MAR 20130006: ERITH TIE

Erith Tie- A report on precious mineral exploration near Robb, West Central Alberta.

Received date: Feb 27, 2013

Public release date: Jan 12, 2014

DISCLAIMER

By accessing and using the Alberta Energy website to download or otherwise obtain a scanned mineral assessment report, you ("User") agree to be bound by the following terms and conditions:

- a) Each scanned mineral assessment report that is downloaded or otherwise obtained from Alberta Energy is provided "AS IS", with no warranties or representations of any kind whatsoever from Her Majesty the Queen in Right of Alberta, as represented by the Minister of Energy ("Minister"), expressed or implied, including, but not limited to, no warranties or other representations from the Minister, regarding the content, accuracy, reliability, use or results from the use of or the integrity, completeness, guality or legibility of each such scanned mineral assessment report;
- b) To the fullest extent permitted by applicable laws, the Minister hereby expressly disclaims, and is released from, liability and responsibility for all warranties and conditions, expressed or implied, in relation to each scanned mineral assessment report shown or displayed on the Alberta Energy website including but not limited to warranties as to the satisfactory quality of or the fitness of the scanned mineral assessment reports and warranties as to the non-infringement or other non-violation of the proprietary rights held by any third party in respect of the scanned mineral assessment report;
- c) To the fullest extent permitted by applicable law, the Minister, and the Minister's employees and agents, exclude and disclaim liability to the User for losses and damages of whatsoever nature and howsoever arising including, without limitation, any direct, indirect, special, consequential, punitive or incidental damages, loss of use, loss of data, loss caused by a virus, loss of income or profit, claims of third parties, even if Alberta Energy have been advised of the possibility of such damages or losses, arising out of or in connection with the use of the Alberta Energy website, including the accessing or downloading of the scanned mineral assessment report and the use for any purpose of the scanned mineral assessment report.
- d) User agrees to indemnify and hold harmless the Minister, and the Minister's employees and agents against and from any and all third party claims, losses, liabilities, demands, actions or proceedings related to the downloading, distribution, transmissions, storage, redistribution, reproduction or exploitation of each scanned mineral assessment report obtained by the User from Alberta Energy.

Alberta

Alberta Mineral Assessment Reporting System

Mineral Assessment Report

PART B

Technical Report

Project Name: Erith Tie

Metallic and Industrial Minerals Permit number: 9311010578

Client Name: Jason Robert Irvin Wood operating as Wood Group Exploration

Submitted by

Report Author: Jason Robert Irvin Wood

Date: February 25, 2013

Resubmitted: May 2, 2013

Table of Contents

Breakdown statement of project work	1
Introduction	2
Summary	2
Location	2
Work performed	2
Results	5
Conclusions	6
Author Qualifications	7
Appendix A	8

Breakdown Statement of Project Work

Project Name: Erith Tie

		Amount Spent
1. Prospecting		\$ 79,870.00
2. Geological mapping &	& petrography	\$ 0
3. Geophysical Surveys		
a. Airborne		\$ 0
b. Ground		\$ 0
4. Geochemical Surveys		\$ 0
5. Trenching and Strippi	ng	\$ 0
6. Drilling		\$ 0
7. Assaying & whole roo	k analysis	\$ 4,466.50
8. Other Work		\$ 0
	SUBTOTAL	\$ 84,336.50
9. Administration (10%	of subtotal)	\$ 8,433.65
	GRAND TOTAL	\$92,770.15

(signature on original	submission)
Jason Wood	

Date

Introduction

The purpose of the assessment work is to analyze the area with the intent of open pit mining.

Summary

In October 2010 I made my first day trips out to prospect my permitted area. We did three days of surface work, taking rock chips and panning of the Erith River, finding minerals with minimal effort.

From May 2011 to November 2011 we used handpicks for picking and large areas were scoured with a metal detector. The bulk of the work was picking loose rock and carrying it out by hand. Two pickup trucks and a Suzuki Samurai 4X4 were used to pick up the pails of rock picked from the tributaries of the Erith River, but most samples from Erith river itself.

