MAR 19680078: NORTHERN ALBERTA

Received date: Dec 31, 1968

Public release date: Jan 01, 1970

DISCLAIMER
By accessing and using the Alberta Energy website to download or otherwise obtain a scanned mineral assessment report, you (“User”) agree to be bound by the following terms and conditions:

a) Each scanned mineral assessment report that is downloaded or otherwise obtained from Alberta Energy is provided “AS IS”, with no warranties or representations of any kind whatsoever from Her Majesty the Queen in Right of Alberta, as represented by the Minister of Energy (“Minister”), expressed or implied, including, but not limited to, no warranties or other representations from the Minister, regarding the content, accuracy, reliability, use or results from the use of or the integrity, completeness, quality or legibility of each such scanned mineral assessment report;

b) To the fullest extent permitted by applicable laws, the Minister hereby expressly disclaims, and is released from, liability and responsibility for all warranties and conditions, expressed or implied, in relation to each scanned mineral assessment report shown or displayed on the Alberta Energy website including but not limited to warranties as to the satisfactory quality of or the fitness of the scanned mineral assessment report for a particular purpose and warranties as to the non-infringement or other non-violation of the proprietary rights held by any third party in respect of the scanned mineral assessment report;

c) To the fullest extent permitted by applicable law, the Minister, and the Minister’s employees and agents, exclude and disclaim liability to the User for losses and damages of whatsoever nature and howsoever arising including, without limitation, any direct, indirect, special, consequential, punitive or incidental damages, loss of use, loss of data, loss caused by a virus, loss of income or profit, claims of third parties, even if Alberta Energy have been advised of the possibility of such damages or losses, arising out of or in connection with the use of the Alberta Energy website, including the accessing or downloading of the scanned mineral assessment report and the use for any purpose of the scanned mineral assessment report so downloaded or retrieved.

d) User agrees to indemnify and hold harmless the Minister, and the Minister’s employees and agents against and from any and all third party claims, losses, liabilities, demands, actions or proceedings related to the downloading, distribution, transmissions, storage, redistribution, reproduction or exploitation of each scanned mineral assessment report obtained by the User from Alberta Energy.
PHOTOGEOLOGICAL STUDY

SULPHUR PROSPECTING PERMIT NO. 83:

NORTHERN ALBERTA

Prepared For

Five Star Petroleum & Mines Ltd.

July, 1968

J. C. SPROULE AND ASSOCIATES LTD.

OIL AND GAS ENGINEERING AND GEOLOGICAL CONSULTANTS
<table>
<thead>
<tr>
<th>TABLE OF CONTENTS</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>BEDROCK GEOLOGY AND TOPOGRAPHY</td>
<td>2</td>
</tr>
<tr>
<td>MODE OF OCCURRENCE AND RELATIONSHIP OF SULPHUR TO GENERAL GEOLOGY</td>
<td>3</td>
</tr>
<tr>
<td>PHOTOGEOLOGICAL STUDY WITH RECOMMENDATIONS FOR FIELD EVALUATION</td>
<td>7</td>
</tr>
<tr>
<td>CONCLUSIONS AND RECOMMENDATIONS</td>
<td>8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LIST OF ILLUSTRATIONS</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1 - Map of North-Central Alberta showing Sulphur Prospecting Permits</td>
<td>In Pocket</td>
</tr>
<tr>
<td>Figure 2 - Photogeological Mosaic, Sulphur Prospecting Permit No. 83, Fort Vermilion Area, Alberta</td>
<td>In Pocket</td>
</tr>
</tbody>
</table>
PHOTOGEOLOGICAL STUDY
SULPHUR PROSPECTING PERMIT NO. 83
NORTHERN ALBERTA

INTRODUCTION

This report has been prepared at the request of Mr. J. Reyda, acting for Five Star Petroleum & Mines Ltd., hereinafter referred to as the "Company." The request made was for a photogeological analysis of the Company's Sulphur Prospecting Permit No. 83, integrated with other available geological information. A map of north-central Alberta, Figure 1, shows the general geological setting of the Company Permit and its relationship to other sulphur permits in the area. Figure 2 represents the results of this preliminary study on a photogeological mosaic.

The immediate objective of this photogeological study was to identify from the study of aerial photographs those areas that, from our present knowledge, would be the most favourable for the occurrence of sulphur. Such areas could then be examined in the field to determine the presence or absence of sulphur.

