MAR 20160001: RICHARDSON

A report on Granite and Limestone exploration on the Richardson property near Fort Mackay.

Received date: January 4, 2016

Public release date: June 20, 2017

DISCLAIMER

By accessing and using the Alberta Energy website to download or otherwise obtain a scanned mineral assessment report, you ("User") agree to be bound by the following terms and conditions:

- a) Each scanned mineral assessment report that is downloaded or otherwise obtained from Alberta Energy is provided "AS IS", with no warranties or representations of any kind whatsoever from Her Majesty the Queen in Right of Alberta, as represented by the Minister of Energy ("Minister"), expressed or implied, including, but not limited to, no warranties or other representations from the Minister, regarding the content, accuracy, reliability, use or results from the use of or the integrity, completeness, guality or legibility of each such scanned mineral assessment report;
- b) To the fullest extent permitted by applicable laws, the Minister hereby expressly disclaims, and is released from, liability and responsibility for all warranties and conditions, expressed or implied, in relation to each scanned mineral assessment report shown or displayed on the Alberta Energy website including but not limited to warranties as to the satisfactory quality of or the fitness of the scanned mineral assessment reports and warranties as to the non-infringement or other non-violation of the proprietary rights held by any third party in respect of the scanned mineral assessment report;
- c) To the fullest extent permitted by applicable law, the Minister, and the Minister's employees and agents, exclude and disclaim liability to the User for losses and damages of whatsoever nature and howsoever arising including, without limitation, any direct, indirect, special, consequential, punitive or incidental damages, loss of use, loss of data, loss caused by a virus, loss of income or profit, claims of third parties, even if Alberta Energy have been advised of the possibility of such damages or losses, arising out of or in connection with the use of the Alberta Energy website, including the accessing or downloading of the scanned mineral assessment report and the use for any purpose of the scanned mineral assessment report.
- d) User agrees to indemnify and hold harmless the Minister, and the Minister's employees and agents against and from any and all third party claims, losses, liabilities, demands, actions or proceedings related to the downloading, distribution, transmissions, storage, redistribution, reproduction or exploitation of each scanned mineral assessment report obtained by the User from Alberta Energy.

Alberta

Alberta Mineral Assessment Reporting System

20160001

JAN 0 4 2016

NTS Numbers: 074E10, 074E11, 074E14, 074E15

PARTS B AND C

ASSESSMENT REPORT FOR ATHABASCA MINERALS INC.'S RICHARDSON PROPERTY, NORTHEASTERN ALBERTA

Metallic and Industrial Mineral Permits: 9310060418-9310060419, 9312060367, 9312060387-9312060388, 9312070594, 9312100494 and 9312110408

> Prepared For: Athabasca Minerals Inc. 9524 - 27 Avenue Edmonton Alberta, Canada T6N 1B2

> Prepared by: APEX Geoscience Ltd. Suite 200 9797- 45 Avenue Edmonton AB, Canada T6E 5V8

Roy Eccles, M.Sc., P. Geol. Bryan Atkinson, B.Sc., P.Geol. Steven Nicholls, BA.Sc, MAIG

May 25, 2015 Edmonton, Alberta, Canada

Contents

Part E	B
--------	---

1	Summary	1
2	Introduction	13
3	Disclaimer	17
4	Property Description and Location	17
•	4.1 Property Description	17
	4.2 Property Rights and Maintenance	20
	4.3 Coexisting Oil Gas and Oil Sands Rights	20
	A Land Lise and Environmental Matters	20
5	Accessibility Climate Local Resources Infrastructure and Physiography	20
0	5.1 Access and Infrastructure	21
	5.2 Physiography Vegetation and Climate	21
6	History	23
0	6.1 Historical Energy-Related Exploration	24
	6.2 Industrial and Metallic Mineral Exploration in Northeastern Alberta	24
	6.2.1 Crush Pock Aggregate, and Sand and Gravel Aggregate	20
	6.2.2 Polymotallia Black Shalo	20
	6.2.3 Uranium	20
	6.2.4 Prairie Type Procieus Motele	20
	6.2.5 Diamondifereus Kimberlite	29
7	Coological Softing and Minoralization	29
'	7 1 Perional Coolegy	30
	7.1 Regional Geology	30
	7.1.1 Piecalipitali Dasellelli Geology	30
	7.1.2 Deutock Geology	34
	7.1.5 Sunicial Geology	30
	7.2 Property Geology	35
	7.2.1 Precamphan Basement Geology at the Property	35
	7.2.2 Bedrock Geology at the Property	30
	7.2.5 Sunicial Geology at the Property	30
8	2013 2014 Exploration Work and Mathadalagias	40
0	8 1 Drilling	40
	8.1.1.2012 Drill Compaign	40
	8.1.2 2014 Drill Campaign	41
	8.1.3 Core Handling and Initial Costochnical Proparation Procedure	41
	8.1.4 Costochnical Characterization	44
	8.1.5 Core Desumentation	44
	8.1.6 Core Splitting	40
	0.1.0 Core Spinning	45
	0.1.7 Sample Snipping	45
	0.2 Analytical Test Work	40
	0.2.1 Geochemical Analytical Test Work	46
	0.2.2 Aggregate Analytical Lest Work	4/
	0.2.5 Density Analytical Test Work	50
	o.o Geophysical Surveys	50

i

_

	0.4	Quefe as Queenshard Queens Mathe data and	50
	8.4	Surface Geophysical Survey Methodology	52
		8.4.1 Ground Penetrating Radar Survey – Ultra GPR System	52
		8.4.2 Frequency Domain Electromagnetic Survey-EM31 System	53
-	_	8.4.3 Magnetic Susceptibility- GSM 19-W magnetometer	53
9	Res	ults	53
	9.1	Drilling	53
		9.1.1 Results of drilling	53
		9.1.2 Regional Stratigraphic Considerations	54
	9.2	Analytical Test Work Results	61
		9.2.1 XRF Results	61
		9.2.2 Geochemical Results	63
		9.2.3 Aggregate Test Work Results	67
		9.2.4 Aggregate Test Work Processing Note	67
		925 Los Angeles Abrasion Test	69
		926 Plasticity Index Test	70
		9.2.7 MaSO, Soundness Loss Test	71
		9.2.8 Unconfined Freeze-Thaw Test	72
		0.2.0 Sieve Analysis	72
		9.2.9 Sleve Allarysis	72
	0.2	9.2. TO Defisitly Results	73
	9.3	0.2.1 Cround Departmenting Dedar	74
		9.3.1 Ground Penetrating Radar	74
		9.3.2 Frequency Domain Electromagnetic Survey (FDEM) EM31 System	19
4.0		9.3.3 Magnetic Survey Results	02
10	Min	eral Resource Estimate	80
	10.1		80
	10.2	2 Drillhole Database Validation	87
	10.3	Micromine Database	87
	10.4	Data Type Comparison	88
	10.5	Stratigraphic Representation and Resource Estimate Objectives by Formation	ion
			88
	10.6	S Demonstration of Stratigraphic Homogeneity	89
	10.7	' Lithological Model Design and Interpretation	92
	10.8	Resource Calculation	93
	10.9	Mineral Resource Marketability	94
	10.1	0 Resource Classification	94
	10.1	1 Mineral Resource Reporting	95
11	Exp	loration Expenditures	97
12	Inte	rpretation and Conclusions	97
	12.1	Analytical Testing Interpretation and Conclusions	97
	12.2	Geophysical Survey Interpretation and Conclusions	97
	12.3	Drilling and Inferred Resource Estimate Interpretation and Conclusions	98
	12 4	Potential Targets for Future Exploration 1	02
13	Rec	ommendations	04
14	Ref	erences	08
15	Cort	tificate of Author	18
10	CEI		10

Tables

Table 1. Richardson maiden inferred crush rock aggregate resource. Volumes and tonnages for the overburden and all lithostratigraphic units in the resource area are included, but the main resource reported in this Report relates to the
Winnipegosis Formation8
Table 2. Summary of 2015-2016 recommendations for the Richardson Property 12
Table 3 Description of Athabasca Mineral Inc 's Alberta metallic and industrial minerals
nermits at the Richardson Dronorty
Toble 4 Historical anarry related wells that were drilled with the surrout hour derives of
the Richardson Property
Table 5. Stratigraphic table of formations in northeastern Alberta. The bedrock geology
at the Richardson Property area is confined to the lower portion of the table in Precambrian and Middle Devonian rocks
Table 6 Drillbale coller summarian for Athebaaca Minaral 2012 and 2014 drill
Table 0. Diminole collar summaries for Athabasca Mineral 2013 and 2014 drill
campaigns at the Richardson Property with depth to the top of the Devonian
(vvinnipegosis and Contact Rapids formations), Granite Wash (La Loche
Formation) and Precambrian basement rocks. All drillholes have an azimuth
and dip of 0 and -90 degrees, respectively42
Table 7. Summary of aggregate test work and geochemical analyses that was completed by drillhole and by lithological unit.
Table 8 Summary of the Alberta Transportation and Canadian Standards Association
test methods
Table 9 Estimate depth to the tap of the Devenian in the Pichardson Branady area:
relative to the calculated lawest caller elevetion
Telative to the calculated lowest collar elevation
Table 10. Estimate depth to the top of the Precambrian basement in the Richardson
Property area; relative to the calculated lowest collar elevation
Table 11. Major element geochemical results for the Winnipegosis Formation dolostone
from the Richardson Property63
Table 12. Summary statistics of major element geochemical results for the Precambrian
basement granite from the Richardson Property
Table 13. Summary of aggregate test work completed at the Richardson crush rock
aggregate Property
Table 14. Average bulk density values that were used in the Richardson maiden
inferred crush rock aggregate resource estimate
Table 15 Richardson maiden inferred crush rock aggregate resource. Volumes and
tonnages for the overburden and all lithostratigraphic units are included but
the main resource reported belongs to the Winninggosis Formation
Table 16 Disbardson moiden informed erush reals another reasons () (also and
Table To. Richardson malden interred crush rock aggregate resource. Volumes and
tonnages for the overburden and all lithostratigraphic units within the resource
area are included, but the resource reported in this Report relates to the
Winnipegosis Formation101
Table 17. A projected range of volumes associated with an example of extending a
potential Winnipegosis deposit southwards of the current resource area at the
Richardson Property
Table 18 Summary of 2015-2016 recommendations for the Richardson Property 107
the rest of the rest of the rest in the rest of the re

Figures

Figure 1. Location of Athabasca Minerals Inc.'s Richardson Property in northeastern Alberta
Figure 2. Athabasca Minerals Inc.'s Alberta metallic and industrial minerals permits at the Richardson Property
Figure 3. Winter road access and Athabasca Minerals current area of interest at the Richardson Property
Figure 4. Oil sands operations in the Athabasca Oil Sands region of northeastern Alberta, which are located directly south of the Richardson Property area25
Figure 5. Summary of selected industrial and metallic mineral projects and occurrences in northeastern Alberta
Figure 6. Inferred basement domains in the Richardson Property area
Figure 7. Regional bedrock geology of the Richardson Property area
Figure 8. Bedrock geology at the Richardson Property (after Prior et al., 2013),
Figure 9 Preliminary surficial geology interpretation of the northeastern part of the
Richardson Property (the area of current exploration interest)
Figure 10 Locations of drillholes completed at the Richardson Property during Athabasca Minerals 2013 and 2014 drill campaigns
Figure 11 Location of the known granite outcrop and the ground geophysical survey
grids that were used as part of 2014 geophysical surveys to identify and
characterize notential aggregate denosits at the Richardson Property 51
Figure 12 Location of selected wells and drillholes used to determine the stratigraphic
and animoles used to determine the stratigraphic
Minorolo Dichordoon Droporty groo
Minerals Richardson Property area
Figure 13 Results of a well and drilinole compliation to depict the top of the Devonian in
the Richardson Property area.
Figure 14 Results of a well and drillhole compilation to depict the top of the Precambrian in the Richardson Property area
Figure 15 Bivariate plots of selected elements (Mg, Ca, Al and Fe) versus depth. The geochemical data are portable x-ray fluorescence analyzer measurements that
were taken every metre of core to provide an evaluation of the chemical bomogeneity of the rock units
Figure 16 Histograms for selected metals and nathfinder elements from Winninegosis
dolostone and Precambrian basement granite from the Richardson Property
Figure 17 Spider diagrams normalizing Winnipegosis dolostone and Precambrian basement granite geochemical results from the Richardson Property to upper
continental crust and post Archean Australian shale (Taylor and McLennan, 1985)
Figure 18 Los Angeles abrasion loss test results for Winnipegosis, Contact Rapids and
Precambrian basement granite samples from the Richardson Property 69
Figure 19 Plasticity Index for a Winnipegosis Formation composite sample from GNA-10
shown on the Plasticity chart of U.S.B.R (1974). All samples analyzed were
classified as non-plastic 70
Figure 20 MaSO ₄ soundness loss test results for Winninegosis Contact Rapids and
Precambrian basement granite samples from the Richardson Property71

Figure 21 Sieve analysis from a single Winnipegosis composite sample from drillhole GNA-10
Figure 22 Ground Penetrating Radar responses, as recorded along traverse lines 6, 8, 10 and 99, displayed as grayscale cross-section images
Figure 23 Gridded Ground Penetrating Radar responses to the top of the "Bedrock" reflector
Figure 24 Gridded Ground Penetrating Radar responses to the top of the "Bedrock" reflector
Figure 25 In-phase electromagnetic response of the Richardson survey grid using the EM31 system
Figure 26 Quadrature electromagnetic response of the Richardson survey grid using the EM31 system
Figure 27 Residual magnetic intensity of the Richardson survey grid using the GSM 19- W walking magnetometer
Figure 28 Vertical derivative of the Richardson survey gricl using the GSM 19-W walking magnetometer
Figure 29 Analytical signal of the Richardson survey grid using the GSM 19-W walking magnetometer
Figure 30 Comparison of the stratigraphic and geotechnical rock quality homogeneity of the subsurface geology at the Richardson Property. A) Drillholes 14RLD-004 & 14RLD-001 illustrate the down hole stratigraphic sequence. B, C) Schematic diagram of all drillholes showing the geotechnical homogeneity between rock quality description, and total fractures with respect to the formation boundaries
 Figure 31 Comparison of the stratigraphic and chemical homogeneity of the subsurface geology at the Richardson Property. A) Drillholes 14RLD-004 & 14RLD-001 illustrate the down hole stratigraphic sequence. B, C) Schematic diagram of all drillholes showing the chemical homogeneity between Calcium + Magnesium, and iron with respect to the formation boundaries

Part C

Appendix 1 – 2013-2014 Drill Collar Summary	122
Appendix 2 – 2013-2014 Drill Logs	124
Appendix 3 – Geochemical Results	137
Appendix 4 – Aggregate Test Results	191
Appendix 5 – 2014 Exploration Expenditures	257

v

1 Summary

In 2014 Athabasca Minerals Inc. (Athabasca Minerals) commissioned APEX Geoscience Ltd. (APEX) to conduct an eight hole drill program over the Richardson Property (the Property) supplementing the 2013 drill program conducted by Athabasca Minerals, Based on the results of the 2013 and 2014 drill programs, APEX was further contracted to: 1) supervise the logging and sampling of the 2013 and 2014 drill core; 2) supervise the appropriate aggregate test work and geochemical analysis to assess the Winnipegosis Formation and the Precambrian basement granite for their suitability as potential source of crush rock aggregate; 3) conduct a multi-technique geophysical survey over the Richardson Property; 4) prepare a maiden inferred crush rock aggregate resource estimate of the Middle Devonian Winnipegosis Formation; 5) make recommendations on future exploration to advance the Athabasca Minerals Richardson Property and 6) Prepare an Assessment Report (this Report) detailing the work conducted on the Richardson Property from 2013 to 2014. The Winnipegosis Formation is the focus of this Report due to the near surface proximity of the dolostone unit in the drill area, which represents a small north-central portion of the Property. A secondary objective includes an aggregate assessment of the basement granite, mainly intended towards future exploration strategies at Athabasca Minerals Richardson Property.

This Assessment Report is prepared by APEX on behalf of Athabasca Minerals and details the work completed on the Richardson Property from 2013 to 2014. Exploration on the Property included: two separate drill programs, totaling twelve holes; aggregate and geochemical testing; surface geophysical surveys and the calculation of a maiden inferred mineral resource. The total cost to complete exploration on the Richardson Property during 2013 and 2014, in Canadian dollars (CDN\$), was CDN\$613,594.98, not including GST.

Athabasca Minerals' Richardson Property is located adjacent to the prolific Athabasca oil sands region of northeastern Alberta, approximately 130 kilometres (km) north-northeast of the urban service area (formerly the city) of Fort McMurray. The Property comprises eight contiguous Alberta Metallic and Industrial Minerals (MIM) Permits totalling 60,966 hectares (150,650 acres). Athabasca Minerals Inc. maintains 100 percent (%) interest in all eight permits, and has the exclusive right to conduct metallic and industrial minerals exploration on the permits for 14 years subject to biannual assessment work and reporting. There are no all-weather roads to the Property; however, a 280 km winter road extending from Fort McMurray to the hamlet of Fort Chipewyan traverses through the central portion of the Richardson Property and provides intermittent access with transport-load capacity.

The Richardson Property is being assessed by Athabasca Minerals for its crush rock aggregate potential, which generally refers to materials that are hard and granular, and are suitable to be used alone or with other materials as binding agents for a number of applications such as: concrete in building construction; road stone; railway track blast; mortar; flux in iron and steelmaking; or to reduce coal sulphur dioxide emissions. Crush rock aggregate is produced from a variety of materials that are usually produced as low-cost, high-volume and bulk minable commodities.

The Richardson Property is situated along the passive, eastward thinning margin of the Western Canada Sedimentary Basin where sedimentary successions unconformably overly and onlap the southwest dipping Precambrian basement. Within the Property, Precambrian basement, Devonian carbonate and Quaternary surficial materials are either exposed, or occur near the surface. From the industrial mineral perspective, carbonate rocks are commonly considered to be mechanically strong due to their interlocking grain fabrics, carbonaceous mineralogy and subjectivity to recrystallization processes, which in turn increase their strength and decrease porosity. In addition, igneous Precambrian rocks such as granite typically produce strong aggregates that are skid resistant and therefore, are favourable road aggregate materials.

During 2013, Athabasca Minerals conducted a four-hole diamond drilling program (drillholes GNA-05, GNA-10, GNA-11 and GNA-16), totalling 235 metres (m), with the intention to test the Devonian carbonate and Precambrian basement at the Richardson Property. The drill program cored complete stratigraphic sections of the uppermost carbonate lithostratigraphic unit (the Winnipegosis Formation) in two of the four drillholes. A single drillhole (GNA-10) intersected down through the carbonate stratigraphy and into the Precambrian basement. To acquire additional material for evaluation, APEX was retained by Athabasca Minerals in 2014 to conduct an eight-hole diamond drilling program (drillholes 14RLD001 to 14RLD008) at the Property, totalling 843 m, over an area spanning approximately 20 square kilometres (km²). With the exception of one of the eight 2014 drillholes, the program successfully cored entire stratigraphic sections that terminated in Precambrian basement granite.

The 2013 and 2014 drill campaigns, conducted by Athabasca Minerals, show that the bedrock underlying the Richardson Property includes, from stratigraphic base to top: Precambrian crystalline basement granitic rocks of the Taltson Magmatic Zone; an Early Devonian (or earlier?) discontinuous zone of detrital basal feldspathic sandstone and conglomerate known as the La Loche Formation; marginal marine dolomitic silty shale of the Devonian Contact Rapids Formation; and a thick (relative to the Contact Rapids and La Loche formations), finely crystalline dolostone known as the Winnipegosis Formation. The bedrock is overlain by a layer of Quaternary glaciofluvial and glaciolacustrine deposits that have formed kettle depressions and kame deposits, and redistributed surficial sediments into low-lying areas.

The drilling strategy was to terminate each drillhole once ten metres of Precambrian basement granite was penetrated and cored. A single drillhole (14RLD007) tested the granite to a coring depth of 44.5 m to test its uniformity and crush rock aggregate potential at depth (as well as the precious-, base- and specialty- metal potential). The Precambrian basement was comprised of light blue-grey, coarse-grained, weakly foliated granite, which was subjected to variable potassic alteration. The thickness of the Winnipegosis Formation varies from 8.3 m to 47.9 m (averages 39.5 m) and is comprised largely of competent, light brown dolostone. Overburden thickness ranged

from 18.0 m to 64.9 m (averages 35.7 m) and is comprised largely of unconsolidated glaciofluvial sand and boulders.

The core was logged and sampled in accordance with the appropriate assessment of crush rock aggregate, which involves criteria that considers the materials strength, continuity, fractures and the presence of weakening particulate matter. Geotechnical measurements included: rock quality description, fracture frequency and rock defects, and discontinuity and fracture conditions. Density measurements were carried out once per every metre using the "hydrostatic" method, which involves weighing the item in air and then again while fully submerged in water, to calculate the weight (tonnage) of a volume of rock. Portable X-Ray Fluorescence (XRF) analyzer measurements were taken every metre of core to provide an evaluation of the chemical homogeneity and potential aggregate strength of the core, and secondarily, to evaluate the metallic mineral potential of the core.

The analytical sampling process consisted of two separate sample sets: 1) composite samples for aggregate test work; and 2) interval or channel samples for major- and trace-element geochemical analysis. The objective of the aggregate analytical test work – in the context of this crush rock aggregate resource estimate – was predominantly focused on the aggregate mechanical qualities for its use in aggregate road building and concrete. A sufficient and appropriate number of samples were analyzed to ensure that meaningful sample results were obtained, including: 11 composite samples of Winnipegosis Formation (one sample per drillhole plus one duplicate sample for quality assurance); one composite sample of Contact Rapids (amalgamated from all ten drillholes due to the narrowness of the unit); and two composite samples of basement granite (amalgamated from all drillholes that penetrated basement; n=8).

The results of the aggregate test work were evaluated by making comparisons with aggregate specification and screening criteria as set by Alberta Transportation and the Canadian Standards Association. The results show that the Winnipegosis Formation and Precambrian basement granite met the maximum allowable screening criteria for major aggregate test methods, including: plasticity index; Los Angeles abrasion; magnesium sulphate (MgSO₄) soundness; and unconfined freeze-thaw. Based on the results of this test work and evidence of the homogeneity and uniformity of the rock units, it is concluded that the Winnipegosis Formation and Precambrian basement granite represent material of merit for several Alberta Transportation aggregate designations, including: Designation 1 (asphalt concrete pavement); and Designation 2 (base course aggregate).

With respect to reporting a resource estimate and abiding by the General Guidelines of NI 43-101, the aggregate test work yields results that suggest the Winnipegosis Formation from Athabasca Minerals' Richardson Property has reasonable prospects of economic viability for an industrial mineral deposit. Despite having analyzed only two amalgamated composite granite samples, the Precambrian basement granite also yielded positive aggregate test work results and is

recommended, therefore, to undergo additional aggregate testing in the future. In contrast, the single Contact Rapids sample does not meet the screening criteria, and therefore, does not meet the reasonable expectation and/or demonstration of economic viability of an industrial mineral deposit.

During 2014, a number of surface geophysical surveys were conducted at the Richardson Property by APEX (on behalf of Athabasca Minerals). The surveys were performed over the area immediately surrounding a known granite outcrop on the eastern part of the Richardson Property. The surface geophysical surveys including: ground penetrating radar (GPR); frequency domain electromagnetics (FDEM); and Total Field Magnetics. The goal of the surface geophysical surveys was to: 1) test the effectiveness of three easily employable surface geophysical tools for identifying and characterizing potential aggregate deposits at the Richardson Property; and 2) make inferences on the dimensions of the granite body, including the relationship between the granite with the overlying overburden and Devonian Winnipegosis Formation dolostone.

A survey grid was established with proposed traverse lines centred over a granite outcrop. The grid had a bearing of Azimuth 135°/315° and a line spacing of 50 m. The paths occasionally deviated from the proposed line paths due to: inherent errors of the GPS coordinate; water-bodies located within the survey area; and areas where line-cutting was not completed.

The GPR survey and resulted in 9.7 line-km of UltraGPR data collected over nine traverse lines and one tie line. Deliverables from Ground Radar Inc. work included XYZ coordinates of the interpreted layer surfaces and databases containing the cross sectional responses recorded along the traverse lines. The cross-sections illustrate three distinct reflectors, which are caused by contrasts in the conductivity and dielectric constant of the sub-surface and are attributed to layers of different rock types and/or compositions. The reflectors are assumed to exist between traverse lines because the depth to these reflectors does not change drastically from one traverse line to the next, and are therefore interpreted to be the interfaces between distinct geologic layers.

The FDEM Survey used the EM31 system, which was operated in vertical dipole mode with the boom oriented longitudinally along the traverse lines. In total, 8.7 line-km of FDEM data were collected over eight traverse lines and one tie line with the EM31 recoding at a frequency of one reading per second. The EM31 quadrature response shows that the area is weakly conductive overall, but that there is a definitive conductive halo occurring in the area immediately surrounding the granite outcrop. The apparent conductivity map shows that the granite outcrop is a resistive body, and that the conductive halo is due to a conductive layer overlaying the granite bedrock. This conductive halo area is directly associated with a regional topographic low, which indicates the apparent conductance might be a due to a zone in the near surface with elevated water content.

The Total Field Magnetics survey was completed using a Gem System GSM 19-W walking magnetometer. The survey resulted in 24.5 line-km of survey data, which was collected along 13 traverse lines and two tie lines. The data was collected at a

frequency of one reading per second at an elevation of between 1.75 m and 2 m above the ground. The survey included the immediate area around the granite outcrop, which mimicked the area surveyed by GPR and EM31. In addition, two survey lines were extended to the northwest, along lines 8 and 19. The goal of these two regional magnetic survey lines was to investigate the region between the granite outcrop (main focus of the geophysical survey) with the 2014 drill program to: 1) determine if any major structures occur in this area; and/or 2) make some inferences on the continuity of strata between the geophysical survey area (i.e., granite outcrop) and the area of drilling and resource delineation.

The ground magnetics survey data highlights three distinct litho-magnetic zones within the geophysical survey area including: a zone with a strong positive magnetic response, occurring over the northern half of the EM31 and GPR survey lines (Zone A); a moderate negative magnetic response over the southern half of the EM31 and GPR survey lines (Zone B); and a weak positive magnetic gradient occurring on the very end of the regional magnetic lines extending out to the 14RLD003 and 14RLD002 drill holes (Zone C).

The interpretations remain inherently ambiguous, and require petrophysical data and other geological information to properly classify the identified litho-magnetic zones. Nevertheless, several preliminary interpretations can help to guide future exploration in the eastern part of the Richardson Property. The results of the geophysical surveys show that the spatial extent of several distinct geologic features can be mapped using a combination of GPR and ground magnetics data. There is a strong correlation among the physical properties of the overburden (particularly the kame deposit), the Winnipegosis Formation and the granite bedrock. The geophysical surveys depict several distinct geologic zones that merit follow up work, including drilling, at the Richardson Property.

The Richardson maiden inferred crush rock aggregate resource estimate is reported in accordance with the Canadian Securities Administrators National Instrument 43-101 and has been estimated using the CIM "Estimation of Mineral Resources and Mineral Reserves Best Practice Guidelines" dated November 23rd, 2003 and CIM "Definition Standards for Mineral Resources and Mineral Reserves" dated November 27th, 2010. The CIM Standards on Mineral Resources and Mineral Reserves, Definitions and Guidelines, dated August 20, 2000 (the "CIM Standards", NI 43-101 and Companion Policy 43-101CP) states that: "when reporting Mineral Resource and Mineral Reserve estimates relating to an industrial mineral site, the Qualified Person(s) must make the reader aware of certain special properties of these commodities". It should be noted that the Richardson crush rock aggregate, in the context of this Report, represents an 'early stage project'. The ultimate suitability of an industrial mineral for use in specific applications requires detailed marketing and economic investigations, which are beyond the scope of this Report. With respect to the Richardson Property and northeastern Alberta in general, however, a fundamental statement is that the Fort McMurray region is best known for its vast resource of bituminous oil sand, and that vast quantities of aggregate materials are required to supplement ongoing oil sands infrastructure and construction demand. In addition, it is pertinent to note that government baseline

aggregate mapping in the Fort McMurray area has shown that sand and gravel deposits are distributed unevenly, of variable quality and quantity, and have largely been exploited. Consequently, aggregate exploration has focused on importing aggregate, which is difficult from an industrial mineral economics perspective, or on locating local sources of buried crush rock aggregate. For example, Hammerstone Corporation currently produces limestone crush rock aggregate from its Muskeg Valley Quarry, which is adjacent to the Richardson Property. Lastly, the oil sands industry poses no potential conflict or risk to industrial minerals production as separate statues regulate the right to metallic and industrial minerals, to coal, to oil/gas, and to bitumen (oil sands) in the province of Alberta.

The resource estimation presented in this Report considered data from four 2013 drillholes and eight 2014 drillholes drilled by Athabasca Minerals (twelve total drillholes). Because two of the 2013 drillholes were terminated at <30 m, and did not penetrate through the entire lithostratigraphic section of the Winnipegosis Formation (the primary focus of this resource estimate), only ten drillholes were utilized in the Richardson maiden inferred crush rock aggregate resource modelling and estimation. The 2013 and 2014 drillholes were initially surveyed using a hand held Garmin GPS unit with the collar elevations subsequently being modified using high resolution Light Detection and Ranging (LiDar) technology with 1 m resolution. All drillholes varies from 500 m to 1.37 km, with an average of about 900 m between drillholes. Consequently, modelling in MICROMINE utilized seven drill lines that ranged in spacing from 570 m to 900 m. In the context of this crushed rock aggregate deposit type, style and formation, the drill spacing is sufficient for resource volume estimation.

Stratigraphic logging, which was performed by APEX for both the 2013 and 2014 drillholes, showed that with the exception of the La Loche Formation–Precambrian basement boundary, which can be gradational, the boundaries between formations have sharp, visually identifiable contacts. These definitive geological boundaries are further characterized as having extensive lateral continuity of the individual formations. The homogeneity of the stratigraphic units was further evaluated using geotechnical (Rock Quality Description and total fracture data) and geochemical data derived from the cores. A positive correlation between the drill logs and the geotechnical/ geochemical data confirmed the lithostratigraphic formation divisions, and the homogenous nature of the Winnipegosis Formation, which highlights its applicability in resource estimation as a potential source of crush rock aggregate.

The single 'impurity' to report involves supplementary bitumen, which is more or less confined to the uppermost portions of the Winnipegosis Formation (and the La Loche Formation directly overlying the Winnipegosis dolostone). The bitumen ranges in intensity from non-existent (in most of the core) to pervasive, the latter of which is evident in 25 cm to 90 cm wide 'bituminous horizons' that occur in the eastern drillholes 14RLD006 and 14RLD008. The bitumen appears to be confined to porosity enabling textures in the carbonate such as vugs, sandy horizons and fracture planes. It is not known how the bitumen might influence the processing or marketing of the potential

crush rock aggregate, but the overall consistency and volume of non-bitumen-bearing dolostone, and the positive aggregate test work results, provide justification that the bitumen does not influence the viability of the Winnipegosis as an industrial mineral deposit in the current evaluation of this early stage project.

A total of 675 bulk density measurements were collected from drill core within the Richardson maiden inferred crush rock aggregate resource area. Additional density measurements (n=14) were also performed as part of aggregate test work, and these results were consistent with hydrostatic average formation density values of 2.68, 2.50 and 2.63 for the Winnipegosis, Contact Rapids and basement granite, respectively, that were used in this Report.

Mineral resource modelling was carried out using a three-dimensional model in commercial geologic modelling and mine planning software MICROMINE (v.14.0.4). Block modelling of the resource area was not necessary as no 'grade' was being estimated; instead a three-dimensional computer-generated 'solid' of the area was generated in MICROMINE to calculate the resource 'volume'. A separate wireframe was created for each formation (Precambrian basement granite; La Loche Formation; Contact Rapids Formation; Winnipegosis Formation; and overburden), from which, separate ensuing formation volumes could be derived for each lithostratigraphic unit.

The surface area of the resource outline reported in this Report is 6.30 km². With the exception of two northwestern drillholes (GNA-10 and 14RDL-008), a resource outline of 500 m was constructed around the outermost drillholes: 1) to clip the individual formation wireframes; and 2) restrict the lateral extension of the wireframes and the main resource model to the general 2013 and 2014 Athabasca Minerals drill area, which represents only a small north-central portion of the Richardson Property. The resource outline of 500 m was deemed appropriate based on the continuous nature of the stratigraphic formations within the resource outline area as defined by 2013 and 2014 Athabasca Minerals drilling and because the same generally flat-lying stratigraphic formations have been intersected in oil and gas wells that are located several 10's to 100's of kilometres away from the Richardson resource area. The radius of the boundary outlines for drillholes GNA-10 and 14RDL-008 was reduced to 50 m (from 500 m) due to the proximity of a lake.

This three-dimensional model formed the spatial basis for calculating the volume and tonnage for the Richardson maiden inferred crush rock aggregate resource estimate. Within the three-dimensional model, the volume of each formation was used to multiply against a nominal density value, which was determined on a formation by formation basis. This resulted in the reported tonnages. The Richardson maiden inferred crush rock aggregate resource estimate has been classified as 'inferred' according to the CIM definition standards. The classification of the Richardson maiden inferred crush rock aggregate resource was based on geological confidence, data quality and stratigraphic continuity. That is, the criteria and rational for the classification of inferred resource is based upon the wide spaced nature of the drilling to date and the fact that the Richardson crush rock aggregate project is classified as an early stage project with little mineral processing test work completed to date. As this is the maiden inferred resource, no mining studies have been employed to constrain the resource within an optimal pit shell.

The Richardson maiden inferred crush rock aggregate resource estimate consists of 683 million tonnes of aggregate material situated within the favourable Winnipegosis Formation (Table 1). Mineral resources are not mineral reserves and do not have demonstrated economic viability. There is no guarantee that all or any part of the mineral resource will be converted into a mineral reserve. The Winnipegosis aggregate resource is directly overlain by 497 million tonnes of overburden-waste material.

Table 1. Richardson maiden inferred crush rock aggregate resource. Volumes and tonnages for the overburden and all lithostratigraphic units in the resource area are included, but the main resource reported in this Report relates to the Winnipegosis Formation.

Formation	Volume (m ³)	Density (t/m ³) *	Tonnes (million tonnes) **
Overburden	220,625,000	2.25	497.29
Winnipegosis	254,523,000	2.68	683.14
Contact Rapids	63,322,000	2.50	158.11
La Loche	13,339,000	2.54	33.93
Basement granite	62,941,000	2.63	165.41

^{*} Density has been rounded to two decimal places.

- ** Tonnes have been rounded to the nearest 10,000 tonnes.
 - Note 1: Mineral resources are not mineral reserves and do not have demonstrated economic viability. There is no guarantee that all or any part of the mineral resource will be converted into a mineral reserve.
 - Note 2: The quantity of tonnes reported in these inferred resource estimations are uncertain in nature and there has been insufficient exploration to define these inferred resources as an indicated or measured mineral resource, and it is uncertain if further exploration will result in upgrading them to an indicated or measured resource category.
 - Note 3: The estimate of mineral resources may be materially affected by geology, environment, permitting, legal, title, taxation, socio-political, marketing or other relevant issues.

The portion of the Richardson Property resource that has been classified as 'Inferred' demonstrates that the nature, quantity and distribution of data is such as to allow confident interpretation of the geological framework and to reasonably assume continuity of geological formations. The collective work to date from the Richardson Property indicates that while the project is in early stages of exploration/resource work, the metallurgical and mineral processing qualities give suggestions that they are of high enough quality that the Winnipegosis at the Richardson Property is considered to be a 'property of merit' and warrants further exploration. This contention is supported by results presented in this Report, which include:

- the Winnipegosis Formation is a uniform and continuous target unit that has undergone pervasive dolomitization and is therefore a hard, competent and resistive lithostratigraphic unit with crush rock aggregate deposit potential;
- sample composites of the Winnipegosis Formation yielded positive aggregate test work results in comparison to Alberta Transportation and Canadian Standards Association aggregate specifications and standards;
- the Winnipegosis Formation is considered the most favourable unit for crush rock aggregate in the current resource area given that it is the shallowest lithostratigraphic unit (directly underlying the quaternary cover and occurs at depths ranging from 18.0 m to 64.9 m) with early stage project crush rock aggregate deposit potential;
- a Richardson maiden inferred crush rock aggregate resource estimate, which has an aerial extent of 6.30 km² and consists of 683 million tonnes of crush rock aggregate material, situated within the Winnipegosis Formation (see aforementioned disclaimers); and
- the oil sands region of northeastern Alberta represents an area of enormous growth – while continued oil sands development is subject to an infinite number of variables (e.g., geology, hydrocarbon prices, environment, taxation, socio-political, marketing or other relevant issues), the current circumstances suggest a continued and positive market demand for 'local' aggregate products.

In addition to the Richardson maiden inferred crush rock aggregate resource estimate, a stratigraphic compilation of publicly available oil and gas well information, historical metallic and industrial mineral assessment reports, and data from Athabasca Minerals Inc. 2013 and 2014 drill programs shows that there is good stratigraphic continuity of the Winnipegosis Formation and Precambrian basement surface in the general Richardson Property area. By way of preliminary reasoning, the Richardson Property has several potential targets for further exploration. The following statements referring to any potential extension of the Richardson crush aggregate deposit are conceptual in nature, as there has been insufficient exploration to define the extended mineral deposit and it is uncertain if further exploration will result in the target being delineated as a mineral deposit and/or resource. Potential targets for further exploration are summarized as follows:

 Based on good stratigraphic continuity of the Winnipegosis Formation, an extension of the current Winnipegosis crush rock aggregate deposit outwards from the current resource area to other parts of the Property could create additional and/or more accessible Winnipegosis tonnage. For example, a potential southerly extension of the Winnipegosis Formation deposit (i.e., an additional aerial extent of 7.49 km²) could add between 0.671 and 1.006 billion tonnes of aggregate crush rock. There is also justification in targeting the Winnipegosis Formation to the east-northeast, where the thickness of overburden is assumed to be thinner and could potentially lower the strip ratio to access the Winnipegosis in comparison to the current resource area.

- 2. If the economics of mining the Winnipegosis Formation are feasible, then the Precambrian basement granite represents a potential secondary crush rock aggregate target within the current resource area due to its uniform nature and overall hardness as shown by aggregate test work conducted in this Report. Modelling in this Report shows that within the current resource area, the Precambrian basement granite could account for an additional 165 million tonnes of aggregate. This estimate is conservative as the volume assumes a maximum depth of 10 m (corresponding to when most of the drillholes were terminated). Based on drillhole 14RLD007, which confirmed uniform granite to a depth of 48.35 m, the granite could easily be extended, such that the granite could account for 319 million tonnes if, for example, the modelling depth was extended to 20 m instead of 10 m.
- 3. In scenario 2 above, any potential granite evaluation in the resource area is contingent on the Winnipegosis being economic. However, the Precambrian basement granite is known crop out on the Richardson Property directly eastsoutheast of the current resource area. In addition, geophysical surveys conducted over the general granite outcrop area helps to define the near-surface boundaries of the granite body. The GPR profiles and ground magnetic data show that the granite outcrop is fairly constrained to the immediate observed exposure; however, the GPR profiles suggest that the area directly north of the outcrop has the least amount of overburden and/or Winnipegosis dolostone material to overlie the Precambrian basement granite. The geophysical interpretations remain inherently ambiguous, and require other geological information such as drilling to properly confirm and classify the identified lithomagnetic zones. However, based on the uniformity and positive granite aggregate test results from the current resource area, and delineation of an exposed and near-surface area of granite on the eastern part of the Property, Precambrian granite at the Richardson Property represents a potential target for further exploration.
- 4. Lastly, the Contact Rapids Formation, which underlies the Winnipegosis, comprises weakly consolidated muddy and sandy limestone, and is therefore not as desirable in comparison to the Winnipegosis (this is evident in poor aggregate test work results presented in this Report). There is the possibility, however, that the Contract Rapids could provide a source of alternative flux material if the Winnipegosis were to be mined as crush rock aggregate.

To conclude, several exploration targets could potentially extend the current aggregate deposit. Accordingly, a two Phase approach is recommended for 2015-2016 exploration at the Richardson Property consisting of: Phase One ground geophysical surveys to extend and verify positive results from GPR, and Phase Two extension/infill drilling in conjunction with a Preliminary Economic Assessment (PEA) scoping study.

The recommended Phase One exploration work includes a 35 line-kilometre Ground Penetrating Radar (GPR) survey to: 1) create a preliminary three-dimensional geological model of the general area surrounding the current resource area; 2) depict those areas that have shallow overburden overlying the Devonian Winnipegosis dolomite and/or the Precambrian basement granite; and 3) define the drillhole locations for the Phase Two drill program. The approximate cost of the Phase One work is CDN\$40,000 (Table 2).

Subject to the results of the Phase One survey, a Phase Two extension/infill drillhole program and subsequent composite aggregate test work analyses on the drill cores will: 1) verify the three-dimensional geological model; and 2) provide additional confidence to uniformity, extent, depth and quality of the Winnipegosis dolomite and the basement granite, which is necessary to produce an updated inferred, and possibly indicated, mineral resource estimate.

It is recommended that the Phase Two extension and infill drilling consists of ten to eleven systematically placed diamond drillholes in accordance with the Phase One GPR survey (totalling approximately 1,000 m). Areas of focus should include two separate justifications for drill testing as follows.

1. Winnipegosis Extension. The Winnipegosis Formation deposit could be extended to the south, east and northeast of the current resource area. It is anticipated that the topography (i.e., overburden) on the Property thins out to the east-northeast such that the depth to the Winnipegosis Formation may be thinner than in the current resource area (overburden averages 36 m thickness; n = 11 drillholes drilled in 2013 and 2014 by Athabasca minerals). The Winnipegosis extension drilling would advance the project by increasing the confidence in the continuity and uniformity of the Winnipegosis Formation and the depth of overburden overlying the Winnipegosis.

2. Precambrian Basement Granite Extension. This drilling will test the granite as a potential crush rock aggregate source. Drill targets should be collared east-southeast of the current resource area in an area directly adjacent to an exposure of Precambrian granite. The granite outcrop identified during 2013 field program and the 2014 ground geophysical program has the advantage of shallow to non-existent overburden and/or Winnipegosis Formation cover rock.

The Phase Two extension/infill drilling, aggregate test work analyses and an updated NI 43-101 inferred (and possibly indicated) resource estimate is projected to cost approximately CDN\$576,000 (Table 2).

In conjunction with the Phase Two work, it is recommended that a PEA Scoping Study of the Richardson Project be conducted. The scoping study should include: the creation of an initial pit shell; estimations of strip ratios to remove the overburden; and examine certain economic and environmental factors related to the market for crushed rock aggregate in the immediate vicinity of the Project. The completion of a PEA scoping study would add confidence to the viability of the Project. For example, this maiden inferred resource is reported in tonnages, and mining studies are required to constrain the resource within an optimal pit shell. The estimated cost to complete the PEA is CDN\$300,000 (Table 2).

The total cost of both phases of recommended exploration work is estimated at CDN\$916,000 (Table 2; not including contingency). With a 10% contingency the total budget is CDN\$1,007,600.

Table 2. Summary of 2015-2016 recommendations for the Richardson Property.

Phase One: Ground Geophysical Survey and Preliminary 3D Model

Activity	Description	(CDN\$)
Ground Penetrating Radar (GPR) geophysical survey	A 35-line km GPR survey to develop a preliminary 3D model, determine o/b thickness and site drillhole locations.	\$40,000
	Sub-total	\$40,000

Phase Two: Drill Program, Indicated/Inferred Technical Report and Preliminary Economic Assessment

Activity Description Drilling A 10-11 drillhole heli-supported program (approximately 1,000 m of coring) Analysis Aggregate test work Reporting NI 43-101 Mineral Resource Estimation and Technical Report Reporting Preliminary Economic Assessment Scoping Study Sub-total Total		(CDN\$)
Drilling	A 10-11 drillhole heli-supported program (approximately 1,000 m of coring)	\$511,000
Analysis	Aggregate test work	\$30,000
Reporting	NI 43-101 Mineral Resource Estimation and Technical Report	\$35,000
Reporting	Preliminary Economic Assessment Scoping Study	\$300,000
	Sub-total	\$876,000
	Total	\$916,000
	10% Contingency	\$91,600
	Total with Contingency	\$1,007,600

2 Introduction

Athabasca Minerals Inc. (Athabasca Minerals) maintains 100 percent (%) interest in the Richardson Property (the Property), which is located in the Athabasca oil sands region of northeastern Alberta, approximately 80 kilometres (km) northeast of the hamlet of Fort Mackay, and 130 km north-northeast of the urban service area of Fort McMurray. The Property comprises eight contiguous Alberta Metallic and Industrial Minerals (MIM) Permits totalling 60,966 hectares (150,650 acres). Athabasca Minerals has the exclusive right to conduct metallic and industrial minerals exploration on the permits for up to fourteen years, subject to biannual assessment work and reporting.

Athabasca Minerals is a Canadian mineral exploration company that has identified, explored and developed various industrial minerals to support oil sands development in the prolific Athabasca oil sands area of northeastern Alberta. For example, Athabasca Minerals currently manages the largest open pit gravel pit in Canada, the Susan Lake Aggregate Operation, which is located approximately 25 km south-southwest of the Richardson Property.

The Richardson Property, which is the focus of this Assessment Report (this Report), lies along the passive, eastward thinning margin of the Western Canadian Sedimentary Basin (WCSB), where sedimentary successions unconformably overlie and onlap the southwest dipping Precambrian basement. The bedrock geology at the Property generally consists of Precambrian basement and Middle Devonian carbonate rocks that are either exposed or buried by a veneer of Quaternary surficial deposits.

The Richardson Property is being assessed by Athabasca Minerals for its crush rock aggregate potential. From the industrial mineral perspective, carbonate rocks are commonly considered to be mechanically strong due to their interlocking grain fabrics, carbonaceous mineralogy and subjectivity to recrystallization processes. In addition, Precambrian igneous rocks such as granite typically produce strong aggregates that are skid resistant and therefore, are favourable road aggregate materials.

During 2014, APEX Geoscience Ltd. (APEX) was retained by Athabasca Minerals to:

- 1. Complete an eight drillhole program at the Property, on behalf of Athabasca Minerals, intended to increase the amount of material available for the crush rock aggregate assessment (the 2014 drill program builds upon a 2013 drill program by Athabasca Minerals that drilled four drillholes, totalling 235.1 m);
- Review, log, sample and analyze drill cores from the 2013 and 2014 drill programs that were completed at the Property by Athabasca Minerals and APEX;
- 3. Conduct ground geophysical surveys over the Property;
- 4. Prepare a maiden inferred crush rock aggregate resource estimate of the Middle Devonian Winnipegosis Formation at the Property;

- 5. Make recommendations on potential target areas for future exploration; and
- 6. Complete an Assessment Report detailing the work conducted on the Property from 2013 to 2014.

This Assessment Report is prepared by APEX, on behalf of Athabasca Minerals, and details the work completed on the Richardson Property from 2013 to 2014. Exploration on the Property included: two separate drill programs, totaling twelve holes; aggregate and geochemical testing; ground geophysical surveys; and the calculation of a maiden Inferred mineral resource. The total cost to complete exploration on the Richardson Property during 2013 and 2014, in Canadian dollars (CDN\$), was CDN\$613,594.98, not including GST.

Outcrop exposures of the Mesoarchean to Paleoproterozoic Marguerite River Complex are found on the eastern edge of the Property. The Marguerite River Complex comprises undifferentiated granite, Arch Lake-type granitoid, hornblende-quartz monzonite and granitoid gneiss rocks (Dufresne et al., 1994; Prior et al., 2013). The crystalline basement at the Property is overlain by (from stratigraphic base to top) the: La Loche, Contract Rapids and Winnipegosis formations. The Devonian and Precambrian rock units are almost entirely overlain by Quaternary surficial deposits, which form a thin veneer of ice-contact glaciofluvial and glaciofluvial outwash deposits (Bayrock, 1971; Fenton et al., 20012). The Early Devonian La Loche Formation is composed of detrital basal feldspathic sandstone and conglomerate, and is considered equivalent to the Granite Wash (Sherwin, 1962; Norris, 1963; Schneider et al., 2013). The Contact Rapids Formation is comprised of marginal marine dolomitic siltstoneshale, argillaceous dolostone and shale-siltstone (Sherwin, 1962; Meijer Drees, 1994).

Most of the bedrock overlying the crystalline basement at the Property comprises the Middle Devonian Winnipegosis Formation of the Upper Elk Point Group, which is the focus of this Report (a secondary interest is the Precambrian granite). The Winnipegosis Formation is stratigraphically equivalent to the Keg River Formation in northwestern Alberta. The Winnipegosis Formation reflects an open-marine platform and reef system, and is composed of thickly bedded brownish to yellowish-grey dolostone containing various brachiopod, bivalve and gastropod fossils (Macoun, 1877; Bassett, 1952; Norris, 1963; Schneider et al., 2013).

The authors of this Report include R. Eccles, B. Atkinson and S. Nicholls, all of whom are independent of Athabasca Minerals and employed as geological consultants with APEX. Mr. Eccles, M.Sc. P.Geol., supervised the preparation of, and is responsible for the ultimate publication of this Report. Mr. Eccles is a Qualified Person as defined by the Canadian Securities Administration National Instrument (NI) 43-101. The Canadian Institute of Mining and Metallurgy defines a Qualified Person as

"an individual who is a geoscientist with at least five years of experience in mineral exploration, mine development or operation or mineral project assessment, or any combination of these; has experience relevant to the subject matter of the mineral project and the report; and is a member or licensee in good standing of a professional association."

Mr. Eccles is a Professional Geologist with the Association of Professional Engineers and Geoscientists of Alberta (APEGA), and has worked as a geologist for more than 25 years since his graduation from University. Mr. Eccles has been involved in all aspects of mineral exploration and mineral resource estimations for metallic and industrial mineral projects and deposits in Canada. Mr. Eccles was a geologist with the Alberta Geological Survey for 21 years (1990-2011). In this capacity, he travelled and conducted geological studies in northeastern Alberta's clastic sedimentary rock units, including specific studies related to Devonian rock units at the sub-Cretaceous unconformity. Mr. Eccles did not visit the Property during the preparation of this Report or on behalf of Athabasca Minerals, but did review drill cores from the 2013 and 2014 programs. Given that Mr. Eccles is familiar with the Property area and geology, a Property visit was not deemed necessary during the preparation of this Assessment Report.

Mr. Atkinson is a Professional Geologist with the Association of Professional Engineers and Geoscientists of Alberta (APEGA; since 2008) and the Australasian Institute of Mining and Metallurgy (AusIMM; since 2009) and a Qualified Person as defined by the Canadian Securities Administration National Instrument (NI) 43-101. Mr. Atkinson supervised Athabasca Minerals 2014 drill program and was on the Property between February 4th and 26th, 2014. In addition, Mr. Atkinson logged all of the drill core and supervised geotechnical work and sampling from the 2013 and 2014 Athabasca Minerals drill programs.

The resource estimation statistical analysis and three-dimensional modeling was completed by Mr. Nicholls, MAIG, a Qualified Person, under the direct supervision of Mr. Eccles, P.Geol. and Mr. Atkinson, P.Geol., who are both Qualified Persons with respect to mineral estimation as defined by the Canadian Securities Administration NI 43-101. Mr. Nicholls is a resource geologist with over 14 years of exploration and mining experience.

The maiden crush rock aggregate resource estimate of the Middle Devonian Winnipegosis Formation on Athabasca Minerals Richardson Property is classified as an "Inferred" Mineral Resource, and was classified in accordance with guidelines established by the Canadian Institute of Mining, Metallurgy and Petroleum (CIM) "Estimation of Mineral Resources and Mineral Reserves Best Practice Guidelines" dated November 23rd, 2003 and CIM "Definition Standards for Mineral Resources and Mineral Reserves" dated November 27th, 2010. By definition,

"an 'Inferred Mineral Resource' is that part of a Mineral Resource for which quantity and grade or quality can be estimated on the basis of geological evidence and limited sampling and reasonably assumed, but not verified, geological and grade continuity. The estimate is based on limited information and sampling gathered through appropriate techniques from locations such as outcrops, trenches, pits, workings and drillholes." This Report is a compilation of proprietary and publicly available information, as well as information obtained during the 2013 and 2014 drill programs. References in this Report are made to publicly available reports which may or may not have been written prior to implementation of NI 43-101, including government geological publications and Alberta Metallic and Industrial Mineral Permit Assessment Reports that are filed with Alberta Energy. These reports are cited in the 'Reference' section.

Government reports include those that depict the geology of northern Alberta (e.g., Carrigy, 1959; Bayrock, 1971; Fox, 1980; Meijer Drees, 1980, 1990, 1994; Ross et al., 1991; Burwash et al., 1994; Dufresne et al., 1994; Halbertsma, 1994; Mossop and Shetson, 1994; Ross et al., 1994; Oldale and Munday, 1994; Switzer et al., 1994; Wright et al., 1994; Abercrombie and Feng, 1997; Scafe et al., 1988; Pana and Olson, 2009; Scafe and Edwards, 2000a,b; Jefferson et al., 2007; Eccles, 2011; Fenton et al., 2013; Prior et al., 2013; and Schneider et al., 2013). Alberta Metallic and Industrial Mineral Permit Assessment Reports, which are reviewed by the Alberta Government, were used to reference historical mineral exploration work in the general Richardson Property area (e.g., Sproule, 1968; Frantz, 1969; McWilliams and Sawyer, 1977; Laanela, 1977, 1978; Bradley, 1978; Fortuna, 1979; McWilliams et al., 1979; Walker, 1980; Orr, 1986, 1989, 1991; Orr and Robertshaw, 1989; Aravanis, 1999; De Paoli et al., 2000; Dahrouge, 2004).

The authors of this Report have reviewed all government, work assessment and laboratory reports. Government reports were prepared by a person, or persons, holding post-secondary geology or related degrees. Industry prepared work reports were reviewed, approved and archived by the Alberta Government (Alberta Energy and the Alberta Geological Survey). Based on review of these documents and/or information, the authors have deemed that these reports and information, to the best of their knowledge, are valid contributions to this Assessment Report, and take ownership of the ideas and values as they pertain to the current Report.

Geochemical and geotechnical data presented in this Assessment Report were analyzed at: Amec Foster Wheeler plc. (AMEC) in Calgary, Alberta (AB; Tetra Tech EBA Inc. in Edmonton, AB; and Acme Analytical Laboratories Ltd. (Acme; a Bureau Veritas Mineral Laboratories company) in Vancouver, British Columbia (BC). AMEC and Tetra Tech EBA are both certified by the Canadian Council of Independent Laboratories (CCIL) in accordance with Canadian Standards Association (CSA) standards for testing concrete and concrete aggregates, and are qualified as a Category II Laboratories. Acme is an ISO/IEC 17025:2005 accredited analytical laboratory. The authors have reviewed the geotechnical and geochemical data and found no significant issues or inconsistencies that would cause one to question the validity of the data.

Unless otherwise stated, all units used in the Report are metric, the geographic coordinates provided are projected in the Universal Transverse Mercator (UTM) system relative to Zone 12 (north) of the North American Datum (NAD) 1983 and all references to currency are in Canadian dollars (CDN\$).

3 Disclaimer

Athabasca Minerals' Richardson Property comprises eight contiguous Alberta Metallic and Industrial Minerals Permits totalling 60,966 hectares (150,650 acres). Athabasca Minerals acquired the current Richardson Property Permits directly, by application to Alberta Energy, and holds a 100% interest therein under agreements with Alberta Energy. All prior, historic mineral activities in the area consist entirely of grass roots exploration work. There are no historic metallic mineral mines or resources known in the area.

The authors of this Report have not attempted to verify the legal status of the Property, however, the Alberta Energy Interactive Metallic and Industrial Minerals Map, which displays current metallic and industrial minerals dispositions, shows that the Athabasca Mineral claims are active and in good standing at the effective date of this Assessment Report: May 25, 2015 (http://www.energy.gov.ab.ca/OurBusiness/1071.asp).

The authors of this Report are not experts with respect to environmental, legal, socio-economic, land title or political issues. The authors of this Report are not qualified to comment on issues related to permitting, legal agreements, royalties, and environmental matters.

The authors of this report have assumed, and relied on the fact, that all the information and existing technical documents listed in the 'References' section of this Report are accurate and complete in all material aspects. While the Authors have carefully reviewed all the available information presented to them, they cannot guarantee its accuracy and completeness. The authors reserve the right, but will not be obligated, to revise the Report and conclusions if additional information becomes known to them subsequent to the date of this report.

4 Property Description and Location

4.1 Property Description

Athabasca Minerals Inc.'s Richardson Property is located in northeast Alberta in the Athabasca oil sands region, approximately 80 km northeast of hamlet of Fort Mackay, and 130 km north-northeast of the urban service area of Fort McMurray (Figure 1). The Property lies entirely within the 1:250,000 scale National Topographic System (NTS) Map Sheet 074E, more specifically is within the 1:50,000 NTS Map Sheets 074E10, 074E11, 074E14 and 074E15. The Property is approximately centered at 57° 48' 50" North Latitude and 111° 05' 34" West Longitude (494484E, 6407988N UTM). The Property is contained within the Alberta Township Survey (ATS) system Townships (T) 99-102, Ranges (R) 6-9, west (W) of the 4th meridian. The Property comprises eight contiguous Alberta Metallic and Industrial Minerals Permits (9310060418, 9310060419, 9312060367, 9312060387, 9312060388, 9312070594, 9312100494 and 9312110408), totalling approximately 60,966 hectares (150,650 acres), of which Athabasca Minerals holds 100% interest (Figure 2; Table 3).

Figure 1. Location of Athabasca Minerals Inc.'s Richardson Property in northeastern Alberta.

Figure 2. Athabasca Minerals Inc.'s Alberta metallic and industrial minerals permits at the Richardson Property.

Table	3. Desc	ription a	of Athabasca	Mineral	Inc.'s	Alberta	metallic	and	industrial	minerals	permits a	at the	Richardson
Proper	ty.												

Agreement					Area	Area
Number	Status	Designated Representative	Term Date	Туре	(hectares)	(acres)
093 9310060418	Active	Athabasca Minerals Inc. (100%)	2010-06-23	Metallic and Industrial Minerals Permit	8064	19927
093 9310060419	Active	Athabasca Minerals Inc. (100%)	2010-06-23	Metallic and Industrial Minerals Permit	9216	22773
093 9312060367	Active	Athabasca Minerals Inc. (100%)	2012-06-18	Metallic and Industrial Minerals Permit	9216	22773
093 9312060387	Active	Athabasca Minerals Inc. (100%)	2012-06-21	Metallic and Industrial Minerals Permit	7680	18978
093 9312060388	Active	Athabasca Minerals Inc. (100%)	2012-06-21	Metallic and Industrial Minerals Permit	9216	22773
093 9312070594	Active	Athabasca Minerals Inc. (100%)	2012-07-19	Metallic and Industrial Minerals Permit	8838	21839
093 9312100494	Active	Athabasca Minerals Inc. (100%)	2012-10-02	Metallic and Industrial Minerals Permit	6176	15261
093 9312110408	Active	Athabasca Minerals Inc. (100%)	2012-11-26	Metallic and Industrial Minerals Permit	2560	6326
				Total	60,966	150,650

4.2 Property Rights and Maintenance

In Alberta, Alberta Metallic and Industrial Minerals Permits may be held by any organization, corporate entity, or individual which is properly registered to conduct a business in Alberta. The Alberta Metallic and Industrial Minerals Permits grant Athabasca Minerals the exclusive right to conduct metallic and industrial mineral exploration for up to seven consecutive two year terms, totalling up to fourteen years, subject to biannual assessment work and reporting. Permit holders are required to perform work compliant to \$5.00/ha during the first term, then \$10.00/ha for both the second and third terms. Over the fourth, fifth, sixth and seventh terms, \$15.00/ha of work is required. Once a mineral deposit has been identified and 14 years of Metallic and Industrial Minerals Permits in good standing have passed, leases may be granted for a fifteen year renewal term subject to annual payments of \$3.50/ha, with no work requirements.

The Alberta Mines and Minerals Act and Regulations (Metallic and Industrial Mines Tenure Regulation 145/2005, Metallic and Industrial Exploration Regulation 213/98) states the complete terms and conditions for work and permitting for mineral exploration in Alberta. These acts and regulations, among others pertinent to mineral exploration and mining in Alberta can be found on the Government of Alberta Queen's Printer website (Alberta, 2014).

4.3 Coexisting Oil, Gas and Oil Sands Rights

Separate statues regulate the right to metallic and industrial minerals, to coal, to oil/gas, and to bitumen (oil sands) in the province of Alberta. These separate regulations enable a number of different rights to be held by different grantees and to coexist over the same geographic location. Oil/gas leases, coal leases, oil sands leases and permits coexist on the, in the vicinity of, and under, Richardson Property.

4.4 Land Use and Environmental Matters

Athabasca Minerals Inc. has the right to conduct mineral exploration work on the land surface of the Alberta Metallic and Industrial Minerals Permits, subject to procuring the appropriate Exploration Approval land use permits from the Alberta Ministry of Environment and Sustainable Resource Development ("ESRD")'s Land Administration

Division. The Alberta Metallic and Industrial Minerals Permits identify the minor activity restrictions which apply to the granted land.

The Land Division of the ESRD regulates the land use in Alberta, including the issuance of surface disturbance permits, in addition to structured local consultations. For the 2013 and 2014 drilling programs, a number of consultation meetings were conducted between Athabasca Minerals and aboriginal communities in the Fort MacKay to Fort McMurray area in order to acquire the Exploration Approval necessary for the drilling program.

At present, the authors and Athabasca Minerals have no knowledge of major obstacles to resource development, of any material restrictions, or of pending aboriginal claims on the Property or surrounding area. A few sensitivities exist on the Richardson Property and surrounding area, including trapping rights, moose and caribou calving seasons and wolf migration. The Wood Buffalo National Park is approximately 20 km to the north of the northernmost boundary of the Richardson Property (Figure 1).

The entirety of Alberta Metallic and Industrial Minerals Permits 9310060418, 9310060419, 9312060367, 9312060387, 9312060388, 9312100494 and 9312110408, as well as the easternmost part of 9312070594 are subject to seasonal restrictions on exploration activities due to caribou migration and calving (Figures 1 and 2). Field activities in these areas must recess annually between February 15th and July 15th.

Timber rights for a small portion of the Richardson Property are held by the Alberta Pacific Forestry Industries Inc. (ALPAC), trappers and the crown. In the event of any clearing during drill pad preparation or access, compensation must be paid by way of timber damage assessment (TDA). TDA compensation applies to all land clearing, regardless of quality or quantity of growth.

5 Accessibility, Climate, Local Resources, Infrastructure and Physiography

5.1 Access and Infrastructure

The current exploration work is being conducted on the northern part of the Richardson Property (Figure 3). There are no all-weather roads to the Property, however, a 280 km winter road extending from Fort McMurray to Fort Chipewyan provides intermittent access as it traverses through the central portion of the Property and the current area of exploration interest (Figure 3). Within the Property, the Fort Chipewyan Winter Road leads to the abandoned Richardson airstrip, which is located on the northern part of the Property. The winter road is only passable to vehicle traffic during the winter months, due to having to cross the Firebag River to the South of the Property. Year round access to the Property can be accomplished by all-terrain vehicles (ATV). Fall and spring exploration programs would be possible (October to December and March to May) but is not often favourable due to insufficient frozen ground access and thin snow cover. In 2005, Fort Chipewyan residents signed a petition to request the Alberta Government to upgrade the winter road to an all-weather road. The Alberta Government conducted upgrading studies, but to date, no action has taken place.

Figure 3. Winter road access and Athabasca Minerals current area of interest at the Richardson Property.

Athabasca Minerals Richardson Property can be accessed by fixed wing and helicopter aircrafts from Fort McMurray, which is located approximately 130 km southsouthwest of the Property. Fort McMurray is nearly 500 km north of Edmonton, Alberta and accessible by road or by regular daily commercial flights from several international airports (e.g., Toronto, Calgary, Edmonton) and other communities.

Rail shipping services to Fort McMurray are offered by the Canadian National Railway Company (Canadian National). Canadian National operates the line that runs from the city of Edmonton and passes though the communities of Boyle, Lac La Biche, Conklin, Leismer, Chard, Cheecham and Anzac to its terminus at Lynton, which is southeast of the Fort McMurray airport (approximately 12.5 km west of Highway 63 on Highway 69). The line received a \$135 million upgrade in 2008.

Exploration work in the Fort McMurray region, including the multi-billion dollar oil sands industry, is facilitated by nearby support services and supplies, including medical and equipment supplies, rotary air support, expediting and communications. Telephones and radio communications are good quality, and cellular phone reception has good coverage in many areas, including within the Richardson Property area. A Smart Hub mobile internet booster was used during the drill program to improve internet connectivity.

Accessibility to various areas throughout the region is fairly good, enabled by a system of highways, secondary roads and cut seismic lines that service the oil sands industry. The access routes are used year-round as winter and rush roads, and occasionally by all-terrain vehicles in the summer.

The 2014 exploration program was supported from a trailer camp set up on the abandoned Richardson airstrip.

5.2 Physiography, Vegetation and Climate

The physiography of the Fort McMurray area is generally characterized by a flat to low relief terrain with land elevation varying between 240 m and 360 m above sea level (asl). The Property is located within the Athabasca Plain and Central Mixed Wood Natural Sub-regions of the Boreal Forest Natural Region. The Central Mixed Wood Natural Sub-region occupies 25% of Alberta and is characterized by gently undulating to flat plains, upland forests (white spruce, aspen and mixed wood) and wetlands (treed fens). The Athabasca Plain Natural Sub-region is characterized by dune fields, sandy plains and gravel-cored hills populated by low shrubs and jack pine forests (Downing and Pettapiece, 2006).

The principal waterways in the region are the Athabasca River and Clearwater River, fed by numerous small rivers and streams. In general, the small rivers and streams consist of relatively straight yet jagged water courses, often reflecting the joint and fault systems underneath. Water at the Richardson Property area was sourced from nearby lakes and streams, although the ideal source of nearby fresh water is the Athabasca River, located approximately 15 km from the Property, due to its size and flow continuity.

The closest weather station producing long-term climate data (years 1971 to 2000) is located in Fort McMurray, and is available on the Environment Canada website (Government of Canada, 2014). Temperatures in the winter average -18.8 degrees Celsius (°C) and a daily minimum temperature of -24.0° C during the coldest month of January. In general, winters are long, having on average daily minimum temperatures below zero between the months of October and April, and below -10° C between November and March. Summer temperatures are generally warm, averaging 16.8° C with an average daily maximum temperature of 23.2° C during the warmest month of July. Annual precipitation in Fort McMurray averages 455.5 millimetres (mm), up to 81.3 mm in July and as little as 15.0 mm in February.

6 History

6.1 Historical Energy-Related Exploration

The Fort McMurray region is best known for its vast resource of bituminous oil sand. Based on the present bitumen recovery technologies, these oil reserves are estimated at 168 billion barrels (Alberta Government, 2013). The oil sands industry is a significant driver in the search for new sources of aggregate. That is, vast quantities of aggregate materials are required to supplement ongoing oil sands infrastructure construction demands. The location and status of oil sands operations in the general Richardson Property are shown in Figure 4.

A total of six energy-related (oil sands) wells are known to have previously been drilled by companies other than Athabasca Minerals on the Richardson Property. Five wells are located within Athabasca Minerals permit 9310060418, and the sixth well is located within permit 9312100494. The wells located within permit 9310060418 were drilled in 2007 by Silverbirch Energy Corp. Each well was drilled down to the Devonian Beaverhill Lake Formation and abandoned. The single well located within permit 9312100494 was drilled in 2008 by Value Creation Inc. This well was drilled down to the Cretaceous McMurray Formation and has also been abandoned. Total vertical well depths were between 69 m and 102 m. The Precambrian crystalline basement was not intersected in any of the wells (Table 4).

Table 4. Historical energy-related wells that were drilled with the current boundaries of the Richardson Property.

			Total well	Formation intersected at	
Well ID (UWI)	Operator	Spud Date	depth (m)	end of well	Status
1AA/02-05-101-07W4/00	Silverbirch Energy Corp.	14/02/2007	101.9	Devonian Beaverhill Lake	Drilled & Abandoned
1AA/07-22-100-07W4/00	Value Creation Inc.	11/03/2008	77	Creataceous McMurray	Drilled & Abandoned
1AA/11-19-101-07W4/00	Silverbirch Energy Corp.	19/02/2007	77.9	Devonian Beaverhill Lake	Drilled & Abandoned
1AA/12-04-101-07W4/00	Silverbirch Energy Corp.	16/02/2007	81.9	Devonian Beaverhill Lake	Drilled & Abandoned
1AA/12-06-101-07W4/00	Silverbirch Energy Corp.	21/02/2007	89.9	Devonian Beaverhill Lake	Drilled & Abandoned
1AA/12-31-101-07W4/00	Silverbirch Energy Corp.	18/02/2007	68.9	Devonian Beaverhill Lake	Drilled & Abandoned

Figure 4. Oil sands operations in the Athabasca Oil Sands region of northeastern Alberta, which are located directly south of the Richardson Property area.

6.2 Industrial and Metallic Mineral Exploration in Northeastern Alberta

Oil and gas are the drivers of the Alberta economy; however, several nonhydrocarbon mineral exploration discoveries have been made in northeastern Alberta since the 1990's. A summary of the various mineral commodity and deposit types in northeastern Alberta are summarized in the following text and in Figure 5 with consideration for their location with respect to Athabasca Minerals Richardson Property. With the exception of crush rock aggregate, which is the focus of this Assessment Report, none of these resources and/or occurrences is known to occur at the Richardson Property, nor do the authors infer that the commodity types might exist on the Property. Rather this information is provided as general background knowledge for northeastern Alberta. With respect to crush rock aggregate, the description of limestone aggregate at Hammerstone Corporation's Muskeg Valley Limestone Quarry is in no way implied to extend onto the Property, but is provided as supplemental information, and to make note of the potential for, and importance of, crush rock aggregate deposits in the expanding oil sands area north of Fort McMurray.

6.2.1 Crush Rock Aggregate, and Sand and Gravel Aggregate

South of the Richardson Property, Hammerstone Corporation operates the Muskeg Valley Limestone Quarry (also known as the Hammerstone Project), which provides aggregate and limestone products for construction aggregate and for flue-gas desulphurization for the oil sands extraction process (Figure 5). The Hammerstone Project covers an area of approximately 1,200 hectares and contains over 1 billion tonnes of proven and probable limestone reserves (Hammerstone Corporation, 2014). The quarry has four limestone units, each of which produces products with distinct chemical and physical properties. The quarry has the capacity to produce over six million tonnes of processed product annually with the current crusher capacity.

In addition to the Richardson Crush Rock Property, Athabasca Minerals also manages the Susan Lake Aggregate Operation, which is located southwest of the Richardson Property (Figure 5). The gravel lease is 9,262 acres in size making it the largest open pit gravel operation in Canada. The massive aggregate operation is situated in the heart of existing oil sands developments, is accessible via major roads year round and provides gravel to the majority of the oil sands companies operating in northern Alberta. In 2009, the Susan Lake Pit was named the top aggregate supplier in Canada for the amount of aggregate sold, totaling 6.59 million tonnes. During 2010 and 2011 Susan Lake Pit sales increased to 7.13 million tonnes and 7.75 million tonnes, respectively (Athabasca Minerals Inc., 2014).

6.2.2 Polymetallic Black Shale

Southwest of the Property, the Birch Mountains area is known to host near-surface polymetallic nickel-cobalt-zinc-copper-uranium-rare-earth elements-yttrium (Ni-Co-Zn-Cu-U-REE-Y) black shale (Figure 5). The mineralization is hosted in three late Upper Cretaceous shale units: Labiche, Second White Speckled Shale and Shaftesbury formations. The shale package comprises flat-lying, near-surface mineralization that is envisaged to extend over a vast area (100's of km²) across the Birch Mountains.

Figure 5. Summary of selected industrial and metallic mineral projects and occurrences in northeastern Alberta.

The Buckton mineral resource, which represents a portion of the black shale unit, has an aggregate of 4.7 billion tonnes of mineralized black shale material consisting of 4.4 billion tonnes classified as an Inferred Resource and 271 million tonnes classified as an Indicated Resource (Eccles et al, 2013). The proposed mining design is a low strip ratio, high tonnage co-production of Ni-U-Zn-Cu-Co-REE-Y from the Cretaceous Labiche and Second White Speckled formations.

6.2.3 Uranium

To the northeast of the Property, the Athabasca Basin accounts for roughly 15% of the world's annual uranium production. The majority of the unconformity-associated uranium mines and prospects occur in the eastern portion of the basin where ca. 1.7 to 1.5 Ga Athabasca Group clastic sedimentary rocks unconformably overlie the western Wollaston and Wollaston-Mudjatik basement domains. However, significant uranium discoveries such as the Cluff Lake Mine and Shea Creek Deposit in Saskatchewan, near the Saskatchewan-Alberta border, (underlain by the Clearwater Domain) and the Maybelle River prospect in Alberta (underlain by the Taltson Magmatic Zone), demonstrated the potential for similar unconformity-associated uranium deposits in the western part of the Athabasca Basin (Figure 5; Ruzicka, 1997; Jefferson et al., 2007; Pană and Olson, 2009). Pană and Olson (2009) concluded that shear/fault–controlled hydrothermal convection through a fertile granitoid basement which was sealed by the late Paleoproterozoic to early Mesoproterozoic Athabasca Group strata was the key mechanism in the origin of these deposits.

The AREVA Resources Canada Inc.'s (AREVA) Maybelle River uranium deposit is located along a northerly trending shear zone in the Taltson magmatic zone (Jefferson et. al., 2007). The basement unconformity at Maybelle River is relatively shallow (between zero and 250 m in depth), making the area of particular economic interest (Collier, 2005). Grades of 21% triuranium octoxide (U_3O_8) were intercepted over a 5 m interval (drill core MR-39; Collier, 2005). An alteration halo of numerous other metals, including Ni, Co, arsenic (As), lead (Pb) and molybdenum (Mo) has been identified, and extends for at least 200 m along the zone.

Several companies have conducted U exploration in northeastern Alberta, particularly in an area that extends from the general Richardson River area northeastwards to the western portion of the Athabasca Basin as summarized in the following text:

- Between 1975 and 1979, Eldorado Nuclear Ltd. (Eldorado) conducted U exploration in the Maybelle River and Richardson River area. Regional stream/lake sediment and water geochemistry, soil sampling, airborne/ground radiometric/magnetic/electromagnetic (EM) surveys, boulder mapping, ground resistivity surveys, and diamond drilling discovered several anomalies including the Rabbit Lake, Cluff Lake, Key Lake and Maurice Bay anomalies (Laanela, 1977, 1978; Fortuna, 1979).
- In 1976 to 1979, Norcen Energy Resources Ltd. (Norcen), in joint venture with Campbell Chibougamau Mines Ltd., E & B Explorations Ltd. and Ontario Hydro

conducted U exploration in northeastern Alberta consisting of surface prospecting, lake sediment geochemical surveys, airborne EM survey and diamond drilling. A favourable structure trap similar to known U deposits was identified (McWilliams, 1977; McWilliams et al., 1979).

- In 1978, BP Minerals Inc. completed a diamond drilling program in search of uranium. No anomalous radioactive materials were discovered (Bradley, 1978).
- In 1980, SMD Mining Company conducted an airborne EM/magnetic survey and drilling. A strong east-northeast magnetic break/fault was identified and reportedly has the potential to host U and/or Pb-Zn deposits (Walker, 1980).
- Uranerz Exploration and Mining Ltd. conducted exploration in the area between 1984 and 1990. The exploration programs consisted of an aeromagnetic gradiometer survey, gravity, EM, resistivity and magnetic ground surveys, lake sediment geochemistry, structural mapping, aerial photography, and diamond drilling. Geochemical core analysis yielded high grade U intersections and core with U deposit characteristics such as graphitic sediments and aluminous content were located (Orr, 1986, 1989, 1991; Orr and Robertshaw, 1989).

6.2.4 Prairie-Type Precious Metals

South of the Property, Birch Mountains Resources Ltd. proposed a 'Prairie-type' deposit model, in which reduced formational fluids interacted with sulphate-rich evaporite and red beds to become oxidized brines (Figure 5; Feng and Abercrombie, 1994). The latter leached gold and other metals from the basement and/or red bed units and carried the metals as chloride (CI⁻) complexes. The metal-loaded solutions migrating across formations at the solution front of the Prairie Evaporite Formation and/or along fault-breccia zones deposited the metals either at a reducing interface (e.g., organic matter in the overlying carbonate and clastic rocks) or due to mixing with fluids of contrasting activity of electrons (Eh), activity of hydrogen ions (pH) or salinity (Abercrombie and Feng, 1997).

Feng and Abercrombie (1994) first documented 0.5 μ m – 2 μ m scale native gold (Au), silver (Ag), bismuth (Bi), cadmium (Cd), Cu, Pb, tin (Sn) and Zn, along with their alloys, sulphides (S²⁻), oxides (O²⁻), Cl⁻, carbonates (CO₃²⁻) and other compounds in the Precambrian basement granitoids and overlying Phanerozoic rocks of northeastern Alberta (Abercrombie and Feng, 1997).

6.2.5 Diamondiferous Kimberlite

During 1998-1999, eight kimberlitic intrusions were discovered in the Birch Mountains, which is located southwest of the Property (Figure 5). The Birch Mountains kimberlite field contains an eclectic mixture of alkaline to evolved kimberlite compositions, and therefore, has significantly lower diamond content than the Buffalo Head Hills kimberlite field, which is located in north-central Alberta (Eccles, 2011). All eight bodies were sampled for diamond and only two pipes, Phoenix and Legend returned minimal diamonds (Aravanis, 1999).
During 1998-2000, Ashton Mining of Canada Inc. (Ashton) collected 168 till samples for kimberlite-indicator mineral (KIM) analysis from their Athabasca Property, which encompassed a large region of northeastern Alberta (Skelton and Bursey, 2000). Fiftyeight samples returned positive grain counts, however, none of the sample results contained higher than six total grains of combined pyrope, chrome diopside, olivine, chromite or picroilmenite. Within the Richardson Property, the Ashton survey sampled no sites. Ashton also conducted an aeromagnetic survey. Unfortunately, the Ashton assessment report does not include any geochemical data associated with the KIM grains (i.e. only grain counts are recorded).

7 Geological Setting and Mineralization

7.1 Regional Geology

The regional inferred basement geology, bedrock geology and stratigraphic table of formations are presented in Figures 6 and 7 and Table 5, respectively, and summarized in the text that follows.

The majority of Alberta is underlain by sedimentary sequences of the Western Canada Sedimentary Basin (WCSB), which is bounded to the west by the Rocky Mountains and to the east by the Canadian Shied. In Alberta, the WCSB is composed of a Phanerozoic wedge of strata overlying the crystalline Precambrian basement. This wedge measures up to 7,000 m in thickness adjacent to the foothills, and diminishes to its zero edge along the Canadian Shield to the northeast (Mossop and Shetsen, 1994).

7.1.1 Precambrian Basement Geology

Basement rocks typically are masked by sedimentary rocks of the WCSB, and as such, the basement domains underlying much of Alberta are inferred from the few oil and gas wells that have penetrated to basement, and the chronological studies performed on relatively few cores; as a result the basement terrains are defined predominantly from regional, widely-spaced aeromagnetic data (Thériault and Ross, 1991; Ross et al., 1991; Ross et al., 1994).

With the exception of the easternmost portions of the Property, basement rocks on the Richardson Property are generally covered by WCSB sedimentary rocks. The basement rocks underlying the WCSB in the Property area consist of two main lithotectonic zones: the Taltson Magmatic Zone and the Rae Province (Figure 6). The Taltson Magmatic Zone is characterized by a 150 km to 200 km wide, north-trending belt of positive aeromagnetic anomalies (Ross et al., 1991, 1994). The Taltson magmatic zone contains a wide belt of meta-plutonic rocks that can be split into ca. 1.986-1.959 billion years (Ga) magnetite-series (I-type) or continental-arc plutons (e.g. Bostock et al., 1987; McDonough et al., 2000) and ca. 1.955-1.910 Ga peraluminous (S-type) plutons (e.g. Bostock et al., 1987; McDonough et al., 2000). These plutons intruded a narrow belt of Mesoarchean to Paleoproterozoic orthogneisses and granitoid rocks (e.g. McNicoll et al., 2000), termed the Taltson basement complex.

Assessment Report for Athabasca Minerals Inc.'s Richardson Property. Northeastern Alberta

Figure 6. Inferred basement domains in the Richardson Property area.

Assessment Report for Athabasca Minerals Inc.'s Richardson Property. Northeastern Alberta

Figure 7. Regional bedrock geology of the Richardson Property area.

Table	5.	Stratigraphic	table of	f formations in	northeastern	Alberta.	The bedrock	geology	at the Richardson
Prope	rty	area is confir	ied to th	e lower portion	n of the table ir	Precam	brian and Mid	dle Devo	nian rocks.

System or Subsystem	Group	Formation	Member
Quaternary			
	Smoky		
Upper Cretaceous	Le Diebe	La Biche	
	La Diche	Shaftesbury	
		Grand Rapids	
Lower Cretaceous	Mannville	Clearwater	Wabiskaw
		McMurray	
		Grosmont	-
	Woodbend	Ireton	
		Cooking Lake	
Univer Devenion			Mildred
Opper Devonian			Moberly
	Beaverhill Lake	Waterways	Christine
			Calumet
			Firebag
		Slave Point / Fort Vermillion	
		Watt Mountain	
Middle Devenion	Opper Elk Point	Prairie Evaporite	
Initule Devoluan	rom	Winnipegosis / Keg River	
	Lower Elk	Contact Rapids	
	Point	La Loche	
Precambrian	Marguerite		
riecamprian	River Complex		

Erosional Unconformity

---- Paraconformity

Rocks south of, and underlying, the western Athabasca Basin have historically been included in the Rae Province (e.g., Ross et al., 1991, 1994). The Rae Province is comprised of five domains (Zemlack, Beaverlodge, Tantato, Lloyd and Clearwater domains) consisting mainly of deformed and metamorphosed granite and granitoid gneiss (Sibbald, 1974; Lewry and Sibbald, 1977; Ross et al., 1994; Hanmer, 1997). The Clearwater Domain is an elongated basement trend contiguous with the 1.85-1.78 Ga Rimbey Arc in Alberta (Ross et al., 1994), a basement feature that coincides with the 560 km long Leduc-Homeglen-Rimbey-Meadowbrook reef chain.

7.1.2 Bedrock Geology

With the exception of the easternmost part of the Property where basement rocks crop out, Precambrian metamorphic and igneous rocks in the Property area are unconformably overlain by Devonian rocks of the WCSB (Table 5; Norford et al., 2004; Meijer Drees, 1994). Lower Devonian rocks found within the WCSB are only remnants of what once where extensive sedimentary rock layers deposited over the majority of the Craton, which were subsequently almost entirely eroded. The Lower Devonian sedimentary rocks generally consist of shallow-water carbonates and minor evaporate and clastic rocks, with a sharp change to basinal limestone and shale along the western border (Norford et al., 2004).

Stratigraphic sequences of the Lower to Middle Devonian Elk Point Group are more common and generally occur throughout the Interior Plains. Elk Point Group strata are composed of carbonate, evaporate, red bed and clastic rock units. Unconformities representing periods of erosion, subaerial exposure and non-deposition separate the sequences from one another (Bebout and Maiklem, 1973; Meijir Drees, 1980). Three erosional unconformities, the pre-Devonian, the sub-Headless and the sub-Watt Mountain subdivide the Elk Point Group (Moore, 1988; Morrow and Geldsetzer, 1988; Meijer Drees, 1990). The Elk Point Group measures up to 1,000 m thickness in the Mackenzie Mountains and as little as 215 m in the southern plains. It is exposed in the Cordilleran Orogen and along parts of the WCSB's northeastern margin. Upper Elk point Group formations are extensive and define the Elk point Embayment which extends from North Dakota through southern Manitoba and Saskatchewan to northeast British Columbia (Meijer Drees, 1994).

The Middle to Late Devonian Beaverhill Lake Group occurs throughout much of Alberta and reach thicknesses up to 240 m. It is unconformably deposited over the Elk Point Group, and is unconformably to conformably overlain by the Woodbend Group. Two stratigraphic phases subdivide the succession into a transgressive reefal phase dominated by the Slave Point and Swan Hills carbonate formations, and a regressive basin-fill phase dominated by argillaceous carbonate and shale of the Waterways Formation. The transgressive phases occurred first during sea-level rise, depositing sedimentary rocks of the Watt Mountain Formation, and carbonate and evaporate of the Fort Vermillion Formation, and carbonate of the Slave Point Formation. Three reef complexes (the Hay River Bank, the Peace River Arch Fringing reef Complex and the Swan Hill Complex) developed after the formation of a platform. During the regression phase, the Souris River Formation (Souris River Shelf) was formed, followed by progradational deposition of the Waterways Formation (Oldale and Munday, 1994)

The Woodbend and Winterburn groups of the Late Devonian are composed of cyclic clastic and carbonate with minor cyclic carbonate and evaporite sequences. Deposition of the Woodbend Group occurred during a period of gradual deepening of the WCSB, filling the basin with marine shale deposits. Alternatively, the Winterburn Group was deposited during a period of shallowing and basin filling. Together, the Woodbend and Winterburn groups can measure up to 850 m in thickness. They are recognizable by the thick (over 275 m) Leduc Formation reef complex and the Muskwa and Duvernay Formations; both known to be source rocks high in bitumen. Subsequent transgressive

cycles lead to the deposition of the Lower Ireton, the Upper Leduc, the Upper Ireton, the Nisku, and the Blue Ridge intervals, although regression was dominant and resulted in relatively flat topography (Switzer et al., 1994).

In 1990, the Woodbend and Winterburn Groups were known to contain roughly 11% and 32% of the oil-equivalent gas reserves and initially established conventional oil within Paleozoic strata in the Alberta Basin, respectively (Energy Resources Conservation Board, 1990). In general, these pools of oil and gas are characteristic of ancient reef complexes formed by different depositional settings, size, shape and facies composition (Alberta Society of Petroleum Geologists, 1960, 1966 and 1969).

The Wabamun Group is the youngest Devonian strata of the WCSB found in the subsurface of British Columbia, and in southern Alberta and Saskatchewan. It is composed of a number of cycled shelf and ramp carbonate and associated evaporite deposits. These rocks sub crop from Manitoba to Alberta along a 700 km belt. The Wabamun Group's northern and eastern margins are characterized by pre-Mesozoic erosion. Two major stratigraphic sequences represent the Wabamun Group; the Stettle Formation composed of a low and high-stand carbonate sequence unconformably overlain by the Big Valley Formation composed of a siliclastic-carbonate low stand of the Banff assemblage (Halbertsma, 1994).

7.1.3 Surficial Geology

Surficial deposits in northeastern Alberta are dominated by diamicton (till), glaciofluvial and lacustrine deposits, comprised of a mixture of clay, silt, sand and minor pebbles to boulders, which were deposited directly by glacial ice. Factors influencing the location of thick accumulations of sediment in northern Alberta are: 1) preglacial valleys; 2) bedrock highlands and remnants; 3) ice marginal still-stands; and 4) bedrock contacts or scarps (Fenton et al., 2013). Glacial advances in northern Alberta originated from the Laurentide Ice Sheet, which generally flowed across Alberta in a southwesterly direction (Dyke et al., 2002).

7.2 Property Geology

The Richardson Property area lies along the passive, eastward thinning margin of the WCSB where sedimentary successions unconformably overly and on lap the southwest dipping Precambrian basement. Within the Property, Precambrian basement, Devonian carbonate and surficial deposits are exposed or occur near surface.

7.2.1 Precambrian Basement Geology at the Property

The crystalline basement in the Richardson Property area is part of the Taltson Magmatic Zone and Rae Province. Basement rocks in Alberta typically are observed from oil and gas wells that have penetrated through the WCSB to basement. A total of twelve oil and gas wells were drilled historically on the Richardson Property (all prior to 2013). None of these wells penetrated basement, and as such the depth from surface to basement, originally, was estimated at zero to 200 m (Wright et al., 1994). In the greater Richardson Property area, a total of three wells have penetrated bedrock, the closest of which, is located approximately 15 km north of the Property and intersected the Precambrian at 70.1 m depth.

