10 4 1 5.8 L 5646 69735 54700 56 5 2.0 22.00 37X 2.0 10 18 43 4 1 5.8 L 5652 7001 54530 610 6 2.0 13.00 62X 1.0 11 13 4 1 5.8 L 5652 7001 54530 6150 11 2.0 3.00 6X 5 3 11 15 4 1 5.8 L 5652 69353 54530 610 11 2.0 3.00 6X 5 3 11 15 4 1 5.8 L 5656 69325 54746 7472 5050 5 2.0 22.00 37X 2.0 10 18 43 4 1 5.8 L 5656 69325 64702 5450 5 1.0 .0 00 2X 2.0 2 11 10 4 1 1 5.8 L 5656 69325 64702 54704 500 11 1.0 .00 3X 5 2 11 10 4 1 1 5.8 L 5656 69325 64702 54704 500 11 1.0 .00 3X 5 2 11 10 4 1 1 5.8 L 5656 69325 64705 54700 12 0.0 12 2.0 7 7 7 81 4 1 5.8 L 5656 69325 547450 5200 15 N 5.00 127 2.0 7 7 7 81 4 1 5.8 L 5657 66395 547450 5200 15 N 5.00 127 2.0 7 7 7 81 4 1 5.8 L 5657 70149 545749 5200 11 2.0 16.00 177 3.0 2 11 33 4 1 5.8 L 5657 70149 545749 5200 11 2.0 16.00 177 3.0 2 11 33 4 1 5.8 L 5657 70149 545749 5200 11 2.0 16.00 177 3.0 2 11 33 4 1 5.8 L 5657 70149											2			4 2	1				1
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $											2			4					
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$														· -					5
L 5036 69677 547640 5250 5 L 5037 69809 5310 5 L 5037 69809 5310 5 L 5038 69815 547020 6690 7 L 5039 69315 547020 6600 7 L 5039 69315 547020 6600 7 L 5049 69315 547020 6600 7 L 5040 69834 547020 6600 7 L 5041 69355 547024 6600 7 L 5042 69355 547024 6600 7 L 5043 69350 546915 6400 7 L 5043 69350 546915 6400 7 L 5049 69750 160 6 2.0 120 121 1.0 3 5 10 4 L 5048 69760 546956 9200 54 1.0 20.00 122 1.0 3 5 10 4 L 5049 69715 54700 5500 5 2.0 20.00 248 2.0 4 11 10 4 1 5.8 L 5049 69715 54700 5500 5 2.0 20.00 248 2.0 4 11 10 4 1 5.8 L 5049 69715 54700 5500 5 2.0 20.00 248 2.0 4 11 10 4 1 5.8 L 5049 69715 54700 5500 5 2.0 20.00 228 2.0 4 11 10 4 1 5.8 L 5054 69515 54700 5500 5 2.0 20.00 228 2.0 4 11 10 4 1 5.8 L 5059 69515 547020 5850 5 2.0 2500 358 2.0 11 1.0 18 43 4 1 5.8 L 5052 70019 54510 6000 11 2.0 3.0 68 5 3 18 6 4 1 5.8 L 5053 69815 547429 4725 15 N 1.00 68 1.0 3 11 24 1 5.8 L 5055 69815 547429 4725 15 N 1.00 68 1.0 3 11 31 4 1 5.8 L 5055 69815 547429 4725 15 N 1.00 68 1.0 3 11 31 4 1 5.8 L 5055 69825 547429 4725 15 N 1.00 68 1.0 3 18 36 4 1 5.8 L 5055 69825 547429 4725 15 N 1.00 68 1.0 3 18 36 4 1 5.8 L 5055 69825 547429 4725 15 N 1.00 68 1.0 3 18 36 4 1 5.8 L 5055 69825 547429 4725 15 N 1.00 68 1.0 3 18 36 4 1 5.8 L 5055 69825 547429 4725 15 N 1.00 68 1.0 3 18 39 4 1 5.8 L 5054 68920 547429 4725 15 N 1.00 68 1.0 3 18 39 4 1 5.8 L 5054 68920 547429 4725 15 N 1.00 68 1.0 3 18 39 4 1 5.8 L 5054 68999 547429 4725 15 N 1.00 72 2.0 7 7 7 8 4 1 1 5.8 2 10 10 4 1 5.8 2 10 10 4											2			4 1	1				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$											2			<u> </u>					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $																			ļ
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	· · ·	Ē					7				4			4 1	1				.
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		L					7				. 4			4 1	1				
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		Ł									4								
L 5043 6932 546971 6600 7 1.0 1.0 6x 5 7 11 25 4 1 1 5.6 L 5744 6920 546965 6400 6 2.0 15.00 12X 1.0 3 5 10 4 1 1 5.8 L 5645 69783 546975 6100 6 2.0 15.00 12X 1.0 3 5 12 4 1 1 5.8 L 5645 69783 546975 5700 5 2.0 20.00 24X 2.0 4 11 10 4 1 1 5.8 L 5647 69771 54735 5700 5 2.0 20.00 24X 2.0 4 11 10 4 1 1 5.8 L 5649 69731 547000 5600 5 2.0 20.00 24X 2.0 4 11 10 4 1 1 5.8 L 5649 69731 547000 5600 5 2.0 25.00 35X 2.0 10 18 43 4 1 1 5.8 L 5652 7601 54503 6150 11 2.0 3.00 6X 5 3 11 21 4 1 5.8 L 5652 7601 545303 6150 11 1.0 450 3X 5 3 11 21 4 1 5.8 L 5654 6980 545323 6400 11 1.0 560 3X 5 2 11 10 4 1 5.8 L 5654 6980 54523 6400 11 1.0 6X 5 3 11 21 4 1 5.8 L 5655 69855 547429 4725 15 N 1.00 6X 1.0 3 13 11 4 1 5.8 L 5654 6980 545295 6390 11 1.0 600 12 2X 1.0 3 10 316 4 1 5.8 L 5655 69855 547429 4725 15 N 1.00 6X 1.0 3 13 11 4 1 5.8 L 5657 68945 547472 5080 15 N 1.00 6X 1.0 3 13 11 4 1 5.8 L 5657 69845 547472 5080 15 N 1.00 6X 1.0 3 18 314 4 1 5.8 L 5657 69855 547429 4725 15 N 1.00 6X 1.0 3 18 314 4 1 5.8 L 5657 69855 547429 4725 15 N 1.00 6X 1.0 3 18 316 4 1 5.8 L 5657 69855 547429 4725 15 N 1.00 6X 1.0 3 18 316 4 1 5.8 L 5657 69855 547472 5080 15 N 3.00 12X 1.0 2 18 28 4 1 1 5.8 L 5658 54573 54742 5000 15 N 3.00 12X 1.0 2 18 28 4 1 1 5.8 L 5659 68599 547492 5000 15 N 3.00 12X 1.0 2 18 28 4 1 1 5.8 L 5659 68599 547492 5000 15 N 3.00 12X 1.0 2 18 39 4 1 5.8 L 5659 68599 547492 5000 15 N 5.00 12X 2.0 7 177 81 4 1 1 5.8 L 5657 6859 547482 4990 15 N 5.00 12X 2.0 7 177 81 4 1 1 5.8 L 5657 76454 54760 55000 11 2.0 5.00 12X 2.0 7 177 81 4 1 1 5.8 L 5657 76454 54760 5500 11 2.0 5.00 12X 2.0 4 17 41 4 1 5.8 L 5657 76454 54760 5500 11 2.0 5.00 12X 2.0 7 177 81 4 1 1 5.8 L 5657 764575 5200 11 2.0 5.00 12X 2.0 4 11 133 4 1 1 5.8 L 5657 764575 5200 11 2.0 5.00 12X 2.0 7 177 81 4 1 1 5.8 L 5667 70140 545740 5200 11 2.0 15.00 3X 2.0 2 11 30 4 1 1 5.8 L 5667 70140 545740 5200 11 2.0 15.00 3X 2.0 2 11 30 4 1 1 5.8 L 5668 70140 545740 5200 11 2.0 15.00 3X 2.0 2 11 30 4 1 1 5.8 L 5668 70149 545740 5200 11 2.0 15		L	5041	69355	547004	0093	8	1.0	-50	<u>3x 5</u>	4	11		41	1				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		L		69846	546988	6700	7	1.0	1.00	6X 5	5	N	1.2	4 1	1	5.8			Ì
$ \begin{bmatrix} L & 5C45 & 69783 & 546975 & 6100 & 6 & 2.0 & 15.00 & 12X 1.0 & 3 & 5 & 12 & 4 & 1 & 1 & 5.8 \\ L & 5C46 & 69760 & 546969 & 5900 & 5 & 1.0 & 20.00 & 24X 2.0 & 4 & 11 & 10 & 4 & 1 & 1 & 5.8 \\ - 5C47 & 59735 & 546376 & 5700 & 5 & 2.0 & 20.00 & 24X 2.0 & 4 & 11 & 10 & 4 & 1 & 1 & 5.8 \\ - L & 5C48 & 69731 & 547020 & 5600 & 5 & 2.0 & 20.00 & 24X 2.0 & 4 & 11 & 10 & 4 & 1 & 1 & 5.8 \\ - 5C48 & 69731 & 547020 & 5450 & 5 & 2.0 & 20.00 & 24X 2.0 & 4 & 11 & 10 & 4 & 1 & 1 & 5.8 \\ - 5C48 & 69731 & 547020 & 5450 & 5 & 2.0 & 25.00 & 36X 2.0 & 10 & 18 & 43 & 4 & 1 & 1 & 5.8 \\ - 5C48 & 69731 & 547020 & 5450 & 5 & 2.0 & 25.00 & 36X 2.0 & 10 & 18 & 43 & 4 & 1 & 1 & 5.8 \\ - 5C51 & 7C039 & 545303 & 6000 & 11 & 2.0 & 3.00 & 6X & 5 & 3 & 11 & 15 & 4 & 1 & 1 & 5.8 \\ - 5C52 & 7C210 & 545303 & 6150 & 11 & 1.0 & 1.00 & 6X & 5 & 3 & 11 & 15 & 4 & 1 & 1 & 5.8 \\ - 5C52 & 7C210 & 545303 & 6150 & 11 & 1.0 & -50 & 3X & 5 & 3 & 11 & 21 & 4 & 1 & 5.8 \\ - 5C54 & 69980 & 545295 & 6390 & 11 & 1.0 & -50 & 3X & 5 & 2 & 11 & 10 & 4 & 1 & 1 & 5.8 \\ - 5C56 & 69835 & 547429 & 4725 & 15 & N & 1.00 & 6X 1.0 & 3 & 13 & 11 & 4 & 1 & 1 & 5.8 \\ - 5C56 & 69835 & 547429 & 4725 & 15 & N & 1.00 & 6X 1.0 & 3 & 18 & 11 & 4 & 1 & 1 & 5.8 \\ - 5057 & 68645 & 547447 & 5080 & 15 & N & 3.00 & 12X 1.0 & 2 & 18 & 28 & 4 & 1 & 1 & 5.8 \\ - 5057 & 68645 & 547449 & 4500 & 15 & N & 3.00 & 12X 1.0 & 2 & 18 & 28 & 4 & 1 & 1 & 5.8 \\ - 5050 & 68585 & 547431 & 4960 & 15 & N & 5.00 & 12X 2.0 & 4 & 17 & 41 & 4 & 1 & 1 & 5.8 \\ - 5060 & 68585 & 547431 & 4960 & 15 & N & 5.00 & 12X 2.0 & 7 & 17 & 81 & 4 & 1 & 1 & 5.8 \\ - 5062 & 70180 & 545738 & 5500 & 11 & 2.0 & 15.00 & 3X 2.0 & 2 & 11 & 100 & 4 & 1 & 1 & 5.8 \\ - 5063 & 70149 & 545740 & 5200 & 11 & 2.0 & 15.00 & 3X 2.0 & 2 & 11 & 100 & 4 & 1 & 1 & 5.8 \\ - 5064 & 70180 & 545738 & 5500 & 11 & 2.0 & 15.00 & 3X 2.0 & 2 & 11 & 100 & 4 & 1 & 1 & 5.8 \\ - 5064 & 70180 & 545738 & 5500 & 11 & 2.0 & 15.00 & 3X 2.0 & 2 & 11 & 100 & 4 & 1 & 1 & 5.8 \\ - 5064 & 70180 & 545738 & 5500 & 11 & 2.0 & 15.00 & 3X 2.0 & 2 & 11 & 100 & 4 & 1 & 1 & 5.8 \\ - 506$											7			4. 1	1	5.8			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$											3			4 1	1				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1																		.
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	· ·	L									4			4 1,	1				.
L 5049 69715 547020 5450 5 2.0 25.00 36X 2.0 10 18 43 4 1 1 5.8 L 5050 69691 547092 5350 6 2.0 30.00 42X 2.0 8 11 31 4 1 1 5.8 L 5051 70039 54510 6000 11 2.0 3.00 6X 5 3 11 15 4 1 1 5.8 L 5052 70010 545303 6150 11 1.0 1.00 6X 5 3 18 6 4 1 1 5.8 L 5053 69966 545225 6300 11 1.0 50 3X 5 2 11 10 4 1 1 5.8 L 5055 69835 547429 4725 15 N 1.00 6X 1.0 3 13 11 4 1 5.8 L 5055 69835 547429 4725 15 N 1.00 6X 1.0 3 18 11 4 1 5.8 L 5055 69835 547429 4725 15 N 1.00 6X 1.0 3 18 11 4 1 5.8 L 5055 69835 547429 4725 15 N 1.00 6X 1.0 3 18 11 4 1 5.8 L 5055 69835 547429 4725 15 N 3.00 12X 1.0 2 18 28 4 1 1 5.8 L 5059 68609 547490 5000 15 I.0 N 3X 4.0 9 11 31 4 2 5.8 L 5059 6855 547431 4960 15 N 3.00 12X 1.0 3 18 39 4 1 5.8 L 5059 6855 547431 4960 15 N 5.00 12X 2.0 4 17 41 4 1 5.8 L 5051 7013 545755 5200 11 2.0 5.00 12X 2.0 4 17 41 4 1 5.8 L 5061 7013 545755 5200 11 2.0 5.00 12X 2.0 7 17 81 4 1 5.8 L 5062 70162 545760 5500 11 2.0 12X 2.0 2 18 39 4 1 5.8 L 5063 70149 545740 5200 11 2.0 12X 2.0 2 11 10 4 1 5.8 L 5063 70149 545740 5200 11 2.0 12X 2.0 2 11 10 4 1 5.8 L 5064 70180 545738 5500 11 2.0 12X 2.0 2 13 39 4 1 5.8 L 5064 70180 545738 5500 11 2.0 12X 2.0 2 13 39 4 1 5.8 L 5064 70180 545738 5500 11 2.0 12X 2.0 2 13 39 4 1 5.8 L 5064 70180 545738 5500 11 2.0 12X 2.0 2 13 39 4 1 5.8 L 5064 70180 545738 5500 11 2.0 12X 2.0 2 13 39 4 1 5.8 L 5064 70180 545738 5500 11 2.0 12X 2.0 2 13 39 4 1 5.8 L 5064 70180 545738 5500 11 2.0 12X 2.0 2 13 39 4 1 5.8 N 5.0 12X 2.0 2 13 39 4 1 5.8 N 5.0 12X 2.0 2 13 39 4 1 5.8 N 5.0 12X 2.0 2 13 39 4 1 5.8 N 5.8 N 5.0 12X 2.0 2 13 39 4 1 1 5.8 N 5.8 N 5.0 12X 2.0 2 13 39 4 1 1 5.8 N 5.8		<u> </u>												41	<u>1</u>			·····	
L 5050 69691 547092 5350 6 2.0 30.00 42X 2.0 8 11 31 4 1 5.8 L 5051 70039 545310 6000 11 2.0 3.00 6x 5 3 11 15 4 1 1 5.8 L 5051 70039 545303 6150 11 1.0 1.00 6x 5 3 18 6 4 1 5.8 L 5053 69986 545235 6390 11 1.0 .50 3X 5 3 11 10 4 1 1 5.8 L 5054 69980 545295 6390 11 1.0 .50 3X 5 2 11 10 4 1 1 5.8 L 5056 69822 547472 94725 15 N 1.00 6X 1.0 3 18 16 4 1 1 5.8 L 5057 68645 5	1													4 1					
L \$051 70039 \$45310 6000 11 2.0 3.00 6X 5 3 11 15 4 1 1 5.8 L \$052 7C10 \$45303 6150 11 1.0 1.00 6X 5 3 18 6 4 1 1 5.8 L \$053 69986 \$45323 6400 11 1.0 .50 3X 5 2 11 10 4 1 1 5.8 L \$054 69980 \$45295 6390 11 1.0 .50 3X 5 2 11 10 4 1 1 5.8 L \$055 69982 \$47464 4650 15 N 1.00 6X 1.0 3 13 11 4 1 1 5.8 L \$057 69845 \$47472 \$15 N 1.00 6X 1.0 3 18 30 4 1 5.8 L \$057 69845 \$474730 \$000 15 N 3.00 12X 1.0 2 18 28 4 1 1 5.8 L \$059 68599 \$47490 \$000 15 N 3.00 12X 1.0 2 18 38 4 1 5.8 L \$059 68599 \$47490 \$000 15 N 3.00 12X 1.0 3 18 39 4 1 5.8 L \$059 68599 \$47482 4990 15 N 3.00 12X 2.0 4 17 41 4 1 5.8 L \$056 6855 \$47481 4960 15 N 5.00 12X 2.0 4 17 41 4 1 5.8 L \$056 70149 \$45755 \$200 11 2.0 \$5.00 12X 2.0 7 17 81 4 1 5.8 L \$063 70149 \$45740 \$200 11 2.0 15.00 3X 2.0 2 11 10 4 1 5.8 L \$064 70180 \$45738 \$500 11 2.0 15.00 3X 2.0 2 13 39 4 1 5.8 L \$064 70180 \$45738 \$500 11 2.0 15.00 3X 2.0 2 13 39 4 1 5.8 L \$064 70180 \$45738 \$500 11 2.0 15.00 3X 2.0 2 13 39 4 1 5.8 L \$064 70180 \$45738 \$500 11 2.0 15.00 3X 2.0 2 13 39 4 1 5.8 L \$064 70180 \$45738 \$500 11 2.0 15.00 3X 2.0 2 13 39 4 1 5.8 L \$064 70180 \$45738 \$500 11 2.0 15.00 3X 2.0 2 13 39 4 1 5.8 L \$064 70180 \$45738 \$500 11 2.0 15.00 3X 2.0 2 13 39 4 1 5.8 L \$064 70180 \$45738 \$500 11 2.0 15.00 3X 2.0 2 13 39 4 1 5.8 L \$064 70180 \$45738 \$500 11 2.0 15.00 3X 2.0 2 13 39 4 1 5.8 L \$064 70180 \$45738 \$500 11 2.0 15.00 3X 2.0 2 13 39 4 1 5.8 L \$064 70180 \$45738 \$500 11 2.0 15.00 3X 2.0 2 13 39 4 1 5.8 L \$064 70180 \$45738 \$500 11 2.0 15.00 3X 2.0 2 13 39 4 1 5.8 L \$064 70180 \$45738 \$500 11 2.0 16.00 12X 3.0 2 13 39 4 1 5.8 L \$064 70180 \$45738 \$500 11 2.0 16.00 12X 3.0 2 13 39 4 1 5.8 L \$064 70180 \$45738 \$500 11 2.0 16.00 12X 3.0 2 13 39 4 1 5.8 L \$064 70180 \$45738 \$500 11 2.0 16.00 12X 3.0 2 13 39 4 1 5.8 L \$064 70180 \$45738 \$500 11 2.0 16.00 12X 3.0 2 13 39 4 1 5.8 L \$064 70180 \$45738 \$500 11 2.0 16.00 12X 3.0 2 13 39 4 1 5.8 L \$064 70180 \$45738 \$500 11 2.0 16.00 12X 3.0 2 13 39 4 1 5.8 L \$064 70180 \$45738 \$500 11 2.0 16.00 12X 3.0 2 13 39 4 1 4 5.8 L \$064 70180														4 <u>1</u>	1				
L 5052 70010 545303 6150 11 1.0 1.00 6X 5 3 18 6 4 1 1 5.8 L 5053 69365 545323 6400 11 1.0 .50 3X 5 3 11 21 4 1 1 5.8 L 5054 69920 545295 6390 11 1.0 .50 3X 5 2 11 10 4 1 1 5.8 L 5055 69325 547429 4725 15 N 1.00 6X 1.0 3 13 11 4 1 1 5.8 L 5055 69322 547464 4650 15 N 1.00 6X 1.0 3 16 36 4 1 1 5.8 L 5057 64545 547472 5000 15 N 3.00 12X 1.0 2 18 28 4 1 1 5.8 L 5059 68599 547490 5000 15 1.0 N 3X 4.0 9 11 31 4 2 2 5.8 L 5059 68599 547431 4960 15 N 3.00 12X 1.0 3 18 39 4 1 1 5.8 L 5051 70139 545755 5200 11 2.0 5.00 12X 2.0 4 17 41 4 1 5.8 L 5062 70162 545760 5500 11 2.0 5.00 12X 2.0 7 17 81 4 1 1 5.8 L 5064 70180 545738 5500 11 2.0 15.00 3X 2.0 2 11 10 4 1 1 5.8 C 5064 70180 545738 5500 11 2.0 16.00 12X 3.0 2 18 39 4 1 1 5.8 C 5064 70180 545738 5500 11 2.0 15.00 3X 2.0 2 18 39 4 1 1 5.8 C 5064 70180 545738 5500 11 2.0 16.00 12X 3.0 2 18 39 4 1 1 5.8 C 5064 70180 545738 5500 11 2.0 16.00 12X 3.0 2 18 39 4 1 1 5.8 C 5064 70180 545738 5500 11 2.0 15.00 3X 2.0 2 18 39 4 1 1 5.8 C 5064 70180 545738 5500 11 2.0 15.00 3X 2.0 2 18 39 4 1 1 5.8 C 5064 70180 545738 5500 11 2.0 15.00 3X 2.0 2 18 39 4 1 1 5.8 C 5064 70180 545738 5500 11 2.0 16.00 12X 3.0 2 18 39 4 1 1 5.8 C 5064 70180 545738 5500 11 2.0 15.00 3X 2.0 2 18 39 4 1 1 5.8 C 5064 70180 545738 5500 11 2.0 15.00 3X 2.0 2 18 39 4 1 1 5.8 C 5064 70180 545738 5500 11 2.0 15.00 3X 2.0 2 18 39 4 1 1 5.8 C 5064 70180 545738 5500 11 2.0 16.00 12X 3.0 2 18 39 4 1 1 5.8 C 5064 70180 545738 5500 11 2.0 16.00 12X 3.0 2 18 39 4 1 1 5.8 C 5064 70180 545738 5500 11 2.0 16.00 12X 3.0 2 18 39 4 1 1 5.8 C 5064 70180 545738 5500 11 2.0 16.00 12X 3.0 2 18 39 4 1 1 5.8 C 5064 70180 545738 5500 11 2.0 16.00 12X 3.0 2 18 39 4 1 1 5.8 C 5064 70180 545738 5500 11 2.0 16.00 12X 3.0 2 18 39 4 1 1 5.8 C 5064 70180 545738 5500 11 2.0 16.00 12X 3.0 2 18 39 4 1 1 5.8 C 5064 70180 545738 5500 11 2.0 16.00 12X 3.0 2 18 39 4 1 1 5.8 C 5064 70180 545738 5500 11 2.0 16.00 12X 3.0 2 18 39 4 1 1 5.8 C 5064 70180 545738 5500 11 2.0 16.00 12X 3.0 2 18 39 4 1 1 5.8 C 5064 70180														4 1	1				
L 5054 69920 545295 6390 11 1.0 .50 3X 5 2 11 10 4 1 1 5.8 L 5055 69835 547429 4725 15 N 1.00 6X 1.0 3 13 11 4 1 1 5.8 L 5056 69822 547464 4650 15 N 1.00 6X 1.0 3 18 36 4 1 1 5.8 L 5057 68545 547472 5060 15 N 3.00 12X 1.0 2 18 28 4 1 1 5.8 L 5058 68609 547492 5000 15 N 3.00 1X 1.0 3 18 39 4 1 1 5.8 L 5060 68585 547431 4960 15 N 5.00 12X 2.0 4 17 41 4 1 5.8 L 5061														-					
L 5054 69980 545295 6390 11 1.0 .50 3X 5 2 11 10 4 1 1 5.8 L 5055 69835 547429 4725 15 N 1.00 6X 1.0 3 13 11 4 1 1 5.8 L 5056 69822 547464 4650 15 N 1.00 6X 1.0 3 18 36 4 1 1 5.8 L 5057 69645 547472 5060 15 N 3.00 12X 1.0 2 18 28 4 1 1 5.6 L 5059 68609 547492 5000 15 N 3.00 12X 1.0 3 18 39 4 1 1 5.8 L 5060 68585 547431 4960 15 N 5.00 12X 2.0 4 17 41 4 1 1 5.8 L		L									3			4 1	1				
L 5055 59835 547429 4725 15 N 1.00 6X 1.0 3 13 11 4 1 1 5.8 L 5056 69822 547464 4650 15 N 1.00 6X 1.0 3 18 36 4 1 1 5.8 L 5057 68645 547472 5080 15 N 3.00 12X 1.0 2 18 28 4 1 1 5.8 L 5058 68609 547490 5000 15 N 3.00 12X 1.0 2 18 28 4 1 1 5.8 L 5059 68599 547430 5000 15 N 3.00 12X 2.0 4 17 41 4 1 1 5.8 L 5060 68585 547431 4960 15 N 5.00 12X 2.0 7 17 81 4 1 1 5.8 L		L		69980	545295	6390	11	1.0	.50	3X 5	2	11		4 1	1	5.8			
L 5057 68545 547472 5080 15 N 3.00 12X 1.0 2 18 28 4 1 1 5.8 L 5058 68609 547490 5000 15 1.0 N 3X 4.0 9 11 31 4 2 2 5.8 L 5059 68599 547482 4990 15 N 3.00 1X 1.0 3 18 39 4 1 1 5.8 L 5060 68585 547491 4960 15 N 5.00 12X 2.0 4 17 41 4 1 5.8 L 5061 70139 545755 5200 11 2.0 5.00 12X 2.0 7 17 81 4 1 1 5.8 L 5062 70162 545760 5500 11 2.0 5.00 12X 2.0 8 11 139 4 1 5.8 L 5063 70149 545740 5200 11 2.0 15.00 3X 2.0 2 11 10 4 1 1 5.8 L 5064 70180 545738 5500 11 2.0 16.00 12X 3.0 2 18 39 4 1 1 5.8 S000 12X 3.0 2 18 39 4 1 1 5.8 S000 12X 3.0 2 18 39 4 1 1 5.8 L 5064 70180 545738 5500 11 2.0 16.00 12X 3.0 2 18 39 4 1 1 5.8		L		69835			15		1.00			13	11	4 1					
L 5058 £8609 547490 5000 15 1.0 N 3X 4.0 9 11 31 4 2 2 5.8 L 5059 68599 547432 4990 15 N 3.00 1X 1.0 3 18 39 4 1 1 5.8 L 5060 68585 547431 4960 15 N 5.00 12X 2.0 4 17 41 4 1 1 5.8 L 5061 76139 545755 5200 11 2.0 5.00 12X 2.0 7 17 81 4 1 1 5.8 L 5062 70162 545760 5500 11 2.0 5.00 12X 2.0 8 11 139 4 1 1 5.8 L 5063 76149 545740 5200 11 2.0 15.00 3X 2.0 2 11 10 4 1 1 5.3 L 5064 70180 545738 5500 11 2.0 16.00 12X 3.0 2 18 39 4 1 1 5.8											3			4 1	1		· · · · · · · · · · · · · · · · · · ·]
L 5059 68599 547432 4990 15 N 3.00 1X 1.0 3 18 39 4 1 5.8 L 5060 68585 547431 4960 15 N 5.00 12X 2.0 4 17 41 4 1 1 5.8 L 5061 70139 545755 5200 11 2.0 5.00 12X 2.0 7 17 81 4 1 1 5.8 L 5062 70142 545750 5500 11 2.0 5.00 12X 2.0 7 17 81 4 1 1 5.8 L 5063 70149 545740 5200 11 2.0 15.00 3X 2.0 2 11 10 4 1 1 5.8 L 5063 70149 545738 5500 11 2.0 16.00 12X 3.0 2 18 39 4 1 1 5.8 L <		_																	
L 506D 68585 547431 4960 15 N 5.00 12X 2.0 4 17 41 4 1 1 5.8 L 5061 76139 545755 5200 11 2.0 5.00 12X 2.0 7 17 81 4 1 1 5.8 L 5662 70162 545760 5500 11 2.0 5.00 12X 2.0 8 11 139 4 1 5.8 L 5663 76149 545740 5200 11 2.0 15.00 3X 2.0 2 11 10 4 1 1 5.3 L 5664 70180 545738 5500 11 2.0 10.00 12X 3.0 2 18 39 4 1 5.8											9			4 2	2				
L 5061 70139 545755 5200 11 2.0 5.00 12X 2.0 7 17 81 4 1 1 5.8 L 5062 70162 545760 5500 11 2.0 5.00 12X 2.0 8 11 139 4 1 5.8 L 5063 70149 545740 5200 11 2.0 15.00 3X 2.0 2 11 10 4 1 1 5.8 L 5064 70180 545738 5500 11 2.0 10.00 12X 3.0 2 18 39 4 1 1 5.8											3			4 1	1				
L 5062 70162 545760 5500 11 2.0 5.00 12X 2.0 8 11 133 4 1 1 5.8 L 5063 70149 545740 5200 11 2.0 15.00 3X 2.0 2 11 10 4 1 1 5.3 L 5064 70180 545738 5500 11 2.0 10.00 12X 3.0 2 18 39 4 1 1 5.8											4			-			•		
L 5063 70149 545740 5200 11 2.0 15.00 3X 2.0 2 11 10 4 1 1 5.9 L 5064 70180 545738 5500 11 2.0 10.00 12X 3.0 2 18 39 4 1 1 5.8														4 1	1				
L 5064 70180 545738 5500 11 2.0 10.00 12x 3.0 2 18 39 4 1 1 5.8		<u>├</u>									<u> </u>			.9 i	<u>i</u>				
۲. · [گ																		ъ	
		-	5.01		5.5750	55.6	••	2.00				10		• •	•			125	1
																	** ** ***	· · · · · · · · · · · · · · · · · · ·	1
																			İ
																			_