From July 2012 to October 2012, we used a small trommel that we purchased. We tested three separate areas at the southern area near the Lundrum tributary, the north area near a hunter's cabin and mostly centre close to camp. We used the trommel, generator and 2" pump to run equipment. All gravels gathered in pails with shovels by hand out of river banks. We found large amounts of black sand and gold. A lot of these areas where I have taken soil samples had my metal detector bringing up all kinds of different metal anomalies over large areas.

There is 2000+ kg of test materials, mainly rock gathered and stored in a storage unit. The lab samples were delivered by myself directly to the lab. Lorring Laboratories holds most of what I had tested to this day. We tested 57 samples of over 2000 plus kgs. We received test results back for 30 element ICP and Au, Ag, Pd, Pt, RH with some containing more than two precious metals. Overall the findings were positive. I have no training but hold great interest in what this property could provide. There are three high interest areas picked for future core sampling.

Location

Permit number 9311010578 is located at township 49-18 W5 blocks 1 - 36. Maps of the permit area showing the test points where samples have been taken are included in Appendix A.

Work Performed

The work period for Project Erith Tie is from January 10, 2011 to January 10, 2013. All work during the work period was performed by Jason Wood and Robert Wood. Work was also done at the permit area from October 16 to 18, 2010 by Jason Wood. Two pickup trucks were used to haul equipment, camper and rock removed from the permit area. The Suzuki Samarai was used to access harder terrain, to carry equipment and haul rock samples back to camp. In 2011 we used hand equipment and a metal detector. In 2012 we also used a trommel, generator

and 2" pump to run equipment. The camper was used for shelter and was brought out on each trip.

Project Erith Tie 2010

October 16 - 18 Made discovery of samples 1 - 13, which were sent to Lorring Labs, in the middle of the area that the permit was requested for. All samples were within 300 meters of sample #6 which is a boulder in excess of five tonnes. We did three days of surface work, taking rock chips and panning of the Erith River, finding minerals with minimal effort.

Project Erith Tie 2011

April 20 - 23 Day trips were done for the tributary running into the Erith River upstream of Km marker 23. Bridge screened out sand samples were taken. One hundred plus kilograms in five pails screened down to under $\frac{1}{4}$ ".

May 11 – 14 Day trips taking rock samples consisting of quartze with mineralization. Two pails handpicked selectively along Hanolin Creek to the Km 23 bridge crossing the Erith River.

June 1 – 4 Camper was set up at 16-05-18-49 W5. Work consisted of rock samples taken. Four pails were taken by hand from tributary ¾ km downstream of bridge crossing and up Landrum tributary. One drilling area up the Lundrum was highlighted for core samples. Working the banks of the Erith River with a metal detector, we brought out heavy mineralization of iron, nickel, silver and other anomalies over large areas. Noted this area for drilling and future geophysics.

July 13 – 16 Same camp area. Water levels still high but area's downstream from pipeline crossing 1.5 km and upstream where handpicked finding shists containing garnets and heavy mineralized quartze. Work carried out on existing across to Erith River on north end of permit, on cut lines enabled us to carry out another four pails of rock. Work done with hammer and pick in these areas as well.

August 3 – 6 Water levels came down enough to find better samples of rock from the Lundrum, Hanolen and Erith. More schists were found at old logging crossing on north end of permit area 100 meters from hunter's cabin up stream. More than 15 samples of nice schist taken plus oxidized, mineralized quartze found. Future area is picked close to hunter's cabin at bottom of high ridge. Heavy iron and silver samples were taken just downstream from the cabin as well. Another drilling area picked out.

August 24 - 27 Work was done again up and down stream of cabin picking another bunch of schists and taking a closer look at embankment downstream of cabin containing lots of iron looking large rocks and hand picking schists and other quartze containing oxidized material.

September 14 - 17 Work was carried out with exploring Lundrum from where it joins Erith up stream until the edge of permitted area. Three pails of rock picked from here. More work was done from the pipeline downstream, shist and quartze rock picked. Up stream of pipeline worked at this period. We took six pails home.