Precambrian basement rocks consisting of meta-igneous and granitoid lithologies are known to crop out in the Property area. Exposures of the Mesoarchean to Paleoproterozoic Marguerite River Complex are found on the eastern edge of the Property, through Permits 9312060387 and 9312060388. The Marguerite River Complex comprises undifferentiated granite, Arch Lake-type granitoid, hornblende-quartz monzonite and granitoid gneiss rocks (Dufresne et al., 1994; Prior et al., 2013).

Based on outcrop and drill cores, the Precambrian basement at the Richardson property area is comprised of a medium to coarse grained granite, with a weak foliation defined by the alignment of biotite grains. The granite is variably potassically altered, ranging in colour from light blue-grey to salmon pink. Coarse grains of quartz and alkali feldspar dominate the granite.

7.2.2 Bedrock Geology at the Property

The majority of the basement rocks within the Richardson Property are overlain by Devonian bedrock (Figure 8; Table 5), in addition to Quaternary surficial deposits. Most of the bedrock found on the Property comprises the Middle Devonian Winnipegosis Formation of the Elk Point Group. The Winnipegosis Formation reflects an open-marine platform and reef system and is composed of thickly bedded brownish to yellowish-grey dolostone containing various fossils (Macoun, 1877; Bassett, 1952).

The Winnipegosis Formation can be separated into two different members, a thinlybedded lower member and a massive upper member. The lower member consists of a thick, finely crystalline light brown and moderately vuggy calcareous dolostone, containing local grey chert nodules and silty crenulated laminae. The upper member consists of finely crystalline, light brown to mottled medium and light brown, massive to irregularly thick-bedded, vuggy dolostone, which contains greenish-grey chert in its lower section. Sparse brachiopod, bivalve and gastropod fossils can be found within the Winnipegosis Formation (Norris, 1963).

Specific to the Property area, and as interpreted in this Report, the Winnipegosis has not been subdivided into two members. While the Winnipegosis Formation does comprise variable texture, chemical and physical rock properties (e.g., rock-quality designation or RQD) over its entire length, the formation overall, is extremely consistent and there does not seem to be a readily identifiable break between and upper and lower members. While the lithological units vary from mudstone to packstone to boundstone, there was no single consistent stratigraphic position where one particular property was dominant over the other (i.e., where one texture was dominant enough to define upper and lower members).

Underlying the Winnipegosis Formation, the Contact Rapids Formation is comprised of marginal marine dolomitic silty shale, argillaceous dolostone and shale-siltstone with brachiopods, tentaculites and small spores (Sherwin, 1962; Meijer Drees, 1994). A conformable gradational to sharp contact separates the Contract Rapids Formation from the Winnipegosis Formation (Norris, 1963). The Contact Rapids Formation reportedly occurs on the Property between near the Marguerite River Complex (Permits 9312060387, 9312060388 and 9312110408; Prior et al., 2013).

Assessment Report for Athabasca Minerals Inc.'s Richardson Property, Northeastern Alberta...

Figure 8. Bedrock geology at the Richardson Property (after Prior et al., 2013).

A discontinuous zone of detrital basal feldspathic sandstone and conglomerate known as the La Loche Formation (equivalent to the Granite Wash) typically occurs between the Contact Rapids Formation and the crystalline Precambrian basement.

The La Loche Formation is of Early Devonian age or older, and comprises fine to medium-grained pale brown, irregularly lenticular to thinly-bedded arkosic sandstone, cemented with hematite and containing sub-rounded to angular coarse quartz and feldspar fragments (Sherwin, 1962; Norris, 1963). Core interpretation indicates that the upper and lower contacts of the formation, the basement rocks and the overlying Contact Rapids Formation are gradational (Norris, 1963).

7.2.3 Surficial Geology at the Property

A preliminary interpretation of surficial geology over a portion of the Property (the area of exploration interest; see Figure 9) was completed by APEX prior to selecting drill collar locations for the 2014 drill program. LiDAR data shows the Richardson Property is dominated by uneven landforms typical of ice-contact glaciofluvial processes, such as kettle depressions and kame deposits (Figure 9). Glaciolacustrine processes have also affected the Property topography, typically redistributing sediments into low-lying areas and erosion.

Two topography zones have been defined using LiDAR data; a Southeast Zone consisting of hilly topography, and the Northwest Zone consisting of relatively flat topography (Figure 9). The Southeast Zone is characterized by large hills and valleys measuring hundreds of metres in width, generally trending northeast-southwest up to 10 km long and up to 40 m in elevation. In the Southeast Zone, shoreline features seem to be present at an elevation of approximately 295 m, near the base of kame hills. Two kame drainage streams have created outwash fans, causing moderate dissecting of the kames. Small and sporadic gravel lags may be present within stream valleys (McMillan, 2013).

The Northwest Zone is characterized by a mostly flat landscape commonly littered with depressions and lesser hills. The flat landscape likely reflects wave action erosion. A number of small morainal ridges formed during retreat of the Laurentide Ice Sheet. Two kame deposits are present, likely consisting of mixed sand and gravel material. The deposits trend northwest-southeast and measure up to 200 m wide and 400 m long, and are about 325 m in elevation. Depressions exceeding 50 m (often 100 m) wide and 3 m deep appear to correlate with one another in linear patterns over several hundred metres.

The division between the Southeast and Northwest Zones of the Richardson Property was created by the former shoreline of Lake McConnell; a glacial lake located along the western edge of the Laurentide Ice Sheet (Smith, 1994). Glacial Lake McConnell inundated the majority of the Northwest Zone, after approximately 10,500 years before present (Dyke and Prest, 1987; Smith and Fisher, 1993; Smith, 1994). The hilly topography of the Southwest Zone prevented it from being inundated by Lake McConnell.

Assessment Report for Athabasca Minerals Inc.'s Richardson Property. Northeastern Alberta

Figure 9. Preliminary surficial geology interpretation of the northeastern part of the Richardson Property (the area of current exploration interest).

In general, the soils on the Property are classified as leached, well-drained soils with occasional peaty soils. Soil differences occur where landscape varies between being sloped, hummocky and ridged. In the southeastern corner of the Property, soils have developed on a hilly landscape, where they drain quickly, contrary to the southern region of the Property, where organic-rich soils drain poorly.

7.3 Mineralization

One objective of the 2013-2014 work was to assess the rock properties associated with the Winnipegosis Formation dolostone and Precambrian granite at the Richardson Property for their suitability as potential crush rock aggregate. Dolomite used as crush rock aggregate must be strong, durable and have a low porosity in order to limit water absorption (Brown et al., 2013). Good aggregate is associated with thick sections of pure dolomite that are well cemented (Ault, 1989). Carbonate rocks are generally strong due to their interlocking grain fabrics and carbonaceous mineralogy (Langer, 2006); although they can become stronger if they are subjected to silicification processes (Langer, 2006). Over time, carbonate rocks are often subjected to more recrystallization processes, which in turn increase their strength and decrease their porosity. Consequently, these older rocks are more favourable aggregate materials than younger ones (Bell, 1993).

Igneous rocks, such as granites, typically produce strong aggregates that are skid resistant and therefore, are favourable road aggregate materials (Brown et al., 2013). Igneous rocks of intrusive origin are generally strong and hard due to their mineralogy, grain intergrowth and small grain size. Ideal igneous rocks have been subjected to minimal weathering and contain few, if any, large grains and soft minerals (Langer, 2006).

Geotechnical and geochemical test work to assess the crush rock aggregate potential of the Winnipegosis Formation dolostone and Precambrian granite at the Richardson Property are reported in the Exploration and Results sections of this Report.

8 2013-2014 Exploration Work and Methodologies

8.1 Drilling

Exploration at the Richardson Property is focused on near surface Devonian and Precambrian aged bedrock. The Devonian stratum is comprised of dolomitic units belonging to the Winnipegosis (and Contact Rapids) formations. The Devonian rocks sit unconformably over Precambrian granite. The units are being explored for their mineral potential and as a source for aggregate crush rock.

During 2013, Athabasca Minerals staff visited the Richardson Property numerous times by ATV and helicopter, produced a field data compilation and drilled four diamond drillholes. Geological mapping identified granite outcrop in the eastern part of the Property. During 2014, Athabasca Minerals retained APEX to complete a drillhole program (totalling 843 m) to obtain additional sample material in order to calculate a resource estimate of the Devonian Winnipegosis Formation and make resource estimate inferences on the underlying Precambrian granite(section 10 of this report.)

Drill collar summaries of the twelve 2013 and 2014 Richardson Property drillholes is presented in Table 6, Figure 10 and Appendix 1 and summarized in the text that follows.

8.1.1 2013 Drill Campaign

In 2013, Athabasca Minerals conducted a drilling program that concluded with core being derived from four diamond drillholes totaling 235.1 m. The program, which was conducted between January 21st and February 16th, 2013, had originally proposed 16 drillholes, but the program was shortened due to lost circulation problems within overburden and through bedrock. In addition, diamond drillholes GNA-05, GNA-11 and GNA-16 were abandoned prior to intersecting Precambrian basement due to poor drilling conditions. Hence, drillhole GNA-10 represented the lone drillhole from the 2013 drill program to penetrate through the entire lithostratigraphic section of Winnipegosis Formation and downwards into Precambrian granite (Table 6)

8.1.2 2014 Drill Campaign

During February 2014, Athabasca Minerals conducted an 843 m core drilling program over a large section of the Richardson Property. A total of eight diamond holes (14RLD001 to 14RLD008) were completed over an area spanning 20 km² (Figure 10). With the exception of drillhole 14RLD006, the program successfully cored entire sections of the Winnipegosis Formation, with all but one drillhole terminating in Precambrian basement granite (Table 6). The drilling termination strategy was generally to end each hole once 10 m of Precambrian basement was penetrated. One drillhole (14RDL007) tested the granite, by coring 44.5 m of the Precambrian basement. Drill collar locations were limited to existing access within the Property and, where possible, collars were shifted in order to take advantage of natural and manmade pre-existing clearings. Final collar locations were recorded with a handheld GPS unit. Drill pads were reclaimed by a combination of back blading to distribute and cuttings left on surface as well as redistributing any fallen timber by hand over the drill site. Collars were marked with an aluminum (AI) tag placed on the southwest corner of the drill pad.

Overburden thickness averaged 35.4 m and consisted largely of unconsolidated sand and boulders. The Devonian stratigraphy averaged 55.1 m in thickness and was comprised largely of competent, light brown dolostone with lesser wackestone, sandstone and shale. Bitumen content throughout the project area was highly variable ranging from minor less than (<5%) bitumen infilled vugs to moderate (e.g., 40%) amounts bitumen infilling vugs, fractures and karsts. The vuginess, sand-content and fracturing of the Devonian rocks appears to play a major role in bitumen distribution.

Minor karsting and bitumen content within the Devonian stratigraphy, as well as a conglomerate/pebble lag, mark the unconformity between the Devonian and Precambrian units. The Precambrian basement was comprised of light blue-grey, coarse-grained, weakly foliated granite, which was subjected to variable potassic alteration. The composition of the granite remained fairly consistent throughout the Property.

Further reclamation may be required due to the sandy nature of the area and the development of small depressions that were created by flowing drill water associated

with normal drill processes, therefore small depressions are likely to form at the collars in the spring.

Table 6. Drillhole collar summaries for Athabasca Mineral 2013 and 2014 drill campaigns at the Richardson Property with depth to the top of the Devonian (Winnipegosis and Contact Rapids formations), Granite Wash (La Loche Formation) and Precambrian basement rocks. All drillholes have an azimuth and dip of 0 and -90 degrees, respectively.

_

	(UTM, Z12,											
	NAD83)			Depth to Formation top (m)				Thickness of units (m)				
									Total hole			
Drillhole	Year	Easting	Northing	Elevation		Contact		Precambrian	depth		Contact	
ID	drilled	(m)	(m)	(m)	Winnipegosis	Rapids	La Loche	basement	(m)	Winnipegosis	Rapids	La Loche
GNA-05	2013	494542	6413258	295	n/a	n/a	n/a	n/a	29.5	n/a	n/a	n/a
GNA-10	2013	498134	6415333	288	21.34	65.00	75.60	76.12	101.0	43.66	10.60	0.52
GNA-11	2013	496912	6415967	283	18.00	n/a	n/a	n/a	21.0	n/a	n/a	n/a
GNA-16	2013	501617	6415414	313	47.80	82.69	n/a	n/a	83.6	34.89	n/a	n/a
14RLD001	2014	499488	6415279	295	31.33	77.30	92.48	94.37	106.0	45.97	15.18	1.89
14RLD002	2014	500722	6416094	301	30.00	77.94	90.76	92.44	100.0	47.94	12.82	1.68
14RLD003	2014	500142	6415875	301	39.00	73.98	81.22	85.96	96.0	34.98	7.24	4.74
14RLD004	2014	498872	6415401	296	30.00	73.16	83.76	84.98	96.0	43.16	10.60	1.22
14RLD005	2014	497988	6414715	296	30.00	77.05	84.39	86.88	117.0	47.05	7.34	2.49
14RLD006	2014	497390	6413931	296	41.45	83.80	93.96		95.0	42.35	10.16	n/a
14RLD007	2014	497733	6414269	295	39.00	85.70	97.96	98.65	144.0	46.70	12.26	0.69
14RLD008	2014	497361	6414972	294	64.92	73.22	80.26	83.00	89.0	8.30	7.04	2.74
	0	verburde	n average	thickness:	35.71			Average th	ickness:	39.50	10.36	2.08

Figure 10 Locations of drillholes completed at the Richardson Property during Athabasca Minerals 2013 and 2014 drill campaigns.

8.1.3 Core Handling and Initial Geotechnical Preparation Procedure

The 2014 drill core was quick-logged during the drill program at the Richardson Property camp. Upon completion, the core boxes were tightly secured (to circumvent core displacement) on flatbed trailers and/or truck beds, and transported by road from the Richardson Property to Athabasca Minerals warehouse in Edmonton, Alberta. Upon arrival, the core was stored inside a steel shipping container in a locked yard – together with cores from Athabasca Minerals 2013 drill campaign. The purpose for moving the drill core to Edmonton was to conduct detailed core logging, geotechnical characterization and sampling in indoor, heated and well lit work bays at Athabasca Minerals office. Core handling, geotechnical characterization, logging, sampling and shipping was completed by APEX staff under the direct supervision of R. Eccles and B. Atkinson, the former of which takes overall responsibility for the core procedures and the content of this Assessment Report.

8.1.4 Geotechnical Characterization

This Assessment Report includes a maiden inferred crush rock aggregate resource estimate of the Middle Devonian Winnipegosis Formation at Athabasca Minerals Richardson Property (Section 10). In accordance with proper assessment of a crush rock aggregate deposit, which involves criteria that considers the materials strength, continuity, fractures and the presence of weakening particulate matter, this assessment has implemented an expanded geotechnical procedure for drill core evaluation as follows:

- Length and recovery measurements to record the actual length of core recovered from each logging interval. It was recorded in metres and as a percentage of the logging interval. The length of core was measured (eliminating gaps by pushing pieces together) between each set of blocks. Recovery (percent) was calculated by dividing the Theoretical Length (logged interval) by the Recovered Length and multiplying by 100.
- Rock Quality Description (RQD) is a modified measure of core recovery and is defined as the percentage of core in each log interval in which the spacing between natural fractures is greater than 10 centimetres (cm).
- Fracture frequency and rock defects were measured by recording the number of bedding planes, joints, faults and shears (natural) per metre. The most common rock defect types were recorded as a numeric code and their angles were measured in degrees, with respect to the core axis.
- Discontinuity and fracture condition were examined and classified according to the Joint Roughness (Jr) and Joint Alteration (Ja) descriptors of the Tunnelling Quality Index Q (Barton et al, 1974).
- Rock weathering grade, which was based on rock discolouration extent, rock fabric condition, fracture condition and surface characteristics, were used for field estimation of weathering observed in drill core.

• Specific Gravity (SG) measurements were carried out once per every metre to calculate the weight (tonnage) of a volume of rock using the following formula:

SG = Weight in air / (Weight in air – Weight in water)

 Portable X-Ray Fluorescence (XRF) analyzer measurements were taken every metre of core to provide an evaluation of the chemical homogeneity, potential aggregate strength of the core, and to evaluate the metallic mineral potential of the core. Major elements measurements were recorded directly onto a laptop computer with tube settings as follows: 15kV, 23µA, no filter and vacuum pump attached. Spectra was collected for a 60 second timed assay and data was sent for calibration and interpreted daily.

8.1.5 Core Documentation

Upon completion of geotechnical characterization, detailed lithological logging was completed by APEX geologists. Logging was entered directly into an Excel logging spreadsheet. Aggregate sample intervals were laid out by Formation. From each hole, composite samples were chosen from the Winnipegosis Formation, Contact Rapids Formation, and the Precambrian basement granite, when applicable.

The core was photographed dry and wet. The camera was mounted to a stand set up in the same location providing consistent zoom, angle and lighting. Photographs were saved directly to the camera and data would be transferred to computer as high resolution jpeg images upon completion of a set. All pictures were checked and renamed as soon as possible to ensure quality and avoid potential data loss.

8.1.6 Core Splitting

A manual wheel splitter with a four inch blade was used to halve and quarter the core. Composite samples were halved with the exception of the duplicate check and geochemical samples, which were quartered. The remaining core (half or quarter) was put back into the box to be kept as an archive. Effort was made by the splitter to ensure that the side of core sampled remained as consistent as possible, proper placement of core back into the box, cleaning between samples to prevent contamination, and proper bagging and recording. In rare instances, any interval that included >30 cm of pervasive bitumen saturation were not included into the splitting process or sample.

8.1.7 Sample Shipping

All sampling was completed by APEX. Samples for the individual geochemistry intervals were collected by placing the material in heavy grade plastic sample bags with the sample numbers written on both sides in permanent marker. Sample tags marked with the sample numbers were included inside each sample bag, which were sealed with plastic cable ties. Samples were then placed into a rice bags lined with a larger heavy grade plastic bag for shipment.

For composite samples, two large heavy grade sample bags were placed into a rice bag to create the composite for the respective drillhole and lithology. Composite

samples typically consist of multiple rice bags with each bag weighing approximately 20 kilograms (kg). The composite sample rice bags were sealed with a cable tie for transport to the laboratory. Laboratory instructions included crushing and homogenizing all samples within the single composite sample for test work.

A hard copy submittal form including sample inventory and instructions for the laboratory were placed inside the first bag of each shipment and sealed with plastic cable ties. Rice bags were stretch wrapped onto skids to be transported by courier from Athabasca Minerals office to the laboratories. The exception is the duplicate check sample, which was taken directly to the laboratory by APEX personnel.

8.2 Analytical Test Work

The analytical sampling process consisted of two separate sample sets: 1) composite samples for aggregate test work; and 2) interval or channel samples for major- and trace-element geochemical analysis. The objective of the aggregate analytical test work – in the context of this crush rock aggregate resource estimate – was predominantly focused on the aggregate mechanical qualities for its use in aggregate road building and concrete. Geochemical analyses were also performed to make inferences on the potential hindrances to rock strength (e.g., modal clay abundance through elements like Al). A secondary component of the geochemical work was to test whether the basement granite rocks contain REE and/or precious- and base-metal potential.

The analytical test work was performed in accordance with the thickness and lithology of the various units. Drill core from some of the units (Contact Rapids and the Precambrian basement granite) did not penetrate thick enough intersections to create a large enough sample for certain test work. Consequently, the test work completed as part of this study is complicated, and Table 7 is provided to explain the number and type of individual analysis (aggregate test work and geochemical analysis) that was undertaken for specific lithological units and from each drillhole.

8.2.1 Geochemical Analytical Test Work

Geochemical samples were taken as ¼ core splits of continuous material for 0.5-3 m intervals throughout the Precambrian basement granite and approximately every ten metres of the Winnipegosis Formation. These samples were sent to Acme Analytical Laboratories Ltd. (Acme; a Bureau Veritas Mineral Laboratories (BVML) company), in Vancouver, British Columbia (BC) for analysis. Acme is an international accredited laboratory with International Standards Organization (ISO) Model for Quality Assurance ISO9001:2008 certification. The Vancouver facility is also accredited with ISO/IEC 17025 General Requirements for the Competence of Testing and Calibration Laboratories.

Whole rock geochemical samples were prepared and analysed at Acme. One kilogram of the crushed sample is passed through a 2 mm screen to +70%. A 250 g split of the sample is then pulverized to +85% passing through a 75 mirometre (µm) screen. The sample is then decomposed by Total Whole Rock Characterization analysis consisting of standard suite major oxides (21 parameters) by Inductively Coupled

Plasma Emission Spectroscopy (ICP-ES) and standard suite trace elements (45 elements) by Inductively Coupled Plasma Mass Spectroscopy (ICP-MS). This is achieved through fusion techniques which completely decompose the sample, account for structural water and provide quantitative silicon values resulting in total element concentration data suitable for whole rock classification diagrams and molar element ratio studies (BVML, 2014). The sample preparation and analysis processes are subject to internal Quality Control and Quality Assurance (QA/QC) protocols carried out by Acme during the progression of the service.

8.2.2 Aggregate Analytical Test Work

Composite aggregate samples were collected by taking a continuous ¼ to ½ split of core over the entire Winnipegosis Formation. The Winnipegosis unit was thick enough to create composite samples from each drillhole (n=10), including one duplicate sample from drillhole GNA-10. The composite samples typically comprised 60 kg to 150 kg of total material. Because the Contact Rapids and granite intersections were not as thick as the Winnipegosis, it was not possible to collect a single composite sample from every drillhole. Subsequently Contact Rapids and granite composite samples encompassed more than one drillhole, which were amalgamated into a single sample to be analysed together (see Table 7). A single composite sample of Contact Rapids was collected using material from all 10 drillholes. Two composite samples of basement granite were collected from eight drillholes (from all of the drillholes that penetrated basement).

Assessment Report for Athabasca Minerals Inc.'s Richardson Property, Northeastern Alberta

Table 7. Summary of aggregate test work and geochemical analyses that was completed by drillhole and by lithological unit.

		Analysis consistent with Alberta Transportation standard Table 3.2.3.2A and CSA standard Table 12							Density analysis to confirm specific gravity core measurements			Additional geochemical analysis	
								Unconfined Freeze-Thaw	Relative Density (Specific		Relative Density (Specific		
		Sieve Analysis -				MgSO4	MgSO₄	Resistance of	Gravity) and		Gravity) and		Portable
		Fine Aggregate	% Fracture by		L.A. Abrasion	Soundness	Soundness	Coarse	Absorption -	Bulk Density of	Absorption -	Whole Rock	X-Ray
Onilhole	Formation	(<10 mm)	Weight	Plasticity Index	(Coarse)	(Coarse)	(Fine)	Aggregate	Fine	Aggregate (Dry)	Coarse	Geochemistry	Fluorescence
	Winnipegosis	<i>√√</i>	11	11	~~	~~	44		<i>√ √</i>	44		✓4	√6
GNA-10	Contact Rapids ²	7	 ✓ 	√	1	~	/		/	✓	1		\checkmark^6
	Precambrian ³	/	· · · ·	✓	×		/		/	 ✓ 	1	√ ⁵	16
	Winnipegosis	/	¥	1	*	×	/		/	× .	✓	✓ ⁴	√6
GNA-16	Contact Rapids ²	/	~	✓	✓	✓	/		/	✓	1		√ ⁶
	Precambrian ³	n/a	n/a	n/a	n/a	n/a	n/a		n/a	n/a	n/a	n/a	n/a
	Winnipegosis	1	1	√	 ✓ 	✓	/		1	1	✓	✓4	√ ⁶
14RLD-001	Contact Rapids ²	/	✓	 ✓ 	1	✓	/		1 .	✓	✓		√6
5	Precambrian ³	/	- ✓	 ✓ 	×	4	/		/		√	√ ⁵	√6
	Winnipegosis	1	√	✓	×	~	/	<i>✓</i>	/	✓	1	\checkmark^4	√ ⁶
14RLD-002	Contact Rapids ²	/	√	 ✓ 	¥	~	1		/	 ✓ 	~		€
	Precambrian ³	/	✓	~	~	 ✓ 	/		1	√		√5	√6
	Winnipegosis	/	1	√	~	 ✓ 	/		/	1	1	\checkmark^4	√ ⁶
14RLD-003	Contact Rapids ²	/	1	✓	. ✓	√	/		/	✓	×		√6
	Precambrian ³		×	 ✓ 	✓	4	/		1	¥ .	✓	√ ^s	√6
	Winnipegosis	/	1	✓	 ✓ 	✓	/		/	 ✓ 	√	\checkmark^4	√6
14RLD-004	Contact Rapids ²	/	1	1	✓	✓	/		/	✓	✓		✓ ⁶
	Precambrian ³	1	~	1	1		1		/	✓	×	✓ ⁵	√6
	Winnipegosis	/	1	×	✓	✓	/		/	1	. 1	\checkmark^{4}	√6
14RLD-005	Contact Rapids ²	/	~	✓	✓	✓	/		/	✓	√		√6
1	Precambrian ³	/	1	✓	✓	~	/		/	1	1	✓ ⁵	√6
	Winnipegosis	/	1	1	√	✓	/		/	✓	1	\checkmark^4	√6
14RLD-006	Contact Rapids ²	1	1	~	√	1	/		/	√	√		√ ⁶
	Precambrian ³	n <i>t</i> a	n/a	n/a	n/a	, n/a	n/a		n/a	n/a	n/a	n/a	n/a
	Winnipegosis	1	1	✓	√	✓	/	1	/	1	~	\checkmark^{4}	√6
14RLD-007	Contact Rapids ²	1	✓	✓	 ✓ 	✓	/		/	√	✓		16
	Precambrian ³	1	1	1	√	√	/		/	1	1	13	√5
	Winnipegosis	1	1	×	✓	✓	,		/	1	1	×4	√6
14RLD-008	Contact Rapids ²	/	1	✓	✓	1	/		/	1	✓		√ ⁶
	Precambrian ³	/	1	1	1	✓	/		/	1	~	15	16

48

 Wonjegosis composite sample one composite sample per hole (using continuous material from 10 separate drilholes; i.e., 10 composite samples in bita)

 Contract Rapids composite sample, one composite samples (using continuous and combined material from the drilholes; i.e., ene composite samples in bita)

 Precambra basement composite sample, one composite samples (using continuous and combined material from the drilholes; i.e., ene composite samples in bita)

 Precambra basement composite sample, a one meter long continuous therval sample was taken every ten meters

 Precambra basement composite trainity one controlous therval sample per every ten meters

 Procambra basement composite trainity one controlous therval sample per every ten meters

 Procambra basement composite trainity one controlous therval sample per every ten meters

 Procambra basement conductantity one controlous therval sample per every ten meters

 Procambra basement conductantity one controlous therval sample per every ten meters

 Procambra basement conductantity one controlous therval sample per every ten meters

 Procambra basement conductantity one controlous therval sample per every ten meters

 Procambra basement conductantity one controlous therval sample per every ten meters

 Procambra basement conductantity one controlous therval sample per every ten meters

 Procambra basement conductantity one controlous therval sample per every ten meters

 Procambra basement composite strample tested at AMEC

 V - Diupl

To summarize, the sample set consisted of the following 14 composite samples:

- Eleven total Winnipegosis composite samples (10 samples from each drillhole that were analyzed at AMEC, and one duplicate sample from drillhole GNA-10 that was analyzed at Tetra Tech EBA);
- One Contact Rapids composite sample, which includes material from the 10 drillholes; and
- Two Precambrian basement granite composite samples, which included material from the eight drillholes that penetrated basement (Table 7).

The sampling scheme was adopted to place emphasis on the road crush aggregate potential of Devonian Winnipegosis Formation and secondarily to test the aggregate potential of the Precambrian basement granite. The Contract Rapids Formation was not considered a crush rock aggregate candidate, however, a single sample was analyzed to obtain is aggregate specification, particularly because the unit occurs stratigraphically between the overlying Winnipegosis and underlying granite.

Aggregate samples were analyzed at AMEC in Calgary, Alberta. A separate laboratory 'check aggregate sample' (discussed in the Data Verification Section) was analyzed at EBA Tetra Tech in Edmonton, Alberta. The aggregate test work methodologies are in accordance with the Alberta Transportation aggregate standards for road aggregate and Canadian Standards Association (CSA) concrete standards. These test standards are better referenced as:

- 1. Alberta Transportation Specification for aggregate production and stockpiling (Alberta Transportation, 2010) more specifically, Test Methods Used to Determine Material Characteristics (their Table 3.2.3.2A,B,C); and
- CSA-A23.1-09/A23.2-09 Concrete materials and methods of concrete construction/Test methods and standard practices for concrete (CSA, 2009) – more specifically, Limits for Deleterious Substances and Physical Properties of Concrete Aggregate (their Table 12, CSA A23.2).

The individual analytical techniques for the Alberta Transportation and CSA aggregate testing methods are presented in Table 8. Because the Winnipegosis dolostone and Precambrian basement granite materials are 'hard rock' and uncharacteristic of 'typical' sand and gravel-type aggregate, not all of the Alberta Transportation and CSA test methods were performed on the Richardson Property core samples. With the exception of sieve analyses, all of the Alberta Transportation specifications for aggregate test methods were conducted on the Winnipegosis, Contact Rapids and basement granite composite samples. With respect to the CSA standard test methods, only two Winnipegosis Formation composite samples were tested for unconfined freeze-thaw test. Due to the nature of the competent dolostone and granite rock, the majority of the CSA standard test methods were not analyzed. Hence, the testing should be viewed as a general aggregate testing, as opposed to fine- or coarse-aggregate testing.

Alberta Transportation and CSA Testing Methods								
Specifications for Aggregate (Table 3.2.3.1)1	Test Methods Used to Determine Material Characteristics (Table 3.2.3.2) ¹	Limits for Deleterious Substances and Physical Properties of Concrete Aggregate (Table 12, CSA A23.2) ²						
Sieve analysis	Sieve analysis	Sieve analysis						
% Fracture by weight	% Fracture	Clay lumps						
Plasticity index	Plasticity Index	Low density material						
Flakiness index	Flakiness index (one/source)	Material finer than 80 microns						
L.A. Abrasion	L.A. Abrasion	Flat and elongated particles						
	Determining the liquid limit of soils	Micro Deval **						
	Dry strength (one/20,000 tonnes)	Unconfined freeze-thaw						
	Coefficient of unconformity (not for des 1+2)							
	Detrimental matter, coarse aggregate (1/5,000 tonnes) *							
Additional Analysis R	Additional Analysis Required for Resource Model and Estimate							
Relative Density (Specific Gravity) and Absorption - Fine								
Bulk Density of Aggrega	ate (Dry)							
Relative Density (Speci	fic Gravity) and Absorption - Coarse							
* Abbreviated netrographic analysis TI T-107								

Table 8. Summary of the Alberta Transportation and Canadian Standards Association test methods.

** equivalent to magnesium sulphate (MgSO₄) soundness
¹ Alberta Transportation Specification 3.2 for aggregate production and stockpiling (Alberta Transportation, 2010)

² CSA-A23.1-09/A23.2-09 Concrete materials and methods of concrete construction/Test methods and standard practices for concrete (CSA, 2009)

8.2.3 Density Analytical Test Work

In addition to SG measurements, which were measured during the geotechnical work (one SG measurement per every metre), bulk and relative density and absorption tests were also conducted on the composite samples at AMEC and Tetra Tech EBA to determine the absorption of water on aggregate, the bulk specific gravity and the saturated-surface dry bulk specific gravity of aggregate samples.

8.3 Geophysical Surveys

From July 7th to 14th, 2014, a series of surface geophysical surveys were conducted at the Richardson Property by APEX (on behalf of Athabasca Minerals). The geophysical surveys were performed over the area immediately surrounding a known granite outcrop on the eastern part of the Property. The surveys included: ground penetrating radar (GPR); frequency domain electromagnetics (EM); and total ground magnetics (Figure 11). The goal of the surface geophysical surveys was to: 1) test the effectiveness of three easily employable surface geophysical tools for identifying and characterizing potential aggregate deposits; and 2) make inferences on the dimensions of the granite body, including the relationship between the granite with the overlying overburden and Devonian Winnipegosis Formation dolostone.

The geophysical survey data supports the LiDAR surficial geology interpretations in this Report (see Section 7.2.3; Figure 11), and depicts several distinct geologic zones that merit follow up work, including drilling, at the Richardson Property. The methodology and results of the geophysical work is summarized in the text that follows.

Assessment Report for Athabasca Minerals Inc.'s Richardson Property, Northeastern Alberta

Figure 15 Bivariate plots of selected elements (Mg, Ca, Al and Fe) versus depth. The geochemical data are portable x-ray fluorescence analyzer measurements that were taken every metre of core to provide an evaluation of the chemical homogeneity of the rock units.

62

9.2 Analytical Test Work Results

9.2.1 XRF Results

Portable X-Ray Fluorescence (XRF) analyzer measurements were taken every metre of core to provide an evaluation of the chemical homogeneity, potential aggregate strength of the core, and to evaluate the metallic mineral potential of the core. 553 individual measurements were taken; results are summarized below and a complete list presented in Appendix 3a.

In General, the XRF data shows that geochemical data can be utilized to distinguish between the various lithological formations that are present at the Richardson Property. The upper and lower boundaries of the Winnipegosis Formation, Contact Rapids Formation, La Loche Formation and the Precambrian basement granite have been identified in core and these boundaries were confirmed using trace element geochemical measurements from a portable XRF. For example, Figure 15 shows that even though the Winnipegosis Formation contains several texturally distinct units (via logging), the major element geochemistry of the Winnipegosis is fairly consistent and distinct from the other geological units.

This data demonstrates the homogeneity of the individual units, and with respect to the Winnipegosis Formation, shows that dolomitization of the unit was pervasive. In addition, the low AI content of the Winnipegosis Formation (<3.5 wt. %; Figure 15) is indicative of a low mud and clay component, which is a favourable indication in terms of the strength and quality of the dolostone as an aggregate material.

Based on the bivariate plots of the selected elements Mg, Calcium (Ca), Al and Iron (Fe) versus depth, the representative geochemical groupings for the Winnipegosis, Contact Rapids and the La Loche formations, and the Precambrian basement granite, are respectively homogenous and clearly differentiate the four respective rock types (Figure 15). For example, the Winnipegosis Formation has consistently higher Mg and Ca than the basement granite; the Contract Rapids and La Loche formations, which typically represent transitional rock types between the dolostone and basement, plot between the Winnipegosis Formation and the basement granite.

Figure 13 Results of a well and drillhole compilation to depict the top of the Devonian in the Richardson Property area.

The Athabasca Minerals drillholes shows that the depth to the top of the Precambrian generally shallows towards the north and northwest of the Richardson Property and that the depth shown in the 2013 and 2014 drillholes is not continuous away from this area. Within the refined area, collar elevations varied between 262.1 m and 338.0 m asl. By adjusting Precambrian depths to be calculated with respect to the 'lowest collar elevation of 262.1 m', the continuity of the Precambrian supports previous observations that the top of the Precambrian decreases in depth to the northeast and east of the 2013 and 2014 drillholes (Figure 14, Table 10). However, this conclusion is tenuous because the granite is known to crop out in the eastern part of the Property.

Table 9. Estimate depth to the top of the Devonian in the Richardson Property area; relative to the calculated lowest collar elevation.

M-11/D-211-1-10	Depth to Top of	Collar	Collar Elevation minus	Depth to Top of Devonian -
	Devonian (m)	Elevation (m)	262.1 m	Calculated Elevation
GNA-10	21.34	288	25.9	-4.56
GNA-11	18	283.4	21.3	-3.3
GNA-16	47.8	313	50.9	-3.1
14RLD-001	31.33	295	32.9	-1.57
14RLD-002	30	301	38.9	-8.9
14RLD-003	30	301	38.9	-8.9
14RLD-004	30	296	33.9	-3.9
508-18	26.52	302	39.9	-13.38
R2	33.6	287	24.9	8.7
R3	27.8	288	25.9	1.9
RR-02	12.3	274.3	12.2	0.1
RR-05	53.95	262.1	0	53.95
RR-06	28.65	262.1	0	28.65
RR-07	58.5	298.7	36.6	21.9
RR-08	60.96	294.1	32	28.96
1AA/02-05-101-07W4/00	89	311	48.9	40.1
1AA/07-01-101-07W4/00	50	281	18.9	31.1
1AA/11-19-101-07W4/00	63.5	305	42.9	20.6
1AA/12-01-101-08W4/00	63.3	297	34.9	28.4
1AA/12-02-101-07W4/00	72.3	295	32.9	39.4
1AA/12-03-101-07W4/00	64.6	297	34.9	29.7
1AA/12-04-101-07W4/00	74.9	304	41.9	33
1AA/12-06-101-07W4/00	76.9	303	40.9	36
1AA/12-31-101-07W4/00	63.8	301	38.9	24.9
100/15-32-103-07W4/00	15.9	267	4.9	11

Assessment Report for Athabasca Minerals Inc.'s Richardson Property, Northeastern Alberta

Figure 14 Results of a well and drillhole compilation to depict the top of the Precambrian in the Richardson Property area.

Table 10. Estimate depth to the top of the Precambrian basement in the Richardson Property area; relative to the calculated lowest collar elevation.

Well/Drillhole ID	Collar Depth to Top of Elevation Precambrian (m) (m)		Collar Elevation minus 262.1m	Depth to Top of Precambrian - Calculated Elevation
GNA-10	76.12	288	25.9	50.22
14RLD-001	96.63	295	32.9	63.73
14RLD-002	93.1	301	38.9	54.2
14RLD-003	85.96	301	38.9	47.06
14RLD-004	84.98	296	33.9	51.08
508-01	39.62	320	57.9	-18.28
508-02	27.67	330	67.9	-40.23
508-03	18.29	319	56.9	-38.61
508-15	51.81	338	75.9	-24.09
508-17	22	290	27.9	-5.9
508-18	36	302	39.9	-3.9
508-20	25.9	310	47.9	-22
508-21	19.2	310	47.9	-28.7
508-27	26.8	330	67.9	-41.1
508-28	23.5	330	67.9	-44.4
508-29	36.3	331	68.9	-32.6
80-E3	67.9	299.3	37.2	30.7
80-E4	64.3	301.1	39	25.3
R2	53.4	287	24.9	28.5
R3	60.1	288	25.9	34.2
RR-02	23.47	274.3	12.2	11.27
RR-03	28.65	281.9	19.8	8.85
RR-04	23.77	289.5	27.4	-3.63
RR-05	69.8	262.1	0	69.8
RR-06	33.5	262.1	0	33.5
RR-07	78.03	298.7	36.6	41.43
RR-08	83.52	294.1	32	51.52
100/15-32-103-07W4/00	69.2	267	4.9	64.3

Figure 12 Location of selected wells and drillholes used to determine the stratigraphic continuity of the top of Devonian and Precambrian basement in the Athabasca Minerals Richardson Property area.

GeoSCOUT (an oil and gas information system that provides publicly available formation top data); and 3) historical metallic and industrial mineral assessment reports (e.g., Laanela, 1977, 1978; McWilliams and Sawyer, 1977; Bradley, 1978; Fortuna, 1979; McWilliams et al, 1977; Walker, 1980; Orr, 1986, 1989, 1991; Orr and Robertshaw, 1989).

The investigation consisted of an area encompassed by Townships 96 to 106 and Ranges 1 to 14, west of the 4th Meridian (Figure 12). Within this area, 6,264 Devonian penetrating wells are known from GeoSCOUT; only five of these wells penetrated the basement illustrating the emphasis on the Cretaceous McMurray Formation as an oil sands prospect. From historic assessment reports, 140 and 65 drillholes penetrated the top of the Devonian and basement, respectively (Figure 13). A more refined study area measuring approximately 1,000 km² (inset map in Figure 13), contains 29 wells and drillholes that penetrated Devonian (including Athabasca Minerals 2013 and 2014 drillholes). The depth to the top of the Devonian within these wells and drillholes varies between 18 m and 89 m from surface and, in general, the depth to Devonian increases to the southwest to depths of 50 m or greater.

The Athabasca Minerals drillholes, and other historical wells and drillholes to the north of the 2013 and 2014 drillholes indicate Devonian depths between 18 m and 334 m, with only four historical drillholes with Devonian depths of between 48 m and 61 m, including Athabasca Minerals 2013 drillhole GNA-16 (depth of 47.80 m). This data suggests that the depth to the top of the Devonian as seen within 2013 and 2014 drillholes has general depth continuity towards the north and northwest of the Richardson Property.

During the investigation, drillhole and well collar elevations were taken into consideration. Within the refined area of interest, collar elevations varied between 262 m and 313 m asl. By adjusting Devonian depths to be calculated with respect to the 'lowest collar elevation of 262.1 m', the continuity of the Devonian can be evaluated (Table 9). This study shows that these units are not continually flat, but rather increase in depths to the north and south of the 2013 and 2014 drillhole locations. Based on the data compilation, the depth to the top of the Devonian in the area, as shown in Figure 13 (and Table 9), is relatively shallow within the Richardson Property, and in particular, towards the northeast. The depth to the top of the Devonian increases in thickness towards to southwest as distance from the Property increases.

Data for the top of the Precambrian is limited towards the south, southeast, southwest and west of the Richardson Property, due to overall shallow nature of the oil and gas testing. The top of the Precambrian, as represented in Figure 14, is relatively deep within the Property and shallows towards the east-northeast. A more refined study area, measuring approximately 750 km², contains a total of 32 wells and drillholes that penetrate basement (Figure 14). The depth to the top of the Precambrian within these wells/drillholes varies between 19 m and 97 m from surface.

stratigraphic sections, which terminated in Precambrian basement granite. Drillhole 14RLD006 was the only hole which did not end in Precambrian Basement. Thickness of the Winnipegosis formation ranged from 8.3 m to 47.9 m.

The 2013 and 2014 drill campaigns conducted by Athabasca Minerals indicated that the bedrock underlying the Richardson Property includes, from stratigraphic base to top: Precambrian crystalline basement granitic rocks of the Taltson Magmatic Zone; an Early Devonian (or earlier?) discontinuous zone of detrital basal feldspathic sandstone and conglomerate known as the La Loche Formation; marginal marine dolomitic silty shale of the Devonian Contact Rapids Formation; and a thick (relative to the Contact Rapids and La Loche formations), finely crystalline dolostone known as the Winnipegosis Formation. The bedrock is overlain by a layer of Quaternary glaciofluvial and glaciolacustrine deposits that have formed kettle depressions and kame deposits, and redistributed surficial sediments into low-lying areas

Stratigraphic logging, which was performed by APEX for both the 2013 and 2014 drillholes, showed that with the exception of the La Loche Formation–Precambrian basement boundary, which can be gradational, the boundaries between formations have sharp, visually identifiable contacts. These definitive geological boundaries are further characterized as having extensive lateral continuity of the individual formations. The homogeneity of the stratigraphic units was further evaluated using geotechnical (Rock Quality Description and total fracture data) and geochemical data derived from the cores. A positive correlation between the drill logs and the geotechnical/ geochemical data confirmed the lithostratigraphic formation divisions, and the homogenous nature of the Winnipegosis Formation, which highlights its applicability in resource estimation as a potential source of crush rock aggregate. Drill Logs are included in this report as Appendix 2

The single 'impurity' to report involves supplementary bitumen, which is more or less confined to the uppermost portions of the Winnipegosis Formation (and the La Loche Formation directly overlying the Winnipegosis dolostone). The bitumen ranges in intensity from non-existent (in most of the core) to pervasive, the latter of which is evident in 25 cm to 90 cm wide 'bituminous horizons' that occur in the eastern drillholes 14RLD006 and 14RLD008. The bitumen appears to be confined to porosity enabling textures in the carbonate such as vugs, sandy horizons and fracture planes. It is not known how the bitumen might influence the processing or marketing of the potential crush rock aggregate, but the overall consistency and volume of non-bitumen-bearing dolostone, and the positive aggregate test work results, provide justification that the bitumen does not influence the viability of the Winnipegosis as an industrial mineral deposit in the current evaluation of this early stage project.

9.1.2 Regional Stratigraphic Considerations

To test whether the Richardson crush rock aggregate deposit has the potential to be extended, a regional stratigraphic evaluation was undertaken on the Devonian and Precambrian basement formation tops. Data compilation for the purpose of evaluating the continuity of Devonian and basement units include data from: 1) Athabasca Minerals 2013 and 2014 drill programs; 2) oil and gas well information from Radar Inc. work included XYZ coordinates of the interpreted layer surfaces and databases containing the cross sectional responses recorded along the traverse lines.

8.4.2 Frequency Domain Electromagnetic Survey-EM31 System

The Frequency Domain Electromagnetic Survey (FDEM) survey using the EM31 system, was operated in vertical dipole mode with the boom oriented longitudinally along the traverse lines. In total, 8.7 line-km of FDEM data were collected over eight traverse lines and one tie line with the EM31 recoding at a frequency of one reading per second (Figure 11). Effort was taken to keep the boom parallel to the ground as measurements were being taken, so that the coils proximity to the ground would not severely affect the apparent conductivity measurements. The GPS coordinates were placed at the mid-point between the transmitter and coil.

The apparent conductivity was measured over a test line before each day of surveying so that any instrumental drift could be accounted for. During the test line measurements, the recorded profiles were found to be within acceptable noise levels, such that no further calibrations were required.

8.4.3 Magnetic Susceptibility- GSM 19-W magnetometer

The magnetic survey was conducted using a Gem System, GSM 19-W walking magnetometer. The survey resulted in 24.5 line-km of survey data, which was collected along 13 traverse lines and two tie lines (Figure 11). The data was collected at a frequency of one reading per second, at an elevation of between 1.75 m and 2 m above the ground (i.e., the height of the operator). The survey included the immediate area around the granite outcrop, overlapping the area surveyed by GPR and EM31. For the magnetic survey, two of the grid survey lines (8 and 19) were extended northwest to tie in two of the 2014 drill holes (14RLD003 and 14RLD002 respectively). This extension added approximately 1,700 m of magnetometer readings along lines 8 and 19. The goal of the northward extension of the two magnetic survey lines was to investigate the region between the granite outcrop (main focus of the geophysical survey) and the area of the 2014 drill program in order to: 1) determine if any major structures occur in this area; and/or 2) make some inferences on the continuity of strata between the geophysical survey area (i.e., granite outcrop) and the area of drilling and resource delineation.

9 Results

9.1 Drilling

9.1.1 Results of drilling

The 2013 drilling program included four drillholes (GNA-05, GNA-10, GNA-11 and GNA-16) and totalled 235 m. The drillholes cored complete stratigraphic sections of the uppermost carbonate lithostratigraphic unit (the Winnipegosis Formation) in two of the four (GNA-10 and GNA16), with drillhole GNA-10 advancing into the Precambrian basement. Thickness of the Winnipegosis formation ranged from 34.9 m to 43.7 m.

The 2014 drilling program included 8 drillholes (14RLD001 to 14RLD008) and totalled 843 m. A total of seven, of the eight drillholes, successfully cored entire

Several geophysical survey instruments and methods were considered and evaluated for their ability to characterize and map the shallow sub-surface at the Richardson Property. Distinct geophysical survey methods deemed suitable for this geologic setting and selected for field testing include: GPR, EM and ground magnetic surveying. More specifically, three properties were recorded and used to characterize the shallow sub-surface: bulk dielectric permittivity, recorded using an UltraGPR ultrawide band ground penetrating radar system; bulk electrical resistivity, recorded using both a Geonics EM-31 frequency domain electromagnetics instrument and the UltraGPR system; and bulk magnetic susceptibility, recorded using a GSM-19W walking magnetometer.

The geophysical survey instruments were selected for a variety of reasons: they have the ability to measure physical properties, which would provide information useful for identifying bedrock and possible aggregate deposits; the survey equipment requires no more than two operators; a lack of line-cutting would not be detrimental to the survey results; the instruments would append the GPS coordinates to the geophysical response measurements; and the signal and noise levels of the instruments would not prevent the sought after contrasts of the geophysical signatures from being easily discerned. The instruments have the ability to determine the lateral extent and the dip of geological contacts in the shallow sub-surface on the Richardson Property. The depth of geologic features was estimated using the GPR and EM responses, while the lateral extent of geologic zones was estimated using the magnetic and EM responses.

8.4 Surface Geophysical Survey Methodology

A survey grid was established with proposed traverse lines centred over a granite outcrop. The grid had a bearing of 135°/315° and a line spacing of 50 m (Figure 11). The proposed line paths were followed as closely as possible by the GPS operator, who used a Garmin GPSmap 62 handheld receiver, which was pre-loaded with the proposed traverse lines. The GPS operator was followed by the geophysical instrument operator, who conducted the survey. The paths occasionally deviated from the proposed line paths due to: inherent errors of the GPS receiver; water-bodies located within the survey area; and because no line-cutting was completed. The deviations from the proposed line paths are not an issue, as the goals of these surveys require only that the three geophysical surveys be conducted over the same line paths in real space. While the surveys were being conducted, the traverse lines, which were actually followed, were marked with biodegradable flagging tape, so that there would be accurate overlapping. Having overlapping survey lines with the three instruments allows for the combination of the three geophysical properties to be attributed to distinct features, and therefore allows for more confident target delineation.

8.4.1 Ground Penetrating Radar Survey – Ultra GPR System

The GPR survey at the Richardson resulted in 9.7 line-km of UltraGPR data collected over nine traverse lines and one tie line (Figure 11). The GPR data was processed and interpreted for sub-surface geologic contacts by Jan Francke of Ground Radar Inc. of Toronto, ON). The GPR responses were converted from two-way travel times, measured in nanoseconds, to depths in metres. Deliverables from Ground

Assessment Report for Athabasca Minerals Inc.'s Richardson Property, Northeastern Alberta

Figure 11 Location of the known granite outcrop and the ground geophysical survey grids that were used as part of 2014 geophysical surveys to identify and characterize potential aggregate deposits at the Richardson Property.

Figure 16 Histograms for selected metals and pathfinder elements from Winnipegosis dolostone and Precambrian basement granite from the Richardson Property.

Figure 17 Spider diagrams normalizing Winnipegosis dolostone and Precambrian basement granite geochemical results from the Richardson Property to upper continental crust and post Archean Australian shale (Taylor and McLennan, 1985).

9.2.3 Aggregate Test Work Results

The results of the aggregate test work for 14 composite samples are presented in their entirety in Table 13 and in Appendix 4a and 4b. These data include aggregate test results for:

- Winnipegosis samples (10 samples from each drillhole that were analyzed at AMEC (Appendix 4a), and one duplicate sample from drillhole GNA-10 that was analyzed at Tetra Tech (Appendix 4b) EBA; n=11 total samples);
- One Contact Rapids sample; and
- Two Precambrian basement granite samples.

Published specifications and standards for any industrial mineral project should be used primarily as a screening mechanism to establish the marketability of an industrial mineral. The ultimate suitability of an industrial mineral for use in specific applications can only be determined through detailed market investigations and discussions with potential product users. To evaluate the suitability of Winnipegosis, Contact Rapids and Precambrian basement granite samples from the Richardson Property, we have made comparisons with Alberta Transportation (their Table 3.2.3.2C) and CSA (their Table 12) screening criteria as summarized in Table 13 and in the following text.

9.2.4 Aggregate Test Work Processing Note

Not all of the aggregate test methods that are outlined in Alberta Transportation's Table 3.2.3.2A and CSA's Table 12 were performed on the Richardson Property core samples. That is, several analytical methods were not recommended by AMEC – at this particular phase of evaluating an early stage crush rock aggregate project – including: sieve analysis; flat and elongated; flakiness index; and material finer than 80 μ m test methods.

To conduct these test methods, a preliminary crush of the drill core is required; however there are drawbacks associated with this type of pre-processing in that any preliminary crush down could not replicate a typical crushing process in the field, and would therefore produce test results that are different from that of the field. It is important to point out that the test methods adopted in this Report (see Tables 8 and 13) do provide a good indication of the quality of the material. The only difference is that the composite Winnipegosis, Contact Rapids and Precambrian basement granite samples that were sent to AMEC were not tested by individual sieve sizes of material (due to AMEC's pre-crush cautioning). Hence, the testing should be viewed as a general aggregate testing, as opposed to fine- or coarse-aggregate testing. In accordance with discussions with AMEC, and in review other crush rock aggregate NI 43-101 Technical Reports, the authors of this report acknowledge that the test results obtained are valid and applicable to assessing the Richardson crush rock aggregate potential and to stating a maiden inferred resource estimate.
Assessment Report for Athabasca Minerals Inc.'s Richardson Property. Northeastern Alberta.

Table 13. Summary of aggregate test work completed at the Richardson crush rock aggregate Property

								MgSO₄					
							L.A.	soundness					
							Abrasion:	loss;					
			-			Plasticity	loss at 1,000	coarse	Unconfined	Bulk	SSD Bulk	Apparent	
Sample ID	Drilhole	(m)	(m)	Laboratory	Formation	classification	(%)	aggregate (%)	test (%)	Density	Density ⁵	Density	(%)
288401	GNA-16	47 8	81 37	AMEC	Winnipegosis	Non-plastic	28 2	10 5	/	2 70	2 74	2 81	1 43
288402	GNA-10	21.34	64 17	AMEC	Winnipegosis	Non-plastic	21	20	/	2 65	2 71	2 82	2 28
288404	14RLD001	31 33	76 72	AMEC	Winnipegosis	Non-plastic	23 2	05	/	2 62	2.69	2 82	2.66
288405	14RLD002	30	76 96	AMEC	Winnipegosis	Non-plastic	23.6	46	0 19	2 77	2.79	2.84	0.90
288407	14RLD003	39	72.66	AMEC	Winnipegosis	Non-plastic	25 5	17 7	/	2 60	2.65	2 74	2 00
288408	14RLD004	30	72 01	AMEC	Winnipegosis	Non-plastic	26 6	12 1	1	2 62	2 67	2 75	1 84
288410	14RLD005	35	76 3	AMEC	Winnipegosis	Non-plastic	18 8	44	1	2 61	2 68	2 81	2 74
288411	14RLD006	41 45	83 01	AMEC	Winnipegosis	Non-plastic	23 7	46	1	2 64	2 70	2 79	1 99
288412	14RLD007	39	83 6	AMEC	Winnipegosis	Non-plastic	26 8	99	0.21	2 63	2 70	2 81	2 39
288413	14RLD008	64 92	72 94	AMEC	Winnipegosis	Non-plastic	29 1	17 6	/	2 64	271	2 83	2 52
8636 C	GNA-10	21 34	64 17	EBA	Winnipegosis	Non-plastic	21	65	/	2 62	2 68	2 79	2 20
288406	Multiple	e drillhole	16 ¹	AMEC	Contact Rapids	Non-plastic	43 4	82 0	1	2 49	2 59	2 76	3 88 E
288403	Multiple	e drilhale	s ²	AMEC	Granite	Non-plastic	17 7	90	/	2 62	2 63	2.64	0.33
288409	Multiple	e drillhole	s ³	AMEC	Granite	Non-plastic	18.8	10 8	1	2 74	2 74	2 75	¢ 19
Maximum allowable standard specifications for aggregate 4				NP to NP-8	35-50	12 0	60	/	/	/	/		
					1413 1								
					winnipe	gosis statistics	19.00	0.5	0.10	2.60	2.65	0.74	0.00
						Minimum	18 80	177	0 19	2 60	2 00	274	0.90
						Maximum	29 10	1/ /	0.21	2//	2.79	2 84	274
						Average	24 32	3/3	0.20	2 65	2 70	2 80	2 09
					Sta	ndard Deviation	3.75	50	0.01	0.05	0.04	0.03	0.55
					0.6	Roard Deviation	12.34	71 2	7.1	1 85	1 30	1 17	76.26
						KSU /i	13.34	113	7.1	1 0 0	1.38	1.12	20 20
					Gr	anite statistics							
						Minimum	17 70	90	1	2 62	2 63	2 64	0 19
						Maximum	18 80	10 B	/	2 74	274	2 75	0 33
						Average	18 25	99	1	2 68	2 69	270	0 26
					51-	Variance	0 605	16		0 007	0.006	0 006	0 010
					Sta	nuaro Deviation RSD%	4.26	12.9	,	3 17	2 90	2.89	38.07
						1007	. 40		'	2.0	- 00	2 00	00 01

Amagamated composite sample includes core from GNA-10 (64.17.75 60 m); 14RDL001 (76 72-92.48 m); 14RDL002 (76 96-90 76 m); 14RDL003 (72 66-82 45 m); 14RDL004 (72 01-83 76 m); 14RDL005 (75 30-84.39 m); 14RDL006 (83 01-95 76 m); 14RDL007 (83 60-97 96 m) and 14RDL008 (72 94-81 18 m)
Amagamated composite sample includes core from GNA-10 (76 12-101 0m); 14RDL001 (96 53-106 00 m); 14RDL002 (93 10-99 00 m) and 14RDL008 (83 06-98 00 m)
Amagamated composite sample includes core from GNA-10 (76 12-101 0m); 14RDL001 (96 53-106 00 m); 14RDL002 (93 10-99 00 m) and 14RDL008 (83 00-89 002 m)
Amagamated composite sample includes core from GNA-10 (76 12-101 0m); 14RDL005 (68 65-117 05 m); 14RDL008 (83 00-89 002 m)
Amagamated composite sample includes core from GNA-10 (76 12-101 0m); 14RDL005 (68 65-117 05 m); 14RDL008 (83 00-89 002 m)
Amagamated composite sample includes core from GNA-10 (76 12-101 0m); 14RDL005 (68 65-117 05 m); 14RDL008 (83 00-89 002 m)
Amatgamated composite sample includes core from GNA-10 (76 12-101 0m); 14RDL005 (68 65-117 05 m); 14RDL000 (88 65-147 00 m) and 14RDL008 (83 00-89 002 m)
Amatgamated composite sample includes core from GNA-10 (76 12-101 0m); 14RDL005 (68 65-117 05 m); 14RDL001 (98 65-147 00 m) and 14RDL008 (83 00-89 002 m)
Aubied apeorf.atoma and standards for industral innerial abuid to used primity as a screeng mechanism to estable the marketable of an industral innerial for use in specific applications can only be determined through detailed market investigations and dacuasions with potential product users and customers (source. Aberta Transportation Table 3.2.3.2C, CSA, Table 12). Also see the text as some aggregate designations have a range of maximum allow able standards
SSD, estimated usface dir.

68

5 SSD - saturated surface dry

9.2.5 Los Angeles Abrasion Test

A common test used to characterize toughness and abrasion resistance is the Los Angeles (L.A.) abrasion test. In Alberta, the maximum abrasion loss value for:

- Designation 1 (asphalt concrete pavement) aggregate is 40%;
- Designation 2 (base course aggregate) aggregate is 50%;
- Designation 3 (seal coat aggregate) is 35%; and
- Designation 4 (gravel surfacing aggregate) does not have a maximum permissible abrasion loss value (Alberta Transportation, 2007, 2010).

Sample testing was in accordance with CSA A23.2-17A (ASTM C535). Preparation consisted of sieving the sample, which produced nearly identical weights for sieve fractions: -50 mm to +37.5 mm and -37.5 mm to +25 mm, followed by placing the fractions in a cylindrical mill with twelve spheres at 1,000 revolutions.

All Winnipegosis and Precambrian basement granite composite samples analyzed as part of this Report yielded L.A. Abrasion values that were <29%. The Winnipegosis and granite samples yielded L.A. Abrasion ranging between 18.8% and 29.1% (averaging 24.32%; n=11), and 17.7% to 18.8% (averaging 18.25%; n=2), respectively (Table 13; Figure 18). These values exceed the maximum abrasion loss value within Alberta Transportations designations 1 through 4.

Figure 18 Los Angeles abrasion loss test results for Winnipegosis, Contact Rapids and Precambrian basement granite samples from the Richardson Property.

The Winnipegosis results fit within the typical L.A. Abrasion loss values for dolomite (18%-30%), but the granite samples are significantly lower than the typical L.A. Abrasion loss values for granite (27%-49%; Roberts et al., 1996). One sample from the Contact Rapids Formation had an L.A. Abrasion of 43.4%, which represents the highest abrasion value in this dataset and the only value with abrasion loss of >29%.

9.2.6 Plasticity Index Test

In Alberta, the maximum permissible plasticity index classification for:

- Designation 1 (asphalt concrete pavement) is "non-plastic";
- Designation 2 (base course aggregate) is "non-plastic" to "non-plastic-6";
- Designation 3 (seal coat aggregate) is "non-plastic-4"; and
- Designation 4 (gravel surfacing aggregate) is "non-plastic-8" (Alberta Transportation, 2007, 2010).

Sample testing was in accordance with ASTM D4318 – dry method. The plasticity index from all 14 samples tested, regardless of formation, was classified as zero, or "non-plastic" (Table 13). An example of the plasticity index for the Winnipegosis Formation from drillhole GNA-10 is shown in Figure 19.

Figure 19 Plasticity Index for a Winnipegosis Formation composite sample from GNA-10 shown on the Plasticity chart of U.S.B.R (1974). All samples analyzed were classified as non-plastic.

9.2.7 MgSO₄ Soundness Loss Test

Magnesium Sulphate soundness testing was performed on coarse aggregate specimens (split into 80-40 mm and 40-20 mm fractions) in accordance with CSA A23.2-9A (ASTM C88). As per CSA A23.1, the maximum allowable MgSO₄ Soundness Loss is 12% for coarse aggregate exposed to freeze-thaw.

The majority of the Winnipegosis composite samples yielded an MgSO₄ Soundness Loss of 12.1% or less (n=9 of 11 samples; Table 13; Figure 20). Two Winnipegosis composite samples from drillhole 14RLD003 and 14RLD008 yielded MgSO₄ Soundness Loss of 17.7% and 17.6%, respectively, which are above the maximum allowable MgSO₄ Soundness Loss for coarse aggregate. The overall average MgSO₄ Soundness Loss for the Winnipegosis is 8.2% (n=11 samples). Two composite Precambrian basement granite samples yielded low MgSO₄ Soundness Loss of 9.0% and 10.8%. The Contact Rapids composite sample has an MgSO₄ Soundness Loss of 82%, which is significantly above the maximum allowable standard MgSO₄ Soundness Loss.

Figure 20 MgSO₄ soundness loss test results for Winnipegosis, Contact Rapids and Precambrian basement granite samples from the Richardson Property.

9.2.8 Unconfined Freeze-Thaw Test

In accordance with CSA A23.1, the maximum allowable unconfined freeze-thaw for coarse aggregate is 6%. Two composite Winnipegosis samples from drillhole 14RLD002 and 14RLD007 yielded unconfined freeze-thaw results of 0.19% and 0.21%, respectively, which are significantly below the maximum allowable unconfined freeze-thaw for coarse aggregate (Table 13).

9.2.9 Sieve Analysis

A single composite Winnipegosis sample from drillhole GNA-10 was subject to sieve analysis. The sieve test was done on the duplicate sample at Tetra Tech EBA. At Tetra Tech EBA, the sample was preliminary crushed to the -25 mm fraction prior to sieve analysis, the result of which is shown in Figure 21. Sieve analyses were not conducted at AMEC because the material was submitted as drill core and not as processed material (see Section 9.2.4 Aggregate Test Work Processing Note).

Figure 21 Sieve analysis from a single Winnipegosis composite sample from drillhole GNA-10.

Sieve analysis report: Washed sieve ASTM C136 and C117 AT D4-C25 gravel surfacing aggregate; drill core; moisture content 0.1% (as received)

9.2.10 Density Results

A total of 675 bulk density measurements were collected from drill core within the Richardson maiden inferred crush rock aggregate resource area. The measurements were conducted directly on drill core sample using the "hydrostatic" method, which involves weighing the item in air and then again while it is fully submerged in water. Density measurements were collected once every metre of drill core, and were separated by formation to calculate an average bulk density for the resource area. The density values used in the Richardson maiden inferred crush rock aggregate resource estimate are shown in Table 14.

The density samples were collected during core geotechnical, logging and sampling work on eight drillholes drilled in 2014 and two drillholes completed in 2013. All of these holes are situated within the Richardson maiden inferred crush rock aggregate resources area. Samples were collected every metre where possible down the drillhole. The specific gravity calculation was performed using the weight in air/weight in water emulsion methodology.

Formation	Number of samples	Average bulk density	Variance
Overburden/overlying till	19	2.25	0.044
Winnipegosis	395	2.68	0.010
Contact Rapids	90	2.50	0.006
La Loche	19	2.54	0.004
Basement granite	152	2.63	0.005

Table 14. Average bulk density values that were used in the Richardson maiden inferred crush rock aggregate resource estimate.

The density measurements were examined in relation to the formation in which the sample measurement was situated within. As such, all density samples were tagged with the formation name, in order to examine and assign a nominal density for each stratigraphic unit. Statistical analysis was performed on each of the stratigraphic unit density datasets in order to asses any potential outliers and to examine the variance of the samples. No outliers were identified and the variance of the density samples was very small. The small variance in the density samples is to be expected from the uniform and stratigraphically continuous nature of the geological formations.

It should be noted that the assigned density for the overburden/overlying till of 2.25 t/m^3 was calculated using only 19 samples. This was due to the fact that limited overburden drill core was available for sampling as the majority of the overburden was in drill casing. Given this the calculated density of 2.25 t/m^3 is considered appropriate and reasonable for the use in the Richardson maiden inferred crush rock aggregate resource estimate.

Density measurements (n=14) were also performed as part of aggregate test work at AMEC (n=13) with one duplicate sample being analyzed at Tetra Tech EBA. The average bulk relative density, saturated surface dry (SSD) relative density and apparent relative density of 11 Winnipegosis Formation samples yielded values of 2.65, 2.70 and 2.80, respectively. The bulk relative density, SSD relative density and apparent relative density of one Contact Rapids sample yielded values of 2.49, 2.59 and 2.76, respectively. The average bulk relative density, SSD relative density and apparent relative density of two basement granite samples yielded values of 2.68, 2.69 and 2.70, respectively. The comparison between the hydrostatic density measurements, which were taken during core logging, and the aggregate test work results are similar. Hence, the hydrostatic method based density values of 2.68, 2.50 and 2.63 for the Winnipegosis, Contact Rapids and basement granite, which were used in this Report, are considered realistic and a conservative density value for resource estimation.

9.3 Geophysical Survey Results

9.3.1 Ground Penetrating Radar

The results of the GPR survey are presented in Figures 22 to 24. The GPR responses, as recorded along traverse lines 6, 8, 10 and 99, are displayed as grayscale cross-section images in Figure 22. The cross-sections illustrate three distinct reflectors that are caused by contrasts in the conductivity and dielectric constant of the subsurface, and are attributed to layers of different rock types and/or compositions. The reflectors are assumed to exist between traverse lines because the depth to these reflectors does not change drastically from one traverse line to the next, and are therefore interpreted to be the interfaces between distinct geologic layers. Figure 22 Ground Penetrating Radar responses, as recorded along traverse lines 6, 8, 10 and 99, displayed as grayscale cross-section images.

Assessment Report for Athabasca Minerals Inc.'s Richardson Property, Northeastern Alberta

Figure 23 Gridded Ground Penetrating Radar responses to the top of the "Bedrock" reflector.

Assessment Report for Athabasca Minerals Inc.'s Richardson Property. Northeastern Alberta

Figure 24 Gridded Ground Penetrating Radar responses to the top of the "Bedrock" reflector.

Assessment Report for Athabasca Minerals Inc.'s Richardson Property. Northeastern Alberta

The three reflectors have been labelled in order of their depth as "Layer 0", "Layer 1", and "Bedrock", where "Layer 0" is the shallowest reflector, and "Bedrock" is the deepest reflector (Figure 22). Based on the known geology (from the 2014 drill program and fieldwork mapping and testing), these three reflectors are interpreted to represent contacts that separate:

- Layer 0 to Layer 1 overburden (Layer 0), which includes kame and glacial outwash deposits, which unconformably overlie the Winnipegosis Formation (Layer 1) reflector;
- Layer 1 to Bedrock this area corresponds to the Devonian Winnipegosis Formation (Layer 1) reflector down to the Bedrock (Bedrock) reflector, or the Precambrian crystalline basement granite.
- Bedrock and below the Precambrian crystalline basement granite.

Anything above the Layer 1 reflector in Figure 22 is designated as overburden surficial deposits. The Layer 0 reflector in the southeastern portion of the survey area must relate to a distinct subset of the overall overburden that was identified by the GPR survey (i.e., from surface to the top of reflector Layer 1). Although this overburden (Layer 0) reflector will require further investigation to be properly explained, initial interpretations are that it is due to zones of high water content in the glacial deposits, however Ground Radar Inc. suggests it is too strong of a reflection to be entirely attributed to a change in water content in the glacial deposits. In addition, the southeast survey area is characterized as the driest area on the grid and there is still no regrowth after a large 2011 wildfire. Hence, Layer 0 could reflect a very dry layer (i.e., a thick sequence of sand), but it's unlikely that the water content changes vary that much and that abruptly. The problem, possibly, is that the GPR system is too powerful, and operates at too low a frequency to make any details visible within that specific overburden horizon.

The depths to the Layer 1 and Bedrock reflectors have been gridded to show how the depths of these interpreted geologic layers varies over the survey area (Figures 23 and 24, respectively). The layers are shown to be generally flat lying. The thicknesses of the overburden surficial material (anything above the top of reflector Layer 1), is generally attributed to correspond to glacial features (i.e., the kame deposit) that has been observed and mapped in the LiDAR data (see Section 7.2.3, Surficial Geology at the Property).

Based on the GPR results, the estimated areas of combined surficial overburden and Winnipegosis Formation dolostone material that is situated on top of the Precambrian granite and is within 5 m, 10 m, 15 m, 20 m and 25 m of surface is approximately: 4,600 m²; 15,200 m²; 45,100 m²; 91,300 m²; and 147,233 m², respectively (Figure 24).

9.3.2 Frequency Domain Electromagnetic Survey (FDEM) EM31 System

The apparent conductance measured during this survey fell between -5.75 and 5.97 millisiemens per meter (mS/m), with a mean value of 0.32 mS/m and a standard deviation of 1.05 mS/m.

Processing of the in-phase data revealed a static shift along several of the lines (amounting to 1.9 line-km of in-phase data; Figure 25). Consequently, the in-phase data was not considered for interpretation (i.e., the in-phase component of the measured electromagnetic field is most valuable for highly conductive features, such as detection of buried metal objects).

In contrast, the EM31 quadrature response shows that the area is weakly conductive overall, but that there is a definitive conductive halo occurring in the area immediately surrounding the granite outcrop (Figure 26). The apparent conductivity map shows that the granite outcrop is a resistive body, and that the conductive halo is due to a conductive layer overlaying the granite bedrock. This conductive halo area is directly associated with a regional topographic low, which indicates the apparent conductance might be a due to a zone in the near surface with elevated water content.

The GPR data shows that the depth to the granite bedrock is relatively shallow in this area of increased conductivity, and it could be that the shallow bedrock is causing the water content to remain at relatively shallow depths that can be measured by the EM31 system (up to six m). The map of the EM31 quadrature response shows a second conductive zone on the northwest end of traverse lines 7 through 12 (Figure 26). The traverse lines end where the quadrature response is trending upwards, and subsequently, this conductive response is thought to represent a gridding artefact where there has been no data collected. In addition, it should be noted that the traverse lines to the northwest end at the edge of a swamp, so it would be expected that the apparent conductance would be higher at this locale. This supports the belief that the conductive halo around the granite outcrop is due to near surface having high water content.

Assessment Report for Athabasca Minerals Inc.'s Richardson Property, Northeastern Alberta

Figure 25 In-phase electromagnetic response of the Richardson survey grid using the EM31 system.

Figure 26 Quadrature electromagnetic response of the Richardson survey grid using the EM31 system.

Assessment Report for Athabasca Minerals Inc.'s Richardson Property. Northeastern Alberta

9.3.3 Magnetic Survey Results

The results from the magnetic survey are presented in Figures 27, 28 and 29. Processing of the magnetic survey data included reducing the data to residual magnetic intensity (RMI), which levels data that were collected on different days to a common reference line, removes spurious readings associated with low signal quality, and then grids the survey data to create colour images of the RMI amplitude (Figure 27). The geostatistics were calculated for the RMI response measured during the magnetic survey, and the range of magnetic field strength over the Property is found to be 270.65 nanoTestas (nT), with a standard deviation of over 53 nT. In addition, derivative filters, such as the vertical derivative and analytical signal, were applied to the gridded RMI map and were used to interpret edges and centres of the causative magnetic source bodies (Figures 28 and 29).

The ground magnetics survey data highlights three distinct litho-magnetic zones at the Richardson Property geophysical survey area (e.g., Figure 27), including:

- The dominant magnetic feature occurring on the Richardson Property can be identified as a zone with a strong positive magnetic response, occurring over the northern half of the EM31 and GPR survey lines – Zone A.
- 2. The magnetics data over the southern half of the EM31 and GPR survey lines identifies a zone with a moderate negative magnetic response Zone B.
- The area to the northwest of the magnetic anomaly (Zone A) is magnetically quiet, with a weak positive magnetic gradient occurring on the very end of the regional magnetic lines extending out to the 14RLD003 and 14RLD002 drill holes – Zone C.

The spatial extent of magnetic Zone A strongly correlates with the area identified as a kame deposit by McMillan (2013; see Section 7.2.3, Surficial Geology at the Property). The spatial extent of magnetic Zone B correlates with "Layer 0" in the GPR interpretation. This suggests that the overburden deposits throughout the survey area are not laterally homogeneous, and lends further support to the presence of a unique kame deposit that is situated directly northwest of the granite outcrop (i.e., the Zone A magnetic high). Figure 27 Residual magnetic intensity of the Richardson survey grid using the GSM 19-W walking magnetometer.

Assessment Report for Athabasca Minerals Inc.'s Richardson Property. Northeastern Alberta

Figure 28 Vertical derivative of the Richardson survey grid using the GSM 19-W walking magnetometer.

Assessment Report for Athabasca Minerals Inc.'s Richardson Property. Northeastern Alberta

Figure 29 Analytical signal of the Richardson survey grid using the GSM 19-W walking magnetometer.

10 Mineral Resource Estimate

10.1 Introduction

Modelling, resource estimation and statistics were performed by Mr. Nicholls, MAIG under the direct supervision of Mr. Eccles, who is a Qualified Persons as defined by National Instrument 43-101. Mineral resource modelling was carried out using a three-dimensional model in commercial geologic modelling and mine planning software MICROMINE (v14.0.4).

The project area is based in the Universal Transverse Mercator (UTM) coordinate system, North American Datum (NAD) 1983 and UTM Zone12. No block modelling of the resource area was necessary as no 'grade' was being estimated; instead a three dimensional computer generated 'solid' of the area was generated in MICROMINE to calculate the resource 'volume'. The resource estimation presented in this Report considered data from eight drillholes drilled by Athabasca Minerals in 2014 and four drillholes drilled by Athabasca Minerals in 2013 (twelve total drillholes). Because two of the 2013 drillholes were terminated at <30 m and therefore did not penetrate, or did not penetrate through the entire section of, the Winnipegosis Formation (the uppermost bedrock and primary focus of this resource estimate), only ten drillholes were utilized in the Richardson maiden inferred crush rock aggregate resource modelling that is presented in this Report. Accordingly, this resource section hereafter refers to ten drillholes.

Mr. Atkinson, P.Geol, supervised the 2014 drill campaign along with logging and sampling of both the 2013 and 2014 drill core. Specific gravity and geologic information is derived from work conducted by APEX personnel, on behalf of Athabasca Minerals, during the 2014 field season. A specific gravity measurement was taken once every one metre of drill core. The density data were confirmed by comparing these measurements with a separate set of density analysis on the composite samples that were analyzed at AMEC and Tetra Tech EBA in Calgary and Edmonton, Alberta, respectively.

Richardson maiden inferred crush rock aggregate resource estimate is reported in accordance with the Canadian Securities Administrators National Instrument 43-101 and has been estimated using the CIM "Estimation of Mineral Resources and Mineral Reserves Best Practice Guidelines" dated November 23rd, 2003 and CIM "Definition Standards for Mineral Resources and Mineral Reserves" dated November 27th, 2010. Mineral resources are not mineral reserves and do not have demonstrated economic viability. There is no guarantee that all or any part of the mineral resource will be converted into a mineral reserve.

The CIM Standards on Mineral Resources and Mineral Reserves, Definitions and Guidelines, dated August 20, 2000 (the "CIM Standards", NI 43-101 and Companion Policy 43-101CP) states that:

"When reporting Mineral Resource and Mineral Reserve estimates relating to an industrial mineral site, the Qualified Person(s) must make the reader aware of certain special properties of these commodities".

The authors have attempted to follow this guideline in this resource section and throughout this Report. Accordingly, an important up front statement is to acknowledge that the objective of the aggregate analytical test work – in the context of this crush rock aggregate resource estimate – is predominantly focused on the aggregate mechanical qualities for its use in aggregate road building and concrete in support of locale and prolific oil sands operations and development.

10.2 Drillhole Database Validation

The 2013 and 2014 drillholes were surveyed using a hand held Garmin GPS unit in UTM coordinates (UTM Zone 12) and NAD 1983 datum. The elevations of the drillholes were initially obtained using the hand held Garmin GPS, however, the collar elevations have been subsequently modified for all 10 drillholes by using high resolution Light Detection and Ranging (LiDar) technology with 1 m resolution. As per the MME Land Use Permit, a metal tag was nailed to a tree on the SW corner of the drill site. The tag was labelled with the MME permit number (130005), drillhole number and legal description of the site by LSD. All drillholes were vertical holes; therefore no down hole surveying was employed. Upon completion of each of the 2014 drillholes, the casing was removed and the drill sites were reclaimed. No visible collar marker was left.

All drill logs, summaries, survey data and analytical results from the 2013 and 2014 programs have been imported and stored in a MICROMINE drilling database and Microsoft Excel spreadsheets. Drill core logging was completed in Excel format, with hardcopy, PDF and digital back-ups. Drill data, cross sections and 3D plots were interpreted and generated in Edmonton using, Excel and MICROMINE software. The 2013 and 2014 drill core were logged and sampled by APEX personnel under the direct supervision of Mr. Atkinson.

At the end of the 2014 program, the excel drillhole database was copied into MICROMINE by APEX personnel. Using MICROMINE's drillhole database validation function, the data was checked for overlapping geological intervals, and survey, collar and drillhole length data. A few minor discrepancies were found and promptly fixed within the database. All 10 drillholes were manually checked and validated for collar, survey, and lithological boundaries data. Collar data was compared back to values on the original drill logs. Lithology codes were compared to original drill logs and assay results were compared to laboratory certificates. The database is considered reliable for mineral resource estimation purposes.

10.3 Micromine Database

The drilling database used is current (May 20th, 2014). The drillhole database was validated within MICROMINE and no errors were identified. The database incorporates all available diamond drilling and analytical data. All data for the mineral resource estimation was copied from Excel into MICROMINE format.

The five main MICROMINE.DAT files that were utilized in the resource estimations, these include:

- Richardson_collars_all the drillhole collar file;
- XRF the portable x-ray fluorescence data;
- Density the density measurements file;
- 2014_lithos_final the geology and formation information; and
- LiDar 15m- the surface topography.

There were a total of 10 drillholes within the export that guided the geological interpretation of the aggregate resource. Spacing between drillholes varies from 500 m to 1.37 km, with an average of about 0.9 km between drillholes. There were seven drill lines that ranged in spacing from 570 m to 900 m. In this Report, Mr. Nicholls, under the direct supervision of Mr. Eccles, has used reasonable judgment in the context of this crushed rock aggregate deposit type, style and formation to determine that this drill spacing is sufficient for resource volume estimation.

Data supplied and utilized in MICROMINE included collar Easting, Northing and elevation coordinates, lithology information, and bulk density data. The collar coordinates were obtained by hand held GPS and the relative elevation were assigned using the detailed one-metre spaced LiDar data. All drillholes are short (up to 147 m) vertical holes and as such there are no down hole surveys. Dip of the hole was set up using a clinometer after the drill was properly levelled.

10.4 Data Type Comparison

As there has only been diamond drilling conducted at the Richardson maiden inferred crush rock aggregate resource area, a data type comparison is not required. Diamond drilling is considered to be representative of a good quality drilling method and is suitable for resource estimation.

10.5 Stratigraphic Representation and Resource Estimate Objectives by Formation

The drillhole lithology was plotted and displayed next to the drillhole (Figure 30a). From the top of the drillhole to the base, this includes: Quaternary surficial deposits (or overburden); Winnipegosis Formation; Contact Rapids Formation; La Loche Formation; and the Precambrian basement granite. The formations are described in detail in Section 7, 'Geological Setting and Mineralization.'

The Winnipegosis Formation is the primary unit being assessed in this Richardson maiden inferred crushed rock aggregate resource estimate. Athabasca Minerals is also interested in the potential of the granite as a crushed rock aggregate and we have therefore included a volume estimate of the granite albeit to a depth of 10 m below the top of the Precambrian to correlate with drill results. In aggregate operations, different

kinds of 'Flux' are often required for blending purposes, as a result of this it was decided to model up all formations to provide blending option volumes of the other formations beside the Winnipegosis Formation.

10.6 Demonstration of Stratigraphic Homogeneity

Stratigraphic logging, which was performed by APEX for both the 2013 and 2014 drillholes, showed definitive geological boundaries that are characterized by extensive lateral continuity of the individual geounits. With the exception of the La Loche Formation – Precambrian basement boundary which can be gradational, the boundaries between formations have sharp, visually identifiable contacts.

To demonstrate the homogeneity of the stratigraphic units using geotechnical and geochemical data derived from the cores, Figures 30 and 31 show a comparison between the stratigraphic horizons versus selected geotechnical and geochemical data, respectively. The Rock Quality Description (RDQ) and total fracture data closely mimic the stratigraphic units (Figure 30). This is particularly evident for drillhole 14RLD-007 because this hole cored the deepest into the Precambrian basement granite. Of particular note, the RDQ and total fracture scores are most evident in the Contact Rapids and La Loche formations, which occur between the more competent Winnipegosis Formation dolostone and Precambrian basement granite. In comparison to the majority of the drillholes, the RDQ and total fractures scores are higher in the Precambrian basement granite in drillholes 14RDL-001; this is representative of a transitional zone between the La Loche Formation and the underlying basement granite, the latter of which, is characterized by variable potassic and albite alteration at this local area.

The stratigraphic formation divisions are further supported by chemical homogeneity, which is illustrated by plotting the one-metre interval XRF data next to the stratigraphic units (Figure 31). In conjunction with the stratigraphic cross-section, the 'zones' of elevated or depleted Ca+Mg (Figure 31b) or Fe (Figure 31c) closely mimic the geological formations (Figure 31a). In addition, the Ca+Mg plot, in particular, shows the homogenous nature of the Winnipegosis Formation, which highlights its applicability as a potential source of crush rock aggregate.

Figure 30 Comparison of the stratigraphic and geotechnical rock quality homogeneity of the subsurface geology at the Richardson Property. A) Drillholes 14RLD-004 & 14RLD-001 illustrate the down hole stratigraphic sequence. B, C) Schematic diagram of all drillholes showing the geotechnical homogeneity between rock quality description, and total fractures with respect to the formation boundaries.

B)

Figure 31 Comparison of the stratigraphic and chemical homogeneity of the subsurface geology at the Richardson Property. A) Drillholes 14RLD-004 & 14RLD-001 illustrate the down hole stratigraphic sequence. B, C) Schematic diagram of all drillholes showing the chemical homogeneity between Calcium + Magnesium, and iron with respect to the formation boundaries.

10.7 Lithological Model Design and Interpretation

As a result of the homogenous and continuous nature of the stratigraphic formations, the wireframes were constructed and extrapolated from hole to hole for the 10 drillholes that were used in this resource model. A resource outline of 500 m was constructed around the outermost drillholes to define the outer limits of the resource area (Figure 32). The resource outline of 500 m was deemed appropriate based on the continuous nature of the stratigraphic formation within the resource outline area as defined by 2013 and 2014 Athabasca Minerals drilling, and because the same generally flat-lying stratigraphic formations has been intersected in drillholes and/or oil and gas wells that are located several 10's of kilometres away from the Richardson resource area providing further support of the continuous nature of these geological formations. The boundary outline radius directly north of drillholes GNA-10 and 14RDL-008 was reduced to 50 m (from 500 m) due to the proximity of the lake. I.e., we have not extended the inferred resource estimate under the lake. The surface area of the resource outline is 6.30 km².

A separate wireframe was created for each formation from which, separate formation volumes could be derived. The 500 m resource outline was used to clip the individual formation wireframes to restrict the lateral extension of the wireframes and thereby constrict the main resource model to the general 2013 and 2014 Athabasca Minerals drill area. The one-metre LiDar surface topography was reduced to a 15 m survey due to file size constraints within MICROMINE; this surface was then used to clip the overlying overburden wireframe with the best approximation of surface. This model formed the spatial basis for calculating the volume and tonnage for the Richardson maiden inferred crush rock aggregate resource estimate.

Figure 32 The 500 m resource boundary outline that was used to constrain the Richardson maiden inferred crush rock aggregate resource estimate.

Eight out of the 10 drillholes used in the resource modelling intersected the basement granite. The remaining two drillholes (GNA-16 and 14RLD-006) stopped short of penetrating and coring the basement due to drilling conditions. Given, the stratigraphic continuity of the Winnipegosis dolostone, which was intersected in these drillholes, and the continuity of the basement granite in the resource area, the top of basement wireframe was extrapolated to include these two holes.

The overall modeling of the basement granite was restricted to a 10 m thick unit across the entire resource area. The 10 m thickness is considered to provide a conservative estimate because the granite was confirmed to extend to depth in a single drillhole (14RLD-007), which cored up to 48.35 m of basement granite. However, all other drillholes were terminated once they cored approximately 10 m into the basement granite as this drill program (and in this particular part of Athabasca Minerals Richardson Property) placed emphasis on the Winnipegosis Formation.

10.8 Resource Calculation

The volume of the Winnipegosis Formation was calculated from 3-dimmenional modelling that utilised the commercial mine planning software MICROMINE. In addition to the Winnipegosis Formation volume, the separate wireframes and density values for each of the sub-surface formations facilitated the calculation of volumes for the overburden, Contract Rapids, La Loche and Precambrian basement granite.

The specifics of the three dimensional modelling is described in section 14.8. There was no need to create a block model as no specific chemical elements were being estimated. As such the volume of each formation was used to multiply against a nominal specific gravity value, which was determined on a formation by formation basis. This resulted in the reported tonnages. As this is the maiden inferred resource, no mining studies have yet been employed to constrain the resource within an optimal pit shell. This work is recommended for future resource studies.

The Winnipegosis Formation is considered the most favourable unit for crush rock aggregate as it is the shallowest (directly underlying the quaternary cover) at depths ranging from 18 m to 64.92 m, in this particular part of the Richardson Property. This unit has undergone pervasive dolomitization; the higher Mg content makes the unit harder and thus more resistive in consideration of crush rock aggregate.

Underlying the Winnipegosis Formation, the Contact Rapids is mudstone-enriched (higher Al content), is more limey in nature and comprises weakly consolidated muddy limestone and sandy limestone in comparison to the Winnipegosis dolostone. The Contact Rapids is therefore not nearly as desirable as a crush rock aggregate source in comparison to the Winnipegosis. There is the possibility, however, that the Contract Rapids may provide some alternative flux material if the Winnipegosis were to be mined as a crush rock aggregate source. There is a distinct unconformity between the carbonate units, which is therefore easy to separate if the deposit undergoes mining.

If the economics of mining the Winnipegosis Formation are feasible, then the Precambrian basement granite represents a secondary crush rock aggregate target

within the current Richardson resource area due to the hardness and the uniform nature of the granite.

10.9 Mineral Resource Marketability

Industrial minerals are influenced by a number of factors that are less applicable to metallic mineral deposits such as: particular physical and chemical characteristics; mineral quality issues; market size; the level of the producer's technical applications knowledge; market concentration; and transportation costs. Market considerations must, therefore, incorporate not only the requirement for detailed market analyses and/or contracts of sale, but also recognition that markets for many industrial minerals are relatively small, may have a high degree of producer concentration, or may have very high technical barriers to entry, thus imposing limits or constraints on achievable market volumes. Accordingly, the reader must be made aware of any special properties related to the industry specifications.