ample Numbers	General Location	Date 2	Additional Information
W1 - W17	Grizzly Creek	10 - 8 - 70	, <u>, , , , , , , , , , , , , , , ,</u>
G1 - G10	NE side of W. Castle R. at SW end of Barnaby Ridge	18 - 8 - 70	
$J^{1} - J^{5}$	NE side of W. Castle R. at SW end of Barnaby Ridge	18 - 8 - 70	
J21 – J26	W side of S. Castle R. E of Lys Ridge	19 - 8 - 70	
J7 - J10	W side of S. Castle R. E of Lys Ridge	20 - 8 - 70	
2	W side of S. Castle R. on Lys Ridge	19 - 8 - 70	
2A	W side of W. Castle R. near S end	23 - 8 - 70	
,5,6	NE side of W. Castle R. near SW end	18 - 8 - 70	
7 - 36	W side of W. Castle R. near S end	24 - 8 - 70	
37 - 43	W side of W. Castle R. E of Mid. Koot. Pass	25 - 8 - 70	
44 - 47	S side Scarpe Cr. N of Jutland Mt.	26 - 8 - 70	
48 - 53	Trib. on W side of Gardiner Cr.	26 - 8 - 70	
54 - 72	Trib. on S side of Carbondale R. N of Mt. McCarty	30 - 8 - 70	
73 - 89	NW side of Scarpe Cr.	31 - 8 - 70	
90 - 105	W side of W. Castle R. N of Mid. Koot. Pass	1 - 9 - 70	· · · · · · · · · · · · · · · · · · ·
106 - 110	NW side of Scarpe Cr.	2 - 9 - 70	
111 - 124	S side of Yarrow Cr.	4 - 9 - 70	· · · · ·
201 - 206	E side of W. Castle R. at S end	23 - 8 - 70	#203 and #206 – trickle
207 - 217	E side of W. Castle R. SW of Ruby Lake	24 - 8 - 70	#209 – very small trickle, #210 – small trickle
218 - 224	E side of W. Castle R. at S end	25 - 8 - 70	
225 - 235	Head of Gardiner Cr.	27 - 8 - 70	[#] 229 – trickie
242 - 253	Jutland Br.	31 - 8 - 70	[#] 252 – trickle
254 - 257	W side of W. Castle R. N of Mid. Koot. Pass	1 - 9 - 70	[#] 255, [#] 256, and [#] 257 - seepage
259 - 262	W side of W. Castle R. N of Mid. Koot. Pass	1 - 9 - 70	
263 - 265	W side of S. Castle R. S of Scarpe Cr.	2 - 9 - 70	
301 - 306	S side of Drywood Cr.	30 - 9 - 70	#304 - seepage
400 - 412	N side Mid. Koot. Pass	1 - 9 - 70	[#] 404 – minute trickle

ample Number	s General Location	Date	Additional Information
413 - 433	SE side of Drywood Mt.	9 - 9 - 70	[#] 417 – malachite in place a short distance to east; [#] 420 – trickle;
		н. Настрания Настрания	#425 – 5 ft. quartzite bed with Cu minerals
434 - 441	S side of S. Drywood Cr.	10 - 10 - 70	[#] 435 and [#] 436 – trickle
442 - 444	N side of S. Drywood Cr.	10 - 10 - 70	· · · · · · · · · · · · · · · · · · ·
600 - 619	Suicide Cr. W side of W. Castle R.	23 - 8 - 70	[#] 612 – pool in stream
620 - 621	W. Castle R.	23 - 8 - 70	#620 – from old well casing
622	NW side of Scarpe Cr.	26 - 8 - 70	flowing seismic shot hole
623 - 636	W side of Scarpe Cr.	26 - 8 - 70	#628 – braided stream; #630 – braided stream
800 - 809	W side of W. Castle R. S of Suicide Cr.	25 - 8 - 70	[#] 808 — slow seep [.]
810 - 830	Head of Syncline Br.	26 - 8 - 70	
831 - 833	E side of Gardiner Cr.	27 - 8 - 70	
834 - 842	Grizzly Cr.	30 - 8 - 70	
844	Grizzly Cr.	30 - 8 - 70	
845 - 850	NW side of Scarpe Cr. from SE end of Lys Ridge	31 - 8 - 70	#850 – lake 300' x 150'
851 - 856	Grizzly Cr.	31 - 8 - 70	#851 – lake 450' x 250'; #855 – see in nearly dry stream bed
857 - 8 61	W side of W. Castle R. E of Mt. Haig	1 - 9 - 70	
862 - 871	S side of Spionkop Cr.	7 - 9 - 70	#868 – pool in dry stream bed
872 - 882	N side of Spionkop Cr.	9 - 9 - 70	#878 – runoff
883 - 892	N side of Spionkop Cr.	10 - 9 - 70	·
892 - 896	NE end of Drywood Mt.	15 - 9 - 70	#892 – near Shell Waterton #19
897 - 904	NW side of Pincher Cr.	16 - 9 - 70	#898 – no cap liner
905 - 914	N side of Drywood Mt.	17 - 9 - 70	
915 - 932	Blind Canyon between Yarrow and Spionkop Creeks	18 - 9 - 70	
933 - 935	N side of Pincher Cr. S of Prairie Bluff	19 - 9 - 70	

HALFERDAN

ASSOCIATES LTD.

Sample Numbers	General Location	Date	Additional Information
936 - 941	N side of Spionkop Cr.	19 - 9 - 70	
942 - 958	Head of Yarrow Cr.	20 - 9 - 70	#945 – lake 300' x 500'
959 - 967	Head of S. Drywood Cr.	20 - 9 - 70	
968 - 991	Head of Drywood Cr.	21 - 9 - 70	[#] 968 – lake 150' x 160'
992 - 996	NW side of Pincher Cr. from Victoria Pk.	23 - 9 - 70	#995 – from bottom of basic intrusive
997 - 1011	SE side of Pincher Cr. and head of Pincher Cr.	24 - 9 - 70	
1012 - 1022	Head of Whitney Cr.	25 - 9 - 70	
1023 - 1032	E side of Mill Cr.	26 - 9 - 70	#1025 - non-organic,ice where water seeps from cliff
1033 - 1045	Head of Gardiner Cr.	27 - 9 - 70	
1046 - 1059	E side of Gardiner Cr.	28 - 9 - 70	[#] 1053 – mud hole; [#] 1054 – streamlet
1060 - 1066	Head of Grizzly Cr.	29 - 9 - 70	
1067 - 1068	E side of W. Castle R. SW of Ruby Lake	30 - 9 - 70	
1070 - 1077	E side of W. Castle R. SW of Ruby Lake	30 - 9 - 70	#1072 – malachite float
1085 - 1089	NW side of Syncline Br.	4 - 10 - 70	
1090 - 1104	Head of W. Castle R.	8 - 10 - 70	•
1105 - 1110	SW of W. Castle R. E of Mid. Koot. Pass	9 - 10 - 70	[#] 1108 – lake 200' x 150'
1111 - 1118	NW side of Scarpe Cr.	13 - 10 - 70	#1115 – drip only
1119 - 1122	S side of Scarpe Cr.	13 - 10 - 70	
1123 - 1124	N side of Carbondale R.	14 - 10 - 70	
1125	W side of Gardiner Cr.	14 - 10 - 70	
1126 - 1128	E side of Gardiner Cr.	14 - 10 - 70	
1129 - 1135	E side of Grizzly Cr.	15 - 10 - 70	
1136 - 1155	Head of Jutland Br .	16 - 10 - 70	
1156 - 1160	E side of Flathead R. NW of Pollock Cr.	19 - 10 - 70	
1161 - 1167	Head of Pollock Cr.	20 - 10 - 70	
1168 - 1177	Head of Pollock Cr.	22 - 10 - 70	
1178 - 1187	W side of Castle R. N of Ranger station	26 - 10 - 70	#1182 – not flowing
2000 - 2012	N side of Pincher Cr. S of Prairie Bluff	16 - 9 - 70	

٠.

ALFERDAHL & ASSOCIATES LTD.