Sulphur Prospecting Permit No. 83 totals approximately 19,840 acres.
BEDROCK GEOLOGY AND TOPOGRAPHY

Sulphur Prospecting Permit No. 83 is in an area underlain by Cretaceous rocks. The thickness of Cretaceous above the Paleozoic within the Permit area is estimated to be in the order of 100 feet.

The Cretaceous rocks consist of shales, sandy shales and sandstones. These rocks are poorly consolidated and bentonitic in character. The underlying Devonian rocks consist of limestones, dolomites, shales and evaporites. Outcrops of bedrock are expected to be sparse.

The bedrock in the general area is overlain by a variable thickness of glacial till, glacio-lacustrine and Recent deposits.

Sulphur Prospecting Permit No. 83 occupies both sides of the Wabasca River, approximately six miles south of its intersection with the Peace River and twenty-five miles southeast of Fort Vermilion. The generally level nature of the topography in this area has resulted in somewhat impeded drainage, but muskeg is not extensive.

The Wabasca River follows a meandering path from south to north through the subject Permit. Where the river enters the south boundary of Sulphur Prospecting Permit No. 83, there are several rapids. These rapids are probably caused by a formation that is more resistant than the normal sequence of soft Cretaceous shales.
MODE OF OCCURRENCE AND RELATIONSHIP OF SULPHUR TO GENERAL GEOLOGY

Within the general area of interest in which sulphur prospecting permits have been issued (Figure 1), the principal bedrock formations are of Cretaceous age, but, to the north and northeast, erosion has stripped off the Cretaceous beds exposing older Devonian rocks. The Devonian, as well as overlying Cretaceous rocks, are generally inclined gently westward into the Alberta Syncline so that progressively younger rocks of both Paleozoic and Mesozoic ages are present in that direction.

The bedrock, whether of Devonian or Cretaceous age, is overlain by a variable thickness of glacial and related sediments. The thickness of these overlying sediments is generally at a minimum in those areas where river valleys are deeply incised and greatest in the hilly portions of the area.

The surficial geology of the area is of particular interest to the subject of possible economic occurrences of sulphur because of the probability that any economic deposits in this area are in surficial deposits.

The last glacier to cover the subject area was of Wisconsin age. Dating by 'carbon 14' method indicates that this advancement over the region occurred over 31,000 years ago. Ice flow features on the Glacial Map of Canada indicate that this glacier came from an area west of Hudson Bay. The thickness of the glacier is estimated to have been approximately 5,000 feet and the average direction of flow in the subject area was to the west-southwest.

The general absence of terminal moraines and other ice marginal features indicates that the retreat of the glacier was mainly by rapid stagnation. Dead-ice moraine forms the surface or underlies lacustrine deposits over much of the regional area.
As the glacier retreated, the lowland to the north was blocked by ice and meltwaters and could not drain freely. Extensive proglacial and super-glacial lakes were formed, resulting in the deposition of glacio-lacustrine deposits that vary in thickness from a few inches to fifty feet or more.

It is, at this time, not clear as to what extent the sulphur is developed in surficial deposits and to what extent it may be present within the stratified deposits of the Cretaceous and/or Devonian, but both modes of occurrence may exist. The most likely commercial deposits are, however, probably surficial.

Sulphur occurrences in the general region may be broken into three groups, as follows:

1. In muskeg or other poorly drained lacustrine or "dried lacustrine" areas. The most important known apparent example of this type is the Sulphur Prospecting Permit No. 8 discovery occurrence.

2. Deposits of elemental sulphur in connection with active springs with or without associated gas. One such known occurrence involved gas, which was, at least in part, combustible.

3. Cretaceous shales in the area frequently contain finely disseminated sulphur. Although we know of no reported concentrations of significant size from the Cretaceous, the possibility of such economic occurrences cannot be entirely eliminated.

In many parts of the general area, burnt shales have also been reported. These usually appear to be associated with recent slumps, possibly because the slumping brings the combustible material, which may include sulphur, in contact
with the surface. The origin of the combustion is, at this time, purely conjectural, but lightning produced forest fires are the most likely cause.

We are not prepared, at this time, to enter into detailed discussions of theories of the origin of the sulphur because of the large number of presently uncertain factors in this new area. Studies in the area are, however, likely to yield substantial information over the coming field season. Meanwhile, theories of origin from Paleozoic connate waters or from bedded Devonian and other gypsum and anhydrite deposits are of principal interest.