In the case of the Richardson project, the crush rock aggregate deposit is located in close proximity to several major oil sands operations and operations in development (see Figure 4). In light of the continued investment in the oil sands industry, it is possible that there is an ongoing requirement for aggregate throughout the region. In addition, the close proximity of the Winnipegosis Formation to surface, its overall uniformity, and positive aggregate test results in comparison to Alberta aggregate standards, indicates that the Winnipegosis crushed rock aggregate has reasonable prospects of economic viability.

It should be noted that no mining or detailed economic studies have been performed and that the Richardson crush rock aggregate deposit represents an early stage project. No aggregate price data were integrated into the resource estimate presented in this Report. In a brief scan, crush aggregate product varies anywhere from CDN\$9.00 per ton to CDN\$27.00 per ton (e.g., Dufferin Aggregate, 2014; Hammerstone Corporation, 2014; Jordan River Gravel and Excavating, 2014; Polaris Minerals Corporation, 2014). With respect to potential for economic extraction, Hammerstone is currently mining limestone at its Hammerstone Project, which is located directly adjacent to the southeastern Richardson Property permits: 9312100494 and 9312110408. Hence, it appears that the Richardson crush rock aggregate would support the cost of mining and the removal of the overburden

10.10 Resource Classification

The Richardson maiden inferred crush rock aggregate resource estimate has been classified in accordance with guidelines established by the CIM "Estimation of Mineral Resources and Mineral Reserves Best Practice Guidelines" dated November 23rd, 2003 and CIM "Detimition Standards for Mineral Resources and Mineral Reserves" dated November 14th, 2004.

A 'Measured Mineral Resource' is that part of a Mineral Resource for which quantity, grade or quality, densities, shape, physical characteristics are so well established that they can be estimated with confidence sufficient to allow the appropriate application of technical and economic parameters, to support production planning and evaluation of the economic viability of the deposit. The estimate is based on detailed and reliable exploration, sampling and testing information gathered through appropriate techniques from locations such as outcrops, trenches, pits, workings and drillholes that are spaced closely enough to confirm both geological and grade continuity.

An 'Indicated Mineral Resource' is that part of a Mineral Resource for which quantity, grade or quality, densities, shape and physical characteristics, can be estimated with a level of confidence sufficient to allow the appropriate application of technical and economic parameters, to support mine planning and evaluation of the economic viability of the deposit. The estimate is based on detailed and reliable exploration and testing information gathered through appropriate techniques from locations such as outcrops, trenches, pits, workings and drillholes that are spaced closely enough for geological and grade continuity to be reasonably assumed.

An 'Inferred Mineral Resource' is that part of a Mineral Resource for which quantity and grade or quality can be estimated on the basis of geological evidence and limited sampling and reasonably assumed, but not verified, geological and grade continuity. The estimate is based on limited information and sampling gathered through appropriate techniques from locations such as outcrops, trenches, pits, workings and drillholes.

The Richardson maiden inferred crush rock aggregate resource estimate has been classified as 'inferred' according to the CIM definition standards. The classification of the Richardson maiden inferred crush rock aggregate resource was based on geological confidence, data quality and stratigraphic continuity. That is, the criteria and rational for the classification of inferred resources was based upon the wide spaced nature of the drilling to date and the fact that this is classed as an early stage project with little mineral processing test work completed to date.

10.11 Mineral Resource Reporting

The Richardson maiden inferred crush rock aggregate resource estimate is reported in accordance with the Canadian Securities Administrators National Instrument 43-101 and has been estimated using the CIM "Estimation of Mineral Resources and Mineral Reserves Best Practice Guidelines" dated November 23rd, 2003 and CIM "Definition Standards for Mineral Resources and Mineral Reserves" dated November 27th, 2010.

The Richardson maiden inferred crush rock aggregate resource estimate has been classified as inferred only. The aerial extent of the Richardson maiden inferred crush rock aggregate resource area is 6.30 km². The Richardson maiden inferred crush rock aggregate resource consists of 683.14 million tonnes of aggregate material situated within the favourable Winnipegosis Formation (Table 15). The thickness of the Winnipegosis aggregate resource varies from 8.3 m to 47.9 m. The Winnipegosis aggregate resource is overlain by 497.29 million tonnes of overburden-waste material.

Table 15. Richardson maiden inferred crush rock aggregate resource. Volumes and tonnages for the overburden and all lithostratigraphic units are included, but the main resource reported belongs to the Winnipegosis Formation.

Formation	Volume (m ³)	Density (t/m ³) *	Tonnes (million n ³) * tonnes) **			
Overburden	220,625,000	2.25	497.29			
Winnipegosis	254,523,000	2.68	683.14			
Contact Rapids	63,322,000	2.50	158.11			
La Loche	13,339,000	2.54	33.93			
Basement granite	62,941,000	2.63	165.41			

* Density has been rounded to two decimal places.

** Tonnes have been rounded to the nearest 10,000 tonnes.

- Note 1: Mineral resources are not mineral reserves and do not have demonstrated economic viability. There is no guarantee that all or any part of the mineral resource will be converted into a mineral reserve.
- Note 2: The quantity of tonnes reported in these inferred resource estimations are uncertain in nature and there has been insufficient exploration to define these inferred resources as an indicated or measured mineral resource, and it is uncertain if further exploration will result in upgrading them to an indicated or measured resource category.
- Note 3: The estimate of mineral resources may be materially affected by geology, environment, permitting, legal, title, taxation, socio-political, marketing or other relevant issues.

The quality and grade of reported Inferred resource in this estimation is uncertain in nature, as there has been insufficient exploration to define these Inferred resources as an Indicated or Measured mineral resource, and it is uncertain if further exploration will result in upgrading them to an indicated or measured resource category. The portion of the Richardson property resource that has been classified as 'Inferred' demonstrates that the nature, quantity and distribution of data is such as to allow confident interpretation of the geological framework and to reasonably assume continuity of geological formations. The collective work to date from the Richardson Property indicate that while the project is in early stages of exploration/resource work that indications of the metallurgical and mineral processing qualities give suggestions that they are of high enough quality that the Winnipegosis is of economic interest.

If the economics of mining the Winnipegosis Formation are feasible, then the Precambrian basement granite represents a secondary crush rock aggregate target within the current Richardson resource area, due to its uniform nature and overall hardness as shown by the few (n=2) samples that were processed using standard aggregate test work. In the current resource area, the basement granite has a volume

of 165.41 million tonnes; the overall volume of the granite was calculated to a maximum depth of ten metres from the top of the Precambrian rock unit.

11 Exploration Expenditures

During 2014 Athabasca completed two separate drill programs totaling twelve holes, aggregate and geochemical testing, ground geophysical surveys and the calculation of a maiden Inferred mineral resource. The total cost to complete exploration on the Richardson Property during 2014 was \$613,594.98. A breakdown of expenditures is presented in Appendix 5.

12 Interpretation and Conclusions

12.1 Analytical Testing Interpretation and Conclusions

Published specifications and standards for industrial minerals should be used primarily as a screening mechanism to establish the marketability of an industrial mineral. The suitability of an industrial mineral for use in specific applications can only be determined through detailed market investigations and discussions with potential consumers.

While detailed market investigations and discussions with potential consumers are beyond the scope of this Report, we have demonstrated that the Winnipegosis and basement granite rock types have uniform compositions, and that the aggregate test work for the 11 Winnipegosis samples and two Precambrian basement granite samples meets the screening criteria for most of the aggregate designations in Alberta, including asphalt concrete pavement and base course aggregate, as per the guidelines set by Alberta Transportation and the Canadian Standards Association (see Tables 7, 8 and 13).

Accordingly, with respect to reporting a resource estimate and abiding by the General Guidelines of NI 43-101, it should be emphasized that the aggregate test rock results suggest that the Winnipegosis Formation (and secondly, the Precambrian basement granite) from the Richardson crushed rock aggregate deposit has reasonable prospects of economic viability for an industrial mineral deposit.

In contrast, the single Contact Rapids sample does not meet the screening criteria, and therefore, does not meet the *reasonable expectation* and/or *demonstration of economic viability* of an industrial mineral deposit.

12.2 Geophysical Survey Interpretation and Conclusions

The interpretations remain inherently ambiguous, and require petrophysical data and other geological information to properly classify the identified litho-magnetic zones. Nevertheless, several preliminary interpretations can help to guide future exploration in the eastern part of the Richardson Property. The results of the geophysical surveys show that the spatial extent of several distinct geologic features can be mapped using a combination of GPR and ground magnetics data. There is a strong correlation among the physical properties of the overburden (particularly the kame deposit), the Winnipegosis Formation and the granite bedrock. The GPR was most useful for showing the depth to the geologic layers, while the magnetics data identified lateral changes in the subsurface that were not observed in the GPR response. The GPR profiles display interpretable data to depths of up to 60 m. The granite outcrop is fairly constrained to the immediate area; however, the GPR profiles suggest that the area directly north of the outcrop yields the shallowest thickness of overburden and/or Winnipegosis Formation to the Precambrian basement granite. Hence, any further exploration on the granite as a potential source of crush rock aggregate can use the results of this geophysical survey to target drill locations.

Based on the GPR results, the estimated areas of combined surficial overburden and Winnipegosis Formation dolostone material that is situated on top of the Precambrian granite and is within 5 m, 10 m, 15 m, 20 m and 25 m of surface is approximately: 4,600 m²; 15,200 m²; 45,100 m²; 91,300 m²; and 147,233 m², respectively (Figure 24).

Using the interpreted GPR litho-units, in concert with surficial topography associated with the LiDAR data, a rough volume calculation of potential geological units over an area of 407,700 m² yields:

- 11,758,000 m³ of total combined material (overburden and/or Winnipegosis Formation) from surface to the granite basement;
- 4,377,000 m³ of overburden from surface to top of the Winnipegosis Formation; and
- 7,381,147 m³ of potential Winnipegosis Formation.

With respect to lateral changes, the GPR was unable to identify changes in overburden type across the survey area (apart from vertical layering associated with Layer 0). However, the magnetic data clearly shows that there is a lateral change in the rock properties of the uppermost surficial materials, as explained by the contrasting magnetic zones A and B.

12.3 Drilling and Inferred Resource Estimate Interpretation and Conclusions

Industrial minerals are influenced by a number of factors that are less applicable to metallic mineral deposits such as: particular physical and chemical characteristics; mineral quality issues; market size; the level of the producer's technical applications knowledge; market concentration; and transportation costs. While the inclusion of a detailed market analyses is beyond the scope of this Report, the reader should be made aware of several special factors that are related to this 'early stage project'.

Athabasca Minerals Richardson Property comprises eight contiguous Alberta Metallic and Industrial Minerals Permits totalling 60,966 hectares (150,650 acres). The Property is active, in good standing and 100% owned by Athabasca Minerals, who have—prior to the Richardson Property work outlined in this Report—identified, explored and operated industrial mineral deposits in other parts of northeastern Alberta. With respect to aggregate marketing, technical applications knowledge and

production experience, Athabasca Minerals is therefore assumed to have familiarity of the industrial mineral economics specific to the area.

Proximity to market and market demand are also important industrial mineral factors. The Richardson Property is directly adjacent to the Athabasca oil Sands region of northeastern Alberta. The oil sands operations represent an area of enormous growth opportunity, and subsequently, require substantial sources of local aggregate. While continued oil sands development is subject to an infinite number of variables (e.g., geology, hydrocarbon prices, environment, taxation, socio-political, marketing or other relevant issues), the current development suggests a continued and positive aggregate market demand. Of equal note, sand and gravel aggregate in the oil sands region is scarce and inadequate to meet industrial demand. Consequently, alternative local sources such as crush rock aggregate are required to minimize common industrial mineral impediments such as transportation costs. Crush rock aggregate in the form of limestone is currently being mined adjacent to the Richardson Property region by Hammerstone Corporation exhibiting the potential demand for aggregate in the region.

To assess the Richardson Property for its crush rock aggregate potential, APEX Geoscience Ltd. has reviewed, logged, measured, sampled and analyzed drill cores from a 2013 (4 holes, totalling 235 m) and a 2014 (8 holes, totalling 843 m) drilling programs, both of which were conducted by Athabasca Minerals. Two distinct geological units - the Winnipegosis Formation, which is the primary focus of this Report, and the Precambrian basement granite – are identified in this Report as having reasonable prospects of economic viability for an industrial mineral deposit. The thickness of the Winnipegosis varies from 8.3 m to 47.9 m (averages 39.5 m) and is comprised largely of competent, light brown dolostone. Precambrian basement granite was drill-tested to a depth of 10 m prior to terminating the drillholes, although a single drillhole (14RLD007) tested the granite to a coring depth of 44.5 m to test its uniformity and crush rock aggregate potential at depth. The granite is comprised light blue-grey, coarse-grained, weakly foliated granite. Based on the 2013 and 2014 drill results, Athabasca Minerals Inc. further commissioned APEX Geoscience Ltd. to prepare a National Instrument 43-101 compliant maiden inferred crush rock aggregate resource estimate of the Middle Devonian Winnipegosis Formation and make recommendations on future exploration to advance the Athabasca Minerals Richardson Property.

A review of oil and gas well, historical mineral exploration and Athabasca Minerals 2013 and 2014 drill program information, indicates that stratigraphic continuity of the Winnipegosis appears to extend over large distances in the Property area representing an apparently continuous target unit. Geotechnical measurements and geochemical analysis demonstrates that within the resource area, the Winnipegosis Formation is homogenous, uniform and has undergone pervasive dolomitization, attributing to its hardness, competency and resistive nature. The single 'impurity' to report involves supplementary bitumen, which is more or less confined to the uppermost portions of the Winnipegosis Formation (and the La Loche Formation directly overlying the Winnipegosis dolostone). The bitumen ranges in intensity from non-existent (in most of the core) to pervasive, the latter of which is evident in 25 cm to 90 cm wide 'bituminous horizons' that occur in the eastern drillholes 14RLD006 and 14RLD008. The bitumen

Assessment Report for Athabasca Minerals Inc.'s Richardson Property, Northeastern Alberta

appears to be confined to porosity enabling textures in the carbonate such as vugs, sandy horizons and fracture planes. However, the overall consistency and volume of non-bitumen-bearing dolostone, and the positive aggregate test work results, provide justification that the bitumen does not influence the viability of the Winnipegosis as an industrial mineral deposit, at least in the current evaluation of this early stage project.

The Winnipegosis Formation and Precambrian basement granite were analyzed using relevant aggregate analytical techniques, the results of which were compared to Alberta Transportation and Canadian Standards Association aggregate specifications and standards. The results show that the Winnipegosis Formation and Precambrian basement granite met the maximum allowable screening criteria for major aggregate test methods, including: plasticity index; Los Angeles abrasion; magnesium sulphate soundness; and unconfined freeze-thaw. Based on the results of this test work and evidence of the homogeneity and uniformity of the rock units, it is concluded that the Winnipegosis Formation and Precambrian basement granite represent material of merit for several Alberta Transportation aggregate designations, including: Designation 1 (asphalt concrete pavement); and Designation 2 (base course aggregate).

The Richardson maiden inferred crush rock aggregate resource estimate is reported in accordance with the Canadian Securities Administrators National Instrument 43-101 and has been estimated using the CIM "Estimation of Mineral Resources and Mineral Reserves Best Practice Guidelines" dated November 23rd, 2003 and CIM "Definition Standards for Mineral Resources and Mineral Reserves" dated November 27th, 2010. The mineral resource modelling was carried out using a three-dimensional model in commercial geologic modelling and mine planning software MICROMINE (v.14.0.4).

The resource estimation utilized data from two 2013 drillholes and eight 2014 drillholes drilled by Athabasca Minerals (to drillholes in total). All drillholes were vertical holes and spacing between the drillholes varies from 500 m to 1.37 km, with an average of about 900 m between drillholes. A separate wireframe was created for each formation (Precambrian basement granite; La Loche Formation; Contact Rapids Formation; Winnipegosis Formation; and overburden), from which, separate formation volumes could be derived for each lithostratigraphic unit.

Block modelling of the resource area was not necessary as no 'grade' was being estimated; instead a three-dimensional computer-generated 'solid' of the area was generated in MICROMINE to calculate the resource 'volume'. Within the model, the volume of each formation was used to multiply against a nominal density value, which was determined as averages on a formation by formation basis from the 675 bulk density measurements collected. This resulted in the reported tonnages.

The surface area of the resource outline reported in this Report is 6.30 km², representing a small north-central portion of Athabasca Minerals Richardson Property. The Richardson maiden inferred crush rock aggregate resource estimate has been classified as 'inferred' according to the CIM definition standards. The classification of the Richardson maiden inferred crush rock aggregate resource was based on

geological confidence, data quality and stratigraphic continuity. That is, the criteria and rational for the classification of inferred resource is based upon the wide spaced nature of the drilling to date and the fact that the Richardson crush rock aggregate project is classified as an early stage project with little mineral processing test work completed to date. As this is the maiden inferred resource, no mining studies have been employed to constrain the resource within an optimal pit shell.

The Richardson maiden inferred crush rock aggregate resource estimate has been classified as inferred only and consists of 683 million tonnes of aggregate material situated within the favourable Winnipegosis Formation (Table 16). Mineral resources are not mineral reserves and do not have demonstrated economic viability. There is no guarantee that all or any part of the mineral resource will be converted into a mineral reserve. The Winnipegosis aggregate resource is directly overlain by 497 million tonnes of overburden-waste material.

The portion of the Richardson Property resource that has been classified as 'Inferred' demonstrates that the nature, quantity and distribution of data is such as to allow confident interpretation of the geological framework and to reasonably assume continuity of geological formations. The collective work to date from the Richardson Property demonstrates that although the project is in early stages of exploration/resource work, metallurgical and mineral processing qualities give suggestions that they are of high enough quality that the Winnipegosis is of economic interest.

Table 16. Richardson maiden inferred crush rock aggregate resource. Volumes and tonnages for the overburden and all lithostratigraphic units within the resource area are included, but the resource reported in this Report relates to the Winnipegosis Formation.

Formation	Volume (m ³)	Density (t/m³) *	Tonnes (million tonnes) **
Overburden	220,625,000	2.25	497.29
Winnipegosis	254,523,000	2.68	683.14
Contact Rapids	63,322,000	2.50	158.11
La Loche	13,339,000	2.54	33.93
Basement granite	62,941,000	2.63	165.41

* Density has been rounded to two decimal places.

** Tonnes have been rounded to the nearest 10,000 tonnes.

- Note 1: Mineral resources are not mineral reserves and do not have demonstrated economic viability. There is no guarantee that all or any part of the mineral resource will be converted into a mineral reserve.
- Note 2: The quantity of tonnes reported in these inferred resource estimations are uncertain in nature and there has been insufficient exploration to define these inferred resources as an indicated or measured mineral resource, and it is

uncertain if further exploration will result in upgrading them to an indicated or measured resource category.

Note 3: The estimate of mineral resources may be materially affected by geology, environment, permitting, legal, title, taxation, socio-political, marketing or other relevant issues.

12.4 Potential Targets for Future Exploration

The Winnipegosis Formation is considered the most favourable unit for crush rock aggregate in the current resource area, given that it is the shallowest lithostratigraphic unit (directly underlying the quaternary cover and occurs at depths ranging from 18.0 m to 64.9 m). A stratigraphic compilation of publicly available oil and gas well information, historical metallic and industrial mineral assessment work, and data from Athabasca Minerals 2013 and 2014 drill programs shows that there is good stratigraphic continuity of the lithostratigraphic units in the Richardson Property area. This includes the Winnipegosis Formation and the Precambrian basement granite. By way of preliminary reasoning to extrapolate these formations based on the stratigraphic continuity and observations made at the Property, the Richardson Property has several potential targets for further exploration.

The following statements referring to any potential extension of the Richardson crush aggregate deposit are conceptual in nature; as there has been insufficient exploration to define the extended mineral deposit and it is uncertain if further exploration will result in the target being delineated as a mineral deposit and/or resource. Potential targets for further exploration are summarized as follows:

- 1. Based on stratigraphic continuity of the Winnipegosis Formation, an extension of the current Winnipegosis crush rock aggregate deposit outwards from the current resource area to other parts of the Property could create additional and/or more accessible Winnipegosis tonnage. To provide an example of the potential range increase in volume, a southerly extension of the Winnipegosis Formation deposit equivalent to an additional aerial extent of 7.49 km² could add between 0.6707 and 1.0060 billion tonnes of aggregate crush rock (e.g., Table 17; Figure 33). The approximate tonnages have been interpreted by extrapolating the formation wireframes from the current resource area southwards and using the same averaged densities that were used for the Richardson maiden inferred crush rock aggregate resource. The volume range is within 20% of the modelled volume for each formation in the Richardson maiden inferred crush rock aggregate resource (compare versus Table 16).
- 2. There is also justification in targeting future Winnipegosis exploration to the east-northeast, where the thickness of overburden is assumed to be thinner. If successful, this would lower the strip ratios to access the Winnipegosis in comparison to the current resource area.
- 3. If the economics of mining the Winnipegosis Formation are feasible, then the Precambrian basement granite represents a potential secondary crush rock aggregate target within the current resource area, due to its uniform nature and overall hardness as shown by aggregate test work conducted in this Report. In the current resource area, the Precambrian basement granite could account for

an additional 165 million tonnes of aggregate. This estimate is conservative as the volume assumes a depth of 10 m (corresponding to when most of the drillholes ended). Based on drillhole 14RLD007, which confirmed uniform granite to a depth of 48.35 m, the granite could easily be extended, such that the granite could account for 319 million tonnes if, for example, the depth was extended to 20 m instead of 10 m.

- 4. In in the resource area, any potential granite crush rock aggregate source is contingent on the Winnipegosis being economic. However, the Precambrian basement granite is known to outcrop directly east-southeast of the current resource area. Based on the uniformity and positive granite aggregate test results from the current resource area, the adjacent exposed and near-surface granite represents a potential target for further exploration.
- 5. Surface geophysical surveys conducted over the general granite outcrop area help to define the near-surface boundaries of the granite body. Ground Penetrating Radar (GPR) profiles, which display interpretable data in the area of up to depths of 60 m, shows that the granite outcrop is fairly constrained to the immediate observed exposure; however, the GPR profiles suggest that the area directly north of the outcrop has the least amount of overburden and/or Winnipegosis dolostone material to overlie the Precambrian basement granite. Based on the GPR results, the estimated areas of combined surficial overburden and Winnipegosis Formation dolostone material that is situated on top of the Precambrian granite and is within 5 m, 10 m, 15 m, 20 m and 25 m of surface is approximately: 4,600 m²; 15,200 m²; 45,100 m²; 91,300 m²; and 147,233 m², respectively. The ground magnetic data, which illustrates lateral changes in the subsurface that were not observed in the GPR response, shows that the overburden, in particular, is thicker to the northeast of the granite outcrop correlating to kame-type deposits delineated using LiDAR data. The geophysical interpretations remain inherently ambiguous, and require other geological information such as drilling to properly confirm and classify the identified litho-magnetic zones.
- 6. Lastly, the Contact Rapids Formation, which underlies the Winnipegosis, comprises weakly consolidated muddy and sandy limestone, and is therefore not as desirable in comparison to the Winnipegosis (this is evident in poor aggregate test work results presented in this Report). There is the possibility, however, that the Contract Rapids could provide a source of alternative flux material if the Winnipegosis were to be mined as crush rock aggregate.
| | Volum | ne (m³) | Tonnes (millio | n tonnes) * |
|-------------------------|-------------|-------------|----------------|-------------|
| Formation | Range from | Range to | Range from | Range to |
| Overburden | 247,560,000 | 371,341,000 | 558.00 | 837.00 |
| Winnipegosis | 248,928,000 | 373,392,000 | 668.12 | 1002.18 |
| Contact Rapids | 59,478,000 | 89,216,000 | 148.52 | 222.77 |
| La Loche | 12,856,000 | 19,284,000 | 32.71 | 49.06 |
| Basement granite | 59,858,000 | 89,787,000 | 157.31 | 235.96 |

Table 17. A projected range of volumes associated with an example of extending a potential Winnipegosis deposit southwards of the current resource area at the Richardson Property.

* Tonnes have been rounded to the nearest 10,000 tonnes.

Note 1: The potential deposit quantity is conceptual in nature; there has been insufficient exploration to define the extended mineral deposit and it is uncertain if further exploration will result in the target being delineated as a mineral deposit and/or resource.

Figure 33 An example of a potential Winnipegosis deposit extension to the south of the current resource area at the Richardson Property.

13 Recommendations

The Richardson Property is considered to be a property of merit and warrants further exploration. This contention is supported by results presented in this Assessment Report which include: uniform and continuous Winnipegosis Formation target unit (and a secondary target unit in the Precambrian basement granite); positive aggregate test work results that were evaluated against Alberta Transportation and Canadian Standards Association aggregate standards; a Richardson maiden inferred crush rock aggregate resource estimate that has an aerial extent of 6.30 km² and consists of 683 million tonnes of aggregate material situated within the Winnipegosis Formation; and a continuing and positive market demand for aggregate products in the oil sands northeastern Alberta.

In addition to the current inferred aggregate resource area, this Assessment Report has shown the potential: 1) to extend the Winnipegosis deposit southwards and/or to the east-northeast; and 2) for the Precambrian basement granite to provide another source of crush rock aggregate at the Property based on sample results presented in this Report and knowledge that the granite crops out in the eastern part of the Richardson Property. Note: the potential deposit quantity and suggestion of a granite crush rock aggregate source is conceptual in nature as there has been insufficient exploration to define the extended mineral deposit and it is uncertain if further exploration will result in the target being delineated as a mineral deposit and/or resource.

A two Phase approach is therefore recommended for 2015-2016 exploration at the Richardson Property consisting of Phase One geophysical surveying, and Phase Two extension/infill drilling in conjunction with a Preliminary Economic Assessment (PEA) scoping study. The total cost of both phases of recommended exploration work is estimated at CDN\$916,000 (Table 19; not including contingency). With a 10% contingency the total budget is CDN\$1,007,600.

The recommended Phase One exploration work includes a 35 line-kilometre Ground Penetrating Radar (GPR) survey to:

• create a preliminary three-dimensional geological model of the general area surrounding the current resource area;

• depict those areas that have shallow overburden overlying the Devonian Winnipegosis dolomite and/or the Precambrian basement granite; and

• define the drillhole locations for the Phase Two drill program.

The proposed 2015 GPR survey will include eight northwesterly grid-lines designed to connect the 2014 GPR test area (i.e., the test area around the granite outcrop) to the 2013 and 2014 drillhole collars. The 2015 GPR survey will also include four north-easterly tie-lines that are designed to verify the grid-line data, and add confidence to the measured depths of the overburden, Winnipegosis dolomite and basement granite. The approximate cost of the Phase One work is CDN\$40,000 (Table 19).

Subject to the results of the Phase One survey, a Phase Two extension/infill drillhole program and subsequent composite aggregate test work analyses on the drill cores will:

verify the three-dimensional geological model; and

• provide additional confidence to uniformity, extent, depth and quality of the Winnipegosis dolomite and the basement granite, which is necessary to produce an updated inferred, and possibly indicated, mineral resource estimate.

It is recommended that the Phase Two extension and infill drilling consists of ten to eleven systematically placed diamond drillholes in accordance with the Phase One GPR survey (totalling approximately 1,000 m). Areas of focus should include two separate justifications for drill testing as follows.

1. Winnipegosis Extension. The Winnipegosis Formation deposit could be extended to the south, east and northeast of the current resource area. It is anticipated that the topography (i.e., overburden) on the Property thins out to the east-northeast such that the depth to the Winnipegosis Formation may be thinner than in the current resource area (overburden averages 36 m thickness; n = 11 drillholes drilled in 2013 and 2014 by Athabasca minerals). The Winnipegosis extension drilling would advance the project by increasing the confidence in the continuity and uniformity of the Winnipegosis Formation and the depth of overburden overlying the Winnipegosis.

2. Precambrian Basement Granite Extension. This drilling will test the granite as a potential crush rock aggregate source. Drill targets should be collared east-southeast of the current resource area in an area directly adjacent to an exposure of Precambrian granite. The granite outcrop identified during 2013 field program and the 2014 ground geophysical program has the advantage of shallow to non-existent overburden and/or Winnipegosis Formation cover rock.

The Phase Two extension/infill drilling, aggregate test work analyses and an updated NI 43-101 inferred (and possibly indicated) resource estimate is projected to cost approximately CDN\$576,000 (Table 19).

In conjunction with the Phase Two work, it is recommended that a PEA Scoping Study of the Richardson Project be conducted. The scoping study should include: the creation of an initial pit shell; estimations of strip ratios to remove the overburden; and examine certain economic and environmental factors related to the market for crushed rock aggregate in the immediate vicinity of the Project. The completion of a PEA scoping study would add confidence to the viability of the Project. For example, this maiden inferred resource is reported in tonnages, and mining studies are required to constrain the resource within an optimal pit shell. The estimated cost to complete the PEA is CDN\$300,000 (Table19).

Table 18. Summary of 2015-2016 recommendations for the Richardson Property.

Phase One: Ground Geophysical Survey and Preliminary 3D Model

Activity	Description	(CDN\$)
Ground Penetrating Radar (GPR) geophysical survey	A 35-line km GPR survey to develop a preliminary 3D model, determine o/b thickness and site drillhole locations.	\$40,000
	Sub-total	\$40,000

Phase Two: Drill Program, Indicated/Inferred Technical Report and Preliminary Economic Assessment

Activity	Description	Cost (CDN\$)
Drilling	A 10-11 drillhole heli-supported program (approximately 1,000 m of coring)	\$511,000
Analysis	Aggregate test work	\$30,000
Reporting	NI 43-101 Mineral Resource Estimation and Technical Report	\$35,000
Reporting	Preliminary Economic Assessment Scoping Study	\$300,000
	Sub-total	\$876,000
	- Total	\$916.000

10001 \$910,000

10% Contingency \$91,600

Total with Contingency \$1,007,600

14 References

- Abercrombie, H.J. and Feng, R. (1997): Geological setting and origin of microdisseminated Au-Ag-Cu minerals, Fort Mackay region, northeastern Alberta; *in* Exploring for minerals in Alberta, Geological Survey of Canada geoscience contributions, Canada-Alberta Agreement on Mineral Development (1992–1995), R.W. Macqueen (ed.), Geological Survey of Canada, Bulletin 500, p. 247–278.
- Alberta (2014): Laws Online/Catalogue, CD-ROM, URL <<u>www.qp.alberta.ca/Laws_Online.cfm</u>> [February 2014]
- Alberta Energy (2014): Minerals Publications and Maps, URL <<u>http://www.energy.alberta.ca/minerals/933.asp</u>> [February 2014].

Alberta Government (2013): Alberta oil sands industry: Quarterly update. Summer, 2013, 16 p.

- Alberta Society of Petroleum Geologists (1960): Oil Fields of Alberta- a Reference Volume. Calgary, Alberta Society of Petroleum Geologists, 272 p.
- Alberta Society of Petroleum Geologists (1966): Oil Fields of Alberta Supplement. Calgary, Alberta Society of Petroleum Geologists, 136 p.
- Alberta Society of Petroleum Geologists (1969): Gas Fields of Alberta. Calgary, Alberta Society of Petroleum Geologists, 407 p.
- Alberta Transportation (2007): Standard Specifications for Highway Construction; Table 3.2.3.1, p. 3 in Specification 3.2 Aggregate Production and Stockpiling, Available on 20 May 2014 at URL < http://www.transportation.alberta.ca/Content/docType245/Production/Specs2007.pdf>.
- Alberta Transportation. (2010): Standard Specifications for Highway Construction, Alberta Ministry of Transportation, 646 p.
- Aravanis, T. (1999): Legend property assessment report, Birch Mountains area, Alberta; Alberta Energy and Utilities Board, Alberta Geological Survey, Assessment File Report MIN20000003, 23 p.
- Ashton, K.E. and Card, C.D. (2010): Tectonic History of the southwestern margin of the Rae Province in northwestern Saskatchewan. Gec Canada 2010 – Working with the Earth, Abstract, 3 p.
- Athabasca Minerals Inc. (2014): Susan Lake, Aggregates, Available on 20 May 2014 at URL <<u>http://www.athabascaminerals.com/s/susan_lake.asp</u>>
- Ault, C.H. (1989): Construction Materials: Crushed stone; *in* Concise Encyclopedia of Mineral Resources, Carr, D.D. and Herz, N. (eds.), Pergmaon Press, Oxford, p. 57-64.
- Bassett, H.G. (1952): Correlation of Devonian sections in northern Alberta and Northwest Territories; Ph.D. dissertation, Princeton University, 313 p.
- Barton, N.R., Lien, R. and Lunde, J. (1974): Engineering classification of rock masses for the design of tunnel support, Rock Mechanics and Rock Engineering, v.6, n.4, p. 189-239.
- Bayrock, L.A. (1971): Surficial Geology Bitumount; Alberta Research Council, Map 140, scale 1:250,000.
- Bebout, D.G. and Maklem, W.R. (1973): Ancient anhydrite facies and environments, Middle Devonian Elk Point Basin, Alberta. Bulletin of Canadian Petroleum Geology, v. 21, p. 287-343.

- Bell, F.G. (1993): Durability of carbonate rock as building stone with comments on its preservation, Environmental Geology v. 21, p. 187–200.
- Bethune, K.M., Ashton, K.E. and Knox, B. (2010): Tectonic evolution of the Beaverlodge domain, SW Rae Province, based on structural, petrological and geochronological study: implications for the nature and extent of Taltson (-Thelon) orogeny and the origin of the Snowbird tectonic zone. GeoCanada 2010 Working with the Earth, Abstract, 5 p.
- Bostock, H.H., van Breemen, O. and Loveridge, W.D. (1987): Proterozoic geochronology in the Taltson Magmatic Zone, N.W.T.; *in* Radiogenic age and Isotopic Studies: Report 1, Geol. Surv. Can., Pap. 87-2, p. 73-80.
- Bradley, M.D. (1978): Assessment Report 19780011, 1978 Diamond Drill Program on Quartz Mineral Exploration Permits #229, 230, 231 near Keane River in Northern Alberta NTS 74L/7 58°15'-30' North Latitude 110°45'-111° West Longitude, BP Minerals Limited, 83 p.
- British Columbia Ministry of Energy and Mines (2013): Industrial Rocks, Geoscience, URL <<u>http://www.empr.gov.bc.ca/Mining/Geoscience/MineralDepositProfiles/ListbyDepositGroup/Pages/</u><u>RIndustrialRocks.aspx</u>> [March 2014].
- Brown, T., Mankelow, J. and Cameron, D. (2013): Construction aggregates, Mineral Planning Factsheet, Communities and Local Government, Birtish Geological Survey, Natural Environment Research Council, 31 p.
- Burwash, R.A., McGregor C.R. and Wilson, J. (1994): Precambrian Basement Beneath the Western Canada Sedimentary Basin; *in* Geological Atlas of the Western Canada Sedimentary Basin, G.D. Mossop and I. Shetsen (comp.), Canadian Society of Petroleum Geologists and Alberta Research Council, URL <<u>http://www.ags.gov.ab.ca/publications/wcsb_atlas/atlas.html</u>> [February 2014].
- BVML (2014): 2014 Schedule of Services and Fees (CDN), Bureau Veritas Mineral Laboratories, 42 p., URL <<u>http://acmelab.com/pdfs/FeeSchedule-2014.pdf</u>> [May 2014].
- Canadian Standards Association (2009): A23.1-09/A23.2-09 Concrete materials and methods of concrete construction/Test methods and standard practices for concrete, Canadian Standards Association, 674 p.
- Carrigy, M.A. (1959): Geology of the McMurray Formation. Research Council of Alberta, Alberta Geological Survey, Memoir No. 1.
- Collier, B. (2005): Sequence Stratigraphy and Its Use for Uranium Exploration in the Western Athabasca Basin of Alberta and Saskatchewan. Alberta Energy and Utilities Board, ERCB/AGS Earth Sciences Report 2004-01, 38 p.
- Conference Board of Canada (2012): Fuel for thought: The economic benefits of oil sands investment for Canada's regions, Economic Performance and Trends, Economic Report, October 2012, 84 p.
- Dahrouge, J.R. (2004): 2004 Exploration and fieldwork for high-calcium limestone along Athabasca and Clearwater Rivers near Fort McMurray, northeast Alberta. Graymont Western Canada Inc. MIN20040022, 111 p.
- De Paoli, G.R., Arden, K.M., Rose, S.R., Abercrombie, H.J. and Johnson, B. (2000): Assessment Report: Birch Mountain Resources Ltd., Athabasca metallic and industrial mineral permits, northeastern Alberta. MIN 20000008, 2,005 p.
- Dolar-Mantuani, L. (1983): Handbook of Concrete Aggregates, a Petrographic and Technological Evaluation. Park Ridge, NJ, Noyes Publications.

- Downing, D.J. and Pettapiece, W.W. (2006): Natural Regions and Subregions of Alberta. Government of Alberta Pub. No. T/852.
- DNI Metals Inc. (2013): DNI reports positive Preliminary Economic Assessment for its Buckton Polymetallic Ni-Co-Zn-Cu-U-REE-Y black shale deposit, Alberta. News Release, December 5, 2013.
- Dufferin
 Aggregates
 (2014):
 2014
 Price
 Lists,
 URL

 <<u>https://www.dufferinrockstar.com/irj/portal/anonymous?standAlone=true&windowId=WID14013050</u>
 25875> [May, 2014]
- Dufresne, M.B., Henderson, B.A., Fenton, M.M. and Richardson, R.J.H. (1994): The mineral deposits potential for the Marguerite River and Fort McKay areas, northeast Alberta, Alberta Geological Survey, Open File Report 1994-09, 128 p.
- Dyke, A.S. and Prest, V.K. (1987): Late Wisconsinan and Holocene Retreat of the Laurentide Ice Sheet; Geological Survey of Canada, Map 1702A, scale 1:5 000 000.
- Dyke, A.S., Andrews, J.T., Clark, P.U., England, J.H., Miller, G.H., Shaw, J. and Veillette, J.J. (2002): The LAurentide and Innuitian ice sheets during the Last Glacial Maximum. Quaternary Science Reviews, v. 21, p. 9-31.
- Eccles, D.R. (2011): Northern Alberta Kimberlite Province: the first 20 years. Alberta Geological Survey, Bulletin 65, 119 p.
- Eccles, D.R., Nicholls, S. and Dufresne, M.B. (2013): National Instrument 43-101 Technical Report, Maiden Inferred Crush Rock Aggregate Resource Estimate for the Richardson Property, Northeast Alberta, Canada 119 p. Effective date: 23 June, 2014.
- Eccles, D.R., Atkinson, B. and Nicholls, S. (2014): National Instrument 43-101 Technical Report, Consolidated and updated inferred resource estimate for the Buckton Zone, SBH Property, northeast Alberta, 135 p. Effective date: 9 January, 2013.
- Edwards, W.A.D. (1995): Mineral aggregate commodity analysis. Alberta Geological Survey, Open File Report 1995-08, 70 p.
- Energy Resources Conservation Board (1990): Alberta's reserves of crude oil, oil sands, gas, natural gas liquids and sulphur at December 31, 1989. Alberta Energy Resources Conservation Board, Calgary, Alberta, 365 p.
- Energy Resources Conservation Board, ERCB ST-98 (2011): Alberta's Energy Reserves 2010 and Supply / Demand Outlook 2011-2020, June 2011.
- Feng, R. and Abercrombie, H.J. (1994): Disseminated Au-Ag-Cu mineralization in the Western Canada Sedimentary Basin, Fort MacKay, northeast Alberta: A new gold deposit type; *in* Current Research 1994-E; Geological Survey of Canada, p. 121-132.
- Fenton, M.M., Waters, E.J., Pawley, S.M., Atkinson, N., Utting, D.J., Mckay, K. (2013): Surficial Geology of Alberta; Alberta Research Council, Alberta Geological Survey, Map 601, scale 1:1,000,000.
- Fookes, P.G. (1980): An Introduction to the Influence of Natural Aggregates on the Performance and Durability of Concrete; *in* Quarterly Journal of Engineering Geology, v. 13, p. 207-229.
- Fortuna, P. (1979): Assessment Report 19790004, Project 508, Northeastern Alberta Report on Winter Exploration 1979, Volume 1 Text and Appendices, Eldorado Nuclear Limited, Exploration Division, 178 p.

Fox, J.C. (1980): Sand and gravel resources of the Athabasca Oil Sands Region, northeastern Alberta. Alberta Research Council, Open File Report No. 1980-7, 32 pp. and 1:250 000 scale map.

Frantz, R.H. (1969): Summary report, sulfur photogeological study, Athabasca River area, northeastern Alberta. Prepared for Atlantic Richfield Company. MIN19690075, 34 p.

Freas, R.C., Hayden, J.S. and Pryor Jr., C.A. (2006): Limestone and Dolomite; in Industrial Minerals & Rocks, Commodities, Markets and Uses, 7th Edition, Kogel, J.E, Trivedi, N.C., Barker, J.M. and Krukowski, S.T. (eds.), Part Two: Commodities, CD-ROM, p. 581-597.

- Government of Canada (2014): Climate, URL <http://climate.weatheroffice.gc.ca> [February 2014]
- Graymont Limited (2013): About Graymont Overview, URL <<u>http://www.graymont.ca/about.shtml</u>> [April, 2014].
- Hack, D.R. and Bryan, D.P. (2006): Aggregates, Construction Uses; in Industrial Minerals & Rocks, Commodities, Markets and Uses, 7th Edition, Kogel, J.E, Trivedi, N.C., Barker, J.M. and Krukowski, S.T. (eds.), Part Two: Commodities, CD-ROM, p. 1106-1119.
- Halbertsma, H.L. (1994): Devonian Wabamun Group of the Western Canada Sedimentary Basin; *in* Geological Atlas of the Western Canada Sedimentary Basin, G.D. Mossop and I. Shetsen (comp.), Canadian Society of Petroleum Geologists and Alberta Research Council, URL http://www.ags.gov.ab.ca/publications/wcsb_atlas/atlas.html [February 2014].

Hammerstone Corporation (2014): Personal Communication [May 23, 2014]

- Hammerstone Corporation (2014): Operations: Limestone Reserves, Accessed at URL: <<u>http://www.hammerstonecorp.com/operations/limestone-reserves</u>> [May 2014].
- Hanmer, S. (1997): Geology of the Striding-Athabasca mylonite zone, northern Saskatchewan and southeastern District of Mackenzie, northwestern territories; Geological Survey of Canada, Bulletin 501, 92 p.

Hartlaub, R.P., Chacko, T., Heaman, L.M., Creaser, R.A., Ashton, K.E. and Simonetti, A. (2005): Ancient (Meso-to Paleoarchean) crust in the Rae Province, Canada: evidence from Sm-Nd and U-Pb constraints. Precambrian Researc, v. 141, p. 137-153.

Highley, D., Bloodworth, A. and Bate, R. (2006): Dolomite, Mineral Planning Factsheet, Natural Environment Research Council, British Geological Survey, 8 p.

Hogg, C.A. L. (1968): Photogeological Study, H.L. Banting sulphur permit 158. MIN19680128, 17 p.

Hopkins, D.A. (2002): Value added refractory dolomite: a case study; in Industrial Minerals and Extractive Industry Geology, Scott, P.W. and Bristow, C.M. (eds.), The Geological Society pf London, p. 167-168.

Humphries, M. (2013): Rare Earth Elements: The Global Supply Chain, Congressional Research Service Report for Congress, Prepared for Members and Committees of Congress, 31 p.

Jacobson, R.P. (1969): Sulfur exploration, Fort McMurray area, Alberta. MIN19690072. 14 p.

- Jefferson, C.W., Thomas, D.J., Gandhi, S.S., Ramaekers, P., Delaney, G., Brisbin, D., Cutts, C., Quirt, D., Portella, P. and Olson, R.A. (2007): Unconformity associated uranium deposits of the Athabasca Basin, Saskatchewan and Alberta; *in* Mineral deposits of Canada: a synthesis of major deposit-types, district metallogeny, the evolution of geological provinces, and exploration methods, W.D. Goodfellow (ed.), Geological Association of Canada, Mineral Deposits Division, Special Publication 5, p. 273–305.
- Jordan River Gravel and Excavating: Price List, URL< <u>http://www.jordanrivergravel.com/pdfs/price-list-2013.pdf</u> > [May, 2014]
- Klein, T.L. and Day, W.C. (1994): Descriptive and Grade-Tonnage Models of Archean Low-Sulphide Au-Quartz Veins and a Revised Grade-Tonnage Model of Homestake Au. Geological Survey, United States Department of the Interior, Open File 94-250, 26 p.
- Knight, R D; Garrett, R G; Russell, H A J. (2011): An assessment of the precision and accuracy of a portable XRF analyzer compared to, fusion ICP-emission spectrometry, and Aqua Regia ICP-mass spectrometry of glaciogenic sediments. GAC-MAC 2011 proceedings.
- Laanela, H. (1977): Assessment Report 19770004, Project 508, North-East Alberta Permits (Quartz Mineral Exploration Permits No's 185, 186, 187, 214, 215, 216, 217 and 218.), Progress Report on the Results of Work Done During Summer 1976 and Winter 1976/1977, Eldorado Nuclear Limited, Exploration Division, File 508-50 (1976/1977), 134 p.
- Laanela, H. (1978): Assessment Report 19780005, Project 508, North-East Alberta Permits (Quartz Mineral Exploration Permits No's 207, 214, 215, 216, 217 and 218.), Progress Report on Results of Work Done During Winter 1978 (January to April, 1978), Eldorado Nuclear Limited, Exploration Division, File 508-09 (1978), 221 p.
- Langer, W. (2001b): Geological considerations affecting aggregate specifications; *in* Proceedings of the 9th Annual Symposium, International Center for Aggregates Research. Austin, TX, International Center for Aggregates Research.
- Langer, W. (2006): Crushed Stone, Aggregates; *in* Industrial Minerals & Rocks, Commodities, Markets and Uses, 7th Edition, Kogel, J.E, Trivedi, N.C., Barker, J.M. and Krukowski, S.T. (eds.), Part Two: Commodities, CD-ROM, p. 171-180.
- Lesemann, J -E; Cummings, D I; Hooke, R B; Kerr, D; Kjarsgaard, B A; Knight, R; Parkinson, W; Russell, H A J; Sharpe, D R. (2011): Increased mineral exploration efficiency through integration of novel mapping approaches, improved dispersal models, and field-based portable XRF analyses. 39th Annual Yellowknife Geoscience Forum, abstracts of talks and posters, Abstracts Volume, p. 107-108
- Lewry, J. and Sibbald, T.I.I. (1977): Variation in lithology and tectonometamorphic relationships in the Precambrian basement of northern Saskatchewan; Canadian Journal of Earth Sciences v.14, p. 1453-1467.
- Linnen R.L., Samson I.M., Williams-Jones A.E. & Chakhmouradian A.R. (2014): Geochemistry of the rare-earth element, Nb, Ta, Hf, and Zr deposits; *in* Treatise on Geochemistry, Second Edition, Elsevier, v. 13, p. 543-568.
- Macoun, J. (1877): Geological and topographical notes on the lower Peace and Athabasca Rivers; Geological Survey of Canada, Report on Progress 1875–1876, p. 87–95.

- McDonough, M.R., McNicoll, V.J. and Schetselaar, E.M. (1995): Age and kinematics of crustal shortening and escape in a two-sided oblique slip collisional and magmatic orogen: Paleoproterozoic Taltson magmatic zone, northeastern Alberta; *in* LITHOPROBE Alberta Basement Transects: Report of Transect Workshop, Calgary, April 10–11, 1995, (ed.) G.M. Ross, LITHOPROBE Secretariat, University of British Columbia, LITHOPROBE Report 47, p. 264–308.
- McDonough, M.R., McNicoll, V.J., Schetselaar, E.M. and Grover, T.W. (2000): Geochronological and kinematic constraints on crustal shortening and escape in a twosided oblique-slip collisional and magmatic orogen, Paleoproterozoic Taltson magmatic zone, northeastern Alberta; Can. J. Earth Sci., v37, p. 1549-1573.
- McNicoll, V.J., Theriault, R.J. and McDonough, M.R. (2000): Taltson basement gneissic rocks:
 U-Pb and Nd isotopic constraints on the basement to the Paleoproterozoic Taltson magmatic zone, northeastern Alberta; Can. J. Earth Sci., v37, p. 1575-1596. McLaughlin, J.P., Woods, K.B., Mielenz, R.C. and Rockwood, N.C. (1960): Distribution, production, and engineering characteristics of aggregates, section 16; *in* Highway Engineering Handbook, Woods, K.B, Berry, D.S. and Goetz, W.H. (eds.), New York, McGraw-Hill, p. 16.1–16.53.
- McMillan, K. (2013): Preliminary interpretation of surficial geology for the area surrounding Athabasca Minerlas Inc.'s Firebag and Richardson Properties. Internal Report prepared by APEX Geoscience Ltd. for Athabasca Minerals Inc.
- McWilliams, G. and Sawyer, D.A. (1977): Assessment Report 19770012, Year-End Report, 1977 Exploration Program, Quartz Mineral Exploration Permits, Northeastern Alberta, Norcen Resources Limited, 66 p.
- McWilliams, G.H., Smith, L.J. and Sawyer, D.A. (1979): Assessment Report 19790010, Year-End Report, 1979 Exploration Program, Richardson River Project, Northeastern Alberta, NTS 74-L-2, 3, 6, 7, 90 p.
- Meijer Drees, N.C. (1980): Description of the Hume, Funeral and Bear Rock formations in the Candex et al. Dahadinni M-43A well, District of Mackenzie. Geological Survey of Canada, Paper 78-17.
- Meijer Drees, N.C. (1990): Sedimentology and facies analysis of Devonian rocks, southern District of Mackenzie, Northwest Territories, Canada. Geologica Ultraiectina No. 63, State University Utrecht, The Netherlands.
- Meijer Drees, N.C. (1994): Devonian Elk Point Group of the Western Canadian Sedimentary Basin; *in* Geological Atlas of the Western Canada Sedimentary Basin, G.D. Mossop and I. Shetsen (comp.), Canadian Society of Petroleum Geologists and Alberta Research Council, URL <<u>http://www.ags.gov.ab.ca/publications/wcsb_atlas/atlas.html</u>> [February 2014].
- Moore, P.F. (1988): Devonian geohistory of the western interior of Canada; *in* Devonian of the World, Proceedings of the Second International Symposium on the Devonian System. N.J. McMillan, A.F. Embry and D.J. Glass (eds). Calgary, Canadian Society of Petroleum Geologists, Memoir 14, v. I, p. 67-83.
- Morrow, D.W. and Cook, D.G. (1987): The Prairie Creek Embayment and lower Paleozoic stratigraphy of the southern Mackenzie Mountains. Geological Survey of Canada, Memoir 412.
- Morrow, D.W. and Geldsetzer, H.H.J. (1988): Devonian of the eastern Canadian Cordillera; *in* Devonian of the World, Proceedings of the Second International Symposium on the Devonian System. N.J. McMillan, A.F. Embry and D.J. Glass (eds.). Calgary, Canadian Society of Petroleum Geologists, Memoir 14, v. I, p. 85-121.

- Mossop, G.D. and Shetsen, I., comp. (1994): Geological atlas of the Western Canada Sedimentary Basin; Canadian Society of Petroleum Geologists and Alberta Research Council, URL <<u>http://www.ags.gov.ab.ca/publications/wcsb_atlas/atlas.html</u>> [February 2014].
- National Energy Board (2014): Canada's Energy Future: Energy Supply and Demand Projections to 2035 - Crude Oil and Bitumen Highlights. Accessed on 13 June 2014 at < <u>http://www.neb-one.gc.ca/clf-nsi/rnrgynfmtn/nrgyrprt/nrgyftr/2011/fctsht1134crdl-eng.html</u>>.
- Natural Resources Canada (2014); Canadian Mineral Production, Statistics Canada Information Bulletin, Date Modified: 2014-04-17. Accessed on 13 June 2014 at < <u>http://www.nrcan.gc.ca/mining-materials/publications/8772</u> >.
- Norford, B.S., Haidl, F.M., Bezys, R.K., Cecile, M.P., McCabe, H.R. and Paterson, D.F. (1994): Middle Ordovician to Lower Devonian Strata of the Western Canada Sedimentary Basin; *in* Geological Atlas of the Western Canada Sedimentary Basin, G.D. Mossop and I. Shetsen (comp.), Canadian Society of Petroleum Geologists and Alberta Research Council, URL <<u>http://www.ags.gov.ab.ca/publications/wcsb_atlas/atlas.html</u>> [February 2014].
- Norris, A.W. (1963): Devonian stratigraphy of northeastern Alberta and northwestern Saskatchewan; Geological Survey of Canada, Memoir 313, 168 p.
- Oldale, H.S. and Munday, R.J. (1994): Devonian Beaverhill Lake Group of the Western Canadian Sedimentary Basin; *in* Geological Atlas of the Western Canada Sedimentary Basin, G.D. Mossop and I. Shetsen (comp.), Canadian Society of Petroleum Geologists and Alberta Research Council, URL <<u>http://www.ags.gov.ab.ca/publications/wcsb_atlas/atlas.html</u>> [February 2014].
- Orr, R.G. (1986): Assessment Report 19860002, Assessment Report for Mineral Exploration Permits 6884100001, 6884100002, and 6884120001 for Work Completed During the Period of October 16, 1984 to July 1, 1986, Uranez Exploration and Mining Limited, 771 p.
- Orr, R.G. (1989): Assessment Report 19890003, Assessment Report for Mineral Exploration Permits 6884100001, 6884100002, 6884120001, 6886050002, 6886050003, 6886050005, 6886050006, and 6887090002. Located in Townships 104 Through 110 Inclusive, Ranges 1 Through 6 Inclusive, W4M. For Work Completed During the Period of July 1, 1986 to December 31, 1988, Uranez Exploration and Mining Limited, 1284 p.
- Orr, R.G. (1991): Assessment Report 19900003, Assessment Report for Mineral Exploration Permits 6884100001, 6884100002, 6884120001, 6886050004, 6886050005, 6886050006, 6887090002, 6888030001, 6888030002, 6888030003, 6888030004, 6888030005, 6888040001, 6888040002, 6888040003, 6888040004, 6888040005, 6888040006, 6888040007, 6888040008. Located in Townships 104 to 110 Ranges 1 to 5, W4M. For All Un-Reported Work Lip to December 31, 1990, Uranez Exploration and Mining Limited, File 1990ASR1.wp, 476 p.
- Orr, R.G. and Robertshaw, P. (1989): Assessment Report 19890004, Assessment Report for Mineral Exploration Permits 6884100001, 6884100002, and 6884120001. Located in Townships 104, 105 and 106, Ranges 4 and 5, W4M. For Work Completed During the Period of January 1, 1989 to September 30, 1989, Uranez Exploration and Mining Limited, 165 p.
- Pană D.I. (2003): Precambrian basement of the Western Canada Sedimentary Basin in northern Alberta; Alberta Energy and Utilities Board, EUB/AGS Earth Sciences Report 2002-02, 39 p.

- Pană, D. and Olson, R.A. (2009): Overview of uranium exploration work along the northern rim of the Athabasca Basin, northeastern Alberta; Energy Resources Conservation Board, ERCB/AGS Open File Report 2009-19, 228 p.
- Polaris Minerals Corporation (2014): Annual Report for Year Ended December 31, 2013; Canadian Securities Administrators, SEDAR public securities filings, Annual report, 52p. URL <<u>http://www.sedar.com/CheckCode.do</u> > [May 2014].
- Poscente, M. and Kurjata, K. (2013): Got Gravel? Strategies to Secure Gravel for Rural Municipalities - Part 2 - Technical Report, Alberta Association of Municipal Districts and Counties, September 2013.
- Prior, G.J., Hathway, B., Glombick, P.M., Pana, D.I., Banks, C.J., Hay, D.C., Schneider, C.L., Grobe, M., Elgr, R., and Weiss, J.A. (2013): Bedrock Geology of Alberta (GIS data, polygon features); Alberta Geological Survey, Alberta Energy Regulator. URL < <u>http://www.ags.gov.ab.ca/publications/MAP/PDF/MAP_600.pdf</u>> [April 2014]
- Ramsay, D.M., Dhir, R.K., and Spence, I.M. (1974): The Role of Rock and Clast Fabric in the Physical Performance of Crushed-Rock Aggregate; *in* Engineering Geology, v. 8, p. 267-285.
- Roberts, F. L., Kandhal, P. S., Brown, E. R., Lee, D. -Y., and Kennedy, T. W. (1996): Hot Mix Asphalt Materials, Mixture Design, and Construction, NAPA Research and Education Foundation, Lanham, Maryland, 585 p.
- Ross, G.M., Parrish, R.R. Villeneuve, M.E., and Bowring, S.A. (1991): Geophysics and geochronology of the crystalline basement of the Alberta Basin, western Canada; Canadian Journal of Earth Sciences, v. 28, p. 512–522.
- Ross, G.M., Broome, J. and Miles, W. (1994): Potential fields and basement structure Western Canada Sedimentary Basin; *in* Geological Atlas of the Western Canada Sedimentary Basin, G.D. Mossop and I. Shetsen (comp.), Canadian Society of Petroleum Geologists and Alberta Research Council, URL <<u>http://www.ags.gov.ab.ca/publications/wcsb_atlas/atlas.html</u>> [March 2014].
- Roy, C.J., Thomas, L.A., Weissmann, R.C., and Schneider, R.C. (1955): Geologic Factors Related to Quality of Limestone Aggregates; *in* Highway Research Board Proceedings **#** 362, Washington, D.C., p. 400-412.
- Ruzicka, V. (1997): Metallogenetic features of the uranium-polymetallic mineralization of the Athabasca Basin, Alberta, and a comparison with other parts of the basin; in Macqueen, R.W., ed., Exploring for Minerals in Alberta; *in* Geological Survey of Canada geoscience contributions, Canada-Alberta Agreement on mineral development (1992-1995), Geological Survey of Canada, Bulletin 500, p. 31-72.
- Scafe, D.W., Edwards, W.A.D. and Boisvert, D.R. (1988): Sand and gravel resources of the Fort McMurray area; Alberta Geological Survey, Open File Report 1988-16, 84 p.
- Scafe, D.W. and Edwards, W.A.D (2000a): Sand and gravel resources of Waterways Map Area (NTS 74D); Alberta Research Council; Alberta Geological Survey, Map 390, Scale 1:250 000.
- Scafe, D.W. and Edwards, W.A.D (2000b): Sand and gravel resources of Bitumount Map Area (NTS 74E); Alberta Research Council; Alberta Geological Survey, Map 425, Scale 1:250 000.
- Schneider, C.L., Grobe, M. and Hein, F.J. (2013): Outcrops of the La Loche, Contact Rapids, and Keg River Formations (Devonian) on the Clearwater River: Alberta (NTS 74D/9) and

Saskatchewan (NTS 74C/12), Energy Resources Conservation Board, Alberta Geological Survey, ERCB/AGS Open File Report 2012-20, 43p.

- Shakoor, A., West, T.R., and Scholer, C.F. (1982): Physical Characteristics of Some Indiana Argillaceous Carbonates Regarding Their Freeze-Thaw Resistance in Concrete; *in* Bulletin of the Association of Engineering Geologists, v. 19, p. 371-384.
- Sherwin, D.F. (1962): Lower Elk Point section in east-central Alberta; Journal of the Alberta Society of Petroleum Geologists, vol. 10, no. 4, p. 185–191.
- Sibbald, T.I.I. (1974): Reconnaissance geological survey of 74-C-NW and 74-C-NE; in Armitage, A. (2013): Technical Report on the Patterson Lake, Patterson Lake South and Clearwater West Properties, Fission Uranium Corp. and Fission Energy Corp. 132p.
- Skelton, D. and Bursey T. (2000): Assessment Report Athabasca (AL07), Lesser Slave (AL08), and Whitemud Hills (AL09) Properties; Alberta Energy, Mineral Assessment Report 20000002, 584 p.
- Slimmon, W.L. (2013): Geological Atlas of Saskatchewan; Saskatchewan Ministry of Energy and Resources, Saskatchewan Geological Survey, Misc. Rep. 2013-7, CD-ROM, version 16.
- Smith, D.G. (1994): Glacial Lake Mcconnell: Paleogeography, Age, Duration, and Associated River Deltas, Mackenzie River Basin, Western Canada; Quaternary Science Reviews, v. 13, p. 829-843.
- Smith, D.G. and Fisher, T.G. (1993): Glacial Lake Agassiz: the Northwestern Outlet and Paleoflood; Geology, v. 21, p. 9-12.
- Sproule, J.C. and Associates Ltd. (1968): Reconnaissance report, sulphur prospecting permits nos. 184-192, Biluminous sand permits nos. 82-93. Fort McMurray area, Alberta. MIN 19680149, 40 p.
- Switzer, S.B., Holland, W.G., Christie, D.S., Graf, G.C., Hedinger, A.S., McAuley, R.J., Wierzbicki, R.A. and Packard, J.J. (1994): Devonian Woodbend-Winterburn Strata of the Western Canada Sedimentary Basin; *in* Geological Atlas of the Western Canada Sedimentary Basin, G.D. Mossop and I. Shetsen (comp.), Canadian Society of Petroleum Geologists and Alberta Research Council, URL <<u>http://www.ags.gov.ab.ca/publications/wcsb_atlas/atlas.html</u>> [February 2014].
- Taylor S. R. and McLennan S. M. (1985): The Continental Crust: Its Composition and Evolution. Blackwell, Oxford.
- Thériault, R.J. and Bostock, H.H. (1989): Nd isotopic studies in the ~1.9 Ga Taltson Magmatic Zone, NWT; Geological Association of Canada–Mineralogical Association of Canada, Program with Abstracts, v. 14, p. A10.
- Thériault, R.J. and Ross, G.M. (1991): Nd isotopic evidence for crustal recycling in the ca. 2.0 Ga subsurface of Western Canada. Canadian Journal of Earth Sciences, v. 28, p.1140-1147

Tremblay, L.P. (1982): Geology of the Uranium Deposits Related to the Sub-Athabasca Unconformity, Saskatchewan. Geological Survey of Canada, Paper 81-20.

Walker, T. (1980): Assessment Report 19800001, Wood Buffalo Project, Quartz Mineral Exploration Permits 6878110001 and 6878110002, Summary Report of 1980 Exploration Activities, SMD Mining Co. Ltd., 42p.

- Wardlaw, N.C. and Watson, D. (1966): Middle Devonian salt formations and their bromide content, Elk Point area, Alberta. Canadian Journal of Earth Sciences, v. 3, p. 263.
- Wright, G.N., McMechan, M.E. and Potter, D.E.G. (1994): Structure and architecture of the Western Canada Sedimentary Basin; *in* Geological Atlas of the Western Canada Sedimentary Basin, G.D. Mossop and I. Shetsen (comp.), Canadian Society of Petroleum Geologists and Alberta Research Council, URL <<u>http://www.ags.gov.ab.ca/publications/wcsb_atlas/atlas.html</u>> [March 2014].
- U.S.B.R. (1974): Earth Manual. U.S. Department of Interior Bureau of Reclamation: A Water Resources Technical Publication, 810 p.
- Yeats, C.J. and Vanderhop, F. (1998): Archean Lode Gold Deposits. AGSO Journal of Australian Geology & Geophysics, v. 17, issue 4, p. 253-258.

15 Certificate of Author

I, D. Roy Eccles, P.Geol, do here by certify that:

- 1. I am currently Senior Consulting Geologist and Operations Manager with APEX Geoscience Ltd., Suite 100, 9797 45th Avenue, Edmonton, Alberta T6E 5V8
- 2. I graduated with a B.Sc. in Geology from the University of Manitoba in Winnipeg, Manitoba in 1986 and with a M.Sc. in Geology from the University of Alberta in Edmonton, Alberta in 2004.
- 3. I am and have been registered as a Professional Geologist with the Association of Professional Engineers, Geologists and Geophysicists of Alberta since 2003.
- 4. I have worked as a geologist for more than 25 years since my graduation from university and have been involved in all aspects of mineral exploration and mineral resource estimations for metallic and industrial mineral projects and deposits in North America.
- 5. I have read the definition of "Qualified Person" set out in National Instrument 43-101 ("NI 43-101") and certify that by reason of my education, affiliation with a professional association (as defined in NI 43-101) and past relevant work experience, I fulfill the requirements to be a "Qualified Person" for the purposes of NI 43-101.
- 6. I supervised and am responsible for the "Assessment Report for Athabasca Minerals Inc.'s Richardson Property, Northeastern Alberta". I have had prior involvement with the Property, but have not recently visited the Property. I have reviewed 2013 and 2014 drill core from the Richardson Property.
- 7. I consent to the filing of the Assessment Report with the regulatory authority and any publication by them for regulatory purposes, including electronic publication in the public company files or their websites, following the one-year confidentiality period.

Dated May 25, 2015 Edmonton, Alberta, Canada

D. Roy Eccles, M.Sc., P.Geol.

I, Bryan Roy Atkinson, B.Sc., P.Geol., MAusIMM, do hereby certify that:

- 1. I am a senior geologist with APEX Geoscience Ltd., Suite 100, 9797 45th Avenue, Edmonton, Alberta T6E 5V8.
- 2. I graduated with a B.Sc. with Specialization in Geology from the University of Alberta in 2004.
- 3. I am and have been registered as a Professional Geologist with the Association of Professional Engineers, Geologists and Geophysicists of Alberta since 2008.
- 4. I have worked as a geologist and practiced my profession for more than eight years since my graduation from university and have been involved in mineral exploration, mine site geology and operations and mineral resource estimations on numerous projects and deposits in Canada, the United States, Mexico, South America, Africa, Australia, Indonesia and Saudi Arabia.
- 5. I have read the definition of "Qualified Person" set out in National Instrument 43-101 ("NI 43-101") and certify that by reason of my education, affiliation with a professional association (as defined in NI 43-101) and past relevant work experience, I fulfill the requirements to be a "Qualified Person" for the purpose of NI 43-101.
- 6. I was involved in the preparation of this report. More specifically, under the direct supervision of Roy Eccles, M.Sc., P.Geol., I contributed to the portions pertaining to drilling and drill core in Sections 8 '2013-2014 Exploration Work and Methodologies,' 9 'Results,' 13 'Recommendations' of the "Assessment Report for Athabasca Minerals Inc.'s Richardson Property, Northeastern Alberta".
- 7. I supervised Athabasca Minerals 2014 drill program and was on the Richardson Property between February 4th and 26th, 2014. I logged all drill cores from Athabasca Minerals 2013 and 2014 drill campaigns, and supervised the geotechnical measurements and sampling.
- 8. I consent to the filing of the Assessment Report with the regulatory authority and any publication by them for regulatory purposes, including electronic publication in the public company files or their websites, following the one-year confidentiality period.

Dated May 25, 2015 Edmonton, Alberta, Canada

Bryan R. Atkinson, B.Sc., P.Geol., MAusIMM

I, Steven J. Nicholls, MAIG., do here by certify that:

- I am currently employed as a Resource Geologist with: APEX Geoscience Australia Pty Ltd. 39B Kensington St East Perth WA Australia 6004
- 2. I graduated with a Bachelor of Applied Science (BASc.) in Geology, received from the University of Ballarat, Victoria, Australia in 1997.
- 3. My professional affiliation is member of the Australian Institute of Geoscientists, Australia (AIG).
- 4. I have worked as a geologist for more than 13 years since my graduation from university.
- 5. I have read the definition of "Qualified Person" set out in National Instrument 43-101 ("NI 43-101") and certify that by reason of my education, affiliation with a professional association (as defined in NI 43-101) and past relevant work experience, I fulfill the requirements to be a "Qualified Person" for the purposes of NI 43-101.
- 6. I was involved in the preparation of this report. More specifically, under the direct supervision of Roy Eccles, M.Sc., P.Geol., I prepared Section 10 'Mineral Resource Estimate' of the "Assessment Report for Athabasca Minerals Inc.'s Richardson Property, Northeastern Alberta".
- 7. I consent to the filing of the Assessment Report with the regulatory authority and any publication by them for regulatory purposes, including electronic publication in the public company files or their websites, following the one-year confidentiality period.

Dated May 25, 2015 Edmonton, Alberta, Canada

Steven J. Nicholls, BASc., MAIG.

PART C- Appendices

Appendix 1 – 2013-2014 Drill Collar Summary

		Location	(UTM,									
		Z12,	NAD83)		1	Depth to Form	ation top (m)			Thickne	ss of units (m)
								B ernen b eien			Contact	
	Year	Easting	Northing			Contact		Precamorian			Contact	
Drillhole ID	drilled	(m)	(m)	Elevation (m)	Winnipegosis	Rapids	La Loche	basement	Total hole depth (m)	Winnipegosis	Rapids	La Loche
GNA-05	2013	494542	6413258	295	n/a	n/a	n/a	n/a	29.5	n/a	n/a	n/a
GNA-10	2013	498134	6415333	288	21.34	65.00	75.60	76.12	101.0	43.66	10.60	0.52
GNA-11	2013	496912	6415967	283	18.00	n/a	n/a	n/a	21.0	n/a	n/a	n/a
GNA-16	2013	501617	6415414	313	47.80	82.69	n/a	n/a	83.6	34.89	n/a	n/a
14RLD001	2014	499488	6415279	295	31.33	77.30	92.48	94.37	105.0	45.97	15.18	1.89
14RLD002	2014	500722	6416094	301	30.00	77.94	90.76	92.44	100.0	47.94	12.82	1.68
14RLD003	2014	500142	6415875	301	39.00	73.98	81.22	85.96	96.0	34.98	7.24	4.74
14RLD004	2014	498872	6415401	296	30.00	73.16	83.76	84.98	96.0	43.16	10.60	1.22
14RLD005	2014	497988	6414715	296	30.00	77.05	84.39	86.88	117.0	47.05	7.34	2.49
14RLD006	2014	497390	6413931	296	41.45	83.80	93.96		95.0	42.35	10.16	n/a
14RLD007	2014	497733	6414269	295	39.00	85.70	97.96	98.65	144.0	46.70	12.26	0.69
14RLD008	2014	497361	6414972	294	64.92	73.22	80.26	83.00	89.0	8.30	7.04	2.74
				Overburden average thickness:	35.71				Average thickness:	39.50	10.36	2.08

Appendix 2 – 2013-2014 Drill Logs

Marie ED BNUL-10	Earting (L/Tal) 496124.0	Nuclidag (L/TM) 6415E34.0	A	Dip	Total Dupth 40.0 101.00	Buestian 0 281-00	Tatget Area References	Farget Referigen	Contractor Lone Peak	Drill Ng	Drilling Start Date 1-Feb-201	Drilling End Date			
Lagged by BA	Date 20-Mar-2014	Logging God Calm 25-May-2023	Careling 23.34	Case Sign	Caller Sarray 7900	Coller Servey Date	Lagard By	Denstructer Corry Wy Claffer BA	Describule Servey By	_					
DOH	From	To	Lith Code	Lith Name	LINZ	Formation	Testrine Type	Texture Intentity	Lith Calave Cade	Nodules	Nodele %	Foull Type	Shume	Altera	ton Description
GMA-10	0.00	21 34	08	Overburden		IOV8			1	1		1	-	-	
GMA-10	21.34	28.10	C-001	Calcareous Dolenste	465	ww	FS	w	it term			CM	witten		Light to madium brown mudstore with minor (0-15cm weckestone interheds. Minor men to cm scale wap- open to bitumen liked. Minor the fractures scaled with bitumen. Rare dark wery organic layers
GMA-10	28.30	32.40	C-00L	Calcansows Dollonnite	AKS .	WIN	PS	W	med brn			BAP.	mar	-	Medium brown fine graned multitone with scattared shall fragments. Minor vugs infiliad with bitumen. Medium gray delonitic muditone interbeds.
GRA-10	12.40	42.46	C-00L	Calcareous Delomite	-	WIN	DIS	м	anter			CN	mer		Davis organic rich mudicione with Per badding. Rure isolated on scale vigit lifeumen coating fractures. Rare 2-10cm rupper constr. Minor 10cm eachestone interbads.
GRA-10	42.06	43 02	C-00L	Calcureous Dolomite	WS	99395	F5	3	a bra			CN	10.02	-	Crisoidal uscheritone with abundant organic shelly debris. Minor gastropid shall fragments. Organic shaly ismurae. Bit ument unfilling fractures.
GRA-10	43.02	43.85	C-00L	Calcaraous Dolomity	945	WIN	FS .	W	med brn			CN	NUMPINE		Maskum brown fine graned mutitione with mnor scattered crinoids. Mm scale vigs infiled with bitumen. Fait bridding. Misor small brachopods.
GNA-10	43.45	44.73	C-00L	Calcareous Dolovnite	WS	WIN	FS .	5	drk ørn			CN	MAR	-	Crososial weckestone with abundant shell and corel fragments. Euhedral delomite rhombs. Munor dissolution waps Bitumen along fractures.
GNA-10	44.73	46.44	C-001	Calcargous Dolonske	Ats	TWIN	PS	m	med brn			CN	mne	-	Medium brown fine grained muditione with minor thin wackestone interbads. Rare 2-5cm coral fragments. Ret to wavy badding.
GNA-10	46.64	45.68	C-00L	Calcareous Dolonnike	495	WIN	FS	vis	h gry			CN	vmnr	here	Light grey crinoidal packstone with abundant coral and shall fragments. Exhedral dolomite mombs. Bit urean along manor fractures.
GNA-10	45.55	48.33	C-DOL	Calcaraous Dalomite	ans	WW	FS		med brn		1	K	VINI		Medium brown solomitic mutations with wavy to plater organic bedding. En scale carel fragments and small amond occides. Large way at 47.77m casted with try calote and dusty Py
Gha-10	48.32	45 22	C-DOL	Calcareous Dolomite	WS	WW	FS .	5	med brn			CN	vmot	1	Medium brown crinoidal wackestone with 5-10% of the fossil component being rugose caral fragments. Moderata wavy black organic lanvinae
GNA-10	49.22	58.42	C-DOL	Calcareous Dolonnite	MS	WIN	P5	w	med brn	Dolomite		S CN			Wavy to chaotic badded doloatione. Mottled medium to dark dusky brown with common light brown Scm pregular siderite nedules.
GNA-10	58.62	\$1.00	C-00L	Calcareous Delonste	ws	WIN	FS.	w	R.WY			CN		1	Light grey dolomitic weckestone Fossile are typically less than Smin. Wavy black organic badding / laminae
GNA-10	61.00	62.73	C-001	Calcersous Dolomba	WS	WW	FS	5	R brn		-	CN			Light grey crinoidal wachestone with moderate shall fragmants. Wavy organic laminae.
GNA-10	62.73	64.17	C-00L	Calcareous Dolomita	WS	WIN	F5	w	it peak gry			CN			Light pinitish grey mettled dolomitic mud / sinclestone. Shell fragments and disturbed bedding.
GNA-10	64.17	64 58	D-sktsh	Dolomitic silty shale	MS	WIN	LA	5	en .						Crey fine graned lammated dolomitic madatona. Devoid of fossila.
GNA-10	64.50	65 00	C-00L	Calcareous Dolomite	195	WW	9.X	1/5	gen gry			te	1000	1	Dinbrucated dolomite braccia with elongete braccia clasts shell fragments and mudatone.
GMA-30	65.00	66.06	C-00L	Calcantous Dolomite	MS	CR	15	3	Gry			CN		1	Interbedded dolomitix muddone with strongly lamenated dolomitix sitistone and wackestone
OP64-10	66.06	75.60	O-shalat	Dolornity; shaly sillatone	55	CR	SW	M	R grabra						Light, greenish brin dolomitos inudatona with2 -10cm wide aninydrize visit stochworking.
CINA-10	75.60	76 12	Gr-tran	Granite Weah - Transition	nal MS	L	8x	5.0	blue gry	1			1	1	fractured grante with dolomitic mudstone infling fractures
KINA-10	76.12	77.83	Gr	Granite		8.564	MS	M	blue gry		1			1	Blue gray massive to weakly foliated grante. Blue quartz and feldspar phenos Foliation defined by biotite
GINA-10	77.63	\$2.05	Gr .	Granite		05M	MS		pinky blue gray					x	Variably potsuaic altered weakly folketed grante. K-alt is evidenced by increased bio content and pink staining of feldspars. Small time of albete elteration at 79 #51s 78 80 m. Coarse quarts and plag phenos.
GNA-10	\$2.05	#3.90	a.	Granita		8544	PES	5	gunit	-				x	Coarse grained pagmatte - devoid of bio except proximal to velve and fractures. Strong to perveive K-ait. 5 cm blook dtt vein et 92.45 m - bio nich foot wall. End of interval is marked by a 15 cm black maxime quarts velv.
GNA-10	\$9.90	101.00	Gr	Grante		85M	MS	u	pinky blue grey to black					x	Variably potassic altered weakly foliated grante. K-ak is endenced by increased bio contant and pink staring of foldspars. Coarse quarts and ping phenox.

Longing

UUH .	per com	110	D-Mandada LP	Providence Link	1.99	Tea and the	PLONDAT .	and second second second	-	and the second second				the second se
GNA-10	36.00	27.00	263103	1.00	3/4	a succession of the								
GNA-10	32.00	38.00	263102	1.00	3/4									
GNA-10	82.00	68.00	263108	1.00	1/4									
GNA-10	38.09	60.00	263104	1.00	1/4									
GNA-10	77.00	79.00	263105	2.00	1/4		-						1	
GRA-10	29.40	81.00	263306	2.00	1/4		10 - C - C - C - C - C - C - C - C - C -					· · · · · · · · · · · · · · · · · · ·		and the second se
GNA-10	81.00	E1 00	269107	2.00	3/4		-				1		1	
GNA-10	85.00	#5.00	263106	2.00	3/4	-								
GNA-10	25.00	47.00	268109	1.00	2/4				-					
GNA-10	\$7.00	29.00	263110	2.00	2/6	1.0								
GNA-10	60.00	91.00	263311	2.00	2/6	-		-	-			-	1.	
GNA-10	11.09	92.05	2633322	1.05	2/4							·		
GNA-10	18.05	96.90	263113	1.85	1/4									_
GRA 10	98.50	96.00	263114	210	1/4	1.000							1.00	_
GALA 10	95.09	98.00	263115	2.00	1/6	1	1					-		
CALL 10	50.00	101.00	MANNA	1.00	3/8		-	1					1	

										and successful the succes					
Hele ID	Eset (UT	ting Tal)	Northing (LITTM)	Astrouth	Dip	Total Depth	Broties	Torget Area	Target	Contractor	Drill Hig Dri	ling Start Cata	Drilling End Date		
GNA 11	49	6917.0	6415956.0	0.0	-80.0	18.50	263.8	0 Richardison	Richardson	Lone Pask	3	27-Jan-2013			
Logged By	Lagging	g Start	Lugging End Date	Casing	Core Nas	Collar Survey Type	Collar Survey Date	Logged By	Deveniusie Survey Deta	Deveninale Survey By					
BA .	26-Ma	r-2014	26-Mar-2012	18.00	HQ	695	- 1	1000	NA	NA	_	_		1	
DON	Prem	1	le l	Lith Code	Link Human	UNA	Permetion	Texatre Type	Testure Intemplay	Juin Colour Code	Western Start	inder 16	Found Type	Olumor	Alterative Description
GNA-11		0.000	18.00	CAS	Caller		OVB	¥	Contraction of the second	15	1 St. 276 - 264		01000200000		V. School Costing - no recovery.
GRA-11		14	19.50	DOL	Dolestone	15	weeks	ax.	m	belge			asta	mod	where galaxits bruch bruch deviaded with flaststane to wecknetere. Fourtifican bruche bruche abundant streatoporeids and lesser crivate. We vy to chaotic bedding
		-										-			

Hereal Name

Hele ID GNA-16	Easting (UTM) 501516.0	Northing (UTM) 6415401.0	Azimuth 0.0	Dip d	Tetal Depth 90.0 83.6	Elevation 0 309.0	Target Aree D Richardson	Target Richardson	Confractor Love Peak	Delli Rig	Drilling Start Date S-Feb-201	Drilling End Cate			
Logged By	Logging Start Dots 26-Mar-2014	Logging End Data 26-Mar-2012	Casing 47.50	Cere Sibe	Collar Survey Type GPS	Coller Servey Date	Logged By	Downhole Stavey Date NA	Downhole Survey By NA	'					
рон	From	Te	Lith Code	Lith Name	Lanz	Formation	Teautre Type	Texture Intensity	Lith Colour Code	Nadulas	Nadule %	Focall Type	Situmer	Altoratio	an Description
GNA-16	0.00	47.80	CAS	Casing	-	OV8									Casing - no recovery.
GNA-16	47.80	48.00	C-00L	Calcaraous Dolomi	ite 85	WIN	FS	5	Beige	1		TSTR	1	1	faminated boundstone with trace bedding at 50 to CA.
GNA-16	48.00	50.95	N-DOL	Nodular dolostone	MS	WIN	MED	m	Med brn	Dolomite	10	RC	mor		Rare fossil fragments throughout. Bitumen infiling vugs in lest 50 cm of the interval increasing with depth. Zones of fenticular bedding influenced by the nodules.
GNA-16	50.95	51.36	C-00L	Calcareous Dolomi	ite RS	WIN	FS	\$	drk brown			RC	mor		Bitumen along fractures. High content of fossil fragments throughout. Black wavy organic bads.
GNA-16	51.36	53.26	C-DOL	Calcareous Dolomi	ite BS	WH	FS	5	med gry		-	RC	mnt		Abundant bioclastic debris. Dark matrix with lighter clasts. Bitumen along fractures.
GNA-16	53.26	54.03	C-DOL	Celcareous Dolomi	te BS	WIN	BX	5	med gry	1		RC	10	1	Highly fractured zone with soundant bitumen infliing fractures. Large light beige dolonits fragment. May represent erosional horizon.
GNA-16	\$4.03	55.02	N-DOL	Nodular dolestone	85	Wilk	FS	m	light gry	Dolomite		TC	mod		Large beige dolomite nodules / fragments. Large amount of fragmented bioclastic debris. Bitumen along fractures.
GNA-16	\$5.02	56.00	C-DOL	Calcareous Dolomi	ite WS	WIN	FS	m	med brn	1			mod		Abundant bioclastic debris and shell fragments. Bitumen along fractures. Minor wavy disarticulated bedding.
GNA-16	56.00	\$7.33	N-OOL	Nodular dolostone	85	WIN	DIS	M	light brn	Dolomite	1	RC	mod		Large light beige dolomite nodules. Abundant shell fragments. Highly irregular wavy bedding. Bitumen infilling fractures and dissolution plants around nodules.
GNA-16	57.33	61.14	C-DOL	Calcareous Dolomi	ite MS	WIN	LA	s	med gry			CN	minr		Strongly laminated fine grained mudstons with minor wackestone interbeds. Bitumen filing vugs.
GNA-16	61.14	63.50	C-DOL	Calcareous Dolorni	ite WS	WIN	#S	M	8Y	1		TC	mru		Abundant tabular coral fragments with lesser rugose fragments / sections. Rare wavy bedding. Minor laminated mudstone interbeds.
GNA-16	63.56	65.63	C-DOL	Calcareous Dolomi	Tas MS	WIN	LA	4	med brn			CN	1	1	Wavy laminated mudstone with laminae deforming around fossils. Mnr wackestone interbeds.
GNA-16	65.63	67.27	C-DOL	Calcareous Dolomi	ite PS	WIN	FS	3	med gry	Dolomite		TC		1	Veriabily fossiliferous wackestone. Dominant fossil type varies from small crinoid oscicles to large tabular coral fragments.
GNA-16	67.27	67.8	C-DOL	Calcaneous Dolomi	ite MS	WIN	LA	m	drk brn	Dolomite	0.1	S CN	1	1	Moderate to strongly laminated mudstone with abundant shell fragments
GNA-16	67.86	68.44	C-00L	Calcareous Dolomi	ite PS	WIN	DIS	m	med brn		1 Suffrage of the local division of the loca	TC	Ngh	-	bloclastic floatstone with large crickl oscicles and tabular corels. Bitumen infilling large vugs
GNA-16	68.44	71.20	C-DOL	Celcaneous Dolomi	the MS	WIN	FS	m	drk brn			CN	mor		Wavy bedded shell fragment rich wackestone to mudstone
GNA-16	71.20	72.30	C-00L	Calcareous Dolomi	ite WS	WIN	DIS	m	drk gry			ON	mnr		Shall fragment rich with wavy bedding.
GNA-16	72.30	73.24	C-DOL	Calcareous Dolonv	te MS	WIN	FG	1	med brn	Dolomite	0.1	CN .	mod		Longitudinal fracture filled with medium sand and bitumen. Abundant shell fragments.
-										1			1	1	Abundant crinolds, shell fragments and coral fragments throughout. Calcite filled gash fractures. Bitumen infilling ways and fractures. Large
GNA-16	73.24	77.05	C-DOL	Calcareous Dolomi	ite WS	WIN	DIS	m	pinky gry brn			CN	mnr		rugs lined with calcite and pyrite.
GNA-16	77.05	80.10	C-DOL	Celcareous Dolomi	ite MS	WIN	FG	m	brn	Dolomite		L CN	mor		fine grined muditone with occassional black organic beds and wavy lamination. Minor interbedded wackestone. Bitumen is infilling vugs.
GNA-16	80.10	81.37	N-OOL	Nodular dolostone	MS	WIN	DIS	m	pinky bm	Dolomite	- 1	CN	tr -		Nodules deform bedding / lamination. Minor crinoid and shell fragments. Trace bitumen along fractures. Base of the Keg River.
GNA-16	81.37	\$1.9	D-sistah	Dolomitic silty sha	la MS	WIN	LA	8	878Y						fine grained monotonous laminated mudstone. Marks the top of the contact rapids
GNA-16	81.95	82.64	C-DOL	Calcareous Dolom	to PS	WIN	BX	VS	an ay			10			Imbrucated dolomite breccia with elongate breccia clasts shell fragments and mudstone. Top 20 cm of the brecciated interval is broken
GNA-16	82.69	\$3.60	100-D	Calcareous Dolomi	ite MS	CR	DIS	m	grn gry						fine graine mudstone with minor black organic laminae and breccia zones
Somples:															_
DOH	Press	Te	Sant ple H	Di Saangelo Inst	Туро	Weight	Calour		1					hann	
GNA-16	\$8.00	57.00	263117	1.00	1/4		A			-					-
GNA-16	94.00	45.00	203118	1.00	1/4			+	1			1		-	
GNA-16	29.00	76.00	263119	1.00	1/4	kan manada	1	1	1	1		L	4	1.	