Sample Numbers	General Location	Date	Additional Information
2013 - 2026	N side of Drywood Cr. at SE end of Pincher Ridge	17 - 9 - 70	#2020 – malachite and azurite in quartz
2027 - 2031	Blind Canyon between Yarrow and Spionkop Creeks	18 - 9 - 70	
2040	NW side of Yarrow Cr. S of Blind Canyon	19 - 9 - 70	seepage
2041 - 2043	NW side of S. Drywood Cr. from Drywood Mt.	19 - 9 - 70	
2044 - 2054	S side of Yarrow Cr.	20 - 9 - 70	#2052 - seepage
2055 - 2059	N side of S. Drywood Cr.	21 - 9 - 70	
2060 - 2066	S side of Drywood Cr.	21 - 9 - 70	
2070 - 2075	N side of Pincher Cr. from Victoria Pk.	23 - 9 - 70	
2076 - 2090	Little Pincher Cr. on N side of Pincher Ridge	24 - 9 - 70 °	
2091 - 2102	Head of Whitney Cr. SW of Prairie Bluff	25 - 9 - 70	
2103 - 2112	NW side of Prairie Bluff	26 - 9 - 70	
2113 - 2121	SE side of Gardiner Cr.	27 - 9 - 70	
2122 - 2128	O'Hagen Cr.	28 - 9 - 70	· · · · · · · · · · · · · · · · · · ·
2129 - 2132	E side of Grizzly Cr.	29 - 9 - 70	#2129 – seepage; #2130 and #2131 – trickle
2133 - 2142	E side of head of W. Castle R.	30 - 9 - 70	·
2150 - 2157	NW side of Syncline Br.	4 - 10 - 70	
2158 - 2160	Lower part of Whitney Cr.	8 - 10 - 70	
2161 - 2171	W side of Scarpe Cr.	9 - 10 - 70	
2172 - 2177	W side of W. Castle R. S of Syncline Br.	10 - 10 - 70	[#] 2173 and [#] 2174 – trickle
2173 - 2181	W side of S. Castle R. E of Lys Ridge	3 - 10 - 70	· · · · ·
2182 - 2184	W side of S. Castle R. E of Lys Ridge	14 - 10 - 70	#2184 – pool in stream
2185 - 2199	E side of W. Castle R. SW of Barnaby R.	15 - 10 - 70	[#] 2185 – pool in stream; [#] 2186 and [#] 2194 – trickle
2200 - 2208	E side of S. Castle R. W of Mt. Gladstone	16 - 10 - 70	
2209 - 2226	Head of Syncline Br.	17 - 10 - 70	#2212, #2214 and #2220 - seepage
2227 - 2233	NE side of S. Castle R. S of Victoria Ridge	19 - 10 - 70	
2235 - 2244	NE side of S. Castle R. S of Victoria Ridge	19 - 10 - 70	:
	E side of S. Castle R. SW of Castle Pk.	21 - 10 - 70	[#] 2249 – seepage

L. B. HALFERDAHL & ASSOCIATES LTD.

•

			· · · · · · · · · · · · · · · · · · ·	
Sample Number	rs General Location	Date	Additional Information	
22562270	W side of S. Castle R. NE of Southfork Mt.	22 - 10 - 70		
2271 - 2276	NW side of Table Mt.	24 - 10 - 70		
2277	W side of S. Castle R.	24 - 10 - 70		
2278 - 2282	NE of Southfork Mt.	24 - 10 - 70		
2283 - 2291	W side of Gladstone Cr.	26 - 10 - 70		
2292 - 2300	W side of Mill Cr.	27 - 10 - 70	- 	
2301 - 2303	E side of Gardiner Cr.	28 - 10 - 70		
2304	E side of S. Castle R. near Scarpe Cr.	28 - 10 - 70	seepage	
3000 - 3014	N side of Pincher Cr.	16 - 9 - 70	#3002 - pool in stream bed 36" x 3"	
3015 - 3019	NW side of Drywood Cr.	17 - 9 - 70	#3015 – trickle	
3020 - 3027	SE side of Drywood Cr.	17 - 9 - 70		
3028 - 3036	Blind Canyon between Yarrow and Spionkop Creeks	18 - 9 - 70	#3030 – cap liner missing; #3033 – trickle	
3037 - 3046	N side of Yarrow Cr.	19 - 9 - 70	· ·	
3047 - 3057	S side of Yarrow Cr.	20 - 9 - 70	#3047 and #3051 – trickle	
3058 - 3063	N side of Drywood Cr.	21 - 9 - 70	[#] 3061 and [#] 3063 – trickle	
3064 - 3066	NW side of Drywood Cr.	23 - 9 - 70		
3067 - 3072	S side of S. Drywood Cr.	23 - 9 - 70	· · · · · · · · · · · · · · · · · · ·	
3073 - 3081	S side of S. Drywood Cr.	24 - 9 - 70		
3082 - 3084	Head of Whitney Cr.	25 - 9 - 70		
3085 - 3087	E side of Whitney Cr.	26 - 9 - 70		
3088 - 3089	W side of Whitney Cr.	26 - 9 - 70		
3090 - 3100	Upper part of Suicide Cr.	27 - 9 - 70		
3101 - 3110	E side of Gardiner Cr.	28 - 9 - 70		
3111 - 3114	W side of Grizzly Cr.	29 - 9 - 70	:	
3115 - 3118	W side of W. Castle R. NE of Scarpe Mt.	30 - 9 - 70		
3123 - 3128	NE of Prairie Bluff	8 - 10 - 70		
3129 - 3136	NW side of Scarpe Cr. at SE end of Lys Ridge	9 - 10 - 70		
		:		

L. B. HALFERDAHL & ASSOCIATES LTD.

.) =---

1

Т

Sample Numbers	General Location	Date	Additional Information
3137 - 3145	NE side of W. Castle R. on W side of Barnaby Ridge	10 - 10 - 70	
3145	W side of S. Castle R. from Lys Ridge	13 - 10 - 70	
3146	W side of S. Castle R. from Lys Ridge	14 - 10 - 70	pool in stream; bad odour
3147 - 314 8	W side of S. Castle R. at N end of Lys Ridge	14 - 10 - 70	
3149 - 3154	NE side of W. Castle R. at SW end of Barnaby Ridge	15 - 10 - 70	
3155 - 3164	NE side of S. Castle R. at SW end of Windsor Ridge	16 - 10 - 70	#3156 – pool in stream
3165 - 3169	Lower part of Suicide Cr. W of W. Castle R.	17 - 10 - 70	
3170 - 3178	Head of S. Castle R.	19 - 10 - 70	
3179 - 3204	E side of S. Castle R. W of Windsor Ridge	21 - 10 - 70	
3205 - 3224	N side of Whistler Mt.	22 - 10 - 70	
3225 - 3228	E side of S. Castle R. W of Windsor Ridge	24 - 10 - 70	#3228 - hole
3229 - 3235	W side of Gladstone Cr.	26 - 10 - 70	
3236 - 3239	W side of Mill Cr.	27 - 10 - 70	
3240 - 3247	NW side of Gladstone Cr. NE of Table Mt.	28 - 10 - 70	· · · · ·
4001 - 4009	S side of Pincher Cr.	23 - 9 - 70	•
4010 - 4011	N side of S. Drywood Cr.	24 - 9 - 70	
4012 - 4025	Head of Spionkop Cr.	25 - 9 - 70	#4019 – pond 10' x 10' x 4"; #4024 – no cap liner
4026	E side of Mill Cr.	26 - 9 - 70	
4027 - 4032	SE side of Gardiner Cr.	27 - 9 - 70	· · · ·
40 33 - 4034	NW side of Gardiner Cr.	27 - 9 - 70	
40 3 5 - 40 38	Trib. of O'Hagen Cr.	28 - 9 - 70	#4036 – beaver pond 10' x 10' x 1½'
4039 - 4049	E side of Grizzly Cr.	29 - 9 - 70	#4040 - only dripping
4050 - 4060	Head of W. Castle R.	30 - 9 - 70	#4053 - pond 10' x 10' x 5"; #4055 - lake 50' x 50' x 4"; #4056 - pool in
			stream 4' x 3' x 6"; #4057 – pool in stream 6' x 6' x 1'; #4060 – pool in stream 4' x 4' x 4"
4031 - 4063	E side of Syncline Br.	4 - 10 - 70	

E side of Syncline Br. 4051 - 4063

B. HAIFFRDAHL

A ASSOCIATES LID.

10 - 70

435

Sample Number	s General Location	Date	Additional Information
4064	E of Prairie Bluff	5 - 10 - 70	pool in stream 3' x 3' x $\frac{1}{2}$ "
4065 - 4074	Head of Scarpe Cr.	9 - 10 - 70	
4075 - 408 0	W side of W. Castle R. S of Gravenstafel Ridge	10 - 10 - 70	[#] 4080 - lake 75' x 75' x 1'
4081	W side of S. Castle R. E of Lys Ridge	13 - 10 - 70	
4082 - 4083	NE side of W. Castle R. near SW end of Barnaby Ridge	15 - 10 - 70	[#] 4082 – only dripping
4084 - 4093	E side of S. Castle R. W of Castle Pk.	16 - 10 - 70	, , ,
40?4 - 4096	E side of Pincher Cr. B.C.	18 - 10 - 70	
4097	E side of Flathead R. E of Pincher Cr. B. C.	19 - 10 - 70	pool in stream 2' x 2' x 2"
4098 - 4100	W side of Pollock Cr.	20 - 10 - 70	•
4102 - 4104	W side of Pollock Cr.	20 - 10 - 70	· · ·
4105 - 4112	E side of Pollock Cr.	22 - 10 - 70	
4113 - 411 9	E side of Gladstone Cr.	26 - 10 - 70	#4118 – pool in stream 1' x 1' x 1"
5000 - 5007	NW side of W. Castle R. N of Syncline Br.	17 - 10 - 70	
5008 - 5023	NE side of S. Castle R. SE of Loaf Mt.	19 - 10 - 70	
5024 - 5029	W side of Grizzly Cr.	21 - 10 - 70	
5030 - 50 50	W side of Table Mt.	22 - 10 - 70	
5051 - 5054	W side of Jutland Br.	26 - 10 - 70	•
5055 - 5056	SE side of Beaver Mines Cr.	27 - 10 - 70	
5057 - 5060	E side of Gardiner Cr.	27 - 10 - 70	
5061 - 5064	E side of S. Castle R. near Scarpe Cr.	27 - 10 - 70	

L. B. HALFERDAHL & ASSOCIATES LTD.

2

APPENDIX 2: DESCRIPTIONS OF MINERAL OCCURRENCES

Occurrence 1

Traverse Z-6

Grinnell

Sparse chalcopyrite and bornite are present in aggregates to 2 mm parallel to or irregularly cutting pale green, flattened argillite pebbles to 1" in size in a moderately well cemented, white sandstone composed of subangular to subrounded quartz grains. Sparse chalcopyrite and very sparse galena are present in some of the interstices of the quartz grains. Pyrite nodules to 2 mm with radiating structure are present in one layer. This mineralization is present in patches wherever the sandstone contains pebbles of green argillite. Its extent was not obvious but is not confined to a single bed. It is in the Grinnell Formation just below the contact of the Siyeh. The mineralization here is very much below ore grade.

Occurrence 2

Traverse Z-10

Grinnell

Chalcocite is present in the less well cemented parts of medium grained white sandstone between the interstices of subrounded quartz grains and in fractures and laminae of thin green argillite pebbles. In one of these the chalcocite is perhaps 0.1 mm thick by 10 to 15 mm long. Mineralization is present across an interval of 2' in a faulted area, but the offset at these mineralized beds is very small. Some distance up the creek valley, the vertical component of the fault displacement is about 25' with the SW side up-thrown. This mineralization appears to be below ore grade, and is of limited stratigraphic extent.

Occurrence 3

Traverse Z-11

Grinnell

Chalcopyrite and traces of bornite are disseminated in grains mostly less than $\frac{1}{2}$ mm in a 6-inch zone in the margin of a basic sill, and in grains up to 1 mm in the adjacent meta-argillite and well cemented or recrystallized sandstone. Some of this mineralization in the sill may be of ore grade, but its limited thickness does not warrant an assay.

Occurrence 4

Traverse H-4

Sheppard ?

An occurrence of copper mineralization of unstated size or type was reported here by Frank Goble. It was not confirmed by Hildebrandt on his traverse, so, if present, is likely of limited extent. It is shown because of the fault reported by Hildebrandt. Occurrence 5

Traverse H–6

Siyeh

Chalcopyrite and chalcocite are disseminated along the upper contact of a basic sill about 25' thick. The thickness of the mineralized zone was not reported but is believed to be not more than 1 ft, and so is unimportant.

Occurrence 6

Traverse H-8

Grinnell

Sparse chalcopyrite is present in grains to 1 mm along the edges and in fractures and laminations of green argillite pebbles in a white, medium grained sandstone with subrounded quartz grains. This mineralization could not be traced far and is too low grade to be interesting.

Occurrence 7

Traverse H-11

Grinnell

Chalcopyrite in grains to 2 mm with minor associated bornite is present along contacts of green argillite pebbles with white sandstone and disseminated in the white sandstone for a thickness of 6" in the metamorphosed sediments along the lower contact of a basic sill about 70' thick. This zone of mineralization is too thin to have economic interest.

Occurrence 8

Traverse D-4 Purcell Lava and Sheppard ? Float

Chalcopyrite in aggregates up to 5 mm in size fills vesicles in the Purcell Lava and is sparsely disseminated in grains up to $\frac{1}{2}$ mm in light grey dolomite probably in the Sheppard Formation. A fault has been reported nearby. The chalcopyrite in the Purcell Lava is similar to that found elsewhere in the Clark Range – not abundant enough to be of interest. The chalcopyrite in the Sheppard? is too sparse for an assay; it appears similar to that found in the Sheppard in other places in the Clark Range.

Occurrence 9

Spionkop Showing

Grinnell

Chalcocite, bornite, chalcopyrite are present in sandstones and sills. See section of report headed Spionkop Showing.

Occurrence 10 Yarrow Showing Grinnell and Appekunny

The Yarrow Showing was mapped at a scale of 1 in.=500 ft. and four holes were drilled by Kennco Exploration (Western) Limited in 1966 and 1967: one BQ wireline, and 3 X-ray. Two of the X-ray holes appear to have been checking the spotty malachite staining in Appekunny guartzite

Occurrence 10 - continued

at the top of the Appekunny Formation and testing a diorite sill near the top of the Appekunny Formation. Drill logs and assays indicate that no significant mineralization was encountered. The other two holes appear to have been checking the lower Siyeh Formation near its contact with the Grinnell and a few hundred feet of the upper Grinnell Formation for strata-bound mineralization. One of the holes encountered one or more intervals containing chalcocite, bornite, or chalcopyrite with the best section grading 0.7% Cu across 1.6'. There the mineralization consisted dominantly of chalcocite in the interstices of quartz grains and chalcocite and bornite along the borders of green argillite pebbles in quartzite.

The Yarrow Showing was examined by the writer in October, 1969 and on July 27, 1970. In general little can be added to the report of Stevenson (1968) except to note that a green sill in the lower Grinnell graded 0.22% Cu across 6.5' with most of the values in the fine-grained margins. This sill is overlain by about 3 feet of green argillite and underlain by argillite. This suggests that it was a competent body in which fractures permitted the entry of copper-bearing solutions while the argillites above and below were incompetent and impervious to the copper-bearing solutions. At an elevation of 6025' in the middle part of the Grinnell, a ripple-marked, 6" bed of medium grained, poorly cemented white sandstone contains a 3" layer with interstitial chalcocite. The Kennco exploration and subsequent examinations indicate that the Yarrow Showing is not economic.

Occurrence 11 Traverse D-5 Sheppard or Lower Gateway

Malachite stains and hematite are present but primary copper minerals were not observed. Specimens available are pinkish dolomite, with small amounts of a disseminated steel grey mineral. The samples seem to have a higher than normal density. A grab sample assayed 0.01% Cu, and traces of Pb and Zn. It does not appear to warrant more attention.

Occurrence 12

Traverse L-1, D-10

Grinnell

Copious malachite stains are confined to bedding planes in white, well cemented sandstone with subrounded medium grained quartz. Some of the bedding planes are marked by seams of green argillite to $\frac{1}{4}$ " thick. The beds are up to $1\frac{1}{2}$ ' thick but mostly less than 1'. Sparse chalcocite was observed. The copper mineralization is confined to 4' or 5' of the Grinnell sandstone immediately below the Siyeh. For a few hundred feet up and

Occurrence 12 - continued

down the creek relatively small scale anticlinal folding and crumpling of the beds were observed. A fault striking about 15° with displacement about 10' cuts the Grinnell here and extends up into the Siyeh. The copper mineralization dies out in less than 100 feet on either side of this fault. This occurrence is not economic in itself, but its presence indicates that there may be favourable structures and lithologies nearby.

Occurrence 13 Traverse L-1 Appekunny

Sparse chalcocite is present in 2" of somewhat porous crossbedded white sandstone near the contact of the Grinnell Formation. The part of the bed cemented with quartz is free of copper mineralization. This is a minor occurrence.

Occurrence 14

Traverse L-1

Siyeh

Chalcopyrite and bornite or chalcocite? are sparsely disseminated in aggregates to 5 mm in white medium grained sandstone near the contact with the Grinnell Formation. This is a minor occurrence.

Occurrence 15

Traverse Z-5, K-1, L-2

Appekunny

Sparse chalcocite and bornite are present in slightly porous sandstone, and in somewhat greater amounts along the contacts of thin green argillite pebbles and layers. Copper mineralization is confined to a bed not more than 6" thick about 25' below the top of the Appekunny. It can be traced intermittently for about $\frac{1}{2}$ mile to the northwest where its maximum thickness is about 1'. This zone is too thin and the mineralization too sparse to be of interest.

Occurrence 16

Traverse Z-5, K-1, L-2 Gr

Grinnell

Chalcocite and bornite are present mostly in the interstices of medium to coarse grained subrounded quartz grains in a white to light brown sandstone through an interval of 4' or 5' about 5' below the contact of the Siyeh Formation. Below this is about 4' of well cemented sandstone barren or almost barren of copper minerals, and below this is another 4' of moderately well cemented medium grained sandstone with chalcocite less abundant than in the upper bed: much of it is in fractures and along. bedding planes. These beds were traced about 200'. Additional sampling and possibly stripping of this occurrence appears warranted. Occurrence 17

Traverse K-4

Grinnell

Chalcocite with accompanying malachite was found in a 7" bed of brownish sandstone that could be traced for about 20' about the middle of the Grinnell Formation. This appears to be a minor occurrence.

Occurrence 18

Traverse Z-9

Grinnell

Chalcocite in grains to 1 mm with traces of bornite and chalcopyrite is sparsely disseminated in clean, well sorted, white sandstone in a zone 1' thick. Copper mineralization is present only close to a fault with a stratigraphic displacement of about 100' with the SW side down thrown. Similar mineralization along bedding planes and in slightly porous sandstone was encountered on this traverse at the Grinnell-Siyeh contact. These appear to be minor occurrences.

Occurrence 19

Traverse Z-8

Grinnell

Chalcocite and associated malachite occur along bedding planes, fractures, and discontinuites in white, fine grained, subrounded, well sorted sandstone in a zone about 3' thick at or near the Grinnell-Siych contact. This occurrence warrants sampling.

Occurrence 20

Traverse C-12

Grinnell

Bornite is present in stringers to 2 cm by 3 mm, associated with chalcopyrite in grains to 2 mm, mostly along small fractures and along the contacts of green argillite pebbles. The copper mineralization is present in two zones: an upper which varies in thickness up to 5' and a lower 8" bed. Although the mineralization in the samples collected appears to be fairly low grade, this occurrence warrants more detailed sampling and possibly mapping.