The manner of occurrence of sulphur deposits will determine whether they can be mined at the surface by stripping or from deeper strata by the Frasch process.

Solution of many of the questions of origin and occurrence is of prime economic importance and should be given very detailed attention as the present permit areas are evaluated.

Meanwhile, it is of general interest to the overall sulphur problem in this region that continuous flowing sulphur springs have been known in the area for nearly 200 years and that such springs are still known along a broad area along the Mesozoic-Paleozoic surface geological contact that extends from Western Saskatchewan, through the McMurray oil sands area, and across the present region of sulphur permits into the southern part of the Northwest Territories near Pine Point and westward along the Liard River. It is of further possible significance that there appears to be a genetic relationship between these sulphur occurrences and the McMurray oil, which has a four percent to five percent sulphur content. In addition to this, there is considerable free sulphur associated with the McMurray oil sands, both within and outside of the oil saturated area. As a measure of the amount of sulphur already known to have been deposited, probably
from the same type of connate waters that can be expected to have deposited the
sulphur under study, we might refer to the "reserve" of the sulphur in the
McMurray oil sands. Most recent estimates indicate that there is over 600
billion barrels of oil-in-place in the McMurray oil sands. This oil contains
four to five percent of sulphur weighing approximately eight to ten billion long
tons.

The above and other evidence available would indicate that what is
needed to produce an economic sulphur deposit in this area is a favourable
combination of faults and fractures for sulphate spring exits, sulphur supply
in the connate waters and poorly drained lacustrine or other flat basin areas
immediately adjacent to the spring exits. All these individual circumstances
are known to exist. Under the proper combination of circumstances, there is no
definite limit to the amount of sulphur that could be formed. Whether or not,
or where, commercial deposits are present remains to be seen.
PHOTO GEOLOGICAL STUDY WITH RECOMMENDATIONS FOR FIELD EVALUATIONS

Prominent photo-alignments, interpreted to represent surface expressions of bedrock faulting or fracturing, are present here. These fractures assume a northwest-southeast direction, except in the vicinity of the Wabasca River, where the trend is dominantly north-south, paralleling the river. Irregular patches of muskeg are developed within the Permit boundaries. In the northern portion of the area, the trend of these poorly drained features follows the main fracture pattern. To the south, the trend is more aligned with the direction of glaciation.

Discussions of areas of interest follow:

'Area 1' and 'Area 2' include those muskeg areas in the northwestern and central portions of the subject Permit. These features, which are oriented along prominent fractures, should be examined. In conjunction with the checking of these areas on the ground, limited shallow augering is recommended.

Included in 'Area 3' are those irregular shaped patches of muskeg in the southwestern part of the Permit. Shallow augering of selected locations is also suggested here.

'Area 4', in the southeastern portion of the Permit, includes the horseshoe-shaped area and the small area near the river. These should be examined in a manner similar to that described above.

'Area 5' includes that area along the Wabasca River, most of which is overlain by alluvium. It is unlikely that any large deposits of sulphur will be found here, however, a cursory examination of small streams emptying into the river may provide clues as to the location of springs in the area.
CONCLUSIONS AND RECOMMENDATIONS

From our overall sulphur studies in the general area, we conclude that the most likely sources of commercial sulphur are surficial deposits.

We also conclude, from our regional studies of the sulphur prospects of the subject area, that surficial deposits of sulphur are likely to occur in muskegs, lakes, or abandoned lacustrine depressions, with particular reference to such areas that are along or adjacent to fractures and/or faults responsible for sulphate water springs.

We have determined that a number of such features show well on the air photographs and these areas have been outlined on the accompanying photogeological mosaic, Figure 2.

In view of the above, it is recommended that a field check be made of the localities that have been indicated by the photogeological study to be prospective. This field check would be that indicated as Step 1 of Phase II in our letter of June 8, 1968.

This report has been prepared for the exclusive use of Five Star Petroleum & Mines Ltd. and is not to be reproduced in whole or in part in any form without the written permission of J. C. Sproule and Associates Ltd.

1009 Fourth Avenue S.W.,
Calgary, Alberta.
July 31, 1968.
VAF/SRLH/fc

J. C. SPROULE AND ASSOCIATES LTD.