Nole ID 14NLD-001	Easting (UTM) 496-8	Berthing (C B 641	11M) Aahme 5279	0 0	Total Dep -90 3	th Wowstion 01 291	Target Area Nichardson	Yaiget Richardson	Cardinactor Lova Pook	Drill Mg	Drilling Start Duta 1 2/18/203	Deliling End Date 4 2/12/3014		
Logged By BA	Logging Start 3/17/205	D Logging Ind A 3/24/	Date Casing 2013	Corto Stan 25 H/HQ	Collier Sam 6PS	wy Coller Serv	r Lagged By	Dunambusko Serre	NA Desamining Service	wy By				
DDH	From	Та	Lith Co	de Lith Name	Likhz	Formation	Texutre Type	Texture Intern	Ry Lith Colour Cod	e Nadales	Notivie %	Fossil Type	Atumen	Alteration
14RLD-001	25.0	0 2	1.33 OB	Overburden		OVB		÷		in france				

DDH	From	Ta	Lith Code	Lith Manne	LRh2	Formatio	n Texutre Typ	e Texture Intesnity	Lith Colour Code	Nodales	Nodule %	Fossill Type	Bitumen	Alteration	Description
148LD-001	0.	25	00 CAS	Caung	1	OVE	-			1		C Martin Contractor			Casing - no necovery
14/LD-001	25.	0 31	.33 08	Overburden		OVB	1			1			T		Mixed sandstone quartzite and dolomite rubble,
14RLD-001	32.	3 31	.56 C-DOL	Calcareous Dolomite	WS	WIN	1FS	m	pankish gry	1		TC			Tabular coral fragments from 3 to 7cm,
148LD-001	31.	16 33	50 C-DOL	Calcareous Dolomite	MS	W1H	IFS .	w	beige to drk brn	1		TC	mor		Mudstone with tabular coral and crisoid oxercles.
14810-005	88	10 34	DO C-DOL	Calcareous Dolomite	TIMS	WIN	IFS	m	light bro			TC	mor		Waciestone with elongate tabular corals and minor shell fragments. Bitumen along fractures
		-			1	-	1			1					
14810-001	34	0 37	31 C-DOL	Calcareous Dolomite	MS	SATIN .	FS.	w	light brn	Dolomite		SCN	mor		Light brown to grey mudstone with minor crincid oscicles and coral fragments. Lesser mottled sections, Bitumen along fractures. Weak wavy bedding,
14RLD-001	37	40	79 C-DOL	Calcereous Dolomite	W/5	WIN	PS .	m	drk gry			CN	tr		Large abundant crinoids and dolomite rhambs. Wavy to disturbed bedding throughout. Fossel content disturbs the bedding.
\$48LD-001	40.	43	78 C-DOL	Calcareous Dolomite	W/S	WW	ILA.	P15	med brn	1.11111		CN	tr		Wave laminations with black organic layers. Large disseminated crinoids with lesser tabular coral.
14RLD-002	49.	8 44	54 C-DOL	Calcareous Dolomite	MS	WIN	FS .		med gry			CN	tr		Darker section with less evident laminae. Crinoids are smaller in size and less abundant.
	1		1		-							1			
14810-001	64	47	010-001	Calcareous Dolomite	MS	WIN	LA	-	OR ETY	F		CN	tr	1	Dark grey laminated fine grained mudstone with minor disseminated crinoids and lesser tabular coral. Narrow 1-5cm wackestone beds with tabular coral.
			-		1										Top of interval is marked by a large amount of bitumen. Brige brown mudstone is mottled with large elongate dolomite nodules. Minor principle disaminated throughout
14810-001	10	41	39 N-DOL	Nodular doinstone	MS	WITE .	015	-	beige bra	Dolomite		IDICN	mod		Cisturbed wave leminations marked by black organic levers.
					-	-							-		
14810-001	1	50	77 6-001	Calcareous Dolomita	FS	beth	DIS	5	drk to bluich grey		1.1.	TC	mor		interbedged drk to madium gray muditone with reef. Reef sections are blue gry to pinky beige and mottled. Reef sections up to \$0cm. Minor bitumen slong fractures
14810-001	50.	7 51	44 C-001	Calcare mis Dofomite	645	WON	155	78	drk gry			TC	mor		Top 30cm of interval is wackestone with abundant tabular coral which grades into dric grey mudstone with moderate small crinoid content
148±0-001	51	66 50	10 6-001	Calcaraciae Dolomite	WS.	BAON -	IF5	178	med bro			ICN .	mod	- Compile of a series	Large on scale crinoids and tabular coral fragments. Minor wavy bedding evident, Bitumen infilling fractures.
14810-001	0	101 53	300.001	Calcaraous Dolomite	Daris .	DWIN	IFS	100	drk are			CN	imor		dominant fossil size is small. Minor packatione interbeds.
14810-005	GL	10 57	12 (-00)	Calcerénus Defornite	MS.	WIN	TLA	W	med brn	-		ICN	mor		weakly laminated fine grained mudstone with low fossil content. Bitumen within fracture and dissolution zones
14810-007	9	2 61	33 N-001	Nodular dolestone	345	NUM	IDIS	105	beire hrs	Colomite	the station of the second	SCN	mor		Nodular mudions with interbedded wackastone lavers up to 20cm.
14810.001	61	12 69	96 500	Bookular dolostoon	MT	BADH	0/5	105	heire	Dalamite			Imor	maraniterit	Jaree 5.4 cm dolomits notices in fine around matrix. Extremely minor foreil content.
14810-001	68	10	150.001	Calcaraous Dotomite	1.45	MIN	LA	w	med hro			CN	Impr	Provide and a street	weakly lamosted line grained multitone with rare crimoids. Laminae beit defined within dark organic rich beds
14010-001	20	10 71	OS N-DOL	Modular dolostroos	MC	SANS	015	80	Kaht lun	Dolomite		ID CN	1		werv minor crinoids disaminated throughout
14810-001	71	19 72	58 0.001	Calcarerus Dolomite	MC	Salite	1A.	W	Keht brn			CN	- with and		Weak wavy laminations evident. Bare crinoids and lesser shall fragments.
14617-001	72	10 76	16 0-001	Calcaracus Dolomite	MIS	EWIN .	DIS	les	ninkish roy			JCN .		Antestation and a second	Extremely minor frasi content. Motified appearance
14810-001	76	16 76	72 6.005	Calcareous Onlomite	MS	TIAN	015	100	pinky.	- mine		TC			Adottied reef like section gradma into the Fm below.
24810-001	76	71 71	14D sletab	Dedrenitic alloy shale	ME	-	1A.	1	Fey				Announ		Tight extremely fine grained finely laminated sity shale
14810-001	77	14 77	30 0-001	Calcareour Dolomite		DWIN	18X	1	diese.			TC	- interior		dolemitic brecce marker horizon.
148(0.001	77	71	140-001	Calcanacau Dalomita	344	CI	BY.	(m)	gragulat gray	-			Furtherion	a contraction of the second	multions with breccis interbeds.
14810-001	78	10 10	SALIST	limentana	ME	10	LA	5	arey						Calcareous muditions with minor calcareous sandstone interbeds.
14810-001	87		67 Ouslatab	Delocatic all's shale	DATE	100	ES	-	arev				-		Patremely fine graned area dolomitic shale.
34810.001			07 8-55	Bassi Sendstone	100	0	INCED		and a			·····	+ marine	the second se	medium erained calcareaux sandelone.
34810-001		11 81	04 Duslatsh	Pedorality ality shale	MIS	icw.	1A.		ary .	-	· · · · · · · · · · · ·			Transa and	Ene erained with dialowith shale / mudulane
14810 001	80	4 81	48 6-001	Calculation Delognitie	ME	100	IDIS		nankish arv					-	civitish may motified disjonility muddings with mone sandstong interhads. Moderate amount of the un rights
14810-001	47		32 8-13	Basal Sandatone	100	11	(cri)	-	any and a second						erv metion saddtone. Clait content increases twoards base of interval. Calcanous throwthout
14810-001		11 10	42 CR 1120	Granita Minch - Transitional		Bricka .	Cal.	-	arey.					-	medium to coarse saids with orbite to erayel used supris / arante munded rists. Weakly calcareaus
14810-001	-	12 84	75 68	Granita	+	IR SAA	ECH.	-	Numb any						waak's foisted worthered mante.
14810-001	20	100	00.08	Granita	-	BCM	FOX.	in .	day any					a contraction	survive restance of processors having constant and nink stammal and foliated evants. Minor mores of albreading
1410-001	1 10	100	- onlow	-desides		lan	poc		love Brit					P	Learning between desired formation and have a started a store which there are a started as a sta
E.c.		_							-						-
Sarragenes:			formals 10	Kananda lat	Trees	Malaka	Colore	-							
DUH	27000	10	Semplerio	Salesper ent	1 Year	eregen	CORDER			r		·····			
14RLD-001	1540	36.00	263120	1.00	1					÷			+		
14110-001	45.00	46.00	263121	1.00	110										
1 401 D 001	54.09	55.00	265122	1.00	110										
100-001	44.00	65.00	263125	1.00	HE					+			1		
1 enriD-001	74.00	75.00	283124	1.00	HC										und
140CD-001	10.42	98.75	268125	1.12	HC									+	
14RLD 001	Wh.73	101.00	265226	2.23	HC					f					
Teurb-005	307.00	101.00	265127	1.00	HC										
14m1D-001	106.00	105.00	265128	2.00	HK.	-				A					
148LD-001	1 285.00	106.00	263129	1.00	1 HC	-	to man	1		1		1	1	A	

	ling (UTM) 500722	Narthing (UT Apirouth \$416094	Dip 0 -8	Total Dapth 0 I	Sevetion 3	Target Area 11. Richardson	Targat Richanden	Contrastor Lorio Pook	Drift Rig 1	Defiling Start Data 2/12/201	Drilling End Date 4 2/14/2014	}		
Logged By Log BA	A/1/2014	4/2/2014 3	Care tiles 8 NQ	Coller Servey Type GPS	Caller Servey Date	Language By	Decembrale Servey Data NA	Construction Stationery By MA						
DOH From		To Lith Code	Lith Name	Lithz	Formation	Texatre Type	Texture Internity	Lith Colour Code	Nodules	Nodule %	Foesil Type	Stumen	Alteration	Description
14RLD-002	0.00	30.00 CAS	Casing	1	OV8	1	1	I	1		1	1	1	Casing - minor recovery of being dolom/tic mudstone amounting to approximately 15cm
14RLD-002	30.00	33.44 C-DOL	Calcaraous Dolomita	MIS	WIN	FG	1	beige		F	CN	-	1	minor wavy bedding highlighted by black organic layers. Very /ow fossil content
14RLD-002	33.44	33.72 C-DOL	Calcaneous Dolomite	P5	W9N	PS	3	beige	-	E	TC			Randomly oriented elongate tabular corals
14RLD-002	33.72	35.00 N-DOL	Nodular dolostone	MS	WIN	DIS	m	med bm	dolomite	5	0		1	Large, up to 10cm, irregular shaped nodules.
14RLD-002	35.00	19.33 C-DOL	Calcareous Dolomite	MS	WIN	015	m	it brn	-		CN	1	1	Irregular dark organic laminae. Very minor fossil contant
14RLD-002	39.33	45.55 C-DOL	Calcareous Dolomite	WS	WIN	FS	m	dirk brn			CN	tr		0.5 cm scale crinoids with lesser thin shell fragments
14RLD-002	45.55	48.46 C-DOL	Calcartous Dolomite	MS	WIN	LA	m	# brn			CN	mnr	E	Wavy laminae. Crinoids conc'd into specific laminae. Oark organic rich laminae. Large 5-3cm coral fragments. Bitumen infiling fractures
14RLD-002	48.46	\$2.01 C-DOL	Celcareous Dolomite	MS	WIN	FS	m	bm			CN	mar	England	small disseminated crinoids throughout. Mud filled fractures and vags - some with bitumen. Mnr wavy dark organic leminae
14RLD-002	52.01	56.43 C-DOL	Calcaraous Dolomite	MS	WIN	FG	2	drk brn			CN	10.01	1	Dark brn uniform mudstone. Very low fossil content. Bitumen along fractures. Minor 2-3cm wackestone interbeds
14RLD-002	56.43	60.23 C-DOL	Calcannous Dolomite	MS	WIN	VG	m	dirk bm	dolomite		2 CN	tr		moderate yugs caused by dissolution of fossil fragments and calcite nodules
14RLD-002	60.23	62.82 N-DOL	Nodular doiostone	M5	WIN	DIS	m	drk brn	dolomite		S CN	1941		Nodular to vuggy mudstone. Bitumen along fractures
14RLD-002	62.82	63.14 C-DOL	Calcanaous Dolomite	15	WIN	FS	1	pale grey			TC	mod		Fractured reaf with bitumen infilling fractures
14RLD-002	63.16	67.56 C-DOL	Calcaneous Dolomite	MS	WIN	FG	m	med brn	dolomite	tr	CN	mod		dissolved nodules and fossil fragments create minor yugs. 1-2% crinoids and fossil fragments
14RLD-002	67.36	68.49 C-DOL	Calcareous Dolomite	WS	WN	FS	n	med bm	doiomite		2 TC			Elongate randomity oriented tabular corals with dark brn mudetone lenses / rip up clasts
14RLD-002	60.49	69.60 C-DOL	Calcareous Dolomite	WS	WIN	DIS	3	it brn	dolomite		2 TC			Abundent white thombic tabular coral, crinolds and shell fragments with disrupted wavy dark laminaa
14RL0-002	69.60	73.31 C-DOL	Calcareous Dolomite	MS	WWN	FG	2	med bm			CN	tr	-	Minor wackestone interbeds. Ennoids are concentrated into layers
14RLD-002	73.31	75.62 C-DOL	Calcanaous Dolomite	MS	WIN	FS	W	(FY			CN	tr		Uniform fine grained mudstone with minor wackestone interbeds. Bitumen along fractures and infilling vugs
14RLD-002	75.62	76.96 C-DOL	Calcareous Dolomite	MS	WIN	DIS	m	pinky		1	TC		1	Mottled reaf like section grading into the Fm below:
14RLD-002	76.96	77.52 D-sistsh	Determitic sitty shake	MS	WW	LA	6	(P'Y)				1	-	Tight extremely fine grained finely laminated silty shale
14RLD-002	77.52	77.94 C-DOL	Calcaraous Dolomite		WW	BX	5	green	-		TC	A	1	dolomitic breccla marker horizon.
14RLD-002	77.94	#1.65 LST	Limestone	\$3	(CR	BED	m	(FTY)				1	1	Sinterbedded coarse to medium grained sandstone and mudstone
14RLD-002	81.65	#5.22 D-slstsh	Dolomitic silty shale	MS	CR	LA	m	gray			1	1		minor dolomitic SS interbeds.
14/UD-002	85.22	87.06 C-DOL	Calcareous Dolomite	55	CR	MED	m	It gry	in a local data	1	1	1	1	light grey to white medium grained calcareous sandstone. Minor dissolution vups (cm scale)
14RLD-002	87.06	fale-G 12.98	Dokomitic sittstone	MS	CR	FG	18	grey			E. and and and an open set	1		Discontinuous wavy dark organic matter throughout
14RLD-002	89.21	90.76 D-sistsh	Dolomitic silty shale	MS	CR	DIS	m	greenish grey	-		1	1	-	fine grained shale with interbedded sandstone and rip up clasts of underlying conglomerate
									E	ł	1			basal sandstone / conglomerate containing granite clasts ranging in size from 0.2 to 3cm in a light bage brn fine mud matrix. Bitumen along
14RLD-002	90.76	92.44 B-ss	Basal Sandstone	55	u	CGL	5	beige brn		1	1	med	·	fractures and within yaps created by dissolution of the matrix.
14RLD-902	92.44	93.10 Gr-tran	Grenke Wash - Transitional		#SM	FOL	W	bluish grey				Lunner		highly fractured and weethered transitional granite. Light beine brown dolomitic mud infiling / healing fractures
14RLD-002	93.10	99.00 Gr	Granke		85M	FOL	w	bluish grey			1	mnr	albite	Weakly foliated to massive coarse grained granite. Patchy strong albite alteration throughout. Minor bitumen along fractures

								-	Assessio	ant Report	N/ AT	abaica Min	erais inc.'s	CICENTING	son Property	Normeasing Arberts
	Hole 10	Secting (UTM) 4	serthing (UTM) Anis	euth I	14	Yotal Depth	Sizution	Target Area	Target	Contractor	Delli Rig	Drilling Stort Data	Dritting find Date	1		
And by any and by any any any any any any any any any an	2.48LD-003	5003.42	8415875		40	9 94	8 30	2 Richardken	Alchardson	Lone Peak		2/54/205	4 3/15/2014	1		
Image: Probability	and be	Interface Start Th L	andres Red Date Cast	-	Case the	Collecturing	Collector	a Lourned By	Describele Summ	Downhain Survey	- Be					
1 1 </td <td>BA</td> <td>4/4/2014</td> <td>4/7/2034</td> <td>30 1</td> <td>NQ</td> <td>625</td> <td>,</td> <td></td> <td>NA</td> <td>MA</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	BA	4/4/2014	4/7/2034	30 1	NQ	625	,		NA	MA						
Ope No Date No Date No <				-							-			-		
100 100 <td>DDH</td> <td>Fram T</td> <td>e Lith</td> <td>Code I</td> <td>Uth Mame</td> <td>Likh2</td> <td>Formation</td> <td>n Texutre Type</td> <td>· Testure intently</td> <td>Uth Coleur Code</td> <td>Nedules</td> <td>Nedule %</td> <td>Fossil Type</td> <td>BRumen</td> <td>Alteration</td> <td>Description</td>	DDH	Fram T	e Lith	Code I	Uth Mame	Likh2	Formation	n Texutre Type	· Testure intently	Uth Coleur Code	Nedules	Nedule %	Fossil Type	BRumen	Alteration	Description
	14RLD-003	0.00	30.00 CA3		Casing		OVB									Casing - no recovery.
	14RLD-003	30,00	39.00008	-	Overburden		OV8	1			+					Poor recovery or prin sanotice and begin downer from outpets.
Display	14RLD-003	39.00	39.97 C-D		Calcareeus Dolomite	but .	Date:	10	m	beige			CN CN			menor same opens, semenas, abundant opens, amman,
Image Image <th< td=""><td>14810-003</td><td>41.22</td><td>44.20 0.0</td><td><u>~</u></td><td>Calcamous Dolornite</td><td>But</td><td>Dann</td><td>64</td><td></td><td>longe bon</td><td></td><td></td><td>CN</td><td>mor</td><td></td><td>finally laminated mudatone. Laminae highlighted by dart organic matter. Minor crinoids.</td></th<>	14810-003	41.22	44.20 0.0	<u>~</u>	Calcamous Dolornite	But	Dann	64		longe bon			CN	mor		finally laminated mudatone. Laminae highlighted by dart organic matter. Minor crinoids.
Original	144LD-003	44.70	45.50 C-D	α	Celcareous Dolomite	WS .	WIN	VG		R brn	-		CN	mnv		small rugs caused by the discolution of shell fragments. Bitumen steining along fratures.
	14RLD-063	45.50	46.75 C-D	OL	Calcareous Dolomite	MS	WIN	LA	m	bm			CN	mod		wavy laminae defined by dark organic matter. 0.5cm crinoids
Image Image <th< td=""><td></td><td></td><td></td><td></td><td></td><td>1</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>Disrupted to wavy laminas defined by dark organic matter. Earthy / muddy look - coarser mud. 48.12 - 48.35 - bitumen rich section - weakly cemented coarse</td></th<>						1										Disrupted to wavy laminas defined by dark organic matter. Earthy / muddy look - coarser mud. 48.12 - 48.35 - bitumen rich section - weakly cemented coarse
Integra <	14RLD-003	46.76	48.43 C-D	OL I	Calcareous Dolomite	WS	WIN	DIS	-	earth brn			RC	mod		mudstone.
1000 101 <td>14 RLD-003</td> <td>48.43</td> <td>48.89 C-D</td> <td>OL I</td> <td>Calcareous Dolomite</td> <td>MS</td> <td>WIN</td> <td>FG</td> <td>m</td> <td>R brn</td> <td></td> <td></td> <td>CN</td> <td>minr</td> <td></td> <td>Bitumen along fracutres. Fine grained massive multifore with rare 1-2mm crimoids.</td>	14 RLD-003	48.43	48.89 C-D	OL I	Calcareous Dolomite	MS	WIN	FG	m	R brn			CN	minr		Bitumen along fracutres. Fine grained massive multifore with rare 1-2mm crimoids.
1010 101 101 100 </td <td>14RLD-003</td> <td>48,29</td> <td>50.62 C-D</td> <td>OL I</td> <td>Calcareous Dolomite</td> <td>MS</td> <td>WIN</td> <td>LA</td> <td>-</td> <td>it pm</td> <td></td> <td></td> <td>CN</td> <td>mod</td> <td></td> <td>wackestone interprets up to south, interprets and the south and the sout</td>	14RLD-003	48,29	50.62 C-D	OL I	Calcareous Dolomite	MS	WIN	LA	-	it pm			CN	mod		wackestone interprets up to south, interprets and the south and the sout
1012 101 101 00 00 00 0	14RLD-003	50.82	51.95 0-0	a	Calcareous Dolomite	WS SWS	Wilk	DIS		gre bro			CN CN	high		Targe poor of partial cement dispolution leads to weakly to moderately bitumen saturated mud
mode mode <th< td=""><td>148LD-003</td><td>53.17</td><td>53.36.60</td><td>a</td><td>Celcaretus Dolomite</td><td>Ars.</td><td>WIN</td><td>LA</td><td>w</td><td>h brn</td><td></td><td></td><td>CN</td><td>mod</td><td></td><td>weak lamination defined by dark organic rich layers. Bitumen along fractures and in areas where cement has een dissolved</td></th<>	148LD-003	53.17	53.36.60	a	Celcaretus Dolomite	Ars.	WIN	LA	w	h brn			CN	mod		weak lamination defined by dark organic rich layers. Bitumen along fractures and in areas where cement has een dissolved
Import Import </td <td></td> <td></td> <td></td> <td>-</td> <td></td> <td>1</td> <td>-</td> <td>1</td> <td>1</td> <td></td> <td></td> <td>1</td> <td></td> <td></td> <td>1</td> <td>wavy laminated warkestone with large cm scale white crinoids. Minor mudstone interbeds as well as beds with smaller 0.2-0.5cm crinoids. Bitumen rich sections</td>				-		1	-	1	1			1			1	wavy laminated warkestone with large cm scale white crinoids. Minor mudstone interbeds as well as beds with smaller 0.2-0.5cm crinoids. Bitumen rich sections
TATA TATA <thtata< th=""> TATA TATA <tht< td=""><td>14FLD-002</td><td>55,36</td><td>57.38 C-D</td><td>a</td><td>Calcareous Dolomite</td><td>ws</td><td>WIN</td><td>LA</td><td>m</td><td>med bim</td><td>1</td><td></td><td>CN</td><td>mod</td><td></td><td>where the cement has been leached. Bitumen is also present along fractures.</td></tht<></thtata<>	14FLD-002	55,36	57.38 C-D	a	Calcareous Dolomite	ws	WIN	LA	m	med bim	1		CN	mod		where the cement has been leached. Bitumen is also present along fractures.
Norm Norm <th< td=""><td>14RLD-003</td><td>\$7.30</td><td>58.06 C-D</td><td>OL I</td><td>Calcareous Dolomite</td><td>MS</td><td>WIN</td><td>LA</td><td>10</td><td>it bm</td><td></td><td>-</td><td>CN</td><td>mhr</td><td></td><td>wavy dark organic laminae. Small vuggy section at 57.53m due to dissolved fosal fragment. Bitumen along fractures</td></th<>	14RLD-003	\$7.30	58.06 C-D	OL I	Calcareous Dolomite	MS	WIN	LA	10	it bm		-	CN	mhr		wavy dark organic laminae. Small vuggy section at 57.53m due to dissolved fosal fragment. Bitumen along fractures
Introde Number Numer Numer Numer <td></td> <td>1</td> <td></td> <td></td> <td></td> <td>1</td> <td>1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1</td> <td></td> <td></td> <td>1-2mm cnnoids throughout. 0.5 - 1.5cm vugo caused by dissolving brachiopod shell fragments. Mnr mudistone interbads typically 2-5 cm, one large one at 60.45 to</td>		1				1	1						1			1-2mm cnnoids throughout. 0.5 - 1.5cm vugo caused by dissolving brachiopod shell fragments. Mnr mudistone interbads typically 2-5 cm, one large one at 60.45 to
Interfact	14RLD-003	58.00	61.99 C-D	OL I	Calcareout Dolomite	WS	WIN .	DIS	1	gry .	-		CN	mnr		60.75m. Skumen slong fractures.
Int Dec 1 Int Dec 2 Int Dec 2 Dec 2 <thdec 2<="" th=""> Dec 2 Dec 2</thdec>	14RJ,D-003	61.99	\$2.83 C-D	OL I	Calcareous Dolomite	MS	WW	FG	1	drk gry				mn		Extremely five grained muddtone with only trace fossils.
International Internationalininininternational International	148.0-003	28.58	\$3.32 C-D	OL	Calcareous Deformite	MS	WIN	LA	1	drk gry			CN	mm;		Strong wavy laminations with dark organic material and lighter carbonate
Line Column Line Column <	14RLD-008	63.32	64.43 C-D	OL I	Calcaraous Dolomite	WS	WIN	DIS		med gry	Della de		CN CN	mnr		Crined rich with reset she tragments and optimits months. Bruther along rischures.
Line Dial Line Dial <thline dial<="" th=""> <thlinedia< th=""> <thlin< td=""><td>14RLD-003</td><td>64.63</td><td>45.11 N-D</td><td>OL I</td><td>Roduller dolostorie</td><td>10</td><td>Date:</td><td>PG</td><td>m</td><td>877</td><td>UOKOMITE</td><td></td><td>SCH</td><td>moo</td><td></td><td>presumes musicione were mouse not and the mean and an annual annual and an annual an</td></thlin<></thlinedia<></thline>	14RLD-003	64.63	45.11 N-D	OL I	Roduller dolostorie	10	Date:	PG	m	877	UOKOMITE		SCH	moo		presumes musicione were mouse not and the mean and an annual annual and an annual an
Diagon Diagon<	14ALD-003	11.09	11.14.00		Calcareous Dolonite	975	Darity	04	-	any here	-			mov		mothed way with disturbed dark organic language may an
11/12/201 77,26	14810-003	70.54	71.10 0.0	<u>a</u>	Calcardous Dokotsta	MI	Mole	015	1	140				med		Public disrupted zone. Bitumen stong fractures / Infiling vugs.
Diab.200 Title Quark Owner day Nake Proc. Proc	148LD-003	72.00	72.66 C-D	OL I	Calcareous Dolom/te	AIS	WIN	DIS	m	pinky gy				1		mottled pinky grey mudstons.
101.000 77.38 77.39 77.49 77.40 <	14RLD-003	72.66	73.38 D-sl	letsh)	Dolomitic silty shale		WIN	LA	1	gray				mod		fine grained tightly laminated shale. 15cm wide bitumen and sand filled fracture at 73.35m
101/100 17.08 <	14RLD-003	73.36	73.96 C-D	OL I	Calcareous Dolornite		WIN	BX .	1	green			TC			dolomitic brecels marker horizon.
IALD 00 VA0 V7.8 VA0 VA0 VA0	14RLD-003	73.98	74.49 C-D	OL 1	Calcarsous Dolomite	MS	CR	BX .	m	greenish grey						muditione with breccia interbeds.
Int Dool Trail	14/RLD-003	74,49	77.91 LST		Limestone	MS	CR	LA	5	it gry	_					strongly laminated light gry to white limestone.
141_0030 63.13 63.13 64.13 64.14	14RLD-003	77.91	78.92 D-sl	haist	Dolomitic shaly sitistone	MIS	CR	DIS	m	ery .						disrupted fine grained sitistone to shale with 5cm of 55 marking and of interval
Link 200 B1.21 Diameter data y menue PD A P PP Image: Construction of the controls the grade of the control of	14RLD-003	78.92	\$0.34 D-1	istsh	Dolomitic silty shale	MS	CA	u	-	87Y	-		+			astremeny tree granes trees with week unitials developes, white subtrate intercodes
Unit Decision 14.1	14RU0-003	80.34	81.2210-1	Teler,	Dokomitik; shary sitescome	NG .		DIS	m	(PY)						participation may gramma sentences on traces may make some as instruming more or instrume. An an alternative constraint development of the sentences in the non-methods. Franchis commented
NULLOS 0 43.0 64.3 (53.3) 57.4.3 (50.40) 5.4.4 6.4.5 6.4.7 9.4.4 6.4.7 9.4.7 9.4.4	744070-001	81.12	82.40 8-1	-	Base Senderone	33	-	meo	-	1 PY				+		a in the considerant way to be a service of the second many hole. Minor white providery talk cament, cament is dominately light bro mud. Chlorite alteration of the cament
101.000 14.3 61.3	14510-008	40.44	84.52 08	TRAN	Granite Wesh - Transitional	55	4	COL		R ev			1	1		with trace pyrite.
Diabolity Problem Biols No. n	148LD-003	84.52	85.96 GR-	TRAN	Grante Wash - Transitional	85	u	BX	m	drk gm gry				1	Chlorite	Fractioned granitie with chlorite alteration and siderite cement
DALDOOD BASS	14RLD-003	45.96	\$7.30 GR		Granite		ISM.	MIS	m	ern ery				1	Chlorite	chlorite altered and fractured massive modium grained.
NBD HBD HBD <td>14RLD-003</td> <td>\$7.30</td> <td>\$8.53 gr</td> <td></td> <td>Granita</td> <td></td> <td>85M</td> <td>MS</td> <td>m</td> <td>pale grn</td> <td></td> <td></td> <td></td> <td></td> <td>Chlorite</td> <td>pale green to white highly altered / bleached.</td>	14RLD-003	\$7.30	\$8.53 gr		Granita		85M	MS	m	pale grn					Chlorite	pale green to white highly altered / bleached.
Display Bits/A Bits/A Bits/A Bits/A M<	14RLD-003	88.57	89.28 gr		Granita		85M	fol	w	drk gm gry				-	Chiorite	dark fine grained weakly foliated.
Link 200 FX JA	14RLD-003	89.28	91.30 gr		granite		BSM	MS	m	drk gm gry				1	Chlorite	dark massive to weakly foliated chlorite altered. Foliation defined by biotite and chlorite bands. Ann solated k-alt of single grains
Link (200 HA (2) HA (14RLD-003	91.30	95.47 gr	_	granite		85M	MS	m	palegrn			+		Chlorite	massive medium grained equiptionular.
Interpretation Normation	14RLD-003	95.47	95.00 gr		Granite	1	EB5M	ms	m	jpink .	1		1	1	potessium	samon pinx pervasively s-anered grante. File green chiorne / epidore aneration along tracture. Millior ds py with th controlled py veniets.
Name Part Ramphe Of Demolphone Part Weight Part	a sector															
Charge of a state Like Like <thlike< th=""> Like Like</thlike<>	Doregoes:	Incia de la	in Inco	and and	Termela let	Iter	Distalabe	Colena	I	1	1	1	T	T	1	1
TALD 200 Mail	14810-000	0.00	43.00 24	53134	1.00	11	- and							+		-
Jahlo 200 4049 Maile	14RLD-003	36.00	57.00 21	63339	1.00	HC	1	1	1							3
Jubbo 0 B/M M-10 Jubbo 0 S/M Jubbo 0 S/M	14RLD-003	67.00	54.00 24	83340	1.00	HC	1	1		1				1		
JAIL-DOID BAIX 154 H 154 H 154 H HC JAIL-DOID BAIX BAIA HK Image: Control of the state of th	14RLD-003	12.46	84.52 20	13343	2.06	ĸ	1	1			-					
16LD:00 85% 1/30 1/30 1/4 KC Image: Constraint of the constraint of	148LD-003	52.98	15.96 24	63342	1.64	HC			-					-		
JAILDOOD BAB Dista Dista <t< td=""><td>14/FLD-003</td><td>85.96</td><td>87 30 24</td><td>63345</td><td>1.34</td><td>HC</td><td></td><td>-</td><td>-</td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td></t<>	14/FLD-003	85.96	87 30 24	63345	1.34	HC		-	-					-		
JALDOO 8 MA F13 J134 J.57 HC HC JALDOO 8 MA TLA AC HC HC <td>14#LD-003</td> <td>67.30</td> <td>44.53 24</td> <td>10164</td> <td>1.23</td> <td>HC.</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td>	14#LD-003	67.30	44.53 24	10164	1.23	HC.										-
UML_DOM MAR T.Lm MAR All T.m Mark T.m Mark T.m Mark T.m Mark Mar	14/LD-003	12.86	89.28 24	10145	0.75	HC		+								4
1 1 2 2 2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2	24RLD-003		71.30 28	13147	2.02	HK HK										4
146.0-00 B.47 56.0 243149 0.53 HC	148LD-003	99.50	95.47 24	13144	2.17	HC		1			-			1		1
	148LD-003	80.47	96.00 24	13149	0.53	K	1	1	1	1		1	1	T		1

ABLOBBING IN MODOLI TO ATTACABL	a Minerals Inc. s Kichardson Pro	peny, Northeastern Alberta
-		

Hele ID	Easting (1/794)	Northing (UThi)	Advert	0lp	Yetal Dopth	Elevetion 70	Target Area	Target	Contractor	Drill Ng	Drilling Mort Date	Deliling End Date]		
1.000		0413401		4 1		• •			Lower Poer.		419/2014	4 10/201	1		
Logged By	Logging Start Data 4/7/2004	Logging End Date 4/8/2014	Cashg	Care Size	Coller Survey Type GPS	Coller Survey Date	Logged By	Devenhole Servey Data NA	Devenhole Servey By NA						
													-		
DOH	From	Te	Lith Code	LRh Name	Lkhz	Formation	Texutre Type	Texture intenity	Lith Colour Code	Nodules	Nodule %	Fessil Type	Bitumen	Alteration	Description
14RLD-004	0.0	30.00	CAS	Casing	hurt	OVB		<u></u>	land bas			190		1	Casing - approximately 40cm of recovery of red sends tone boulders and dolomibc mudstone.
14810-004	30.0	30.20	C-001	Calceneous Dolomita	CW1	Mille	and		It ben			ITTP	mar		U.S. D. Jem constructions and attramationermid finality
Tellipione	30.0	31.14	COL	Calcaraous Doionnas	100	199119	12	1	IL BRA	-		I SIN	1000		Ritumen saturated sand infilling dissolution learst from 31 75-32 72m. Bitumen also infilling rare large (Srm) vues
14810-004	31.1	13.00	C-DO1	Calcareous Dolomite	29	M/IN	ax		It ery bra			TSTR	high		Aduption tabular fossil content along with crinoids - breclated. Mudistone interbed at 32.32-32.58m.
14810-004	33.0	34.41	C-DOL	Calcaraous Dolomite	IMS	WIN	TLA	w	beide brn	-		CN	max		Week wavy lamination highlighted by dark organic rich layers. Rare large TC fragments.
148LD-004	34.4	35.21	C-DOL	Calcaneous Dolomite	ws.	WIN	LA.	m	beise bm	-		ICN	mod		bitumen along fractures. Wavy laminae defined by dark organic rich lavers.
14RLD-004	35.2	36.03	C-DOL	Calcareous Dolomite	MS	WIN	DIS	m	grey brn	-	1	CN	mnr		bitumen along fractures. Highly erratic laminae defined by dark organic bands. Minor wackestone interbeds.
14RLD-004	36.0	42,74	C-DOL	Calcareous Dolomite	MS	Wile	FG	m	It to med gr	-		CN	mod		extremely fine grained massive mudstone with rare CN rich WS interbeds. Bitumen filling along fractures.
14RLD-004	42.74	48.63	C-DOL	Celcareous Dolornite	MS	Will	LA	m	med to drk m	1		CN	mor		finely laminated medim to dark gray mudstone with common white CN and dolomite rhombs disseminated
											1	1	1	1	low fossil content with random shell fragments and crinoids disseminated throughout. Mnr vugs created by the
14RLD-004	48.6	3	C-DOL	Celca/eous Dolomite	MS	WIN	FG	m	med gry	1	1	S#	mnr		dissolution of shell fragments. Bitumen infilling fractures and larger vugs.
															massive grey mudstone with large (2-Scm) shell fragments and rugose corais. Minor vugs. Bitumen along
14RLD-004	51.0	52.80	C-DOL	Calcareous Dolomite	MS	WIN	FG	m	6ry	1		55	tr		discontinous fractures and infiling random vugs.
14RLD-004	52.8	54.92	N-DOL	Noduler dolostone	MS	WIN	LA	vw	it gry	dolomite	10	54	mar	1	very weakly laminated mudstone. Planar laminae are disturbed by 1-1.5cm dolomite nodules. Rare 2-3cm W5
14RLD-004	54.9	2 56.99	N-DOL	Nodular dolostone	MS	WIN	MS	115	med gry bm	dolomite	15	CN	4		large 2-Scm dolomite nodules - approximately 20% are crytalline in the center, others appear muddy. Trace 2mm
					-										nodules are dominately 1 cm in size, rare large nodules up to 5cm. In the last 50cm of the interval nodules are filled
14RLD-004	56.9	59.08	N-DOL	Nodular dolostone	MS	WIN	MS	m	med brn	dolomite	5	CN	tr		with dolomite rhombs and the surrounding mudstone is rich is dolomite rhombs.
14RLD-004	59.0	59.68	C-DOL	Calcareous Dolomite	WS	WHN	LA.	1	med bm	-		CN			Wavy dark organic taminae with abundant crinoids throughout as well as caught up in specific tayers.
14RLD-004	59.61	60.83	N-DOL	Nodular doiostone	MS	(WIN	DIS	5	It gry brn	dolomite	10	CN			highly disturbed laminae. Nodules are patchy and range in size from 0.2 to 1cm.
14RLD-004	60.8	62.35	C-DOL	Calcaneous Dolomite	MS	WIN	MS	m	med bra	dolomite	2	CN	-		cleaner massive dolomitic mudstone with 2% WS interbeds. WS interbeds are rich in crinoids and dark organic
						-	1.						1		Large (2-5cm) beige dolomitic mud bands / nodules. Strongly laminated wackestone with abundant crinoids and
14RLD-004	62.3	5 66.22	N-DOL	Nodular dolostone	WS	PWHN	LA.	5	drk brn to beige	dolomite	20	BRP			Intact brachiopods, Brachiopods up to 4cm.
14RLD-004	66.2	67.23	C-DOL	Calcareous Dolomita	WS	WIN	DIS	m	It py	-		RC			Possil content dominated by rugose corais and crinoids. Dark organic rich layers show weak disturbed lamination.
14RLD-004	67.2	5 69.8/	C-001	Carcareous Dolomite	MS	Wine	LOK .	W	It brn gry			54			moderate wackestona interbeds up to 10cm. Genrally low rossil content.
LANLD-004	58.8	/1.2/	C-DOL	Calcareous Dolomice	WS	Paula	DIS	[m	mile om			CN		+	weakly motoes with tark organic rich ayers showing wavy aminiations.
14810-004	71.2	72.01	D-ckmh	Calcaneous Dolomice	1115		UIS IL	/m	ponky gry				+		In a second field i aministed shale
1481D-004	72.9	74.44	C DOI	Catagonia Dalamita		harm	av.		6.47			170			Torne generates region y nan makene a researce.
14820-004	72.1	26.46	K CT	a imastroph	her	ke	LA.		It to mad my			15			Brown concern man our morten.
14810-004	75.4	79.34	Destrolar	Onlogatify shake alternate	ILAS .	ice.	lan	-	fern eru	-				+	Interheided delemitid calcements St. MS and shale. Shale heritens contain calcite to ashudrite filed fractions (
14810-004	78 3	E1 10	Desianch	Dolomitic sitte shale	IMS .	Ini	I.A.	m	lero aru	-			+	+	avtramely fine grained shale with interhedded fine sands. Dark oceanic rich layers are finaly interinated
1.4RLD-004	A1 1	82.65	8-55	Banal Service Inches	55	CR	MED	1	ary					-	imedium grained calcareous SS.
148LD-004	87.6	B R3.76	D-shsht	Doigmitic shahr siltstone	lars	CR	DIS	m	Dinky BY	-			+	1	mottled pinky gray mudstone with large (up to 10cm) white to cream dolomized crystalline blebs. Minor taic blebs,
14RLD-004	83.7	84.98	Gr-tran	Granite Wash - Transitional	55	iu .	CGL	3	It bre			1	1		light brn dolomitic cement. Clast size and abundance increases downhole.
14RLD-004	84.9	85.50	GR	Granite	1	USM	8x	m	blue gry	-		1	1	albite	fractured and brecclated granite. Brn dolomitic cement. Mnr alb ait focussed along fractures
14RLD-004	#5.5	87.58	GR	Granita		BSM	FOL	w	grn blue gry	-		1	1	Chiorite	medium grained weakly foliated quartz rich with moderate patchy is controlled chi alteration.
14RLD-004	87.5	8 89.28	GR	Granita		BSM	MED	m	drk blue gry			I			fresh dark medium grained granite with quartz and feldspar phenos.
14RLD-004	89.2	\$ 90.31	GI	Granita		8SM	MED	m	blue gry					sibite	medium grained quartz rich. Alb alt id fx controlled.
14RLD-004	90.3	91.45	GR	Granita		ESM	FX	m	it gry				1	albite	abundant healed frotures. Quartz flooded. Bleached granite with mnr chi along fx's.
14RLD-004	91.4	\$ \$2,59	GR	Granha		05M	MED	m	It gry	_		J	-	elbite	abundant fracture controlled albite alteration. Minor chiorite along fractures. Minor quartz flooding.
14RLD-004	92.55	95.46	GA	Granita		BSM	FOL	m	pinky blue grey	-			_	Potessic	increased bio content defines weak foilation. K-alt of plag = pink phenos.
14RLD-004	95.4	56.00	GN	Granita	-	85M	FOL	m	Selmon pink	Luna	1	1		Potassic	intense pervasive k-álťó granite.
Semples:															
DDH	(From	To	Sample I	D Sample Int	Туре	Weight	Colour		1	1	1		1	1	1
14RLD-004	13.00	34.00	263150	100	HC		1			1					
14RLD-004	42.00	43.00	263151	1.00	HC					1					
14RLD-004	\$5.00	56.00	263152	1.00	K	Contraction of the					all sectors where the	and the second second		1	
14RLD-004	64.60	65.00	263153	1.00	ĸ			the second	a land a street and	200	Contor and	- Arrow Arr		1	
14RLD-004	70.00	71.00	263154	1.00	HC.	1	10 States	1	1	1200	1-6-1	200 200	1	1	
14RLD-334	34 M	48.90	263155	0.52	HC	1	1		-						
14RLD-1C#	10.10	17.58	263156	2.08	HC	-	-		-	-	10 mm	2000		1	
14RLD-)C#	87.9	89 28	26315>	170	K	1.000	-					-	-	4	
14RLD-004	8.26	90 31	263158	103	K					-			-	+	
14RL0-004	W0.32	\$1.45	263159	2.14	HC			100000	-	-				+	
24RLD-004	91.45	92.59	263160	1.14	HC.		-			-				+	4
14810-004	11.19	95.45	203101	131	HC								+	-	4
14810-004	25.00	96.00	261163	0.54				<u>+</u>							1
1.004	C 42.00	1 22.16	1 103703	0.34	i nv		A						2		

14RLD-005	(UTM) 497988 0	(UTM) 6414715.0	0.0	-	Dept	A 296.0	D Richardson	Richardson	Lone Peek	Long Long	Dete 1 16-Feb-201	Dete 4 17-Feb-201	4		
Logged By	Logging Start Date	Logging Ind Date	Casing 30.00	Core Silos	Colla Serve Type OPS	Colline Y Surrey Dut	Logged By	Desco Date	Derweikele Survey By						
												-	-		
DDH	From	To	Lith Code	Lith Name	LIth2	Formation	Texutre Type	Texture Inteenity	Lith Colour Code	Nodules	Nodulo %	Fessil Type	Bitumen	Alteration	Description
14RLD-005	0.00	30.00	CAS	Casing	-	OVB				1.000					Cesing no recovery
14RLD-005	30.00	35.00	08	Overburden		OVB							1	1	Recovery of approximately 1m of dolomits underlain by 40cm of mixed sand and gravel - cased into boulder
14RLD-005	35.00	35.50	C-DOL	Calcareous Dolom/te	WS	WIN	FS	m	it brn			RC	mod		Moderata bitumen within vugs (Beached corals).
14RLD-005	35,50	38.40	C-DOL	Calcanaous Dolomilie	MS	WIN	FG	ens.	med brn			ON	m/w		minor bitumen along fractures and filling vugs.
14RLD-005	38.40	38.65	C-DOL	Celcareous Dolomite	MS	WIN	DIS	5	bleck				v, high		Messive bitumen with remnant mudstone.
14/fLD-005	38.65	44.30	C-DOL	Calcarsous Dolomite	MS	WIN	FG	m	med brn	·····	1	CN	nigh		Bitumen Infilling fractures / wags and karsts up to 15cm - possibly replacing dolomite nodules? Minr 10cm WS interbeds
14RLD-005	44.30	46.28	C-DOL	Celcareous Dolomite	WS.	WIN	LA	m	drk brn		1	CN	high		Wavy laminated wackestone with minor 5-10cm PS Interbeds. Abundant fracturing - all filled with bitumen
14RLD-005	46.28	47.87	C-DOL	Celcareous Dolomite	WS	WIN	LA	5	med gry brn			_ CN	mod		wavy to disrupted laminations. Fine tight fractures filled with bitumen. Bitumen infilling vuga
14RLD-005	47.87	51.75	C-DOL	Calcareous Dolomite	MS	WIN	LA	w	drk gry brn			RC	mnr	in designed in	Wevy lamination defined by dark organic matter. RC and CN abundance fluctuates from 2-7% as medium sized fossil fragments
14RLD-005	51.75	52.76	C-DOL	Calcareous Dolomite	FS	WIN	DIS	en	med gry brn		1	TC	mrv	· · · · · · · ·	Iarge TC and RC fragments perpendicular to core. Bitumen infiling fractures.
14RLD-005	52.76	53.21	C-00L	Calcereous Dolomite	MS	WIN	LA	m	drk brn	£		St.	mnr	1	fine wavy laminae marked by dark organic rich layers. Small shell fragments and lesser Ch
14RLD-005	53.21	53.73	C-00L	Calcareous Dolomite	85	WIN	DIS	5	it brn			TC	mrv		abundent TC and RC along with shell fragments. Bitumen infilling vugs
14RLD-005	53.73	55.99	C-DOL	Celcareous Dolomite	MS	WIN	LA	w	drk bm			CN	mod		Moderate amount of rip up clasts and shell fragments. Two 10cm wide wavy laminated WS interbads
14/ILD-005	\$5.99	57.27	C-DOL	Celcareous Dolomite	MS	WIN	FG	m	It gry			ON	mrr		scattered OI and SF throughout. Bitumen along fractures.
14RLD-005	57.27	58.17	C-00L	Celcaneous Dolomite	PS .	WIN	FS	m	med brn			RC	mm		coarse corel fragments with lesser WS component.
14Rt.D-005	58.17	59.27	C-00L	Calcareous Dolomite	FS	WIN	UA .	8	med gry brn			RC	tr		Strong to moderately laminated floatstone. Bitumen along rare fractures.
14NLD-005	59.27	60.85	C-DOL	Calcareous Dolom/se	545	WIN	LA .	w	It brn gry	in.		CN	mod		weak disrupted to wavy laminae. Bitumen squeezing out of fractures
14RLD-005	60.85	66.14	N-DOL	Nodular dolostone	MS	WIN	LA	w	med gry	Dolomite		5 CN	mor		smell 2-5 cm grey to beige dolomite mud nodułes.
14NLD-005	66.14	70.64	N-DOL	Noduler dolcatore	MS	WIN	LA	5	med gry	Dolomite	1	IS CN	1		Earge muddy nodules. I large vug at 70.10m lined with calcite and pyrite
14RLD-005	70.64	74.90	C-DOL	Calcereous Dolomite	MS	WIN	LA	m	med gry			ON	tr		Minor wackestone interbeds. Euhedral 0.5cm dolomite rhombs throughout. Wavy discontinuous laminations
14RLD-005	74.90	76.30	C-DOL	Calcaraous Dolomite	MS	WIN	DIS	m	pinky gry	L			-		motiled pinky grey mutistone.
14RLD-005	76.30	76.65	O-sisteh	Dolomitic sility shale		WIN	U	5	gray						Fine grained tightly laminated shale.
14RLD-005	76.65	77.05	C-DOL	Calcareous Dolomite		WIN	6X	5	green	F		TC			dolomitic breccie merker horizon.
14RLD-005	77.05	79.70	LST	Limestone	MS	CR	LA	1	It to med gry		1				finely leminated to bedded (10-15cm beds).
14RLD-005	79.70	82.05	D-shelst	Dolomitic shaly siltstone	MS	CR	BD	m	It to med gry				1		Interbedided calcareous SS, mudistone and siltistone.
14RLD-005	\$2.05	84.39	D-sistsh	Dolomitic sitty shele	MS	CR	LA	m	grey				1		fine grained grey shale with minor medium grained SS interbeds
14/U.D-005	\$4,39	86.01	8-55	Besel Sandstone	55	LL	MS	m	it gry				1		Moderate mudistore / shale interbeds. Calcareous cement.
14/NLD-005	\$6.01	86.84	Grittan	Granite Wesh - Transitional	1 55	u	CGL	m	pinky brn gry			-	1		highly disrupted fine sandstone with minor 2-7cm granite clasts
14RLD-005	86.88	92.93	GR	Granite		8SM	MS	m	blue pry						highly variable bio content. Blue qtz and feldspar phenos
14ALD-005	92.93	94.94		Granita		BSM	MS	m	blue to pinky gry					Potasak	patchy potassic alteration.
14RLD-005	94.98	96.07	11	Grenite	-	BSM	FOL	w	pinky gry		-		1	Potassic	Intense potassic alteration. Weak foliation defined by bio.
14RLD-005	96.07	100.52	#	Granite	_	0SM	MS	m	selmon pink				1	Potessic	Intense pervesive potassic alteration.
14RLD-005	100.52	108.25	47	Granite		BSM	MS	m	salmon pink					potassic / ch	I Intense pervesive potassic alteration and patchy chi alt of bio.
											1		1		moderately fractured potassic altered granite. Fractures are caldized - granite itself is partially weathered. Chi alt is its controlled. Miny efficiency fractures
14RLD-005	108.25	110.90	Ø	Granite	-	85M	FX	m	greenish salmon pink				+	potessic / ch	i aswell,
14RLD-005	110.90	112.77	10	Granite	-	85M	FOL	m	salmon pink					potessic	weatly foliated pervasively potassic attained granita. Foliation defined by too
14RLD-005	112.77	117.05	a de	Granite	_	185M	INS	m	pink to gry	Luning.	1	1	1.1.1	potassic	Medium grained grante with patchy potassic attarztion. Pegmatite sections up to 25cm and time grained bio rich sections increasing download
Samples:					10	Barrow Contractor	To a		T				-		
DDH	From	To	Semple 10	Semple Int	Туре	Weight	Coleur								
14RLD-005	37.00	38.00	263164	3.00	NG	-								+	-
14RLD-005	46.87	47,87	263165	1.00	HC						+				-
14RLD-005	54.00	\$5.00	263166	1.00	HC			-							
14RLD-005	64.00	65.00	263167	1.00	HC	-						-	-		
14RLD-005	73.00	74.00	263164	1.00	HC	-	-						-	+	
14RLD-005	36.86	89.00	263340	2.12	HC	-							1		
14RLD-005	89.00	91.00	283170	2.00	HC										
14RLD-005	90.00	92.93	269171	1.99	HC							+		-	
14RLD-005	92.93	94.96	203172	2.05	HC	-	-								
14RLD-005	94.96	96.07	263173	1.09	HC		-				-				
14RLD-005	96.07	98.00	263174	1.93	HC	-	1	L		-			-		

XXXXXX

Assessment Report for Athabasca Minerals Inc.'s Richardson Property, Northeastern Alberta

<u>133</u>

Assessment Report	for Athabasca Minerals	Inc.'s Richardson Property. Northeastern Alberta

Hale ID	Easting (UTM) 497390.0	Northing (L/TMI) 6413931 0	Admuth 0.0	Dły -90	Total Dupth	Bernstlern 0 296.00	Terget Area Richardson	Torgol Richardson	Contractor Lone Pask	Ovill Rig	Deffing Start Dat	Drifting End Date			
Logged By BA	Logging Start Data 11-Apr-2014	Logging End Date 11-Apr-2014	Casing 27.00	Cars Star	Coller Survey Type GP5	y Collin Survey Dele	Logged By	Degrahala Survey Data NA	Downhole Survey B	7					
DOH	From	Te li	Lith Cede	Lith Marne	LINA2	Fermation	Texatre Tree	Texture Internity	Lith Colour Code	Nasislas	Photosic %	Fresh Type	Täitumen	Aberatio	n (Description
14RLD-006	0.00	27.00	CAS	Casing		OV8		1	1	1	1	1	-		Cesing - no recovery
-						1		1	1	1		1			
14RLD-005	27.00	41.45	OB	Overburden		OVE	ł	1	1	1					Approximately 3.75m of recovery. Recovered material consists of large (up to 50cm) dolomite bouiders, purple to bese sands and coarse rounded gravels.
14RLD-006	41.45	43.00	C-DOL	Calcareous Dolomite	MS	WIN	210	1	drk gry to blk				v, high	weather	ed Righly weathered section with doiomitic cement leached out and abundant bitumen. Poorly Whified
14RLD-006	43.00	43.46	C-DOL	Calcareous Dolomite	MS	WIN	LA	w	beige brn			TC	high		zone of muddy doiostone. End of interval is marked by a dolomitic breccia unit. Bitumen infilling fractures.
14RLD-006	43.46	43.95	C-DOL	Calcareous Dotomite	R/15	WIN	DIS .	m	pinky gry			TC	mn		mottled pinky grey
14/RLD-006	43.95	44.17	C-DO1	Calcareous Dolomite	PS	WIN	FS	m	white			TC	high	bles chec	blasched white packstone. Allinor leaching of cement. Abundant bitumen throughout
14RLD-006	44.17	64.94	C-DOL	Calcareous Dolomite	MS	WIN	LA	YW	It gry	-		CN	mod		spotty bitumen infiling vugs.
14RLD-006	44.94	45.49	C-DOL	Calcaraous Dolomite	FS	WIN	DIS	175	white			tc	high	bleached	bleached white fossiliferous unit. Bitumen along fractures, infilling vugs and filling porosity created by dissolution of cement.
14RLD-006	45.49	47.08	C-DOL	Calcaneous Dolomite	AS	WIN	FS	m	It beige	1		TC	mm		Large abundant tabular corai fragments. Unit get slightly bleached downhole. Biturnen infilting porosity also increases downhole
14RLD-005	47.06	47.50	C-DOL	Calcareous Dolomite	RS.	WIN	FX	m	black to white		1	тс	v.high	-	naerly solid bitumen with minor R5 fragments remaining.
14RLD-006	47.50	47.72	C-DOL	Calcareous Doloniite	145	WIN	(PS	m	It beigs to white	1		TC	meur	blesched	Large abundant tabular coral fragments.
14RLD-008	47.72	50.45	C-DOL	Calcaneous Dolomite	WIS	WIN	FG	8	v. It bm			CM	bom		amorphous massive mudstone with very low fossil content. Bitumen present along minor fractures and within muddy dissolution zones.
24RLD-005	50.43	50.95	C-DOL	Celcamous Dolomite	PS .	WIN	DIS	m	y. It brn			TC	mutr		Dissolution of carbonate cament within the corals.
14RLD-006	50.95	\$3.87	C-DOL	Calcantous Dolomite	445	WIN	#G	3	w. It bm			CN	mod	-	amorphous massive muditione with very low fossil content. Bitumen present along minor fractures and within mudidy dissolution zones.
34RLD-005	53.87	\$6.07	C-DOL	Calcansous Dolomite	945	Wille	LA	3	med arn			CN	high		15cm zone of nearly solid bitumen at \$3.97m. Very low content of fine grained CN and dolomite rhombs. Wavy to disrupted laminae
14RD-008	\$6.07	58.03	C-00L	Calcaraous Dolomite	WS	WIN	LA	1	R gry			CN	mod		Wavy to disrupted laminae - typically low content of fine grained CN. Rare medium sized brachvopods disrupt the laminae in places
14RLD-006	58.03	58.93	C-DOL	Calcareous Dolornite	Inis	WIN	105	m	It gry to black	-	1	CN	high		wavy laminated mudatone with cement dissolution - paroisity filled with bitumen.
14RLD-008	98.93	60,87	05	ofsand	JMS .	WIN	ID75	1	black	-		CN	v, high		farst zone rich in bitumen seturated silica send.
14RLD-008	60,87	62,43	C-00L	Calcareous Dolomite	MS	WIN	ILA.	1	drk brn			ICN .	mod		strong wavy to disrupted laminae. Moderate mud content due to leeched carbonate cement
14RLD-006	62.43	63.72	C-DOL	Calcareous Dolomite	MS	ww	DIS	l.	drk brn		1	-	high	leached	abundant leached carbonate cament - muddy. liftumen infilling porosity created
24RLD-008	63.73	64.26	817	Bitomen	1	14/100	1		bleck	1	1	1	y high		solid massive bitumen - ideiv filling karst.
14RLD-000	64.15	84.82	C-DOL	Celcareous Dolomite	Iws	Was	LA	lw.	drk erv		1	SF	mod		partial secting of cement - bitumen staining.
14ELD-006	64.88	65.83	C-DOL	Calcereous Dofornite	MS	WIN	LA	m	med bro		1	SF	mor	leached	Gartial leaching of coment - bitumen staining.
14810-008	65.83	65.89	0.001	Celeraneous Dolomite	W/L	With	ES	Im	Imed byo			1sc	ter.		very weakly lawingted to impleated to classes
14810-005	65.89	87.17	C-DOL	Celtareous Dolomite	IRS.	WW	165	h	It ary		-	TC	mod		brumen infiling fractures real.
14810-005	67.17	70.07	C-001	Cuirannus Doironta	MS	North Contraction	1 A	in.	and bro			KE	mad		Minue CN rich washestown interhede. Bittomen infiling fractioner
14810-005	70.07	70 70	N-DOI	March Jar doinstone	1.04	Davater	LA	les.	madbro	Dolottite		slee	mar		S. Dr.m. dolomitic mud nothins. Strong waw laminations. Bitumen along fractures
14810-006	70.70	71.07	0.001	Calcumbras Delouita	iwe.	AN IN	ha	hu	lit hon	porononinina		1880	mor		BBP discuss Leasing - Abundant tabular come come come come of a
14810-006	71.02	74 90	0.001	Calconnus Dalonita	and and a second	Child	los		mad my bra			76	00.07	-	and an operational futureant can be the performance of the list and overalls. We set to include a future and an end of the list and overalls.
148 0.006	74.60	22.14	0.001	Calconne Delomite	hart	Davelle	LA	le le	Dr. mor	-		TCN	be made		Crined data, which the application of the treatment of which and const. Which are applied to the treatment,
1400 0.000	77.34	72.4 9	0.001	Calcanana Delomite	AND NOT	Same -	Ins	-	med my			- BC	within a		entrande verte est antennet entrange rescuence.
1400 Ducon	77.03	80.5 4	C-00L	Calcomous Dolomity	Add.	DAVIN	Inc.	la la	len	-		PC	mor		Minor Resistone internets with alundant 8.0
14810-005	80.58	80.38	BIT	B.P. states		Darste			black		+		y high		railer massher bityonen - Brake (Bine Karst
14810-000	80.34	83.01	C-001	Calcanaous Dolomite	LAS.	Parme .	Ins	100	plate south here						reventied ninky area middane
1480 0.000	97.01	83.01	Dueletete	Colomitic silty shale	-	MIN	I.A.	1	Larma Bry 10 Grit	-					Fina ensued tieffet, instantiated index
14810-006	83.01	43.34	C DOI	Colorenza: Service		Davide	LA AV	p	Bray			7.0			Inne grannes registry sammanes store.
34840-000	03.57	83.50	LET	Carcarerous procernite	1.40	100 Million	DA.	P	State mad an						Developments are record with the record of the second seco
14RLD-000	03.00	85.51	Dahalat	Contractorial	CM3	ICR.	140	5	R to med gry						Reveals a minuta de to secue 140 ratio de secue dana a
14810-000	80.51	80.22	BIT I	Bitumen		100	100		Interio gry		+		·		Environmental and a second sec
14HLD-000	68.22	69.22	Dahalat	Protection Bits also be effected as	-	icn icn	lan.		Dieta						Send Pressive security " Intergrand Lands and Interaction and
Lanch-008	89.22	93.98	Planals	providence, analy satisfone	23	N.B.	Terr		In to man Pry			-			In the Landon Constant of Landon and Telescond.
LARLD-008	93.90	\$5.78	R*35	Marche Minch Terret	35	Tes .	in a		IS Y	-			mar		Prinkhum greinku kakersous senustoris.
14RLD-005	95.70	99.50	02-1780	Faranke Wash - Transkionas	25	la la	[c]h	m	la pui				mor	L	Crass poor congramerate, size and aundence of class increases downhow
-															
DOM:	Barrow	P- 1	Renada ID	Seconds had	Iner	Installabel	In the second		· · · · · · · · · · · · · · · · · · ·		1				
LAND ON		1700	Annual Co	Lon .	1.100	Ten and Des			1						
14BLD 006		47.00	Collema to A	100	HC HC										
14810-000		68.00	Marin"	1.00											Real Control of Contro
A STREET COLOR		44.44	103107	240	110					-					
[14RLD-006	1.70.70	77,00	463168	1.90	HC NC		1	1	1	1 .		1	L		

Hale ID	Loting (UTM)	Northing Azin	-	Dip	Total Dupth	Bevetion	Turget Ame	Terget	Centracter	Drill No	Drilling Start Data	Drilling End Date	1		
4RLD-007	417713.0	6434268.0	6.0	-90.0	147.00	299.00	Richardson	Richardson	Lone Peek		1 19-946-3014	20-Feb-2014	•		
	London Bred	London Ford						re							
Legged By	Deta	Data Ca	ang .	Cara Siza	Culler Survey Type	Collar Survey Dete	Logged By	Date	Despetate Servey By						
A	16-Apr-2014	17-Apr-2014	39.00 h	iq.	GPS			NA	NA				1		
1044	frame P	Ta Diek (Cashe II	Jth Marrie	1.8%2	Formation	Transfer Type	Testure Intestity	111h Column Code	Nachdes	Plandada %	Fossil Type	Diturnan	Alteration	Description
4/LD-007	0.08	34.00 CAS	K	Lasing		CVB				1			-		Casing - no recovery
4RLD-007	38.00	38.00 CAS		asing		OVe			in and and				hist		Ceang - recovery of X pry to whit C-DOL.
4810-007	40.85	42.33 (-00		alcareous Delorate	10	WON .	DIS	m	med ary tree			TC	mod	-	porroven rescue a cercome anome.
4RLD-007	42.33	42.77 C-00	x k	Lakaraous Dolomite	RS	W/3H	DIS	m	R bm				mod	and the second	brumen aborg fractures.
4RLD-007	42.77	45.11 C-DO	х. К	alcereous Dolomite	WS	AAAAA	DIS	m	R brn	-		TC	mite		minor PS interbeds.
4RLD-007	45.11	45.58 C-DO		Calcamous Dotorvite	22	WIN	MED	m	t gry			TC	mer .	human	Implicit pasks Strangty conserved seven at seven with men'TC component. Styrman abog tractaries and initiality desortation uses mediatratic to washing method from extend insufational. Large constitutions and the method to be added to be adde
IRLD-007	49.97	50.91 C-DO		Calcaraous Dolomite	MS .	WIN	DIS	m	med bm			CN	mod		desrupted and fractured zone with bitumen along fractures as well as in vap associated with fracturing
ALD-807	50.91	\$2.72 C-DO	X K	Calceneous Dolonvite	M/5	WIN	MT	w	bege bin	-	1	CN	v.mnr		Interbedded 10-15cm mutations with motified muditions. Small CN disseministed throughout
MLD-007	\$2.72	53.44 N-00	2 1	lociular sloketona	MS	WH	DIS	m	med bm	dolomite	25	CN	v.mh/	-	Sna# rounded dolomite notives shit inteng the lemination
BLD-007	53.44	54 15 C-00		alcansous Oplonsta	MS MS	Page 1	LA	1	med bra	- de cier	former and the second	CN	Summer .		prices why to derupted terrorealises. Debundent white middle for up clast deturities the terrinee. Bitumen conc is within fracture cones
BLD-007	59.00	53.94 C-00	n k	Leicareous Dolomite	MS	WIN	LA	2	drk bm	-		CN	89017		disturbed laminae. Large infact CN
RLD-007	59.96	64.29 C-DO	X K	Calcarsous Dolomite	945	WW	LA	w	drk gry		- Xing and the	CN	mor		small disseminated CN and SP throughout. Bitumen concid in fractured zones
RLD-007	\$4.29	64.71 C-DO	x K	Leicareous Dokumite	195 Lun	WIN	DIS	10	med gry			CN	1001		32.5cm CN oncicies as well as dokomite rhombs and Jem TC fragments. Bloch
In.D-001	58.62	69 01 N-OC	A 6	Andrewing and an and an and an and an and an an an and an	MS	WIN .	06	an l	med ary	Idolomite	10	SF	x mar		Targe white to heave tregular porcus nodules.
RLD-007	60.01	75.32 N-DC	н .	foclular doloatone	MS	WIN	Dis	m	mad gry	dolomite	20	SP	-	-	2-5cm well rounded persus delowitic mul nodules. Some contain a minor amount of focal fragments
RLD-007	75.32	78.78 C-DO	x k	alcoreous Dolomite	WS	WHN	DIS	P5	med gry			CN	in and		erretic wavy dark organic rich laminae. Disseminated min scale crinced oscicles
RLD-007	78.78	\$1.14 C-DO	x K	alzereout Dolomite	MS	WIN	015	m	drk gry			CN	-		singular erratic WS interbade. Mini mottling. Rare calcite lined yage
HLD-007	43.60	\$3.607C-00		acareous Dolomite	ens.	Dann .	UDS		pency gry						antecoda prince gaine mutantonia.
IRLD-007	\$4.00	\$5.70 C-DO	N. K	Calcareous Dolomite		WIN	BX.	4	R BY			TC	mnr		broken blocky section of cars with poor recovery
MLD-007	\$5 70	90.00 LST		imentane	\$\$	CR	MS	1	gra gry	-		1		1	medium grained poorly comprised calc areaux sendetune and mudatone
HLD-007	90.00	92.67 D-str	t đ	Solomytik elitytone	\$5	CR	8D	m	t gry						Interbaded Ismineted dolomitic situtions with delemitic SS
MLD-007	92.67	95.06 D-shi	tab 17	Dokonvitiç alvely siltetori e	35	CA	ED IA	m	R pry				finimure		Interbadded shale, sitistione and sender one. Bottom or interveits memoed by a scimitating gouge zone annual at 50 decrease 10 cA. Larger 3-zm onk areas.
4RLD-007	\$7.95	98.65 Gr4r	an k	Frenthe Wash - Transitionel	55	iu.	CGL	5	brn to bie ary						matrix supported ref transitioning into clear supported ref downhole. Matrix is it brn mud, clears are granite
RLD-007	10.63	99.27 GR	6	Sranks		BSM	FX	m	blue gry			1	1		fractured and perturity weethaned granite.
IRLD-007	99.27	205.23 GR	-	Svanibe		BSM	MS	8	blue gry						fresh granita. 0.5 - Jem feldspar and quartz phenon with fine grained mice rich groundmess. Rare I-Zem dark chi clots
6RLD-007	103.23	218.78 gr	-	Sinorita		#SM	FOL	w	blue gry					a/bite	Unitably 1018103 to mayorine grantia - foreign animality mices (chi and bio). 2-35-142 ga Gark the other attention animal tracture serve ges many second metalements animation operations. 3-355 data the children.
4RLD-007	119.21	119-21 87	-6	a renality		85M	FOL	**	blue gry					elbite	weakly failed to massive grants - foliation defined by mices (chi and bio), 2-3% large dark chi clots. Minor albite afteration along frecture selvages
4RLD-007	122.23	126 19 41		Stanite		85M	MS	m	blue gry to pink	E.	1.	1		Petassic	variable patchy potessic afteration of messive to vesility foliated granite. Coarse plag avident throughout along with large dark (H clots
48LD-007	126.19	124.65 gr	-	Granita		05M	ful		pale to salmon pink					Potensic	moderate to intense k-eit throughout.
IRLD-007	126.66	134.75 gr	- Ě	ranita		135M	10	m	pale to salmon pirk	france	+	funninging	fraine	Potesic	Verifiebly polyages attained
481.0-007	136.67	141.54 gr	- 6	Fanite		254	PEG	m	pale to salmon pink			anti-tamp interests		Potassic	viteres k-at d pagnatite.
4RLD-007	141.54	145.24 gr	- 6	Lranite		85M	FOL	ra .	drk gry to salmon pink					Potassic	drk gry fine grained foliated gravite with feldiguer phenos. Cross cutting is all's pegmetite bands up to Im in size
4ALD-007	145.24	147.00 gr		Sranita		IISM	FCL		drk gry ta pink	1		in the second second	1	Poteesic	patchy potassic alteration of faids pay phenos in a dark gry fine grained ground mess
-															
			_												
DH	Prace	To Same	pla ID 5	lample int	Туре	Weight	Colour								
IRLD-007		47.00 28	190	1.00	MC				1	+					
ALD-007	45.00	64 00 241	191	1.00	HC				1	1	1		-	1	
RUD-007	78-05	80.00 343	5192	1.00	ж		L			-					
LD-007	98.05	99.27 263	5198	0.62	HC										
RLD-007	19.27 cdr 18	101 25 263	134	1.90	HC					+	+		+		
RLD-007	388.25	105.23 243	5196	1.98	HC				1	1	1			1	
#LD-007	185.30	107.25 261	1197	2.02	HC				1	1	L		1		
RLD-007	107.15	109.25 261	13.96	2.00	HC										
RLD-007	398.23	111.25 241	1399	1.00	NC					+					
LD-007	118.25	115-25 243	1201	2.00	HK .					1	1	1		1	
10-007	115.15	117.25 245	1202	2.00	нс						1			-	
#LD-007	217.25	118.78 263	1309	1.53	HC										
UD-007	150.78	119 21 201	1204	0.43											
LD-007	220.75	121.28 261	1206	1.44	K					1	1				1
LD-007	171.28	124.20 268	1287	1.97	96					1	1		-	-	
LD-007	124.38	126.19 284	1206	1.99	K										
LD-007	124.10	128.68 26	1209	2.60	HK.										
10-007	258.75	192.75 241	1231	2.00	HK HK										
RLD-007	142.73	124.75 243	1212	2.09	HC			the diversities and the other street, or	1	-	1		1		
RLD-007	114.75	136.67 265	3223	1.92	K										
RLD-007	100.07	136.50 263	1215	2.00	HC HC						+				
- and	and the second second			8.99		Street, and an excitate the second	Contraction of the local division of the loc	and the second se		A CONTRACTOR OF A CONTRACTOR OFTA A	And in case of the local division of the loc	· · · · · · · · · · · · · · · · · · ·	And in case of the local division of the loc	And in case of the local division of the	

144(E):007 346:20 161:54 28:3226 348(E):007 345:26 143:50 24723 144(E):007 348:54 143:54 28:3218 148(E):007 348:54 147:50 28:3218

<u>135</u>

							A	ssessment Re	port for Athaba	sca Min	erais Inc.	's Richard	son P	roperty, I	Northeastern Alberta
Hele 1D 14RLD-008	Easting (UTM) 497361.0	Northing (UTM) 6414972.0	Azimuth 0.0	Dip	Tetal Depth 90.0 \$9,00	Elevation 294.00	Target Ares Richardson	Target Richardson	Contractor Lone Peak	Drift Rig	Drilling Start Data 22-Fab-201	t Drilling End Date 4 23-Feb-2014			
Legged By	Logging Stari Date	Logging End Date	Cooling	Core Size	Collar Servey Type	Collar Survey Date	Logged By	Devenius la Survey Dete	Downhole Survey By						
A	17-Apr-2014	17-Apr-2014	33.00	DN .	GPS			NA	NA				1		
DDH	From	Te	Lith Code	Lith Neme	LithZ	Formation	Texutre Type	Texture Intenity	Lith Colour Code	Nedules	Nadule %	Fossill Type	Situme	Alteration	Description
4RLD-005	0.00	33.00	CAS	Casing		OVB					-			1	Casing - no recovery.
4RLD-008	33.00	38.00	08	Overburden	MS	OVB				1			1	1	consists of mixed quartzite, dolomite and granite boulers. Dolomite is most abundant with bouiders up to 50cm.
4RLD-008	38.00	41.46	OB	Overburden	55	OVB	cgl	3	med gry	1			-		medium to light gry sandy conglomerate. Beige brown doiomitic mud component.
49LD-008	41.46	44.90	C-Dol	Calcareous Dolomite	MS	OVB	BX	5	med gry				1		Cemented dolomitic braccia, Dolostone clasts and dolomite mud.
4RLD-008	44.90	64.92	OS	oilsand	SS	OVB	80	m	white to gray to black			1	mod		Variably bitumen saturated medium quartz sand.
4RLD-008	64.92	65.77	N-Dol	Nodular dolostone	WS	WIN	DIS	m	med brn	Dolomite	1	D CN	tr		2-Scm muddy porous dolomitic nodules. Large gastropod fossil. CN range from 2-Smm.
4RLD-008	65.77	67.95	C-Dol	Calcareous Dolomite	WS	WIN	DIS	m	med brn				tr.		Trace bitumen along fractures. Abundant CN and SF.
4RLD-008	67.95	71.32	C-Dol	Calcarsous Dolom/te	MS	WIN	DIS	M	gry brn			ŞF		-	Olsrupted dark organic rich layers. Rare 2-5mm SF.
4RLD-006	71.32	72.94	C-DOL	Calcareous Dolomite	MAS	WIN	DIS	m	pinky gry			1			mottled pinky grey mudstone.
4RLD-008	72.94	73.22	D-slstah	Dolomitic sitty shale		WIN	LA	5	grey	-		1	1		fine grained tightly laminated shale.
4RLD-008	73.22	73.39	D-sistsh	Oolomitic sity shale	WS	CR	6X	m	brn gry	Persona		1	1	-	moderately bracclated dolomitic sitty shale.
4R1 D-008	73.39	76.56	LST	Limestone	MIS	CR	LA	m	med any				1		Shale with minor laminated siltstone interbeds up to 10cm. 55 component at end of interval.
4RLD-008	76.56	80.25	D-sistsh	Dolomitic sity shale	MS	CR	BD	m	8ry			1	1		Minor laminated sittstone interbeds,
4RLD-008	80,26	81.18	B-ss	Besal Sendstone	55	4t.	MIS	m	it any				1	-	medium grained massive calcareous sandstone.
4RID-008	81.18	83.00	Gr-tran	Granite Wash - Transition	al Iss	11	CGL	m	It any				1		broken to blocky matrix supported condomerate.
4RI D-008	83.00	89.00		Granite		BSM	MS	Im	blue ary			-	1		blue grey massive granite. Minor being mud infilling fractures to 84.36m. Spotted with 1-2cm childots. Mnr replacement of chi with Py.
amples:															
DH	Prom	Те	Sample ID	Sample let	Туре	Weight	Caleur								-
4RLD-005	#4,93	65.77	263220	0.85	HC	E	1	1	I	1		1	1	1	
4RLD-008	490.00	70.00	263221	1.00	HC		1	1	1	1				1	
4RLD-008	49.89	85.00	263222	2.00	HC			1	1	1		1	1	1	
14RLD-008	43.80	\$7.00	263223	2.00	HC		1		1		- instance	1	1		
14RLD-008	\$7.00	89.00	263224	2.00	HC		1	1		1				1	

Appendix 3 – Geochemical Results

Appendix 3a – XRF Results

Hole ID	Depth (m)	MgKa1	AlKa1	SiKa1	P Ka1	S Kal	K Kal	CaKa1	BaLa1	MnKa1	FeKa1	Formation	FM_code	Ca+Mg	Ca/Mg
14RLD-008	84.13	3.359713249	-1.90648	17.999	0.014906	0.328882185	4.178634	-4.26003	0.119199	-0.07888	0.174502	Basement	4	-0.90032	-1.26797
14RLD-008	85.2	-0.134012138	4.345411	35.83718	0.017119	0.377223252	3.514489	-2.02862	0.091052	-0.06307	0.700691	Basement	4	-2.16264	15.13761
14RLD-008	85.95	-1.936249668	4.268374	37.68329	0.012358	0.385239822	4.067011	-3.55647	0.077292	-0.00918	0.05128	Basement	4	-5.49272	1.83678
14RLD-008	87.07	6.02396521	-9.66379	-4.86775	0.012935	0.293021448	3.809535	-4.53193	0.215493	-0.15997	0.061243	Basement	4	1.49204	-0.75232
14RLD-008	88.05	5.466131851	-8.20503	0.520424	0.01463	0.312378726	3.920268	-4.57842	0.121179	-0.17053	0.102616	Basement	4	0.887708	-0.8376
14RLD-008	88.9	8.143418943	-15.768	-32.0712	0.009086	0.25924667	2.724774	-1.85926	0.559054	-0.08711	0.592053	Basement	4	6.284157	-0.22831
14RLD-007	99.11	7.827496289	-15.3566	-40.8711	0.000775	0.252446031	1.919364	-1.59394	0.27709	-0.21424	0.217398	Basement	4	6.233555	-0.20363
14RLD-007	99.91	4.731916638	-0.95313	14.35609	0.021853	0.332584439	5.69619	-6.89364	0.175584	-0.12326	0.058253	8asement	4	-2.16173	-1.45684
14RLD-007	100.96	8.206081731	-10.6945	-9.78266	0.01701	0.304401361	5.028351	-6.64188	0.224985	-0.15501	0.165464	8asement	4	1.564205	-0.80938
14RLD-007	102.05	3.641472686	2.57016	20.00993	0.016007	0.352264257	4.974124	-4.35808	0.154865	-0.2412	0.087367	Basement	4	-0.71661	-1.19679
14RLD-007	102.93	3.850001815	-2.98224	14.46245	0.014111	0.319277607	3.984853	-3.08176	0.333226	-0.03465	0.352364	Basement	4	0.768241	-0.80046
14RLD-007	103.94	6.854581975	-4.40114	4.134433	0.025725	0.325066623	5.398805	-6.42548	0.253523	-0.13604	0.119168	Basement	4	0.4291	-0.9374
14RLD-007	104.89	-28.59688558	10.99901	29.80692	0.031727	0.487754507	2.630523	-0.01989	-0.10464	0.028038	-0.08195	Basement	4	-28.6168	0.000696
14RLD-007	105.89	5.578002543	-4.64042	8.586726	0.019372	0.336330916	2.972551	-1.6932	0.105646	-0.00727	1.453094	Basement	4	3.884802	-0.30355
14RLD-007	106.87	8.40716282	-15.3912	-23.2192	0.012036	0.300514901	3.646919	-4.51108	0.272145	-0.10114	0.129099	Basement	4	3.896081	-0.53658
14RLD-007	108.18	8.207132527	-11.3302	-11.9777	0.020737	0.301876609	4.792657	-6.27682	0.202945	-0.1476	0.209164	Basement	4	1.93031	-0.7648
14RLD-007	108.94	6.259031182	-4.12555	5.775806	0.016656	0.319875429	4.245277	-3.90182	0.203848	-0.12074	0.188514	Basement	4	2.357214	-0.62339
14RLD-007	109.87	9.5136334	-21.8236	-55.6369	0.010536	0.26523101	2.816468	-3.89743	0.277916	-0.47817	0.401814	Basement	4	5.616206	-0.40967
14RLD-007	110.94	7.500600251	-7.22455	-2.11296	0.022372	0.315701547	3.903336	-2.64602	0.205242	-0.14031	0.300575	Basement	4	4.85458	-0.35277
14RLD-007	111.92	8.177689679	-15.4439	-33.3179	0.000713	0.272665897	2.158596	-1.10908	0.284994	-0.09653	0.615911	Basement	4	7.068614	-0.13562
14RLD-007	112.87	8.353807309	-15.0159	-22.6821	0.007329	0.293151293	3.479889	-3.70063	0.341881	-0.09543	0.121943	Basement	4	4.653175	-0.44299
14RLD-007	113.94	8.88475701	-18.0854	-37.583	0.026877	0.290446569	3.012446	-2.98437	0.184399	-0.1201	0.287442	Basement	4	5.900383	-0.3359
14RLD-007	115.13	6.241707891	-5.01231	5.095222	0.019021	0.335933458	4.81486	-5.26136	0.213949	-0.07473	0.07881	Basement	4	0.980349	-0.84294
14RLD-007	115.81	6.91082898	3.379522	19.11095	0.055561	0.388479041	3.769621	-2.21594	-0.0826	-0.21921	4.022639	Basement	4	4.694891	-0.32065
14RLD-007	116.86	4.474051799	4.217308	18.835	0.031662	0.366768621	6.416933	-7.21894	0.306082	0.032284	0.21	Basement	4	-2.74489	-1.61351
14RLD-007	118.1	7.681363555	-4.42124	2.886872	0.029299	0.330835294	3.794858	-2.54964	0.104293	-0.13848	2.155246	Basement	4	5.131724	-0.33193
14RLD-007	119.13	7.634855288	-13.1204	-16.4544	0.012085	0.304232219	3.987009	-4.99934	0.389751	-0.1824	0.208501	Basement	4	2.635514	-0.6548
14RLD-007	119.94	6.281492695	-3.36931	7.365387	0.025505	0.331471781	5.425885	-6.10981	0.260933	-0.04656	0.434278	Basement	4	0.171683	-0.97267
14RLD-007	120.94	8.535156833	-13.3756	-16.1622	0.02026	0.309201163	4.34956	-5.47769	0.295166	-0.1321	0.431318	Basement	4	3.057466	-0.64178
14RLD-007	121.87	5.575188006	-3.18709	9.031903	0.020973	0.342130221	5.15794	-5.96979	0.22	-0.06411	0.208766	Basement	4	-0.3946	-1.07078
14RLD-007	123.11	-1.466802502	9.724475	36.8451	0.018907	0.401335778	5.40396	-5.10	0.117333	-0.03457	0.124326	Basement	4	-6.56313	3.474446
14RLD-007	124.11	7.347483704	-15.2098	-33.3915	0.00	0.290190151	1.893794	-1.76728	0.234821	-0.11346	0.099393	Basement	4	5.580202	-0.24053
14RLD-007	124.89	6.9883959	-10.3245	-6.48753	0.01	0.311343717	3.70957	-3.84324	0.188283	-0.11173	0.198917	Basement	4	3.145159	-0.54995
14RLD-007	126.05	7.962162406	-10.0938	-14.3717	0.03	0.338576354	2.039719	-1.02318	0.083613	-1.14647	2.339739	Basement	4	6.938983	-0.12851
14RLD-007	126.84	6.153867701	-8.91693	-1.94	0.010689	0.322183688	3.613877	-3.73863	0.216089	-0.07943	0.069752	8asement	4	2.415239	-0.60752
14RLD-007	127.93	7.871764515	-12.81	-14.5223	0.008958	0.313831704	2.515172	-1.12185	0.160191	-0.38214	0.15118	Basement	4	6.749915	-0.14252
14RLD-007	129.04	9.432856037	-20.0295	-90.5453	-0.00936	0.223524159	0.987285	0.192521	0.269735	-0.13952	0.246191	Basement	4	9.625377	0.02041

<u>139</u>
Hole ID	Depth (m)	MgKa1	AlKa1	SiKa1	P Ka1	5 Ka1	K Kal	CaKa1	Bala1	MnKa1	FeKa1	Formation	FM code	Ca+Mg	Ca/Mg
14RLD-007	130.11	9.009202156	-17.7558	-37.2353	0.018438	0.281938551	3.190089	-4.077	0.230231	-0.16583	1.117878	Basement	- 4	4.932202	-0.45254
14RLD-007	131.09	6.767035741	-11.7535	-11.6697	0.012142	0.307775611	3.18301	-3.51506	0.225269	-0.06083	0.123822	Basement	4	3.25198	-0.51944
14RLD-007	132.05	5.322860327	-0.734	13.44639	0.028118	0.352540846	5.641579	-6.51451	-0.06463	-0.05662	0.294371	Basement	4	-1.19165	-1.22387
14RLD-007	133.14	5.257015141	0.913819	16.40707	0.031543	0.351489395	5.781824	-5.87854	0.192076	-0.11194	0.770985	Basement	4	-0.62152	-1.11823
14RLD-007	134.11	6.563401375	-3.11476	7.09254	0.0192	0.352401892	3.988384	-3.3763	0.177438	-0.14371	0.600005	Basement	4	3.1871	-0.51441
14RLD-007	134.96	6.132896541	-3.93208	7.136759	0.038772	0.323748114	5.324309	-6.36227	0.239295	-0.06397	0.408051	Basement	4	-0.22937	-1.0374
14RLD-007	135.94	8.29085747	-15.4804	-23.4453	0.008241	0.290813696	3.891223	-4.8364	0.253266	-0.03555	0.262458	Basement	4	3.454459	-0.58334
14RLD-007	136.91	6.040225786	-4.17128	7.477337	0.024781	0.341927587	4.753454	-5.01698	0.204866	-0.07153	0.687708	Basement	4	1.02325	-0.83059
14RLD-007	138.07	8.319431025	-13.1918	-16.2262	0.0158	0.310577255	4.692344	-6.78294	0.241981	-0.12915	0.17244	Basement	4	1.53649	-0.81531
14RLD-007	139.1	9.716364956	-22.669	-71.9573	-0.0025	0.260845065	1.814149	-2.10849	0.195791	-0.39935	0.16561	Basement	4	7.607874	-0.217
14RLD-007	140.09	2.247593045	-1.97131	20.25879	0.006843	0.357847578	3.444662	-3.14241	-0.03009	-0.06943	0.007742	Basement	4	-0.89482	-1.39812
14RLD-007	140.95	6.57516358	-9.18154	-3.26426	0.015866	0.321205134	3.814056	-4.2262	0.322883	-0.11977	0.174388	Basement	4	2.348961	-0.64275
14RLD-007	141.93	9.579866452	-19.1121	-134.473	-0.0211	0.160484046	0.071521	2.082055	0.236599	-0.86317	0.201285	Basement	4	11.66192	0.217337
14RLD-007	142.89	9.219127841	0.613903	5.773338	0.159626	0.393101897	2.089705	2.595389	0.657522	-0.02139	9.193632	Basement	4	11.81452	0.281522
14RLD-007	143.93	8.228053907	6.879386	15.24891	0.407051	0.398990198	3.042028	4.616442	0.695513	0.077211	6.522849	Basement	4	12.8445	0.561061
14RLD-007	144.94	10.06641388	8.092738	12.38725	0.212103	0.430363223	3.964864	0.568734	0.196973	-0.0183	8.557526	Basement	4	10.63515	0.056498
14RLD-007	146.11	9.732266608	3.248859	8.161808	0.148937	0.391573728	4.111824	5.514859	0.594034	0.095091	5.66185	Basement	4	15.24713	0.566657
14RLD-007	146.83	9.892804892	4.852086	10.08332	0.342049	0.41934201	2.94753	3.033509	0.481845	0.098662	10.27784	Basement	4	12.92631	0.306638
14RLD005	87.08	5.678722106	-4.79801	7.70955	0.017443	0.315050632	2.623992	-1.06201	0.142685	-0.10237	0.214092	Basement	4	4.616708	-0.18702
14RLD005	87.88	-4.358189902	12.3331	42.06095	0.007817	0.420476816	1.359508	1.128644	0.064314	-0.1212	0.25366	Basement	4	-3.22955	-0.25897
14RLD005	88.95	3.38001263	1.46008	20.62394	0.007422	0.336069996	0.479451	2.279584	0.09968	-0.22873	0.234007	Basement	4	5.659597	0.674431
14RLD005	90.07	4.546020461	-3.08126	12.54623	0.005461	0.324556558	0.586809	2.011785	0.127353	-0.20312	0.203353	Basement	4	6.557806	0.442538
14RLD005	91.18	6.913487792	0.190359	10.40328	0.032225	0.341440287	3.698697	-1.73817	0.236721	-0.11494	0.491456	Basement	4	5.175314	-0.25142
14RLD005	92.05	4.295992568	6.937641	22.9324	0.019539	0.366560076	1.977433	1.386929	0.067391	-0.20543	0.877873	Basement	4	5.682922	0.322842
14RLD005	92.92	7.615645645	1.550736	9.960565	0.028056	0.350414824	1.625497	2.998717	0.138525	-0.20225	0.710305	Basement	4	10.61436	0.393757
14RLD005	94.17	6.380604089	-8.08731	-1.08489	0.021539	0.312797589	1.122553	1.725276	0.19489	-0.26019	0.33542	Basement	4	8.10588	0.270394
14RLD005	94.97	3.463258496	4.273946	22.30182	0.034956	0.359194054	1.17036	2.858348	0.119792	-0.17862	0.554479	Basement	4	6.321607	0.825335
14RLD005	95.95	5.02265885	5.100747	18.57671	0.020864	0.372577542	0.651302	5.801504	-0.00484	-0.06663	1.849439	Basement	4	10.82416	1.155066
14RLD005	97.13	6.57526909	1.644576	11.96422	0.022126	0.354919085	0.803281	5.610503	0.041479	-0.20178	1.731279	Basement	4	12.18577	0.853273
14RLD005	98.04	5.720103627	6.131207	17.1946	0.034715	0.368517629	0.891946	5.195525	0.04295	-0.13366	1.638778	Basement	4	10.91563	0.908292
14RLD005	99.11	7.261916844	4.416765	14.10187	0.06907	0.379860469	0.97261	3.991109	0.085332	-0.19936	2.138835	Basement	4	11.25303	0.549594
14RLD005	99.88	4.938835086	6.546535	19.09733	0.018604	0.366678667	0.860525	4.1340B7	0.012221	-0.12173	1.201363	Basement	4	9.072923	0.837057
14RLD005	100.94	6.676294889	3.50937B	13.40754	0.021634	0.362634593	2.828669	0.835551	0.146997	-0.03688	1.39535	Basement	4	7.511846	0.125152
14RLD005	102.1	5.47312658	6.734099	15.29812	0.305458	0.364717704	2.646306	5.073104	0.170082	-0.07808	1.727217	Basement	4	10.54623	0.926911
14RLD005	103.16	4.171114338	7.423216	19.83528	0.018204	0.372449805	1.024656	4.908081	0.051538	-0.17116	1.090109	Basement	4	9.079195	1.176683
14RLD005	103.83	5.334336809	7.183022	19.31365	0.022334	0.372466571	0.794613	4.946078	0.030634	-0.13342	1.450885	Basement	4	10.28041	0.927215
14RLD005	105.08	6.694450985	-9.5119	-6.1932	0.003743	0.319634747	0.159072	4.537BB1	0.161592	-0.15952	0.848969	Basement	4	11.23233	0.677857