October 5-8 Hunter cabin area worked for two days up and down stream 2.5 Km stretched both ways in total length. From bridge area half way down stream to pipeline area worked for one day collecting several pails of quartze with mineralization, some shist with and without garnets collected as well. One day spent collecting up Lundrum for over 2 Km at access near the joining of the Erith River.

November 15 – 19 Half way between Km 23 bridge and pipeline worked for two days and three pails of rock taken. Two more days worked up and down stream of hunter's cabin on north end of permitted area. Another pail and a half was taken. Most of the rock that was hand-picked was frozen to the banks of the river. This was the last trip out with the camper for the year.

Project Erith Tie 2012

May 2-4 The season started with day trips looking for more access points to the Erith on all available cut lines with the Suzuki Samarai 4×4 . Some rocks were chipped for samples on the pipelines surrounding the permit area.

May 23 – 26 Camp was set up and rock taken from up and down stream of camp 16-05-18-49 W5. Access points were checked as waiting for water levels to come down. A sample pail of rock was collected.

June 13 – 16 Camp set up same spot. The smaller tributaries were accessed because the water levels in the Erith were still a problem. Work collecting rock and work with the metal detector was done finding large areas of metallic indication all around camp, to the south across the Erith Tie along an ancient stream bank.

July 4-7 Work was done on Lundrum and Hanolen creeks with two pails of rock collected mostly mineralized quartze. Some work done around the hunter's camp. One pail of schist and mineralized quartze was taken. Water levels still a problem.

July 25 – 28 Started to test with more than a gold pan. A trommel was used a couple of days on Lundrum and again over at hunter's camp on north end of permit area. One pail on concentrates taken from both areas combined 1/3 pail across from camp on small tributary.

August 15 - 18 Trommel was used in testing hunter's camp area. In all four days one pail of concentrates was taken.

August 30 – September 6 Camp area was 16-05-18-49 W5 worked with trommel. One and a half pails of concentrates were taken.

September 26 – 30 Same area worked with trommel. Another pail and a half was taken.

October 13 - 19 Camp area worked for last time of year another pail and a half taken. Fifteen tons of rock moved to trommel by shovel in pails by hand. Two inch pump at $\frac{3}{4}$ throttle, one hundred feet of hose. Manifold on trommel went to $1\frac{1}{4}$ inch from two inch hose.

Results

Test samples were hand delivered to Lorring Laboratories Ltd. in Calgary, Alberta. They did 30 Element ICP Analyses. All results were positive. Testing found elevated levels of precious metals as well as non-precious metals. See Part C for the table summarizing the sample attributes as well as the Certificate of Assay and 30 Element ICP Analysis.

Sample #	Date collected	Attributes	Lab results for precious metals (see ICP Analysis for remaining results)
1-8	Oct 16 - 18, 2010	Quartze	Au and Ag findings
9 - 11	Oct 16 - 18, 2010	Rock chips	Au and Ag findings
12 - 13	Oct 16 - 18, 2010	Quartze	Au and Ag findings
14 - 17	May 11 – 16, 2011	Quartze	Au, Ag, Pd and Pt findings
18, 19,	July 13 – 16, 2011	Schist	Au findings
20, 22, 32	Aug 3 – 6, 2011	Quartze	Au findings
21, 47	Sep 14 – 17, 2011	Quartze	No findings
23, 24, 44	July 13 – 16, 2011	Quartze	Au findings
25,29, 31	Sep 14 – 17, 2011	Quartze	Au findings
26, 28, 35	Nov 15 - 19, 2011	Quartze	Au findings
27	Sep 14 – 17, 2011	Rock chip	Au findings
30	Nov 15 - 19, 2011	Quartze	No findings
33	Oct 5 – 8, 2011	Quartze	Au findings
34	Jun 1 – 4, 2011	Quartze	Au findings
36	July 13 – 16, 2011	Rock chips	Au findings
37	Oct 5 – 8, 2011	Mineralized rock	Ag findings
38, 41	July 13 – 16, 2011	Quartze	No findings
39	Jun 1 – 4, 2011	Quartze	Ag findings
40	Jun 1 – 4, 2011	Rock chip	Au and Ag findings
42, 46	May 11 – 14, 2011	Quartze	No findings
43	Jun 1 – 4, 2011	Rock chip	No findings
45	Oct 5 – 8, 2011	Schist with garnets	No findings
48	Jun 1 – 4, 2011	Quartze	No findings
49	Aug 30 – Sep 6, 2012	Trommel test soil	Au and Ag findings
50	Sep 26 – 30, 2012	Trommel test soil	Au and Ag findings