Occurrence 21

Traverse H-25

Lower Gateway

Malachite was found on joints in a fine grained grey limestone bed about 1' thick, overlain and underlain by green argillites. This occurrence appears to have no economic importance but its existence is worth noting. Occurrence 22

Traverse Z-13, H-12

Sparse chalcopyrite fills vesicles in andesitic lava. This is of no economic significance here.

Occurrence 23

Traverse Z-20

Appekunny

Purcell Lava

Abundant sphalerite is associated with pyrite in white medium grained sandstone at contacts with green argillite pebbles. The extent of this mineralization is not know: it may warrant checking.

Occurrence 24	Traverse C-3	Siyeh

Minor malachite and pyrite was found in float.

Occurrence 25

Traverse C-7

Malachite and very fine copper sulfides? were found in a grey argilite bed 4' thick. A grab sample assayed 1.31% Cu. This occurrence requires further sampling and tracing of its extent.

Occurrence 26

Traverse D-17

Gateway

Gateway

Malachite stains were found along joints and bedding planes in a 2' bed of green grey argillite which appears to contain a very fine grained copper mineral. A grab sample assayed 0.26% Cu. This occurrence requires further sampling and tracing of its extent.

Occurrence 27

Traverse H-13

Malachite staining on greenish grey slaty argillite which appears to contain very fine grained disseminated sulfides. The mineralization is of local occurrence only.

Occurrence 28

Traverse H-13, L-3

Grinnell

Siyeh

Chalcopyrite was found in aggregates to 4 mm along contacts and fractures of green argillite pebbles in white sandstone. This sparse copper mineralization is present in two beds: a lower 4' bed, and 15' stratigraphically higher, an upper 6" bed. This is a minor occurrence.

Occurrence 29

Traverse H-13, L-3

Grinnell

Chalcocite is present in white sandstone, interstitial to medium grained, subrounded quartz. Four quartzite beds are mineralized but the

L. S. HALFERDAHL & ASSOCIATES LTD.

Occurrence 29 - continued

maximum thickness of beds is 4" and mineralized zones are up to 1" thick. Some of the red argillite interbedded with the quartzite is bleached: below one bed is a prominent bleached zone 2" to 4" thick with irregular border. This occurrence appears to be minor.

Occurrence 30 Traverse H-16 Purcell Lava

Chalcopyrite was found in vesicles and disseminated in andesitic lava. This is a minor occurrence.

Occurrence 31

Traverse H-20

Gateway

Chalcopyrite in grains less than $\frac{1}{2}$ mm is abundantly disseminated in grey siltstone at the contact of a syenitic intrusion. A grab sample assayed 0.43% Cu. Another sample a short distance away has malachite and possibly very fine grained copper sulfides in a grey silty argillite. These occurrences appear to warrant sampling and tracing their extents.

Occurrence 32

Traverse H-24

Gateway

Chalcopyrite, bornite and, possibly chalcocite are present along planes of fissility in a green grey argillite. A grab sample assayed 0.70% Cu. Malachite stained the contact of a pebble of grey green argillite in a green siltstone. This occurrence appears to warrant additional sampling.

Occurrence 33 Traverse H-22 Float - Waterton?

Very sparse chalcopyrite and bornite? in grains less than $\frac{1}{2}$ mm are present along a minor contact between grey and buff-grey dolomite. This is a minor occurrence.

Occurrence 34 Trave	erse H–22	Waterton
---------------------	-----------	----------

Sparse chalcopyrite is present similar to occurrence 33. This is a minor occurrence.

Occurrence 35 Traverse C-5, K-3 Grinnell

Chalcopyrite is disseminated in white quartzite below a basic intrusive. The intrusive is described as a dyke at this location but appears to become a sill a short distance to the NW. Chalcopyrite and pyrite are disseminated near but not at the contacts of the intrusive. This occurrence appears unimportant. Occurrence 36

Traverse C-6, K-3

Grinnell

Chalcopyrite in aggregates to 5 mm long is associated with green argillite pebbles in a white medium grained sandstone bed about 6" thick. About 8' below is another similar bed. This occurrence is near the upper contact of the Grinnell and is regarded as a minor one. A similar occurrence was located a few hundred feet below in Grinnell sandstone near the lower Grinnell contact.

Occurrence 37 Traverse Z-21, C-5 Grinnell

Chalcocite? and bornite are present in the interstices of medium grained subrounded quartz in white sandstone. Chalcopyrite and bornite are along contacts and in fractures of green argillite pebbles in the sandstone. The mineralized zone is in the Grinnell just below the Siyeh contact and is 5' to 7' thick. This appears to be a minor occurrence but warrants checking.

Occurrence 38

Traverse Z-21

Grinnell

Chalcocite in white sandstone very similar to that described for occurrence 37, and with chalcopyrite and bornite occurring in the same way. The mineralized zone is at the contact of the Appekunny and appears to be a minor one.

Occurrence 39

Traverse H-28

Grinnell

Chalcopyrite is disseminated in white sandstone at the Siyeh contact. A similar occurrence was found a few hundred feet to the east at the same stratigraphic horizor. Both are apparently minor occurrences.

Occurrence 40

L-23-6-68

Upper Gateway

Chalcocite is present in a layer of grey argillite about 6' thick that was traced for about 200' down the mountain side. A grab sample assayed 0.98% Cu. Further sampling and tracing of this zone appears warranted.

Occurrence 41

Grizzly Showing

Grinnell

The Grizzly Showing was trenched by Cominco in 1969, and mapped and five holes totalling 2018' drilled in 1970. This work showed that chalcocite, bornite, and lesser chalcopyrite are present in sandstone or quartzites near the upper contact of the Grinnell Formation for a length of 2700'. Individual mineralized units range from $2\frac{1}{2}$ ' to 17' in thickness and are present through a stratigraphic interval of about 43'. In three of the drill holes, approximately aligned in a southerly trend, thicknesses of 3' to 6' or 7' grade 0.6% to 0.7% Cu with the best intersection being 4' grading 0.95% Cu and 0.10 oz. Ag. The mineralization in two holes drilled a few hundred feet west of the southerly-trending line of the first three holes is lower grade. In general, there appears to be slightly more than 0.1 oz. Ag for each 1% Cu in each interval assayed. One interval of 5' in one of the holes graded 0.3% Cu and 1.19% Pb.

The Grizzly Showing has been examined in a cursory manner three or four times by the writer. His interpretation is that the southerlytrending line of the three drill holes is close to a fault, and that the other two holes were drilled some distance west of the fault. Some additional work here appears warranted.

Occurrence 42

Whistler Showing

Grinnell

The Whistler Showing was trenched and mapped by Cominco in 1969 and 1970. More than 25 beds of sandstone in the lower and middle part of the Grinnell Formation are erratically mineralized with chalcocite, lesser bornite, and minor chalcopyrite at or near a dip slope on Whistler mountain for a strike length of about 2500 feet. The downdip extent of the better mineralized beds is limited to a few hundred feet because of erosion at the upper and lower ends of the dip slope. In the lower Grinnell the mineralized beds are 1" to 2" thick, contain less than 0.02%Cu and are separated by up to 10' of red argillite. In the middle Grinnell, the typical mineralization consists of chalcocite in the interstices between rounded guartz grains. Mineralized beds range from 2" to 6" in thickness, and many are ripple-marked. In one place sand outlining fossil mud craks in argillite has been mineralized with chalcocite. Only rarely is the complete thickness of any one bed mineralized, and individual mineralized beds cannot be traced for more than a few hundred feet. Samples grading as much as 5% and 7% Cu have been obtained across thicknesses of 6" and 4" respectively, but grades fall to 0.5% Cu or less across widths of 4' or 5'. Cominco has concluded that this deposit is too small to mine.

APPENDIX 3: LIST OF PROSPECTING TRAVERSES

In the list below the members of each traversing party are designated as follows: J. Card - C, D. Danyluk - D, J. Gorham - G, G. Hildebrandt - H, M. Judd - J, A. Kahil - K, L. Halferdahl - L, J. Plummer -P, G. Russell - R, M. Zander - Z. Some of the initial traverses in June, 1970 were orientation traverses on Spionkop Ridge and on the north side of Yarrow Creek and have not been plotted in Fig. 11. A few days were spent from time to time learning about access roads to parts of the properties. Although some of these were designated by traverse numbers, they have not been plotted in Fig. 11.

	1				
Traverse	Date	Men	Traverse	Date	Men
-C-1	4 - 8 - 70	C,J	D-19	1 - 8 - 70	D,C
C-2	5 - 8 - 70	C,R	D-20	31 - 7 - 70	D,C
C-3	6 - 8 - 70	C,R	D-21	1 - 8 - 70	D,C
C- 4	7 - 8 - 70	C,R	H-1	28 - 6 - 70	Н
C- 5	8 - 8 - 70	C,R	H-2	29 - 6 - 70	H,D
C-6	9 - 8 - 70	C,R	H-3	1 - 7 - 70	H,j
C- 7	11 - 8 - 70	C,R	H-4	2 - 7 - 70	H,J
C-8	12 - 8 - 70	C,R	H-5	4 - 7 - 70	H,J
C-9	13 - 8 - 70	• • C , R •	H-6	6 - 7 - 70	H,J
C-10	21 - 8 - 70	C,G	i-17	7 - 7 - 70	¦H,J ∝
C-11	22 - 8 70	C,R	H-8	8 - 7 - 70	H,J
C-12	9 - 9 - 70	C	H-8A	11 - 7 - 70	H,J
D-1	28 - 6 - 70	D,C	H-9	12 - 7 - 70	H,R
D-2	29 - 6 - 70	D,H	H-10	14 - 7 - 70	H,R
D-3	1 - 7 - 70	D,C	H-11	15 - 7 - 70	H,J
D-4	2 - 7 - 70	D,C	H-12	16 - 7 - 70	H,J
D-5	3 - 7 - 70	D,H	H-12A	19 - 7 - 70	H,J
D-6	4 - 7 - 70	D,C	H-13	20 - 7 - 70	H,Z
D-7	5 - 7 - 70	D,C	H-14	21 - 7 - 70	H,J
D-8	6 - 7 - 70	D,R	H-15	22 - 7 - 70	H,J
D-9	7 - 7 - 70	D,C	H-16	1 - 8 - 70	H,J
D-10	10 - 7 - 70	D,R	H-17	4 - 8 - 70	H,G
D-11	11 - 7 - 70	D,C	H-18	5 - 8 - 70	Ĥ,J
D-12	12 - 7 - 70	D,C	H-19	6 - 8 - 70	H,J
D-13	16 - 7 - 70	D,R	H-20	7 - 8 - 70	H,J
D-14	19 - 7 - 70	D,C	H-22	9 - 8 - 70	H,Z
D-15	20 - 7 - 70	D,C	H-23	10 - 8 - 70	H,J
D-16	21 - 7 - 70	D,C	H-24	11 - 8 - 70	H,J
D-17	22 - 7 - 70	D,C	H-25	13 - 8 - 70	H,J
D-18	23 - 7 - 70	D,C	H-26	14 - 8 - 70	H,R

		•				
Traverse	Date	Men	Traverse	Date	Men	
H-27	15 - 8 - 70	H,R	Z-26	11 - 8 - 70	Z,G	
H-28	16 - 8 - 70	H,R	Z-27	14 - 8 - 70	Z,G	
H-29	19 - 8 - 70	H,C -	Z-28	15 - 8 - 70	Z,G	
H-30	20 - 8 - 70	H,R	Z-29	16 - 8 - 70	Z,G	
H-31	21 - 8 - 70	H,C	Z30	22 - 8 - 70	• Z,G •	•
K-1	4 - 8 - 70	K,Z				· .
K-2	13 - 8 - 70	K,G			. ·	
K-3	18 - 8 - 70	к,Н		en e		
K-4	20 - 8 - 70	K,C				
· L-1	5 - 7 - 70	L, J				
L-2	9 - 8 - 70	L,K	•			
L-3	13 - 8 - 70	L,Z		•		
L-4	27 - 7 - 70	L,P	· · ·			•
R	7 - 8 - 70	R		· · ·		
Z-1	27 - 6 - 70	Z				
Z-2	1 - 7 - 70	Z,G				
Z-3	2 - 7 - 70	Z,G	· . · .			
Z-4	3 - 7 - 70	Z,G		• • • •		•
Z-5	4 - 7 - 70	Z,G		·		
Z-6	5 - 7 - 70	Z,G				· ·
Z-7	6 - 7 ~ 70	Z,G	,			
Z-8	8 - 7 - 70	Z,G				
Z-9	10 - 7 - 70	Z,G			• • •	
Z-10	11 - 7 - 70	Z,G			•	
Z-10A	14 - 7 - 70	Z,G				
Z-11	15 - 7 - 70	Z,G				
Z-12	16 - 7 - 70 19 - 7 - 70	Z,G				
Z-13 Z-14	21 - 7 - 70	Z,G	· · · · ·	· · ·	· .	
Z-14 Z-15	21 - 7 - 70	Z,G Z,G				
Z-15 Z-16	22 - 7 - 70	Z,G		·		
Z-10 Z-17	30 - 7 - 70	Z,G	· . · ·	· · · ·	• •	
Z-18	3 1 - 7 - 70	Z,G				
Z-20	5 - 8 - 70	Z,G				
Z-20 Z-21	6 - 8 - 70	Z,G				
Z-22	7 - 8 - 70	Z,G				
Z-22	8 - 8 - 70	Z,G				
Z-23 Z-24	9 - 8 - 70	Z,G				
Z-24 Z-25	10 - 8 - 70	Z,G				
		_, _				

L. B. HALFERDAHL & ASSOCIATES LTD.

i

A47

-_-1

SPIONKOP RIDGE

LOGS OF DIAMOND DRILL HOLES

APPENDIX 4

DRILL LOGS

Azimuth: - Dip:-90 Core: BQ wl	Total Ler	n: 6600' (approx.) Started: September 24, 1970 ngth: 337' Completed: September 28, 1970 Logged by: L. B. Halferdahl
I nterval	Recovery	Description
0'- 7'	0'	Casing
7' - 12'	3.0'	SANDSTONE, mostly medium grained, pinkish, whitish, and wine colored; subrounded quartz grains, some cemented with hematite; but with fine quartz well cemented with quartz in places; some laminations at 70° to core axis. 11.0' - 12.0' - sandstone is whiter but contains up to 5% irregularly distributed blobs of reddish, dark brownish material that colors the quartz grains; numerous holes to 1 mm or slightly more throughout this sandstone; some are completely hollow; others look as if a mineral grain had weathered out and this may be what produces the dark brown spots. 12.0' - one flat pebble of red argillite in the whitish spotted sandstone.
12' - 17'	5.0'	SANDSTONE and ARGILLITE 12.0' - 15.9' - whitish red sandstone, medium to fine grained; cement variable; some with pebbles of red argillite to $\frac{1}{2}$ "; red argillite on partings to 1 mm; some argillite with irregular green bleaching; some pebbles of red argillite to $\frac{1}{2}$ " thick by 1" or more long. 13.5' - 15.9' - some sandstone is spotted irregularly as in previous interval. 15.9' - 17.0' - red argillite and siltstone with green mottling here and there, some to $\frac{1}{2}$ "; fissility at 70 to core axis.

Company: Alcor Minerals Ltd. Drill Hole No: 1

Property: Goble Option Page 2

Interval	Recovery	Description
17' - 21'	2.8'	SANDSTONE, mostly 17.0' - 17.4' - red argillite, mottled with irregular greenish grey blobs 2 mm in size to larger layers $\frac{1}{2}$ " thick roughly parallel to fissility but with irregular
		contacts. 17.4' - 17.6' - reddish white sandstone, medium grained, well cemented with red argillite, some in blobs.
		17.8' - 21.0' - reddish and reddish white sandstone; medium grained, gradations between colors are fairly abrupt, but are dependent, in part, on abundance of red argillite pebbles which are up to $\frac{1}{2}$ " thick and 1" to 2" long, some pebbles are irregularly bleached
		to a greenish grey.
21' - 25'	4.9'	ARGILLITE and SILTSTONE 21.0' - 22.3' - dark red with sparse greyish green blobs to $\frac{1}{2}$ " in size. 22.3' - 23.5' - greenish with red in a few layers or
		irregular blobs to $\frac{1}{4}$ " thick.
25' - 30'	7.0'	SANDSTONE, mostly 25.0' - 25.4' - red argillite with a layer of medium grained only moderately well cemented sandstone, $\frac{1}{2}$ " thick at middle with a $\frac{1}{2}$ " layer of green argillite with irregular contacts above, all about middle of interval.
		25.4' - 30.0' - sandstone, mostly white medium grained, moderately to well cemented, some is pinkish (banded white sandstone and sandstone with some hematite or red argillite cement which gives it a pinkish cast); contains a few pebbles of argillite, green mostly but some red;
.:		argillite partings to 1mm or less, mostly green but with some irregular red areas.

. .

Interval	Recovery	Description
30' - 37'	6.6'	SANDSTONE, mostly 30.0' - 30.2' - sandstone as in previous interval. 30.2' - 31.4' - interbedded dark red sandstone, argillite, siltstone with a few layers of green argillite to $\frac{1}{2}$ ", green argillite layer $\frac{1}{4}$ " thick right above white sandstone at 31.4'. 31.4' - 34.3' - well cemented medium grained sandstone, white in upper two-thirds, with reddish intervals in lower one-third, the red color produced by red argillite cement and pebbles. Bedding is at about 70° to core axis and is marked by partings of green argillite some of which contains irregular remnants of red; one bed of sandstone is nearly 2' thick. 34.3' - 34.6' - red argillite with green argillite along a fracture inclined about 45° to core axis and minor irregular mottling by green argillite; green argillite is at bottom right above sandstone at 34.6'. 34.6' - 37.0' - white sandstone in upper 0.4' then irregularly banded with reddish white and white; the red color caused by red cement and concentrations of red argillite pebbles in some layers; green argillite on bedding planes to 3 mm thick with some irregular remnants of red; $\frac{1}{4}$ " blobs of greenish sandstone sparsely and irregularly scattered in lower 0.5' of red sandstone.
37'- 47'	10.0'	SANDSTONE, medium grained; some beds up to 1.0' cemented with quartz, others with red clay; some interval contain numerous pebbles of red argillite, others are free of them; bedding planes are marked by argillite, mostly red but some partly or completely turned to green; laminated at 70° to core axis.

1. 1

. تىمە ئىغىتى ،

.

Interval	Recovery	Description
47' - 54'	7.3'	SANDSTONE, medium grained in alternating white and red layers up to 1.0' thick, mostly less; red sandstone is cemented with red argillite (clay) and/or contains abundant pebbles of red argillite with thin partings of red argillite up to $\frac{1}{2}$ " on bedding planes, some with irregular green blobs to $\frac{1}{2}$ " or so in size; laminated at 70° to core axis.
54 ' - 57'	2.3'	SANDSTONE, as above but little or no green argillite at partings and only one reddish white sandstone bed 3" thick at 55.0'.
57'- 60'	1.4'	SANDSTONE, as above, with a few pebbles of argillite, mostly red, very few green; some red argillite pebbles have been squeezed and distorted.
60' - 65'	5.0'	ARGILLITE and SANDSTONE interbedded 60.0' - 61.2' - red argillite with sparse green spots 3 mm across; one joint at 61.2' with thin layer of rust has about $\frac{1}{4}$ " green argillite, then in next $\frac{1}{4}$ " grades through dark purplish grey into red argillite. 61.2' - 61.8' - below rusty joint is 1/8" green argillite then medium grained whitish sandstone with tiny rust spots among subrounded quartz grains; this sandstone contains pebbles up to 3/8" thick by 1" long of green argillite parallel to bedding which is at 70° to core axis; rest of interval is well cemented white sandstone. 61.8' - 62.8' - red argillite irregularly and incompletely mottled with grey argillite with green argillite in joints; fissibility at 70° to core axis; $\frac{1}{4}$ " layer of reddish sandstor at 62.8'. 62.8' - 63.5' - red argillite with very sparse green spots to 2 mm in size.