<u>140</u>

Hole ID	Depth (m)	MgKa1	AlKa1	SiKa1	P Ka1	S Ka1	K Ka1	CaKa1	BaLa1	MnKa1	FeKa1	Formation	FM_code	Ca+Mg	Ca/Mg
14RLD005	105.87	3.749686861	9.731914	22.40482	0.024373	0.379165493	0.727096	5.785413	-0.01806	-0.04598	1.845318	Basement	4	9.5351	1.542906
14RLD005	106.97	7.108465689	8.233476	13.60495	0.051875	0.380138384	0.614049	9.9246	0.066886	0.264059	6.075174	Basement	4	17.03307	1.396166
14RLD005	107.82	7.10217612	8.26705	15.94718	0.029247	0.39005453	2.557645	1.675605	0.03427	-0.07768	1.520762	Basement .	4	8.777781	0.235928
14RLD005	109.05	8.062648527	2.616745	9.720307	0.046525	0.373791749	1.762753	2.577963	0.058095	-0.0794	1.645998	Basement	4	10.64061	0.319741
14RLD005	109.93	3.627182365	13.08966	27.78641	0.036893	0.409396169	8.08191	-8.35538	0.060338	0.021532	1.040778	Basement	4	-4.72819	-2.30354
14RLD005	111.18	3.604980351	9.485263	22.66642	0.028417	0.385740496	0.218006	6.778816	-0.05616	-0.06932	2.015741	Basement	4	10.3838	1.880403
14RLD005	112.15	1.887042373	8.364453	23.8475	0.063047	0.374033103	0.151886	9.359139	-0.05198	-0.03387	3.083533	Basement	4	11.24618	4.959687
14RLD005	112.95	5.323187288	-2.59932	12.31223	0.027914	0.346425616	4.627285	-4.29893	0.316936	-0.15365	0.614675	Basement	4	1.024261	-0.80759
14RLD005	114.05	4.458017264	0.595397	20.59855	0.143572	0.36420584	1.542059	3.574533	0.164991	0.018105	5.281817	Basement	4	8.03255	0.801821
14RLD005	114.95	4.119469798	2.663404	22.02853	0.025782	0.373813522	5.397473	-4.91952	0.163835	-0.08638	0.885395	Basement	4	-0.80005	-1 .19421
14RLD005	116.06	2.883824753	2.660937	27.34298	0.062564	0.373035546	4.345788	-2.459	0.202484	-0.01328	2.765676	Basement	4	0.424828	-0.85269
14RLD005	116.99	3.235421543	-0.68567	21.68317	0.024462	0.36784226	3.789565	-2.74501	0.095373	-0.06661	0.882183	Basement	4	0.490413	-0.84842
14RLD004	85.1	6.585036882	0.777497	17.02396	0.072036	0.387698609	3.811782	-1.38998	0.148339	-0.01007	3.610804	Basement	4	5.195061	-0.21108
14RLD004	85.94	6.248871186	-6.57706	2.330809	0.009782	0.331813869	5.091751	-6.49306	0.082579	-0.07713	0.08174	Basement	4	-0.24419	-1.03908
14RLD004	87.05	8.014628879	-13.1875	-17.1734	0.002904	0.277371295	4.277274	-5.81176	0.228919	-0.14734	0.143994	Basement	4	2.202872	-0.72514
14RLD004	87.9	4.639355258	2.350544	19.87349	0.016307	0.349624673	4.854451	-4.09194	0.513802	-0.04177	0.765544	Basement	4	0.547412	-0.88201
14RLD004	88.93	8.247079968	-7.07841	-3.54265	0.067811	0.32152812	2.090147	0.452793	0.416952	-0.06804	2.542234	Basement	4	8.699873	0.054903
14RLD004	89.82	6.083575846	-5.8143	4.697128	0.029263	0.314454358	5.190951	-6.72763	0.126699	-0.08403	0.234489	Basement	4	-0.64405	-1.10587
14RLD004	91.1	1.554697797	-4.36817	19.32544	-0.00032	0.340616338	2.521733	-2.13371	0.038851	-0.00566	0.027564	Basement	4	-0.57901	-1.37243
14RLD004	92.1	8.445033866	-13.9853	-20.9226	0.009644	0.293895199	3.884293	-5.00902	0.172373	-0.14788	0.092164	Basement	4	3.436014	-0.59313
14RLD004	92.8	6.624481142	-3.10961	8.223516	0.024215	0.330056404	5.095887	-5.3547	0.519608	-0.06074	0.788906	Basement	4	1.269784	-0.80832
14RLD004	94.12	7.685007318	5.366386	17.09082	0.057879	0.406273636	7.046811	-6.47889	0.360917	0.07444	2.29845	Basement	4	1.206117	-0.84306
14RLD004	95.13	5.880657346	4.850014	22.48909	0.05081	0.384003721	2.935831	-0.44197	0.074666	0.036579	2.987766	Basement	4	5.438684	-0.07516
14RLD004	95.95	7.603721245	-1.0284	9.364463	0.054214	0.363971253	3.612498	-1.78987	0.262496	-0.08076	2.566373	Basement	4	5.81385	-0.23539
14RLD003	87.12	5.221665924	12.2798	24.31972	0.020025	0.685108316	8.626496	-9.29403	0.156102	-0.06348	0.456986	Basement	4	-4.07237	-1.7799
14RLD003	87.78	3.683650354	12.73704	27.61851	0.035731	0.403815118	8.672245	-8.67242	0.112456	-0.01736	0.913324	Basement	4	-4.98877	-2.3543
14RLD003	88.89	6.945172522	11.80312	20.33602	0.025095	0.845978821	8.290869	-8.0205	0.021525	0.055713	1.295498	Basement	4	-1.07533	-1.15483
14RLD003	89.92	7.781463028	13.4033	18.15254	0.016818	0.636954849	7.654233	-7.22489	0.128261	-0.01372	0.896479	Basement	4	0.556577	-0.92847
14RLD003	90.93	8.00285689	6.799825	14.5588	0.030069	0.447748855	7.997065	-6.85782	0.169066	-0.04373	0.645696	Basement	4	1.145037	-0.85692
14RLD003	92.21	5.538127086	2.404803	19.67782	0.015144	0.436700897	6.161307	-6.51795	0.134246	-0.04534	0.370077	Basement	4	-0.97983	-1.17692
14RLD003	93.25	6.100061886	1.477759	15.70462	0.028489	0.352039855	7.31566	-9.32486	0.270946	-0.04486	0.208116	Basement	4	-3.2248	-1.52865
14RLD003	94.12	8.713332408	11.29414	15.57587	0.041718	0.47734928	7.454463	-7.05186	0.139515	-0.04907	0.769292	Basement	4	1.661473	-0.80932
14RLD003	94.88	7.843898231	9.63812	17.00227	0.024771	0.397201812	7.894961	-8.13566	0.124021	-0.03932	0.516579	Basement	4	-0.29176	-1.0372
14RLD003	95.88	7.758817517	11.57492	17.46684	0.036827	0.401518501	8.263818	-8.64505	0.12667	-0.02908	0.57581	Basement	4	-0.88623	-1.11422
14RLD002	92.93	7.360827752	-8.47562	-4.00275	0.014489	0.323981757	5.086725	-6.45792	0.159965	-0.12066	0.125814	Basement	4	0.902904	-0.87734
14RLD002	93.87	7.234729699	-9.84052	-7.01056	0.013519	0.31614307	5.021673	-7.24638	0.204574	-0.15674	0.114376	Basement	4	-0.01165	-1.00161
14RLD002	94.92	7.095749477	-9.60025	-5.8847	0.018936	0.317226647	5.088287	-7.31486	0.110416	-0.1366	0.117003	Basement	4	-0.21911	-1.03088

<u>141</u>

Hole ID	Depth (m)	MgKa1	AlKa1	SiKa1	P Ka1	S Ka1	K Kal	CaKa1	Bata1	MnKa1	FeKa1	Formation	FM_code	Ca+Mg	Ca/Mg
14RLD002	96.05	8.490893798	-16.1454	-35.8356	0.01752	0.301113177	3.067529	-3.83904	0.161471	-0.26687	0.439194	Basement	4	4.65185	-0.45214
14RLD002	97.07	6.179858352	-9.75084	-7.9738	0.00841	0.30721162	2.78654	-2.6098	0.162392	-0.22887	0.631941	Basement	4	3.570058	-0.42231
14RLD002	97.91	7.244634616	-9.10341	-10.2972	0.032743	0.314364239	2.659043	-1.8801	0.157468	-0.22794	2.242314	Basement	4	5.364536	-0.25952
14RLD002	98.94	7.085936519	-12.0491	-20.1381	0.003933	0.310850222	2.8275	-2.91937	0.20401	-0.17565	0.44163	Basement	4	4.166568	-0.41199
14RLD001	95.2	-0.457183827	3.373369	20.1091	0.014659	0.40527563	0.703363	10.94616	-0.01083	0.032967	0.221927	Basement	4	10.48897	-23.9426
14RLD001	95.89	2.145411317	3.205976	26.14147	0.023514	0.376267983	2.8543	6.163115	0.097519	-0.09602	0.507125	Basement	4	8.308526	2.872696
14RLD001	97.2	7.441697495	7.161885	19.27167	0.038801	0.397074833	5.112469	-2.89743	0.014353	0.121057	4.546821	Basement	4	4.54427	-0.38935
14RLD001	98.2	7.300003188	-10.3991	-11.1285	0.009524	0.319215446	3.816348	-4.57865	0.288767	-0.14142	0.344111	Basement	4	2.721352	-0.62721
14RLD001	98.79	8.817828295	-1.35554	3.078109	0.104517	0.381380263	3.160342	0.838246	0.12	-0.04715	4.186167	Basement	4	9.656074	0.095063
14RLD001	100.18	7.183017897	-6.69565	-0.63474	0.017214	0.323426003	3.494212	-2.03846	0.06432	-0.06935	0.909593	Basement	4	5.144558	-0.28379
14RLD001	100.93	8.440482797	-17.6296	-43.6224	0.000904	0.25721831	2.491339	-3.09496	0.260474	-0.21571	0.231779	Basement	4	5.345518	-0.36668
14RLD001	101.85	6.446358686	-10.4545	-11.282	0.002483	0.31722041	3.465324	-3.39221	0.174781	-0.08992	0.120603	Basement	4	3.054151	-0.52622
14RLD001	103.11	5.569369229	-2.8499	10.46957	0.177603	0.341339937	5.936586	-7.2854	0.712707	-0.05986	0.143795	Basement	4	-1.71603	-1.30812
14RLD001	104.06	8.596565739	-3.53357	2.012315	0.065851	0.363157938	3.863854	-2.34462	0.215467	-0.00963	3.292371	Basement	4	6.251949	-0.27274
14RLD001	105.11	3.563549815	5.115644	25.20297	0.029492	0.371715214	6.238402	-6.63853	0.263	-0.01702	0.305669	Basement	4	-3.07498	-1.8629
14RLD001	105.91	5.248882485	5.851695	19.88827	0.038515	0.370351078	7.847205	-9.32315	0.253337	-0.08294	0.126242	Basement	4	-4.07427	-1.77622
14RLD-008	74.06	3.49829348	0.586715	7.282438	0.022238	0.575563601	0.929623	25.78931	0.082014	0.03295	1.346627	Contact Rapids	2	29.2876	7.371968
14RLD-008	75.17	5.303300699	-2.41264	7.987989	0.033666	1.495966203	1.496577	13.03347	0.16215	0.007136	1.168145	Contact Rapids	2	18.33677	2.457614
14RLD-008	75.95	8.235480695	-0.17215	7.515026	0.03103	0.599793353	1.566669	13.4514	0.032832	0.014835	0.744126	Contact Rapids	2	21.68688	1.633347
14RLD-008	77.08	7.604613623	1.249908	12.35801	0.006988	2.207257652	2.175464	8.60811	0.008048	0.010837	0.934028	Contact Rapids	2	16.21272	1.131959
14RLD-008	77.95	9.533757058	0.873625	5.188625	0.060821	0.693113621	2.06839	11.26626	0.001184	0.02206	1.418938	Contact Rapids	2	20.80002	1.181723
14RLD-008	78.96	9.684400243	2.630598	7.153521	0.051763	0.738972996	2.201729	9.841556	-0.00807	0.043328	1.733881	Contact Rapids	2	19.52596	1.016228
14RLD-008	79.96	9.426039461	2.596926	8.57189	0.032949	0.472643764	1.868374	11.76746	0.013074	0.022918	1.244905	Contact Rapids	2	21.19349	1.248399
14RLD-007	90.12	8.074141946	4.430677	14.54133	0.028279	0.545226302	1.651174	8.382118	-0.10078	0.008682	1.016049	Contact Rapids	2	16.45626	1.038143
14RLD-007	91.11	0.784152474	-0.65334	26.46748	0.008967	0.323937693	1.029368	8.522359	0.07706	-0.07132	0.398366	Contact Rapids	2	9.306511	10.86824
14RLD-007	92.17	7.930911584	1.512201	12.69269	0.026971	0.748786769	3.485452	4.536929	-0.03459	0.003001	1.565459	Contact Rapids	2	12.46784	0.572056
14RLD-007	92.9	9.140875513	-0.10702	4.626604	0.038348	0.394924387	3.271062	8.646652	-0.01387	0.008229	0.953859	Contact Rapids	2	17.78753	0.945933
14RLD-007	94.11	7.266959916	5.191964	13.14395	0.050113	0.461162849	3.164487	9.523202	-0.03248	0.04395	1.694771	Contact Rapids	2	16.79016	1.31048
14RLD-007	95.12	8.739661431	-0.84047	4.757402	0.025854	0.355054451	2.577658	10.7377	0.058297	-0.004	0.734336	Contact Rapids	2	19.47736	1.228617
14RLD-007	95.83	10.31561175	2.172431	5.536889	0.029585	0.400779379	1.493716	15.81381	-0.03251	0.025724	0.774541	Contact Rapids	2	26.12943	1.532998
14RLD-007	96.9	10.7236745	1.752207	4.405974	0.024331	0.386877367	2.01732	14.80342	-0.04384	0.02881	1.131277	Contact Rapids	2	25.5271	1.380443
14RLD006	84	8.120984405	4.556229	12.72769	0.016666	1.534442683	2.046385	10.06257	-0.085	0.032955	1.925129	Contact Rapids	2	18.18356	1.239083
14RLD006	85	5.758763125	0.392629	6.305265	0.037946	0.92856111	0.926432	24.52708	0.019076	0.031269	1.313587	Contact Rapids	2	30.28584	4.259087
14RLD006	86.09	9.975650363	3.076157	6.818322	0.041969	0.921298944	1.437202	13.61064	-0.06399	0.026234	1.657176	Contact Rapids	2	23.5863	1.364387
14RLD006	86.9	10.43478057	2.318764	4.962738	0.015583	0.585196224	1.354394	16.3337	-0.02055	0.035068	1.223996	Contact Rapids	2	26.76848	1.565313
14RLD006	88.06	5.23538114	3.617184	20.51543	0.027383	0.821936751	2.258528	7.427347	-0.02198	-0.0152	1.361283	Contact Rapids	2	12.66273	1.418683
14RLD006	90.1	10.30723564	1.813438	5.7519	0.03434	4.502573943	1.447187	13.63626	-0.00334	0.085748	2.908049	Contact Rapids	2	23.9435	1.32298

<u>142</u>

Hole ID	Depth (m)	MgKa1	AlKa1	SiKa1	P Ka1	5 Ka1	K Kal	CaKa1	BaLa1	MnKa1	FeKa1	Formation	FM_code	Ca+Mg	Ca/Mg
14RLD006	91.06	7.909031049	0.16511	10.67014	0.030396	1.060270237	2.232515	8.89527	0.018238	-0.01011	1.271833	Contact Rapids	2	16.8043	1.124698
14RLD006	92.05	9.088181555	2.813834	9.559821	0.042004	0.609322948	2.242026	10.9443	-0.06554	0.037536	1.618051	Contact Rapids	2	20.03248	1.204234
14RLD006	93	9.479081695	1.087057	6.93627	0.030841	0.446247937	2.261227	12.03785	-0.0761	0.010452	1.114251	Contact Rapids	2	21.51693	1.269939
14RLD005	77.08	6.947220753	0.688209	4.458244	0.001752	1.231690041	0.66965	26.27491	0.020684	0.032683	1.076328	Contact Rapids	2	33.22213	3.782074
14RLD005	77.95	3.269731516	0.4338	11.58775	0.067569	1.28605564	1.377828	18.38463	0.058061	0.003396	1.712145	Contact Rapids	2	21.65436	5.622673
14RLD005	78.9	3.52719804	0.4499	8.36176	0.034374	0.609042265	1.351605	22.95692	0.073923	0.014372	1.338163	Contact Rapids	2	26.48412	6.508544
14RLD005	79.9	9.506229431	0.450212	4.709451	0.041764	0.496306169	1.39047	14.98013	-0.0241	0.028524	1.471402	Contact Rapids	2	24.48636	1.575823
14RLD005	81.07	8.543953236	0.57335	7.911081	0.045129	0.409061675	1.691283	15.27456	-0.01586	-0.00176	1.046232	Contact Rapids	2	23.81852	1.787763
14RLD005	81.87	7.460739221	-0.50199	3.099401	0.01554	0.321037377	1.33295	25.80725	0.114798	0.016008	0.837383	Contact Rapids	2	33.26799	3.459075
14RLD005	83.09	8.241504212	1.156811	10.48951	0.031475	0.386972927	2.962744	6.672995	0.000665	0.009611	1.538414	Contact Rapids	2	14.9145	0.809682
14RLD005	83.9	8.925727215	-0.21061	5.744527	0.030035	0.39068964	1.716868	10.91565	-0.00706	0.012619	1.509292	Contact Rapids	2	19.84137	1.222942
14RLD004	73.8	3.50567441	-0.89175	5.689616	0.047093	0.357452621	1.051084	27.41294	0.068885	0.029894	1.111384	Contact Rapids	2	30.91861	7.81959
14RLD004	75.05	8.180362275	0.088766	8.662511	0.010133	1.321247262	1.784795	12.40728	-0.00035	0.008736	0.953189	Contact Rapids	2	20.58764	1.516715
14RLD004	76.18	7.918542238	1.314732	8.170497	0.037843	0.771074076	1.895881	15.49145	-0.00939	0.028531	1.544944	Contact Rapids	2	23.40999	1.956351
14RLD004	77.08	9.351579051	0.201085	4.534329	0.027176	0.471868333	1.550335	17.06611	-0.046	0.020465	1.087595	Contact Rapids	2	26.41769	1.824944
14RLD004	77.95	6.761534587	0.124761	5.560777	0.039564	0.383019114	1.458548	23.48101	0.470145	0.030539	1.215668	Contact Rapids	2	30.24255	3.472734
14RLD004	78.93	8.464513336	1.043711	9.0305	0.05615	0.539983558	2.441211	9.810011	-0.03812	0.012953	1.653834	Contact Rapids	2	18.27452	1.158957
14RLD004	80.08	9.349669211	1.797838	7.607913	0.025662	0.777767346	3.220465	6.637154	-0.04396	0.040072	1.984181	Contact Rapids	2	15.98682	0.709881
14RLD004	81.21	7.864354458	2.035505	11.82051	0.027081	0.497300583	2.873102	6.500738	0.0429	-0.00992	1.768941	Contact Rapids	2	14.36509	0.826608
14RLD004	82.1	9.204494137	0.707266	6.234055	0.030466	0.63398314	3.473719	6.729782	0.010334	0.032778	1.80438	Contact Rapids	2	15.93428	0.731141
14RLD004	83.1	9.457948686	-0.42304	2.7104	0.027552	0.351094845	2.363889	12.59348	-0.06111	0.017577	1.025167	Contact Rapids	2	22.05143	1.331523
14RLD003	74.21	10.12439623	1.140573	4.782742	0.055341	0.531197539	1.360703	14.72891	0.011021	0.040392	1.671127	Contact Rapids	2	24.85331	1.454794
14RLD003	76	6.492334258	0.134368	11.70948	0.043189	0.415693381	1.851799	12.01263	0.054942	-0.00194	1.568129	Contact Rapids	2	18.50496	1.850279
14RLD003	76.95	4.230934666	0.625547	12.01524	0.041988	0.433510995	1.78096	15.91932	0.069293	0.011131	1.596305	Contact Rapids	2	20.15026	3.762602
14RLD003	77.05	4.826597911	0.547437	9.207138	0.062696	0.352896599	2.563493	16.55192	0.061494	-0.01204	1.151506	Contact Rapids	2	21.37852	3.429314
14RLD003	77.94	9.43404059	2.27552	7.871434	0.041813	0.436452085	2.112723	11.71124	-0.02338	0.031339	1.746981	Contact Rapids	2	21.14528	1.241381
14RLD003	78.92	7.788153341	-1.50731	6.643912	0.006498	0.337766654	1.205684	11.56054	0.037198	-0.01862	0.826941	Contact Rapids	2	19.3487	1.484375
14RLD003	80.11	8.363638369	2.622147	11.47591	0.052201	0.435982783	2.966623	7.195652	-0.00436	0.045487	2.095323	Contact Rapids	2	15.55929	0.860349
14RLD003	81.12	8.734574658	3.486099	10.60066	0.050086	0.387427284	2.736012	9.851207	-0.04715	0.028083	1.688472	Contact Rapids	2	18.58578	1.127841
14RLD002	78.19	9.090419921	2.047399	8.522754	0.053376	0.568441593	1.757864	13.63545	0.018395	0.032186	1.650191	Contact Rapids	2	22.72587	1.49998
14RLD002	79.04	8.324704853	0.997228	6.463377	0.044302	0.525852568	1.072282	19.43699	0.040977	0.035557	1.594145	Contact Rapids	2	27.7617	2.334857
14RLD002	79.9	6.138340583	-1.87389	10.39074	0.034499	0.619681576	1.644336	8.43423	0.110114	-0.00185	1.814655	Contact Rapids	2	14.57257	1.374025
14RLD002	81.13	0.66506324	1.613126	12.32868	0.007754	0.322744233	1.230399	22.90238	0.069515	0.012399	0.648423	Contact Rapids	2	23.56744	34.43639
14RLD002	82.11	3.749242526	-2.51447	9.640038	0.022772	0.321969352	1.372728	14.89821	0.101268	-0.01492	0.89598	Contact Rapids	2	18.64745	3.973659
14RLD002	83.04	8.85885672	1.048497	7.588032	0.034711	0.401940137	2.119967	11.61518	0.032994	0.016872	1.390346	Contact Rapids	2	20.47403	1.311137
14RLD002	84.06	4.988465421	1.312514	18.23478	0.02047	0.359846207	1.197238	11.94148	0.021138	-0.00406	1.025199	Contact Rapids	2	16.92995	2.393819
14RLD002	85.19	8.121178884	3.03956	12.59968	0.045888	0.439175062	3.331123	5.675721	0.057668	0.020605	1.661429	Contact Rapids	2	13.7969	0.698879

<u>143</u>

Hole ID	Depth (m)	MgKa1	AlKa1	SiKa1	P Ka1	S Ka1	K Kal	CaKa1	Bala1	MnKa1	FeKa1	Formation	FM_code	Ca+Mg	Ca/Mg
14RLD002	86.06	2.858809691	4.46388	28.59578	0.026664	0.376744239	2.947217	1.573185	0.004708	-0.04544	0.82446	Contact Rapids	2	4.431995	0.550294
14RLD002	87.13	9.281320361	2.251467	7.897927	0.044238	0.362475589	2.987873	11.07572	-0.01777	0.015204	1.152541	Contact Rapids	2	20.35704	1.193335
14RLD002	88.15	9.930859824	2.863476	6.832469	0.038302	0.411257243	2.997743	10.89709	-0.05621	0.036148	1.62656	Contact Rapids	2	20.82795	1.097296
14RLD002	89.22	8.241408145	5.084095	13.16252	0.045802	0.482017077	4.356399	4.540979	-0.05502	0.037463	1.92104	Contact Rapids	2	12.78239	0.550996
14RLD002	89.97	7.399205354	4.953644	14.44136	0.029925	0.447736178	3.544452	7.314374	0.045884	0.020385	2.173369	Contact Rapids	2	14.71358	0.988535
14RLD001	77.87	10.2396054	0.647256	3.476469	0.03941	0.375271119	0.955181	19.9737	-0.01357	0.020225	0.79007	Contact Rapids	2	30.21331	1.950632
14RLD001	79.15	6.285196479	0.521289	9.441647	0.029146	0.385922216	1.678203	16.67802	0.038692	-0.01857	1.544297	Contact Rapids	2	22.96322	2.65354
14RLD001	79.84	6.736647542	-0.83422	9.382189	0.059131	0.558515272	2.057923	11.35683	0.039661	0.004602	1.486374	Contact Rapids	2	18.09348	1.685829
14RLD001	80.94	4.078229387	-6.84024	-9.51916	-0.01395	0.214523944	0.200854	12.50364	0.145958	-0.14654	0.386034	Contact Rapids	2	16.58187	3.065949
14RLD001	81.97	7.354473536	1.296077	12.96618	0.028822	0.433784483	2.746083	8.039834	0.046388	-0.02758	1.657518	Contact Rapids	2	15.39431	1.09319
14RLD001	82.92	9.283857932	4.685384	10.14573	0.060048	0.408931646	2.732016	8.701707	-0.04186	0.049178	1.936064	Contact Rapids	2	17.98557	0.937294
14RLD001	84.21	9.075568647	2.936484	10.16556	0.042543	0.446807735	2.676444	8.70031	-0.0834	0.038578	1.747541	Contact Rapids	2	17.77588	0.958652
14RLD001	85.22	6.890847829	-2.65826	7.19925	0.022988	0.333677252	1.662414	6.415725	0.065593	-0.06574	0.837196	Contact Rapids	2	13.30657	0.93105
14RLD001	85.89	1.095884838	0.463741	31.84556	0.018958	0.358517398	2.132219	1.703152	0.031925	-0.10353	0.426443	Contact Rapids	2	2.799037	1.554134
14RLD001	86.92	7.794305094	3.125833	14.98799	0.037408	0.386023217	3.676032	4.856656	0.050769	-0.00833	1.321039	Contact Rapids	2	12.65096	0.623103
14RLD001	88.22	8.786831383	5.826523	12.98629	0.046469	0.800532749	4.116541	4.732325	-0.12206	0.056794	2.455416	Contact Rapids	2	13.51916	0.53857
14RLD001	89.86	9.445588512	3.757711	9.106115	0.048979	0.407953765	3.735627	7.388419	-0.0838	0.048191	1.780885	Contact Rapids	2	16.83401	0.782208
14RLD001	90.07	10.22213256	3.079904	6.147316	0.030197	0.380725695	2.797368	11.63432	-0.04489	0.036713	1.313194	Contact Rapids	2	21.85646	1.13815
14RLD001	90.94	10.18769315	3.153343	6.259118	0.04281	0.387945276	3.315541	10.09694	-0.02326	0.037959	1.469636	Contact Rapids	2	20.28464	0.991092
14RLD001	91.9	10.39236464	1.831569	4.154273	0.028729	0.391752895	2.574757	12.4315	-0.01346	0.033078	1.263303	Contact Rapids	2	22.82387	1.196215
14RLD-008	81.17	6.564795434	2.270939	17.2422	0.036584	0.4132897	1.743242	8.712548	-0.01838	-0.01376	1.010828	La Loche	3	15.27734	1.327162
14RLD-008	83	3.986701077	0.205378	18.22039	0.013656	0.332633828	4.691973	-4.43819	0.221605	-0.12709	0.177113	La Loche	3	-0.45149	-1.11325
14RLD-007	98.13	9.433072793	0.234443	3.808352	0.039111	0.364401665	3.698295	7.559595	0.000587	0.003285	1.075266	La Loche	3	16.99267	0.801393
14RLD006	94.06	7.871766811	3.41919	14.10395	0.027845	0.639854422	2.014105	9.149774	-0.06292	0.011337	1.474924	La Loche	3	17.02154	1.162353
14RLD006	94.9	4.922706676	-0.12843	20.15478	0.006151	0.383593074	2.397096	4.214865	0.107176	-0.06858	0.581278	La Loche	3	9.137572	0.856209
14RLD006	96.15	9.453893403	2.155759	7.697184	0.018963	0.441983572	2.10442	13.72728	-0.0025	0.016738	0.885677	La Loche	3	23.18117	1.452024
14RLD005	85	5.195997012	-3.18269	11.23432	0.006791	0.319599949	1.717415	4.769294	0.119514	-0.19122	0.311252	La Loche	3	9.965291	0.917878
14RLD005	86.05	10.2625593	2.090937	4.697283	0.029517	0.372042452	3.067109	11.38398	-0.03072	0.035626	1.433139	La Loche	3	21.64654	1.109273
14RLD004	84.12	9.513462072	-0.51293	1.790797	0.028649	0.353814959	2.542316	12.37153	-0.01555	-0.01048	1.059673	La Loche	3	21.88499	1.300423
14RLD003	82.17	5.458957518	-0.77279	16.26483	0.02063	0.34029469	1.784992	6.651312	0.033554	-0.05242	0.748926	La Loche	3	12.11027	1.218422
14RLD003	83.18	7.735694734	-0.7082	8.307865	0.027463	0.359268325	3.357161	6.796922	0.010325	-0.03942	0.632302	La Loche	3	14.53262	0.878644
14RLD003	84.07	9.354669756	2.419842	7.082674	0.032569	0.370971015	5.269256	4.226396	0.114169	-0.00688	0.709385	La Loche	3	13.58107	0.451795
14RLD003	84.81	5.356067805	10.43523	22.97508	0.039477	0.389343472	8.776314	-10.0672	0.119751	-0.04648	0.415032	La Loche	3	-4.71112	-1.87958
14RLD003	85.84	5.717953151	13.33732	22.93275	0.028077	0.488201877	8.287191	-7.99662	0.129851	-0.04856	0.558068	La Loche	3	-2.27867	-1.39851
14RLD002	90.91	6.789366385	0.910796	13.60229	0.025165	0.351239309	3.064177	7.733576	0.06063	-0.04401	0.89621	La Loche	3	14.52294	1.139072
14RLD002	92.15	6.548980401	-0.39404	12.51498	0.023301	0.359662607	4.625918	0.576124	0.06196	-0.0518	0.314406	La Loche	3	7.125105	0.087972
14RLD001	93.11	10.28199882	1.84173	4.309888	0.0292	0.491435481	3.085781	10.55436	-0.03245	0.041812	1.655675	La Loche	3	20.83636	1.026489

<u>144</u>

Hole ID	Depth (m)	MgKa1	AlKa1	SiKa1	P Ka1	S Ka1	K Kal	CaKa1	BaLa1	MnKa1	FeKa1	Formation	FM_code	Ca+Mg	Ca/Mg
14RLD001	94.19	9.55216237	1.723945	6.652077	0.040888	0.366164565	2.79699	11.0711	0.035814	-0.01111	1.550516	La Loche	3	20.62326	1.159015
14RLD-008	65	10.5875036	-0.33716	0.629165	0.036112	0.414139837	0.331874	20.91828	-0.00876	0.027533	0.604199	Winnepegosis	1	31.50578	1.975752
14RLD-008	65.87	10.85241725	0.447936	1.956544	0.073572	0.817086592	0.628245	18.793 7 7	-0.04544	0.031297	0.954347	Winnepegosis	1	29.64619	1.731759
14RLD-008	67	11.14128872	0.184113	0.114634	0.029707	0.502814364	0.28353	21.2098	-0.04681	0.027089	0.471824	Winnepegosis	1	32.35109	1.903712
14RLD-008	68.17	11.65723515	1.176349	2.023857	0.007783	0.451590193	0.301178	19.12847	-0.05859	0.029642	0.368215	Winnepegosis	1	30.78571	1.64091
14RLD-008	69	11.78069519	0.519917	0.805309	0.002349	0.39626974	0.187558	21.3762	-0.02641	0.020477	0.371343	Winnepegosis	1	33.1569	1.814511
14RLD-008	69.95	10.68622577	-0.09604	0.002667	0.003603	0.364635982	0.194079	22.25785	-0.01596	0.015155	0.299607	Winnepegosis	1	32.94408	2.082855
14RLD-008	71.08	7.28259091	-1.56226	-2.2286	0.014247	0.357924981	0.144584	23.27331	0.005432	0.004466	0.268246	Winnepegosis	1	30.5559	3.195746
14RLD-008	71.92	10.02200138	-0.25343	-0.05715	-0.00064	0.340874174	0.106595	22.91509	0.010542	0.012867	0.146733	Winnepegosis	1	32.93709	2.286479
14RLD-008	73.06	10.74852152	0.661159	1.019117	0.00817	2.192142912	0.962237	17.16113	-0.02505	0.048074	1.483929	Winnepegosis	1	27.90965	1.596603
14RLD-007	39.15	10.84174707	-0.32337	-0.16313	-0.00858	0.317745043	0.100623	24.72405	-0.00666	-0.01265	0.107975	Winnepegosis	1	35.5658	2.280449
14RLD-007	39.89	11.904664	0.308935	0.678933	-0.0039	0.337307342	0.060421	22.82732	-0.01209	0.005568	0.058679	Winnepegosis	1	34.73198	1.91751
14RLD-007	40.93	11.490793	0.059501	0.28305	0.008124	0.331852548	0.065642	23.65362	-0.0122	0.00576	0.057338	Winnepegosis	1	35.14441	2.058485
14RLD-007	42.12	12.14169002	0.800924	1.017911	-0.01513	0.346202459	0.064689	21.9652	-0.0055	0.010009	0.053585	Winnepegosis	1	34.10689	1.809073
14RLD-007	43.12	12.10159075	0.469934	0.608163	0.00058	0.339553113	0.073934	22.72709	0.00693	0.007135	0.055407	Winnepegosis	1	34.82868	1.878025
14RLD-007	44.12	11.96446331	0.308997	0.394722	-0.02341	0.336526659	0.068729	23.18636	0.019185	0.000333	0.045188	Winnepegosis	1	35.15083	1.937936
14RLD-007	44.85	12.19123381	0.695918	0.956774	-0.02207	0.347669002	0.048131	22.06439	-0.01211	0.000211	0.031678	Winnepegosis	1	34.25563	1.809857
14RLD-007	45.91	11.88336331	0.358008	0.725888	-0.0142	0.329881335	0.069033	23.34217	-0.01152	0.000523	0.156199	Winnepegosis	1	35.22553	1.964273
14RLD-007	47.13	12.01972132	0.429351	0.697971	0.000723	0.340169218	0.053056	22.59768	-0.01647	0.007951	0.067095	Winnepegosis	1	34.61741	1.880051
14RLD-007	48.17	11.79172623	0.212445	0.445743	0.004235	0.336488858	0.059614	23.23219	0.021962	0.011079	0.067125	Winnepegosis	1	35.02391	1.970211
14RLD-007	49.13	11.8459928	0.229216	0.502005	-0.02124	0.333491183	0.065304	23.29054	0.002129	0.003355	0.09283	Winnepegosis	1	35.13653	1.966111
14RLD-007	50.2	11.63874553	0.152391	0.652489	-0.01408	0.381820493	0.098215	23.03175	-0.00025	0.015114	0.182826	Winnepegosis	1	34.67049	1.978886
14RLD-007	50.96	11.95873715	0.390538	0.608986	-0.00245	0.352235697	0.060491	22.42193	0.001837	0.012385	0.078615	Winnepegosis	1	34.38067	1.874941
14RLD-007	51.91	10.24274887	-0.38586	-0.09731	-0.00417	0.32141742	0.077094	24.6918	-0.02656	-0.00301	0.073583	Winnepegosis	1	34.93455	2.410662
14RLD-007	53.14	11.7906269	0.382751	1.280175	-0.01452	0.345049609	0.062034	21.82458	-0.00175	0.006306	0.091519	Winnepegosis	1	33.6152	1.851011
14RLD-007	53.86	4.724093595	-3.53291	-11.3218	-0.00626	0.280097842	-0.02642	19.83981	0.068838	-0.05229	0.156563	Winnepegosis	1	24.5639	4.199707
14RLD-007	54.89	12.00641615	0.609425	1.282179	-0.00488	0.346126045	0.072386	21.72725	-0.01466	0.005722	0.085662	Winnepegosis	1	33.73367	1.809637
14RLD-007	56.12	11.26380046	-0.12229	1.206013	-0.02253	0.327200335	0.080424	23.29234	0.020126	0.007003	0.14811	Winnepegosis	1	34.55614	2.067893
14RLD-007	56.89	8.275946027	-1.6941	-0.04745	-0.01923	0.31168056	-0.00526	19.22277	0.000571	-0.02899	0.11949	Winnepegosis	1	27.49872	2.322728
14RLD-007	58.12	11.07916728	-0.14024	0.398181	-0.0142	0.327334999	0.081385	23.26106	0.002339	0.008425	0.131547	Winnepegosis	1	34.34023	2.099532
14RLD-007	58.94	11.13008702	-0.03509	0.767706	-0.00207	0.360304621	0.127631	22.4044	0.013907	0.011043	0.213385	Winnepegosis	1	33.53449	2.012959
14RLD-007	60.14	11.82420481	0.559214	1.409526	5.43E-05	0.655547331	0.124312	21.16676	-0.00834	0.017697	0.362125	Winnepegosis	1	32.99096	1.790121
14RLD-007	60.91	11.50636433	0.112184	0.65299	0.033149	0.380979175	0.17247	22.79934	0.014439	0.005037	0.25367	Winnepegosis	1	34.3057	1.981455
14RLD-007	61.9	11.48054313	0.137118	0.411705	0.007818	0.35402016	0.114888	22.79791	-0.02146	0.009172	0.146923	Winnepegosis	1	34.27846	1.985787
14RLD-007	62.95	11.95795823	0.997551	1.425	0.004951	0.355383529	0.069704	20.89597	-0.03137	0.011406	0.070559	Winnepegosis	1	32.85393	1.747453
14RLD-007	64.16	11.14116152	-0.01054	0.261513	-0.00798	0.367959969	0.154427	22.92447	-0.02882	0.012018	0.197734	Winnepegosis	1	34.06563	2.057638
14RLD-007	65.15	11.80042873	0.339407	0.559836	-0.02244	0.359226404	0.15691	22.56344	-0.02181	0.012406	0.227794	Winnepegosis	1	34.36387	1.912087

<u>145</u>

Hole ID	Depth (m)	MgKa1	AlKa1	SiKa1	P Ka1	S Kal	K Ka1	CaKa1	BaLa1	MnKa1	FeKa1	Formation	FM_code	Ca+Mg	Ca/Mg
14RLD-007	65.89	11.61202987	0.228537	0.662477	-0.00364	0.341149562	0.117619	22.33753	0.002283	0.009926	0.120151	Winnepegosis	1	33.94956	1.923654
14RLD-007	66.91	10.97373235	-0.41987	0.178166	0.009338	0.319872942	0.222233	23.2868	0.027042	0.003617	0.276159	Winnepegosis	1	34.26053	2.122049
14RLD-007	67.93	11.48954415	0.227592	1.120442	0.023968	0.366659893	0.182775	21.83025	-0.00418	0.010759	0.240475	Winnepegosis	1	33.3198	1.90001
14RLD-007	68.95	11.64468876	0.459759	1.017144	0.018013	0.408690617	0.260023	21.25867	0.005883	0.015	0.315837	Winnepegosis	1	32.90336	1.825611
14RLD-007	69.92	10.41748938	-0.16726	0.202814	0.014726	0.483450716	0.290445	21.30149	-0.02796	0.016032	0.393469	Winnepegosis	1	31.71898	2.044782
14RLD-007	70.92	9.804598592	-0.41205	0.019673	0.015674	0.421844578	0.239703	21.38602	-0.0181	0.016296	0.367743	Winnepegosis	1	31.19062	2.181223
14RLD-007	72.05	9.95599637	-0.32113	-0.26403	0.055435	0.637659051	0.499926	20.48867	-0.03539	0.026355	0.571496	Winnepegosis	1	30.44467	2.057923
14RLD-007	73.09	5.871181273	-5.7699	-16.6109	-0.00055	0.287029222	0.140726	14.71814	0.049101	-0.06744	0.400768	Winnepegosis	1	20.58932	2.506844
14RLD-007	74.05	9.312525668	-0.74684	-0.77253	0.029269	0.403976803	0.346763	22.02979	-0.01594	0.019747	0.436808	Winnepegosis	1	31.34232	2.365609
14RLD-007	75.12	11.18734351	0.356294	2.40377	0.013508	0.403131933	0.165572	19.7575	-0.0097	0.009319	0.23268	Winnepegosis	1	30.94485	1.766058
14RLD-007	75.87	11.59522755	0.629564	1.534647	0.002201	0.383772882	0.298508	20.1171	-0.01638	0.022922	0.342316	Winnepegosis	1	31.71233	1.734946
14RLD-007	77.13	11.09136826	0.292883	0.64458	0.018436	0.432334691	0.453926	20.29868	-0.03907	0.028314	0.468643	Winnepegosis	1	31.39005	1.830133
14RLD-007	78.12	11.5309212	0.339316	0.77512	0.008973	0.370678037	0.315878	21.45456	-0.03175	0.016472	0.304505	Winnepegosis	1	32.98548	1.860611
14RLD-007	78.84	9.824149918	-0.2681	-0.36478	0.022175	0.353387007	0.261335	21.72074	-0.02284	0.015948	0.278025	Winnepegosis	1	31.54489	2.210953
14RLD-007	80.11	9.398636042	-0.48722	-0.39547	0.008647	0.343582783	0.162668	23.18061	0.016651	0.008575	0.240847	Winnepegosis	1	32.57925	2.46638
14RLD-007	81.12	8.762108406	-0.57993	-0.46393	-0.01324	0.348082991	0.188303	22.66876	0.002452	0.010504	0.188237	Winnepegosis	1	31.43087	2.587136
14RLD-007	81.91	10.22354788	-0.22838	0.104354	-0.0211	0.33895238	0.154702	22.62835	-0.03099	0.011045	0.158724	Winnepegosis	1	32.8519	2.213356
14RLD-007	83.09	10.37902183	-0.12498	0.261178	-0.00773	0.340788453	0.109644	22.27524	0.009929	0.009064	0.100463	Winnepegosis	1	32.65426	2.146179
14RLD-007	83.92	10.54691317	0.419495	1.300819	0.001724	0.580666285	1.165112	16.94022	-0.02929	0.036256	0.937852	Winnepegosis	1	27.48713	1.606178
14RLD006	41.9	6.855174821	2.612684	3.316754	-0.0214	2.43309555	0.112267	14.5961	-0.07496	0.038826	0.380164	Winnepegosis	1	21.45128	2.129209
14RLD006	43.09	11.28825004	0.711095	2.362812	0.003019	0.393871825	0.097802	21.80695	0.002866	0.00597	0.20079	Winnepegosis	1	33.0952	1.931827
14RLD006	43.9	12.14810052	0.63323	0.718184	-0.01237	0.347844346	0.083174	21.86812	-0.01381	0.013073	0.056253	Winnepegosis	1	34.01622	1.800127
14RLD006	44.91	11.66750504	0.663482	1.811759	-0.03435	0.347313476	0.086182	22.29334	0.002019	0.010547	0.188844	Winnepegosis	1	33.96085	1.910721
14RLD006	46.16	11.77877337	0.24769	0.589078	-0.00018	0.339725739	0.056711	22.8476	-0.0176	0.003645	0.037458	Winnepegosis	1	34.62638	1.939727
14RLD006	46.96	10.28140375	1.706944	2.817427	-0.01022	0.370733664	0.048294	19.75496	0.008332	0.023484	0.08469	Winnepegosis	1	30.03636	1.921426
14RLD006	48.1	9.429171951	3.026939	3.654051	-0.02415	2.910915066	0.155456	17.54988	-0.00986	0.035646	0.896091	Winnepegosis	1	26.97905	1.861232
14RLD006	49.19	12.17991924	0.758717	0.953202	-0.00974	0.348687653	0.059086	22.16812	-0.00427	0.010146	0.107182	Winnepegosis	1	34.34804	1.820055
14RLD006	49.83	11.72076461	1.066953	1.637236	-0.00206	0.348427921	0.065947	21.48209	-0.01036	0.007768	0.136187	Winnepegosis	1	33.20285	1.832823
14RLD006	51.16	11.57627246	0.151369	0.285136	-0.01838	0.536306782	0.081327	23.19302	0.014634	0.008595	0.310577	Winnepegosis	1	34.76929	2.003496
14RLD006	52.13	11.92961149	0.3436	0.518788	-0.01934	0.343755558	0.059458	22.62799	-0.01439	0.012412	0.07985	Winnepegosis	1	34.55761	1.896792
14RLD006	52.84	11.7107851	0.247263	0.615762	-0.01122	0.339751772	0.056039	22.64663	0.050498	0.009238	0.098365	Winnepegosis	1	34.35742	1.933827
14RLD006	54.15	11.85335019	0.234753	0.497777	0.011036	0.345999286	0.092905	23.58106	0.003993	0.003772	0.254783	Winnepegosis	1	35.43441	1.989401
14RLD006	55.06	11.43660687	0.831612	1.591091	-0.01349	1.53250647	0.167689	21.3402	0.011191	0.019503	0.709758	Winnepegosis	1	32.77681	1.865956
14RLD006	55.94	11.85962046	0.327964	0.512107	-0.0197	0.339947083	0.075458	22.64917	0.018698	0.006156	0.074517	Winnepegosis	1	34.50879	1.909772
14RLD006	56.9	11.76382413	0.230117	0.447483	-0.01447	0.342643625	0.073763	23.0239	-0.00305	0.004665	0.142523	Winnepegosis	1	34.78772	1.957178
14RLD006	57.93	11.8949551	0.290446	0.55855	-0.01703	0.336491435	0.070748	23.03108	-0.00251	0.009611	0.11888	Winnepegosis	1	34.92603	1.936206
14RLD006	58.89	11.39284296	0.828303	2.513102	0.011838	0.4133638	0.107006	21.31344	0.030464	0.018732	0.716041	Winnepegosis	1	32.70628	1.870774

<u>146</u>

Hole ID	Depth (m)	MgKa1	AlKa1	SiKa1	P Ka1	S Ka1	K Kal	CaKa1	BaLa1	MnKa1	FeKa1	Formation	FM_code	Ca+Mg	Ca/Mg
14RLD006	61.82	11.99990379	0.492648	0.943399	0.000855	0.381143869	0.117994	23.41833	-0.02047	0.003828	0.188925	Winnepegosis	1	35.41824	1.951544
14RLD006	62.86	8.864724486	1.936735	3.663012	0.004067	0.705119334	0.121917	20.07267	-0.00278	0.006871	0.364172	Winnepegosis	1	28.93739	2.26433
14RLD006	64.14	10.55414414	1.223049	3.108585	0.013342	0.447136952	0.069509	21.29048	0.009128	0.010125	0.250417	Winnepegosis	1	31.84463	2.017263
14RLD006	64.93	11.6849294	0.280469	0.723845	0.015019	0.463310918	0.118484	22.67527	0.008697	0.012812	0.211569	Winnepegosis	1	34.36019	1.940556
14RLD006	65.95	11.92707706	0.509741	0.977276	0.022122	0.392883902	0.11876	22.16792	0.000278	0.013184	0.201429	Winnepegosis	1	34.095	1.858621
14RLD006	66.88	11.6578659	0.416809	1.42044	0.006078	0.44145645	0.149757	22.13973	-0.00065	0.01201	0.278083	Winnepegosis	1	33.79759	1.899123
14RLD006	67.98	11.47877379	0.270746	1.452424	0.006684	0.392687218	0.153063	21.97166	0.027802	0.009862	0.255083	Winnepegosis	1	33.45044	1.914112
14RLD006	69.13	11.61342895	0.425576	1.206799	0.008139	0.396782975	0.131593	21.36478	0.006049	0.015271	0.216581	Winnepegosis	1	32.97821	1.839661
14RLD006	69.83	11.24557565	0.104787	1.191989	0.015959	0.425120258	0.220076	21.71234	0.013085	0.012793	0.331835	Winnepegosis	1	32.95792	1.930745
14RLD006	71.1	11.44518302	0.192556	0.517609	-0.00099	0.397207066	0.20607	22.22039	0.003176	0.012448	0.293501	Winnepegosis	1	33.66558	1.941462
14RLD006	71.85	11.35983492	0.033739	0.293007	0.006063	0.335279014	0.129104	23.27118	0.00253	0.000551	0.146505	Winnepegosis	1	34.63101	2.048549
14RLD006	72.9	11.71043472	0.347141	0.590747	0.012729	0.34315838	0.180971	22.05574	-0.00485	0.011817	0.13792	Winnepegosis	1	33.76617	1.883426
14RLD006	74.05	11.06606688	0.014317	0.119318	0.026873	0.405126915	0.264973	22.36632	-0.01748	0.012424	0.303775	Winnepegosis	1	33.43239	2.021163
14RLD006	75.16	11.40232279	0.225028	0.12337	0.003126	0.342650898	0.23324	22.1441	-0.00386	0.013207	0.211726	Winnepegosis	1	33.54642	1.942069
14RLD006	76.18	11.69556471	0.443238	0.654147	-0.00423	0.360679203	0.243616	21.62872	-0.01043	0.015888	0.252449	Winnepegosis	1	33.32428	1.849309
14RLD006	77.1	11.21283356	0.007094	-0.07893	0.018322	0.367908642	0.237601	22.9421	0.01345	0.013157	0.28723	Winnepegosis	1	34.15494	2.046058
14RLD006	78.13	11.69838041	0.574011	0.844783	0.016097	0.390926267	0.41879	21.0684	-0.03025	0.018566	0.404041	Winnepegosis	1	32.76678	1.800967
14RLD006	79.12	11.73340051	0.495352	0.820667	-0.00601	0.378946124	0.318884	21.28476	-0.0265	0.016656	0.328649	Winnepegosis	1	33.01816	1.814032
14RLD006	79.95	11.53458152	0.271486	1.012675	0.171135	0.349495971	0.142321	22.2482	0.052245	0.003725	0.212318	Winnepegosis	1	33.78278	1.928826
14RLD006	80.88	11.87306188	1.042905	1.534276	0.012622	0.377813361	0.226547	20.93969	-0.00776	0.013447	0.273711	Winnepegosis	1	32.81276	1.763631
14RLD006	82.15	12.05763486	0.815478	1.233775	-0.01502	0.349832998	0.084133	21.41021	-0.01745	0.013422	0.063432	Winnepegosis	1	33.46784	1.775655
14RLD006	83.08	11.25448515	1.100195	2.405891	0.035122	0.554370638	0.930495	18.71166	-0.02934	0.021949	0.71762	Winnepegosis	1	29.96614	1.662595
14RLD005	35.13	10.41181193	-0.34405	-0.08888	0.004369	0.321849016	0.071988	24.53133	-0.00696	0.002375	0.115052	Winnepegosis	1	34.94314	2.356106
14RLD005	36.15	11.56392848	0.126	0.795546	-0.01075	0.338576699	0.079093	22.94113	-0.00297	0.008526	0.166591	Winnepegosis	1	34.50506	1.983852
14RLD005	37.05	11.33993794	0.181544	0.670182	0.014144	0.729919634	0.075746	21.88908	0.024141	-0.00018	0.136094	Winnepegosis	1	33.22902	1.930264
14RLD005	38.1	11.5387198	0.160641	0.402013	0.004672	0.357665153	0.080733	22.89437	-0.00914	0.009043	0.17211	Winnepegosis	1	34.43309	1.984134
14RLD005	38.94	12.0233565	0.576837	0.742834	-0.00348	0.359657286	0.057327	21.06202	-0.02626	0.008182	0.076036	Winnepegosis	1	33.08538	1.751759
14RLD005	39.97	11.7651098	1.030391	1.820866	0.002248	0.38391989	0.088043	20.87397	-0.01987	0.012625	0.154259	Winnepegosis	1	32.63908	1.774227
14RLD005	40.95	12.06674272	0.54867	0.85971	-0.00892	0.344956891	0.07149	22.65308	0.009345	0.008779	0.144458	Winnepegosis	1	34.71982	1.877315
14RLD005	41.75	11.9444815	0.378922	0.622941	-0.00884	0.351946668	0.069736	22.42324	-0.01026	0.011007	0.110062	Winnepegosis	1	34.36773	1.877289
14RLD005	42.75	11.80460433	0.329572	0.597375	-0.01269	0.35728791	0.061841	22.29811	-0.0018	0.012101	0.093971	Winnepegosis	1	34.10272	1.888934
14RLD005	43.94	11.9679514	0.730328	1.479168	-0.02262	0.382347926	0.065478	21.46068	-0.02638	0.017157	0.151245	Winnepegosis	1	33.42863	1.793179
14RLD005	44.99	11.29336567	2.569057	1.629457	-0.01471	4.094491148	0.085524	20.80365	-0.0024	0.022555	0.380415	Winnepegosis	1	32.09701	1.842112
14RLD005	46.12	11.6292523	1.276833	1.802369	0.005418	0.696485961	0.114098	20.80752	-0.01682	0.014382	0.231112	Winnepegosis	1	32.43678	1.78924
14RLD005	47.16	11.85404949	0.427847	0.574006	0.026858	1.070316156	0.086931	22.04256	0.003712	0.012264	0.278759	Winnepegosis	1	33.89661	1.859496
14RLD005	47.93	11.8947665	0.738427	1.34518	0.025432	1.34106224	0.120033	21.36765	-0.03826	0.012199	0.485748	Winnepegosis	1	33.26242	1.796391
14RLD005	49.05	11.736865	0.420837	0.863235	-0.00948	0.739290347	0.16141	21.89388	-0.01673	0.01503	0.272712	Winnepegosis	1	33.63074	1.865394

<u>147</u>

Hole ID	Depth (m)	MgKa1	AlKa1	SiKa1	P Ka1	S Kal	K Kal	CaKa1	BaLa1	MnKa1	FeKa1	Formation	FM_code	Ca+Mg	Ca/Mg
14RLD005	49.95	11.76346934	0.29256	0.539164	-0.00104	0.436087205	0.095269	22.53811	-0.00904	0.009485	0.141275	Winnepegosis	1	34.30158	1.915941
14RLD005	50.89	11.17865861	0.014724	0.367326	0.023213	0.362450699	0.082153	22.97652	0.010145	0.009957	0.137874	Winnepegosis	1	34.15518	2.055392
14RLD005	52.06	11.50462197	0.190109	0.445133	-0.00692	0.395017208	0.086145	22.53646	-0.0149	0.014959	0.179022	Winnepegosis	1	34.04108	1.958905
14RLD005	53.13	11.34801541	0.209222	0.741156	0.046304	0.64148959	0.14365	21.63088	-0.00625	0.01231	0.244421	Winnepegosis	1	32.9789	1.906138
14RLD005	54.16	11.94096844	0.676894	1.178302	0.019169	0.79062417	0.12717	21.62815	-0.00466	0.01961	0.278211	Winnepegosis	1	33.56912	1.811256
14RLD005	54.93	10.96506401	0.053652	0.169483	0.009003	0.935009348	0.185458	22.08272	-0.02659	0.014889	0.2493	Winnepegosis	1	33.04778	2.013916
14RLD005	56.05	11.86563911	0.572523	0.981555	0.012614	1.159069743	0.183031	21.23867	-0.01767	0.017808	0.359077	Winnepegosis	1	33.1043	1.78993
14RLD005	57.09	10.82963617	-0.066	0.090494	0.013138	0.406890918	0.105547	22.94361	-0.00517	0.015424	0.203159	Winnepegosis	1	33.77325	2.118595
14RLD005	58.08	11.62702042	0.36022	0.798454	0.008564	0.380955025	0.133482	21.4045	-0.03979	0.015636	0.111169	Winnepegosis	1	33.03152	1.840927
14RLD005	58.88	9.848277151	-0.40246	-0.14172	0.00579	0.351836229	0.162481	23.34504	0.023267	0.008224	0.154978	Winnepegosis	1	33.19332	2.37047
14RLD005	59.96	11.21881792	1.13272	2.203112	0.016366	0.391482429	0.12787	21.75639	0.065795	0.004538	0.366713	Winnepegosis	1	32.97521	1.939277
14RLD005	60.93	11.07703202	-0.03084	0.500576	0.016234	0.349920374	0.122776	22.66192	0.01537	0.011483	0.251958	Winnepegosis	1	33.73896	2.045848
14RLD005	62.13	11.86963954	0.549774	1.227373	0.01852	0.360310711	0.173964	21.20511	-0.01921	0.018022	0.24475	Winnepegosis	1	33.07475	1.7865
14RLD005	63.06	11.66306233	1.122507	2,229336	0.031528	0.849368771	0.354926	19.44617	-0.00285	0.036769	1.360966	Winnepegosis	1	31.10923	1.667329
14RLD005	63.93	11.23533821	0.246917	1.492691	0.022509	0.377542276	0.269659	20.97624	-0.00325	0.015454	0.356695	Winnepegosis	1	32.21158	1.866988
14RLD005	65.13	11.08387082	0.121312	0.770945	0.023848	0.366771038	0.286774	21.17602	0.021193	0.019334	0.337634	Winnepegosis	1	32.25989	1.910526
14RLD005	65.93	10.82877096	-0.16893	1.070748	0.033122	0.361502068	0.262244	21.55928	0.001172	0.004286	0.393891	Winnepegosis	1	32.38806	1.990926
14RLD005	67.08	10.61677237	-0.24814	0.778223	0.030135	0.439573294	0.280523	21.41395	0.029403	0.013332	0.391112	Winnepegosis	1	32.03072	2.016992
14RLD005	68.14	10.87385619	0.060401	1.650551	0.031609	0.422755381	0.214687	20.36492	0.064	0.023228	0.435174	Winnepegosis	1	31.23878	1.872834
14RLD005	69.11	10.81251182	-0.01311	0.762011	0.041435	0.358758894	0.237405	21.13702	0.01496	0.017486	0.297069	Winnepegosis	1	31.94953	1.954867
14RLD005	70.13	11.43216311	0.356001	1.53123	0.019886	0.35400109	0.165538	20.80404	-0.0033	0.023953	0.282056	Winnepegosis	1	32.2362	1.819781
14RLD005	70.95	11.08014532	0.15447	0.42408	0.048492	0.509210514	0.255925	21.38425	0.013889	0.027811	0.429132	Winnepegosis	1	32.46439	1.929961
14RLD005	72.21	11.49109533	0.38465	0.791279	0.008468	0.478111147	0.276398	21.08174	0.013872	0.022501	0.373413	Winnepegosis	1	32.57284	1.834615
14RLD005	73.1	10.81942939	-0.31589	-1.21595	0.108141	0.364369106	0.208584	23.58814	0.008546	0.008337	0.291374	Winnepegosis	1	34.40756	2.180164
14RLD005	73.95	11.15801203	0.128174	0.018149	0.006183	0.368186282	0.281143	22.023	0.023572	0.014007	0.270355	Winnepegosis	1	33.18101	1.973739
14RLD005	74.93	10.71027061	-0.13916	-0.56423	0.002981	0.349787865	0.135489	23.11226	0.004923	0.010318	0.443482	Winnepegosis	1	33.82253	2.157953
14RLD005	75.96	10.94812543	-0.00988	0.444037	-0.01188	0.341895031	0.168491	22.14581	-0.00953	0.011428	0.155006	Winnepegosis	1	33.09394	2.022795
14RLD004	30.13	9.529227531	-0.55707	-0.46014	-0.0238	0.325823087	0.077189	23.98803	-0.02213	0.004572	0.111593	Winnepegosis	1	33.51726	2.517311
14RLD004	31.09	11.46294598	0.161276	0.344164	-0.01713	0.336824796	0.061474	22.68938	0.009696	0.011352	0.105821	Winnepegosis	1	34.15233	1.979367
14RLD004	33.06	9.225346469	1.608365	3.141668	0.005008	0.346289698	0.068073	21.4594	0.066651	0.00102	0.132975	Winnepegosis	1	30.68475	2.326135
14RLD004	34.09	9.785596856	-0.38102	-0.09349	0.0022	0.327384892	0.05916	23.98877	0.007043	0.01307	0.074549	Winnepegosis	1	33.77436	2.451436
14RLD004	35.1	8.986646172	-0.58882	-0.24496	0.002212	0.324426346	0.074878	24.21601	0.020487	0.00942	0.09293	Winnepegosis	1	33.20265	2.694666
14RLD004	36.22	11.21236462	0.059176	0.387127	-0.01086	0.338565271	0.095392	22.74205	0.001039	0.008701	0.097932	Winnepegosis	1	33.95441	2.028301
14RLD004	37.22	11.82202425	0.346264	0.492585	0.005224	0.33779965	0.105721	22.77945	0.017259	0.007228	0.145088	Winnepegosis	1	34.60148	1.926866
14RLD004	37.94	12.05248004	0.514624	0.843926	0.008312	0.352334958	0.048567	21.47019	-0.00575	0.010984	0.022191	Winnepegosis	1	33.52267	1.781392
14RLD004	39.07	10.66896804	-0.24633	-0.00491	-0.00023	0.324202323	0.082763	24.26889	0.018031	0.007212	0.111907	Winnepegosis	1	34.93786	2.274718
14RLD004	40.06	11.7410576	0.426634	0.800462	0.01593	0.57210573	0.080411	21.46367	-0.01713	0.011533	0.193608	Winnepegosis	1	33.20473	1.828087

<u>148</u>

Hole ID	Depth (m)	MgKa1	AlKa1	SiKa1	P Ka1	S Ka1	K Kal	CaKa1	Bala1	MnKa1	FeKa1	Formation	FM_code	Ca+Mg	Ca/Mg
14RLD004	40.88	10.09994022	-0.25261	0.077597	-0.00156	0.354964264	0.096076	22.91193	-0.01776	0.005292	0.1112	Winnepegosis	1	33.01187	2.268521
14RLD004	42.14	11.42990434	0.224081	1.57277	-0.002	0.367486277	0.051713	21.45109	0.026446	0.011664	0.1485	Winnepegosis	1	32.88099	1.876751
14RLD004	42.95	10.42909985	-0.15949	0.030479	0.012547	0.527725594	0.066614	23.00251	-0.01273	0.011099	0.077022	Winnepegosis	1	33.43161	2.205609
14RLD004	44.08	11.33217779	0.146616	0.602036	0.013183	0.733589371	0.085022	22.15983	-0.00868	0.008195	0.160608	Winnepegosis	1	33.49201	1.955478
14RLD004	45.11	11.87471053	0.631262	1.19654	0.014977	0.372738736	0.080632	21.55078	0.011622	0.01184	0.135829	Winnepegosis	1	33.42549	1.814847
14RLD004	45.86	11.62803914	0.327663	0.667746	-0.0128	0.428129179	0.081405	21.7717	0.008522	0.015579	0.114486	Winnepegosis	1	33.39974	1.872345
14RLD004	47.15	10.99512133	0.051007	0.399623	0.007459	0.41642203	0.101167	22.27739	-0.0035	0.008386	0.120755	Winnepegosis	1	33.27251	2.026116
14RLD004	48.05	11.53987602	0.347589	0.661264	0.002364	0.599927853	0.112658	21.35293	-0.02654	0.018736	0.193841	Winnepegosis	1	32.8928	1.85036
14RLD004	48.88	11.2893454	0.172975	0.526103	0.008324	0.433672846	0.120635	21.94899	-0.03507	0.013686	0.147023	Winnepegosis	1	33.23834	1.944222
14RLD004	49.92	11.34042506	0.115154	0.34988	0.006929	0.422193508	0.110958	22.67215	-0.02387	0.018706	0.225683	Winnepegosis	1	34.01257	1.999232
14RLD004	50.87	11.44989429	0.231882	0.223653	0.034021	1.550927973	0.178235	22.26672	0.011836	0.021463	0.273542	Winnepegosis	1	33.71661	1.94471
14RLD004	51.86	11.52030636	0.18943	0.450073	-0.01129	0.39292559	0.170114	22.54056	-0.02588	0.016762	0.210808	Winnepegosis	1	34.06087	1.956594
14RLD004	53.07	11.57573726	0.308894	0.677041	0.010449	0.372073011	0.113761	21.79654	0.000286	0.017834	0.206392	Winnepegosis	1	33.37228	1.88295
14RLD004	54.17	11.88770306	0.61758	1.31055	-0.0051	0.41311571	0.093432	20.83742	-0.00041	0.019948	0.255502	Winnepegosis	1	32.72512	1.752855
14RLD004	55.18	11.38980197	0.271746	0.978662	0.008705	0.375167785	0.066313	21.14425	0.005908	0.021831	0.196845	Winnepegosis	1	32.53405	1.856419
14RLD004	56.2	10.52928202	-0.10936	0.098442	0.016239	0.386511846	0.155242	22.40374	-0.00641	0.015865	0.227894	Winnepegosis	1	32.93302	2.127755
14RLD004	56.9	10.96219617	0.037532	0.477334	-0.00756	0.355398875	0.138862	21.81911	0.00783	0.015922	0.197353	Winnepegosis	1	32.78131	1.990396
14RLD004	58.05	10.25167331	-0.27636	-0.04772	-0.00916	0.359337524	0.174152	22.80918	-0.01449	0.013946	0.215396	Winnepegosis	1	33.06086	2.224923
14RLD004	59.08	9.970430469	-0.48534	-0.05743	0.027777	0.584192912	0.207683	22.272	0.024316	0.015568	0.362326	Winnepegosis	1	32.24243	2.233805
14RLD004	59.85	11.55334198	0.509738	1.911886	0.018614	0.374211796	0.110106	19.94741	-0.02877	0.016633	0.181721	Winnepegosis	1	31.50075	1.726549
14RLD004	60.86	11.38691872	0.376545	0.845292	0.018291	0.38565729	0.311052	20.70763	-0.01784	0.019031	0.284374	Winnepegosis	1	32.09455	1.818546
14RLD004	62.07	10.68270301	-0.01959	0.321779	0.020657	0.38040949	0.225763	21.28008	-0.00046	0.023993	0.351629	Winnepegosis	1	31.96278	1.992013
14RLD004	63.14	11.85910186	0.970919	1.947195	0.0207	0.369954865	0.174253	19.40251	-0.04723	0.018478	0.178672	Winnepegosis	1	31.26161	1.636086
14RLD004	64.18	10.30889209	-0.34026	0.210134	0.012406	0.454942143	0.337844	21.37048	0.003421	0.020729	0.50277	Winnepegosis	1	31.67937	2.073014
14RLD004	65.11	10.5317763	-0.26688	0.96415	0.02663	0.391564496	0.369133	20.49567	0.028173	0.009235	0.468516	Winnepegosis	1	31.02745	1.946079
14RLD004	65.95	10.88884061	-0.01079	1.219029	0.001392	0.37059358	0.225985	20.94245	0.022842	0.008713	0.395673	Winnepegosis	1	31.83129	1.923295
14RLD004	67.14	11.43364899	0.339871	0.980299	0.00729	0.358922215	0.266779	21.09318	-0.0337	0.013179	0.286116	Winnepegosis	1	32.52683	1.844834
14RLD004	68.1	11.03360049	-0.00694	0.03714	0.008434	0.348096582	0.20545	22.69047	0.001215	0.013294	0.255751	Winnepegosis	1	33.72407	2.056488
14RLD004	68.96	12.06062946	0.797057	1.111838	-0.01227	0.355580093	0.162672	20.86447	-0.03385	0.014621	0.162271	Winnepegosis	1	32.9251	1.729965
14RLD004	70.1	11.53404981	0.202685	0.481887	-0.00207	0.342508505	0.143543	22.47888	-0.00278	0.006488	0.262931	Winnepegosis	1	34.01292	1.948914
14RLD004	70.92	12.05692395	0.532986	0.728858	0.004505	0.345598518	0.081358	22.0467	0.001677	0.011559	0.107781	Winnepegosis	1	34.10362	1.828551
14RLD004	71.96	10.15423373	-0.25266	0.073751	-0.00013	0.356019255	0.345017	21.40733	0.025509	0.012244	0.346424	Winnepegosis	1	31.56156	2.108217
14RLD004	72.93	10.64444786	-0.08975	1.723229	0.033075	0.537785913	0.59811	22.43533	0.002143	0.031561	0.721121	Winnepegosis	1	33.07978	2.107703
14RLD003	39.06	10.71946812	-0.00177	0.285247	0.007989	0.345538075	0.065503	22.42261	-0.00149	0.012736	0.063772	Winnepegosis	1	33.14208	2.091765
14RLD003	40.11	12.0312255	0.652948	0.802104	-0.00541	0.682132612	0.054132	21.68795	-0.01691	0.016773	0.078903	Winnepegosis	1	33.71918	1.802639
14RLD003	41	11.07133502	0.655896	1.720797	0.014705	0.324192875	0.077999	22.69596	0.009883	0.002596	0.241846	Winnepegosis	1	33.76729	2.049975
14RLD003	42.1	11.98940735	0.745637	1.286935	0.010278	0.385900956	0.100086	21.47039	-0.02319	0.00944	0.144355	Winnepegosis	1	33.4598	1.79078

<u>149</u>

Hole ID	Depth (m)	MgKa1	AlKa1	SiKa1	P Ka1	S Ka1	K Kal	CaKa1	BaLa1	MnKa1	FeKa1	Formation	FM_code	Ca+Mg	Ca/Mg
14RLD003	43.09	9.836692031	0.063977	4.959055	-0.00521	0.342307056	0.024853	18.86191	0.014975	-0.01032	0.289006	Winnepegosis	1	28.6986	1.917505
14RLD003	44.15	11.37430437	0.259791	1.66307	-0.00177	0.406878892	0.106804	21.11506	0.017932	0.008581	0.202065	Winnepegosis	1	32.48937	1.856383
14RLD003	45.11	12.00766682	0.82989	1.256024	0.006078	0.982964193	0.09857	21.17247	-0.01053	0.018563	0.240386	Winnepegosis	1	33.18013	1.763246
14RLD003	45.97	11.83026324	0.547946	1.097373	0.007478	1.351889512	0.113822	21.7139	0.009575	0.003925	0.740815	Winnepegosis	1	33.54416	1.835453
14RLD003	46.92	11.80331075	0.501224	0.742392	0.018822	0.737423771	0.089638	21.77571	-0.01696	0.015337	0.362855	Winnepegosis	1	33.57902	1.844882
14RLD003	47.95	10.1376578	1.995739	3.628971	0.011526	0.752927565	0.103798	19.61236	-0.01617	0.016778	0.567468	Winnepegosis	1	29.75002	1.934604
14RLD003	48.92	11.95967861	0.466881	0.772284	-0.01292	0.357068198	0.048148	21.7301	-0.00523	0.011226	0.082577	Winnepegosis	1	33.68978	1.816947
14RLD003	49.87	11.98903712	0.40156	0.598615	0.016191	0.374856528	0.091904	22.93429	-0.01287	0.015589	0.18781	Winnepegosis	1	34.92333	1.912938
14RLD003	50.97	5.687620987	0.327279	18.08185	-0.00028	0.385481695	-0.05505	12.60015	0.017563	-0.02464	0.16777	Winnepegosis	1	18.28777	2.215363
14RLD003	51.05	11.9109021	0.366313	0.865572	0.105952	0.353463199	0.086677	22.87375	0.00708	0.01218	0.221063	Winnepegosis	1	34.78465	1.920404
14RLD003	52.87	9.94405336	1.797602	3.979639	-0.00232	0.59456505	0.065479	19.9211	-0.01371	0.016238	0.162898	Winnepegosis	1	29.86515	2.003318
14RLD003	53.94	8.908955168	0.717158	7.779158	0.100611	0.906821661	0.096381	18.2616	-0.003	-0.03018	0.640169	Winnepegosis	1	27.17056	2.049803
14RLD003	54.97	12.12192433	0.976699	1.091819	-0.00054	2.285729744	0.071792	20.89688	-0.0128	0.035668	0.546829	Winnepegosis	1	33.0188	1.723891
14RLD003	55.93	12.02563224	0.464692	0.608663	0.006821	0.482694091	0.071542	22.81092	0.032115	0.020695	0.203605	Winnepegosis	1	34.83655	1.896858
14RLD003	57.04	12.09095512	0.850272	1.032051	0.012526	0.808099406	0.126809	21.34106	-0.02012	0.024619	0.353397	Winnepegosis	1	33.43201	1.765043
14RLD003	58.16	12.04755444	0.585542	0.926497	0.014651	0.355488887	0.071684	21.40414	-0.00821	0.014177	0.113461	Winnepegosis	1	33.45169	1.776637
14RLD003	58.89	11.70711567	0.29088	0.649664	0.020879	0.356696318	0.143714	22.33402	-0.00686	0.019449	0.216672	Winnepegosis	1	34.04113	1.90773
14RLD003	60.95	11.67410061	0.241919	0.350707	0.031159	0.427244962	0.077427	22.79154	-0.03791	0.015567	0.236081	Winnepegosis	1	34.46565	1.952317
14RLD003	61.89	10.08822528	-0.3123	-0.11281	0.062023	0.410872652	0.126646	23.37827	-0.02952	0.014862	0.211286	Winnepegosis	1	33.46649	2.317382
14RLD003	62.95	9.147068123	-0.98248	0.272097	-0.0171	0.320485691	0.023427	21.43049	0.025506	-0.00601	0.083895	Winnepegosis	1	30.57755	2.34288
14RLD003	64.08	11.4567091	0.087438	0.243471	-0.01041	0.346066076	0.070365	23.31215	0.007405	-0.0016	0.143931	Winnepegosis	1	34.76886	2.034804
14RLD003	65.04	10.9668203	-0.00614	0.10443	0.0082	0.375983785	0.167585	22.64199	-0.01868	0.019307	0.253504	Winnepegosis	1	33.60881	2.064591
14RLD003	66.04	10.95260335	-0.0793	0.114176	0.018098	0.362125732	0.123217	23.30428	-0.02243	0.005862	0.246485	Winnepegosis	1	34.25688	2.127739
14RLD003	67.04	11.08632023	-0.00086	0.040622	0.120497	0.364853694	0.258473	22.592	0.026552	0.013762	0.336841	Winnepegosis	1	33.67832	2.037827
14RLD003	68.15	11.42103116	0.254772	0.611888	-0.00641	0.363240254	0.239632	21.62565	-0.0023	0.018706	0.258292	Winnepegosis	1	33.04668	1.893494
14RLD003	68.94	11.31764088	0.131401	0.270948	0.001491	0.355067922	0.163918	22.49973	0.00026	0.013235	0.228124	Winnepegosis	1	33.81737	1.988023
14RLD003	70.19	11.68963777	0.462255	0.848386	0.009316	0.359041854	0.186694	20.96218	0.013824	0.015495	0.172972	Winnepegosis	1	32.65182	1.793227
14RLD003	70.91	11.44498484	0.207337	0.460495	0.017852	0.375926445	0.170557	22.18208	0.004453	0.00888	0.176529	Winnepegosis	1	33.62706	1.938148
14RLD003	71.87	10.59536395	-0.18509	0.107798	0.005786	0.331202398	0.093241	23.4667	0.031261	0.010585	0.085225	Winnepegosis	1	34.06206	2.214808
14RLD003	72.89	11.06359826	0.827934	2.219165	0.02804	0.466843802	0.997261	17.92568	0.003211	0.027369	0.924053	Winnepegosis	1	28.98927	1.620239
14RLD002	30.15	11.72382151	0.12861	0.349232	0.006904	0.332153958	0.060681	23.74304	-0.00337	0.008925	0.129901	Winnepegosis	1	35.46686	2.025196
14RLD002	31.1	12.1104696	0.468406	0.705939	-0.03445	0.332501825	0.072449	23.31776	0.036264	0.006858	0.185565	Winnepegosis	1	35.42823	1.925421
14RLD002	32.05	12.18422112	0.824906	1.016636	-0.01137	0.351356061	0.037273	21.56175	-0.02188	0.012703	0.111924	Winnepegosis	1	33.74598	1.769646
14RLD002	33.08	11.20240861	-0.08835	-0.06492	-0.02302	0.326370598	0.087379	24.02317	0.022308	0.007787	0.146147	Winnepegosis	1	35.22558	2.144465
14RLD002	33.89	10.54703276	-0.55021	-0.450 <u>2</u> 4	-0.02565	0.310651362	0.078264	25.26097	0.007655	-0.00109	0.106033	Winnepegosis	1	35.808	2.395079
14RLD002	35.1	11.85950477	0.167425	0.401262	-0.01764	0.328485607	0.064459	23.86395	0.00058	0.000419	0.092746	Winnepegosis	1	35.72345	2.012221
14RLD002	35.96	12.04511232	0.343432	0.599477	-0.00507	0.334960988	0.060892	23.22365	0.006287	0.010815	0.106554	Winnepegosis	1	35.26876	1.928056

<u>150</u>

Hole ID	Depth (m)	MgKa1	AlKa1	SiKa1	P Kal	5 Ka1	K Kal	CaKa1	BaLa1	MnKa1	FeKa1	Formation	FM_code	Ca+Mg	Ca/Mg
14RLD002	37.07	11.45976907	0.05453	0.297086	-0.00779	0.331229002	0.060044	23.62917	-0.01946	0.010079	0.085896	Winnepegosis	1	35.08894	2.061924
14RLD002	38.11	11.58683688	0.116963	0.303813	0.000323	0.333470785	0.056217	23.48627	0.001114	0.007085	0.116326	Winnepegosis	1	35.07311	2.026979
14RLD002	39.11	8.536612759	-0.67652	-0.26619	-0.02036	0.318828939	0.064753	24.92544	-0.01272	-0.00311	0.092295	Winnepegosis	1	33.46205	2.919828
14RLD002	40.12	11.76841017	0.304338	0.535029	-0.00301	0.363773556	0.053917	22.34542	0.006478	0.009569	0.071407	Winnepegosis	1	34.11383	1.898763
14RLD002	40.95	11.8100558	0.338703	0.390135	0.005217	0.60132539	0.062299	22.51467	-0.00704	0.01424	0.23994	Winnepegosis	1	34.32472	1.906398
14RLD002	41.95	11.55371606	0.134202	0.398268	0.012229	0.33968976	0.072635	23.16053	-0.02713	0.013866	0.106119	Winnepegosis	1	34.71425	2.004596
14RLD002	42.9	11.96957243	0.43387	0.51928	0.009416	0.359550609	0.085943	22.55244	-0.00162	0.010047	0.141813	Winnepegosis	1	34.52201	1.884147
14RLD002	44.16	11.54374969	0.159632	0.372981	-0.0156	0.369501596	0.074822	22.96192	-0.03616	0.00483	0.113144	Winnepegosis	1	34.50567	1.989122
14RLD002	44.93	11.13019378	-0.12077	0.021989	-0.02119	0.32517866	0.060669	24.29636	-0.01094	0.004946	0.076739	Winnepegosis	1	35.42655	2.182923
14RLD002	45.81	11.09758024	-0.04138	0.587577	-0.01363	0.334270733	0.077914	22.68884	0.01199	0.004862	0.082629	Winnepegosis	1	33.78642	2.044485
14RLD002	47.09	10.93124184	-0.10342	0.328328	-0.00804	0.444181654	0.086739	22.83794	-0.02142	0.008711	0.177005	Winnepegosis	1	33.76918	2.089235
14RLD002	47.94	10.73925565	-0.2854	1.469273	0.002612	0.326546643	0.042233	22.01463	-0.00174	0.004815	0.159806	Winnepegosis	1	32.75388	2.049921
14RLD002	48.96	11.38834415	0.332653	2.059019	0.019033	0.465902327	0.101284	20.64945	-0.00725	0.007419	0.191337	Winnepegosis	1	32.03779	1.813209
14RLD002	49.85	11.35318557	0.252089	1.981445	-0.00037	0.47036848	0.104701	21.31847	0.001481	0.002811	0.238166	Winnepegosis	1	32.67166	1.877753
14RLD002	50.95	11.46183748	0.238489	0.732459	0.018284	0.406426277	0.10105	21.81078	-0.02183	0.013872	0.200247	Winnepegosis	1	33.27262	1.902904
14RLD002	52.19	11.18810151	0.026451	0.34611	-0.004	0.438770026	0.070719	22.94188	-0.01753	0.011927	0.208001	Winnepegosis	1	34.12998	2.050561
14RLD002	53.18	12.10639992	0.640443	0.931492	-0.00296	0.357941584	0.039746	20.98979	0.00483	0.013492	0.044222	Winnepegosis	1	33.09619	1.733776
14RLD002	54.14	11.08107699	0.073635	0.483525	0.012034	0.357147204	0.089696	22.14931	0.008663	0.013541	0.118493	Winnepegosis	1	33.23039	1.998841
14RLD002	55.11	11.11599089	0.026469	0.629942	-0.00698	0.359876473	0.074429	22.34455	0.005125	0.007305	0.090134	Winnepegosis	1	33.46054	2.010127
14RLD002	55.93	11.0767918	0.035171	0.589754	-0.01309	0.34657037	0.059139	22.29926	-0.00756	0.007715	0.08359	Winnepegosis	1	33.37605	2.013151
14RLD002	56.95	11.63962375	0.384958	1.470016	0.00046	0.346651748	0.060159	21.53823	-0.01301	0.004654	0.134175	Winnepegosis	1	33.17785	1.850423
14RLD002	57.86	11.53146778	0.296462	0.833644	0.017645	0.364193639	0.088053	21.51913	-0.02488	0.005771	0.076728	Winnepegosis	1	33.0506	1.866123
14RLD002	58.85	11.79626685	0.382729	0.892645	-0.02091	0.350731936	0.086812	22.01424	-0.00424	0.009015	0.163819	Winnepegosis	1	33.81051	1.866204
14RLD002	59.84	11.34752594	0.221723	1.130729	-0.01464	0.413902951	0.129815	21.24106	-0.00631	0.010372	0.146349	Winnepegosis	1	32.58858	1.871867
14RLD002	60.92	11.51269825	0.324205	1.170725	0.008448	0.405418358	0.140196	21.29878	-0.00368	0.017801	0.214799	Winnepegosis	1	32.81148	1.850025
14RLD002	62.07	10.59088145	-0.16469	0.193765	-0.00634	0.348223336	0.131845	22.69265	-0.01272	0.009129	0.124031	Winnepegosis	1	33.28353	2.142659
14RLD002	62.83	11.13789261	0.057903	0.300698	0.003257	0.342242963	0.079936	22.73672	-0.01971	0.008758	0.096509	Winnepegosis	1	33.87462	2.041385
14RLD002	63.89	10.68912139	-0.11701	0.175022	0.001395	0.38425912	0.188864	22.29761	-0.00155	0.014026	0.214309	Winnepegosis	1	32.98673	2.086009
14RLD002	65.13	11.56840861	0.302238	0.77938	0.002715	0.400236063	0.182543	21.9275	-0.01181	0.012077	0.217008	Winnepegosis	1	33.49591	1.895464
14RLD002	65.94	10.97279725	-0.00631	0.52605	0.007276	0.439633741	0.245397	21.74266	-0.00622	0.014155	0.263056	Winnepegosis	1	32.71545	1.981505
14RLD002	66.93	11.77654039	0.438525	0.801693	0.015554	0.363316695	0.185119	21.55207	0.001308	0.010143	0.17238	Winnepegosis	1	33.32871	1.83007
14RLD002	68.19	11.20838972	0.200464	0.533234	0.013991	0.373573613	0.196028	21.46083	-0.01296	0.013124	0.25568	Winnepegosis	1	32.66922	1.914711
14RLD002	69.12	11.15270195	0.072091	0.366528	0.004438	0.344615575	0.163275	22.30264	-0.02716	0.009142	0.178132	Winnepegosis	1	33.45535	1.999753
14RLD002	70.13	11.58256113	0.354498	0.665158	0.00367	0.379521743	0.310115	21.6433	-0.0061	-0.01385	0.325737	Winnepegosis	1	33.22586	1.868611
14RLD002	71.21	11.23034605	0.008754	0.134078	-0.00314	0.340935214	0.178027	23.17793	0.008541	0.013219	0.238609	Winnepegosis	1	34.40828	2.063866
14RLD002	71.97	11.84711988	0.356764	0.588865	-0.00436	0.346268125	0.157971	22.47715	-0.00947	0.016261	0.207686	Winnepegosis	1	34.32427	1.897267
14RLD002	72.9	11.73866451	0.267867	0.478882	-0.01564	0.34109205	0.079079	22.60646	-0.02371	0.01197	0.102889	Winnepegosis	1	34.34512	1.925812