;

۰.

Interval	Recovery	Description
60' - 65' cont'd	5.0'	63.5' - 64.0' - reddish white sandstone with pebbles of red argillite and one 0.1' layer of red argillite with sparse green spots at 63.6'; one 2 mm parting of green argillite.
		64.0' - 64.3' - red argillite with green spots as above. 64.3' - 65.0' - whitish sandstone with a few pebbles of red argillite with 3 mm parting of green argillite at 65.0'.
65' - 75'	10.3'	SANDSTONE and ARGILLITE 65.0' - 66.3' - sandstone, medium grained, subrounded, with numerous pebbles of red argillite from 2 or 3 mm in size to $\frac{1}{4}$ " by 1" or more, mostly inclined at 70° to core axis; a few pebbles and partings of green argillite. 66.8' - parting of green argillite is mottled with dark
···. ·	 	grey. 66.8' - 67.0' - grey argillite with a bit of green mottlin and a 3 mm layer of white sandstone. 67.0' - 67.2' - mostly white sandstone, with pebbles of grey and green argillite.
· .		SAMPLE 1551 66.8' - 67.2' 0.4' 0.005% Cu
		67.2' - 67.6' - red sandstone with numerous pebbles of red argillite and one of green argillite. 67.6' - 68.6' - white sandstone with abundant pebbles and layers to $\frac{1}{2}$ " of green argillite with an odd red blob to $\frac{1}{4}$ " in size; planer features at 60° to core axis
		SAMPLE 1552 67.6' - 68.6' 1.0' 0.005% Cu.
		68.6' – 69.3' – green argillite with occasional black dendrites and other black minerals. 69.3' – $\frac{1}{4}$ " layer of black argillite
	· ·	SAMPLE 1553 68.6' - 69.3' 0.7' 0.005% Cu.

A52

lan.

Interval	Recovery	Description
65' – 75' cont'd	10.3'	69.3' - 70.0' - white sandstone with irregular layers of green argillite; mostly less than 3 mm; some contain interstitial chalcocite with accompanying malachite; odd pebble of black argillite; chalcocite is concentrated in laminae parallel to bedding. 70.0' - 70.25' - green argillite. 70.25' - 70.9' - white sandstone with interstitial chalcocite in some laminae; it appears to be more abundant above green argillite partings and layers to $\frac{1}{4}$ " thick, also in fractures and possibly replacing green argillite; chalcocite blobs are up to 5 mm in size.
	·	SAMPLE 1554 69.3' - 70.9' 1.6' 1.09% Cu, 0.22 oz. Ag 70.9' - 71.6' - green argillite grading to grey towards bottom with fine black dendrites on planes of fissility. SAMPLE 1555 70.9' - 71.6' 0.7' 0.01% Cu. 71.6' - 73.0' - finely laminated red argillite with sparse green argillite elongated parallel to fissility but in discontinuous blobs to 1" long; irregular upper contact with green argillite; odd laminae to $\frac{1}{4}$ " of reddish sandstone. 73.0' - 74.6' - mostly reddish sandstone with layers to $\frac{3}{4}$ " of red argillite, and pebbles to $\frac{1}{2}$ " of green and black argillite irregularly distributed from 74.2' to 74.5'. 74.6' - 76.0' - grey siltstone grading down to finely laminated red argillite with layers or irregular blobs of green argillite, some with fine black dendrites on planes of fissility, which are about 60° to axis of core.

Interval	Recovery	Description
75' - 85!	8.5'	ARGILLITE and SANDSTONE 75.0' - 76.0' - laminated red and green argillite with layers to $\frac{1}{4}$ " of whitish sandstone; some green argillite shows fine black dendrites extending 2 mm or so from closed cracks which are about parallel to core axis. 76.0' - 77.2' - white to pinkish sandstone with laminae with abundant red cement at 60° to core axis; with layers of red argillite to $\frac{1}{2}$ ", and with pebbles of red and green argillite. 77.2' - 78.0' - red argillite, banded, with layers to 1" in upper part irregularly mottled with green argillite. 78.0' - 78.5' - whitish sandstone with pebbles and lamino of red and green argillite. 78.5' - 80.7' - mostly red argillite with green layers with irregular contacts to 1" and smaller blobs of green argillite; 1" layer of pinkish white sandstone at 79.5'. 80.7' - 82.9' - white and reddish white sandstone with pebbles of green argillite in upper part, and abundant reddish cement in lower part. 82.9' - 83.5' - red argillite with sparse blobs of green argillite.
85' - 92'	7.5'	ARGILLITE and SANDSTONE $35.0' - 90.3'$ - mostly red argillite, laminated at 60° to core axis, with green argillite layers to 2" thick, and pinkish white sandstone layers to 4" thick with pebbles of red argillite and a few of green argillite. 90.3' - 92.5' - sandstone, whitish with pebbles of green argillite to $\frac{3}{4}$ " with sparse malachite staining along edges of green pebbles and in small strecks in fractures; with a 2" interval of green argillite with medium grained quartz grains and a $\frac{1}{4}$ " streak with a black mineral (chalcocite?).

	Inter	val	Recovery	Description
-	92' -	94'	1.5'	SANDSTONE, white with pebbles of green argillite to 1"; sparse malachite in lowest 3", associated with green orgillite pebbles, and thin seams of rust along contact of green argillite pebbles and white sandstone.
•			· · · · · · · · · · · · · · · · · · ·	SAMPLE 1557 92.0' - 94.0' 2.0' 0.02% Cu.
· .	94' -	97'	1.8'	SANDSTONE, white with green argillite pebbles in upper part with sparse malachite stains in top 2"; in lower part white sandstone is spotted with dark brown or rusty spots 1 to 2 mm in size (remnants of pyrite?); some have been dissolved out completely leaving holes.
				SAMPLE 1558 94.0' - 97.0' 3.0' 0.01% Cu.
	97* -	106'	9.5'	ARGILLITE and SANDSTONE 97.0' - 98.1' - argillite, red and green irregularly interlayered and mixed; rop 3" are grey argillite. 98.1' - 99.5' - white and reddish sandstone, with red cemented laminae at 60° - 70° to core axis.
·			· · · · ·	99.5' - 100.2' - red argillite. 100.2' - 100.8' - green argillite with $\frac{1}{4}$ " layer of white sandstone at 100.4' and a few bands and irregular blobs of red argillite at bottom; irregular contact with underlyin
•				red argillite . 100.8' – 104.5' – red argillite, banded with layers to ¼" of greyish white argillite and whitish sandstone;
· · ·			n daaren datuur T	irregularly mottled with grey for about 8" at 103.0'; sparse blobs of green to $\frac{1}{2}$ " in places. 104.5' - 105.7' - 0.2' green argillite, greyish in top $\frac{1}{2}$ ";
			an a	0.4' white sandstone with layer of green argillite; 0.4' green argillite; 0.2' banded red argillite; green argillite contains fine black dendrites adjacent to a crack about
•				parallel to core axis. 105.7' - 106.5' - mostly white sandstone, pink in places; green argillite pebbles and partings; red argillite pebbles.

Company: Alcor Minerals Ltd. Drill Hole No: 1 Property: Goble Option Page 9

Interval	Recovery	Description
106' - 111'	4.0'	SANDSTONE, mostly 106.0' - 108.3' - white sandstone, with green argillite pebbles and partings; 0.3' layer of green argillite at 106.2' with black dendrites and other shapes on planes of fissility; chalcocite to 3 mm along contacts of argillite pebbles with sandstone but chalcocite is sparse; grains to 1 mm of chalcopyrite? or pyrite on fissility planes in green argillite partings.
		SAMPLE 1559 106.0' - 108.3' 2.3' 0.11% Cu, 0.02 oz. Ag.
		108.3' - 109.9' - 0.2' red argillite, banded with irregular layers to $\frac{1}{4}$ " of green argillite and white sandstone; 0.2' green argillite and white sandstone with irregular contact with underlying red argillite; 0.6' red argillite with $\frac{1}{2}$ " layer of white sandstone with $\frac{1}{4}$ " of greyish black argillite at lower contact with green argillite; 0.6" green argillite with black and brown dendrites along crack roughly parallel to core axis. 109.9' - 110.1' - white sandstone, medium grained, well cemented.
111' - 119'	7.0'	SANDSTONE, mostly 111.0' – 112.3' greenish white sandstone, laminated with dark streaks at about 70° to core axis, with pebbles and partings of green argillite with abundant black dendrite
	ala an	SAMPLE 1560 111.0' - 112.3' 1.3' 0.005% Cu, 0.02 oz. Ag.
		112.3' – 114.7' – mostly whitish sandstone with some intervals with abundant pebbles of red argillite and partings; a few pebbles of green argillite, with two

Interval	Recovery	Description
111' - 119' cont'd	7.0'	intervals: 2" and 4" of argillite, irregularly mottled red and green. 114.7' - 116.3' - red argillite with the central 0.5' mostly green argillite with irregular sandy layers to $\frac{1}{4}$ " and some red blobs; green argillite contains black dendrites. 116.3' - 117.0' - whitish sandstone with layers and irregular pieces of green and red argillite. 117.0' - 118.0' - red argillite.
119' - 125'	.5.8'	ARGILLITE and SANDSTONE 119.0' - 120.5' - red argillite, blotchily mottled with grey green in upper 0.3' with layers to 1" of green argillite and white sandstone in lower part. 120.5' - 122.2' - whitish sandstone with pebbles and partings of red argillite. 122.2' - 124.8' - uniform red argillite with 0.2' layer of white sandstone at 123.4'.
125' - 129'	4.0'	ARGILLITE, red, laminated with grey siltstone in upper foot with 0.2' layer of white sandstone at 126.3', and 0.2' layer of grey green argillite at 126.5'; rest of interval is irregularly banded red argillite with sparse grey or green spots to $\frac{1}{4}$ ".
	ne forstære en se Regenserererererererererererererererererere	ARGILLITE, red, regularly and irregularly laminated; with sparse green or grey spots; a few argillite pebbles, irregular veins; with greyish silty intervals at 130.7', 0.8' thick at 131.4', and 1.0' thick at 134.9'; 0.2' gree argillite at 132.7'; 0.2' white sandstone at 134.6'; 1" to 2" of green mottling in red argillite at 137.4'.

`;

•

: '

A57

Company: Alcor Minerals Ltd. Drill Hole No: 1 Property: Goble Option Page 11

Interval	Recovery	Description
139' - 147'	8.6'	ARGILLITE, red with irregular layers to $\frac{1}{2}$ " of green argillite and irregular blotchy mottling in upper 1.3'; 0.2' layer of white sandstone at 140.7'; 0.2' sandy interval at 141.9'; 0.9' of greyish silty argillite with irregular red blobs at 142.1'; 2.0' feet uniform red argillite with a few grey or green spots at 143.0'; 1.1' of mixed red argillite and white sandstone at 145.0'. 146.1' - 147.8' - red argillite, laminated with irregular green mottling and layers in upper part.
147' - 155'	8.3'	ARGILLITE, mostly 147.0' – 148.3' – sandstone with layers, partings and
· · ·		pebbles of red argillite and grey argillite. 148.3' - 150.9' - red argillite, irregular layers of white sandstone in upper 0.6'; prominent green layers or mottling at 150.3'.
		150.9' - 151.7' - sandstone; white and reddish, with pebbles and cement of red argillite.
• •	· ·.	151.7' - 153.2' - red argillite with irregular $\frac{1}{4}$ " layers, of white sandstone in upper 0.2'; blobs of green to $\frac{3}{4}$ ",
· · ·		and 0.2' layer of green argillite at 152.6'. 153.2' - 155.4' - interlayered white and reddish sandstone in layers to 0.5' and red argillite; sandstone contains
	• .	red argillite pebbles; odd 0.2' layer of grey silty argillite.
155' - 165'	10.4'	ARGILLITE, mostly 155.0' – 155.2' – white sandstone mottled here and there with reddish spots.
· · · ·		155.2' – 155.8' – red argillite with $\frac{1}{4}$ " layer of green argillite.
		155.8' – 156.5' – interbedded white sandstone and red argillite with pebbles of red argillite in the sandstone, and a few of green argillite; $\frac{1}{4}$ " layer of green argillite
		at 156.5'. 156.5' - 157.0' - red argillite with 2 irregular $\frac{1}{4}$ " layers of
	139' - 147' 147' - 155' 155' - 165'	139' - 147' 8.6' 147' - 155' 8.3' 155' - 165' 10.4'

L. B. HALFERDAHL & ASSUCIATES LTD.

Company: Alcor Minerals Ltd. Drill Hole No: 1 Property: Goble Option Page 12

 \hat{F}^{i}

Interval	Recovery	Description
155' - 165' cont'd	10.4'	157.0' - 157.3' - white sandstone with layers of red argillite and pebbles of red argillite; green argillite pebbles at the bottom. 157.3' - 165.4' - red argillite with one 0.2' layer of white sandstone; one 0.4' layer of white sandstone
		with red argillite pebbles; green mottling in red argillite ranging from negligible to almost complete in interval of 0.2', a few other layers to $\frac{1}{2}$ " of white sandstone.
165' - 167'	1.4'	ARGILLITE, red with layers to 0.1' of white sandstone with red argillite pebbles, $\frac{1}{4}$ " green argillite layer on upper side of one sandstone layer; irregular grey mottling lower part.
167' - 175'	8.2'	ARGILLITE 167.0' – 167.2' – greyish siltstone with red mottling. 167.2' – 172.0' – red argillite, with $\frac{1}{2}$ " layer of white
		sandstone at 167.7'; argillite is slightly mottled with green, with largest blob 2" in size and irregular. 172.0' - 172.3' - red argillite grades down within $\frac{1}{2}$ " to purplish to black to green argillite which is 0.1' thick with copious black dendrites and then 0.1' layer of sandstone; below is $\frac{1}{2}$ " of greyish argillite.
· · · · · · · · · · · · · · · · · · ·	•	172.3' - 175.3' - argillite, red with irregular blobs of green and irregular layers to 0.2' prominent at 172.5' and 173.0'.
175' - 185'	10.4'	ARGILLITE 175.0' – 175.8' – red argillite with irregular 1"
		layer of white sandstone containing pebbles of red
		argillite. 175.8' – 176.0' – white sandstone with pebbles of green argillite.
	• •	176.0' - 176.4' - irregular $\frac{1}{2}$ " layer of red argillite at top; grey silty argillite below.
· · · · · · ·	· · · · · · · · · · · · · · · · · · ·	176.4' - 185.4' - red argillite, irregularly laminated, mottled and layered with grey and grey green argillite, with 3 or 4 layers of vhite sandstone to 2".

Interval	Recovery	Description
185' - 195'	10.6'	ARGILLITE, red, some sparsely spotted with up to $\frac{1}{4}$ " spots of green; some mottled irregularly for intervals of 2" with green or grey; some laminated; some appear
		very dark and somewhat graphitic; white sandstone layers to 1" at places.
195' - 205'	10.01	ARGILLITE, red, very similar to previous interval.
205' - 209' -	3.4'	ARGILLITE, red, similar to previous interval, sandstone to 2" with green argillite above and below; lower contact with red argillite is regular.
209' - 217'	8.5'	ARGILLITE, red, similar to previous interval; 1" interval contains a thin sandstone layer sandwiched between 2 thin layers of green argillite with regular contacts.
217' - 226'	9.3'	ARGILLITE, red, mottled and layered as in previous intervals with 0.5' layer at 221.8' of white to pinkish sandstone with pebbles of green argillite.
226' - 231'	4.6'	ARGILLITE, mostly 226.0' - 226.8' - whitish sandstone with red argillite layers to $\frac{3}{4}$ ", pebbles and partings; a few pebbles of green argillite. 226.8' - 230.6' - red argillite; a few sandy layers and about 3 layers of green argillite to 1" with irregular contacts.
231' - 240'	8.3'	ARGILLITE, mostly 231.0' – 232.2' – red argillite with some grey green mottling.

Interval	Recovery	Description
231' - 240'	8.3'	232.4' - 232.6' - red argillite, irregularly bleached
cont ¹ d		to a greenish color.
		232.6' - 233.0' - buff colored sandstone? cemented
		with calcite or carbonatized sandstone.
		233.0' – 233.5' – green argillite; one grey purplish
		streak; irregular sandy intervals.
• •		233.5' - 234.2' - buff colored sandy, very fine grained
н — с. ж. Н		limestone, with fine to medium grained quartz. 234.2' – 234.4' – grey and green argillite with sandy
		layer at bottom.
\$		234.4' - 239.3' - green, greyish green and red
		argillite, some finely laminated, mostly green with
		scattered blobs of red to 2"; two 0.5' intervals contain
		more red than green; layers to 0.4' of white sandstone,
		and sandstone with pebbles of red argillite.
240' - 250'	10.3'	ARG!LLITE, mostly
200		240.0' - 242.8' - red argillite with 0.5' white sandy
· · ·		interval near middle; argillite is uniform above this
		except for sparse spots of green to $\frac{1}{2}$ ", and is finely
		laminated below.
		242.8' - 243.9' - sandstone with layers to I" of
		green argillite; thin layers and pebbles of red argillite. 243.9' - 247.9' - red argillite, fissility at 70° to core
		axis; a few blobs of green to $\frac{1}{2}$; layers of green argillite
·		and two layers of white sandstone to 0.1'; red argillite
	· .	finely and somewhat irregularly laminated in lower
		part.
		247.9' – 248.3' – white sandstone with red argillite
· · ·		pebbles with irregular $\frac{3}{4}$ " layer of green argillite at
		bottom.
		248.3' - 250.4' - red argillite, fissility at 70° to
		core axis with irregular distribution of blobs of green
•		to 2" but mostly smaller; 3 layers to $1\frac{1}{2}$ " of white
		sandstone and associated green argillite in the lowest 0.6'.

٦,

Company: Alcor Minerals I.td. Drill Hole No: 1

Interval	Recovery	Description
250' - 260'	10.1'	ARGILLITE 250.0' – 251.0' – mostly red argillite with 2 layers
		of green to 0.1' and a 0.3' interval of white sandstone with red argillite pebbles in the middle.
· · · · · · · · · · · · · · · · · · ·		251.0' – 251.3' – white sandstone, cross bedded, with laminae and pebbles of red argillite.
· · ·	· . · · .	251.3' - 260.1' - red argillite, fissility at 70° to core axis, 0.3' interval with greyish spots to 2 mm; a few larger green blobs to 1"; $\frac{1}{2}$ " layers of green argillite
		above and below 0.1' layer of white sandstone.
260' - 270'	9.9'	ARGILLITE AND SILTSTONE Mostly red argillite, some intervals to 0.5' of white sandstone, some with cross bedding and red argillite pebbles.
•	·	260.9' - 262.7' - greyish laminated siltstone; two or three 0.1' irregular layers of green argillite, sparse
. :		spots of grey green to 3 mm.
270' - 279'	9.0'	ARGILLITE, red, with intervals of white sandstone with pebbles and 2 mm layers of red argillite; interval of white sandstone with green argillite above and
	•	below; a few irregular layers to 1" of green argillite.
279' - 287'	8.3'	ARGILLITE, red, as above; few layers of green argillite and sandstone some with red argillite pebbles; few
· · · · · · ·	· · ·	irregularly distributed green or grey spots.
287' - 291'	4.0'	ARGILLITE, red, as above with $\frac{1}{2}$ " layer white sandstone with thicker white sandstone and green argillite at 287.9' and 288.7'.
291' - 297'	4.0'	ARGILLITE, red, with a few layers to 0.2' of whitish red sandstone.