<u>151</u>

Hole ID	Depth (m)	MgKa1	AlKa1	SiKa1	P Ka1	S Kal	K Ka1	CaKa1	BaLa1	MnKa1	FeKa1	Formation	FM_code	Ca+Mg	Ca/Mg
14RLD002	74.11	11.22679833	-0.03012	0.222567	0.006643	0.331280628	0.14531	23.41378	0.005314	0.009216	0.160644	Winnepegosis	1	34.64058	2.085526
14RLD002	75.06	11.98338848	0.528287	0.834978	0.002252	0.348275718	0.153796	21.64054	-0.04508	0.011834	0.142363	Winnepegosis	1	33.62393	1.805878
14RLD002	76.08	10.14613535	-0.28207	0.021322	-0.00438	0.330885721	0.109927	23.54063	-0.00297	0.004773	0.09476	Winnepegosis	1	33.68676	2.320157
14RLD002	77.18	11.27346524	0.159539	0.51127	0.001258	0.390168855	0.465236	21.59428	-0.02479	0.016705	0.408986	Winnepegosis	1	32.86775	1.915496
14RLD001	31.81	11.95026828	0.778978	1.273136	-0.00069	0.35331591	0.041902	20.87673	-0.023	0.015597	0.041941	Winnepegosis	1	32.82699	1.746967
14RLD001	32.91	9.341770737	-0.75092	-0.74991	0.019309	0.319835755	0.062572	24.08627	-0.01539	0.00352	0.157238	Winnepegosis	1	33.42804	2.578341
14RLD001	34.17	9.970465839	-0.45179	-0.23182	-0.01657	0.327870233	0.071862	24.16553	0.002355	0.007534	0.141972	Winnepegosis	1	34.13599	2.423711
14RLD001	35.16	8.54245457	-0.78815	-0.57789	0.002226	0.317985969	0.074799	24.8274	0.008163	0.006384	0.108242	Winnepegosis	1	33.36986	2.906354
14RLD001	36.17	9.534639416	-0.39599	-0.10141	-0.00902	0.329749411	0.068909	23.73801	-0.00571	0.009048	0.060257	Winnepegosis	1	33.27265	2.48966
14RLD001	37.1	9.453737115	-0.35582	-0.04393	0.001189	0.333712808	0.058726	23.35176	0.010921	0.006055	0.04325	Winnepegosis	1	32.8055	2.470109
14RLD001	37.93	11.57679111	0.327179	0.601531	-0.00607	0.349447349	0.06451	21.63647	-0.02644	0.008388	0.043959	Winnepegosis	1	33.21326	1.868952
14RLD001	38.94	11.66144217	0.281698	0.537489	-0.00069	0.358239876	0.060011	22.29545	-0.01088	0.004859	0.069037	Winnepegosis	1	33.95689	1.911895
14RLD001	39.94	10.50055083	-0.12528	0.25909	-0.00802	0.33672199	0.069419	22.98428	0.005158	0.00775	0.04671	Winnepegosis	1	33.48483	2.188865
14RLD001	40.92	10.3543267	-0.1743	0.029784	0.001633	0.334873477	0.053995	23.23272	-0.01082	0.006663	0.062342	Winnepegosis	1	33.58705	2.24377
14RLD001	41.95	11.36842321	0.154117	0.399525	0.002563	0.341692328	0.039172	22.54349	0.006664	0.010138	0.079667	Winnepegosis	1	33.91191	1.982992
14RLD001	43.23	9.641562888	-0.40742	0.000587	0.00842	0.330022165	0.06051	23.38104	-0.00261	0.006744	0.053969	Winnepegosis	1	33.0226	2.425026
14RLD001	44.19	11.67910259	0.346314	0.574472	-0.0335	0.350494113	0.051766	21.75146	-0.0555	0.009273	0.02912	Winnepegosis	1	33.43056	1.862426
14RLD001	44.89	10.58150889	-0.04426	0.159579	-0.02565	0.389800507	0.074891	22.57063	-0.00892	0.01215	0.123035	Winnepegosis	1	33.15214	2.133026
14RLQ001	45.93	11.40919678	0.237262	0.765859	0.00351	0.385279285	0.09866	21.56982	-0.00678	0.010071	0.078352	Winnepegosis	1	32.97901	1.890564
14RLD001	46.84	11.49594951	0.317866	0.995308	0.003095	0.404286771	0.11	21.21328	-0.00844	0.009481	0.098337	Winnepegosis	1	32.70923	1.845283
14RLD001	47.8	11.13742733	-0.04306	0.448647	0.002075	0.337037932	0.090048	23.00012	0.020757	0.003397	0.077817	Winnepegosis	1	34.13755	2.06512
14RLD001	48.95	12.08053578	0.89845	1.507179	0.000965	0.37079594	0.034818	19.33851	-0.05067	0.01297	-0.00776	Winnepegosis	1	31.41904	1.600799
14RLD001	50.08	10.44479692	-0.09519	0.294062	0.008674	0.341227397	0.058721	22.67655	0.010369	0.007225	0.049767	Winnepegosis	1	33.12134	2.171086
14RLD001	51.09	10.44479692	-0.09519	0.294062	0.008674	0.341227397	0.058721	22.67655	0.010369	0.007225	0.049767	Winnepegosis	1	33.12134	2.171086
14RLD001	52.13	11.26992429	0.283255	0.585975	-0.00675	0.621457575	0.188129	21.10829	0.00151	0.011445	0.197427	Winnepegosis	1	32.37821	1.872975
14RLD001	53.11	11.26830645	0.163104	0.38199	0.01238	0.464192907	0.177364	22.02132	-0.02868	0.010732	0.177558	Winnepegosis	1	33.28963	1.954271
14RLD001	54.15	11.26830645	0.163104	0.38199	0.01238	0.464192907	0.177364	22.02132	-0.02868	0.010732	0.177558	Winnepegosis	1	33.28963	1.954271
14RLD001	54.96	10.7736216	0.076859	0.315021	0.004354	0.408046972	0.115192	21.64904	-0.00293	0.013036	0.163408	Winnepegosis	1	32.42266	2.009449
14RLD001	56.06	10.96052883	0.144825	0.474907	-0.01143	0.370108794	0.148956	21.3391	-0.01003	0.012992	0.132178	Winnepegosis	1	32.29963	1.946904
14RLD001	56.9	11.52912586	0.381336	0.703168	0.004122	0.403445843	0.198567	21.21548	-0.01212	0.011253	0.19075	Winnepegosis	1	32.74461	1.840164
14RLD001	58.18	11.02464017	0.162329	2.528322	0.016934	0.350876903	0.102834	21.50458	0.012477	0.007448	0.136224	Winnepegosis	1	32.52922	1.950592
14RLD001	58.93	11.52539807	0.213079	0.861474	0.00971	0.364382841	0.125442	22.16801	-0.00231	0.004882	0.146852	Winnepegosis	1	33.69341	1.923405
14RLD001	60.13	11.4086905	0.17097	0.396632	0.024756	0.921919746	0.204233	22.31984	0.022396	0.017314	0.418566	Winnepegosis	1	33.72853	1.95639
14RLD001	61.15	9.327628651	-0.49362	-0.28064	0.019075	0.329200345	0.099925	23.86506	0.0092	0.009014	0.123418	Winnepegosis	1	33.19269	2.558535
14RLD001	61.87	11.76003321	0.37074	0.797185	-0.01223	0.356995512	0.14387	21.9216	0.009623	0.013236	0.191512	Winnepegosis	1	33.68164	1.864077
14RLD001	63.2	11.49378249	0.495672	1.1164	0.022476	0.650356441	0.415321	20.79271	-0.01719	0.016521	0.478711	Winnepegosis	1	32.28649	1.80904
14RLD001	63.92	11.5494093	0.360323	0.919715	0.012646	0.38843508	0.241839	21.60904	-0.0025	0.018629	0.34323	Winnepegosis	1	33.15845	1.871008

<u>152</u>

Hole ID	Depth (m)	MgKa1	AlKa1	SiKa1	P Ka1	S Kal	K Kal	CaKa1	BaLa1	MnKa1	FeKa1	Formation	FM_code	Ca+Mg	Ca/Mg
14RLD001	65.05	11.87845938	0.761803	1.76683	1.66E-05	0.356799585	0.061666	20.40121	0.005836	0.004866	0.064819	Winnepegosis	1	32.27967	1.717496
14RLD001	66.27	11.30996902	0.171789	1.316071	-0.00452	0.370757864	0.197605	21.47732	0.001896	0.015358	0.267567	Winnepegosis	1	32.78729	1.898973
14RLD001	67.25	11.06884252	0.141198	0.500748	0.017628	0.373684498	0.409419	21.09297	-0.01814	0.017604	0.372129	Winnepegosis	1	32.16181	1.905616
14RLD001	67.87	11.38808195	0.309459	1.003109	0.030494	0.361470151	0.353285	21.34547	-0.05731	0.011967	0.37419	Winnepegosis	1	32.73355	1.874369
14RLD001	68.85	11.27323709	0.30134	0.64396	0.0237	0.373413762	0.404071	20.90512	-0.02554	0.018174	0.351097	Winnepegosis	1	32.17836	1.854403
14RLD001	69.92	10.78684529	-0.09105	0.047795	0.016228	0.34397261	0.246993	22.1672	-0.01687	0.013962	0.266055	Winnepegosis	1	32.95405	2.055022
14RLD001	71.15	11.18095001	0.132877	0.846269	0.02354	0.355815741	0.189407	21.43672	-0.03401	0.01987	0.210596	Winnepegosis	1	32.61767	1.917254
14RLD001	72.12	11.00823248	0.001233	0.182151	-0.00528	0.339549041	0.135813	22.72238	-0.01623	0.010933	0.202971	Winnepegosis	1	33.73061	2.064126
14RLD001	72.96	10.02858051	1.875649	2.539911	0.002616	0.38974359	0.110785	17.10499	-0.06306	0.020559	0.036023	Winnepegosis	1	27.13357	1.705625
14RLD001	73.9	11.55568944	0.403059	0.621173	-0.00225	0.383721693	0.313336	21.23413	-0.01812	0.018637	0.2829	Winnepegosis	1	32.78982	1.837548
14RLD001	75.05	11.36106655	0.05739	0.114407	-0.00602	0.332699725	0.176799	22.99456	-0.00834	0.014357	0.169189	Winnepegosis	1	34.35562	2.023979
14RLD001	76.19	10.82113178	-0.20313	-0.15009	-0.02426	0.330843014	0.183028	22.55716	0.001351	0.006002	0.127222	Winnepegosis	1	33.3783	2.084548
14RLD001	77.1	10.42023827	0.125814	0.845984	0.02508	0.478578754	1.172027	17.69373	-0.03328	0.029928	1.06668	Winnepegosis	1	28.11397	1.698016
GNA-16	56.1	12.04749016	0.686774	1.037804	-0.003	0.395129904	0.064081	20.55748	-0.002	0.018966	0.05611	Winnepegosis	1	32.60497	1.706371
GNA-16	64.9	10.21550293	-0.58151	-0.65712	0.016561	0.391583564	0.285797	22.16904	0.004132	0.012661	0.324777	Winnepegosis	1	32.38455	2.170137
GNA-16	75.22	10.97206979	0.061331	0.254518	0.023315	0.39245272	0.238632	21.41688	-0.02359	0.016776	0.472268	Winnepegosis	1	32.38895	1.951946
GNA-10	26.5	10.15553866	0.684656	2.671279	-0.01133	0.416320062	0.166589	20.43459	0.023789	0.003318	0.466966	Winnepegosis	1	30.59013	2.012162
GNA-10	37.5	10.93274285	0.070126	0.25518	0.013737	0.481368622	0.157907	21.86681	0.010516	0.012141	0.14248	Winnepegosis	1	32.79956	2.000121
GNA-10	47.5	10.56387721	-0.02143	0.233798	0.012514	0.357877535	0.222896	21.27065	-0.01911	0.016042	0.159932	Winnepegosis	1	31.83453	2.013527
GNA-10	59.5	10.785971	0.045088	0.163832	0.026858	0.448577852	0.267123	21.43337	-0.00437	0.021575	0.470392	Winnepegosis	1	32.21934	1.987153
GNA-10	78	5.87347118	-1.23327	12.16231	0.03606	0.332831132	3.163068	-0.028	0.283523	0.024217	1.80551	Basement	4	5.845475	-0.00477
GNA-10	80	4.187162767	1.696535	19.98152	0.025576	0.347886295	3.805794	-1.82031	0.395882	-0.0259	0.740256	Basement	4	2.366849	-0.43474
GNA-10	82	6.610497946	-1.15881	9.428498	0.028722	0.337393757	6.48364	-7.48371	0.457731	-0.06501	0.455015	Basement	4	-0.87321	-1.13209
GNA-10	84	7.134459558	4.484481	15.50005	0.048149	0.376280975	5.584795	-3.41471	0.235711	0.09402	3.048572	Basement	4	3.719746	-0.47862
GNA-10	86	7.162698337	-9.94992	-8.41726	0.01185	0.313039474	2.436044	-0.35216	0.423778	-0.12363	1.279784	Basement	4	6.810536	-0.04917
GNA-10	88	6.640689755	-6.00048	2.086175	0.012067	0.327374645	2.571479	0.334925	0.404419	-0.16177	0.938834	Basement	4	6.975615	0.050435
GNA-10	90	4.404147042	2.905287	18.72901	0.026385	0.360210244	6.439437	-7.45911	0.565299	-0.07014	0.118168	Basement	4	-3.05496	-1.69366
GNA-10	91.5	6.739413417	-7.16869	0.064289	0.016129	0.318414959	3.561065	-2.31629	0.467411	-0.18654	0.882351	Basement	4	4.42312	-0.34369
GNA-10	93	7.297378867	-9.90694	-12.1246	0.018478	0.315453427	0.875665	2.036832	0.144823	0.002612	1.659493	Basement	4	9.334211	0.279118
GNA-10	94.5	3.726133023	-2.71544	15.96419	0.013985	0.345065842	3.188945	-1.67588	0.441237	-0.04415	0.453732	Basement	4	2.050252	-0.44976
GNA-10	95.5	5.818147945	0.77329	13.08489	0.045754	0.348089753	3.50928	-0.42896	0.300373	-0.04404	1.064014	Basement	4	5.389185	-0.07373
GNA-10	96.5	7.508458378	-13.6108	-29.2688	-0.00229	0.288622633	1.226071	0.873901	0.19889	0.004568	0.940922	Basement	4	8.382359	0.116389
GNA-10	97.5	7.020594533	-9.15577	-5.17441	0.010793	0.325650961	3.462554	-2.61639	0.452464	-0.03525	0.49196	Basement	4	4.404201	-0.37267
GNA-10	98.5	7.778132212	-12.5849	-18.5667	0.027285	0.302723265	2.328801	-1.15995	0.291645	-0.06738	1.029562	Basement	4	6.618178	-0.14913
GNA-10	99.5	6.624858683	-5.44981	3.777309	0.028373	0.339767796	1.978324	1.376586	0.422637	0.001689	3.125182	Basement	4	8.001445	0.207791

<u>153</u>

<u>154</u>

Appendix 3b – Whole Rock Geochemical Results

Assessment Report for Athabasca Minerals Inc.'s Richardson Property, Northeastern Alberta Client: Athabasca Minerals Inc.'s Richardson Property, Northeastern Alberta

www.acmelab.com

and the second

Athabasca Minerals Inc. 9524 27 Ave Edmonton AB T6N 1B2 CANADA

Brvan Atkinson

May 06, 2014

May 29, 2014

1 of 6

Canada-Vancouver

Acme Analytical Laboratories (Vancouver) Ltd. 9050 Shaughnessy St Vancouver BC V6P 6E5 CANADA PHONE (604) 253-3158

CERTIFICATE OF ANALYSIS

CLIENT JOB INFORMATION

SAMPLE PREPARATION AND ANALYTICAL PROCEDURES

Project:	Athab
Shipment ID:	ABM2
P.O. Number	99211
Number of Samples:	124

DISP-PLP

DISP-RJT

nabasca Testing 3M2014-001 211

Code	Samples		Wgt (g)
PRP70-250	124	Crush, split and pulverize 250 g rock to 200 mesh	
LF202	124	Total Whole Rock Characterization with AQ200	0.2
DRPLP	124	Warehouse handling / disposition of pulps	

Warehouse handling / Disposition of reject

Submitted By:

Receiving Lab:

Received:

Page:

Code Description

Report Date:

SAMPLE DISPOSAL

Dispose of Pulp After 90 days Dispose of Reject After 90 days ADDITIONAL COMMENTS

124

Number of

Procedure

ORRJT

Acrose does not accept responsibility for samples left at the laboratory after 90 days without prior written instructions for sample storage or return.

Invoice To: Athabasca Minerals Inc. 9524 27 Ave Edmonton AB T6N 1B2 CANADA

CC:

Heather Budney

This report supersedes all previous preliminary and final reports with this file number dated prior to the date on this certificate. Signature indicates final approval, preliminary reports are unsigned and should be used for reference only. All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of analysis only. Results apply to samples as submitted *** asterisk indicates that an analytical result could not be provided due to unusually high levels of interference from other elements

larcus.

MARCUS LAU

00

HSIIIS

VAN14001455.1

Test

Report

Status

Completed

Lab

VAN

VAN

VAN

VAN

	Sment Report for Autabasea Minerals Inc.	Client:	Athaba 9524 27 Av	sca Minerals Inc.		
AcmeLabs [™]	www.acmelab.com	Project:	Edmonton /	AB T6N 1B2 CANADA		
Acme Analytical Laboratories (Vancouver) Ltd.		Report Date:	May 29, 20	14		
9050 Shaughnessy St Vancouver BC V6P 6E5 PHONE (604) 253-3158	CANADA	Page:	2 of 6		Part:	1 of 4
CERTIFICATE OF ANALY	/SIS			VAN1400)1455.1	

CERTIFICATE OF ANALYSIS

	Method	WGHT	LF200	LF200	LF200	LF200	LF 200	LF 200	LF200	LF200	LF 200	LF200	LF200	LF200	LF200	LF200	LF200	LF200	LF200	LF200	LF200
	Analyte	Wgt	SiO2	AI203	Fe2O3	MgO	CaO	Na2O	K20	TIO2	P205	MnO	Cr203	Ni	Sc	LOI	Sum	Ba	Be	Co	Cs
	Unit	kg	%	%	%	%	%	%	%	%	%	%	%	ppm	ppm	%	%	ppm	ppm	ppm	ppm
	MDL	0.01	0.01	0.01	0.04	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.002	20	1	-5.1	0.01	1	1	0.2	0.1
263101	Drill Core	1.81	1.37	0.14	0.27	20.19	29.91	0.02	0.04	<0.01	0.01	0.02	< 0.002	<20	<1	47.7	99.65	10	<1	<0.2	<0.1
263102	Drill Core	1.15	1.43	0.24	0.27	20.01	29.02	0.01	0.05	0.01	0.01	0.02	< 0.002	<20	<1	48.6	99.66	9	<1	<0.2	<0.1
263103	Drill Core	1.14	3.06	0.49	0.35	19.81	29.41	0.01	0.11	0.02	0.03	0.02	0.003	<20	<1	46.3	99.66	17	<1	0.8	0.2
263104	Drill Core	1.32	3.45	0.67	0.50	19.78	29.40	0.02	0.19	0.03	0.07	0.03	<0.002	<20	<1	45.5	99.65	20	<1	7.1	0.2
263105	Drill Core	2.19	69.22	14.77	2.89	1.16	1.94	3.08	5.13	0.35	0.14	0.04	0.003	<20	4	1.1	99.64	1946	5	4.5	0.4
263106	Drill Core	2.30	68.88	14.51	2.83	1.26	2.01	2.75	5.27	0.34	0.17	0.04	0.003	<20	5	1.6	99.65	1826	2	4.4	0.3
263107	Drill Core	2.35	69.09	14.77	2.99	1.31	1.85	2.99	5.07	0.37	0.15	0.04	0.003	<20	5	1.0	99.64	1850	3	4.4	0.5
263108	Drill Core	2.07	68.89	14.62	3.17	1.33	1.83	2.81	5.33	0.39	0.18	0.05	0.003	<20	6	1.0	99.62	1876	8	5.2	0.6
263109	Drill Core	2.01	69.85	14.63	2.62	1.19	1.62	3.16	4.98	0.32	0.13	0.04	0.003	<20	4	1.1	99.66	1846	2	4.6	0.3
263110	Drill Core	2.19	69.32	14.79	2.75	1.20	1.64	3.01	5.13	0.34	0.13	0.04	0.003	<20	4	1.3	99.66	1748	6	4.0	0.7
263111	Drill Core	2.15	68.93	14.85	3.29	0.86	1.48	3.18	5.70	0.39	0.16	0.03	0.003	<20	3	0.8	99.68	1462	5	3.9	0.8
263112	Drill Core	1.29	69.87	14.75	2.51	1.04	1.77	3.21	4.93	0.32	0.15	0.04	0.002	<20	4	1.1	99.69	1605	2	4.2	0.6
263113	Drill Core	1.85	71.47	13.85	1.16	0.51	2.19	3.01	5.82	0.12	0.91	0.02	<0.002	<20	2	0.7	99.76	1186	5	0.9	0.5
263114	Drill Core	2.33	69.79	14.72	2.70	1.15	1.89	3.27	4.62	0.34	0.17	0.04	0.003	<20	4	1.0	99.66	1702	5	4.0	0.6
263115	Drill Core	2.33	68.66	15.21	2.88	1.27	1.78	3.20	5.14	0.36	0.14	0.04	0.003	<20	4	1.0	99.68	1586	2	4.0	0.4
263116	Drill Core	2.95	68.75	15.03	2.98	1.49	1.24	2.67	5.52	0.37	0.15	0.04	0.003	<20	5	1.4	99.65	1823	3	5.2	0.7
263117	Drill Core	0.92	1.66	0.09	0.43	20.57	29.90	0.02	0.03	< 0.01	<0.01	0.02	< 0.002	<20	<1	46.9	99.64	6	<1	0.3	<0.1
263118	Drill Core	0.93	7.62	0.64	0.29	18.99	27.75	0.02	0.16	0.03	0.04	0.02	<0.002	<20	<1	44.1	99.67	22	2	0.9	0.2
263119	Drill Core	1.46	2.29	0.60	0.34	20.11	29.64	0.01	0.15	0.03	0.01	0.03	<0.002	<20	<1	46.4	99.65	14	<1	0.4	0.2
263120	Drill Core	1.45	0.28	0.03	0.11	20.87	30.60	0.01	<0.01	<0.01	< 0.01	0.02	<0.002	<20	<1	47.7	99.65	4	<1	<0.2	<0.1
263121	Drill Core	1.14	1.32	0.15	0.24	20.37	29.69	0.01	0.04	<0.01	< 0.01	0.01	<0.002	<20	<1	47.8	99.65	7	<1	<0.2	<0.1
263122	Drill Core	1.09	1.99	0.40	0.26	20.30	29.47	0.03	0.09	0.02	0.03	0.01	< 0.002	<20	<1	47.1	99.65	13	<1	<0.2	0.1
263123	Drill Core	1.13	6.18	0.60	0.39	19.39	28.19	0.01	0.13	0.03	0.05	0.02	<0.002	<20	<1	44.7	99.67	17	<1	3.3	0.2
263124	Drill Core	1.13	2.30	0.54	0.31	20.33	29.49	0.01	0.14	0.03	0.02	0.02	<0.002	<20	<1	46.5	99.65	17	<1	0.5	0.3
263125	Drill Core	0.84	71.20	12.51	3.57	2.74	0.66	0.18	5.35	0.34	0.10	0.05	0.004	<20	6	3.1	99.84	651	2	4.6	0.7
263126	Drill Core	2.45	67.90	14.49	3.56	2.62	0.78	0.90	5.86	0.36	0.13	0.05	0.003	<20	7	3.2	99.81	790	4	4.8	0.7
263127	Drill Core	2.00	70.38	13.23	2.21	2.05	0.96	0.94	6.75	0.27	0.06	0.02	0.002	<20	4	3.0	99.85	761	3	3.4	0.5
263128	Drill Core	1.77	64.99	15.16	4.59	3.43	0.59	0.76	6.05	0.49	0.18	0.07	0.006	<20	10	3.4	99.75	1023	4	9.0	0.9
263129	Drill Core	1.14	69.20	14.92	2.70	1.63	0.45	1.83	6.81	0.30	0.16	0.04	0.004	<20	5	1.8	99.83	842	1	4.3	0.5
263130	Drill Core	1.19	0.14	0.03	0.15	20.98	30.57	0.01	0.02	<0.01	< 0.01	0.01	< 0.002	<20	<1	47.7	99.64	5	81	<0.2	<0.1

ce only es final approval; prell inary reports are unsigned and should be

159

Assessment Report for Athabasca Minerals Inc.'s Richardson Property, N	lortheastern Alberta
Client:	Athabasca Minerals Inc.
	9524 27 Ave
	Edmonton AB T6N 1B2 CANADA

Acme Analytical Laboratories (Vancouver) Ltd. 9050 Shaughnessy St Vancouver BC V6P 6E5 CANADA PHONE (604) 253-3158

www.acmelab.com

Project: Report Date:

Page:

Athabasca Testing May 29, 2014

2 of 6

Part: 2 of 4

	Method	LF200	LF200	LF200	LF200	LF 200	LF 200	LF200	LF20												
	Analyte	Ga	H	Nb	Rb	Sn	Sr	Та	Th	υ	v	W	Zr	Y	La	Ce	Pr	Nd	Sm	Eu	G
	Unit	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppi
	MDL	0.5	0.1	0.1	0.1	1	0.5	0.1	0.2	0.1	8	0.5	0.1	0.1	0.1	0.1	0.02	0.3	0.05	0.02	0.0
263101	Drill Core	<0.5	<0.1	0.3	1.4	<1	55.8	<0.1	<0.2	0.8	<8	<0.5	3.3	2.1	1.5	1.5	0.24	1.0	0.13	0.03	0.1
263102	Drill Core	<0.5	0.1	0.4	1.8	<1	53.9	<0.1	<0.2	1.0	11	<0.5	6.0	2.6	1.9	2.4	0.35	1.7	0.26	0.09	0.3
263103	Drill Core	<0.5	0.1	0.5	3.6	<1	49.4	<0.1	0.3	1.8	<8	<0.5	4.8	2.6	2.8	3.4	0.43	1.6	0.30	0.06	0.3
263104	Drill Core	<0.5	0.2	0.7	5.6	<1	58.5	<0.1	0.6	1.4	<8	<0.5	7.7	5.7	4.1	5.7	0.75	3.3	0.53	0.17	0.8
263105	Drill Core	19.2	5.9	8.9	207.9	3	537.1	0.3	46.0	5.4	32	<0.5	206.3	11.5	66.3	116.1	12.02	40.6	5.66	1.18	4.3
263106	Drill Core	18.8	6.6	8.2	196.6	3	507.9	0.4	45.4	5.0	35	<0.5	222.0	12.3	65.3	115.2	11.44	38.7	5.67	1.08	4.3
263107	Drill Core	17.4	6.0	10.3	190.3	3	505.3	0.5	46.8	4.2	36	<0.5	211.9	11.6	69.3	124.8	12.12	41.1	5.99	1.19	4.0
263108	Drill Core	18.9	7.4	10.6	218.9	3	507.9	0.5	51.6	4.5	42	<0.5	250.4	14.0	75.8	134.2	13.68	44.8	6.80	1.30	5.0
263109	Drill Core	18.1	5.3	8.9	183.2	3	451.2	0.5	40.5	5.0	31	<0.5	181.2	10.2	62.5	106.4	10.70	34.8	4.97	1.09	3.7
263110	Drill Core	19.2	6.2	18.6	210.1	4	459.9	1.3	49.8	6.6	35	0.6	202.9	18.0	71.1	128.3	13.25	46.9	7.21	1.17	5.5
263111	Drill Core	22.3	6.0	13.1	226.8	5	394.0	0.8	74.3	6.0	33	<0.5	187.0	17.1	101.1	207.6	23.27	80.2	12.48	0.92	7.1
263112	Drill Core	19.2	6.2	9.0	209.1	3	457.9	0.5	38.5	4.9	31	<0.5	201.9	11.1	59.8	107.5	10.54	34.9	5.14	1.18	3.8
263113	Drill Core	17.3	2.0	12.9	221.0	4	352.0	1.0	34.3	11.0	11	0.6	64.8	53.0	73.0	166.8	20.70	78.1	15.80	1.27	12.7
263114	Drill Core	18.4	6.8	13.3	195.1	4	485.1	0.6	44.0	6.1	36	<0.5	217.5	15.4	66.1	117.9	12.21	42.6	6.53	1.15	4.7
263115	Drill Core	18.3	7.1	8.6	186.7	3	491.7	0.8	30.3	2.8	42	<0.5	235.6	9.3	59.3	108.9	10.62	35.2	4.76	1.06	3.6
263116	Drill Core	18.2	6.9	9.5	189.1	4	391.7	0.6	55.8	5.8	45	<0.5	234.7	15.2	74.6	124.9	13.86	46.7	6.98	1.19	4.8
283117	Drill Core	<0.5	<0.1	0.1	0.8	<1	55.0	0.1	0.2	0.9	11	<0.5	2.1	2.3	1.8	2.7	0.32	1.3	0.23	0.05	0.3
263118	Drill Core	<0.5	0.2	0.5	4.7	<1	56.5	<0.1	0.6	1.7	12	<0.5	8.4	4.4	3.8	5.2	0.67	2.6	0.49	0.16	0.6
263119	Dritt Core	<0.5	0.1	0.5	4.4	<1	46.3	<0.1	0.5	1.1	8	<0.5	6.0	4.1	3.5	5.1	0.58	2.5	0.46	0.12	0.6
263120	Drill Core	<0.5	<0.1	<0.1	0.2	<1	45.8	<0.1	<0.2	0.7	<8	<0.5	1.2	1.9	1.3	1.7	0.18	0.9	0.09	0.03	0,1
263121	Drill Core	<0.5	<0.1	<0.1	1.0	<1	52.9	<0.1	<0.2	1.3	11	<0.5	2.7	1.5	1.5	1.3	0.18	0.4	0.10	0.04	0.1
263122	Drill Core	<0.5	<0.1	0.3	2.5	<1	50.7	<0.1	0.3	1.8	<8	<0.5	3.6	2.3	2.2	2.6	0.34	1.5	0.24	0.06	0.2
263123	Drill Core	<0.5	0.1	0.2	4.1	<1	50.8	<0.1	0.3	2.0	12	<0.5	6.0	3.6	3.0	3.8	0.46	1.7	0.30	0.08	0.4
263124	Drill Core	<0.5	0.3	3.4	4.2	<1	48.7	1.7	0.5	2.8	11	<0.5	9.8	4.2	2.7	4.2	0.50	2.3	0.45	0.10	0.5
263125	Drill Core	15.8	3.4	7.3	90.8	3	30.2	0.7	23.5	2.3	43	1.5	117.2	9.7	30.5	58.1	6.56	22.4	3.35	0.47	2.4
263126	Drill Core	20.0	3.5	12.6	135.3	4	50.8	2.5	19.3	2.2	45	0.9	125.6	19.5	37.8	70.1	7.53	25.8	4.33	0.75	3.1
263127	Drill Core	15.2	2.5	9.2	138.8	2	73.6	1.3	10.7	1.2	28	<0.5	86.0	10.8	32.1	56.8	6.25	20.8	3.57	0.66	2.5
263128	Drill Core	18.4	5.1	10.8	151.4	2	99.4	1.0	30.4	2.4	65	0.7	190.1	13.0	52.7	98.4	10.51	34.0	5.48	0.80	4.0
263129	Drill Core	18.0	2.9	12.2	166.6	7	108.7	6.2	17.9	2.4	35	1.1	105.2	10.4	32.5	63.0	6.72	23.4	3.81	0.65	2.7
263130	Drill Core	<0.5	<0.1	3.2	0.2	<1	48.1	5.2	<0.2	0.6	<8	<0.5	3.2	1.2	0.8	1.1	0.13	0.5	<0.05	0.03	0.1

		Client:	Athabasca Mineral 9524 27 Ave Edmonton AB T6N 1B2 CAN	is inc. IADA
A Bureau Veritas Group Company Acme Analytical Laboratories (Vancouver) Ltd.	www.acmelab.com	Project: Report Date:	Athabasca Testing May 29, 2014	
9050 Shaughnessy St Vancouver BC V6P 6E5 0 PHONE (604) 253-3158	CANADA	Page:	2 of 6	Part
CERTIFICATE OF ANALY	SIS		VAN	14001455.1

CERTIFICATE OF ANALYSIS

Met	hod LF200	TC000	TC000	AQ200																
Ana	lyte Tt	Dy	Ho	Er	Tm	Yb	Lu	TOT/C	TOT/S	Mo	Cu	Pb	Zn	Ni	As	Cd	Sb	Bi	Ag	Au
	Unit ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	%	ppm	ppb									
	ADL 0.01	0.05	0.02	0.03	0.01	0.05	0.01	0.02	0.02	0.1	0.1	0.1	1	0.1	0.5	0.1	0.1	0.1	0.1	0.5
263101 Drill Core	0.03	0.19	0.04	0.13	0.02	0.13	0.01	14.28	0.17	0.4	3.3	6.4	1	3.9	<0.5	<0.1	<0.1	<0.1	<0.1	<0.5
263102 Drill Core	0.05	0.28	0.06	0.23	0.02	0.16	0.02	15.65	0.30	1.2	8.0	2.7	2	9.4	<0.5	<0.1	<0.1	<0.1	<0.1	0.9
263103 Drill Core	0.05	0.33	0.08	0.17	0.02	0.13	0.03	12.98	0.18	0.8	8.6	5.3	3	8.9	<0.5	<0.1	<0.1	<0.1	<0.1	<0.5
263104 Drill Core	0.12	0.78	0.14	0.42	0.06	0.27	0.05	12.56	0.25	0.3	4.8	6.2	2	6.6	1.1	<0.1	<0.1	<0.1	<0.1	0.7
263105 Drill Core	0.49	2.21	0.43	1.03	0.15	0.80	0.12	0.04	0.20	0.8	5.1	16.9	43	5.8	<0.5	<0.1	<0.1	<0.1	<0.1	<0.5
263106 Drill Core	0.52	2.31	0.40	1.07	0.15	0.93	0.14	0.05	0.30	3.5	5.4	15.8	46	6.0	<0.5	<0.1	<0.1	<0.1	<0.1	1.1
263107 Drill Core	0.49	2.46	0.41	1.06	0.14	0.98	0.14	0.04	0.06	2.0	4.4	14.9	50	6.5	<0.5	<0.1	<0.1	<0.1	<0.1	0.5
263108 Drill Core	0.59	2.94	0.44	1.30	0.16	1.08	0.16	0.04	<0.02	1.2	7.0	16.9	65	7.3	<0.5	<0.1	<0.1	<0.1	<0.1	<0.5
263109 Drill Core	0.47	2.29	0.37	0.95	0.13	0.78	0.11	0.04	<0.02	2.4	6.1	13.5	51	5.3	<0.5	<0.1	<0.1	<0.1	<0.1	<0.5
263110 Drill Core	0.77	3.99	0.74	1.84	0.27	1.68	0.21	0.03	0.03	2.9	4.9	13.1	55	5.7	<0.5	<0.1	<0.1	<0.1	<0.1	<0.5
263111 Drill Core	0.82	3.85	0.59	1.40	0.21	1.25	0.16	0.02	<0.02	1.1	5.7	17.7	47	4.2	<0.5	<0.1	<0.1	<0.1	<0.1	<0.5
263112 Drill Core	0.46	2.23	0.33	0.97	0.14	0.84	0.12	0.03	<0.02	0.4	6.8	19.4	56	4.8	<0.5	<0.1	<0.1	<0.1	<0.1	<0.5
263113 Drill Core	1.99	10.62	1.84	5.18	0.75	4.20	0.53	0.04	<0.02	1.3	2.1	9.6	22	1.3	<0.5	<0.1	<0.1	<0.1	0.1	<0.5
263114 Drill Core	0.61	3.29	0.56	1.54	0.22	1.41	0.19	0.03	<0.02	1.5	7.6	11.7	52	5.1	<0.5	<0.1	<0.1	<0.1	<0.1	<0.5
263115 Drill Core	0.42	2.07	0.33	0.95	0.14	0.85	0.12	0.03	0.02	0.5	5.0	9.9	54	5.8	<0.5	<0.1	<0.1	<0.1	<0.1	<0.5
263116 Drill Core	0.60	2.93	0.53	1.44	0.20	1.18	0.16	0.03	<0.02	1.4	4.8	10.3	49	5.7	<0.5	<0.1	<0.1	<0.1	<0.1	<0.5
263117 Drill Core	0.05	0.28	0.04	0.15	0.02	0.11	0.01	13.37	0.22	0.5	2.1	0.7	1	2.2	<0.5	<0.1	<0.1	<0.1	<0.1	<0.5
263118 Drill Core	0.10	0.59	0.11	0.33	0.04	0.23	0.03	12.41	0.18	0.5	10.0	4.2	2	8.1	<0.5	<0.1	<0.1	<0.1	<0.1	<0.5
263119 Drill Core	0.09	0.56	0.09	0.30	0.04	0.21	0.03	13.20	0.17	0.6	4.5	3.3	2	5.3	0.7	<0.1	<0.1	<0.1	<0.1	<0.5
263120 Drill Core	0.03	0.20	0.04	0.10	0.02	0.09	<0.01	13.49	0.03	0.3	1.4	0.4	<1	2.1	<0.5	<0.1	<0.1	<0.1	<0.1	<0.5
263121 Drill Core	0.03	0.14	0.03	0.13	0.01	0.07	0.01	14.28	0.15	1.2	7.8	2.2	1	11.3	<0.5	<0.1	<0.1	<0.1	<0.1	<0.5
263122 Drill Core	0.04	0.23	0.05	0.16	0.02	0.13	0.01	13.83	0.13	0.9	8.7	2.9	2	9.4	<0.5	<0.1	0.1	<0.1	<0.1	<0.5
263123 Drill Core	0.06	0.42	0.07	0.23	0.02	0.18	0.03	12.69	0.23	0.6	10.5	5.7	3	11.2	0.8	<0.1	<0.1	<0.1	<0.1	<0.5
263124 Drill Core	0.08	0.52	0.10	0.30	0.05	0.29	0.04	12.99	0.09	1.3	3.5	1.8	7	9.5	<0.5	<0.1	0.1	<0.1	<0.1	<0.5
263125 Drill Core	0.32	1.76	0.33	1.02	0.15	1.04	0.15	0.16	0.06	0.1	3.6	3.0	63	8.5	<0.5	<0.1	<0.1	<0.1	<0.1	<0.5
263126 Drill Core	0.59	3.32	0.61	1.82	0.29	1.90	0.26	0.25	0.06	0.3	3.2	32.0	64	6.6	<0.5	<0.1	<0.1	<0.1	<0.1	<0.5
263127 Drill Core	0.36	1.89	0.36	1.05	0.16	1.22	0.17	0.37	0.06	<0.1	3.7	3.0	38	4.5	<0.5	<0.1	<0.1	<0.1	<0.1	<0.5
263128 Drill Core	0.53	2.63	0.48	1.34	0.20	1.30	0.18	0.14	0.10	0.2	9.8	3.5	90	11.1	<0.5	<0.1	<0.1	<0.1	<0.1	<0.5
263129 Drill Core	0.38	2.06	0.36	1.13	0.15	1.06	0.15	0.07	0.08	0.1	4.1	4.3	51	5.2	0.5	<0.1	<0.1	<0.1	<0.1	<0.5
263130 Drill Core	0.01	0.11	<0.02	0.06	<0.01	<0.05	<0.01	13.08	<0.02	3.5	1.0	0.3	<1	1.9	<0.5	<0.1	<0.1	<0.1	<0.1	<0.5

161

3 of 4

Assessme	nt Report for Athabasca Minerals Inc.'s	Richardson Property, North	eastern Alberta	
		Client:	Athabasca Minerals Inc. 9524 27 Ave	
AcmeLabs [™]			Edmonton AB T6N 1B2 CANADA	
A Bureau Veritas Group Company	www.acmelab.com	Project:	Athabasca Testing	
Acme Analytical Laboratories (Vancouver) td		Report Date:	May 29, 2014	

Page

2016

Acme Analytical Laboratories (Vancouver) Ltd. 9050 Shaughnessy St Vancouver BC V6P 6E5 CANADA PHONE (604) 253-3158

CERTIFICATE OF ANALYSIS

	Method	AQ200	AQ200	AQ200
	Analyte Unit		П	Se
	Unit	ppm	ppm	ppm
	MDL	0.01	0.1	0.5
263101	Drill Core	<0.01	<0.1	<0.5
263102	Drill Core	<0.01	<0.1	<0.5
263103	Drill Core	<0.01	<0.1	<0.5
263104	Drill Core	<0.01	<0.1	<0.5
263105	Drill Core	<0.01	0.6	<0.5
263106	Drill Core	<0.01	0.5	<0.5
263107	Drill Core	<0.01	0.5	<0.5
263108	Drill Core	<0.01	0.7	<0.5
263109	Drill Core	<0.01	0.3	<0.5
263110	Drill Core	<0.01	0.5	<0.5
263111	Drill Core	<0.01	0.4	<0.5
263112	Drill Core	<0.01	0.5	<0.5
263113	Drill Core	<0.01	0.2	<0.5
263114	Drill Core	<0.01	0.6	<0.5
263115	Drill Core	<0.01	0.5	<0.5
263116	Drill Core	<0.01	0.4	<0.5
263117	Drill Core	<0.01	<0.1	<0.5
263118	Drill Core	<0.01	<0.1	<0.5
263119	Drill Core	<0.01	<0.1	<0.5
263120	Drill Core	<0.01	<0.1	<0.5
263121	Drill Core	<0.01	<0.1	<0.5
263122	Drill Core	<0.01	<0.1	<0.5
263123	Drill Core	<0.01	<0.1	<0.5
263124	Drill Core	<0.01	<0.1	<0.5
263125	Drill Core	<0.01	<0.1	<0.5
263126	Drill Core	<0.01	<0.1	<0.5
263127	Drill Core	<0.01	<0.1	<0.5
263128	Drill Core	<0.01	<0.1	<0.5
263129	Drill Core	<0.01	<0.1	<0.5
263130	Drill Core	< 0.01	<0.1	<0.5

This report superascles all previous preliminary and final reports with this file number dated prior to the date on this certificate. Signature indicates final approval; preliminary reports are unsigned and should be used for reference only

162

Part: 4 of 4

VAN14001455.1

Assess	ment Report for Athabasca Minerals Inc.'s	Richardson Property, North	eastern Alberta		
		Client:	Athabasca Minerals Inc. 9524 27 Ave		
Acme Labs [™]			Edmonton AB T6N 1B2 CANADA		
A Bureau Veritas Group Company	www.acmelab.com	Project:	Athabasca Testing		
cme Analytical Laboratories (Vancouver) Ltd.		Report Date:	May 29, 2014		
050 Shaughnessy St Vancouver BC V6P 6E5 0	CANADA				
PHONE (604) 253-3158		Page:	3 of 6	Part:	1 of 4

9 PHONE (604) 253-3158

CERTIFICATE OF ANALYSIS

	Method	WGHT	LF200	LF200	LF 200	LF200	LF200	LF200	LF200	LF200	LF200	LF 200	LF200	LF200	LF200	LF200	LF200	LF200	LF200	LF200	LF200
	Analyte	Wgt	SIO2	AI203	Fe2O3	MgO	CaO	Na2O	K20	TiO2	P205	MnO	Cr2O3	Ni	Sc	LOI	Sum	Ba	Be	Co	Cs
	Unit	kg	%	%	%	%	%	%	%	%	%	%	%	ppm	ppm	%	%	ppm	ppm	ppm	ppm
	MDL	0.01	0.01	0.01	0.04	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.002	20	1	5.1	0.01	1	1	0.2	0.1
263131	Drill Core	0.83	3.39	0.19	0.24	20.16	29.20	0.01	0.05	0.01	0.02	0.02	<0.002	<20	<1	46.4	99.65	8	<1	0.9	<0.1
263132	Drill Core	1.07	2.22	0.29	0.32	20.39	29.67	0.01	0.06	0.02	0.03	0.02	<0.002	<20	<1	46.6	99.65	7	<1	<0.2	<0.1
263133	Drill Core	1.09	2.57	0.47	0.34	20.08	29.42	0.01	0.12	0.03	0.04	0.02	<0.002	<20	<1	46.5	99.65	13	<1	1.5	0.2
263134	Drill Core	1.10	2.41	0.60	0.32	19.79	29.52	0.01	0.16	0.03	0.02	0.02	< 0.002	<20	<1	46.8	99.66	16	<1	1.6	0.2
263135	Drill Core	1.99	72.99	13.42	1.26	0.90	0.45	0.59	8.14	0.13	0.05	0.01	<0.002	<20	3	2.0	99.92	348	<1	0.8	0.3
263136	Drill Core	2.50	73.33	13.53	1.42	0.77	0.29	1.05	7.91	0.11	0.06	0.02	<0.002	<20	3	1.4	99.91	378	<1	0.7	0.3
263137	Drill Core	1.93	74.00	13.50	1.24	0.59	0.28	1.56	7.65	0.14	0.06	0.01	< 0.002	<20	3	0.9	99.93	373	<1	0.6	0.4
263138	Drill Core	1.10	2.46	0.30	0.27	19.91	29.25	0.02	0.09	0.01	0.02	0.02	< 0.002	<20	<1	47.3	99.66	10	<1	<0.2	0.3
263139	Drill Core	1.11	1.10	0.10	0.32	20.14	29.74	0.02	0.03	< 0.01	0.05	0.02	<0.002	<20	<1	48.1	99.66	6	<1	0.3	<0.1
263140	Drill Core	1.07	2.49	0.62	0.57	19.56	29.59	0.02	0.18	0.04	0.06	0.02	< 0.002	<20	1	46.5	99.66	16	<1	3.4	0.2
263141	Drill Core	3.53	51.13	10.53	1.76	6.39	7.83	0.12	6.46	0.22	0.10	0.02	<0.002	<20	3	15.2	99.74	564	2	3.0	0.8
263142	Drill Core	3.06	50.86	18.35	2.35	4.27	3.46	0.25	11.04	0.25	0.09	0.02	<0.002	<20	6	8.8	99.73	940	2	2.2	1.0
263143	Drill Core	1.55	55.02	21.81	2.63	2.80	0.60	0.16	12.24	0.22	0.11	<0.01	<0.002	<20	8	4.1	99.74	1133	3	1.5	1.4
263144	Drill Core	1.17	57.04	20.26	2.71	2.42	0.50	0.18	12.57	0.27	0.09	0.01	<0.002	<20	6	3.7	99.78	950	2	1.8	1.1
263145	Drill Core	0.67	56.56	20.83	2.78	2.23	0.27	0.19	12.61	0.26	0.10	<0.01	<0.002	<20	6	3.9	99.76	1124	2	1.2	1.8
263146	Drill Core	2.16	55.78	20.24	2.55	2.86	1.06	0.20	12.26	0.25	0.11	0.01	<0.002	<20	9	4.4	99.74	1070	2	2.1	1.2
263147	Drill Core	1.78	66.03	16.13	1.65	1.71	0.69	0.17	10.25	0.20	0.08	<0.01	<0.002	<20	4	2.9	99.83	854	<1	0.8	0.7
263148	Drill Core	2.43	59.52	19.29	1.87	2.52	0.55	0.21	12.13	0.21	0.09	<0.01	<0.002	<20	5	3.4	99.77	1004	2	1.4	1.0
263149	Drill Core	1.33	57.44	21.08	1.92	2.54	0.34	0.33	12.51	0.19	0.10	<0.01	<0.002	<20	7	3.3	99.76	1086	3	1.8	1.5
263150	Drill Core	1.28	0.20	0.04	0.09	20.71	30.52	0.01	0.03	<0.01	0.01	0.02	<0.002	<20	<1	48.0	99.65	4	<1	<0.2	<0.1
263151	Drill Core	1.05	3.31	0.10	0.26	19.58	28.93	0.01	0.03	< 0.01	0.01	0.02	< 0.002	<20	<1	47.4	99.67	8	<1	<0.2	<0.1
263152	Drill Core	1.22	3.00	0.32	0.30	19.83	29.19	0.01	0.08	0.02	0.05	0.02	<0.002	<20	<1	46.8	99.66	11	<1	0.8	0.1
263153	Drill Core	1.01	14.48	1.39	0.72	16.75	24.76	0.02	0.38	0.07	0.07	0.03	<0.002	23	1	41.1	99.71	46	<1	10.2	0.5
263154	Drill Core	1.10	2.03	0.41	0.27	19.97	29.53	0.01	0.11	0.02	0.02	0.03	<0.002	<20	<1	47.3	99.66	15	<1	0.9	0.1
263155	Drill Core	0.70	59.45	12.49	2.76	3.84	5.02	0.76	6.77	0.37	0.17	0.04	0.004	<20	6	8.0	99.70	1539	<1	6.1	0.5
263156	Drill Core	2.39	69.51	12.74	1.58	1.25	2.36	1.39	7.66	0.18	0.14	0.02	<0.002	<20	3	2.9	99.74	1813	2	2.2	0.5
263157	Drill Core	2.29	67.95	14.81	3.44	2.06	0.70	3.29	4.69	0.45	0.22	0.05	0.005	<20	7	2.0	99.65	1907	5	6.3	0.5
263158	Drill Core	1.24	71.71	13.95	0.94	0.57	0.56	1.34	9.51	0.09	0.09	<0.01	<0.002	<20	1	1.2	99.95	358	<1	<0.2	1.0
263159	Drill Core	1.28	77.12	11.26	0.88	0.54	0.25	0.81	7.87	0.08	0.08	<0.01	<0.002	<20	<1	1.1	99.96	261	<1	0.4	0.8
263160	Drill Core	0.95	75.91	12.49	0.73	0.28	0.20	1.84	7.77	0.07	0.06	<0.01	<0.002	<20	<1	0.6	99.95	462	<1	<0.2	1.0

<u>163</u>

VAN14001455.1

Assessment Report for Athabasca Minerals Inc.'s Richa	rdson Property, North	heastern Alberta
	Client:	Athabasca Minerals Inc.
		9524 27 Ave
C.IM		Edmonton AB T6N 1B2 CANADA

Acme Analytical Laboratories (Vancouver) Ltd. 9050 Shaughnessy St Vancouver BC V6P 6E5 CANADA PHONE (604) 253-3158

www.acmelab.com

Report Date:

Project:

Page:

Athabasca Testing May 29, 2014

3 of 6

Part: 2 of 4

VAN14001455.1

CERTIFICATE OF ANALYSIS

	Method	LF200	LF200	LF200	LF200	LF200	LF200	LF200	LF200	LF200	LF200	LF200	LF200	LF200	LF200	LF200	LF200	LF200	LF200	LF200	LF200
	Analyte	Ga	Hf	Nb	Rb	Sn	Sr	Та	Th	U	v	w	Zr	Y	La	Ce	Pr	Nď	Sm	Eu	Gđ
	Unit	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
	MDL	0.5	0.1	0.1	0.1	1	0.5	0.1	0.2	0.1	8	0.5	0.1	0.1	0.1	0.1	0.02	0.3	0.05	0.02	0.05
263131	Drill Core	<0.5	0.1	2.7	1.1	2	53.7	3.9	0.3	2.1	<8	<0.5	4.6	2.0	2.0	2.3	0.25	1.2	0.15	0.05	0.23
263132	Drill Core	<0.5	0.1	0.7	1.9	<1	48.3	0.9	0.3	1.8	<8	<0.5	4.6	2.8	1.9	2.4	0.33	1.4	0.30	0.06	0.32
263133	Drill Core	<0.5	0.2	1.7	3.4	1	56.9	2.4	0.4	1.8	9	<0.5	8.5	3.6	3.1	3.8	0.44	1.8	0.34	0.08	0.50
263134	Drill Core	0.6	0.1	0.4	4.8	<1	47.7	<0.1	0.5	3.3	14	<0.5	6.0	3.9	3.0	4.2	0.53	2.0	0.37	0.09	0.49
263135	Drill Core	15.1	3.2	4.3	211.5	2	57.0	0.3	20.2	3.1	<8	<0.5	98.4	11.6	32.0	69.7	7.68	26.6	4.65	0.43	3.34
263136	Drill Core	15.2	3.4	3.3	208.0	<1	62.1	0.1	31.5	4.8	<8	0.6	95.2	13.3	44.0	92.1	10.57	36.1	6.48	0.42	4.26
263137	Drill Core	14.1	2.9	3.6	204.9	<1	68.0	0.5	19.7	5.2	<6	<0.5	81.8	12.0	26.9	56.1	6.49	21.9	4.49	0.42	3.62
263138	Drill Core	<0.5	<0.1	0.2	2.6	2	44.9	0.2	0.3	1.2	<8	<0.5	3.5	1.9	1.5	2.6	0.29	1.5	0.16	0.04	0.25
263139	Drill Core	<0.5	<0.1	0.3	1.1	2	49.5	0.3	<0.2	1.0	<8	<0.5	2.6	3.6	2.7	4.5	0.56	2.1	0.48	0.10	0.57
263140	Drill Core	<0.5	0.2	0.5	5.3	<1	68.0	<0.1	0.7	1.8	12	<0.5	7.6	6.3	4.1	7.6	0.94	4.2	0.79	0.19	1.04
263141	Drill Core	13.6	5.5	8.0	135.7	3	89.0	0.5	49.2	6.9	19	0.5	191.1	13.7	93.2	209.8	23.68	80.6	11.20	0.78	6.35
263142	Drill Core	22.5	5.8	8.6	269.4	3	105.2	0.4	44.5	6.9	24	<0.5	175.4	19.1	80.1	158.4	19.38	66.1	10.89	0.84	7.09
263143	Drill Core	35.4	7.1	8.3	400.5	2	81.2	0.3	54.1	6.5	37	<0.5	209.8	20.2	74.5	156.7	17.70	59.6	11.03	0.86	7.31
263144	Drill Core	25.0	6.2	9.0	301.1	2	79.6	0.3	46.7	4.9	24	<0.5	182.9	19.5	60.8	116.7	14.98	52.1	9.21	0.66	6.19
263145	Drill Core	31.2	6.5	9.9	377.1	3	87.1	0.5	49.2	7.5	30	<0.5	194.9	17.7	67.7	129.8	15.75	56.5	10.65	0.91	7.57
263146	Drill Core	27.1	7.5	8.0	333.5	2	79.7	0.6	54.9	6.4	28	<0.5	232.0	24.2	78.9	169.7	19.33	66.8	11.63	0.90	7.86
263147	Drill Core	19.9	4.1	6.6	254.2	2	70.6	0.2	29.6	5.2	25	<0.5	130.8	14.3	44.9	87.2	10.21	34.8	6.35	0.54	4.37
263148	Drill Core	24.9	7.5	7.0	319.7	2	72.7	0.3	28.6	4.2	24	<0.5	235.6	19.5	50.4	103.2	11.25	39.8	7.44	0.68	5.36
263149	Drill Core	30.4	6.1	7.1	366.6	4	76.9	0.9	52.3	7.0	29	<0.5	187.5	16.2	70.4	144.5	16.43	55.8	9.71	0.72	6.43
263150	Drill Core	<0.5	<0.1	<0.1	1.0	<1	45.7	<0.1	<0.2	0.6	<8	<0.5	0.8	0.9	1.2	1.3	0.15	0.5	0.06	0.02	0.11
263151	Drill Core	<0.5	<0.1	<0.1	1.0	<1	47.9	<0.1	<0.2	0.9	11	<0.5	1.9	2.4	1.7	2.2	0.25	1.0	0.16	0.05	0.23
263152	Drill Core	<0.5	0.1	. <0.1	2.7	<1	46.0	<0.1	0.2	1.5	8	<0.5	3.9	3.3	2.3	3.2	0.39	1.5	0.31	0.06	0.41
263153	Drill Core	<0.5	0.3	1.0	11.2	<1	61.2	0.6	0.9	1.6	17	<0.5	12.4	6.6	6.0	8.5	0.97	3.8	0.71	0.17	0.82
263154	Drill Core	<0.5	0.1	0.1	3.0	<1	43.0	<0.1	0.3	2.1	12	<0.5	4.5	3.9	3.1	5.5	0.60	2.3	0.44	0.10	0.58
263155	Drill Core	15.3	5.5	14.8	145.0	5	130.4	1.5	43.1	3.4	45	<0.5	196.2	16.4	29.7	49.6	7.23	25.1	4.48	0.62	3.46
263156	Drill Core	14.0	2.5	7.1	203.9	3	154.0	0.9	20.9	2.5	23	<0.5	84.0	9.1	20.4	31.6	4.31	15.0	2.64	0.47	2.04
263157	Drill Core	16.1	7.2	15.9	140.1	9	248.3	1.6	56.7	5.1	49	<0.5	252.9	18.0	52.2	87.3	10.66	36.7	5.92	1.07	4.67
263158	Drill Core	17.2	0.3	3.3	255.8	1	60.9	0.2	4.4	1.3	8	<0.5	8.6	3.6	17.8	15.1	2.96	8.8	1.16	0.19	0.78
263159	Drill Core	12.2	0.5	2.6	189.3	3	41.8	0.5	3.5	1.5	12	<0.5	11.0	3.6	7.4	8.7	1.28	4.4	0.64	0.13	0.54
263160	Drill Core	11.5	0.1	2.0	204.7	1	54.9	0.3	2.2	0.6	<8	<0.5	3.0	2.2	6.7	9.9	1.16	4.1	0.54	0.14	0.40

This report supersedes all previous preliminary and final reports with this file number dated prior to the date on this certificate. Signature indicates final approval; preliminary reports are unsigned and should be used for reference only

164

Acmel ahs™	ment Report for Athabasca Minerals Inc.'	s Richardson Property, North Client:	eastern Alberta Athabasca Miner 9524 27 Ave Edmonton AB T6N 1B2 C	r ais inc. ANADA	
A Bureau Veritas Group Company Acme Analytical Laboratories (Vancouver) Ltd.	www.acmelab.com	Project: Report Date:	Athabasca Testing May 29, 2014		
9050 Shaughnessy St Vancouver BC V6P 6E5 0 PHONE (604) 253-3158	CANADA	Page:	3 of 6	Part:	3 of 4
CERTIFICATE OF ANALY	SIS		VAN	N14001455.1	

CERTIFICATE OF ANALYSIS

	Method	LF200	TC000	TC000	AQ200																
	Analyte	ТЪ	Dy	Ho	Er	Tm	Yb	Lu	TOT/C	TOT/S	Мо	Cu	Pb	Zn	Ni	As	Cd	Sb	Bi	Ag	Au
	Unit	ppm	%	%	ppm	ррт	ppb														
	MDL	0.01	0.05	0.02	0.03	0.01	0.05	0.01	0.02	0.02	0.1	0.1	0.1	1	0.1	0.5	0.1	0.1	0.1	0.1	0.5
263131	Drill Core	0.04	0.16	0.05	0.12	0.02	0.10	0.01	13.15	0.07	0.8	8,5	2.1	2	8.2	0.7	<0.1	0.1	<0.1	<0.1	<0.5
263132	Drill Core	0.04	0.30	0.05	0.14	0.02	0.11	0.02	13.65	0.15	0.6	5.5	3.3	2	6.6	0.5	<0.1	<0.1	<0.1	<0.1	<0.5
263133	Drill Core	0.06	0.34	0.08	0.25	0.03	0.22	0.03	13.76	0.15	0.5	7.5	4.1	2	9.6	0.7	<0.1	<0.1	<0.1	<0.1	<0.5
263134	Drill Core	0.08	0.43	0.08	0.23	0.04	0.22	0.03	12.83	0.15	1.1	4.5	2.1	8	8.7	1.0	0.1	0.1	<0.1	<0.1	2.0
263135	Drill Core	0.42	2.03	0.34	1.02	0.14	0.81	0.11	0.16	0.04	0.3	1.9	3.4	15	2.0	<0.5	<0.1	<0.1	<0.1	<0.1	0.9
263136	Drill Core	0.53	2.52	0.49	1.25	0.18	1.00	0.12	0.13	0.04	0.2	1.3	3.7	16	0.7	<0.5	<0.1	<0.1	<0.1	<0.1	<0.5
263137	Drill Core	0.48	2.32	0.45	1.13	0.17	0.92	0.12	0.04	0.03	0.2	1.4	3.0	13	0.3	<0.5	<0.1	<0.1	<0.1	<0.1	<0.5
263138	Drill Core	0.04	0.21	0.04	0.12	0.02	0.16	0.01	13.32	0.12	0.3	2.8	3.2	1	2.8	<0.5	<0.1	<0.1	<0.1	<0.1	<0.5
283139	Drill Core	0.07	0.40	0.07	0.22	0.03	0.16	0.02	13.77	0.20	1.2	4.4	1.4	2	3.9	1.0	<0.1	<0.1	<0.1	<0.1	0.7
263140	Drill Core	0.15	0.78	0.15	0.48	0.06	0.31	0.05	12.93	0.33	0.7	5.7	4.7	3	6.4	1.1	<0.1	<0.1	<0.1	<0.1	0.7
263141	Drill Core	0.75	3.39	0.48	1.19	0.14	0.96	0.13	3.30	0.45	11.1	12.2	20.6	20	5.8	7.4	<0.1	<0.1	2.2	<0.1	<0.5
263142	Drill Core	0.95	4.27	0.81	1.46	0.20	1.13	0.15	1.43	0.58	0.4	2.2	2.3	34	3.1	1.0	<0.1	<0.1	<0.1	<0.1	<0.5
263143	Drill Core	1.00	4.95	0.76	1.77	0.25	1.38	0.18	0.11	0.92	0.8	2.4	2.9	20	1.9	1.3	<0.1	<0.1	<0.1	<0.1	<0.5
263144	Drill Core	0.90	4.73	0.72	1.59	0.22	1.17	0.17	0.07	0.64	0.3	5.0	3.0	46	1.5	1.0	<0.1	<0.1	<0.1	<0.1	<0.5
263145	Drill Core	0.97	4.43	0.64	1.42	0.20	1.10	0.16	0.03	1.13	0.3	3.5	3.0	18	1.9	0.9	<0.1	<0.1	<0.1	<0.1	<0.5
263146	Drill Core	1.11	5.81	0.94	2.24	0.26	1.45	0.19	0.33	0.69	0.3	2.6	3.6	33	2.2	2.0	<0.1	<0.1	<0.1	<0.1	<0.5
263147	Drill Core	0.65	3.14	0.48	1.18	0.15	0.81	0.11	0.14	0.39	0.2	3.6	3.2	21	1.9	0.8	<0.1	<0.1	<0.1	<0.1	<0.5
263148	Drill Core	0.83	4.26	0.70	1.63	0.21	1.08	0.14	0.14	0.39	0.2	2.4	2.7	33	1.6	0.8	<0.1	<0.1	<0.1	<0.1	<0.5
263149	Drill Core	0.89	4.34	0.67	1.55	0.18	1.10	0.15	0.09	0.13	0.2	2.9	3.0	21	1.1	2.1	<0.1	<0.1	0.2	<0.1	<0.5
263150	Drill Core	0.02	0.11	<0.02	0.04	<0.01	<0.05	<0.01	13.38	0.02	0.2	1.6	0.5	<1	1.1	<0.5	<0.1	<0.1	<0.1	<0.1	<0.5
263151	Drill Core	0.03	0.22	0.04	0.13	0.02	0.09	0.02	13.97	0.18	1.2	4.6	3.2	1	5.4	<0.5	<0.1	<0.1	<0.1	<0.1	<0.5
263152	Drill Core	0.05	0.34	0.05	0.21	0.03	0.14	0.02	13.51	0.16	0.5	7.1	4.2	2	6.4	0.8	<0.1	<0.1	<0.1	<0.1	0.5
263153	Drill Core	0.12	0.81	0.17	0.50	0.06	0.37	0.05	11.35	0.49	0.6	14.2	9.8	5	19.6	1.3	<0.1	0.1	<0.1	<0.1	<0.5
263154	Drill Core	0.08	0.48	0.10	0.29	0.03	0.18	0.02	13.08	0.12	1.6	4.8	1.8	6	9.0	<0.5	<0.1	<0.1	<0.1	<0.1	<0.5
263155	Drill Core	0.50	2.75	0.49	1.45	0.21	1.41	0.18	1.56	0.23	0.1	4.6	3.6	54	8.8	<0.5	<0.1	<0.1	<0.1	<0.1	<0.5
263156	Drill Core	0.30	1.67	0.29	0.85	0.11	0.78	0.10	0.55	0.24	0.3	4.6	2.7	23	3.6	<0.5	<0.1	<0.1	<0.1	<0.1	<0.5
263157	Drill Core	0.62	3.30	0.57	1.65	0.25	1.54	0.21	0.06	0.28	0.2	7.7	5.1	61	9.9	0.8	<0.1	<0.1	<0.1	<0.1	<0.5
263158	Drill Core	0.12	0.69	0.13	0.34	0.04	0.29	0.03	0.11	0.18	0.2	5.5	3.3	16	0.8	<0.5	<0.1	<0.1	<0.1	<0.1	<0.5
263159	Drill Core	0.10	0.61	0.10	0.27	0.04	0.24	0.03	0.05	0.16	0.2	5.1	3.0	14	0.6	<0.5	<0.1	<0.1	<0.1	<0.1	<0.5
263160	Drill Core	0.06	0.30	0.06	0.20	0.03	0.16	0.02	<0.02	0.14	<0.1	4.5	2.3	8	0.4	<0.5	<0.1	<0.1	<0.1	<0.1	<0.5

This

165

Assessme	ent Report for Athabasca Minerals Inc.'s	Richardson Property, North	heastern Alberta
		Client:	Athabasca Minerals Inc. 9524 27 Ave
mel abs™			Edmonton AB T6N 1B2 CANADA
Veritas Group Company	www.acmelab.com	Project:	Athabasca Testing

Project:

Page:

Report Date:

Athabasca Testing

May 29, 2014

3 of 6

A Bureau Veritas Group Company

Acme Analytical Laboratories (Vancouver) Ltd.

9050 Shaughnessy St Vancouver BC V6P 6E5 CANADA PHONE (604) 253-3158

CERTIFICATE OF ANALYSIS

	methou	AQZUU	AQ200	AGZUG
	Analyte	Hg	П	Se
	Unit	ppm	ppm	ppm
	MDL	0.01	0.1	0.5
263131	Drill Core	<0.01	<0.1	<0.5
263132	Drill Core	<0.01	<0.1	<0.5
263133	Drill Core	<0.01	<0.1	<0.5
263134	Drill Core	0.01	<0.1	<0.5
263135	Drill Core	<0.01	<0.1	<0.5
263136	Drill Core	<0.01	<0.1	<0.5
263137	Drill Core	<0.01	<0.1	<0.5
263136	Drill Core	<0.01	<0.1	<0.5
263139	Drill Core	<0.01	0.1	0.6
263140	Drill Core	<0.01	<0.1	<0.5
263141	Drill Core	<0.01	0.3	<0.5
263142	Drill Core	<0.01	<0.1	<0.5
263143	Drill Core	<0.01	<0.1	<0.5
263144	Drill Core	<0.01	<0.1	<0.5
263145	Drill Core	<0.01	<0.1	<0.5
263146	Drill Core	<0.01	<0.1	<0.5
263147	Drill Core	<0.01	<0.1	<0.5
263148	Drill Core	<0.01	<0.1	<0.5
263149	Drill Core	<0.01	<0.1	<0.5
263150	Drill Core	<0.01	<0.1	<0.5
263151	Drill Core	<0.01	<0.1	<0.5
263152	Drill Core	< 0.01	<0.1	<0.5
263153	Drill Core	0.01	<0.1	<0.5
263154	Drill Core	<0.01	<0.1	<0.5
263155	Drill Core	<0.01	<0.1	<0.5
263156	Drill Core	<0.01	<0.1	<0.5
263157	Drill Core	<0.01	<0.1	<0.5
263158	Drill Core	<0.01	<0.1	<0.5
263159	Drill Core	<0.01	<0.1	<0.5
263160	Drill Core	< 0.01	<0.1	<0.5

This report supersedes all previous preliminary and linal reports with this file number dated prior to the date on this certificate. Signature indic al; preliminary reports are unsigned and should be used for reference only. 166

Part: 4 of 4

VAN14001455.1

Assessment Report for Athabasca Minerals Inc.'s Richardson Property, North	heastern Alberta
Client:	Athabasca Minerals Inc.
	9524 27 Ave
CTM .	Edmonton AB T6N 1B2 CANADA

Project:

Page:

Report Date:

Athabasca Testing

May 29, 2014

4 of 6

Acme Analytical Laboratories (Vancouver) Ltd.

9050 Shaughnessy St Vancouver BC V6P 6E5 CANADA PHONE (604) 253-3158

CERTIFICATE OF ANALYSIS

	Method	WGHT	LF200	LF 200	LF 200	LF200	LF200	LF200	LF200	LF200	LF200	LF200	LF200	LF200							
	Analyte	Wgt	SiO2	AI203	Fe2O3	MgO	CaO	Na2O	K2O	TIO2	P205	MnO	Cr203	NI	Sc	LOI	Sum	Ba	Be	Co	Cs
	Unit	kg	%	%	%	%	%	%	%	%	%	%	%	ppm	ppm	%	%	ppm	ppm	ppm	ppm
	MDL	0.01	0.01	0.01	0.04	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.002	20	1	-5.1	0.01	1	1	0.2	0.1
263161	Drill Core	1.96	69.23	13.88	3.12	2.07	0.33	2.37	6.39	0.34	0.14	0.03	0.003	<20	4	1.8	99.71	1718	2	4.6	0.4
263162	Drill Core	1.08	69.02	14.04	3.26	1.97	0.37	2.68	6.01	0.35	0.17	0.04	0.005	<20	5	1.8	99.71	1662	<1	5.2	0.4
263163	Drill Core	0.77	69.65	14.31	2.80	1.58	0.49	3.01	5.75	0.31	0.15	0.05	0.003	<20	10	1.6	99.71	1462	5	4.2	0.8
263164	Drill Core	0.67	0.45	0.07	0.20	20.40	30.68	0.01	0.03	< 0.01	<0.01	0.02	<0.002	<20	<1	47.8	99.65	6	<1	<0.2	0.1
263165	Drill Core	1.17	1.16	0.14	0.42	19.95	30.08	0.02	0.03	< 0.01	0.04	0.02	<0.002	<20	<1	47.8	99.66	9	<1	1.0	<0.1
263166	Drill Core	1.10	2.20	0.38	0.32	19.82	29.36	0.01	0.09	0.02	0.05	0.02	<0.002	<20	<1	47.6	99.67	16	<1	0.6	0.2
263167	Drill Core	1.30	6.33	0.96	0.48	18.49	27.82	0.02	0.24	0.05	0.08	0.03	<0.002	<20	<1	45.2	99.68	24	<1	2.7	0.3
263168	Drill Core	2.45	2.21	0.52	0.28	19.55	29.75	0.01	0.14	0.03	0.03	0.03	<0.002	<20	<1	47.1	99.67	14	<1	1.2	0.2
263169	Drill Core	2.32	64.47	15.07	1.21	1.56	3.73	4.88	4.31	0.24	0.07	0.01	<0.002	<20	3	4.3	99.85	506	2	1.6	0.3
263170	Drill Core	2.39	66.87	17.49	1.14	0.72	1.82	7.32	2.76	0.18	0.07	0.01	0.002	<20	2	1.7	99.91	333	1	1.1	0.1
263171	Drill Core	2.29	63.56	19.49	1.47	1.00	1.53	7.88	3.25	0.16	0.08	0.02	<0.002	<20	2	1.4	99.88	411	2	1.4	0.1
263172	Drill Core	2.56	62.87	19.11	2.11	1.03	2.90	7.21	2.53	0.20	0.08	0.03	<0.002	<20	3	1.8	99.83	540	2	1.5	0.3
263173	Drill Core	1.14	59.86	19.91	3.30	1.52	4.51	6.74	1.83	0.30	0.08	0.04	0.003	<20	4	1.7	99.83	369	2	2.9	0.2
263174	Drill Core	2.49	60.95	19.54	3.14	1.44	4.29	7.26	1.32	0.33	0.08	0.04	0.006	<20	4	1.4	99.84	183	2	1.8	0.1
263175	Drill Core	1.60	61.19	19.78	2.82	1.33	3.82	7.72	1.38	0.32	0.07	0.04	0.004	<20	4	1.4	99.85	210	2	2.0	0.2
263176	Drill Core	1.09	59.22	20.60	3.12	1.87	3.76	7.46	1.66	0.28	0.08	0.04	0.002	<20	3	1.7	99.83	313	<1	2.6	0.2
263177	Drill Core	1.96	58.87	20.13	3.37	1.58	4.68	6.23	2.84	0.34	0.19	0.04	0.003	<20	4	1.5	99.79	526	3	2.1	0.2
263178	Drill Core	2.57	58.12	20.58	3.62	1.58	5.21	7.17	1.29	0.35	0.10	0.04	<0.002	<20	5	1.8	99.83	190	1	2.2	0.1
263179	Drill Core	2.73	62.25	18.69	3.16	1.18	4.91	6.70	1.03	0.32	0.11	0.04	0.003	<20	3	1.5	99.88	103	3	1.5	0.2
263180	Drill Core	2.46	59.21	19.99	3.61	1.60	5.36	8.33	1.53	0.35	0.18	0.04	0.002	<20	4	1.7	99.87	185	3	1.7	0.2
263181	Drill Core	2.76	58.93	19.63	2.96	2.73	2.15	4.37	5.51	0.34	0.17	0.02	<0.002	<20	3	3.0	99.78	539	5	1.8	0.5
263182	Drill Core	2.15	57.89	19.09	3.94	1.32	5,96	6.14	1.02	0.43	0.16	0.03	<0.002	<20	4	3.8	99.74	95	1	0.7	0.2
253183	Drill Core	2.16	70.34	13.92	2.96	0.94	1.72	2.94	5.21	0.43	0.19	0.03	<0.002	<20	4	1.0	99.67	699	2	3.2	0.2
263184	Drill Core	2.13	69.46	14.02	4.13	0.82	1.20	2.01	5.61	0.56	0.23	0.03	0.002	<20	4	1.5	99.61	608	3	2.8	0.4
263185	Drill Core	1.13	1.41	0.02	0.14	20.60	30.16	0.02	0.01	<0.01	<0.01	0.01	0.020	<20	<1	47.3	99.65	4	<1	<0.2	<0.1
263186	Drill Core	1.10	7.70	0.10	0.28	19.14	27.77	0.02	0.03	< 0.01	<0.01	0.02	0.037	<20	<1	44.6	99.67	6	<1	0.2	<0.1
263187	Drill Core	1.11	10.92	0.39	0.32	17.75	26.02	0.02	0.08	0.02	0.04	0.02	0.087	<20	<1	44.0	99.70	11	<1	1.4	0.1
263188	Drill Core	1.11	4.05	1.05	0.69	19.39	28.43	0.02	0.26	0.05	0.07	0.02	0.151	<20	1	45.5	99.66	28	<1	6.2	0.3
263189	Drill Core	1.02	0.37	0.03	0.09	20.77	30.20	0.01	0.01	<0.01	<0.01	0.01	< 0.002	<20	<1	48.2	99.65	2	<1	<0.2	<0.1
263190	Drill Core	1.20	12.29	0.15	0.17	1775	25.69	0.01	0.04	<0.01	0.02	0.02	<0.002	<20	<1	43.6	99.70	6	<1	<0.2	<0.1

This report supervisides all previous preliminary and final reports with this file number dated prior to the date on this certificate. Signature indicates final approval; preliminary reports are unsigned and should be used for reference only.

www.acmelab.com

167

Part: 1 of 4

VAN14001455.1

Assessment Report	for Athabasca	Minerals	Inc.'s	Richardson	Property.	Northeastern	Alberta
					Clien	t: Atha	basca Mi

Athabasca Minerals Inc.

Edmonton AB T6N 1B2 CANADA

9524 27 Ave

Athabasca Testing

May 29, 2014

4 of 6

Project:

Page:

Report Date:

Acme Analytical Laboratories (Vancouver) Ltd. 9050 Shaughnessy St Vancouver BC V6P 6E5 CANADA

PHONE (604) 253-3158

CERTIFICATE OF ANALYSIS

Method LF200 Analyte Hf Nb Rb w Ga S Ta Th u Zr Ce Pr Nd Sm Go Sn V Y Eu La Unit ppm ppn MDI 0.5 0.1 0.1 0.1 0.5 0.1 0.2 0.1 8 0.5 0.1 0.1 0.1 0.1 0.02 0.3 0.05 0.02 0.05 263161 Drill Core 13.0 5.4 10.3 130.7 5 149.2 0.9 44.6 4.3 38 <0.5 177.6 14.4 49.6 53.6 8.90 30.4 4.71 0.74 3.54 263162 153.3 154.4 35.2 194.9 Drill Core 14.7 5.9 10.7 6 0.7 4.0 42 <0.5 14.4 45.3 59.1 9.59 32.2 4.98 0.81 3.37 263163 Drill Core 21.0 189.6 162.8 51.0 7.2 43 0.6 250.5 10.0 33.0 16 4.1 31.6 56.2 85.5 11.70 43.1 8.11 1.07 6.43 Drill Core 44.3 263164 <0.5 <0.1 <0.1 0.7 6 0.3 < 0.2 1.1 10 <0.5 1.5 1.5 1.7 2.4 0.22 0.9 0.16 0.03 0.21 263165 Drill Core <0.5 <0.1 0.2 0.9 2 53.9 0.4 0.2 1.7 13 <0.5 2.2 3.1 27 4.5 0.56 24 0.38 0.09 0.49 263166 Drill Core <0.5 0.2 <0.1 2.5 <1 52.1 <0.1 0.4 1.8 13 <0.5 5.3 2.8 2.6 3.8 0.46 2.0 0.37 0.07 0.40 Drill Core <0.5 263167 0.2 0.7 6.5 <1 52.7 0.2 0.7 1.7 12 <0.5 8.7 4.6 3.8 6.8 0.78 3.1 0.68 0.12 0.69 263168 Drill Core <0.5 0.1 <0.1 45.7 0.3 16 3.7 <0.1 2.6 <0.5 5.5 4.7 3.3 4.6 0.54 2.3 0.40 0.10 0.53 <1 263169 Drill Core 14.8 6.8 10.0 66 5 1 110.0 1.6 75 2 6.8 11 06 175 7 15.9 47.3 94 4 11 76 40 2 7 18 0 70 5.42 263170 Drill Core 17.8 4.1 70 42 5 128.9 0.6 37.5 4.2 9 <0.5 116.1 7.0 37.3 70.4 7.91 27.3 4.53 0.60 2.78 1 263171 Drill Core 21.1 4.3 74.5 161.2 0.3 52.4 146.9 5.2 43.7 30.7 2.74 4.5 <1 3.5 11 <0.5 81.7 9.14 4.47 0.71 263172 Drill Core 26.5 5.9 5.8 60.1 2 289.3 0.5 50.4 5.8 20 <0.5 180.0 5.9 38.8 3.46 81.3 112.9 11.83 5.89 1.03 263173 39.9 6.6 8.4 69.4 350.1 Drill Core 0.4 52.0 6.5 36 2.6 190.0 8.4 67.5 12.35 38.9 3.78 2 121.1 6.18 1.13 263174 Drill Core 35.4 7.1 8.8 38.9 2 344.0 0.5 66.3 5.6 32 <0.5 227.9 9.2 63.5 115.5 11.48 36.8 5.16 1.02 3.65 263175 Drill Core 34.4 6.4 7.5 46.8 2 329.8 0.4 49.1 44 29 <0.5 210.1 7.2 80.7 106.8 10.66 34.9 4.67 0.92 3.07 263176 Drill Core 34.4 6.7 5.6 57.5 369.6 0.2 49.1 5.0 30 <0.5 222.0 7.5 52.6 89.9 30.8 2.9 9.51 4.19 0.80 283177 Drill Core 38.6 7.8 83.2 507.4 43.8 39.5 6.0 2 0.5 5.5 28 <0.5 194.4 13.5 61.5 11.86 6.28 4.94 109.2 1.16 263178 50.1 Drill Core 39.9 7.1 7.5 2 417.7 0.5 67.9 5.6 36 <0.5 239.7 9.3 85.3 151.3 15.68 51.7 7.72 1.17 4.89 263179 Drill Core 34.3 4.8 8.2 33.8 2 303.2 0.7 59.6 5.5 33 <0.5 154.7 9.2 66.5 124.0 13.33 42.9 7.02 0.93 5.02 263180 Drill Core 39.4 5.2 10.2 55.9 2 298.3 0.5 29.9 4.1 36 <0.5 175.6 11.5 42.9 83.8 8.97 29.4 5.40 0.88 3.81 263181 Drill Core 32.7 8.0 12.5 107.4 173.7 0.4 85.9 4.6 27 0.6 270.7 13.8 101.0 171.6 22.58 80.2 11.48 1.06 6.39 2 263182 Drill Core 42.0 12.8 23.9 26.5 3 412.3 0.8 166.5 8.8 31 <0.5 390.1 23.0 207.9 422.4 50.50 174.5 25.47 14.45 1.29 132.7 263183 Drill Core 19.3 13.0 21.1 2 224.7 0.7 167.9 7.1 18 <0.5 444.0 20.4 251.4 524.0 61.04 200.7 27.10 1.03 13.88 263184 Drill Core 23.0 16.6 22.7 196.7 2 135.7 0.5 233.2 6.3 15 <0.5 569.5 20.9 371.0 795.1 90.76 307.2 38.67 1.22 20.00 263185 Drill Core <0.5 <0.1 1.1 0.3 <1 43.2 <0.1 0.3 0.6 <8 <0.5 2.2 1.7 1.7 2.1 0.27 1.0 0.15 0.03 0.19 263186 Drill Core <0.5 <0.1 <0.1 0.6 <1 41.9 <0.1 0.3 0.7 <8 <0.5 3.0 1.4 1.6 2.2 0.24 1.0 0.20 0.04 0.19 263187 Drill Core <0.5 <0.1 <0.1 2.6 <1 55.0 <0.1 0.4 2.0 8 <0.5 4.6 4.2 3.4 4.6 0.60 2.4 0.40 0.10 0.52 263188 Drill Core 0.5 0.3 0.7 7.7 <1 59.3 <0.1 0.8 1.7 9 <0.5 10.5 6.2 4.8 7.1 0.89 3.1 0.71 0.17 0.84 263189 Drill Core <0.5 <0.1 0.1 49.5 <0.1 0.4 <8 <0.5 13.1 0.5 0.8 0.8 0.10 0.4 <0.05 <0.02 0.09 0.3 <1 <0.2 263190 <0.5 0.1 40.7 <0.1 1.7 <8 13.5 1.8 0.7 0.14 0.03 0.21 Drill Core 0.2 1.2 <1 < 0.2 <0.5 1.2 1.6 0.20

nary and final reports with this file numbe This report supersedes all previous prelimi dated prior to the date on this certificate. Signature indic val; pre ed and sh uld be us for reference only s final app ary repo ts are unsig

www.acmelab.com

168

Part:

VAN14001455.1

2 of 4

Assessi	nent Report for Athabasca Minerals Inc. 3	S Richardson Property, North Cilent:	Athabasca Minerals 9524 27 Ave	Inc.
A Bureau Veritas Group Company	www.acmelab.com	Project	Edmonton AB T6N 1B2 CANAD Athabasca Testing	A
Acme Analytical Laboratories (Vancouver) Ltd.		Report Date:	May 29, 2014	
9050 Shaughnessy St Vancouver BC V6P 6E5 C PHONE (604) 253-3158	ANADA	Page:	4 of 6	Part:
CERTIFICATE OF ANALYS	SIS		VAN14	4001455.1

CERTIFICATE OF ANALYSIS

	Methoa	15200	LT 200	LF200	LF200	LF200	LF200	LF200	TC000	TC000	AQ200										
	Analyte	ТЪ	Dy	Ho	Er	Tm	Yb	Lu	TOT/C	TOT/S	Mo	Cu	Pb	Zn	NI	As	Cd	Sb	Bi	Ag	Au
	Unit	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	%	ppm	ppb									
	MOL	0.01	0.05	0.02	0.03	0.01	0.05	0.01	0.02	0.02	0.1	0.1	0.1	1	0.1	0.5	0.1	0.1	0.1	0.1	0.5
263161	Dall Core	0.49	2.61	0.49	1.40	0.22	1.40	0.19	0.02	0.40	0.2	4.6	3.7	51	6.8	<0.5	<0.1	<0.1	<0.1	<0.1	<0.5
263162	Drill Core	0.48	2.78	0.47	1.44	0.23	1.49	0.21	0.03	0.48	1.2	4.2	3.3	51	7.0	0.8	<0.1	<0.1	<0.1	<0.1	<0.5
263163	Drill Core	1.08	6.02	1.11	3.35	0.58	3.68	0.54	0.04	0.02	0.3	9.5	6.2	58	6.1	2.6	<0.1	<0.1	0.2	<0.1	<0.5
263164	Drill Core	0.02	0.18	0.03	0.13	<0.01	0.09	0.01	13.89	0.09	0.5	1.7	2.0	2	3.0	<0.5	<0.1	<0.1	<0.1	<0.1	<0.5
263165	Drill Core	0.07	0.34	0.07	0.22	0.03	0.15	0.03	14.50	0.25	0.8	7.2	2.0	4	5.7	<0.5	<0.1	<0.1	<0.1	<0.1	<0.5
263166	Drill Core	0.06	0.32	0.07	0.19	0.03	0.18	0.02	14.14	0.20	0.8	7.4	4.0	3	8.4	<0.5	<0.1	<0.1	<0.1	<0.1	<0.5
263167	Drill Core	0.10	0.53	0.12	0.29	0.05	0.28	0.04	12.74	0.28	0.9	9.3	5.5	3	12.1	1.0	<0.1	<0.1	<0.1	<0.1	<0.5
263168	Drill Core	0.08	0.43	0.11	0.27	0.03	0.25	0.04	12.94	0.13	1.3	3.7	1.8	7	9.1	<0.5	<0.1	<0.1	<0.1	<0.1	<0.5
263169	Drill Core	0.76	3.66	0.62	1.72	0.26	1.61	0.21	0.99	0.26	0.2	1.2	7.0	14	2.8	0.5	<0.1	<0.1	<0.1	<0.1	1.2
263170	Drill Core	0.35	1.58	0.25	0.52	0.08	0.55	0.09	0.19	0.19	0.2	0.6	3.9	10	1.5	<0.5	<0.1	<0.1	<0.1	<0.1	2.3
263171	Drift Core	0.29	1.16	0.16	0.34	0.06	0.33	0.06	0.09	0.18	0.2	0.4	5.8	16	1.7	0.5	<0.1	<0.1	<0.1	<0.1	<0.5
263172	Drill Core	0.37	1.49	0.22	0.57	0.07	0.53	0.08	0.04	0.03	<0.1	0.4	6.3	20	1.8	<0.5	<0.1	<0.1	<0.1	<0.1	0.9
263173	Drill Core	0.43	2.04	0.26	0.62	0.10	0.66	0.10	0.03	<0.02	<0.1	0.3	7.6	31	3.3	<0.5	<0.1	<0.1	<0.1	<0.1	<0.5
263174	Drill Core	0.43	2.04	0.29	0.71	0.13	0.66	0.10	0.03	<0.02	0.1	0.4	6.7	24	3.1	<0.5	<0.1	<0.1	<0.1	<0.1	1.2
263175	Drill Core	0.33	1.40	0.25	0.54	0.10	0.65	0.09	0.03	<0.02	<0.1	0.4	5.8	25	2.7	<0.5	<0.1	<0.1	<0.1	<0.1	<0.5
263176	Drill Core	0.36	1.67	0.24	0.68	0.09	0.68	0.10	0.03	<0.02	<0.1	0.3	4.5	31	3.2	<0.5	<0.1	<0.1	<0.1	<0.1	0.9
263177	Drill Core	0.62	2.67	0.43	1.06	0.17	0.94	0.14	0.04	<0.02	<0.1	0.5	4.2	26	3.9	<0.5	<0.1	<0.1	<0.1	<0.1	0.7
263178	Drill Core	0.54	2.07	0.30	0.85	0.11	0.65	0.11	0.03	<0.02	<0.1	2.0	6.0	31	3.0	<0.5	<0.1	<0.1	<0.1	<0.1	0.6
263179	Drill Core	0.53	2.08	0.30	0.77	0.10	0.57	0.09	0.02	<0.02	<0.1	0.5	5.8	21	2.3	<0.5	<0.1	<0.1	<0.1	<0.1	<0.5
263180	Drill Core	0.50	2.36	0.36	1.04	0.13	0.84	0.13	0.02	<0.02	<0.1	0.4	3.2	21	2.4	<0.5	<0.1	<0.1	<0.1	<0.1	0.8
263181	Drill Core	0.70	2.91	0.47	1.14	0.15	0.85	0.13	0.08	0.02	0.2	1.0	4.3	24	1.9	<0.5	<0.1	<0.1	<0.1	<0.1	<0.5
263182	Drill Core	1.47	5.75	0.77	1.66	0.21	1.26	0.15	0.06	<0.02	0.2	0.9	12.8	10	0.5	<0.5	<0.1	<0.1	<0.1	<0.1	<0.5
263163	Drill Core	1.39	5.28	0.69	1.35	0.19	1.10	0.14	0.03	<0.02	1.0	1.9	18.1	38	1.4	<0.5	<0.1	<0.1	<0.1	<0.1	1.1
263184	Drill Core	1.62	5.60	0.61	1.28	0.17	0.97	0.13	0.03	<0.02	0.6	2.2	20.7	55	0.7	<0.5	<0.1	<0.1	<0.1	<0.1	<0.5
263185	Drill Core	0.02	0.14	0.03	0.09	<0.01	0.06	0.01	13.59	<0.02	<0.1	0.3	<0.1	<1	0.6	<0.5	<0.1	<0.1	<0.1	<0.1	0.8
263186	Drill Core	0.03	0.13	0.03	0.09	0.01	0.06	0.01	13.15	0.11	0.7	3.3	1.1	2	3.0	<0.5	<0.1	<0.1	<0.1	<0.1	<0.5
283187	Drill Core	0.07	0.37	0.09	0.25	0.03	0.17	0.03	13.03	0.19	0.6	7.5	3.4	2	8.3	<0.5	<0.1	0.2	<0.1	<0.1	0.9
263188	Drill Core	0.12	0.81	0.14	0.48	0.06	0.38	0.05	13.13	0.36	0.3	6.4	6.5	2	9.9	1.2	<0.1	<0.1	<0.1	<0.1	<0.5
263189	Drill Core	0.01	0.10	<0.02	0.06	<0.01	<0.05	<0.01	14.01	<0.02	0.4	0.6	0.3	<1	1.8	<0.5	<0.1	<0.1	<0.1	<0.1	<0.5
263190	Drill Core	0.03	0.16	0.03	0.08	0.02	0.08	0.01	12.60	0.05	0.5	4.0	1.4	1	4.6	<0.5	<0.1	<0.1	<0.1	<0.1	<0.5