L. B. HALFERDAHL & ASSOCIATES LTD

A62

.....

Company: Alcor Minerals Ltd. Drill Hole No: 1

?

÷,

Interval	Recovery	Description
297' - 307'	10.3'	ARGILLITE, red, with several intervals to 0.5' of white sandstone with red argillite pebbles; a few blobs to 2" of green argillite and one 0.3' interval at 298.0' of green argillite with sandy grains and a 2 mm layer of black graphitic argillite.
307' - 317'	10.5'	ARGILLITE 307.0' - 310.6' - uniform red argillite; laminations and pebbles. 310.6' - 312.8' - red argillite with some green mottling and green spots to 1"; white sandstone 0.1' layer at 310.7'. 312.8' - 313.2' - green argillite with irregular contact with overlying and underlying red argillite; thin sandy layer in middle, some green argillite is mottled with grey. 313.2' - 317.5' - red argillite with white sandstone layers to 0.3'; one sandstone layer has red and green argillite pebbles; sandstone layers all have green argillite above or below or both; some layers of green argillite.
317' - 327'	10.3'	ARGILLITE, red, with blobs of irregular green mottling to 1" in size; several layers of white sandstone to 0.2' with green argillite to $\frac{1}{2}$ " above and below.
327' - 337'	10.3'	ARGILLITE, red as above; one 0.3' layer of coarse sandstone with pink and white quartz grains.
337'		End of hole.

DRILL LOGS

ł

	Drill Hole No:		Location: NW side of Spionkop Ridge
	Azimuth: - Dip: -90 Core: BQ wl	DDH [#] 1 Total Leng	: 6459'(based on at 6500')Started: September 28, 1970 Completed: September 29, 1970 Logged by: L.B.Halferdahlovery: 152.3'
	Interval	Recovery	Description
	0'- 7'	0'	Casing
-	7'- 10'	1.5'	ARGILLITE, red with layers to 0.2' of white sandstone, composed of medium grained, well cemented quartz, fissility at 70° to core axis.
	10' - 17'	6.4'	ARGILLITE, red with grey mottling in some intervals, and with greyish siltstone layers to 0.3', white sandston layers of 0.2' sandwiched between green argillite; some greyish green blobs to $\frac{1}{2}$ " in red argillite.
	17' - 25'	6.9'	ARGILLITE, mostly red, some pale mottling with grey, laminated, siltstone in upper 0.5' grading down to grey green argillite with red mottling; irregular layers and blobs to 1" of green or dark grey argillite, some with black dendrites.
•	25' - 29'	4.0'	ARGILLITE, mostly red, with irregular layers and blobs of green argillite to 2". 25.3' - 25.6' - green argillite which contains and grades into dark greyish graphitic argillite; some sandy layers with red argillite cement.
	29' - 37'	7.7'	ARGILLITE and SANDSTONE 29.0' - 34.8' - red argillite with one or two intervals to 0.2' of white sandstone with red argillite pebbles; blobs and layers to 3" of green argillite with irregular

Property: Goble Option Company: Alcor Minerals Ltd. Drill Hole No: 2 Page 2 Interval Recovery Description 29' - 37' 7.7 34.8' - 36.6' - coarse grained sandstone with white cont'd and pink quartz grains in upper part with green argillite pebbles and red argillite irregularly mottled with grey green in lower part. 37' - 42' 4.4' ARGILLITE 37.0' - 37.5' - green with $\frac{1}{2}''$ layer of white sandstone in top 1" and an irregular blackish area about 1" in size at 37.4' BASIC INTRUSIVE 37.5' - 41.4' 37.5' - 38.5' - buffish green grey, very fine grained to aphanitic groundmass with lath-shaped crystals to 3 mm is size; 1.0' zone appears to be the chilled margin or alternatively the zone that has been altered by later solutions; no sulfides are visible. SAMPLE 1561 37.5' - 38.5' 1.0' 0.01% Cu. 38.5' - 41.4' - medium grained groundmess, dark greenish grey with lath-shaped feldspar phenocrysts to $\frac{1}{2}$ " and in radiating stellate aggregates to 2" in size; malachite staining is visible on fractures and joints; some joints contain copious black dendrites, others are rusty; in places the rock takes on a purplish cast with irregular greenish areas. SAMPLE 1562 38.5' - 41.4' 2.9' 0.16% Cu.

> BASIC INTRUSIVE 42.0' - 46.1' medium grained sill, very similar to previous interval; no copper mineralization visible except for a trace on joints; some joints have copious black dendrites; phenocrysts are less numerous; margin becomes somewhat buff colored at 45.1'.

42' - 47' 5.1'

Company: Alcor Minerals Ltd. Property: Goble Option Drill Hole No: 2 Page 3 Interval Description Recovery 42' - 47' 5.1' SAMPLE 1563 42.0' - 46.1' 4.1' 0.15% Cu. cont'd ARGILLITE, greenish grey, 46.1' - 47.1'. 3.8' -51 ARGILLITE, red, with 2" of green at top and white 47' sandstone with red argillite pebbles for 0.7' in middle; irregular layer of green argillite to 0.2'. 51'- 61' 11.0' ARGILLITE, red with white sandstone layer to 0.3' with red argillite pebbles; layers and irregular green blobs to 1". 61' - 71' 11.0' ARGILLITE, red with white sandstone layers to 0.6'; with pebbles of red argillite, and layers of red and green argillite; some sandstone is coarse grained; red argillite is irregularly layered to 2" and in blobs. 71'- 91' 21.2' ARGILLITE, mostly 71.0' - 75.1' - red argillite finely laminated in top 0.4' with irregular layer of green argillite to 1" thick; white sandstone layers to 1" with copious pebbles and layers of red argillite, one $\frac{1}{2}$ " irregular layer of green argillite. 75.1' - 76.6' - white sandstone with pebbles and partings of red argillite; one irregular $\frac{1}{4}$ " layer of green argillite. 76.6' - 77.3' - red argillite. 77.3' - 78.0' - red argillite interbedded with white sandstone with red argillite pebbles. 78.0' - 82.3' - red argillite with sandy layers to 0.1' and very sparse blobs of green. 82.3' - 84.3' - mostly red argillite interbedded with greenish grey argillite to 0.2', white sandstone with red argillite to 0.2', and grey siltstone to 0.2'. 84.3' - 91.0' - argillite as in previous intervals; some greyish blobs grading into green; laminated red argillite; grey silty layers; white sandstone.

灣

A66

L. B. HALFERDAHL & ASSOCIATES LTD.

Interval	Recovery	Description
91' - 101'	10.4'	ARGILLITE, red, interbedded with white sandstone; 0.3' laminated greyish red argillite with mottling in upper 1.5'; one interval of white sandstone with green argillite pebbles; sparse green blobs.
101' - 111'	10.1'	ARGILLITE and SANDSTONE 101.0' - 104.2' - red argillite, with a few layers of white sandstone to 1", some with pebbles of red argillite and some sandwiched between layers to $\frac{1}{2}$ " of green argillite. 104.2' - 105.5' - sandstone with red argillite layers, partings and pebbles and green argillite pebbles; banding at 70° to core axis. 105.5' - 111.0' - red argillite with 0.7' sandstone layer at 109.1', and other sandstone layers to 0.2', some with red argillite pebbles, others sandwiched between $\frac{1}{2}$ " layers of green argillite, with a few blobs
111' - 121'	9.8'	of green argillite. ARGILLITE, red, interbedded white SANDSTONE Upper part contains white sandstone layers to 0.5' thick with green argillite pebbles and layers, and red argillite pebbles; lower $3\frac{1}{2}$ ' is uniform red argillite with
		fissility at 70° to core axis.
121' - 126'	5.5'	ARGILLITE and SANDSTONE 121.0' - 126.0' - red argillite, sandstone, green argillite as in previous interval; with white sandstone and green argillite in lowest $\frac{1}{2}$ '.
126' - 132'	6.0'	SANDSTONE, white and green ARGILLITE, 126.0' – 126.8', as in previous interval.
		BASIC INTRUSIVE 126.8' – 130.8' – green with chilled margins about 0.5' thick on top and bottom, with very fine grained matrix and lath–shaped feldspar

Company: Alcor Minerals Ltd.Property: Goble OptionDrill Hole No: 2Page 5IntervalRecoveryDescription

Interval	Recovery	Description
126' - 132' cont'd	6.0'	phenocrysts to 2 mm; middle part consists of an interlocking aggregate (intersertal texture ?) of buffish lath-shaped grains in a grey green intergrowth with a few clots of greenish feldspars to 1" or more and a few single feldspar phenocrysts to $\frac{1}{2}$ ".
	·	SANDSTONE, white and grey green argillite, 130.8' – 132.0'
132' - 137'	5.5'	ARGILLITE and SANDSTONE 132.0' - 132.5' - white sandstone with green argillite layers and pebbles in upper half, green argillite in lower half. 132.5' - 137.0' - mostly uniform red argillite with 3 intervals to 0.3' of white sandstone with green argillite pebbles and layers, with irregular contacts.
137' - 144'	4.0'	ARGILLITE, red with layers to 0.1' of white sandstone and green argillite.
144' - 148'	4.0'	ARGILLITE, red with white sandstone and green argillite as in previous interval.
ī 48' - 152'	4.0'	ARGILLITE, red, white sandstone, and green argillite as in previous interval, with one interval of sandstone to 0.3' with coarse white and red quartz grains.
152' - 162'	10.0'	ARGILLITE, red with white sandstone and green argillite as in previous interval; with 0.7' of sandstone and green argillite at top of interval; few layers or blobs of green argillite to 0.3'.
162'		End of hole.

λ

A68

L. B. HALFERDAHL & ASSOCIATES LTD.

DRILL LOGS

ł

	Company: Alco Drill Hole No:		Ltd. Property: Goble Option Location: NW side of Spionkop Ridge
	Azimuth: - Dip: -90° Core: BQ wl	Elevation: Total Léne Total Reco	
ł	Interval	Recovery	Description
	0'- 11'	0'	Casing
	11' - 17'	4.5'	SANDSTONE, white with reddish laminae in planes at 30° to core axis; with pebbles to 1" of red argillite; intervals to 0.3' with green argillite pebbles and partings.
	17' - 19'	1.3'	SANDSTONE as in previous interval.
	19' - 25'	3.0'	QUARTZITE, white, tough, well cemented (poor recovery as a result); few vugs or solution cavities to $\frac{1}{4}$ ".
	25' - 27'	1.5'	QUARTZITE, white, as in previous interval.
	27' - 29'	2.0'	QUARTZITE as in previous interval; with partings of green argillite and a few pebbles of red and green argillite.
	29' - 33'	3.4'	QUARTZITE, white, more green argillite partings at 45° to core axis, and pebbles of red and green argillite.
· · · ·	33' - 41'	6.4'	SANDSTONE, mostly white or greenish, with partings and pebbles of green argillite, and a few of red argillite, some partings show an abrupt but irregular change from red to green.
	41'- 43'	2.0'	SANDSTONE, white with partings of green argillite, pebbles of green argillite to 1", and of red argillite to 2".
		······	

	Recovery	Description
43' - 47'	4.0'	SANDSTONE, white and greenish, pebbles and partings of green argillite, with two intervals to 1'
	•	with a considerable number of red argillite pebbles and partings at about 45° to core axis.
47'- 53'	6.0'	SANDSTONE, white and greenish as in previous intervo
53'- 60'	5.5'	SANDSTONE, white and greenish with green and red argillite as in previous intervals.
50'- 62'	0.2'	SANDSTONE, reddish, with pebbles and partings of red argillite.
52' - 67'	4.2'	SANDSTONE and ARGILLITE 62.0' – 62.6' – white sandstone with green argillite
		pebbles and partings. 62.6' - 64.3' - uniform red argillite, fissility at 70° to core axis.
	• • •	64.3' - 65.0' - whitish sandstone with red argillite partings and pebbles.
	• • • • • • • • •	65.0' - 66.1' - interbedded red argillite and white sandstone with 0.1' of green argillite.
57'- 72'	5,3'	SANDSTONE, mostly, some white and free of argillite; some contains numerous partings and pebbles of red
· · · ·	· . ·	argillite; two or three intervals to 0.3' of red argillite.
72' - 80'	7.2'	SANDSTONE and ARGILLITE 72.0' – 73.2' – white sandstone with green argillite
	-	pebbles to $1\frac{1}{2}$ " and partings. 73.2' – 73.5' – green argillite with red argillite
		blobs to 1". 73.5' - 75.1' - banded, greyish red, argillite and siltstone.
· · · ·		75.1' - 76.3' - white and red sandstone, with red argillite pebbles and partings.
	$\frac{17'}{53'} - \frac{53'}{60'}$ $\frac{53'}{50'} - \frac{62'}{62'}$ $\frac{52'}{52'} - \frac{67'}{7'}$	$\frac{47' - 53'}{53' - 60'} + \frac{6.0'}{5.5'}$ $\frac{50' - 62'}{0.2'} + \frac{0.2'}{4.2'}$ $\frac{52' - 67'}{4.2'} + \frac{12'}{5.3'}$

• •

÷.,

• :

,

Company: Alcor Minerals Ltd. Property: Goble Option Drill Hole No: 3 Page 3 Interval Recovery Description 72' - 80' 7.2' 77.3' - 79.2' - mostly dark red argillite, some greyish cont'd and greenish, with pebbles of argillite of other color; laminated; fissility at 70° to core axis. 80'- 90' 10.5 SANDSTONE and ARGILLITE 80.0' - 81.1' - white sandstone with green argillite pebbles and partings. 81.1' - 86.0' - mostly red argillite with layers of white sandstone with red argillite pebbles and partings, two intervals of white sandstone to 0.4' with green or mixed green and red argillite partings. 86.0' - 89.2' - white sandstone, medium to fine grained, well cemented with partings in lower $1\frac{1}{2}$ "; and pebbles of green argillite; 0.3' interval of white sandstone and and green argillite; 0.3' interval of mixed white sandstone and green argillite. 89.2' - 91.1' - red argillite, with blobs and layers of green and grey. 90' -951 5.5' ARGILLITE and SANDSTONE 90.0' - 90.2' - red argillite with green blobs. 90.2' - 91.0' - white sandstone with partings of red argillite in upper part; sparse partings and pebbles of green argillite in lower part. 91.0' - 93.4' - red argillite with layers of sandstone, 1/8" to $\frac{1}{2}"$ at 70° to core axis, irregular 1" layer of green argillite at top. 93.4' - 93.8' - white sandstone with pebbles of green argillite and a few of red. 93.8' - 96.0' - red argillite with irregular layers to 0.4' of green argillite. 95' - 100' 5.5 SANDSTONE, white, medium to fine grained quartz, well cemented, with sparse green argillite partings and pebbles. 100' - 101' 0.91 SANDSTONE, white as in previous interval.

Company: Alcor Minerals Ltd. Drill Hole No: 3

Interval 🛛	Recovery	Description
101' - 110'	8.7'	ARGILLITE and SANDSTONE 101.0' - 101.6' - red argillite with green layers to $\frac{1}{2}$ " and blobs. 101.6' - 102.1' - green argillite with fissility at 70° to core axis. 102.1' - 104.5' - white sandstone; one bed 0.5' thick; rest has partings, layers, and pebbles of green argillite with 0.2' of green argillite at the bottom. 104.5' - 109.4' - red argillite with one 0.2' layer of white sandstone, and green argillite in a few blobs and layers to $\frac{1}{2}$ ".
	······································	
110' - 117'	7.0'	ARGILLITE and SANDSTONE 110.0' – 112.6' – red argillite with some indistinct greyish mottling; two layers of grey argiliite to $\frac{1}{4}$ ".
		112.6' - 113.7' - 0.6' of white sandstone with green argiliite and white sandstone above and below.
		113.7' - 114.9' - sandy red argillite with irregular fragments to 2" of white sandstone, some of which contain pebbles of green argillite. 114.9' - 115.6' - sandy green argillite with one
		¹ / ₂ " layer of white sandstone, and irregular red blobs. 115.6' – 116.9' – white sandstone, medium grained, few partings of green argillite. 116.9' – 117.0' – red argillite.
117' - 127'	11.0'	SANDSTONE and ARGILLITE
		117.0' - 117.7' - greyish mottling in red argillite and one $\frac{1}{2}$ "layer of green argillite. 117.7' - 118.7' - red argillite with green blobs to $\frac{3}{4}$ " and $\frac{1}{2}$ " layer of white sandstone.
		118.9' - 124.4' - white sandstone, some free of green argillite at the top, but the rest has conspicuous green argillite partings and pebbles; 0.1' of red argillite at bottom.
		124.4' - 125.7' - red argillite with $\frac{1}{2}$ " white sandstone

Interval	Recovery	Description
117' - 127' cont'd	11.0'	125.7' - 126.6' - white sandstone with 0.2' of red argillite at middle and other thinner layers of red argillite. 126.6' - 128.1' - red argillite with irregular layers to 1 ¹ / ₂ " of green argillite.
127' - 137'	10.4'	ARGILLITE and SANDSTONE 127.0' - 128.5' - uniform red argillite, with very sparse blobs of green. 128.5' - 130.6' - white sandstone with abundant partings, irregular layers and pebbles of red argillite; slickensides on some partings; one interval with pebbles of green argillite.
		130.6' - 137.4' - red argillite with fissility at 60° - 70° to core axis; 0.2' layer of white sandstone at 134.0' and several layers to 0.1' of greenish grey argillite with irregular contacts interbedded with red argillite both above and below the white sandstone for 1.2'; irregular blobs of grey green argillite.
137' - 147'	3.5'	ARGILLITE, banded reddish and reddish grey, and siltstor some sandy layers.
147' - 157'	9.4'	ARGILLITE, mostly 147.0' – 148.1' – red argillite with irregular green layers to 0.1' and smaller green spots.
		148.1' – 148.8' – green argillite; white sandstone with green argillite pebbles and partings, and green argillite interlayered with sandstone. 148.8' – 152.0' – red argillite with white quartz grains
· · · ·		for 0.4 ^{1a†} 149.4 ¹ and sparse spots to ½" of green at 150.5 ¹ for ½ ¹ . 152.0 ¹ – 153.0 ¹ – white sandstone and green argillite, interbedded and mixed.

4

k

Interval	Recovery	Description
147' - 157' cont 'd	9.4'	SAMPLE 1564 152.0' - 153.0' 1.0' 0.005% Cu
		153.0' - 154.9' - red argillite with a few irregular green
		layers and blobs to ½". 154.9' – 156.5' – white sandstone and green argillite
		interbedded and mixed.
·.		SAMPLE 1565 154.9' - 156.5' 1.6' Trace Cu.
		156.5 – 157.0' – red argillite
157' - 160'	3.8'	ARGILLITE and SANDSTONE
		157.0' – 158.4' – red argillite with 2" layer of white sandstone with green argillite partings.
		158.4' - 160.0' - white sandstone, some fine grained,
	на страна Колтория Колтория	well cemented, some with green argillite pebbles and
		partings. 160.0' – 160.9' – interbedded red and green argillite.
160' - 167'	7.5'	SANDSTONE and ARGILLITE
		160.0' - 160.5' - red argillite.
		160.5' - 164.2' - white sandstone, with green argillite in layers above and below; sandy argillite; green
		argillite partings.
		164.2' – 164.7' – red argillite. 164.7' – 165.2' – white sandstone with green argillite
×		layers and pebbles.
· · · · · · · · · · · · · · · · · · ·		165.2' - 167.5' - red argillite with a few blobs of
		green, and a 0.2' layer of white sandstone about the middle with irregular white sandstone layers towards
		the top.
167' - 173'	5.3'	ARGILLITE, red, with layers to 0.3' of grey argillite or siltstone and sandstone with some green argillite.

Interval	Recovery	Description
173' - 181'	9.0'	ARGILLITE, red, with layers to 0.3' of white sandstone with red argillite pebbles; some green argillite pebbles and $\frac{1}{2}$ " layers; some red argillite mottled with greyish red; few green spots to $\frac{1}{2}$ ".
181' - 183'	2.0'	ARGILLITE, red, with 2" layer of green argillite at the top and a few green blobs.
183' - 193'	11.2'	ARGILLITE 183.0' – 184.0' – red argillite, $\frac{1}{4}$ " sandstone layer, blobs of green argillite to $\frac{1}{2}$ ".
		184.0' - 185.6' - red argillite, white sandstone, grey siltstor in irregular layers to 0.5', and thin green argillite layers. 185.6' - 190.9' - red argillite, with layers of grey
		siltstone to 0.5', and layers and irregular masses of green argillite to 1". 190.9' - 191.2' - white sandstone with 1" of green argillite below.
		191.2' – 191.9' – red argillite with irregular green layers to ¹ / ₄ " and blobs; fissility at 45 [°] to core axis. 191.9' – 193.0' – grey siltstone with layers to
· · · · · · · · · · · · · · · · · · ·		$\frac{1}{4}$ " of red argillite and to $\frac{1}{2}$ " of white sandstone. 193.0' - 194.2' - uniform red argillite.
93' - 197'	3.7'	ARGILLITE, red, interbedded with green argillite in bands to 6" and white sandstone in $\frac{3}{4}$ " bands; contacts are
	· · · ·	generally irregular, laminations are wavy; green argillite is generally above or below white sandstone.
197' - 207'	10.8'	ARGILLITE 197.0' – 198.0' – interbanded red and green argillite with the green in layers to 2". 198.0' – 198.4' – mostly red argillite, mottled with
•		grey. 198.4' – 201.0' – red argillite with 3 layers of green to $\frac{1}{2}$ ", and mottled with grey at 199.0'.

Company: Alcor Minerals Ltd. Drill Hole No: 3 Property: Goble Option Page 8

Interval	Recovery	Description
197' - 207' cont'd	10.8'	201.0' - 201.3' - white sandstone with red argillite pebbles underlain by 2" of green argillite. 201.3' - 207.8' - red argillite, some mottled greyish; 3" layers of green argillite, and sandy intervals to 0.4'; some red argillite is irregularly laminated, and contains pebbles of red argillite.
207' - 217'	10.0'	ARGILLITE, red and green, and grey siltstone, all with some mottling; white sandstone; as in previous interval.
217' - 227'	10.0'	ARGILLITE, red with irregular blobs of green; white sand- stone; grey siltstone; as in previous interval.
227' - 237'	10.0'	ARGILLITE, red and green; grey siltstone; white sandstone; as in previous interval.
237' - 247'	10.01	ARGILLITE, red and green; siltstone; sandstone; as in previous intervals.
247' - 254'	7.8'	ARGILLITE, mostly red, some green; grey siltstone; white sandstone; as in previous intervals.
254' - 267'	13.01	ARGILLITE, siltstone, sandstone, as in previous intervals.
267' - 272'	5.0'	ARGILLITE, siltstone, sandstone, as in previous intervals.
272'		End of hole.

5

APPENDIX 5: CERTIFICATES OF ASSAY

1 320100/111

٧Ο.

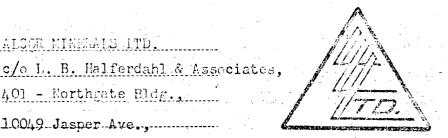
FIL

IS & SON LTD. -

MUTUAL 5-5821

H11

PROVINCIAL ASSAYERS


580 NELSON STREET

VANCOUVER 2. B. C. October 15th 19 69

RESULTS of Assays made on samples of ore submitted by: MESSRS. L.B. HALFERDAHL & ASSOCS.

MARK				Copper %				
·····								
13317	$6\frac{1}{2}$ ' sill, Yo	rrow		0.22		· · · · · · ·	· · · · ·	• • • •
3634	4.2' ss bed,	Spionkop		0.21			•	
3635	6.5' ss bed,	Spionkop		0.18			· · · · · ·	
3636	8.3' sill, Sp	ionkop		0.13		• .	·	
3637	5.5' ss bed,	Spionkop		0.62				
3638	5.5' ss bed,	Spionkop		0.21				
3639	grab sample	- 6" bed, V	vhistler	5.28	· · ·			
3640	grab sample	- 2" bed, W	Vhistler	1.97			-	
3641	grab sample	- 3" bed, V	Vhistler	1.02				
3642	grab sample	- 4" bed, V	Vhistler	0.78				
3643	grab sample	- Grizzly		0.36				
3 644	grab sample	- Grizzly		0.46				
							-	
1								

Assays made by:

File No. 3558 Date November 16th 1970 Samples Care

St ASSAY Edmonton.15, Alberta. 0×

LORING LABORATORIES LTD.

	 OZ./TCN	 Cu %	Spionkop
SAMPLE No.	SILVER		
1551		.005	DDH [#] I 66.8' - 67.2'
1552	· •····	.005	DDH [#] I 67.2' - 68.6'
1553	. .	.005	DDH #1 68.6' - 69.3'
1554	.22	1.09	DDH #1 69.3' - 70.9'
1.555		.01	DDH #1 70.9' - 71.6'
1556		.04	DDH [#] I 90.3' - 92.5'
1557		.02	DDH #1 92.5' - 94.0'
1558		.01	DDH #1 94.0' - 97.0'
1559	.02	.11	DDH [#] I 106.0' - 108.3'
1.560	.02	.005	DDH #1 111.0' - 112.3'
1561		.01	DDH [#] 2 37.5' - 38.5'
1562		.16	DDH [#] 2 38.5' - 41.4'
1.563		.15	DDH [#] 2 42.0' - 46.1'
1564	 	.005	DDH [#] 3 52.0' - 53.0'
1565		Trace	DDH [#] 3 54.9' - 56.5'
•	chy Certify that ade by me upon the h		

Rejects Retained one month.

ALCOR MINERALS ITD.

.10049 Jasper Ave.,

401 - Northgate Bldg.

ulps Retained one month inless specific arrangements nado in advance.

Licensed Assayer of British Columbia

	A79
.B. WALFERDAHL & ASSOCIATES LTD.	File No. <u>3577</u> Date November 20th 1970
0049 Jasper Ave	Samples Grab
Edmanton 15, Alberta	
Ser ASSAY ?	
S ASSAY	\sim

LORING LABORATORIES LTD.

SAMPLE No.	· .	OZ./TON SILVER	Cu %	Spionkop	
1566		.40	. 24,	Sill on W side	
1567			.82	Sill – upper part	•
1568				Sill – lower part	• • ••
1569		Trace	.04	Parking Lot Sill – upp	per part
1570		Trace	.04	Parking Lot Sill – Iow	ver part
			· ·		· .
		* • • •		 	
		· ·			
••					
			tity that the above r pon the herein descrie		

Rejects Retained one month.

ulps Retained one month nless specific arrangements made in advance.

Licensed Assayer of British Columbia

	\mathbf{A}		· .	
L. B. HALFERDAHL & ASSOCIATES L'	TD.	File No.	38 05	
<u>401 Northgate Bldg.</u>	ALLAN AND AND AND AND AND AND AND AND AND A	Date	February 10th	1971
10049 Jasper Ave.,		Samples	Grab	
Edmonton 15, Alberta.	Commission of the second	n na serie de la companya de la comp En la companya de la c		· · · · · · · · · · · · · · · · · · ·
	· F + + + +	· · · · · · · · · · · · · · · · · · ·		

LORING LABORATORIES LTD.

-		· · · · · · · · · · · · · · · · · · ·	-			<u> </u>		· · · · · · · · · · · · · · · · · · ·	
SAMPLE N	lo.		Cu 🖇		Pt	2		Zn %	
۰ ۱	-			•			•		
6071	Grab	emple/25	1.3	1	•				
6072	Grab s	ample,26	•2	6	• • • • • • •	20 ann 20			
6073	Grab s occur	ample/32	.7	0	-				
60714	Grab s occur	ample,31 rence'31	.4	3					
6075	Grab s	ample,11		1		Irace		Trace	
							: -*		
· .					,			• • •	
					• •				
		الآ As	Merchy says made by	Cortify ME UPON	THAT THE A	ABOVE RESUL Described S	TS ARE	THOSE 	
	6071 6072 6073 6074	6072 Grab s 6073 Grab s occur 6074 Grab s occur	6071 Grab sample, 25 6072 Grab sample, 26 6073 Grab sample, 32 6074 Grab sample, 31 6075 Grab sample, 31 6075 Grab sample, 11	6071 Grab sample, 25 6072 Grab sample, 26 6073 Grab sample, 26 6073 Grab sample, 32 6074 Grab sample, 31 6075 Grab sample, 11 6075 Grab sample, 11 6075 Grab sample, 10 6075 Grab sample, 10	6071 Grab sample, 25 6072 Grab sample, 26 6073 Grab sample, 26 6073 Grab sample, 32 6074 Grab sample, 31 6075 Grab sample, 11 .01 31 Thereby Certify	6071 Grab comple, 25 6072 Grab comple, 25 6073 Grab comple, 26 6073 Grab comple, 32 6074 Grab comple, 31 6075 Grab comple, 1 6075 Grab comple, 1 6075 Grab comple, 1 9 Merchy Certify THAT THE A	6071 Grab sample, 25 6072 Grab sample, 26 6073 Grab sample, 32 6074 Grab sample, 31 6075 Grab sample, 11 6075 Grab sample, 11 31 Thereby Certify that the above result	6071 Grab sample, 25 6072 Grab sample, 26 6073 Grab sample, 32 6074 Grab sample, 31 6075 Grab sample, 31 6075 Grab sample, 11 01 Trace J Thereby Certify that the Above RESULTS ARE	6071 Grab compler 1.31 6072 Grab compler .26 6073 Grab compler .26 6073 Grab compler .26 6073 Grab compler .26 6074 Grab compler .70 6074 Grab compler .43 6075 Grab compler .01 Trace Trace

Rejects Retained one month.

Pulps Retained one month pless specific arrangements ade in advance.

Licensed Assayer of British Columbia

APPENDIX 6: FIELD CREW AND FIELD TIME

FIELD CREW

Water Sampler

Water Sampler

Prospector

Prospector

Prospector

Geologist

Cook

M. Barcelo L. Bawel J. Card

D. Danyluk

J. Duthie J. Gorham

L. Halferdahl

F. Hewko G. Hildebrandt

D. Jackson M. Judd T. Judd A. Kahil

F. Nicholls J. Plummer B. Redpath G. Russell W. Stadnyczuk M. Zander Technician Prospector

Water Sampler Prospector Water Sampler Geologist

Water Sampler Prospector Water Sampler Prospector and Water Sampler Water Sampler Prospector September 11 - October 8 September 11 - October 29 June 25 - July 23, July 27 - September 5, September 9 - 12 June 24 - July 23, July 29 - August 2 June 24 - October 29 June 25 - July 23, July 29 - September 2 June 25 - July 7, July 11, July 19 - 23, July 27 - 28, August 8 - 14, August 24 - 28, August 30 - September 5, September 11 - October 1 October 7 - 8, October 13 - 17, October 22 - 29 June 24 - 28 June 24 - July 23, July 29 -September 5 September 22 - October 27 June 29 - August 15 September 8 - October 29 June 24 - July 19 July 27 - September 9 September 27 - October 29 July 27 - July 28 September 10 - October 29 July 3 - October 27 September 11 - October 27 June 24 - July 23 July 29 - September 5

FIELD TIME

In the summary below the field time has been divided into three divisions: geological work and administration, camp work and travelling, and days off. The first can be considered productive work; the second is necessary work including moving camp, vehicle problems as well as cooking and camp chores; the third

includes time off because of bad weather and the break at the end of July. The time of the drillers on the Spionkop Showing is not included.

	Geological Work Administration		Camp Work Travelling		Time (Off	Total	
	Days	%	Days	%	Days	%	Days	%
June 24 - 30	21	35	32	53 ¹ / ₂	7	$11\frac{1}{2}$	60	100
July 1 - 31	172	59	70	24	. 49	17	291	100
August 1 – 31	165	67	51 ¹ / ₂	21	$29\frac{1}{2}$	12	246	100
September 1 - 3	0 139	$60\frac{1}{2}$	69 <u>1</u>	30	21 ¹ / ₂	9 ¹ / ₂	230	100
October 1 - 29	127	51	66	26	57	23	250	100
Total	624	58	289	27	164	15	1077	100