169

3 of 4

	ment Report for Athabasca Minerals Inc.'s	s Richardson Property, North Client:	eastern Alberta Athabasca Minerals In 9524 27 Ave Edmonton AB T6N 1B2 CANADA	IC.	
A Bureau Veritas Group Company Acme Analytical Laboratories (Vancouver) Ltd.	www.acmelab.com	Project: Report Date:	Athabasca Testing May 29, 2014		
9050 Shaughnessy St Vancouver BC V6P 6E5 PHONE (604) 253-3158	CANADA	Page:	4 of 6	Part:	4 of 4
CERTIFICATE OF ANALY	SIS		VAN140	001455.1	

CERTIFICATE OF ANALYSIS

	Method	AQ200	AQ200	AQ200
	Analyte	Hg	П	Se
	Unit	ppm	ppm	ppm
	MDL	0.01	0.1	0.5
263161	Drill Core	<0.01	<0.1	<0.5
263162	Drill Core	<0.01	<0.1	<0.5
263163	Drill Core	<0.01	<0.1	<0.5
263164	Drill Core	<0.01	<0.1	<0.5
263165	Drill Core	<0.01	<0.1	<0.5
263166	Drill Core	<0.01	<0.1	<0.5
263167	Drill Core	<0.01	<0.1	<0.5
263168	Drill Core	<0.01	<0.1	<0.5
263169	Drill Core	<0.01	<0.1	<0.5
263170	Drill Core	< 0.01	<0.1	<0.5
263171	Drill Core	<0.01	<0.1	<0.5
283172	Drill Core	<0.01	<0.1	<0.5
263173	Drill Core	<0.01	0.2	<0.5
283174	Drill Core	<0.01	<0.1	<0.5
263175	Drill Core	<0.01	<0.1	<0.5
263176	Drill Core	<0.01	<0.1	<0.5
263177	Drill Core	<0.01	<0.1	<0.5
263178	Drill Core	<0.01	<0.1	<0.5
263179	Drill Core	<0.01	<0.1	<0.5
263180	Drill Core	<0.01	<0.1	<0.5
263181	Drill Core	<0.01	<0.1	<0.5
283182	Drill Core	<0.01	<0.1	<0.5
263183	Drill Core	<0.01	0.1	<0.5
283184	Drilli Core	<0.01	0.3	<0.5
263185	Drill Core	<0.01	<0.1	<0.5
263186	Drill Core	<0.01	<0.1	<0.5
263187	Drill Core	<0.01	<0.1	<0.5
263188	Drill Core	<0.01	<0.1	<0.5
263189	Drill Core	<0.01	<0.1	<0.5
263190	Drill Core	<0.01	<0.1	0.8

This e all previous preliminary and final reports with this file number dated prior to the d ce only al; pr ΝУ

170

		Client:	Athabasca Minerals Inc 9524 27 Ave
Acme Labs [™]			Edmonton AB T6N 1B2 CANADA
A Bureau Veritas Group Company	www.acmelab.com	Project	Athabasca Testing
cme Analytical Laboratories (Vancouver) Ltd.		Report Date:	May 29, 2014
50 Shaughnessy St Vancouver BC V6P 6E5 C	ANADA		
HONE (604) 253-3158		Page:	5 of 6

PHONE (604) 253-3158

CERTIFICATE OF ANALYSIS

9

	Method	WOHT	LF200	LF200	LF200	LF200	LF200	LF200	LF200	LF200	LF200										
	Analyte	Wgt	SIO2	AI203	Fe2O3	MgO	CaO	Na2O	K20	TIO2	P205	MnO	Cr203	Ni	Sc	LOI	Sum	Ba	Be	Co	Cs
	Unit	kg	%	%	%	%	%	%	%	%	%	%	%	ppm	ppm	%	%	ppm	ppm	ppm	ppm
	MDL	0.01	0.01	0.01	0.04	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.002	20	1	-5.1	0.01	1	1	0.2	û.1
263191	Drill Core	1.14	2.34	0.33	0.24	19.86	29.08	0.01	0.08	0.02	0.02	0.02	<0.002	<20	<1	47.7	99.66	8	<1	0.7	=0.1
263192	Drill Core	1.31	2.53	0.57	0.31	19.90	29.19	0.01	0.17	0.03	0.02	0.03	<0.002	<20	<1	46.9	99.66	15	<1	1.0	0.3
263193	Drill Core	0.63	61.70	12.33	1.85	3.83	4.24	0.73	7.00	0.18	0.07	0.04	0.003	<20	5	7.9	99.82	482	<1	1.6	0.8
263194	Drill Core	2.10	70.02	13.71	1.95	1.27	1.30	1.52	7.44	0.14	0.07	0.03	0.002	<20	5	2.4	99.86	587	<1	1.1	0.6
283195	Drill Core	2.24	72.58	14.03	1.81	0.50	0.80	2.83	6.33	0.18	0.07	0.03	0.003	<20	4	0.9	99.88	565	<1	0.8	0.2
283198	Drill Core	2.10	72.83	14.28	1.45	0.51	0.54	2.48	6.81	0.18	0.07	0.02	0.005	<20	3	0.7	99.88	607	<1	0.7	0.3
263197	Drill Core	2.03	72.43	13.99	1.78	0.57	0.64	2.45	6.62	0.21	0.06	0.02	<0.002	<20	4	1.1	99.86	631	1	1.1	0.3
263198	Drill Core	1.98	69.43	13.49	1.62	1.13	2.18	2.12	6.56	0.19	0.07	0.02	< 0.002	<20	3	3.1	99.85	578	<1	1.2	0.3
263199	Drill Core	2.24	72.29	14.09	1.88	0.60	0.72	2.38	6.60	0.18	0.06	0.02	<0.002	<20	3	1.2	99.86	623	<1	0.9	0.3
263200	Drill Core	2.26	72.64	13.95	1.59	0.57	0.57	2.55	6.62	0.19	0.06	0.02	<0.002	<20	3	1.1	99.86	639	<1	0.8	0.2
263201	Drill Core	2.36	72.34	14.28	1.58	0.55	0.59	2.58	6.58	0.20	0.06	0.01	0.002	<20	3	1.1	99.86	637	<1	0.8	0.5
263202	Drill Core	2.08	71.68	14.50	1.69	0.54	0.56	2.31	7.12	0.24	0.07	0.01	<0.002	<20	3	1.1	99.84	657	<1	1.0	0.3
263203	Drill Core	1.71	71.56	14.36	1.66	0.63	0.43	1.57	8.02	0.22	0.07	0.01	<0.002	<20	3	1.3	99.84	654	<1	1.0	0.5
263204	Drill Core	0.40	73.28	14.00	1.49	0.39	0.88	2.66	6.41	0.21	0.06	<0.01	<0.002	<20	3	0.5	99.87	596	<1	0.9	0.3
263205	Drill Core	1.91	72.56	14.20	1.61	0.51	0.61	2.23	6.85	0.21	0.07	<0.01	<0.002	<20	3	1.0	99.86	612	<1	0.8	0.4
263206	Drill Core	1.48	72.26	14.18	1.71	0.56	0.51	2.37	6.84	0.22	0.07	0.01	< 0.002	<20	3	1.1	99.85	621	1	0.8	0.4
263207	Drill Core	2.09	73.75	13.44	1.58	0.54	0.37	1.91	7.18	0.17	0.07	<0.01	<0.002	<20	3	0.9	99.88	589	<1	0.6	0.6
263208	Drill Core	2.16	73.32	13.53	1.58	0.46	0.38	2.32	6.72	0.18	0.06	<0.01	< 0.002	<20	3	1.3	99.87	569	2	0.7	0.3
263209	Drill Core	2.76	73.05	14.10	1.45	0.49	0.58	2.71	6.43	0.20	0.08	<0.01	< 0.002	<20	2	0.8	99.87	570	<1	0.8	0.2
283210	Drill Core	2.60	72.76	13.87	1.81	0.55	0.46	2.50	6.47	0.18	0.07	0.01	< 0.002	<20	3	1.2	99.88	552	<1	0.9	0.3
263211	Drill Core	2.37	72.81	13.93	1.43	0.53	0.49	2.78	6.39	0.20	0.06	<0.01	< 0.002	<20	2	1.3	99.88	539	<1	0.4	0.2
263212	Drill Core	2.17	73.17	13.88	1.38	0.53	0.41	2.71	6.44	0.19	0.06	<0.01	< 0.002	<20	2	1.1	99.88	540	2	0.5	0.2
263213	Drill Core	2.01	73.60	13.76	1.29	0.65	0.44	2.86	6.21	0.19	0.06	<0.01	<0.002	<20	1	0.8	99.88	503	<1	0.7	0.2
263214	Drill Core	1.67	73.89	13.71	0.90	0.41	0.38	2.80	6.68	0.15	0.06	<0.01	< 0.002	<20	<1	0.9	99.90	451	2	0.3	0.2
263215	Drill Core	2.56	74.90	13.28	0.76	0.41	0.49	2.54	6.67	0.10	0.06	<0.01	< 0.002	<20	<1	0.7	99.91	394	1	<0.2	0.1
263216	Drill Core	1.14	74.41	13.10	1.60	0.66	0.49	3.09	5.22	0.27	0.04	0.01	<0.002	<20	2	1.0	99.89	408	<1	1.2	0.4
263217	Drill Core	2.20	65.83	13.89	4.73	3.39	2.05	2.09	4.45	0.53	0.42	0.08	0.015	<20	15	2.1	99.54	2358	2	10.6	0.9
263218	Drill Core	1.76	52.69	16.28	7.19	6.17	4.48	1.67	5.08	0.86	0.96	0.12	0.025	26	17	3.7	99.21	4485	3	19.1	1.4
263219	Drill Core	2.47	50.94	15.20	6.10	7.81	3.56	0.84	4.88	0.94	0.79	0.13	0.028	30	23	6.0	99.26	4047	<1	21.6	1.6
263220	Drill Core	0.65	11.31	1.35	0.91	17.64	25.82	0.02	0.35	0.07	0.12	0.05	<0.002	<20	6	42.0	99.66	47	<1	9.4	0.5

171

1 of 4

Part:

VAN14001455.1

Assessment Assessment	nt Report for Athabasca Minerals Inc.'s	s Richardson Property, North Client:	eastern Alberta Athabasca Minerals Inc. 9524 27 Ave Edmonton AB T6N 1B2 CANADA		
A Bureau Veritas Group Company	www.acmelab.com	Project:	Athabasca Testing		
Acme Analytical Laboratories (Vancouver) Ltd.		Report Date:	May 29, 2014		
9050 Shaughnessy St Vancouver BC V6P 6E5 CAN PHONE (604) 253-3158	ADA	Page:	5 of 6	Part:	2 of 4

PHONE (604) 253-3158 CERTIFICATE OF ANALYSIS

VAN14001455.1

	Method	LF200																			
	Analyte	Ga	Hf	Nb	Rb	Sn	Sr	Ta	Th	U	v	w	Zr	Y	La	Ce	Pr	Nd	Sm	Eu	Gď
	Unit	ppm																			
	MDL	0.5	0.1	0.1	0.1	1	0.5	0.1	0.2	0.1	8	0.5	0.1	0.1	0.1	0.1	0.02	0.3	0.05	0.02	0.05
263191	Drill Core	<0.5	0.3	<0.1	2.1	<1	48.5	<0.1	0.3	1.3	<8	<0.5	13.6	2.2	1.8	2.3	0.28	1.4	0.22	0.06	0.28
263192	Drill Core	<0.5	0.3	0.3	4.8	<1	45.2	<0.1	0.5	2.0	<8	<0.5	10.9	5.3	3.4	5.3	0.64	2.7	0.57	0.14	0.81
263193	Drill Core	14.1	3.8	6.2	157.2	<1	113.5	0.3	19.4	3.8	13	<0.5	118.0	18.1	52.9	148.2	12.23	42.3	6.62	0.86	4.70
263194	Drill Core	16.5	4.2	3.8	181.1	<1	116.3	0.2	28.2	4.4	<8	6.3	132.0	19.0	45.8	95.1	10.41	35.8	6.41	0.70	4.49
263195	Drill Core	17.9	4.1	5.4	191.8	<1	121.3	0.3	27.9	4.8	<8	<0.5	128.4	15.9	43.3	86.1	9.55	33.8	6.33	0.61	4.37
263196	Drill Core	17.1	4.4	5.2	193.5	<1	113.6	0.2	27.5	4.6	<8	<0.5	134.6	12.4	44.1	82.1	9.00	31.9	6.04	0.65	4.14
263197	Drill Core	17.1	4.9	6.0	192.0	<1	114.6	0.2	34.1	4.9	<8	<0.5	149.1	14.2	50.3	102.6	11.22	40.1	7.28	0.65	5.06
263198	Drill Core	16.7	4.4	5.8	182.9	<1	135.6	0.2	31.5	4.5	<8	26.5	126.8	12.6	45.8	92.5	10.40	37.9	6.63	0.66	4.64
263199	Drill Core	16.9	4.8	5.4	188.8	<1	121.0	0.2	32.5	3.9	<8	1.9	141.5	14.7	51.1	101.8	11.09	38.3	6.93	0.68	4.63
263200	Drill Core	16.8	4.6	5.2	185.4	<1	118.8	0.1	33.0	3.8	<8	<0.5	141.5	12.5	47.5	93.8	10.28	35.6	6.55	0.68	4.59
263201	Drill Core	17.2	4.5	6.1	179.1	<1	125.7	0.2	32.6	4.2	<8	0.7	138.2	11.4	49.9	99.0	11.03	39.6	7.20	0.72	4.79
263202	Drill Core	16.1	4.7	7.4	200.1	<1	126.7	0.2	53.1	4.1	<8	<0.5	141.0	11.7	76.1	160.2	18.08	62.4	10.53	0.74	6.75
263203	Drill Core	17.1	4.9	6.6	199.3	<1	109.4	0.2	42.4	4.4	<8	<0.5	145.8	13.3	70.7	139.7	15.92	55.0	9.70	0.76	5.95
283204	Drill Core	18.6	4.7	6.7	185.9	<1	127.7	0.2	33.6	4.5	8	<0.5	152.4	10.6	50.6	103.2	11.23	37.9	6.61	0.60	4.81
263205	Drill Core	16.5	4.8	7.4	191.5	2	117.4	0.2	38.8	4.0	<8	<0.5	149.1	10.9	59.1	117.6	13.55	46.5	8.26	0.69	5.12
263206	Drill Core	16.9	4.7	7.4	186.5	<1	121.3	0.5	49.1	3.8	<8	<0.5	152.0	10.7	66.8	147.1	18.70	55.9	9.08	0.62	5.61
263207	Drill Core	16.0	4.5	6.1	184.4	<1	98.9	0.2	34.2	4.2	<8	<0.5	139.5	9.2	45.5	84.8	10.40	36.1	6.81	0.60	4.41
263208	Drill Core	16.7	4.2	6.0	191.2	3	104.6	0.3	40.7	3.8	<8	<0.5	135.8	12.2	51.5	105.7	12.23	42.2	6.91	0.57	4.72
263209	Drill Core	18.0	4.6	7.3	186.4	<1	117.1	0.1	36.8	4.9	17	<0.5	132.0	11.3	50.7	102.3	11.61	41.4	7.56	0.62	5.09
263210	Drill Core	16.4	4.1	6.5	184.2	<1	104.4	0.3	38.2	3.9	9	<0.5	127.1	12.2	50.0	103.6	11.49	38.2	7.04	0.52	4.80
263211	Drill Core	16.9	4.3	7.7	183.3	1	112.0	0.2	38.1	4.3	<8	<0.5	135.4	10.2	49.9	102.7	10.94	39.1	7.32	0.56	5.30
263212	Drill Core	15.9	3.7	6.6	183.6	1	111.0	0.2	37.7	4.0	8	<0.5	115.0	6.2	49.4	102.7	11.02	38.3	7.17	0.53	4.46
263213	Drill Core	17.3	4.5	7.8	191.4	<1	111.2	0.3	35.3	4.2	10	<0.5	137.3	6.4	47.9	97.3	10.64	37.2	6.87	0.55	4.98
263214	Drill Core	16.5	2.1	4.7	207.0	<1	113.1	0.2	32.2	2.9	<8	<0.5	60.0	4.2	49.0	112.6	12.21	42.3	6.68	0.45	3.56
263215	Drill Core	14.7	1.9	3.1	191.7	<1	118.8	<0.1	21.0	2.8	<8	<0.5	49.2	4.1	47.9	117.2	11.36	40.3	5.99	0.44	3.33
263216	Drill Core	17.2	2.6	11.5	165.1	<1	162.9	1.1	39.2	4.3	12	<0.5	59.4	6.0	39.5	87.9	9.49	34.2	6.08	0.44	4.05
263217	Drill Core	19.3	5.8	14.5	193.7	2	433.9	0.8	54.2	5.2	78	<0.5	200.6	25.3	79.3	160.9	19.14	72.4	13.81	1.32	9.93
263218	Drill Core	20.9	7.0	13.2	206.6	<1	803.5	0.7	1.8	2.0	127	<0.5	267.4	23.6	54.3	116.4	14.52	57.7	10.24	2.04	8.05
263219	Drill Core	21.3	8.7	10.6	207.0	<1	465.5	0.5	2.3	2.7	148	<0.5	336.1	22.4	55.6	118.9	14.95	60.3	10.63	2.19	7.10
263220	Drill Core	0.7	0.4	1.0	10.7	1	57.0	0.1	0.9	1.6	20	<0.5	14.3	17.4	8.5	11.6	1.48	6.5	1.27	0.33	1.92

This report supersedes all previous preliminary and final reports with this file number dated prior to the date on this certificate. Signature indicates final approval; preliminary reports are unsigned and should be used for reference only

172

	Assessment Report for Athabasca Minerals Inc.'s Richa	rdson Property, North	neastern Alberta
		Client:	Athabasca Minerals Inc. 9524 27 Ave
meLak	S™		Edmonton AB T6N 1B2 CANADA

Project:

Page:

Report Date:

Athabasca Testing

May 29, 2014

5 of 6

www.acmelab.com

A Bureau Veritas Group Company

Acme Analytical Laboratories (Vancouver) Ltd. 9050 Shaughnessy St Vancouver BC V6P 6E5 CANADA PHONE (604) 253-3158

CERTIFICATE OF ANALYSIS

	Method	LF200	TC000	TC000	AQ200	AQ200	AG200	AQ200													
	Analyte	Tb	Dy	Но	Er	Tm	Yb	Lu	TOT/C	TOT/S	Mo	Cu	Pb	Zn	NI	As	Cd	Sb	BI	Ag	Au
	Unit	ppm	%	%	ppm	ppb															
	MDL	0.01	0.05	0.02	0.03	0.01	0.05	0.01	0.02	0.02	0.1	0.1	0.1	1	0.1	0.5	0.1	0.1	0.1	0.1	0.5
263191	Drill Core	0.04	0.24	0.07	0.13	0.02	0.13	0.01	13.62	0.08	0.6	4.8	2.9	2	6.3	<0.5	<0.1	<0.1	<0.1	<0.1	<0.5
263192	Drill Core	0.11	0.66	0.10	0.36	0.05	0.25	0.04	13.42	0.11	0.8	3.4	2.1	2	7.1	<0.5	<0.1	<0.1	<0.1	<0.1	<0.5
263193	Drill Core	0.56	2.90	0.58	1.85	0.27	1.78	0.26	1.84	0.11	1.1	3.6	3.8	19	5.0	0.5	<0.1	<0.1	<0.1	<0.1	0.6
263194	Drill Core	0.54	3.14	0.71	2.20	0.37	2.25	0.29	0.43	0.05	0.2	2.2	5.5	18	1.6	<0.5	<0.1	<0.1	<0.1	<0.1	<0.5
263195	Drill Core	0.60	3.19	0.61	1.62	0.26	1.62	0.20	0.10	0.03	1.0	1.1	6.7	21	0.7	<0.5	<0.1	<0.1	<0.1	<0.1	<0.5
263196	Drill Core	0.50	2.52	0.44	1.45	0.23	1.39	0.18	0.07	0.06	0.2	0.5	5.1	15	0.5	<0.5	<0.1	<0.1	<0.1	<0.1	1.1
263197	Drill Core	0.61	3.08	0.57	1.43	0.23	1.46	0.19	0.08	0.04	0.3	0.6	6.6	23	0.8	<0.5	<0.1	<0.1	<0.1	<0.1	<0.5
263198	Drill Core	0.52	2.49	0.46	1.40	0.21	1.31	0.20	0.78	0.10	1.3	19.4	7.2	26	2.6	<0.5	<0.1	<0.1	<0.1	12.0	1.4
263199	Drill Core	0.58	2.73	0.52	1.68	0.26	1.64	0.25	0.22	0.06	0.6	1.4	6.0	19	0.7	<0.5	<0.1	<0.1	<0.1	0.5	<0.5
263200	Drill Core	0.57	2.65	0.44	1.36	0.25	1.55	0.24	0.08	0.06	0.2	0.8	5.4	20	0.6	<0.5	<0.1	<0.1	<0.1	<0.1	<0.5
263201	Drill Core	0.58	2.62	0.40	1.00	0.13	0.92	0.13	0.07	0.04	0.3	0.5	5.8	20	0.6	<0.5	<0.1	<0.1	<0.1	<0.1	<0.5
263202	Drill Core	0.67	2.87	0.45	0.94	0.14	0.78	0.10	0.04	0.04	0.8	1.2	7.6	25	0.7	<0.5	<0.1	<0.1	<0.1	<0.1	<0.5
263203	Drill Core	0.69	3.18	0.49	1.14	0.16	0.94	0.13	0.03	0.05	0.4	2.3	6.8	30	0.9	<0.5	<0.1	<0.1	<0.1	<0.1	<0.5
263204	Drill Core	0.56	2.44	0.31	0.75	0.09	0.58	0.08	0.05	<0.02	0.3	0.7	8.2	28	0.7	<0.5	<0.1	<0.1	<0.1	<0.1	1.8
263205	Drill Core	0.58	2.64	0.38	0.82	0.12	0.67	0.09	0.05	0.03	0.5	0.9	7.2	25	0.6	<0.5	<0.1	<0.1	<0.1	<0.1	<0.5
263206	Drill Core	0.64	2.62	0.36	0.96	0.12	0.70	0.10	0.06	0.06	0.2	0.5	7.6	17	0.8	<0.5	<0.1	<0.1	<0.1	<0.1	<0.5
263207	Drill Core	0.50	2.27	0.30	0.71	0.09	0.67	0.10	0.03	0.11	0.1	1.0	5.0	18	0.7	<0.5	<0.1	<0.1	<0.1	<0.1	<0.5
263208	Drill Core	0.60	2.69	0.38	0.90	0.13	0.85	0.12	0.04	0.04	0.2	1.4	5.4	13	0.4	<0.5	<0.1	<0.1	<0.1	<0.1	<0.5
263209	Drill Core	0.58	2.64	0.42	1.01	0.15	0.89	0.13	0.05	<0.02	0.2	0.8	6.5	20	0.6	<0.5	<0.1	<0.1	<0.1	<0.1	<0.5
263210	Drill Core	0.59	2.85	0.44	1.25	0.21	1.32	0.19	0.07	0.04	<0.1	0.8	6.3	16	0.7	<0.5	<0.1	<0.1	<0.1	<0.1	<0.5
263211	Drill Core	0.59	2.23	0.33	0.83	0.14	0.93	0.16	0.06	<0.02	<0.1	0.6	7.1	23	0.6	<0.5	<0.1	<0.1	<0.1	<0.1	<0.5
263212	Drill Core	0.51	2.21	0.28	0.67	0.11	0.66	0.11	0.04	<0.02	<0.1	0.7	6.4	18	0.2	<0.5	<0.1	<0.1	<0.1	<0.1	<0.5
263213	Drill Core	0.50	1.83	0.21	0.48	0.06	0.43	0.07	0.05	<0.02	<0.1	1.3	5.9	15	0.4	<0.5	<0.1	<0.1	<0.1	<0.1	<0.5
263214	Drill Core	0.32	1.14	0.11	0.30	0.04	0.29	0.04	0.04	<0.02	0.2	1.5	5.8	10	0.9	<0.5	<0.1	<0.1	<0.1	<0.1	<0.5
263215	Drill Core	0.28	1.00	0.09	0.26	0.05	0.22	0.03	0.06	<0.02	0.3	2.8	4.7	9	0.9	<0.5	<0.1	<0.1	<0.1	<0.1	<0.5
263216	Drill Core	0.40	1.38	0.15	0.39	0.06	0.39	0.05	0.06	<0.02	<0.1	5.4	8.3	31	2.9	<0.5	<0.1	<0.1	<0.1	<0.1	<0.5
263217	Drill Core	1.20	5.36	0.87	2.30	0.33	2.03	0.30	0.13	< 0.02	0.2	4.8	9.0	82	14.9	<0.5	<0.1	<0.1	<0.1	<0.1	<0.5
263218	Drill Core	1.00	4.67	0.70	1.94	0.26	1.73	0.27	0.28	0.04	0.5	5.8	7.0	68	26.4	<0.5	<0.1	<0.1	<0.1	<0.1	<0.5
263219	Drill Core	0.92	4.56	0.76	2.12	0.32	1.99	0.31	0.63	<0.02	<0.1	5.9	4.2	78	31.1	<0.5	<0.1	<0.1	<0.1	<0.1	<0.5
263220	Drill Core	0.31	1.90	0.44	1.24	0.17	1.01	0.15	11.79	0.65	0.5	9.8	8.8	2	14.4	1.7	<0.1	<0.1	<0.1	<0.1	<0.5

This report supersedes all previous preliminary and final reports with this file number dated prior to the date on this certificate. Signature indicates final approval; preliminary reports are unaigned and should be used for reference only.

173

Part: 3 of 4

VAN14001455.1

Assessme	ent Report for Athabasca Minerals Inc.'s	Richardson Property, North	eastern Alberta	
Acmol abo		Client:	Athabasca Minerals Inc. 9524 27 Ave Edmonton AB T6N 1B2 CANADA	
A Bureau Veritas Group Company	www.acmelab.com	Project:	Athabasca Testing	
Acme Analytical Laboratories (Vancouver) Ltd.		Report Date:	May 29, 2014	

Acme Analytical Laboratones (Vancouver) Ltd. 9050 Shaughnessy St Vancouver BC V6P 6E5 CANADA PHONE (604) 253-3158

CERTIFICATE OF ANALYSIS

Page:

5 of 6

VAN14001455.1

Part: 4 of 4

	Method Analyte	AQ200 Hg	AQ200 TI	AQ200
	Unit	ppm	ppm	ppm
	MDL	0.01	0.1	0.5
263191	Drill Core	<0.01	<0.1	<0.5
263192	Drill Core	<0.01	<0.1	<0.5
263193	Drill Core	<0.01	<0.1	<0.5
263194	Drill Core	<0.01	<0.1	<0.5
263195	Drill Core	<0.01	0.1	<0.5
263196	Drill Core	<0.01	<0.1	<0.5
263197	Drill Core	<0.01	0.2	<0.5
263198	Drill Core	0.01	0.1	<0.5
263199	Drill Core	<0.01	<0.1	<0.5
263200	Drill Core	< 0.01	<0.1	<0.5
263201	Drill Core	<0.01	<0.1	<0.5
263202	Drill Core	<0.01	0.2	<0.5
263203	Drill Core	<0.01	0.2	<0.5
263204	Drill Core	<0.01	0.2	<0.5
263205	Drill Core	<0.01	0.2	<0.5
263206	Drill Core	< 0.01	<0.1	<0.5
263207	Drill Core	<0.01	<0.1	<0.5
263208	Drill Core	<0.01	<0.1	<0.5
263209	Drill Core	<0.01	<0.1	<0.5
263210	Drill Core	<0.01	<0.1	<0.5
263211	Drill Core	<0.01	<0.1	<0.5
263212	Drill Core	<0.01	<0.1	<0.5
263213	Drill Core	<0.01	<0.1	<0.5
263214	Drill Core	<0.01	<0.1	<0.5
263215	Drill Core	<0.01	<0.1	<0.5
263216	Drill Core	<0.01	<0.1	<0.5
263217	Drill Core	<0.01	0.2	<0.5
263218	Drill Core	<0.01	0.6	<0.5
263219	Drill Core	<0.01	0.3	<0.5
263220	Drill Core	0.01	<0.1	<0.5

This report superascies all previous preliminary and final reports with this file number dated prior to the date on this certificate. Signature indicates final approval; preliminary reports are unsigned and should be used for reference only.

174

CERTIFICATE OF ANALY	SIS		VAN14	4001455.1	
9050 Shaughnessy St Vancouver BC V6P 6E5 C PHONE (604) 253-3158	ANADA	Page:	6 of 6	Part:	1 of 4
Acme Analytical Laboratories (Vancouver) Ltd.		Report Date:	May 29, 2014		
AcmeLabs™ A Bureau Veritas Group Company	www.acmelab.com	Client: Project:	Athabasca Minerals 9524 27 Ave Edmonton AB T6N 1B2 CANAD Athabasca Testing	Inc.	

	Method Analyte Unit MDL	WGHT Wgt kg 0.01	LF200 SiO2 % 0.01	LF200 Al2O3 % 0.01	LF200 Fe2O3 % 0.04	LF200 MgO % 0.01	LF200 CaO % 0.01	LF200 Na2O % 0.01	LF200 K2O % 0.01	LF200 TIO2 % 0.01	LF200 P2O5 % 0.01	LF200 MnO % 0.01	LF200 Cr2O3 % 0.002	LF200 Ni ppm 20	LF200 Sc ppm 1	LF200 LOI %	LF200 Sum % 0.01	LF200 Ba ppm 1	LF200 Be ppm 1	LF20C Co ppm 0.2	15200
																					Cs
																					ppm
																					0.1
263221	Drill Core	1.07	1.89	0.42	0.51	20.24	29.61	0.01	0.12	0.02	0.05	0.03	< 0.002	<20	1	46.7	99.65	13	<1	1.0	0.3
263222	Drill Core	2.31	71.23	14.18	1.13	0.59	1.15	2.20	7.42	0.16	0.07	< 0.01	< 0.002	<20	2	1.7	99.87	650	<1	0.7	0.3
263223	Drill Core	2.17	75.50	12.86	0.82	0.31	0.60	2.51	5.97	0.09	0.05	<0.01	<0.002	<20	2	1.2	99.92	474	1	0.3	0.4
263224	Drill Core	1.73	73.51	14.05	1.86	0.61	0.62	2.26	6.73	0.15	0.06	0.01	< 0.002	<20	4	0.0	99.89	483	2	0.4	0.3

This report supersedes all previous preliminary and final reports with this file number dated prior to the date on this certificate. Signature indicates final approval; preliminary reports are unaigned and should be used for reference only.

175
Y ACCENERACIONS A Bureau Veritas Group Company www.acmelab.com Project: Athabasca Testing Acme Analytical Laboratories (Vancouver) Ltd. Report Date: May 29, 2014 9050 Shaughnessy St. Vancouver BC V6P 6E5 CANADA How Project: May 29, 2014			Client:	Athabasca Minera 9524 27 Ave Edmonton AB T6N 1B2 CAN	I <mark>s Inc.</mark>	
9050 Shaughnessy St Vancouver BC V6P 6E5 CANADA	A Bureau Veritas Group Company	www.acmelab.com	Project: Report Date:	- Athabasca Testing May 29, 2014		
PHONE (604) 253-3158 Page: 6 of 6 Part: 2	9050 Shaughnessy St Vancouver BC V6P 6E5 PHONE (604) 253-3158	5 CANADA	Page:	6 of 6	Part:	2 of 4

	Method	LF200																			
	Analyte	Ga	Hf	Nb	Rb	Sn	Sr	Ta	Th	u	v	w	Zr	Y	La	Ce	Pr	Nd	Sm	Eu	Gď
	Unit	ppm																			
	MDL	0.5	0.1	0.1	0.1	1	0.5	0.1	0.2	0.1	8	0.5	0.1	0.1	0.1	0.1	0.02	0.3	0.05	0.02	0.05
263221	Drill Core	<0.5	0.2	0.8	3.8	3	42.6	<0.1	0.4	1.9	10	<0.5	5.1	6.4	3.3	4.9	0.61	2.3	0.50	0.14	0.74
263222	Drill Core	17.3	3.0	6.8	230.0	1	138.2	0.3	34.3	5.9	9	<0.5	92.9	8.1	43.5	88.5	9.88	33.6	6.33	0.50	4.35
263223	Drill Core	15.1	3.3	3.8	205.5	1	100.7	0.2	10.5	8.0	<8	<0.5	83.6	6.8	24.2	42.9	4.58	14.7	2.79	0.43	1.95
263224	Drill Core	16.5	4.3	4.9	199.3	<1	95.0	0.1	26.1	5.1	<8	<0.5	123.3	12.1	43.2	88.1	10.08	32.9	5.43	0.53	3.88

This report supersedes all previous preliminary and final reports with this file number dated prior to the date on this certificate. Signature indicates final approval; preliminary reports are unsigned and should be used for reference only.

	nt Report for Athabasca Minerals Inc.'s	s <u>Richardson Property. North</u> Client:	eastern Alberta Athabasca Minerals Ir 9524 27 Ave Edmonton AB T6N 1B2 CANADA	16.	
A Bureau Veritas Group Company Acme Analytical Laboratories (Vancouver) Ltd.	www.acmelab.com	Project: Report Date:	Athabasca Testing May 29, 2014		
9050 Shaughnessy St Vancouver BC V6P 6E5 CAN PHONE (604) 253-3158	IADA	Page:	6 of 6	Part:	3 of 4
CERTIFICATE OF ANALYSI	S		VAN14	001455.1	

	Method	LF200	TC000	Tosse	AQ200																
	Analyte	Tb	Dy	Ho	Er	Tm	Yb	Lu	TOT/C	TOT/S	Мо	Cu	Pb	Zn	Ni	As	Cd	Sb	Bi	Ag	Au
	Unit	ppm	%	%	ppm	ppb															
	MDL	0.01	0.05	0.02	0.03	0.01	0.05	0.01	0.02	0.02	0.1	0.1	0.1	1	0.1	0.5	0.1	0.1	0.1	0.1	0.5
263221	Drill Core	0.11	0.73	0.14	0.47	0.07	0.45	0.06	13.06	0.32	0.7	2.7	1.5	6	8.1	0.7	<0.1	<0.1	<0.1	<0.1	<0.5
263222	Drill Core	0.49	2.07	0.27	0.69	0.10	0.74	0.10	0.27	0.08	1.3	4.2	8.9	17	1.4	<0.5	<0.1	<0.1	<0.1	<0.1	<0.5
263223	Drill Core	0.27	1.48	0.22	0.65	0.09	0.50	0.08	0.06	0.06	1.6	2.8	5.8	9	0.7	<0.5	<0.1	<0.1	<0.1	<0.1	1.1
263224	Drill Core	0.56	2.62	0.38	0.93	0.11	0.65	0.11	0.08	0.06	0.6	0.7	5.7	15	0.9	<0.5	<0.1	<0.1	<0.1	<0.1	<0.5

This report superasdes all previous preliminary and final reports with this file number dated prior to the date on this certificate. Signature indicates final approval; preliminary reports are unsigned and should be used for reference or

Assessment Report for Athabasca Minerals Inc.'s Richardson Property, Northeastern Alberta

Assessment I	Report for Athabasca Minerals Inc.'s Rich	ardson Property, Northe	astern Alberta		
Acme Labs [™]		Client:	Athabasca Minerals Inc. 9524 27 Ave Edmonton AB T6N 182 CANADA		
A Bureau Veritas Group Company	www.acmelab.com	Project:	Athabasca Testing		
Acme Analytical Laboratories (Vancouver) Ltd.		Report Date:	May 29, 2014		
9050 Shaughnessy St Vancouver BC V6P 6E5 CANAD	A				
PHONE (604) 253-3158		Page:	6 of 6	Part:	4 of 4
CERTIFICATE OF ANALYSIS			VAN1400	01455.1	

JERTIFICATE OF ANALYSIS

	Method	AQ200	AQ200	AQ200
	Analyte	Hg	TI	Se
	Unit	ppm	ppm	ppm
	MDL	0.01	0.1	0.5
263221	Drill Core	<0.01	<0.1	<0.5
263222	Drill Core	<0.01	<0.1	<0.5
263223	Drill Core	<0.01	<0.1	<0.5
263224	Drill Core	<0.01	<0.1	<0.5

This report supersedes all previous preliminary and final reports with this file number dated prior to the date on this certificate. Signature indicates final approval: preliminary reports are unsigned and should be used for reference only.

<u>178</u>

Assessi	nent Report for Athabasca Minerals Inc.'s	Richardson Property, North Client:	eastern Alberta Athabasca Minerals Inc. 9524 27 Ave
AcmeLabs™ A Bureau Veritas Group Company	www.acmelab.com	Project:	Edmonton AB T6N 1B2 CANADA
Acme Analytical Laboratories (Vancouver) Ltd. 9050 Shaughnessy St Vancouver BC V6P 6E5 C	ANADA	Report Date:	May 29, 2014
PHONE (604) 253-3158		Page:	1 of 3

PHONE (604) 253-3158

QUALITY CONTROL REPORT

	Method	WOHT	1 5200	1 6200	1 6200	1 5200	1 6200	1 5200	1 5200	1 -200	1 6200	1 5200	1 5200	1 6200	1 5 200	1 6200	1 6200	1.5200	1 5200	1 5200	1 5200
	Analyte	Wat	SIO2	A1203	En203	MaO	CaO	Na2O	K20	TIO2	P205	MaQ	Cr203	Ni	Sc	LOI	Sum	Ra	Ba	Co	Ca
	Unit	ka	84	41200	10203	mgo «L	84	Nazo	4	44	1200	MIIO K	4	000	000	84	Num	nom	000	000	nnm
	MDL	0.01	0.01	0.01	0.04	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.002	20	1	-5.1	0.01	1	1	0.2	0.1
263142	Drill Core	3.06	50.86	18.35	2.35	4.27	3.46	0.25	11.04	0.25	0.09	0.02	<0.002	<20	6	8.8	99.73	940	2	2.2	1.0
263194	Drill Core	2.10	70.02	13.71	1.95	1.27	1.30	1.52	7.44	0.14	0.07	0.03	0.002	<20	5	2.4	99.86	587	<1	1.1	0.6
263223	Drill Core	2.17	75.50	12.86	0.82	0.31	0.60	2.51	5.97	0.09	0.05	< 0.01	< 0.002	<20	2	1.2	99.92	474	1	0.3	0.4
Pulp Duplicates																					
263107	Drill Core	2.35	69.09	14.77	2.99	1.31	1.85	2.99	5.07	0.37	0.15	0.04	0.003	<20	5	1.0	99.64	1850	3	4.4	0.5
REP 263107	QC		69.10	14.73	2.98	1.31	1.86	2.98	5.11	0.37	0.15	0.04	0.003	<20	5	1.0	99.64	1853	4	4.2	0.4
263118	Drill Core	0.93	7.62	0.64	0.29	18.99	27.75	0.02	0.16	0.03	0.04	0.02	<0.002	<20	<1	44.1	99.67	22	2	0.9	0.2
REP 263118	QC																				
263160	Drill Core	0.95	75.91	12.49	0.73	0.28	0.20	1.84	7.77	0.07	0.06	< 0.01	<0.002	<20	<1	0.6	99.95	462	<1	<0.2	1.0
REP 263160	QC		75.94	12.52	0.72	0.29	0.20	1.84	7.72	0.06	0.06	< 0.01	<0.002	<20	<1	0.6	99.95	451	1	<0.2	0.9
263163	Drill Core	0.77	69.65	14.31	2.80	1.58	0.49	3.01	5.75	0.31	0.15	0.05	0.003	<20	10	1.6	99.71	1462	5	4.2	0.8
REP 263163	QC																			-	
263164	Drill Core	0.67	0.45	0.07	0.20	20.40	30.68	0.01	0.03	<0.01	<0.01	0.02	<0.002	<20	<1	47.8	99.65	6	<1	<0.2	0.1
REP 263164	QC																				
263167	Drill Core	1.30	6.33	0.96	0.48	18.49	27.82	0.02	0.24	0.05	0.08	0.03	< 0.002	<20	<1	45.2	99.68	24	<1	2.7	0.3
REP 263167	QC																				
263174	Drill Core	2.49	60.95	19.54	3.14	1.44	4.29	7.26	1.32	0.33	0.08	0.04	0.006	<20	4	1.4	99.84	183	2	1.8	0.1
REP 263174	QC																				
263178	Drill Core	2.57	58.12	20.58	3.62	1.58	5.21	7.17	1.29	0.35	0.10	0.04	< 0.002	<20	5	1.6	99.83	190	1	2.2	0.1
REP 263178	QC		58.23	20.49	3.62	1.57	5.18	7.19	1.30	0.35	0.09	0.04	0.002	<20	4	1.8	99.82	190	3	2.1	0.1
263199	Drill Core	2.24	72.29	14.09	1.68	0.60	0.72	2.38	6.60	0.18	0.06	0.02	<0.002	<20	3	1.2	99.86	623	<1	0.9	0.3
REP 263199	QC												-								
263209	Drill Core	2.76	73.05	14.10	1.45	0.49	0.58	2.71	6.43	0.20	0.06	<0.01	<0.002	<20	2	0.8	99.87	570	<1	0.8	0.2
REP 263209	QC																				
263213	Drill Core	2.01	73.60	13.76	1.29	0.65	0.44	2.86	6.21	0.19	0.06	<0.01	<0.002	<20	1	0.8	99.88	503	<1	0.7	0.2
REP 263213	QC		73.20	14.01	1.28	0.66	0.44	2.92	6.31	0.19	0.06	<0.01	<0.002	<20	1	0.8	99.89	498	<1	0.7	0.2
263224	* Drill Core	1.73	73.51	14.05	1.86	0.61	0.62	2.28	6.73	0.15	0.06	0.01	<0.002	<20	4	0.0	99.89	483	2	0.4	0.3
REP 263224	QC																				
Core Reject Duplicates																					

ary reports are unsigned and should be used for refe nce only ed prior to the date on this certificate. Signa es final approval; pre

179

Part:

VAN14001455.1

1 of 4

Assessment Re	port for Athabasca	Minerals Inc.'s Richards	son Property, Nort	heastern Alberta
			Client:	Athabasca Minerals Inc.
				9524 27 Ave

cmel abs™			Edmonton AB T6N 1B2 CANADA	
veritas Group Company	www.acmelab.com	Project:	Athabasca Testing	
al Laboratories (Vancouver) Ltd.		Report Date:	May 29, 2014	
essy St Vancouver BC V6P 6E5 C	ANADA			

Acme Analytica 9050 Shaughnessy St V PHONE (604) 253-3158

QUALITY CONTROL REPORT

A Bureau

Page: 1 of 3

6.3 132.0

LF200

Zr

ppm

175.4

83.6

0.1

LF200 LF200

ppm

0.1

80.1

45.8

24.2

Y La

ppm

0.1

19.1

19.0

6.8

LF200

Ce

ppm

0.1

158.4

95.1 10.41

42.9

LF200

Pr

ppm

0.02

19.38

4.58

Part: 2 of 4 VAN14001455.1

LF200

ppm

0.05

6.41

2.79

LF200 LF200

Gd ppm 0.05

7.09

4.49

1.95

Eu

ppm

0.02

0.84

0.70

0.43

LF200

Nd Sm

ppm

0.3

66.1 10.89

35.8

14.7

	Method	LF200	LF200	LF200	LF200	LF200	LF200	LF200	LF200	LF200	LF200	LF200
	Analyte	Ga	Hf	Nb	Rb	Sn	Sr	Та	Th	U	V	W
	MDI	ppm 0.5	ρρm 0.1	ppm 0.1	ppm 0.1	ppm 1	ppm 0.5	ppm 0.1	ppm 0.2	ppm 0.1	ppm	ppm 0.5
263142	Drill Core	22.5	5.8	8.6	269.4	3	105.2	0.4	44.5	6.9	24	<0.5
263194	Drift Core	16.5	4.2	3.8	181.1	<1	116.3	0.2	28.2	4.4	<8	6.3
263223	Drill Core	15.1	3.3	3.8	205.5	1	100.7	0.2	10.5	8.0	<8	<0.5
Pulp Duplicates												
263107	Drill Core	17.4	6.0	10.3	190.3	3	505.3	0.5	46.8	4.2	36	<0.5
REP 263107	QC	16.7	6.7	9.5	184.9	3	509.4	0.5	52.7	4.5	37	<0.5
263118	Drill Core	<0.5	0.2	0.5	4.7	<1	56.5	<0.1	0.6	1.7	12	<0.5

263107	Drill Core	17.4	6.0	10.3	190.3	3	505.3	0.5	46.8	4.2	36	<0.5	211.9	11.6	69.3	124.8	12.12	41.1	5.99	1.19	4.09
REP 263107	QC	16.7	6.7	9.5	184.9	3	509.4	0.5	52.7	4.5	37	<0.5	228.7	12.5	71.1	127.1	12.59	41.3	5.99	1.10	4.30
263118	Drill Core	<0.5	0.2	0.5	4.7	<1	56.5	<0.1	0.6	1.7	12	<0.5	8.4	4.4	3.8	5.2	0.67	2.6	0.49	0.16	0.66
REP 263118	QC																				
263160	Drill Core	11.5	0.1	2.0	204.7	1	54.9	0.3	2.2	0.6	<8	<0.5	3.0	2.2	6.7	9.9	1.16	4.1	0.54	0.14	0.40
REP 263160	QC	11.9	0.2	1.8	214.0	3	55.4	0.1	1.9	0.6	<8	<0.5	3.6	1.9	6.7	10.3	1.11	3.7	0.53	0.11	0.43
263163	Drill Core	21.0	10.0	33.0	189.6	16	162.8	4.1	51.0	7.2	43	0.6	250.5	31.6	56.2	85.5	11.70	43.1	8.11	1.07	6.43
REP 263163	QC																				
263164	Drill Core	<0.5	<0.1	<0.1	0.7	6	44.3	0.3	<0.2	1.1	10	<0.5	1.5	1.5	1.7	2.4	0.22	0.9	0.16	0.03	0.21
REP 263164	QC																				
263167	Dritt Core	<0.5	0.2	0.7	6.5	<1	52.7	0.2	0.7	1.7	12	<0.5	8.7	4.6	3.8	6.8	0.78	3.1	0.68	0.12	0.69
REP 263167	QC																				
263174	Drill Core	35.4	7.1	8.8	38.9	2	344.0	0.5	66.3	5.6	32	<0.5	227.9	9.2	63.5	115.5	11.48	36.8	5.16	1.02	3.65
REP 263174	QC																				
263178	Drill Core	39.9	7.1	7.5	50.1	2	417.7	0.5	67.9	5.6	36	<0.5	239.7	9.3	85.3	151.3	15.68	51.7	7.72	1.17	4.89
REP 263178	QC	39.7	7.6	7.5	51.4	2	444.8	0.6	67.7	5.7	38	<0.5	263.0	9.8	82.7	150.6	15.04	48.9	7.23	1.20	5.04
263199	Drill Core	16.9	4.8	5.4	188.8	<1	121.0	0.2	32.5	3.9	<8	1.9	141.5	14.7	51.1	101.8	11.09	38.3	6.93	0.68	4.63
REP 263199	QC																				
263209	Drill Core	18.0	4.6	7.3	186.4	<1	117.1	0.1	36.8	4.9	17	<0.5	132.0	11.3	50.7	102.3	11.61	41.4	7.56	0.62	5.09
REP 263209	QC																				
263213	Drill Core	17.3	4.5	7.8	191.4	<1	111.2	0.3	35.3	4.2	10	<0.5	137.3	6.4	47.9	97.3	10.64	37.2	6.87	0.55	4.98
REP 263213	QC	16.8	4.3	7.7	186.6	<1	109.4	0.1	34.5	4.1	<8	<0.5	130.7	6.7	46.4	94.0	10.43	36.6	6.97	0.54	4.46
263224	Drill Core	16.5	4.3	4.9	199.3	<1	95.0	0.1	26.1	5.1	<8	<0.5	123.3	12.1	43.2	88.1	10.08	32.9	5.43	0.53	3.88
REP 263224	QC																				
Core Reject Duplicates																					

This report supersedes all previous preliminary and final reports with this file number dated prior to the date on this certificate. Signature indicates final approval; preliminary reports are unsigned and should be used for reference only.

Assess	ment Report for Athabasca Minerals Inc.'	<u>Richardson Property, North</u> Client:	Athabasca Minerals Inc.	
CAcme Labs [™]			Edmonton AB T6N 1B2 CANADA	
A Bureau Veritas Group Company	www.acmelab.com	Project:	Athabasca Testing	
Acme Analytical Laboratories (Vancouver) Ltd.		Report Date.	May 29, 2014	
9050 Shaughnessy St Vancouver BC V6P 6E5 0	CANADA			
PHONE (604) 253-3158		Page	1 of 3	Part:

QUALITY CONTROL REPORT

QUALITY C	ONTROL	REP	OR	Г					1						1	VA	N14	001	455.	1	
	Method Analyte Unit MDL	LF200 Tb ppm 0.01	LF200 Dy ppm 0.05	LF200 Ho ppm 0.02	LF200 Er ppm 0.03	LF200 Tm ppm 0.01	LF200 Yb ppm 0.05	LF200 Lu ppm 0.01	TC000 TOT/C % 0.02	TC000 TOT/S % 0.02	AQ200 Mo ppm 0.1	AQ200 Cu ppm 0.1	AQ200 Pb ppm 0.1	AQ200 Zn ppm 1	AQ200 Ni ppm 0.1	AQ200 As ppm 0.5	AQ200 Cd ppm 0.1	AQ200 Sb ppm 0.1	AQ200 Bi ppm 0.1	AQ200 Ag ppm 0.1	AQ200 Au ppb 0.5
263142	Drill Core	0.95	4.27	0.61	1.46	0.20	1.13	0.15	1.43	0.58	0.4	2.2	2.3	34	3.1	1.0	<0.1	<0.1	<0.1	<0.1	<0.5
263194	Drill Core	0.54	3.14	0.71	2.20	0.37	2.25	0.29	0.43	0.05	0.2	2.2	5.5	18	1.6	<0.5	<0.1	<0.1	<0.1	<0.1	<0.5
263223	Drill Core	0.27	1.48	0.22	0.65	0.09	0.50	0.08	0.06	0.06	1.6	2.8	5.8	9	0.7	<0.5	<0.1	<0.1	<0.1	<0.1	1.1
Pulp Duplicates																					
263107	Drill Core	0.49	2.46	0.41	1.06	0.14	0.98	0.14	0.04	0.06	2.0	4.4	14.9	50	6.5	<0.5	<0.1	<0.1	<0.1	<0.1	0.5
REP 263107	QC	0.53	2.37	0.39	1.05	0.15	0.95	0.14			1.8	4.7	14.6	51	6.1	<0.5	<0.1	<0.1	<0.1	<0.1	< 0.5
263118	Drill Core	0.10	0.59	0.11	0.33	0.04	0.23	0.03	12.41	0.18	0.5	10.0	4.2	2	8.1	<0.5	<0.1	<0.1	<0.1	<0.1	<0.5
REP 263118	QC								12.58	0.17											
263160	Drill Core	0.06	0.30	0.06	0.20	0.03	0.16	0.02	<0.02	0.14	<0.1	4.5	2.3	8	0.4	<0.5	<0.1	<0.1	<0.1	<0.1	<0.5
REP 263160	QC	0.06	0.32	0.04	0.20	0.03	0.18	0.02													
263163	Drill Core	1.08	6.02	1.11	3.35	0.58	3,68	0.54	0.04	0.02	0.3	9.5	6.2	58	6.1	2.6	<0.1	<0.1	0.2	<0.1	<0.5
REP 263163	QC								0.03	<0.02											
263164	Drill Core	0.02	0.18	0.03	0.13	< 0.01	0.09	0.01	13.89	0.09	0.5	1.7	2.0	2	3.0	<0.5	<0.1	<0.1	<0.1	<0.1	<0.5
REP 263164	QC										0.5	1.8	2.1	3	3.7	<0.5	<0.1	<0.1	<0.1	<0.1	<0.5
263167	Drill Core	0.10	0.53	0.12	0.29	0.05	0.28	0.04	12.74	0.28	0.9	9.3	5.5	3	12.1	1.0	<0.1	<0.1	<0.1	<0.1	<0.5
REP 263167	QC										0.9	9.4	5.5	3	12.1	1.0	<0.1	<0.1	<0.1	<0.1	1.2
263174	Drill Core	0.43	2.04	0.29	0.71	0.13	0.66	0.10	0.03	<0.02	0.1	0.4	8.7	24	3.1	<0.5	<0.1	<0.1	<0.1	<0.1	1.2
REP 263174	QC										<0.1	0.6	7.0	26	2.4	<0.5	<0.1	<0.1	<0.1	<0.1	<0.5
263178	Drill Core	0.54	2.07	0.30	0.85	0.11	0.65	0.11	0.03	<0.02	<0.1	2.0	8.0	31	3.0	<0.5	<0.1	<0.1	<0.1	<0.1	0.6
REP 263178	QC	0.54	2.27	0.30	0.70	0.10	0.74	0.12													
263199	Dritt Core	0.58	2.73	0.52	1.68	0.26	1.64	0.25	0.22	0.06	0.6	1.4	6.0	19	0.7	<0.5	<0.1	<0.1	<0.1	0.5	<0.5
REP 263199	QC								0.22	0.05											
263209	Drill Core	0.58	2.64	0.42	1.01	0.15	0.89	0.13	0.05	<0.02	0.2	0.8	6.5	20	0.6	<0.5	<0.1	<0.1	<0.1	<0.1	<0.5
REP 263209	QC										0.1	1.0	6.2	19	0.6	<0.5	<0.1	<0.1	<0.1	<0.1	<0.5
263213	Drill Core	0.50	1.83	0.21	0.48	0.06	0.43	0.07	0.05	<0.02	<0.1	1.3	5.9	15	0.4	<0.5	<0.1	<0.1	<0.1	<0.1	<0.5
REP 263213	QC	0.48	1.63	0.21	0.41	0.07	0.49	0.07													
263224	Drill Core	0.56	2.62	0.38	0.93	0.11	0.65	0.11	0.08	0.06	0.6	0.7	5.7	15	0.9	<0.5	<0.1	<0.1	<0.1	<0.1	<0.5
REP 263224	QC								0.08	0.05											
Core Reject Duplicates																					

181

3 of 4

AcmeLabs [™]	sment Report for Athabasca Minerals Inc.'s	s Richardson Property, North Client:	Athabasca Minerals Inc. 9524 27 Ave Edmonton AB T6N 1B2 CANADA
A Bureau Veritas Group Company	www.acmelab.com	Project:	Athabasca Testing
Acme Analytical Laboratories (Vancouver) Ltd.	CANADA	Report Date:	May 29, 2014

9050 Shaughnessy St Vancouver BC V6P 6E5 CANADA PHONE (604) 253-3158 QUALITY CONTROL REPORT

Page: 1 of 3

Part: 4 of 4 VAN14001455.1

	Method	AQ200	AQ200	AQ200
	Analyte	Hg	П	Se
	Unit	ppm	ppm	ppm
	MDL	0.01	0.1	0.5
263142	Drill Core	< 0.01	<0.1	<0.5
263194	Drill Core	<0.01	<0.1	<0.5
263223	Drill Core	<0.01	<0.1	<0.5
Pulp Duplicates			_	
263107	Drill Core	<0.01	0.5	<0.5
REP 263107	QC	<0.01	0.5	<0.5
263118	Drill Core	<0.01	<0.1	<0.5
REP 263118	QC			
263160	Drill Core	< 0.01	<0.1	<0.5
REP 263160	QC			
263163	Drill Core	<0.01	<0.1	<0.5
REP 263163	QC			
263164	Drill Core	<0.01	<0.1	<0.5
REP 263164	QC	<0.01	<0.1	<0.5
263167	Drill Core	<0.01	<0.1	<0.5
REP 263167	QC	<0.01	<0.1	<0.5
263174	Drill Core	<0.01	<0.1	<0.5
REP 263174	QC	<0.01	<0.1	<0.5
263178	Drill Core	<0.01	<0.1	<0.5
REP 263178	QC			
263199	Drill Core	<0.01	<0.1	<0.5
REP 263199	QC			
263209	Drill Core	<0.01	<0.1	<0.5
REP 263209	QC	<0.01	<0.1	<0.5
263213	Drill Core	<0.01	<0.1	<0.5
REP 263213	QC			
263224	Drill Core	<0.01	<0.1	<0.5
REP 263224	QC			-
Core Reject Duplicates				

This report superandes all previous preliminary and final reports with this file number dated prior to the date on this certificate. Signature indicates final approval; preliminary reports are unsigned and should be used for reference on

9524 27 Ave
Edmonton AB T6N 1B2 CANADA
Athabasca Testing
ate: May 29, 2014

PHONE (604) 253-3156	Page:	2 of 3	Part:	1 of 4
QUALITY CONTROL REPORT			VAN14001455.1	

		WGHT	LF200	LF200	LF200	LF200	LF200	LF200	LF200	LF200	LF200										
		Wgt	SIO2	AI203	Fe2O3	MgO	CaO	Na2O	K20	TIO2	P205	MnO	Cr203	NI	Sc	LOI	Sum	Ba	Be	Co	Cs
		kg	%	%	%	%	%	%	%	%	%	%	%	ppm	ppm	%	%	ppm	ppm	ppm	ppm
		0.01	0.01	0.01	0.04	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.002	20	1	-5.1	0.01	1	1	0.2	0.1
263124	Drill Core	1.13	2.30	0.54	0.31	20.33	29.49	0.01	0.14	0.03	0.02	0.02	<0.002	<20	<1	46.5	99.65	17	<1	0.5	0.3
DUP 263124	QC		2.28	0.54	0.31	20.19	29.65	0.01	0.14	0.03	0.02	0.02	<0.002	<20	<1	46.5	99.65	17	<1	0.9	0.1
263162	Drill Core	1.08	69.02	14.04	3.26	1.97	0.37	2.68	6.01	0.35	0.17	0.04	0.005	<20	5	1.8	99.71	1662	<1	5.2	0.4
DUP 263162	QC		68.86	14.21	3.34	2.01	0.38	2.62	5.94	0.35	0.16	0.04	0.004	<20	5	1.8	99.72	1593	1	4.5	0.4
263200	Drill Core	2.26	72.64	13.95	1.59	0.57	0.57	2.55	6.62	0.19	0.06	0.02	< 0.002	<20	3	1.1	99.86	639	<1	0.8	0.2
DUP 263200	QC	1	72.48	14.15	1.64	0.59	0.57	2.54	6.52	0.19	0.06	0.02	<0.002	<20	3	1.1	99.86	620	<1	0.5	0.2
Reference Materials		1																			
STD DS10	Standard																				
STD DS10	Standard	-																			
STD DS10	Standard	1																			
STD DS10	Standard	1																			
STD DS10	Standard																				
STD GS311-1	Standard																				
STD GS311-1	Standard							_													
STD GS311-1	Standard																				
STD GS311-1	Standard	1																			
STD GS910-4	Standard				-																
STD GS910-4	Standard	1																			
STD GS910-4	Standard									-											
STD GS910-4	Standard																				
STD OREAS45EA	Standard																				
STD OREAS45EA	Standard																				
STD OREAS45EA	Standard														_		-				
STD OREAS45EA	Standard																				
STD OREAS45EA	Standard																				
STD SO-18	Standard		58.45	13.96	7.59	3.38	6.26	3.64	2.13	0.68	0.79	0.40	0.545	40	24	1.9	99.75	481	<1	26.1	6.2
STD SO-18	Standard		58.18	14.03	7.61	3.39	6.35	3.69	2.14	0.70	0.79	0.39	0.553	45	25	1.9	99.75	490	<1	24.5	6.5
STD SO-18	Standard	1	58.10	14.14	7.59	3.39	6.30	3.73	2.17	0.69	0.78	0.40	0.553	42	24	1.9	99.74	482	<1	25.5	6.9
STD SO-18	Standard		58.26	14.09	7.54	3.38	6.30	3.70	2.16	0.69	0.78	0.39	0.548	42	24	1.9	99.75	474	<1	24.0	7.0

This report supersedes all previous preliminary and final reports with this file number dated prior to the date on this certificate. Signature indicates final approval; preliminary reports are unsigned and should be used for reference only.

Acmel abs™		Client:	Athabasca Minera 9524 27 Ave Edmonton AB T6N 1B2 CA	als Inc. NADA	
A Bureau Veritas Group Company Acme Analytical Laboratories (Vancouver) Ltd.	www.acmelab.com	Project: Report Date:	Athabasca Testing May 29, 2014		
9050 Shaughnessy St Vancouver BC V6P 6E PHONE (604) 253-3158	5 CANADA	Page:	2 of 3	Part	2 0
QUALITY CONTROL RE	PORT		VAN	14001455.1	

		LF200																			
		Ga	Hf	Nb	Rb	Sn	Sr	Ta	Th	U	v	w	Zr	Y	La	Ce	Pr	Nd	Sm	Eu	Gd
		ppm																			
		0.5	0.1	0.1	0.1	1	0.5	0.1	0.2	0.1	8	0.5	0.1	0.1	0.1	0.1	0.02	0.3	0.05	0.02	0.05
263124	Drill Core	<0.5	0.3	3.4	4.2	<1	48.7	1.7	0.5	2.8	11	<0.5	9.8	4.2	2.7	4.2	0.50	2.3	0.45	0.10	0.50
DUP 263124	QC	< 0.5	0.3	2.9	4.2	<1	49.5	2.0	0.4	2.8	14	<0.5	7.8	4.2	2.7	3.9	0.49	1.9	0.43	0.11	0.55
263162	Drill Core	14.7	5.9	10.7	153.3	6	154.4	0.7	35.2	4.0	42	<0.5	194.9	14.4	45.3	59.1	9.59	32.2	4.98	0.81	3.37
DUP 263162	QC	13.7	5.7	10.4	153.5	6	149.9	0.6	34.8	3.9	47	<0.5	185.1	13.6	44.5	57.3	8.88	31.0	4.73	0.72	3.48
263200	Drill Core	16.8	4.6	5.2	185.4	<1	116.8	0.1	33.0	3.8	<8	<0.5	141.5	12.5	47.5	93.8	10.28	35.6	6.55	0.68	4.55
DUP 263200	QC	16.6	4.7	5.6	181.0	<1	125.5	<0.1	31.5	3.9	<8	<0.5	138.2	14.0	48.1	97.4	10.32	35.6	6.23	0.69	4.58
Reference Materials		1																			
STD DS10	Standard																				
STD DS10	Standard																				
STD DS10	Standard	1																			-
STD DS10	Standard	1							-												
STD DS10	Standard																				
STD GS311-1	Standard																				
STD GS311-1	Standard																				
STD GS311-1	Standard																				
STD GS311-1	Standard																				
STD GS910-4	Standard			_																	
STD GS910-4	Standard																				
STD GS910-4	Standard																				
STD GS910-4	Standard																				
STD OREAS45EA	Standard																				
STD OREAS45EA	Standard																				
STD OREAS45EA	Standard																				
STD OREAS45EA	Standard	1																			
STD OREAS45EA	Standard	1																			
STD SO-18	Standard	17.0	9.1	18.3	26.7	15	390.6	6.7	9.9	15.0	182	13.2	277.5	28.2	11.7	25.6	3.37	13.0	2.67	0.79	2.89
STD SO-18	Standard	16.1	8.8	18.1	25.8	14	391.1	6.4	9.5	15.0	187	12.1	271.2	28.1	12.0	25.5	3.14	12.3	2.79	0.78	2.80
STD SO-18	Standard	15.7	9.2	18.5	26.5	14	400.6	6.7	9.6	15.2	178	12.5	284.3	30.2	12.3	26.3	3.11	12.3	2.73	0.84	2.84
STD SO-18	Standard	15.5	8.7	17.7	26.5	14	402.4	6.4	9.9	15.1	177	13.9	273.7	28.4	12.7	24.9	3.16	12.2	2.59	0.85	2.84

This report supersedes all previous preliminary and final reports with this file number dated prior to the date on this certificate. Signature indicates final approval; preliminary reports are unsigned and should be used for reference or

Assessme	ent Report for Athabasca Minerals Inc.	's Richardson Property, North	eastern Alberta	
		Client:	Athabasca Minerals Inc. 9524 27 Ave	
✓ AcmeLabs [™]			Edmonton AB T6N 1B2 CANADA	
A Bureau Veritas Group Company	www.acmelab.com	Project:	Athabasca Testing	
Acme Analytical Laboratories (Vancouver) Ltd.		Report Date:	May 29, 2014	
9050 Shaughnessy St Vancouver BC V6P 6E5 CA	NADA			
PHONE (604) 253-3158		Page:	2 of 3	Part:

QUALITY CONTROL REPORT

		LF200	TC000	TC000	AQ200																
		Tb	Dy	Ho	Er	Tm	Yb	Lu	TOT/C	TOT/S	Mo	Cu	Pb	Zn	NI	As	Cd	Sb	BI	Ag	Au
		ppm	%	%	ppm	ppb															
		0.01	0.05	0.02	0.03	0.01	0.05	0.01	0.02	0.02	0.1	0.1	0.1	1	0.1	0.5	0.1	0.1	0.1	0.1	0.5
263124	Drill Core	0.08	0.52	0.10	0.30	0.05	0.29	0.04	12.99	0.09	1.3	3.5	1.8	7	9.5	<0.5	≤0.1	0.1	<0.1	<0.1	<0.5
DUP 263124	QC	0.06	0.44	0.09	0.29	0.04	0.24	0.03	13.00	0.11	1.2	3.6	1.8	7	10.0	<0.5	<0.1	<0.1	<0.1	<0.1	<0.5
263162	Drill Core	0.48	2.78	0.47	1.44	0.23	1.49	0.21	0.03	0.48	1.2	4.2	3,3	51	7.0	0.8	<0.1	<0.1	<0.1	<0.1	<0.5
DUP 263162	QC	0.48	2.49	0.47	1.37	0.24	1.57	0.23	0.03	0.47	1.0	4.0	3.4	51	6.6	0.8	<0.1	<0.1	<0.1	<0.1	<0.5
263200	Drill Core	0.57	2.65	0.44	1.36	0.25	1.55	0.24	0.08	0.06	0.2	0.8	5.4	20	0.6	<0.5	<0.1	<0.1	<0.1	<0.1	<0.5
DUP 263200	QC	0.58	2.83	0.49	1.53	0.25	1.65	0.27	0.08	0.07	0.2	0.8	5.2	20	0.8	<0.5	<0.1	<0.1	<0.1	<0.1	<0.5
Reference Materials																					-
STD DS10	Standard										12.8	153.6	144.8	346	72.8	43.6	2.7	7.2	11.8	2.1	61.4
STD DS10	Standard										14.1	166.9	166.4	390	81.8	51.1	2.7	8.3	13.8	2.4	66.1
STD DS10	Standard										15.1	161.8	149.6	365	78.7	46.5	2.8	9.4	11.8	2.1	73,9
STD DS10	Standard										11.1	157.6	145.4	361	74.5	41.6	2.4	8.0	11.8	1.9	47.5
STD DS10	Standard										13.2	158.4	143.1	352	74.8	43.0	2.5	7.3	11.9	1.8	51.0
STD GS311-1	Standard								1.03	2.37										-	
STD GS311-1	Standard								0.99	2.33											
STD GS311-1	Standard								1.05	2.41											
STD GS311-1	Standard					_			1.03	2.33											
STD GS910-4	Standard								2.60	8.05											
STD GS910-4	Standard								2.56	8.43											
STD GS910-4	Standard								2.68	8.03											
STD GS910-4	Standard								2.63	8.32											
STD OREAS45EA	Standard										1.5	662.2	16.0	29	367.9	8.8	<0.1	0.3	0.3	0.3	55.2
STD OREAS45EA	Standard										1.7	675.7	15.8	29	385.5	10.5	<0.1	0.4	0.3	0.3	50.1
STD OREAS45EA	Standard										1.9	736.6	15.9	33	409.0	12.3	<0.1	0.4	0.3	0.3	54.4
STD OREAS45EA	Standard										1.3	635.6	15.4	27	354.7	8.3	<0.1	0.3	0.3	0.3	58.1
STD OREAS45EA	Standard										1.3	664.3	14.8	26	365.3	9.1	<0.1	0.3	0.3	0.2	60.2
STD SO-18	Standard	0.47	2.70	0.59	1.63	0.24	1.75	0.27													
STD SO-18	Standard	0.48	2.81	0.59	1.62	0.25	1.61	0.24													
STD SO-18	Standard	0.49	3.08	0.53	1.74	0.25	1.67	0.28													
STD SO-16	Standard	0.47	2.65	0.59	1.69	0.26	1.75	0.26													

This report supersedes all previous proliferings and final reports with this file number dated prior to the date on this certificate. Signature indicates final approval; preliminary reports are unsigned and should be used for reference only

185

3 of 4

VAN14001455.1

A bureau verita's Group Company www.acmeiab.com Project: Athabasca Testing Acme Analytical Laboratories (Vancouver) Ltd Report Date: May 29, 2014		Acme Analytical Laboratories (Vancouver) Ltd. 9050 Shaughnessy St Vancouver BC V6P 6E5	CANADA	Project: Report Date:	Athabasca Testing May 29, 2014		
---	--	---	--------	--------------------------	-----------------------------------	--	--

		Hg	Π	Se
		ppm	ppm	ppm
		0.01	0.1	0.5
263124	Drill Core	<0.01	<0.1	<0.5
DUP 263124	QC	<0.01	<0.1	0.5
263162	Drill Core	<0.01	<0.1	<0.5
DUP 263162	QC	<0.01	<0.1	<0.5
263200	Drill Core	<0.01	<0.1	<0.5
DUP 263200	QC	<0.01	<0.1	<0.5
Reference Materials				
STD DS10	Standard	0.26	4.6	2.2
STD DS10	Standard	0.32	5.5	2.8
STD DS10	Standard	0.31	5.2	2.3
STD DS10	Standard	0.29	4.8	1.8
STD DS10	Standard	0.32	4.7	2.2
STD GS311-1	Standard			
STD GS311-1	Standard			
STD GS311-1	Standard			
STD GS311-1	Standard			
STD GS910-4	Standard			
STD GS910-4	Standard		_	
STD GS910-4	Standard	T		
STD GS910-4	Standard			
STD OREAS45EA	Standard	0.01	<0.1	<0.5
STD OREAS45EA	Standard	0.01	<0.1	0.9
STD OREAS45EA	Standard	0.01	<0.1	1.5
STD OREAS45EA	Standard	<0.01	<0.1	<0.5
STD OREAS45EA	Standard	<0.01	<0.1	<0.5
STD SO-16	Standard	T		
STD SO-18	Standard			
STD SO-18	Standard			
STD SO-18	Standard			

This report supersides all previous preliminary and final reports with this file number dated prior to the date on this certificate. Signature indicates final approval; preliminary reports are unagreed and should be used for reference only.

A.		Asses	sment	Report	for Atl	habaso	a Mine	erals Ir	ic.'s Ri	ichards	son Pro	Clien	Northe t:	Atha 9524	abasc 27 Ave	ta a Mine	erals I	nc.			
A Bureau Verita Acme Analytical Lab 9050 Shaughnessy S	nelat as Group Company oratories (Vancouv St Vancouver BC	Ver) Ltd. V6P 6E5	CANAE	www A	.acmela	b.com						Project Report	: Date:	Athab May 2	asca Tes 9, 2014	ting	CANADA				
PHONE (604) 253-3	158											Page:		3 of 3					Part	1 of	4
QUALITY (CONTROL	REF	OR	Т												VA	N14	001	455.	1	
		WGHT	LF200	LF200	LF200	LF200	LF200	LF200	LF200	LF200	LF200	LF200	LF200	LF200	LF200	LF200	LF200	LF200	LF200	LF200	LF200
		Wgt	SiO2	AI203	Fe2O3	MgO	CaO	Na2O	K20	TIO2	P205	MnO	Cr203	NI	Sc	LOI	Sum	Ba	Be	Co	C
		kg	%	%	%	%	%	%	%	%	%	%	%	ppm	ppm	%	%	ppm	ppm	ppm	ppm
		0.01	0.01	0.01	0.04	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.002	20	1	-5,1	0.01	1	1	0.2	0.1
STD SO-18	Standard		58.20	14.08	7.61	3.38	6.37	3.66	2.13	0.69	0.78	0.39	0.541	39	24	1.0	99.74	494	<1	23.4	6.6
STD SO-18	Standard		58.28	13.99	7.59	3.39	6.30	3.73	2.14	0.69	0.78	0.39	0.549	42	24	1.9	99.75	481	2	23.2	6.3
STD SO-18	Standard		58.32	14.03	7.56	3.36	6.31	3.72	2.13	0.69	0.77	0.39	0.541	41	24	1.9	99.74	501	2	26.1	6.9
STD SO-18	Standard		58.18	14.14	7.50	3.42	6.40	3.67	2.12	0.69	0.77	0.39	0.545	40	24	1.9	99.73	501	<1	26.2	7.5
STD GS311-1 Expecte	d																				
STD GS910-4 Expecte	d																				
STD DS10 Expected																					
STD OREAS45EA Exp	ected																				
STD SO-18 Expected			58.47	14.23	7.67	3.35	6.42	3.71	2.17	0.69	0.83	0.39	0.55	44	25			514		26.2	7.1
BLK	Blank																				
BLK	Blank																				
BLK	Blank																				
BLK	Blank																				
BLK	Blank																				
BLK	Blank	1																			
BLK	Blank																				

<0.01 <0.002

<0.01 <0.002

<0.01 <0.002

0.09 <0.002

0.09 <0.002

<0.01 <0.01 <0.002

<20

<20

<20

<20

<20

<20

0.0 <0.01

0.0 0.01

0.0 0.05

0.9 99.74

0.9 99.74

0.0 <0.01

<1

<1

<1

<1

5

5

This report supersedes all previous preliminary and final reports with this file number dated prior to the date on this certificate. Signature indicates final approval; preliminary reports are unsigned and should be used for reference only.

<0.04

<0.04

<0.04

<0.04

3.28

3.32

< 0.01

<0.01 <0.01

< 0.01

<0.01 <0.01

1.06

1.08

< 0.01

< 0.01

3.52

3.57

< 0.01

<0.01

<0.01

3.57

3.57

< 0.01

<0.01

<0.01

3.61

3.53

<0.01 <0.01

<0.01

<0.01

<0.01

0.38

0.38

<0.01

< 0.01

<0.01

<0.01

0.15

0.16

BLK

BLK

BLK

BLK

BLK

BLK

G1

G1

Prep Wash

Blank

Blank

Blank

Blank

Blank

Blank

Prep Blank

Prep Blank

<0.01 <0.01

<0.01 <0.01

0.01 <0.01

<0.01 <0.01

67.31 15.89

67.15 15.99

187

<1 <0.2

<1 <0.2

<1 <0.2

<1 <0.2

3 4.0

3

3.9

<1

<1

<1

<1

975

977

<0.1

<0.1

<0.1

<0.1

4.9 5.3

Acr	ne l at	Assess	sment	Report	for Atl	habaso	<u>a Mine</u>	erals In	ic.'s Ri	chards	ion Pro	Client	Northe	Atha 9524 2 Edmo	Alber abasca 27 Ave nton AB 1	ta a Mine	erals la	nc.			
A Bureau Verin Acme Analytical Lal 9050 Shaughnessy PHONE (604) 253-3	tas Group Company boratories (Vancouv St Vancouver BC V 3158	ver) Ltd. /6P 6E5	CANAE	www.	acmela	ıb.com						Project Report Page:	: Date:	Athab May 2 3 of 3	asca Tes 9, 2014	ting			Par	t: 20	f 4
QUALITY	CONTROL	REP	OR	Г												VA	N14	001	455.	1	
		LF200	LF200	LF200	LF200	LF200	LF200	LF200	LF200	LF200	LF200	LF200	LF200	LF200	LF200	LF200	LF200	LF200	LF200	LF200	LF200
		Ga	H	Nb	Rb	Sn	Sr	Ta	Th	U	v	w	Zr	Y	La	Ce	Pr	Nd	Sm	Eu	Gd
		ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
		0.5	0.1	0.1	0.1	1	0.5	0.1	0.2	0,1	8	0,5	0.1	0.1	0.1	0.1	0.02	0.3	0.05	0.02	0.05
STD SO-18	Standard	16.0	8.9	19.0	26.7	13	395.7	6.6	9.3	14.8	178	14.1	276.0	26.9	11.7	24.3	3.18	12.0	2.55	0.85	2.85
STD SO-18	Standard	15.7	8.9	18.0	26.1	13	409.7	6.2	9.1	14.8	179	14.8	272.8	27.0	12.0	24.5	3.03	13.3	2.55	0.81	2.80
STD SO-18	Standard	17.6	9.7	19.5	27.6	14	416.2	7.0	9.7	15.7	178	13.6	294.0	29.5	12.5	27.4	3.21	14.0	2.80	0.91	3.20

STD SO-18	Standard	17.6	9.7	19.5	27.6	14	416.2	7.0	9.7	15.7	178	13.6	294.0	29.5	12.5	27.4	3.21	14.0	2.80	0.91	3.20
STD SO-18	Standard	18.0	9.6	19.6	28.3	14	418.2	7.0	9.8	15.8	177	14.4	289.2	30.9	13.9	26.7	3.30	12.9	2.99	0.85	3.23
STD GS311-1 Expected																					
STD GS910-4 Expected																					
STD DS10 Expected																					
STD OREAS45EA Expected																					
STD SO-18 Expected		17.6	9.8	19.3	28.7	15	407.4	7.4	9.9	16.4	200	14.8	290	29	12.3	27.1	3.45	14	3	0.89	2.93
BLK	Blank																				
BLK	Blank																				
BLK	Blank																				
BLK	Blank																				
BLK	Blank																				
BLK	Blank							-													
BLK	Blank																				
BLK	Blank	<0.5	<0.1	<0.1	0.2	2	<0.5	<0.1	<0.2	<0.1	<8	<0.5	<0.1	<0.1	<0.1	<0.1	<0.02	<0.3	<0.05	<0.02	<0.05
BLK	Blank	<0.5	< 1 1	<0.1	<0.1	<1	<0.5	<0.1	<0.2	<0.1	<8	<0.5	0.2	<0.1	<0.1	<0.1	<0.02	<0.3	<0.05	<0.02	<0.05
BLK	Blank	<0.5	<0.1	<0.1	<0.1	<1	<0.5	<0.1	<0.2	<0.1	<8	<0.5	0.3	<0.1	0.1	0.1	<0.02	<0.3	< 0.05	<0.02	<0.05
BLK	Blank																				
BLK	Blank																				
BLK	Blank	<0.5	<0.1	<0.1	<0.1	<1	<0.5	<0.1	<0.2	<0.1	<8	<0.5	1.0	<0.1	<0.1	<0.1	<0.02	< 0.3	<0.05	<0.02	<0.05
Prep Wash																					
G1	Prep Blank	19.8	4.4	22.3	131.6	2	756.6	1.4	11.2	3.9	46	<0.5	150.8	15.7	35.9	66.7	7.16	26.5	4.45	1.09	3.82
G1	Prep Blank	19.3	4.1	21.3	132.1	1	759.6	1.3	10.6	3.4	46	<0.5	138.0	16.2	36.2	66.3	7.09	26.2	4.50	1.10	3.65

This report superasedes all previous preliminary and final reports with this file number dated prior to the date on this certificate. Signature indicates final approval; preliminary reports are unaigned and should be used for reference only.

	Short Report of Allabadda Innorato into, s	Client:	Athabasca Minerals Inc. 9524 27 Ave	
Acme Labs [™]			Edmonton AB T6N 1B2 CANADA	
A Bureau Veritas Group Company	www.acmelab.com	Project:	Athabasca Testing	
Acme Analytical Laboratories (Vancouver) Ltd.		Report Date:	May 29, 2014	
9050 Shaughnessy St Vancouver BC V6P 6E5	CANADA			
PHONE (604) 253-3158		Page:	3 of 3	Part:

QUALITY CONTROL REPORT

		LF200	LF200	LF200	LF200	LF200	LF200	LF200	TC000	TC000	AQ200	AQ200	AQ200	AQ200	AQ200	AQ200	AQ200	AQ200	AQ200	AQ200	AQ200
		Tb	Dy	Но	Er	Tm	Yb	Lu	TOT/C	TOT/S	Mo	Cu	Pb	Zn	Ni	As	Cd	Sb	Bi	Ag	Au
		ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppb
		0.01	0.05	0.02	0.03	0.01	0.05	0.01	0.02	0.02	0.1	0.1	0.1	1	0.1	0.5	0.1	0.1	0.1	0.1	0.5
STD SO-18	Standard	0.46	2.78	0.56	1.69	0.25	1.53	0.25													
STD SO-18	Standard	0.47	2.80	0.59	1.70	0.27	1.65	0.27													
STD SO-18	Standard	0.51	3.01	0.64	1.88	0.28	1.77	0.27													
STD SO-18	Standard	0.52	2.99	0.61	1.78	0.28	1.81	0.27		-	_										
STD GS311-1 Expected									1.02	2.35											
STD GS910-4 Expected									2.65	8.27											
STD DS10 Expected											14.69	154.61	150.55	370	74.6	43.7	2.49	8.23	11.65	2.02	91.9
STD OREAS45EA Expected											1.39	709	14.3	28.9	381	9.1	0.02	0.2	0.26	0.26	53
STD SO-18 Expected		0.53	3	0.62	1.84	0.27	1.79	0.27													
BLK	Blank								<0.02	< 0.02											
BLK	Blank								<0.02	<0.02											
BLK	Blank								<0.02	<0.02											
BLK	Blank								<0.02	<0.02											
BLK	Blank										<0.1	<0.1	<0.1	<1	<0.1	<0.5	<0.1	<0.1	<0.1	<0.1	<0.5
BLK	Blank										<0.1	<0.1	<0.1	<1	0.1	<0.5	<0.1	<0.1	<0.1	<0.1	<0.5
BLK	Blank										<0.1	<0.1	<0.1	<1	<0.1	<0.5	<0.1	<0.1	<0.1	<0.1	<0.5
BLK	Blank	<0.01	<0.05	<0.02	< 0.03	< 0.01	<0.05	< 0.01													
BLK	Blank	<0.01	<0.05	<0.02	< 0.03	<0.01	<0.05	<0.01													
BLK	Blank	<0.01	<0.05	<0.02	< 0.03	<0.01	<0.05	<0.01				_				_					
BLK	Blank										<0.1	<0.1	<0.1	<1	<0.1	<0.5	<0.1	<0.1	<0.1	<0.1	<0.5
BLK	Blank										<0.1	<0.1	<0.1	<1	<0.1	<0.5	<0.1	<0.1	<0.1	<0.1	<0.5
BLK	Blank	< 0.01	<0.05	<0.02	< 0.03	<0.01	<0.05	<0.01													
Prep Wash																					
G1	Prep Blank	0.52	3.07	0.58	1.79	0.30	1.87	0.32	0.04	<0.02	<0.1	3.1	3.5	44	2.9	<0.5	<0.1	<0.1	*0.1	-0.1	2.2
G1	Prep Blank	0.51	2.72	0.50	1.64	0.28	2.00	0.30	0.03	<0.02	<0.1	3.5	3.9	48	2.9	<0.5	<0.1	<0.1	<0.1	<0.1	1.6

189

3 of 4

VAN14001455.1

Assess	nent Report for Athabasca Minerals Inc.'s	Richardson Property, North	heastern Alberta
		Client:	Athabasca Minerals Inc. 9524 27 Ave
Acme Labs [™]			Edmonton AB T6N 1B2 CANADA
A Bureau Veritas Group Company	www.acmelab.com	Project:	Athabasca Testing

Report Date:

Page:

May 29, 2014

3 of 3

Acme Analytical Laboratories (Vancouver) Ltd. 9050 Shaughnessy St Vancouver BC V6P 6E5 CANADA PHONE (604) 253-3158

QUALITY CONTROL REPORT

		AQ200	AQ200	AQ200
		Hg	П	Se
		ppm	ppm	ppm
		0.01	0.1	0.5
STD SO-18	Standard			
STD SO-18	Standard			
STD SO-18	Standard			
STD SO-18	Standard			
STD GS311-1 Expected				
STD GS910-4 Expected				
STD DS10 Expected		0.3	5.1	2.3
STD OREAS45EA Expected			0.072	0.6
STD SO-18 Expected				
BLK	Blank	<0.01	<0.1	<0.5
BLK	Blank	<0.01	<0.1	<0.5
BLK	Blank	<0.01	<0.1	<0.5
BLK	Blank			
BLK	Blank			
BLK	Blank			
BLK	Blank	<0.01	<0.1	<0.5
BLK	Blank	<0.01	<0.1	<0.5
BLK	Blank			
Prep Wash				
G1	Prep Blank	<0.01	0.3	<0.5
G1	Prep Blank	<0.01	0.3	<0.5

This report supersedes all previous preliminary and final reports with this file number dated prior to the date on this certificate. Signature indicates final approval; preliminary reports are unsigned and should be used for reference only.