R5W5M

MOUNT A BORSATO

~~~~

71

MIN.

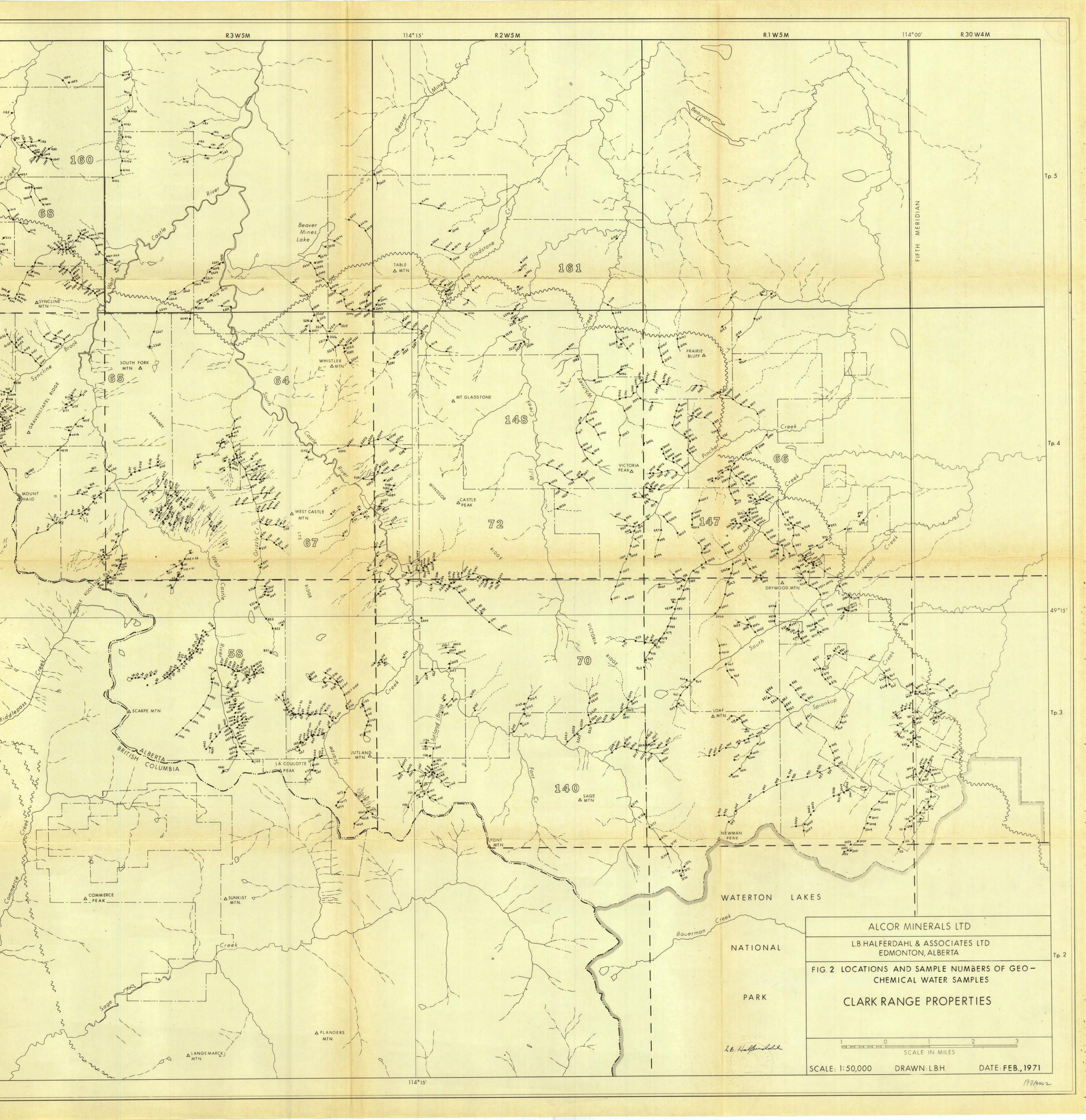
114° 30'

MCCAR

mos

PACKHORSE

114°30'


R.4 W5 M

Stream, flowing, dry, not sampled Stream, flowing, sampled Stream, dry, not sampled Lewis Thrust Flathead Fault Permit and claim boundary, owned or optioned

partly or completely by Alcor Minerals Ltd. and others (claim locations are approximate) Permit number Sample location, stream, lake with number

Sample location, spring with number

Base map compiled from 1:50,000 topographic maps, NTS numbers 82G/1E&W, 82G/2E, 82G/7E, 82G/8E&W, 82H/4W, 82H/5W Faults from published G.S.C. maps by Hage (1943), Douglas (1952), Norris (1959), Price (1962, 1965)



## LEGEND

R5W5M

MOUNT A BORSATO

522

MAN

71

AEBEKE

MIN.

sino

114° 30'

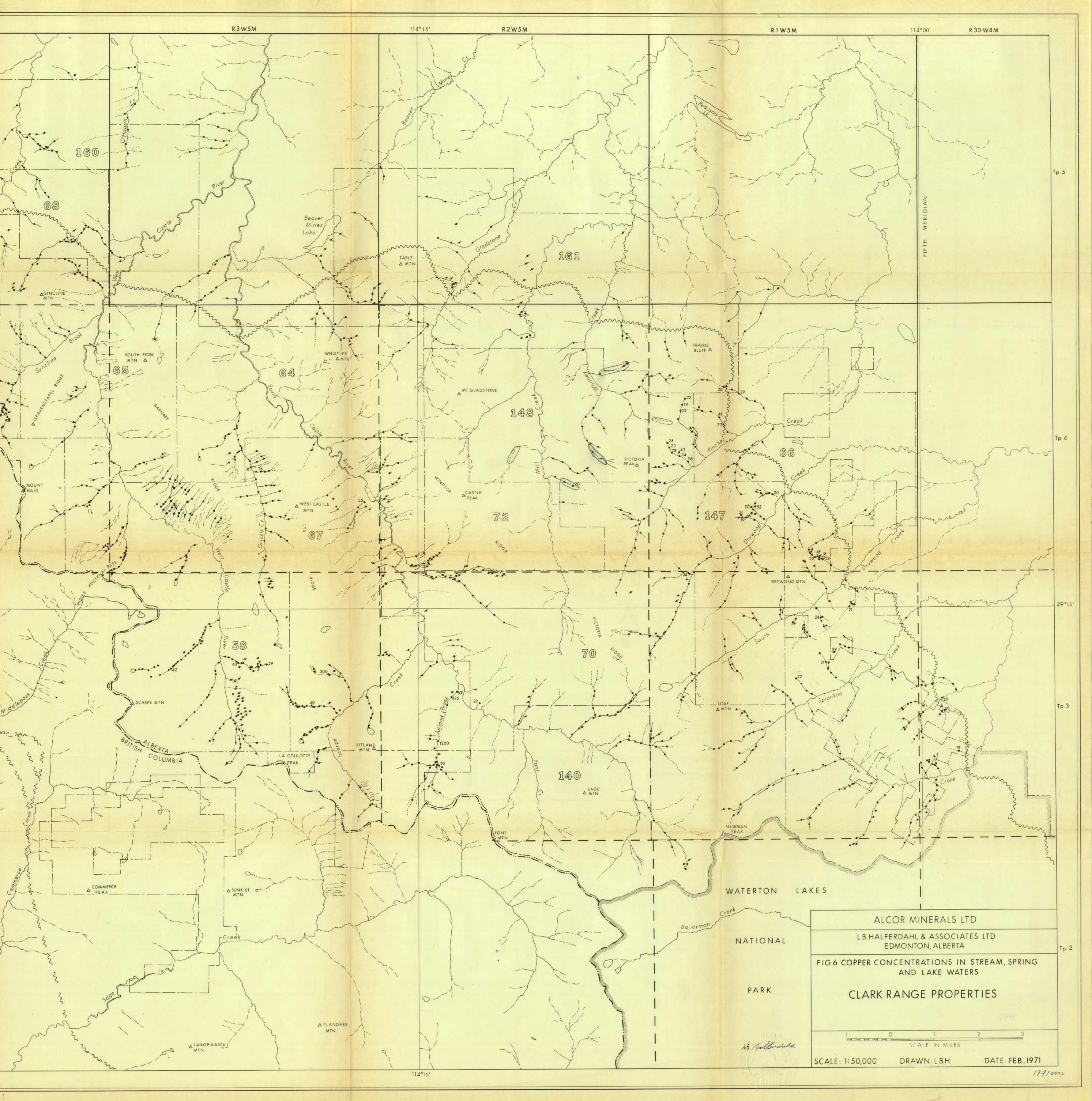
AMCCARTY

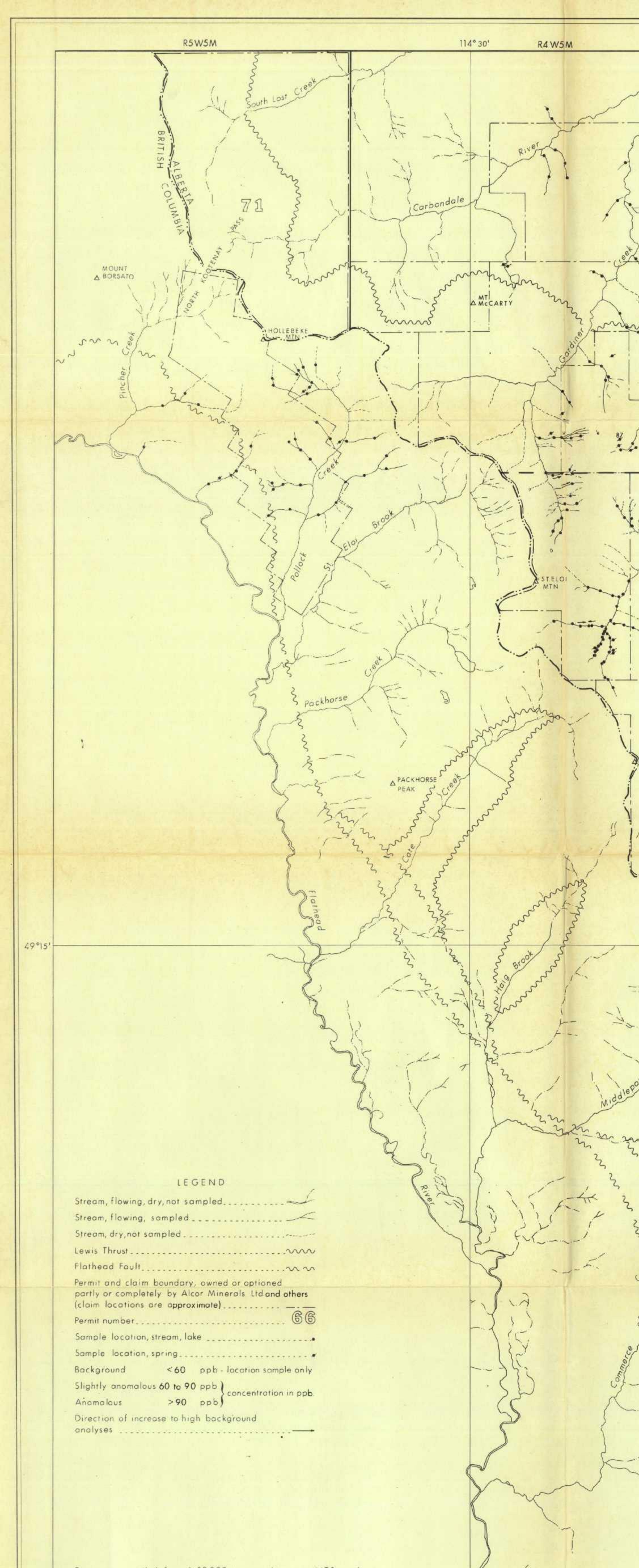
mm

PACKHORSE

114°30'

R4 W5M


to the


----

| Stream, flowing, dry | , not sompled                                                                   |
|----------------------|---------------------------------------------------------------------------------|
| Stream, flowing, sa  | mpled                                                                           |
| Stream, dry, not sam | pled                                                                            |
| Lewis Thrust         |                                                                                 |
| Flathead Fault       |                                                                                 |
| partly or completely | bundary, owned or optioned<br>by Alcor Minerals Ltd. and others<br>approximate) |
| Permit number        | 66                                                                              |
| Sample location, str | eam, lake                                                                       |
| Sample location, spi | ring#                                                                           |
| Background           | <18 ppb - location sample only                                                  |
| Slightly anomalous   | 18 to 27 ppb<br>>27 ppb                                                         |
| Anomalous            | >27 ppb)                                                                        |
|                      | e to high background                                                            |

Base map compiled from 1:50,000 topographic maps, NTS numbers 82G/1E&W, 82G/2E, 82G/7E, 82G/8E&W, 82H/4W, 82H/5W

Faults from published G.S.C. maps by Hage (1943), Douglas (1952), Norris (1959), Price (1962, 1965)






Base map compiled from 1:50,000 topographic maps, NTS numbers 82G/1E&W, 82G/2E, 82G/7E, 82G/8E&W, 82H/4W, 82H/5W

114°30'

Faults from published G.S.C. maps by Hage (1943), Douglas (1952), Norris (1959), Price (1962, 1965)



# LEGEND

R5W5M

BERT

MOUNT A BORSATO

snn

m

49°15

71

HOLLEBEKE

Lhorse

114° 30'

AMCCARTY

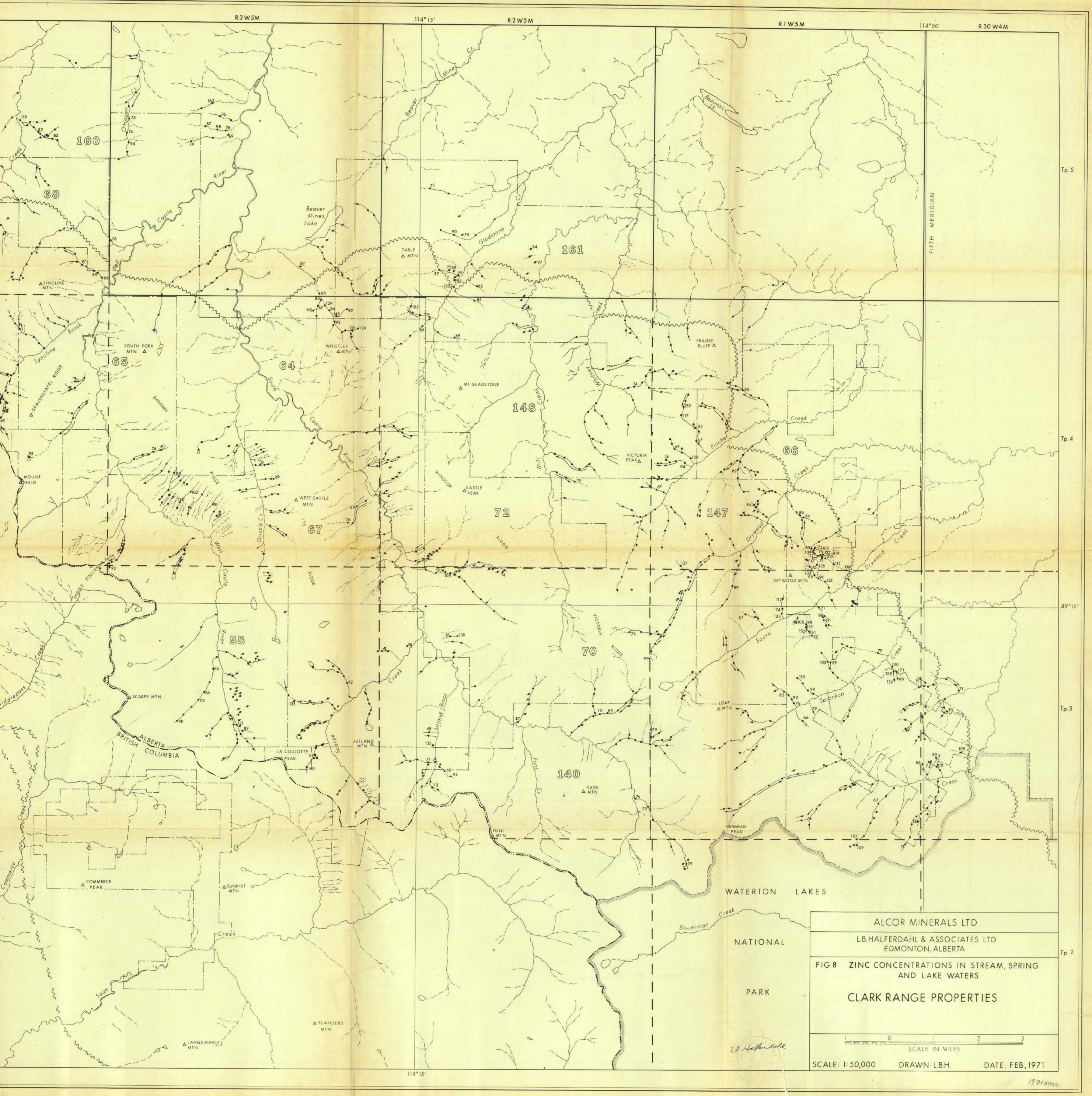
mms

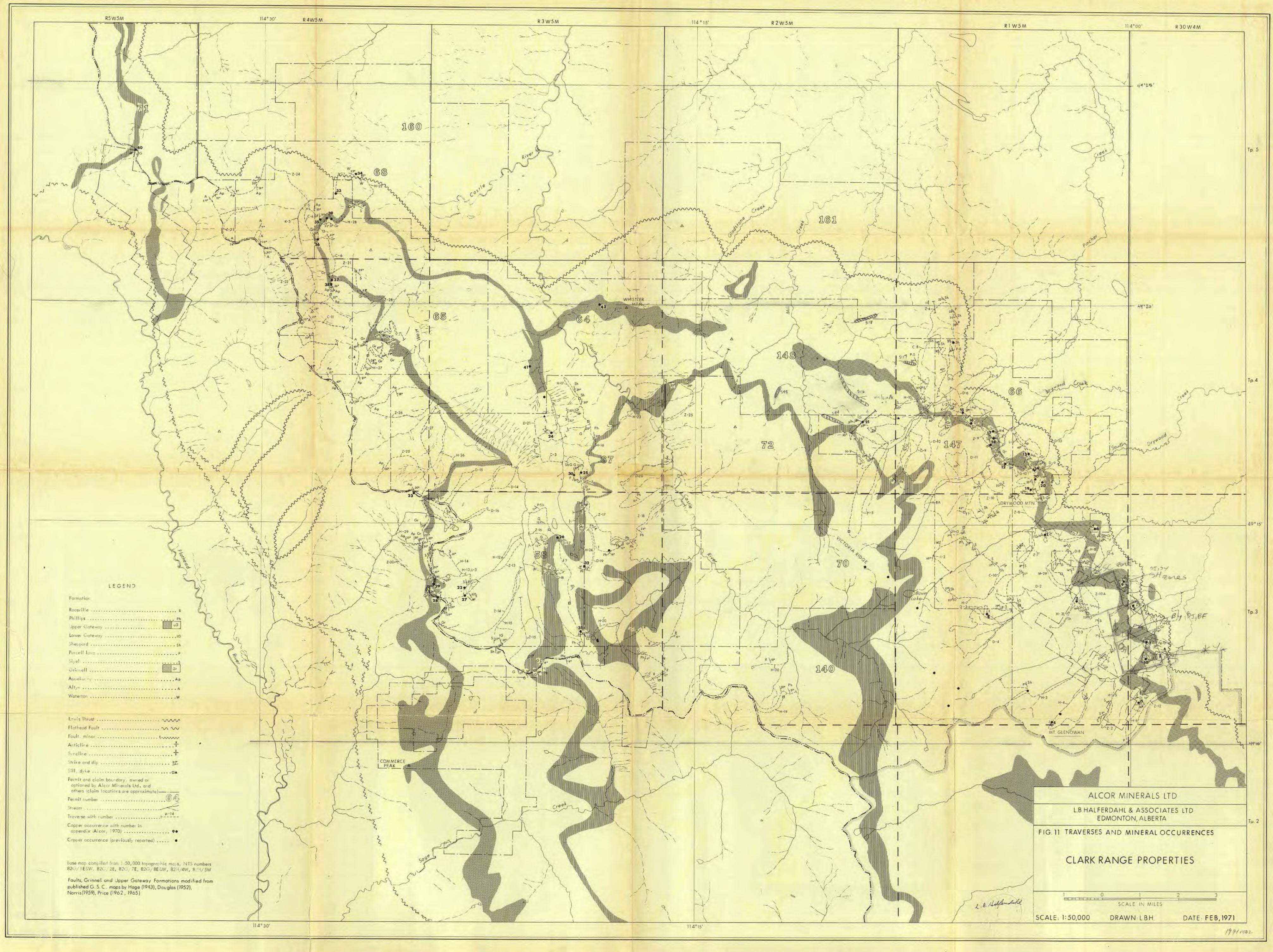
A PACKHORSE

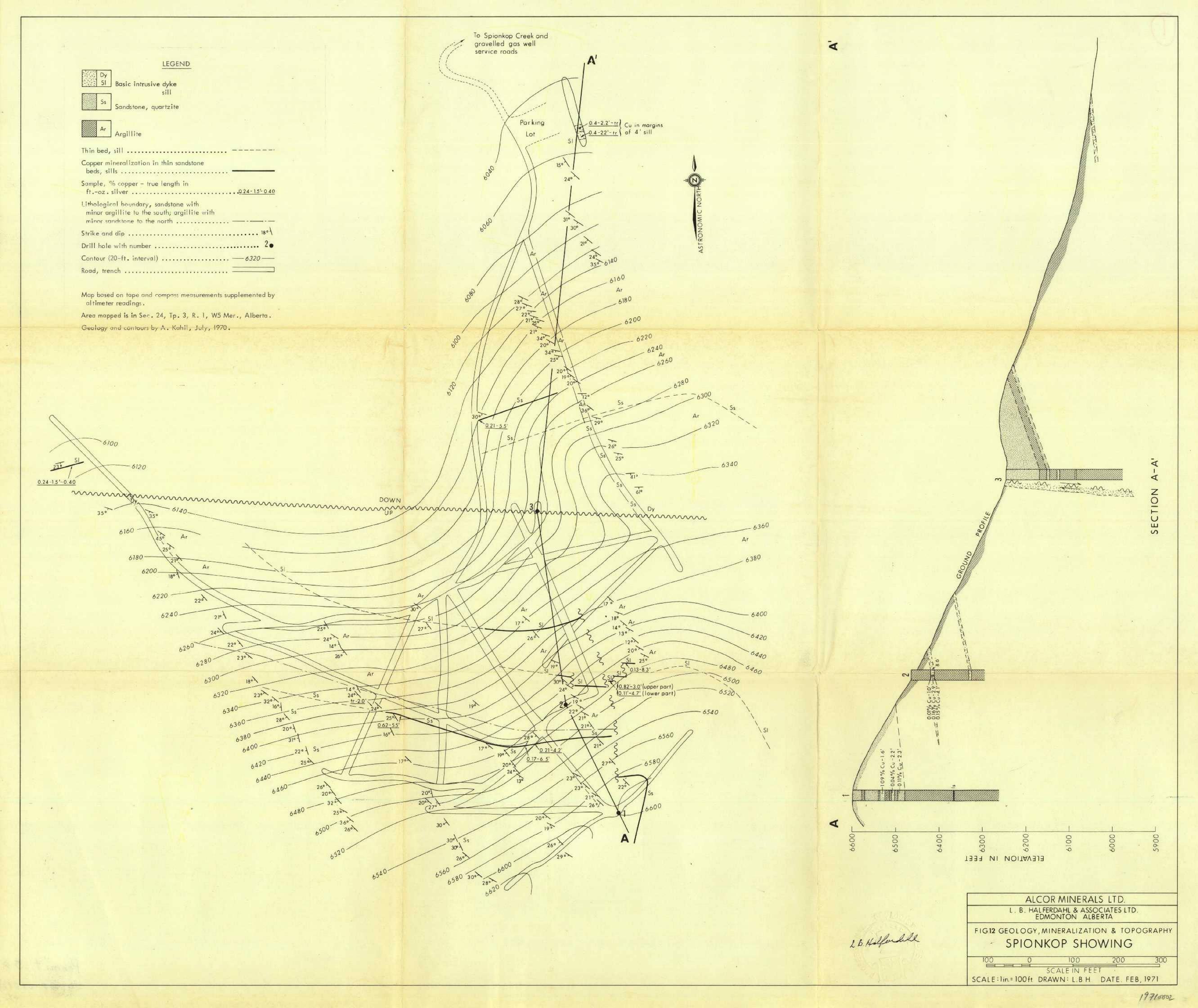
114°30'

R.4 W5M

xing -


tor


| Stream, flowing, dry, not sampled                                                                                                          |
|--------------------------------------------------------------------------------------------------------------------------------------------|
| Stream, flowing, sampled                                                                                                                   |
| Stream, dry, not sampled                                                                                                                   |
| Lewis Thrust                                                                                                                               |
| Flathead Fault                                                                                                                             |
| Permit and claim boundary, owned or optioned<br>partly or completely by Alcor Minerals Ltd and others<br>(claim locations are approximate) |
| Permit number                                                                                                                              |
| Sample location, stream, lake                                                                                                              |
| Sample location, spring                                                                                                                    |
| Background <65 ppb - location sample only                                                                                                  |
|                                                                                                                                            |
| Slightly anomalous 65 to 120 ppbconcentration in ppbAnomalous>120 ppb                                                                      |
| Direction of increase to high background                                                                                                   |


Base map compiled from 1:50,000 topographic maps, NTS numbers 82G/1E&W, 82G/2E, 82G/7E, 82G/8E&W, 82H/4W, 82H/5W

Faults from published G.S.C. maps by Hage (1943), Douglas (1952), Norris (1959), Price (1962, 1965)

.