190

Part: 4 of 4

VAN14001455.1

Appendix 4 – Aggregate Test Results

Appendix 4a – AMEC Aggregate Test Results

Assessment Report for Athabasca Minerals Inc.'s Richardson Property, Northeastern Alberta Aggregate Testing Sample List

Sample Number	Drillhole	From	То	Туре	Size	Comments
288401	GNA-16	47.8	81.37	Aggregate	1/2 core	Winnepegosis
288402	GNA-10	21.34	64.17	Aggregate	1/4 core	Winnepegosis
	GNA-10	76.12	101	Aggregate	1/4 core	Granite
200402	14RLD001	96.63	106	Aggregate	1/4 core	Granite
288403	14RLD002	93.1	99	Aggregate	1/4 core	Granite
	14RLD003	85.96	96	Aggregate	1/4 core	Granite
288404	14RLD001	31.33	76.72	Aggregate	1/2 core	Winnepegosis
288405	14RLD002	30	76.96	Aggregate	1/2 core	Winnepegosis
24-	GNA-10	64.17	75.6	Aggregate	1/2 core	Contact Rapids
	14RLD001	76.72	92.48	Aggregate	1/2 core	Contact Rapids
	14RLD002	76.96	90.76	Aggregate	1/2 core	Contact Rapids
	14RLD003	72.66	82.45	Aggregate	1/2 core	Contact Rapids
288406	14RLD004	72.01	83.76	Aggregate	1/2 core	Contact Rapids
	14RLD005	76.3	84.39	Aggregate	1/2 core	Contact Rapids
	14RLD006	83.01	95.76	Aggregate	1/2 core	Contact Rapids
	14RLD007	83.6	97.96	Aggregate	1/2 core	Contact Rapids
	14RLD008	72.94	81.18	Aggregate	1/2 core	Contact Rapids
288407	14RLD003	39	72.66	Aggregate	1/2 core	Winnepegosis
288408	14RLD004	30	72.01	Aggregate	1/2 core	Winnepegosis
	14RLD004	84.98	96	Aggregate	1/4 core	Granite
288400	14RLD005	86.88	117.05	Aggregate	1/4 core	Granite
288409	14RLD007	98.65	147	Aggregate	1/4 core	Granite
l	14RLD008	83	89	Aggregate	1/4 core	Granite
288410	14RLD005	35	76.3	Aggregate	1/2 core	Winnepegosis
288411	14RLD006	41.45	83.01	Aggregate	1/2 core	Winnepegosis
288412	14RLD007	39	83.6	Aggregate	1/2 core	Winnepegosis
288413	14RLD008	64.92	72.94	Aggregate	1/2 core	Winnepegosis
288414	GNA-10	21.34	64.17	Aggregate	1/4 core	Winnepegosis Duplicate
					-	-

AMEC Environment & Infrastructure a Division of AMEC Americas Limited

Client: Athabasca Minerals Inc Project No: CA18239 Project: Aggregate Qualification Testing Sample ID: 288401 Date: 20-May-14 Technician: JS

AMEC Environment & Infrastructure a Division of AMEC Americas Limited

Client: Athabasca Minerals Inc Project No: CA18239 Project: Aggregate Qualification Testing Sample ID: 288402 Date: 20-May-14 Technician: JS

AMEC Environment & Infrastructure a Division of AMEC Americas Limited

Client: Athabasca Minerals Inc Project No: CA18239 Project: Aggregate Qualification Testing Sample ID: 288403 Date: 20-May-14 Technician: JS

AMEC Environment & Infrastructure a Division of AMEC Americas Limited

Client: Athabasca Minerals Inc Project No: CA18239 Project: Aggregate Qualification Testing Sample ID: 288404 Date: 20-May-14 Technician: JS

AMEC Environment & Infrastructure a Division of AMEC Americas Limited

Client: Athabasca Minerals Inc Project No: CA18239 Project: Aggregate Qualification Testing Sample ID: 288405 Date: 20-May-14 Technician: JS

AMEC Environment & Infrastructure a Division of AMEC Americas Limited

Client: Athabasca Minerals Inc Project No: CA18239 Project: Aggregate Qualification Testing Sample ID: 288406 Date: 20-May-14 Technician: JS

AMEC Environment & Infrastructure a Division of AMEC Americas Limited

Client: Athabasca Minerals Inc Project No: CA18239 Project: Aggregate Qualification Testing Sample ID: 288407 Date: 20-May-14 Technician: JS

AMEC Environment & Infrastructure a Division of AMEC Americas Limited

Client: Athabasca Minerals Inc Project No: CA18239 Project: Aggregate Qualification Testing Sample ID: 288408 Date: 20-May-14 Technician: JS

AMEC Environment & Infrastructure a Division of AMEC Americas Limited

Client: Athabasca Minerals Inc Project No: CA18239 Project: Aggregate Qualification Testing Sample ID: 288409 Date: 20-May-14 Technician: JS

AMEC Environment & Infrastructure a Division of AMEC Americas Limited

Client: Athabasca Minerals Inc Project No: CA18239 Project: Aggregate Qualification Testing Sample ID: 288410 Date: 20-May-14 Technician: JS

AMEC Environment & Infrastructure a Division of AMEC Americas Limited

Client: Athabasca Minerals Inc Project No: CA18239 Project: Aggregate Qualification Testing Sample ID: 288411 Date: 20-May-14 Technician: JS

Assessment Report for Athabasca Minerals Inc.'s Richardson Property, Northeastern Alberta

Atterberg Limits Test (ASTM D4318 - dry method)

AMEC Environment & Infrastructure a Division of AMEC Americas Limited

Client: Athabasca Minerals Inc Project No: CA18239 Project: Aggregate Qualification Testing Sample ID: 288412 Date: 20-May-14 Technician: JS

AMEC Environment & Infrastructure a Division of AMEC Americas Limited

Client: Athabasca Minerals Inc Project No: CA18239 Project: Aggregate Qualification Testing Sample ID: 288413 Date: 20-May-14 Technician: JS

TO: Athabasca Minerals Inc. 9524 – 27 Ave Edmonton , AB T6N 1B2	OFFICE: PROJECT NO: CC:	Calgary CA18239
PROJECT: Aggregate Qualification Testing		

SOURCE: Athabasca Minerals	SAMPLED ID:	288401	SAMPLED BY:	Client
DATE SAMPLED: April 30, 2014	DATE RECEIVED:	May 8, 2014	DATE TESTED:	May 13, 2014

	MATERIAL GRADIN	IG: <u>2</u>	
ACTUAL	SIEVE SIZES	AMOUNT	
- 50 mm	+ 37.5 mm		5029.85 g
- 37.5 mm	+ 25 mm		5020.05 g
\$ 	h		
NO. OF REVOLUTIONS	1000	TOTAL SAMPLE	10049.9 g
NO. OF SPHERES	12	+ #12 MATERIAL AFTER	7212.7 g
WT. OF SPHERES	4979.25 g	- #12 MATERIAL AFTER	2837.2 g
LOSS AT 100 REVOLUTIO	NS N/A	LOSS AT 500 REVOLUTIONS	N/A
LOSS AT 200 REVOLUTIO	NS N/A	LOSS AT 1000 REVOLUTIONS	28.2 %

TESTED IN ACCORDANCE WITH CSA A23.2 - 17A (ASTM C535)

COMMENTS:

AMEC Environment & Infrastructure a Division of AMEC Americas Limited

TO: Athabasca Minerals Inc. 9524 – 27 Ave	OFFICE: PROJECT NO:	Calgary CA18239	
Edmonton, AB T6N 1B2	CC:		
PROJECT: Aggregate Qualification Testing			

SOURCE: Athabasca Minerals	SAMPLED ID:	288402	SAMPLED BY:	Client
DATE SAMPLED: April 30, 2014	DATE RECEIVED:	May 8, 2014	DATE TESTED:	May 13, 2014

MATERIAL GRADING:3					
ACTUAL	SIEVE SIZES		AMOUNT		
- 37.5 mm	+ 25 mm			4969.4 g	
- 25 mm	+ 19 mm			<u>5</u> 044.5 g	
NO. OF REVOLUTIONS	1000		TOTAL SAMPLE	10013.9 g	
NO. OF SPHERES	12		+ #12 MATERIAL AFTER	7909.8 g	
WT. OF SPHERES	4979.80 g		- #12 MATERIAL AFTER	2104.1 g	
LOSS AT 100 REVOLUTIC	INS	N/A	LOSS AT 500 REVOLUTIONS	N/A	
LOSS AT 200 REVOLUTIC	NS	N/A	LOSS AT 1000 REVOLUTIONS	21.0%	

TESTED IN ACCORDANCE WITH CSA A23.2 - 17A (ASTM C535)

COMMENTS:

AMEC Environment & Infrastructure a Division of AMEC Americas Limited

TO:	Athabasca Minerals Inc.
	9524 – 27 Ave
	Edmonton, AB T6N 1B2

OFFICE: CA PROJECT NO: CA CC:

Calgary CA18239

PROJECT: Aggregate Qualification Testing

SOURCE: Athabasca Minerals	SAMPLED ID:	288403	SAMPLED BY:	Client
DATE SAMPLED: April 30, 2014	DATE RECEIVED:	May 8, 2014	DATE TESTED:	May 13, 2014

MATERIAL GRADING:2						
ACTUAL SIEVE SIZES			AMOUNT			
- 50 mm	+ 37.5 mm			5019.25 g		
- 37.5 mm	+ 25 mm			5009.40 g		
NO. OF REVOLUTIO	DNS	1000	TOTAL SAMPLE	10028.65 g		
NO. OF SPHERES		12	+ #12 MATERIAL AFTER	8257.75 g		
WT. OF SPHERES		4979.35 g	- #12 MATERIAL AFTER	1770.90 g		
LOSS AT 100 REVO	LUTIONS	N/A	LOSS AT 500 REVOLUTIONS	N/A		
LOSS AT 200 REVO	LUTIONS	N/A	LOSS AT 1000 REVOLUTIONS	17.7 %		

TESTED IN ACCORDANCE WITH CSA A23.2 - 17A (ASTM C535)

COMMENTS:

Per:

AMEC Environment & Infrastructure a Division of AMEC Americas Limited OFFICE:

CC:

Calgary

PROJECT NO: CA18239

AMEC Environment & Infrastructure a Division of AMEC Americas Limited LOS ANGELES ABRASION TEST REPORT

TO: Athabasca Minerals Inc. 9524 – 27 Ave Edmonton , AB T6N 1B2

PROJECT: Aggregate Qualification Testing

SOURCE: Athabasca Minerals	SAMPLED ID:	288404	SAMPLED BY:	Client
DATE SAMPLED: April 30, 2014	DATE RECEIVED:	May 8, 2014	DATE TESTED:	May 14, 2014

MATERIAL GRADING:2					
ACT	UAL SIEVE SIZES		AMOUNT		
- 50 mm	+ 37.5 mm			5007.35 g	
- 37.5 mm	+ 25 mm			5007.55 g	
NO. OF REVOLUTIO	NS 1000		TOTAL SAMPLE	10014.90 g	
NO. OF SPHERES	12		+ #12 MATERIAL AFTER	7689.60 g	
WT. OF SPHERES	4979.30 g		- #12 MATERIAL AFTER	2325.30 g	
LOSS AT 100 REVOL	UTIONS	N/A	LOSS AT 500 REVOLUTIONS	N/A	
LOSS AT 200 REVOL	UTIONS	N/A	LOSS AT 1000 REVOLUTIONS	23.2 %	

TESTED IN ACCORDANCE WITH CSA A23.2 - 17A (ASTM C535)

COMMENTS:

AMEC Environment & Intrastructure a Division of AMEC Americas Limited

TO: Athabasca Minerals Inc. 9524 - 27 Ave Edmonton, AB T6N 1B2

OFFICE: Calgary PROJECT NO: CA18239 CC:

PROJECT: Aggregate Qualification Testing

SOURCE: Athabasca Minerals	SAMPLED ID:	288405	SAMPLED BY:	Client
DATE SAMPLED: April 30, 2014	DATE RECEIVED:	May 8, 2014	DATE TESTED:	May 15, 2014

MATERIAL GRADING:2				
ACTUAL SIEVE	SIZES	AMOUNT		
- 50 mm + 3	7.5 mm		4969.05 g	
- 37.5 mm + 2	5 mm		5015.35 g	
NO. OF REVOLUTIONS	1000	TOTAL SAMPLE	9984.40 g	
NO. OF SPHERES	12	+ #12 MATERIAL AFTER	7628.95 g	
WT. OF SPHERES	4979.42 g	- #12 MATERIAL AFTER	2355.45 g	
LOSS AT 100 REVOLUTIONS	N/A	LOSS AT 500 REVOLUTIONS	N/A	
LOSS AT 200 REVOLUTIONS	N/A	LOSS AT 1000 REVOLUTIONS	23.6 %	

TESTED IN ACCORDANCE WITH CSA A23.2 - 17A (ASTM C535)

COMMENTS:

Per:

AMEC Minvironment & Infrastructure a Division of AMEC Americas Limited

TO: Athabasca Minerals Inc. 9524 – 27 Ave Edmonton , AB T6N 1B2	OFFICE: PROJECT NO: CC:	Calgary CA18239	
PROJECT: Aggregate Qualification Testing			

SOURCE: Athabasca Minerals	SAMPLED ID:	288406	SAMPLED BY:	Client
DATE SAMPLED: April 30, 2014	DATE RECEIVED:	May 8, 2014	DATE TESTED:	May 13, 2014

MATERIAL GRADING:2					
ACTUAL SIE	VE SIZES	AMOUNT	A		
- 50 mm	+ 37.5 mm		5022.60 g		
- 37.5 mm	+ 25 mm		5015.65 g		
NO. OF REVOLUTIONS	1000	TOTAL SAMPLE	10038.25 g		
NO. OF SPHERES	12	+ #12 MATERIAL AFTER	5677.75 g		
WT. OF SPHERES	4980.10 g	- #12 MATERIAL AFTER	4360.50 g		
LOSS AT 100 REVOLUTIONS	N/A	LOSS AT 500 REVOLUTIONS	N/A		
LOSS AT 200 REVOLUTIONS	N/A	LOSS AT 1000 REVOLUTIONS	43.4%		

TESTED IN ACCORDANCE WITH CSA A23.2 - 17A (ASTM C535)

COMMENTS:

Per:

AMEC Environment & Intrastructure a Division of AMEC Americas Limited

TO: Athabasca Minerals Inc. 9524 – 27 Ave Edmonton , AB T6N 1B2		OFFICE: PROJECT NO: CC:	Calgary CA18239	
PROJECT: Aggregate Qualification	Testing			
SOURCE: Athabasca Minerals DATE SAMPLED: April 30, 2014	SAMPLED ID: DATE RECEIVED:	288407 May 8, 2014	SAMPLED BY: DATE TESTED:	Client May 13, 2014
N	ATERIAL GRADI	NG:2		
ACTUAL SIEVE	SIZES		AMOUNT	
- 50 mm + 37	.5 mm		· · · · · · · · · · · · · · · · · · ·	5030.65 g
- 37.5 mm + 25	mm		n na sa	5018.15 g
			······	
NO. OF REVOLUTIONS	1000	TOTAL SAMP	LE	10048.80 g
NO. OF SPHERES	12	+ #12 MA TER	IAL AFTER	7483.25 g
WT. OF SPHERES	4979.6 g	- #12 MATERI	AL AFTER	2505.55 g
LOSS AT 100 REVOLUTIONS	N//	A LOSS AT 500	REVOLUTIONS	N/A
LOSS AT 200 REVOLUTIONS	N//	A LOSSAT 1000	REVOLUTIONS	25.5 %

TESTED IN ACCORDANCE WITH CSA A23.2 - 17A (ASTM C535)

COMMENTS:

TO: Athabasca Minerals Inc. 9524 – 27 Ave Edmonton , AB T6N 1B2 OFFICE: Calgary PROJECT NO: CA18239 CC:

PROJECT: Aggregate Qualification Testing

SOURCE: Athabasca Minerals	SAMPLED ID:	288408	SAMPLED BY:	Client
DATE SAMPLED: April 30, 2014	DATE RECEIVED:	May 8, 2014	DATE TESTED:	May 14, 2014

	MATERIAL GRADIN	G:2	
ACTUAL S	EVE SIZES	AMOUNT	8.886
- 50 mm	+ 37.5 mm		5002.90 g
- 37.5 mm	+ 25 mm		5015.65 g
NO. OF REVOLUTIONS	1000	TOTAL SAMPLE	10018.55 g
NO. OF SPHERES	12	+ #12 MATERIAL AFTER	7348.75 g
WT. OF SPHERES	4979.98 g	- #12 MATERIAL AFTER	2669.80 g
LOSS AT 100 REVOLUTION	IS N/A	LOSS AT 500 REVOLUTIONS	N/A
LOSS AT 200 REVOLUTION	IS N/A	LOSS AT 1000 REVOLUTIONS	26.6 %

TESTED IN ACCORDANCE WITH CSA A23.2 - 17A (ASTM C535)

COMMENTS:

AMEC Environment & Infrastructure a Division of AMEC Americas Limited

TO:	Athabasca Minerals Inc. 9524 – 27 Ave Edmonton , AB T6N 1B2	OFFICE: PROJECT NO: CC:	Calgary CA18239	

PROJECT: Aggregate Qualification Testing

SOURCE: Athabasca Minerals	SAMPLED ID:	288409	SAMPLED BY:	Client
DATE SAMPLED: April 30, 2014	DATE RECEIVED:	May 8, 2014	DATE TESTED:	May 14, 2014

MATERIAL GRADING:2				
ACTUAL SIEVE SIZES		AMOUNT		
- 50 mm	+ 37.5 mm		5000.95 g	
- 37.5 mm	+ 25 mm		5009.15 g	
NO. OF REVOLUTIONS	1000	TOTAL SAMPLE	10010.10 g	
NO. OF SPHERES	12	+ #12 MATERIAL AFTER	8132.10 g	
WT. OF SPHERES	4979.96 g	- #12 MATERIAL AFTER	1878.0 g	
LOSS AT 100 REVOLUTION	NS N/A	LOSS AT 500 REVOLUTIONS	N/A	
LOSS AT 200 REVOLUTION	NS N/A	LOSS AT 1000 REVOLUTIONS	18.8 %	

TESTED IN ACCORDANCE WITH CSA A23.2 - 17A (ASTM C535)

COMMENTS:

Per:

AMEC Environment & Intrastructure a Division of AMEC Americas Limited

TO:	Athabasca Minerals Inc. 9524 – 27 Ave Edmonton , AB T6N 1B2	OFFICE: PROJECT NO: CC:	Calg a ry CA18239

PROJECT: Aggregate Qualification Testing

SOURCE: Athabasca Minerals	SAMPLED ID:	288410	SAMPLED BY:	Client
DATE SAMPLED: April 30, 2014	DATE RECEIVED:	May 8, 2014	DATE TESTED:	May 16, 2014

	MATERIAL	GRADIN	G: <u>2</u>	, <u>, , , , , , , , , , , , , , , , , , </u>
ACTUA	L SIEVE SIZES		AMOUNT	
- 50 mm	+ 37.5 mm			5021.71 g
- 37.5 mm	+ 25 mm			5017.80 g
NO. OF REVOLUTIONS	100	00	TOTAL SAMPLE	10039.51 g
NO. OF SPHERES	12	2	+ #12 MATERIAL AFTER	8152.95 g
WT. OF SPHERES	4979	.5 g	- #12 MATERIAL AFTER	1886.56 g
LOSS AT 100 REVOLUT	IONS	N/A	LOSS AT 500 REVOLUTIONS	N/A
LOSS AT 200 REVOLUT	IONS	N/A	LOSS AT 1000 REVOLUTIONS	18.8 %

TESTED IN ACCORDANCE WITH CSA A23.2 - 17A (ASTM C535)

COMMENTS:

AMEC Environment & Infrastructure a Division of AMEC Americas Limited

TO:	Athabasca Minerals Inc. 9524 – 27 Ave Edmonton , AB T6N 1B2	OFFICE: PROJECT NO: CC:	Calgary CA18239

PROJECT: Aggregate Qualification Testing

SOURCE: Athabasca Minerals	SAMPLED ID:	288411	SAMPLED BY:	Client
DATE SAMPLED: April 30, 2014	DATE RECEIVED:	May 8, 2014	DATE TESTED:	May 15, 2014

MATERIAL GRADING:2					
ACTUAL	SIEVE SIZES		AMOUNT		
- 50 mm	+ 37.5 mm			5002.05 g	
- 37.5 mm	+ 25 mm			5001.2 5 g	
	a a construction of the second s				
NO. OF REVOLUTIONS	1000		TOTAL SAMPLE	10003.30 g	
NO. OF SPHERES	12		+ #12 MATERIAL AFTER	7631.75 g	
WT. OF SPHERES	4979.4 g		- #12 MATERIAL AFTER	2371.55 g	
LOSS AT 100 REVOLUTIO	NS	N/A	LOSS AT 500 REVOLUTIONS	N/A	
LOSS AT 200 REVOLUTIO	NS	N/A	LOSS AT 1000 REVOLUTIONS	23.7 %	

TESTED IN ACCORDANCE WITH CSA A23.2 - 17A (ASTM C535)

COMMENTS:

AMEC Environment & Infrastructure a Division of AMEC Americas Limited OFFICE:

CC:

Calgary

PROJECT NO: CA18239

AMEC Environment & Infrastructure a Division of AMEC Americas Limited LOS ANGELES ABRASION TEST REPORT

TO: Athabasca Minerals Inc. 9524 - 27 Ave Edmonton, AB T6N 1B2

PROJECT: Aggregate Qualification Testing

SOURCE: Athabasca Minerals	SAMPLED ID:	288412	SAMPLED BY:	Client
DATE SAMPLED: April 30, 2014	DATE RECEIVED:	May 8, 2014	DATE TESTED:	May 15, 2014

	MATERIAL GRADIN	G:2	
ACTUAL	SIEVE SIZES	AMOUNT	
- 50 mm	+ 37.5 mm		5021.60 g
- 37.5 mm	+ 25 mm		5015.00 g
NO. OF REVOLUTIONS	1000	TOTAL SAMPLE	<u>1</u> 0036.60 g
NO. OF SPHERES	12	+ #12 MATERIAL AFTER	7343.70 g
WT. OF SPHERES	4980.45 g	- #12 MATERIAL AFTER	2692.90 g
LOSS AT 100 REVOLUTIO	NS N/A	LOSS AT 500 REVOLUTIONS	N/A
LOSS AT 200 REVOLUTIO	NS N/A	LOSS AT 1000 REVOLUTIONS	26.8 %

TESTED IN ACCORDANCE WITH CSA A23.2 - 17A (ASTM C535)

COMMENTS:

TO:	Athabasca Minerals Inc. 9524 – 27 Ave Edmonton , AB T6N 1B2	OFFICE: PROJECT NO: CC:	Calg a ry CA18239

PROJECT: Aggregate Qualification Testing

SOURCE: Athabasca Minerals	SAMPLED ID:	288413	SAMPLED BY:	Client
DATE SAMPLED: April 30, 2014	DATE RECEIVED:	May 8, 2014	DATE TESTED:	May 15, 2014

MATERIAL GRADING:2					
ACTUAL SIE	VE SIZES		AMOUNT		
- 50 mm	+ 37.5 mm			5026.55 g	
- 37.5 mm	+ 25 mm			5017.90 g	
	Numero and a second				
NO. OF REVOLUTIONS	1000		TOTAL SAMPLE	10044.45 g	
NO. OF SPHERES	12		+ #12 MATERIAL AFTER	7125.40 g	
WT. OF SPHERES	4979.45 g		- #12 MATERIAL AFTER	2919.05 g	
LOSS AT 100 REVOLUTIONS	N	/A	LOSS AT 500 REVOLUTIONS	N/A	
LOSS AT 200 REVOLUTIONS	N	/A	LOSS AT 1000 REVOLUTIONS	29.1%	

TESTED IN ACCORDANCE WITH CSA A23.2 - 17A (ASTM C535)

COMMENTS:

AMEC Environment & Infrastructure a Division of AMEC Americas Limited

Cllent:	Athabasca Minerals Inc	Date Tested:	16-May-14	
Address:	9524 - 27 Ave			
	Edmonton, AB	•		
	T6N 1B2	•		
Attention:	Mr. Dom Kriangkum	CC:		
Project:	Aggregate Qualification Testing	Project No:	CA18239	
Date Sampled:	30-Apr-14	Tech:	JCS/Will	
	Coarse Aggregate CSA A2	3.2 - 12A / ASTM C12	7-12	

Sample ID: _____288401

amec

Nominal Maximum Aggregate Size (mm): 50

Oven Dry Weight (g): 8586.2 SSD Weight (g): 8708.9 Immersed Weight (g): 5533

		SSD Bulk Relative	
Bulk Relative Density	2.70	Density	2.74
		Apparent Relative	
Absorption,(%)	1,43	Density	2.81

	AMEC Environment & Infrastructure	
0		
Per		

AMEC Environment & Infrastructure a Division of AMEC Americas Limited

Client:	Athabasca Minerals Inc	Date Tested:	20-May-14	_
Address:	9524 - 27 Ave		-	
	Edmonton, AB			
	T6N 1B2			
Attention:	Mr. Dom Kriangkum	CC:		
Project:	Aggregate Qualification Testing	Project No:	CA18239	
Date Sampled:	30-Apr-14	Tech:	JCS/Will	
	Coarse Aggregate CSA A2	<u>3.2 - 12A / ASTM C12</u>	7-12	

Sample ID: _____ 288402

amec

Nominal Maximum Aggregate Size (mm): 37.5 mm

Oven Dry Weight (g): 5371.4 SSD Weight (g): 5493.8 Immersed Weight (g): 3467.4

		SSD Bulk Relative	
Bulk Relative Density	2.65	Density	2.71
		Apparent Relative	
Absorption,(%)	2.28	Density	2.82

	AMEC Environment & Infrastructure	
Per:		

Relative Density/ Absorption AMEC Environment & Infrastructure

a Division of AMEC Americas Limited

Cilent:	Athabasca Mine	rais Inc	Date Tested:	20-May-14	
Address:	9524 - 27 Ave		-		
	Edmonton, AB		•		
	T6N 1B2		•		
			•		
Attention:	Mr. Do	om Kriangkum	CC:		
Project:	Aggregate C	Qualification Testing	Project No:	CA18239	
Date Sampled:	3	0-Apr-14	Tech:	JCS/Will	
	Coarse	Aggregate CSA A2	<u>3.2 - 12A / AST</u>	<u>M C127-12</u>	
			Sample ID:	288403	
Nomir	al Maximum A	agragate Size (mm);	50 mm		
Nomin		iggregate Size (min).	50 1111		
Oven Dry Weight (g):	8409.3	SSD Welght (g):	8436.8	Immersed Weight (g):	5226.7
		SSD Bulk Beiative			
Buik Relative Density	2 62	Density	2.63		
	2.02	Apparent Relative	2.00		
Absorption.(%)	0.33	Density	2.64		
				1	

AMEC Environment & Infrastructure Per:

<u>222</u>

Relative Density/ Absorption AMEC Environment & Infrastructure

AMEC Environment & Infrastructure a Division of AMEC Americas Limited

Client:	Athabasca Mine	rals Inc	Date Tested:	20-May-14	-
Address:	9524 - 27 Ave		-		-
	Edmonton, AB		-		
	T6N 1B2		-		
			-		
Attention:	Mr. Do	m Kriangkum	CC:		
Project:	Aggregate C	Jualification Testing	Project No:	CA18239	
Date Sampled:	3	0-Apr-14	Tech:	JCS/Will	
	Coarse	Aggregate CSA A2	<u>3.2 - 12A / AST</u>	M C127-12	
			Sample ID:	288404	
Nomii	nal Maximum A	ggregate Size (mm):	50 mm		
Oven Dry Weight (g):	8437	SSD Weight (g):	8661.6	Immersed Weight (g):	5440
		SSD Bulk Relative			
Bulk Relative Density	2.62	Density	2.69		
		Apparent Relative	1		
Absorption,(%)	2.66	Density	2.82		

amec

AMEC Environment & Infrastructure a Division of AMEC Americas Limited

		Bate lootoa.	20-May-14	
Address:	9524 - 27 Ave	V		
	Edmonton, AB			
	T6N 1B2			
Attention:	Mr. Dom Kriangkum	CC:		
Project:	Aggregate Qualification Testing	Project No:	CA18239	
Date Sampled:	30-Apr-14	Tech:	JCS/Will	
	Coarse Aggregate CSA A23	3.2 - 12A / ASTM C12	27-12	
	<u>Coarse Aggregate CSA A23</u>	3.2 - 12A / ASTM C12 Sample ID:	2 7-12 288405	

8585.5 Immersed Weight (g): 5510.3 Oven Dry Weight (g): 8509.1 SSD Weight (g):

		SSD Bulk Relative	
Bulk Relative Density	2.77	Density	2.79
		Apparent Relative	
Absorption,(%)	0.90	Density	2.84

1	AMEC Environment & Infrastructure	
Per		

amec

AMEC Environment & Infrastructure a Division of AMEC Americas Limited

Client:	Athabasca Minerals Inc	Date Tested:	20-May-14	
Address:	9524 - 27 Ave	-		
	Edmonton, AB	_		
	T6N 1B2	-		
Attention:	Mr. Dom Kriangkum	CC:		
Project:	Aggregate Qualification Testing	Project No:	CA18239	
Date Sampled:	30-Apr-14	Tech:	JCS/Will	
	Coarse Aggregate CSA A2	3.2 - 12A / ASTM C12	7-12	

Sample ID: 288406

amec

Nominal Maximum Aggregate Size (mm): 50 mm

Oven Dry Weight (g): 8267.2 SSD Weight (g): 8587.9 Immersed Weight (g): 5271.4

		SSD Bulk Relative	
Bulk Relative Density	2.49	Density	2.59
		Apparent Relative	
Absorption,(%)	3.88	Density	2.76

AMEC Environment & Infrastructure a Division of AMEC Americas Limited

Client:	Athabasca Minerals Inc	Date Tested:	20-May-14	
Address:	9524 - 27 Ave			
	Edmonton, AB			
	T6N 1B2			
Attention:	Mr. Dom Kriangkum	CC:		
Project:	Aggregate Qualification Testing	Project No:	CA18239	
Date Sampled:	30-Apr-14	Tech:	JCS/Will	
	Coarse Aggregate CSA A23	3.2 - 12A / ASTM C1	<u>27-12</u>	

Sample ID: _____ 288407

amec

Nominal Maximum Aggregate Size (mm): 50 mm

Oven Dry Weight (g): 8377.1 SSD Weight (g): 8544.8 Immersed Weight (g): 5322.4

		SSD Bulk Relative	
Bulk Relative Density	2.60	Density	2.65
		Apparent Relative	
Absorption,(%)	2.00	Density	2.74

	AMEC Environment & Infrastructure	
Por		
Fei.		

Assessment Report for Athabasca Minerals Inc.'s Richardson Property, Northeastern Alberta

Relative Density/ Absorption

AMEC Environment & Infrastructure a Division of AMEC Americas Limited

Address: 9524 Edmo T6N	- 27 Ave onton, AB 1B2				
Edmo T6N	nton, AB 1B2		•		
T6N	1B2		•		
			-		
	Mar Dana Malana				
Attention:	Mr. Dom Kriang	<u>j</u> kum	CC;		
Project: Ag	gregate Qualificati	on Testing	Project No.	CA18239	
Date Sampled:	30-Apr-14		Tech:	JCS/Will	
	Coarse Aggrega	ate CSA A2	<u>3.2 - 12A / AST</u>	<u>M C127-12</u>	
			Sample ID:	288408	
Nominal Ma	ximum Aggregate	e Size (mm):	50 mm		
Oven Dry Weight (g):8	370.6 SSD We	elght (g):	8524.9	Immersed Weight (g): _	5327.5
	SSD B	uik Relative			
Bulk Belative Density	2.62 D	ensity	2.67		
		ent Relative	2.07		
Absorption.(%)	1.84 D	ensity	2.75		
				r	

AMEC Environment & Infrastructure
Per:

amec

Assessment Report for Athabasca Minerals Inc.'s Richardson Property, Northeastern Alberta

Relative Density/ Absorption

AMEC Environment & Infrastructure a Division of AMEC Americas Limited

Client:	Athabasca Minerals Inc	Date Tested:	20-May-14	
Address:	9524 - 27 Ave			
	Edmonton, AB			
	T6N 1B2			
Attention:	Mr. Dom Kriangkum	CC:		
Project:	Aggregate Qualification Testing	Project No:	CA18239	
Date Sampled:	30-Apr-14	Tech:	JCS/Will	
	Coarse Aggregate CSA	23.2 - 12A / ASTM C12	<u>27-12</u>	
	Coarse Aggregate CSA	A23.2 - 12A / ASTM C12	<u>27-12</u>	
		Sample ID:	288409	
Nomir	nal Maximum Aggregate Size (mn	n):50 mm		
Oven Dry Weight (g):	8434.8SSD Weight (g):	8450.6 Immer	sed Weight (g):	5366.8

		SSD Bulk Relative	
Bulk Relative Density	2.74	Density	2.74
		Apparent Relative	
Absorption,(%)	0.19	Density	2.75

AMEC Environment & Infrastructure a Division of AMEC Americas Limited

Absorption,(%)

Client:	Athabasca Mine	rals Inc	Date Tested:	20-May-14	
Address:	9524 - 27 Ave		-		
	Edmonton, AB				
	T6N 1B2				
Attention:	Mr. Do	m Krianokum	CC .		
Project	Aggregate (Jualification Testing	Project No:	CA18239	
Date Sampled:		Apr-14	Tech		
Date Sampled.	3	0-Api-14	. iecii.	JC3/WIII	
			Sample ID:	288410	
Nomi	nal Maximum A	ggregate Size (mm):	50 mm		
Oven Dry Welght (g):	8540	SSD Weight (g):	8773.6	Immersed Welght (g):	5497.8
		SSD Bulk Relative			
Bulk Relative Density	2.61	Density	2.68		
		Apparent Relative			
Absorption,(%)	2.74	Density	2.81		

AMEC Environment & Infrastructure a Division of AMEC Americas Limited

Athabasca Minerals Inc	Date Tested:	20-May-14	
9524 - 27 Ave			
Edmonton, AB	-		
T6N 1B2	-		
Mr. Dom Kriangkum	CC:		
Aggregate Qualification Testing	Project No:	CA18239	
30-Apr-14	Tech:	JCS/Will	
Coareo Aggregato CSA A2	2 2 - 128 / ASTM C12	7-10	
	Athabasca Minerals Inc 9524 - 27 Ave Edmonton, AB T6N 1B2 Mr. Dom Kriangkum Aggregate Qualification Testing 30-Apr-14 Coarse Aggregate CSA A2	Athabasca Minerals Inc Date Tested: 9524 - 27 Ave	Athabasca Minerals Inc Date Tested: 20-May-14 9524 - 27 Ave Edmonton, AB 76N 1B2 Mr. Dom Kriangkum CC: Project No: CA18239 30-Apr-14 Tech: JCS/Will Coarse Aggregate CSA A23.2 - 12A / ASTM C127-12

Sample ID: 288411

amed

Nominal Maximum Aggregate Size (mm): 50 mm

Oven Dry Weight (g): 8743.7 SSD Weight (g): 8918 Immersed Weight (g): 5610.6

		SSD Bulk Relative	
Bulk Relative Density	2.64	Density	2.70
		Apparent Relative	
Absorption,(%)	1.99	Density	2.79

Assessment Report for Athabasca Minerals Inc.'s Richardson Property, Northeastern Alberta

Relative Density/ Absorption

AMEC Environment & Infrastructure a Division of AMEC Americas Limited

Oven

Client:	Athabasca Mine	rais inc	Date Tested:	20-May-14	
Address:	9524 - 27 Ave				
	Edmonton, AB				
	T6N 1B2				
Attention:	Mr. Do	m Kriangkum	CC:		
Project:	Aggregate C	Jualification Testing	Project No:	CA18239	
Date Sampled:	3	0-Apr-14	Tech:	JCS/Will	
			Sample ID:	288412	
Nomir	nai Maximum A	ggregate Size (mm):	50 mm		
Dry Welght (g):	8392.1	SSD Weight (g):	8592.9	Immersed Weight (g):	5406.4
Relative Density	2.63	SSD Bulk Relative Density	2.70		

		SSD Bulk Relative	
Bulk Relative Density	2.63	Density	2.70
		Apparent Relative	
Absorption,(%)	2.39	Density	2.81

amed

AMEC Environment & Infrastructure a Division of AMEC Americas Limited

Client:	Athabasca Minerals Inc	Date Tested:	20-May-14	
Address:	9524 - 27 Ave	•		
	Edmonton, AB			
	T6N 1B2			
Attention:	Mr. Dom Kriangkum	CC:		
Project:	Aggregate Qualification Testing	Project No:	CA18239	
Date Sampled:	30-Apr-14	Tech:	JCS/Will	

Coarse Aggregate CSA A23.2 - 12A / ASTM C127-12

Sample ID: 288413

amed

Nominal Maximum Aggregate Size (mm): 50 mm

Oven Dry Weight (g): _____3815.7 ____SSD Weight (g): _____3911.9 ___Immersed Weight (g): _____2466.7 ____

		SSD Bulk Relative	
Bulk Relative Density	2.64	Density	2.71
		Apparent Relative	
Absorption,(%)	2.52	Density	2.83

SOUNDNESS OF AGGREGATE

 Athabasca Minerals Inc. 9524 – 27th Ave Edmonton, AB T6N 1B2 		c. 32	OFFICE: PROJECT COPIES TO	C NO: C D:	algary A18239		
OJECT:	Aggregate Qualification Testing						
URCE:	ATHABASCA MINERALS	SAMPLED ID:	288401	SAMPLED	BY: CLIENT		
TE MPLED:	APRIL 3, 2014	DATE RECEIVED:	TE RECEIVED: MAY 8, 2014		STED: MAY 16-23/1		
LUTION:	MgSO₄			NUMBER CYCLES:	NUMBER OF 5 CYCLES:		
·····		Weig Mass Of Test Fraction	ht Loss Mass (g) After Test (g)		% Loss		
		COARSE	AGGREGATE				
	lotais	1543.6	1381.7		10.5		
		VISUAL E	XAMINATION				
	Sieve Size	Nc	No. of Particles				
Passing	Retained	Original	Final		Comments		
<u>80 mm</u>	<u>40 mm</u>				······		
	20 mm	46	41	Crumbli particles	Crumbling and cracking of most particles. Tar present in sample		

MAXIMUM ALLOWABLE % LOSS ACCORDING TO CSA A23.1 TABLE 12 = 12% (COARSE AGGREGATE EXPOSED TO FREEZE THAW) 18% (COASE AGGREGATE OTHER EXPOSURES)

AMEC Environment & Infrastructure MEE Americas Limited a Divi

Aaron van nam, b.Sc. Senior Lab Technologist / Supervisor Materials Engineering Division

Ω d Di

Jesse Waddell, D.A.SC., E.I.T. Project Engineer Materials Engineering Division AMEC Environment & Infrastructure a Division of AMEC Americas Limited 1003 53rd Ave. N.E. Calgary, AB T2E 6X9 Phone: (403) 387 – 1737 Fax: (403) 569 – 0737 Mawar arree com mec.com

Assessment Report for Athabasca Minerals Inc.'s Richardson Property, Northeastern Alberta

SOUNDNE SULPHATE	SS OF AGGREGATE E TEST				ar	nec ^o
то:	Athabasca Minerals In 9524 – 27 th Ave Edmonton, AB T6N 11	c. 32		OFFICE: PROJECT NO: COPIES TO:	Calgary CA18239	
PROJECT:	Aggregate Qualification	n Testing				
SOURCE: DATE SAMPLED: SOLUTION:	ATHABASCA MINERALS APRIL 3, 2014 MgSO₄	SAMPLED ID: DATE RECEIVED:	288402 MAY 8,	2014	SAMPLED BY: DATE TESTED: NUMBER OF	CLIENT MAY 16-23/14 5
					CYCLES:	
		Weigl	ht Loss			
		Mass Of		Mass	% 065	
		Test Fraction	(g) A	fter Test (g)	/8 LUSS	
	Totolo	COARSE A	GGREG	ATE I		
	TOTAIS	1534.4		1504.0	2.0	
		VISUAL EX		ON		
	Sieve Size	No.	of Particl	es		
Passing	Retained	Original		Final	Commer	ts
80 mm	40 mm					
40 mm	20 mm	36		39	Crumbling and crac particles. Tar prese	sking of most ant in sample
TESTED IN ACCORDANCE WITH CSA A23.2 – 9A (ASTM C88) COMMENTS: MAXIMUM ALLOWABLE % LOSS ACCORDING TO CSA A23.1 TABLE 12 = 12% (COARSE AGGREGATE EXPOSED TO FREEZE THAW) 18% (COASE AGGREGATE OTHER EXPOSURES)						
AMEC Envir a Division o Aaron Van H Senior Lab T Materials En	ronment & Infrastructu f AMEC Americas Lim am, B.Sc. echnologist / Superviso gineering Division	re Ited r		Je sse Wad Project Eng Materials E	dell, B.A.Sc., E.I.T ineer ngineering Division	

AMEC Environment & Infrastructure a Division of AMEC Americas Limited 1003 53rd Ave. N.E. Calgary, AB T2E 6X9 Phone: (403) 387 – 1737 Fax: (403) 569 – 0737 www.amec.com

SOUNDNESS OF AGGREGATE SULPHATE TEST

MgSO₄

SOLUTION:

то:	Athabasca Minera 9524 – 27 th Ave Edmonton, AB T	als Inc. 6N 1B2	OFFICE: PROJECT NO COPIES TO:	Calgary : CA18239	
PROJECT:	Aggregate Qualifi	cation Testing			
SOURCE:	ATHABASCA MINERALS	SAMPLED ID:	288403	SAMPLED BY:	CLIENT
DATE SAMPLED:	APRIL 3, 2014	DATE RECEIVED:	MAY 8, 2014	DATE TESTED:	MAY 16-23/14

		Weight Lo	88	
		Mass Of Test Fraction (g)	Mass After Test (g)	% Loss
1. 1		COARSE AGGR	EGATE	
	Totals	1528.0	1389.9	9.0
		VISUAL EXAMI	ATION	·
	Sleve Size	NO. OF P	articles	
Passing	Retained	Original	Final	Comments
80 mm	40 mm			
40 mm	20 mm	38	40	Crumbling and cracking of most particles

TESTED IN ACCORDANCE WITH CSA A23.2 - 9A (ASTM C88)

COMMENTS:

MAXIMUM ALLOWABLE % LOSS ACCORDING TO CSA A23.1 TABLE 12 = 12% (COARSE AGGREGATE EXPOSED TO FREEZE THAW) 18% (COASE AGGREGATE OTHER EXPOSURES)

AMEC Environment & Infrastructure a Division of AMEC Americas Limited

Aaron Van Ham, B.Sc. Senior Lab Technologist / Supervisor Materials Engineering Division

NUMBER OF

CYCLES:

ame

5

Pioject Engineer Materials Engineering Division

AMEC Environment & Infrastructure a Division of AMEC Americas Limited 1003 53^{ed} Ave. N.E. Calgary, AB T2E 6X9 Phone: (403) 387 – 1737 Fax: (403) 569 – 0737 www.amec.com

SOUNDNESS OF AGGREGATE SULPHATE TEST

SOUNDNE	SS OF AGGREGATE					ar	nec ^o
то:	Athabasca Minerals Ind 9524 – 27 th Ave Edmonton, AB T6N 1E	5. 32		OFFICE: PROJECT NO: COPIES TO:		Calgary CA18239	
PROJECT:	Aggregate Qualification	n Testing					
SOURCE:	ATHABASCA MINERALS	SAMPLED ID:	288404	1	SAMPL	ED BY:	CLIENT
DATE SAMPLED:	APRIL 3, 2014	DATE RECEIVED:	MAY 8	, 2014	DATE	TESTED:	MAY 16-23/14
SOLUTION:	MgSO₄				NUMBI	ER OF S:	5

		Weight Lo	88				
······		Mass Of Test Fraction (g)	Mass After Test (g)	% Loss			
	COARSE AGGREGATE						
	Totals	1522.0	1515.1	0.5			
		VISUAL EXAMI	NATION				
S	Sieve Size		articles				
Passing	Retained	Original	Final	Comments			
80 mm	40 mm						

35

TESTED IN ACCORDANCE WITH CSA A23.2 - 9A (ASTM C88)

COMMENTS:

40 mm

MAXIMUM ALLOWABLE % LOSS ACCORDING TO CSA A23.1 TABLE 12 = 12% (COARSE AGGREGATE EXPOSED TO FREEZE THAW) 18% (COASE AGGREGATE OTHER EXPOSURES)

20 mm

AMEC Environment & Infrastructure a Division of AMEC Americas Limited

Aaron van nam, b.Sc. Senior Lab Technologist / Supervisor Materials Engineering Division

Devis Aread Draw	

35

se waddell, B.A.Sc., E.I.T. Jes Project Engineer Materials Engineering Division

Crumbling and cracking of some

particles. Tar present in sample.

AMEC Environment & Infrastructure a Division of AMEC Americas Limited 1003 53rd Ave. N.E. Calgary, AB T2E 6X9 Phone: (403) 387 – 1737 Fax: (403) 569 – 0737 ww.amec.com

> ting service only. Engineering interpretation or evalu on of the test rea te is prov Reporting of the se test re ne a tex d only on written req 236

SOUNDNESS OF AGGREGATE SULPHATE TEST

SULFHAN	E 1231			a	nec
то:	Athabasca Minerals In 9524 – 27 th Ave Edmonton, AB T6N 1	c. B2	OFFICE: PROJECT COPIES TO	Calgary NO: CA18239 D:	
PROJECT:	Aggregate Qualificatio	n Testing			
SOURCE: DATE SAMPLED:	ATHABASCA MINERALS APRIL 3, 2014	SAMPLED ID: DATE RECEIVED:	288405 MAY 8, 2014	SAMPLED BY: DATE TESTED:	CLIENT MAY 16-23/14
SOLUTION:	MgSO₄			NUMBER OF CYCLES:	5
		Wei	ght Loss		
		Mass Of Test Fraction	Mass After Test (a)	% Los	S

		Test Flaction (g)	Alter rest (g)	
		COARSE AGGR	EGATE	
Totals		1525.1	1454.8	4.6
				i millidetaan maraan maraan ida bida in ahay daga daga ay
Sieve Size		No. of Particles		
Passing	Retained	Original	Final	Comments
80 mm	40 mm			
40 mm	20 mm	41	46	Crumbling and cracking of most particles. Tar present in sample

TESTED IN ACCORDANCE WITH CSA A23.2 - 9A (ASTM C88)

COMMENTS:

MAXIMUM ALLOWABLE % LOSS ACCORDING TO CSA A23.1 TABLE 12 = 12% (COARSE AGGREGATE EXPOSED TO FREEZE THAW) 18% (COASE AGGREGATE OTHER EXPOSURES)

AMEC Environment & infrastructure a Division of AMEC Americas Limited

Aaron van Ham, B.Sc. Senior Lab Technologist / Supervisor Materials Engineering Division

Ω

Project Engineer Materials Engineering Division

AMEC Environment & Infrastructure a Division of AMEC Americas Limited 1003 53rd Ave. N.E. Calgary, AB T2E 6X9 Phone: (403) 587 – 1737 Fax: (403) 589 – 0737 www.amec.com

SOUNDNESS OF AGGREGATE SUI PHATE TEST

JULFIAIL							d	nec
то:	Athabasca Minerals In 9524 – 27 th Ave Edmonton, AB T6N 1I	c. 32			OFFICE: PROJECT NO COPIES TO:	:	Calgary CA18239	
PROJECT:	Aggregate Qualification	n Testir	g					
SOURCE:	ATHABASCA MINERALS	SAMPL	ED ID:	2884	06	SAMP	LED BY:	CLIENT
DATE SAMPLED:	APRIL 3, 2014	DATE	RECEIVED:	MAY	8, 2014	DATE	TESTED:	MAY 16-23/14
SOLUTION:	MgSO₄					NUMB Cycle	ER OF ES:	5
Weight Loss								
			Mass Of Test Fraction	(g)	Mass After Test (g)		% Loss	3
COARSE AGGREGATE								

	Totals	1513.0	272.3	82.0
		VISUAL EXAMI	NATION	
	Sieve Size No. of F			
Passing	Retained	Original	Final	Comments
80 mm	40 mm			
40 mm	20 mm	38	23	Significant crumbling, cracking, and deterioration of most particles.

Т

TESTED IN ACCORDANCE WITH CSA A23.2 - 9A (ASTM C88)

Totals

COMMENTS:

MAXIMUM ALLOWABLE % LOSS ACCORDING TO CSA A23.1 TABLE 12 = 12% (COARSE AGGREGATE EXPOSED TO FREEZE THAW) 18% (COASE AGGREGATE OTHER EXPOSURES)

AMEC Environment & Infrastructure a Division of AMEC Americas Limited

Aaron Van Ham, B.Sc. Senior Lab Technologist / Supervisor Materials Engineering Division

Jesse Waddell, B.A.Sc., E.I.T. Project Engineer Materials Engineering Division AMEC Environment & Infrastructure a Division of AMEC Americas Limited 1003 53rd Ave. N.E. Calgary, AB T2E 6X9 Phone: (403) 387 – 1737 Fax: (403) 569 – 0737 w.amec.com

Assessment Report for Athabasca Minerals Inc.'s Richardson Property, Northeastern Alberta

SOUNDNESS OF AGGREGATE SULPHATE TEST

MgSO4

SOUNDNE	SS OF AGGREGATE			a	mec
то:	Athabasca Minerals In 9524 – 27 th Ave Edmonton, AB T6N 1	с. В2	OFFICE: PROJECT NO: COPIES TO:	Calgary CA18239	
PROJECT:	Aggregate Qualificatio	n Testing			
SOURCE:	ATHABASCA MINERALS APRIL 3, 2014	SAMPLED ID:	288408 MAY 8, 2014	SAMPLED BY: DATE TESTED:	CLIENT MAY 16-23/14

NUMBER OF CYCLES:

5

	Weight Lo	58	
	Mass Of Test Fraction (g)	Mass After Test (g)	% Loss
	COARSE AGGR	REGATE	
Totals	1511.9	1328.6	12.1

VISUAL EXAMINATION							
Sieve Size		No. of Particles					
Passing	Retained	Original	Final	Comments			
80 mm	40 mm						
40 mm	20 mm	47	51	Crumbling and cracking of most particles. Tar present in sample			

TESTED IN ACCORDANCE WITH CSA A23.2 - 9A (ASTM C88)

COMMENTS:

SAMPLED: SOLUTION:

> MAXIMUM ALLOWABLE % LOSS ACCORDING TO CSA A23.1 TABLE 12 = 12% (COARSE AGGREGATE EXPOSED TO FREEZE THAW) 18% (COASE AGGREGATE OTHER EXPOSURES)

AMEC Environment & Infrastructure a Division of AMEC Americas Limited

Aaron Van Ham, B.Sc. Senior Lab Technologist / Supervisor Materials Engineering Division

Project Engineer Materials Engineering Division

AMEC Environment & Infrastructure a Division of AMEC Americas Limited 1003 53rd Ave. N.E. Calgary, AB T2E 8X9 Phone: (403) 387 - 1737 Fax: (403) 569 - 0737 moo.com

> e only. Engli ring interpret n of the test re te is prov d only on 1 ing of th n or ev 239

SOUNDNESS OF AGGREGATE SULPHATE TEST

SOUNDNESS OF AGGREGATE SULPHATE TEST			amec ^Q		
то:	Athabasca Minerals Inc. 9524 – 27 th Ave Edmonton, AB T6N 1B2	OFFICE: PROJECT NO: COPIES TO:	Calgary CA18239		

PROJECT: Aggregate Qualification Testing

SOURCE:	ATHABASCA MINERALS	SAMPLED ID:	288409	SAMPLED BY:	
SAMPLED:	APRIL 3, 2014	DATE RECEIVED:	MAT 0, 2014	DATE TESTED:	MAT 10-23/14
SOLUTION:	MgSO₄			NUMBER OF CYCLES:	5

Weight Loss							
		Mass Of	Mass	° 1 000			
		Test Fraction (g)	After Test (g)	% LUSS			
	COARSE AGGREGATE						
	Totais	1535.2	1369.5	10.8			
		VISUAL EXAMI	NATION				
Si	eve Size	No. of Pa	articles				
Passing	Retained	Original	Final	Comments			
80 mm	40 mm						
40 mm	20 mm	47	46	Crumbling and cracking of most particles.			

TESTED IN ACCORDANCE WITH CSA A23.2 - 9A (ASTM C88)

COMMENTS:

MAXIMUM ALLOWABLE % LOSS ACCORDING TO CSA A23.1 TABLE 12 = 12% (COARSE AGGREGATE EXPOSED TO FREEZE THAW) 18% (COASE AGGREGATE OTHER EXPOSURES)

AMEC Environment & Infrastructure a Division of AMEC Americas Limited

Aaron Van Ham, B.Sc. Senior Lab Technologist / Supervisor Materials Engineering Division

Jesse Waddell, B.A.Sc., E.I.T. Project Engineer Materials Engineering Division

AMEC Environment & Infrastructure a Division of AMEC Americas Limited 1003 53rd Ave. N.E. Calgary, AB T2E 8X9 Phone: (403) 387 – 1737 Fax: (403) 569 - 0737 w.amac.com

> ing service only. Engineering interprets tion of the test re itte le prov ed only on writ on or evalue Reporting of the es s ti its co 240

Assessment Report for Athabasca Minerals Inc.'s Richardson Property, Northeastern Alberta

SOUNDNESS OF AGGREGATE SULPHATE TEST

SULPHATE	ETEST			9	mec
то:	Athabasca Minerals In 9524 – 27 th Ave Edmonton, AB T6N 1	c. B2	OFFICE: PROJECT N COPIES TO:	Calgary CA18239	
PROJECT:	Aggregate Qualificatio	n Testing			
SOURCE:	ATHABASCA MINERALS	SAMPLED ID:	288410	SAMPLED BY:	CLIENT
DATE SAMPLED:	APRIL 3, 2014	DATE RECEIVED:	MAY 8, 2014	DATE TESTED:	MAY 16-23/14
SOLUTION:	MgSO4			NUMBER OF CYCLES:	5
		Weight	Loss		
		Mass Of Test Fraction (g	Mass After Test (g)	% Lo	ISS
		COARSE AG	GREGATE		
	Totals	1501.7	1435.2	4.4	
		VISUAL EXA	MINATION		
	Sieve Size	No. c	f Particles		

Original

36

Final

35

AMEC Environment & Infrastructure a Division of AMEC Americas Limited

18% (COASE AGGREGATE OTHER EXPOSURES)

Retained

40 mm

20 mm

MAXIMUM ALLOWABLE % LOSS ACCORDING TO CSA A23.1 TABLE 12 =

TESTED IN ACCORDANCE WITH CSA A23.2 - 9A (ASTM C88)

12% (COARSE AGGREGATE EXPOSED TO FREEZE THAW)

Aaron Van Ham, B.Sc. Senior Lab Technologist / Supervisor Materials Engineering Division Jesse waddell, B.A.Sc., E.I.T. Project Engineer

Materials Engineering Division

Comments

Crumbling and cracking of most

particles. Tar present in sample.

0

AMEC Environment & Infrastructure a Division of AMEC Americas Limited 1003 53rd Ave. N.E. Calgary, AB T2E 6X9 Phone: (403) 387 – 1737 Fax: (403) 569 – 0737 www.amec.com

Passing

80 mm

40 mm

COMMENTS:

SOUNDNESS OF AGGREGATE SULPHATE TEST an TO: Athabasca Minerals Inc. Calgary OFFICE: 9524 - 27th Ave CA18239 **PROJECT NO:** Edmonton, AB T6N 1B2 COPIES TO: **PROJECT:** Aggregate Qualification Testing SOURCE: ATHABASCA MINERALS SAMPLED ID: 288411 CLIENT SAMPLED BY: DATE APRIL 3, 2014 DATE RECEIVED: MAY 8, 2014 DATE TESTED: MAY 16-23/14 SAMPLED: SOLUTION: MgSO₄ NUMBER OF 5 CYCLES: Weight Loss Mass Of Mass % Loss Test Fraction (g) After Test (g) COARSE AGGREGATE Totals 1511.8 1443.0 4.6 **VISUAL EXAMINATION** Sieve Size No. of Particles Passing Retained Original Final Comments 80 mm 40 mm Crumbling and cracking of most 40 mm 20 mm 44 44 particles. Tar present in sample.

TESTED IN ACCORDANCE WITH CSA A23.2 ~ 9A (ASTM C88)

COMMENTS:

MAXIMUM ALLOWABLE % LOSS ACCORDING TO CSA A23.1 TABLE 12 = 12% (COARSE AGGREGATE EXPOSED TO FREEZE THAW) 18% (COASE AGGREGATE OTHER EXPOSURES)

AMEC Environment & Infrastructure a Division of AMEC Americas Limited

Aaron Van Ham, B.Sc. Senior Lab Technologist / Supervisor Materials Engineering Division Jesse Waddell, B.A.Sc., E.I. I. Project Engineer Materials Engineering Division

AMEC Environment & Infrastructure a Division of AMEC Americas Limited 1003 53^m Ave. N.E. Calgary, AB T2E 6X9 Phone: (403) 387 – 1737 Fax: (403) 569 – 0737 www.amec.com

SOUNDNESS OF AGGREGATE SUI PHATE TEST

SULPHATE	E TEST					6	mec
то:	Athabasca Minerals In 9524 – 27 th Ave Edmonton, AB T6N 18	с. В2		OFF PRC COI	FICE: DJECT NO PIES TO:	Calgary : CA18239)
PROJECT:	Aggregate Qualification	n Testin	g				
SOURCE:	ATHABASCA MINERALS	SAMPL	ED ID:	288412		SAMPLED BY:	CLIENT
DATE SAMPLED:	APRIL 3, 2014	DATE P	ECEIVED:	MAY 8, 2014		DATE TESTED:	MAY 16-23/14
SOLUTION:	MgSO₄					NUMBER OF CYCLES:	5
Weight Loss							
	#1 * · · · · · · · · · · · · · · · · · ·		Mass Of Test Fraction (g	Ma After T	ass Test (g)	% L	oss
	COARSE AGGREGATE						

	VISUAL EXAMINATION					
	Sieve Size	No. of F	articles			
Passing	Retained	Original	Final	Comments		
80 mm	40 mm					
40 mm	20 mm	43	46	Crumbling and cracking of most particles. Tar present in sample		

1392.1

1544.6

TESTED IN ACCORDANCE WITH CSA A23.2 - 9A (ASTM C88)

Totals

COMMENTS:

MAXIMUM ALLOW ABLE % LOSS ACCORDING TO CSA A23.1 TABLE 12 = 12% (COARSE AGGREGATE EXPOSED TO FREEZE THAW) 18% (COASE AGGREGATE OTHER EXPOSURES)

AMEC Environment & Infrastructure a Division of AMEC Americas Limited

Aaron van Ham, B.Sc. Senior Lab Technologist / Supervisor Materials Engineering Division

Jesse Waddell, B.A.Sc., E.I. I. Project Engineer Materials Engineering Division

9.9

P

AMEC Environment & Infrastructure AMEC Environment a initiastructure a Division of AMEC Americas Limited 1003 53rd Ave. N.E. Calgary, AB T2E 6X9 Phone: (403) 387 – 1737 Fax: (403) 569 – 0737 www.amec.com

SOUNDNESS OF AGGREGATE SULPHATE TEST

SOUNDNE	ESS OF AGGREGATE E TEST		amec	
TO:	Athabasca Minerals Inc. 9524 – 27 th Ave Edmonton, AB T6N 1B2	OFFICE: PROJECT NO: COPIES TO:	Calgary CA18239	

PROJECT: Aggregate Qualification Testing

SOURCE:	ATHABASCA MINERALS	SAMPLED ID:	288413	SAMPLED BY:	CLIENT
DATE SAMPLED:	APRIL 3, 2014	DATE RECEIVED:	MAY 8, 2014	DATE TESTED:	MAY 30-JUN 6/14
SOLUTION:	MgSO₄			NUMBER OF CYCLES:	5

Weight Loss							
		Mass Of	Mass	% L 000			
		Test Fraction (g)	After Test (g)	% LOSS			
	COARSE AGGREGATE						
	Totals	1592.7	1312.6	17.6			
		VISUAL EXAMI	NATION				
Si	eve Size	No. of Pa	articles				
Passing	Retained	Original	Final	Comments			
80 mm	40 mm						
40 mm	20 mm	44	46	Crumbling and cracking of most particles.			

TESTED IN ACCORDANCE WITH CSA A23.2 - 9A (ASTM C88)

COMMENTS:

MAXIMUM ALLOWABLE % LOSS ACCORDING TO CSA A23.1 TABLE 12 = 12% (COARSE AGGREGATE EXPOSED TO FREEZE THAW) 18% (COASE AGGREGATE OTHER EXPOSURES)

AMEC Environment & Infrastructure a Division of AMEC Americas Limited

Aaron Van Ham, B.Sc. Senior Lab Technologist / Supervisor Materials Engineering Division

Materials Engineering Division

AMEC Environment & Infrastructure a Division of AMEC Americas Limited 1003 53rd Ave. N.E. Calgary, AB T2E 6X9 Phone: (403) 387 - 1737 Fax: (403) 559 - 0737 ww.amec.com

> e test results constitutes a testing service only. Engine rpretation or evaluation of the test results is provided only on written request. Reporting of ti ering Inte

SOUNDNESS OF AGGREGATE SULPHATE TEST

SOUNDNESS OF AGGREGATE SULPHATE TEST			amec [®]
то:	Athabasca Minerals Inc. 9524 – 27 th Ave Edmonton, AB T6N 1B2	OFFICE: PROJECT NO: COPIES TO:	Calgary CA18239
PROJECT:	Aggregate Qualification Testing		

SOURCE:	ATHABASCA MINERALS	SAMPLED ID:	288407	SAMPLED BY:	CLIENT
DATE SAMPLED:	APRIL 3, 2014	DATE RECEIVED:	MAY 8, 2014	DATE TESTED:	MAY 30-JUN 6/14
SOLUTION:	MgSO₄			NUMBER OF CYCLES:	5

Weight Loss						
		Mass Of	Mass	° 1000		
		Test Fraction (g)	After Test (g)	% LUSS		
	COARSE AGGREGATE					
	Totals	1561.6	1285.4	17.7		
		VISUAL EXAMI	NATION			
Si	eve Size	No. of Pa	articles			
Passing	Retained	Original	Final	Comments		
80 mm	40 mm					
40 mm	20 mm	47	43	Crumbling and cracking of most particles. Tar present in sample.		

TESTED IN ACCORDANCE WITH CSA A23.2 - 9A (ASTM C88)

COMMENTS:

MAXIMUM ALLOWABLE % LOSS ACCORDING TO CSA A23.1 TABLE 12 = 12% (COARSE AGGREGATE EXPOSED TO FREEZE THAW) 18% (COASE AGGREGATE OTHER EXPOSURES)

AMEC Environment & Infrastructure a Division of AMEC Americas Limited

Aaron Van Ham, B.Sc. Senior Lab Technologist / Supervisor Materials Engineering Division

Project Engineer Materials Engineering Division

AMEC Environment & Infrastructure a Division of AMEC Americas Limited 1003 53rd Ave. N.E. Calgary, AB T2E 6X9 Phone: (403) 387 – 1737 Fax: (403) 569 – 0737 www.smer.com w.amec.com

RESISTANCE OF UNCONFINED COARSE AGGREGATE TO FREEZING AND THAWING WORKSHEET

			Weight Loss			
SEIVE SIZE		Original Grading	Start Woight	Einich Weight	°/ 1 000	Weighted Leas
PASSING	RETAINED	(%)	Start Weight	rinish weight	% LUSS	weighted Loss
		CO	ARSE AGGREGA	TE		
40 mm	28 mm	100.0	5045.2	5035.7	0.19	0.19
То	Totals					0.19 %

TESTED IN ACCORDANCE WITH CSA A23.2 - 24A

COMMENTS:

Max allowable weighted loss according to CSA A23.1 Table 12 = 6%

AMEC Environment & infrastructure

a Division of AMEO Americas Limited

Aaron Van Ham, B.Sc. Senior Lab Technologist Materials Engineering Division

AMEC Environment & Infrastructure A Division of AMEC Americas Limited 1003 53rd Ave. N.E. Calgary, AB T2E 6X9 Phone: (403) 387 – 1640 Fax: (403) 569 – 0737 www.amec.com Reviewed by:

Jesse Waddell, B.A.Sc., E.I.T. Project Engineer Materials Engineering Division

ame

RESISTANCE OF UNCONFINED COARSE AGGREGATE TO FREEZING AND THAWING WORKSHEET

то:	Athabasca Minerals Inc. 9525 – 27 th Ave Edmonton, AB T6N 1B2	OFF PRC COF	FICE: DJECT NO: PIES TO:	Calgary CA18239	
ATTN: PROJECT: SOURCE:	Mr. Dom Kriangkum Aggregate Qualification Testi ATHABASCA MINERALS	ng SAMPLED ID:	288412	SAMPLED BY:	CLIENT
DATE SAMPLED	0: APRIL 03, 2014	DATE RECEIVED:	MAY 08, 2014	DATE TESTED:	MAY 30-JUN 06, 2014
SOLUTION:	SODIUM CHLORIDE			NUMBER OF CYCLES:	5

	gall af skilder se of dignaries date of the		Welght Loss			
SEIVE SIZE		Original Grading	Ctart Maight	Einish Woldht	% 1.055	Woighted Loss
PASSING	RETAINED	(%)	Start Weight	Finish weight	/o L.055	weighted Loss
		CO	ARSE AGGREGA	TE		70000
40 mm	28 mm	100.0	5046.7	5036.0	0.21	0.21
То	Totals					0.21 %

TESTED IN ACCORDANCE WITH CSA A23.2 - 24A

COMMENTS:

Max allowable weighted loss according to CSA A23.1 Table 12 = 6%

AMEC Environment & Infrastructure

a Division of AMEC Americas Limited

Aaron Van Ham, B.Sc. Senior Lab Technologist Materials Engineering Division

AMEC Environment & Infrastructure A Division of AMEC Americas Limited 1003 53rd Ave. N.E. Calgary, AB T2E 6X9 Phone: (403) 387 – 1640 Fax: (403) 569 – 0737 www.amec.com Reviewed by:

Jesse Waddell, B.A.Sc. E.I. I. Project Engineer Materials Engineering Division
Appendix 4b – Tetra Tech Aggregate Test Results

Data presented hereon is for the sole use of the stiputated client. Tetra Tech EBA is not responsible, nor can be held liable, for use made of this report by any other party, with or without the knowledge of Tetra Tech EBA. The testing services reported herein have been performed to recognized industry sandar ds, unless noted. No other warranty is made. These data do not include or represent any interpretation or opinion of specification compliance or maternal suitability. Should engineering interpretation be required, Tetra Tech EBA will provide it upon written request.

TETRA TECH

TĿ

CONCRETE AGGREGATE ANALYSIS REPORT

CSA A23.2-2A, CSA A23.2-5A and CSA A23.2-12A

Project No.:	E12203560-01	Sample No.:	8636.C		
Project:	APEX Geoscience Aggregate Testing - 20	Date Received:	April 30, 2014		
Client:	APEX GEOSCIENCE LTD.	Date Tested:			
Attention:	Roy Eccles	Tested by:	Office:	Edmonton	
Email:		Moisture Conten	nt:	0.0%	
Description:	28-5mm Concrete Stone	Colour Plate No	.:		
Source:	Drillhole	Bulk Relative De	ensity:	2.62	
Location:	Sypplied by Client (Client Sa # 288414)	Bulk Relative De	ensity (SSD):	2.68	
Supplier:	APEX GEOSCIENCE LTD.	Apparent Relativ	ve Density:	2.79	
Specification:	CSA Group 20-5 mm Coarse Aggregate	Absorption:		2.2%	

CONCRETE AGGREGATE ANALYSIS REPORT

CSA A23.2-2A, CSA A23.2-5A and CSA A23.2-7A

Project No.:	E12203560-01	Sample No.:	8636.F			
Project:	APEX Geoscience Aggregate Testing - 20	ience Aggregate Testing - 20 Date Received: April 30, 2014				
Client:	APEX GEOSCIENCE LTD.	Date Tested:	May 5	5, 2014	1999.)	
Attention:	Roy Eccles	Tested by:	Office:	Edmonton		
Email:		Moisture Conter	nt:	_	3.8%	
Description:	10-2.5mm Concrete Sand	Colour Plate No.	.:			
Source:	Drillhole	Bulk Relative De	ensity:		2.49	
Location:	Sypplied by Client (Client Sa #288414)	Bulk Relative De	ensity ((SSD): _	2.58	
Supplier:	APEX GEOSCIENCE LTD.	Apparent Relativ	ve Den	sity:	2.73	
Specification:		Absorption:			3.6%	

industry standards, unless noted. No other warranty is made. These data do not include or represent any interpretation or opinion of epecification compliance or material suitability. Should engineering interpretation be required, EBA will provide it upon written request.

SOUNDNESS OF FINE AGGREGATE BY USE OF MAGNESIUM SULPHATE

CSA A23.2-9A

Project No:	E12203560-01		Sample No.:	8636.F
Project:	APEX Geoscient	ce Aggregate Testing - 2014	Date Received:	April 30, 2014
Client:	APEX GEOSCIE	NCE LTD.	Sampled By:	Client
			Date Tested:	May 14, 2014
Attention:	Roy Eccles	Fax:	Tested By:	MA
Email:			Office:	Edmonton

Description:	10-2.5mm Concrete Sand
Source:	Drillhole
Sample Location:	Sypplied by Client (Client Sa #288414)
Supplier	APEX GEOSCIENCE LTD.
Sample Location: Supplier	Sypplied by Client (Client Sa #288414) APEX GEOSCIENCE LTD.

Fine Aggregate

Sieve Size		Sample Grading,	Proportion of Sample in Size	Initial Mass	Final Mass	Loss (%)	Weighted Average (corrected (%) loss)
Passing	Retained	% Passing	Fraction, %	(g)	(9)		
	10 mm	100.0	#N/A			17° W - 6 9444	· · · · · · · · · · · · · · · · · · ·
10 mm	5 mm	82.2	17.8	119.5	107.7	9.9	1.8
5 mm	2.5 mm	46.6	35.6	119.5	116.2	2.8	1.0
2.5 mm	1.25 mm	27.8	18.8	114.0	112.7	1.1	0.2
1.25 mm	630 µm	18.3	9.5	114.6	113.0	1.4	0.1
630 µm	315 µm	12.6	5.7	107.6	105.2	2.2	0.1
315 µm	160 µm	9.7	2.9				
160 µm	PAN		9.7				
		Totals	100.0	575.2	554.8		3.2

CSA A23.1-09, Table 12 (Alternative Requirement): Maximum Loss 16% Note:

Remarks: Reviewed By: P.Eng. CCIL

Data presented hereon is for the sole use of the stipulated client. Tetra Tech EBA is not responsible, nor can be held liable, for use made of this report by any other party, with or without the knowledge of EBA. The testing services reported herein have been performed to recognized industry standards, unless noted. No other warranty is made. These data do not include or represent any interpretation or opinion of specification compliance or material suitability. Should engineering interpretation be required, EBA will provide it upon written request.

SOUNDNESS OF AGGREGATE BY USE OF MAGNESIUM SULPHATE

CSA A23.2-9A

Project No:	E12203560-01		Sample No.:	8636.C
Project:	APEX Geoscient	ce Aggregate Testing - 2014	Date Received:	April 30, 2014
Client:	APEX GEOSCIE	NCE LTD.	Sampled By:	Client
			Date Tested:	May 14, 2014
Attention:	Roy Eccles	Fax:	Tested By:	MA
Email:			Office:	Edmonton

28-5mm Concrete Stone	
Drillhole	
Sypplied by Client (Client Sa # 288414)	
APEX GEOSCIENCE LTD.	
	28-5mm Concrete Stone Drillhole Sypplied by Client (Client Sa # 288414) APEX GEOSCIENCE LTD.

Coarse Aggregate

Sieve Size		Sample Grading,	Proportion of Sample in Size	Initial Mass	Final Mass	Loss (%)	Weighted Average (corrected (%) loss)	
Passing	Retained	% Passing	Fraction, %	(g)	(g)			
	80 mm	100.0	0.0					
80 mm	56 mm	100.0	0.0					
56 mm	40 mm	100.0	0.0		-			
40 mm	28 mm	100.0	0.0			71	0.3	
28 mm	20 mm	95.7	4.3			7.1	0.0	
20 mm	14 mm	78.3	17.4	1022.9	050.9	71	47	
14 mm	10 mm	0 mm 29.7	29.7 48.8	1002.0	559.0	7.1	4.7	
10 mm	5 mm	0.2	29.6	350.0	332.3	5.1	1.5	
		Totals	100.0	1382.8	1292.1		6.5	

CSA A23.1-09, Table 12 (Alternative Requirement):

Maximum Loss 12% for concrete exposed to freezing and thawing

Remarks:

Reviewed By:

P.Eng.

Data presented hereon is for the sole use of the stipulated client. Tetra Tech EBA is not responsible, nor can be held liable, for use made of this report by any other party, with or without the knowledge of EBA. The testing services reported herein have been performed to recognized industry standards, unless noted. No other warranty is made. These data do not include or represent any interpretation or opinion of specification compliance or material suitability. Should engineering interpretation be required, EBA will provide it upon written request.

			ASTM C131 /	AASTHO T-96		·
Project No-	E12203560-0	1			Sample No •	8636 C
Project:	APEX Geosci	ience Anarea	ate Testing 201	14	Date Receive	ad: 30-Apr-14
lient:	APEX GEOS		no roomig zo	17	Sampled By:	Client
				Date Tested:	May 6 2014	
Attention:	Roy Eccles		Fax:		Tested By:	MA
mail:					Office:	Edmonton
	Description:	25-1	10 mm Rock	· · · · · · · · · · · · · · · · · · ·		
	Source:	Drill	hole			
	Sample Loca	tion: Sup	plied by Client	t (Client Sa #2	288414)	
	Supplier	APE	EX GEOSCIEN	ICE LTD		
					101	
Toot (Inding		Mas	s of Indicated	I Sizes , g	I
Sieve S	ize (mm)	Grading A	Grading B	Grading C	Grading D	Sample 8636.C
Passing	Retained			Glubbing		
37.5	25	1250 ± 25				
25	19	1250 ± 25				
19	12.5	1250 ± 10	2500 ± 10			2501.6
12.5	9.5	1250 ± 10	2500 ± 10			2507.1
9.5	6.3			2500 ± 10		
6.3	4.75			2500 ± 10		
4.75	2.36				5,000 ± 10	
	Total:		5,000) ± 10		5,008.7
	1	Test	Initial Mass	Final Mass	Mass Loss	Loss
		Grading	(g)	(g)	(g)	(%)
		В	5,008.7	3,932.0	1,076.7	21
	i					
temarks:						
			Revie	wed By:		

<u>254</u>

		BULK	CSA A2	DF AGG 3.2-10A	REGATE				
Project No:	E12203560-01				Sample No.:		863	6.C	
Project: APEX Geoscience Aggrega			esting - 20	014	Date Received:		Apri	1 30, 2014	4
Client:	APEX GEOSCIENCE		Sampled By	/:	Client				
					Date Testec	1:	May	6,2014	
Attention:	Roy Eccles	Fax:			Tested By:		MA		
Email:				_	Office:		Edm	nonton	
	Description	29 5mm	Concrete	Stone					
	Source:	Drillhole	Conciete	Stone	apylog fil hild half we de welden gelegende stift de eerste verg				-
	Sample Location:	Supplied	hy Client	(Client S	a # 289414)		ryns (pala planatros da	96	
	Supplier	CELTO	a # 200414)			M	· ·		
	Cabbue	ALLAG	LOGUEN					annan an display any display any saladaan	
			Comp	acted D	ensity*	_	Lo	ose Dens	sity
			Trial 1	Trial 2	Trial 3	Tri	al A	Trial B	Trial C
Mass of Mo	ould and Aggregate, kg		11.120	11.118	11.116	-			
Mass of Mo	ould, kg			6.648				r	
Mass of Ag	gregate, kg		4.472	4.470	4.468			W V Nouse an erroradic service	
Mould Facto	or			333.550	0				
Density of A	Aggregate, kg/m ³		1492	1491	1490			an ee's */ - is not a Mile and balan	
Moisture Co	ontent, %			0.0		-			
Absorption,	%	_		2.2		1			
Moisture Co Absorption, Jigging Proce Compacted	ontent, % % edure Bulk Density (Oven I Density (Oven Dry)	Dry)		0.0 2.2 491 kg/r	1		Ň	lot Teste	d
Remarks:			R	eviewed	l By:				P.E

roiect:		Geoscience		esting	Sample Number		F	
	-2014		esung	Sample Location	n: Suppl	lied by Client	(Sa #288414	
roject No:	E1220)3560-01	analandahan ara ganan teres a arab da g	Annual Constant of Constant of Constant	Source:	Drillho	ole	100 12001 14
lient:	APEX	GEOSCIEN	ICE LTD.	n na magaziliki wa ma	Sampled By:	Client	Tested B	y: KTP
ttention:	Roy E	ccles			Date Sampled:	April 30, 2	2014	5 10.100 area
mail:					Date Tested:	May 8, 20	14	anna far a star francisco a star a
ample De	escriptio	on: <u>10-2</u>	5mm Concre	te Sand	19-1 - Al-Manufacture - group and a	walkhooding (Friggergevere) ,	ara, i.a. ayan ayan 🗸 🗸 yayan yata ya ayan ayan ayan ayan ayan	n - Madalah serena yang karang ka
[Plastic	ity Chart			
	50							—
a	40						сн	
lex (I	30	L			CI			1
ty Inc	20							
astici	20		CL					-
đ	10	<u>}</u>	CL-ML		Mi or Oi		MH or OH	
	0	0		3	0 40	50		70
		•		Liquid I	Limit (W _l)	50	00	
	_				<u></u>			
Liq	juid Lim	it (W ₁₎ :	1!	5	Natural Mo	istu re (%)		
Pla	astic Lin	nit :	1	5	Soil Plastic	ity:	Lov	N
Pla	asticity l	ndex (lp) :	0		Mod.USCS	Symbol:	ML	
emarks:								
	To B Marcheneses	naalaanaanahaka waxa a magaraak ana			AP - communities acception - or acception - communities -		hen en en oggegegegen og en som det er som en en en er	ten ooskaadigaataan markeense oo oo oo oo oo oo
					nn n - California (Santa California (Santa California (Santa California (Santa California (Santa California (S			
				Re	eviewed By:			P.Eng

I

Appendix 5 – 2014 Exploration Expenditures

Assessment Report for Athabasca Minerals Inc.'s Richardson Property, Northeastern Alberta

No. ITEM			2013 Expenses	2014 Expenses	Subtotal	TOTALS
1. APEX Geoscience Ltd. Detailed Costs - 2013-2014						
Geological Field and Office Work Pricipal Directly Involved Office - Michael Dufreshe (Aug 22/13 July 21/14) \$	850	11 2	\$1 989 00	\$7 522 50		
Cook Services - Sean Hawkes (Jan 22-March 21/14) \$ Geological Services Performed Reld - Bryan Atlanson (Jan 22-March 21/14) \$	700	157 240		\$11 000 00 \$15 600 00		
Geological Services Reformed Field - Coty Gunson (Jan 22-Jul 21/14) \$ Geological Services Reformed Field - Mark Hanis (Jan 32, Jul 21/14) \$	475	85 95		\$4 037 50 \$4 BR7 50		
Geological Services Performed Field - Philo Schoeman (Jan 22-Feb 21/14) \$	425	2.6		1 200 00		
Geological Services Performed Office - Amete Datresne (Jan 25-Apr 21/14) S Geological Services Performed Office - Bryan Atlanson (Feb 22-Jun 21/14) S	850	210 35.6		\$23 146 50		
Geological Services Performed Office - Cory Gunson (Jan 22-Aug 21/14) \$ Geological Services Performed Office - Kyle McMillan (Sept 22-Oct 21/13) \$	325	384 85	\$3 825 00	\$12 476 75		
Geological Services Performed Office - Mark Harls (Aug 22/13-Sept 21/14) \$ Geological Services Performed Office - Michaele Gabereau (Feb 22 May 21/14) \$	1525 325	253 230	\$1.643.25	\$11 623 50 \$7 473 75		
Geological Services Performed Office - Rachelle Hough (May 22-Sep 21/14) \$	400	84	to 6 to m	\$3 376 00		
Geological Services Performed Office - Noy Ecces (Aug 22-UR 21113) & Geological Services Performed Office - Steven Nicholls (March 1-Jun21114) \$	850	87	\$3.57.3.00	\$7 361 00		
Human Resource and Safety Services Office – Sean Hawkes (Jan 22-Mar 21/14) – S Operator's overhead and management	700	41		\$2 900 00 \$963 01	\$153 568 78	
3rd Party Costs International Groundradar Consulting (L/Dar)				\$2 730 00		
Rentals Analyses (Tetra Tech assay analyses, Jun-Juli 14)				\$19 539 00 \$2 761 25		
Travel & Miscelaneous Office Costs				\$11 477 85	\$36 508 20	\$100.006.96
			10 ML APE	× 2013 - 2014	00010	a 100,000.00
2. Athabasca Minerals Inc. Detailed Costs - 2013 - 2014						
Driling detail (core drilling) - 20 Feb/14				\$75 980 00		
Chargeable materials - 20 Feb/14 Chargeable materials - 20 Feb/14				\$17 297 51		
Misc ceprations (rentala and equenaent transport) - 20 Feb/14 Drilling detail (core drilling) - 12 Mar/14				\$1 850 00 \$17 670 00		
Drittme - 12 Mor/14 Chargeste materials - 12 Mar/14				\$31 087 50 \$5 590 84		
Misc ceprations (rentals and equipment transport) - 12 Mar/14 Availational Laborations Costa				\$18 299 68	\$227 213 01	
Acme Analytical Laboratores 18 May/14				\$7 478 70		
AMEC 24 June/14 Tetra Tech EBA (AFEX Geoscience Ltd. paxl - see Section 1 above in 3rd party costs)				\$11 638 75	\$19,317.45	
Room Charges for Drilling Personnel Barge Landing Lodge - (drifers' rooms Feb 7-9, 2014) 7 Feb/14				\$2 090 00		
Hook - Mark M. (Feb 11-15) 11 Feb/14 Mark - return credit on home! did not stay as input (Feb 11-15) 15 Feb/14				\$1 225 34		
Hotel - Stella G. (Feb 11 - 13) 11 Feb/14				\$300.34	\$3 108 62	
Chrook Field Ltd. regular gas for driling 11 Feb/14				\$676 37		
Chinook Fuels Ltd. regular gas for drilling 17 Feb/14 Chinook Fuels Ltd. regular gas for drilling 20 Feb/14				\$588 88 \$347 59		
imperial Of regular gas bought on fuel cards during drilling 26 Feb/14 Imperial Of regular gas bought on fuel cards during drilling 13 Feb/14				\$15.98 \$142.58		
Imperal Of regular gas bought on fuel cards during drilling 26 Feb/14 Ownerk Fuels Ltd. Gase law shows shows and and and and a start of the 7 Ceb/14				\$177 02		
Chrock Fuels Ltd. clear low subpur desei and cartage for drilling 17 Feb/14 Chrock Fuels Ltd. clear low subpur desei and cartage for drilling 11 Feb/14				\$4 146 39		
Chinook Fuels Ltd. clear low subhur desel and cartage for drilling 15 Feb/14 Chinook Fuels Ltd. clear low sulphur desel and cartage for drilling 17 Feb/14				\$3 148 74 \$2 703 99		
Otwook Fuels Ltd. clear low sulphur deset and cartage for drilling 20 Feb/14 Otwook Fuels Ltd. of for drilling equipment 10 Feb/14				\$3 993 88 \$304 00		
Oknook Fuels Ltd. ol and grease for drifing equipment 10 Feb/14				\$1 245 44		
Chinock Fuels Ltd. portable heater fuel for drilling 10 Feb/14				\$358.40		
Canvest Propane Ltd: 1 propane bottle for drifling project 5 Feb/14 Cenvest Propane Ltd: 2 propane bottles for theiwing torches during drifling 11 Feb/14				\$820.00 \$302.00		
Canwest Propane Ltd. propane for drilling site 6 Feb/14 Delaney: Exertuel for running errands 12 Feb/14				\$808.33 \$28.57	\$23 129 27	
Freight for Drilling Project Equipment				\$1 000 00		
DB Kudd Transport Ltd moved AM camp shack to drilling site 6 Febria				\$1 200 00		
DB Kuld Transport Ltd moved AM camp shack to drilling stell Feb/14 DB Kuld Transport Ltd. moved 2 tanks and 1 healer to drilling stell 7 Feb/14				\$2 800 00 \$1 925 00		
DB Kudd Transport Ltd moved rented dozer to dniling site 22 Feb/14 DB Kudd Transport Ltd moved GNS wash car back to Edmonton 26 Feb/14				\$1 400 00 \$4 000 10		
DB Kidd Transport Ltd moved GNS simeper shack tack to Edmonton 28 Feb/14				\$3 800 00		
K.R. Becker Trucking Services hauled GNS washcar to drilling site 28 Feb/14				\$4 560 00		
Mantoulin Transport hauled fuel tanks to drilling site S Feb/14 Rentals for Drilling Project				\$1 498 00	\$23 283 00	
G N,S. Industrial Trailer Services sleeper rental 3 Feb/14 G N,S. Industrial Trailer Services moved sleeper to Susan Lake for further transport 3 Fi	eb/14			\$4 500 00 \$2 640 00		
G N.S. Industrial Trailer Services wash car (enta) for driling 28 Feb/14 G N.S. Industrial Trailer Services reservices to camp from drilen 12 Mar/14				\$4 500 00 \$996 73		
The Cat Rental Store generator rental for drilling 22 Feb/14. The Cat Rental Store deter central for drilling 08 Feb/14.				\$5 488 19 \$4 802 37		
The Cat Rental Store dessit charge for centred generator 5 Mar/14				\$450.00		
Young Motor's (1971) Ltd. snow intoble trailer remail 4 Petrin4 Young Motor's (1971) Ltd. snow intoble rental for drilling planning 4 Feb/14				\$390.00		
Young Motors (1971) Ltd. snow mobile rental for drilling planning 4 Feb/14 Tanks Direct 2 fuel tanks rented 28 Feb/14				\$390.00 \$2.217.96		
United Rentals of Canada, incigenerator rental 18 Feb/14. Wood Bulfalo Helicopters to assess reclamenton success of drill pads 29 Oct/13.			\$7 781 80	\$5 169 01	\$39.456.00	
Rentals for Geophysical Survey				\$6 172 22		
Highland Helicopters Ltd. moving geophysics gupment out of site 15 Jul/14				\$7 540 22	\$13 712 44	
Gregg Detretutors propane bottle and methyl hydrate 11 Feb/14				\$63.57		
Gregg Distributors propane parts 18 Feb/14 Gregg Distributors 55 gal spil kt 10 Feb/14				\$728 23		
Gregg Datributors extension cords. ublity heater battery clips 11 Feb/14. Gregg Datributors power utility heaters for drilling 12 Feb/14.				\$809.90 \$200.82		
Gregg Detroytors tiger torch 12 Feb/14 Gregg Detroytors tiger torch parts 18 Feb/14				\$240.83 \$69.50		
Spruceland Lumber cement for disked holes 19 Feb/14 Sociumated Lumber causer — # Enh/14				\$115.14		
Spruceland Lumber camp cleaning supples: 8 Feb/14				\$60.52		
Fort McMurray Hone Hardware sewer parts for camp 7 Feb/14 Fort McMurray Hone Hardware ice auger 7 Feb/14				\$115 37 \$459 99		
Fort McMurray Home Hardware insulation for camp 8 Feb/14 Fort McMurray Home Hardware lables/chains for camp 8 Feb/14				\$85 98 \$198 94		
Fort McMurray Home Handware camp furnace filter 10 Feb/14 Fort McMurray Home Handware crease 11 Feb/14				\$27.98 \$38.85		
Fort McMarray Home Hardware returned microwave 11 Feb/14				1 14 74		
Fort McMarray Horre Hardware microwave for camp 11 Feb/14 Fort McMarray Hone Hardware camp supplies 11 Feb/14				\$59.90 \$966.92		
Fort McMurray Home Hardware ratchet straps 11 Feb/14 Fort McMurray Home Hardware extension conte for camp 11 Feb/14				\$17 99 \$25 98		
Fort McMurray Home Hardware pipe clamps, valves for drifting 4 Mar/14 BENJ, Dwtr 3n Bowce currenting WT-02 14 Feb/14				\$80.48 \$1.256.00		
RED L Date Restocking fee for return of pump WT-02.1 Sept14				\$364.91		
Dalanay, Ioxa stove plugs for camp 12 Hebri 4 Genge, Stella camp dimking water 18 Feb/14				\$100 14		
Genge, Stefa camp plumbing supplers 18 Feb/14 Services for Drilling Project				\$43.54	\$5 924 07	
Tud's Contracting Ltd. septic waste disposal service from drifting camp 28 Feb/14 Tud's Contracting Ltd. potpale water delivery to drifting water 28 Feb/14				\$5,823 00 \$981.37		
Beacon HB - rewine generator & set voltage & travel time 21 Feb/14				\$2.849.00	\$9 653 37	
Av photos 24 Sept/13			\$90.50			
GLHB Exploration SVc Ltd C3191 LDAR 24 Sept/13 GLHB Exploration SVc Ltd C3191 LDAR 30 Apr/14			\$5 184 00	\$9 HOC 10	\$15 174 50	
Geophysics Consultation Lysisky Geoscence Research & Consultro Ltd. 24 Oct/13			\$475.00		\$475.00	
Air Travel Einite for Don K. Ban Strand Boune Scare a for	23 Death		E1 141 44		\$1 142 65	
Engine for Lorin I. Herricetence connection reclamation assessment of draficials Ground Travel	210013		#1 104 50		a 1 162.30	
For Bonne Spence during tirfing reclamation assessment 30 Oct/13 For Allen Arsenault, Exe Detaney, Glenn King, Lisa White during drifing project 2014			\$43 81	\$1 880 18	\$1 923 97	
Employee Subsistence For Bran Foley, Stela Genge Kevin MacFavden Kyle Kasler during driling project 2014	4			\$1 372 30		
Meals for Tim Seben and Bonne Spence during reclamation assessment 30&31 Oct/13	AL ATHAN	4904		C 2013 201	\$1 464 74	\$364 808 20
101	AL ALMAB	AUCAI		C. 2013 - 201		3000,830.20
3. Allowable Athabasca Minerals Administration Costs						\$38,400 82
						200,000,000
TOTAL APPLICABLE ASSESSMENT EXPENDITURES A	AT THE RI	CHAR	USON PROJ	ECT FOR 20	13-2014	ə613,594.98