Sample #	Date collected	Attributes	Lab results for precious metals (see ICP Analysis for remaining results)
51 - 54	Jun 1 – 4, 2011	Test soil	Au and Ag findings
55	Jul 13 – 16, 2011	Rock chip	Au and Ag findings
56	Sep 26 – 30, 2012	Dark red liquid from river bank	Au and Ag findings
57	May 11 – 14, 2011	Quartze	Au and Ag findings

Conclusion

Fifty seven samples have been tested by Lorring Laboratories Ltd. between January 2011 and October 2012. The test results have been positive. On January 11, 2013 we have in excess of 2,000 Kg of samples in storage yet to be analyzed. Areas have been identified for future core sampling.

If the surface is testing positive for many precious minerals, we are hopeful that there will be more at depth. Upstream of camp shows precious metals in liquid form (dark red in color and a light oily hue on top). This is one of the areas picked for core sampling.

Author Qualifications

I, Jason Wood, residing at Edson, Alberta, Canada do hereby certify that:

1. I am an independent prospector

2. I have been an active prospector in Alberta, Canada for two years.

3. I am not aware of any material fact or material change with respect to the subject matter of the Report that is not reflected in the Report, or the omission to disclose which makes the Report misleading.

(signature on original submission) Jason Wood Edson, Alberta, Canada February 25, 2013

Appendix A

Maps showing test points

See Part C for the table of Sample Attributes which shows the coordinates for each test sample and identifies the corresponding location number of the following map

FEB 27 2013 20130006

Mineral Assessment Report

PART C

Technical Appendices

Project Name: Erith Tie

Metallic and Industrial Minerals Permit number: 9311010578

Client Name: Jason Robert Irvin Wood operating as Wood Group Exploration

Submitted by

Report Author: Jason Robert Irvin Wood

Date: February 25, 2013

Confidentiality Report End Date: January 10th 2014

Table of Contents

Sample Attributes	1
Certified laboratory reports	6

Sample Attributes

Sample #	Date collected	Size and type of sample	Location coordinates	Observed physical or geological characteristics	Corresponding map #
1	Oct 16, 2010	Approx 1.5 Kg quartze	Between 53.233861 – 116.564126 and 53.231407 – 116.559405	Taken from edge of riverbank	Between 5 & 7
2	Oct 16, 2010	Approx. 2.2 Kg quartze conglomerate	Between 53.233861 – 116.564126 and 53.231407 – 116.559405	Taken from edge of riverbank	Between 5 & 7
3	Oct 16, 2010	Approx. 3.5 Kg quartze banding	Between 53.233861 – 116.564126 and 53.231407 – 116.559405	Taken from edge of riverbank	Between 5 & 7
4	Oct 16, 2010	Approx. 1.5 Kg quartze conglomerate	Between 53.233861 – 116.564126 and 53.231407 – 116.559405	Taken from edge of riverbank	Between 5 & 7
5	Oct 16, 2010	Approx. 6.5-7 Kg mineralized quartze	Between 53.233861 – 116.564126 and 53.231407 – 116.559405	Taken from edge of riverbank	Between 5 & 7
6	Oct 17, 2010	Approx. 1.5 Kg mineralized quartze	53.2313350216 - 116.5594859608	Taken from large boulder	6
7	Oct 17, 2010	Approx. 1 Kg mineralized quartze	Between 53.233861 – 116.564126 and 53.231407 – 116.559405	Taken from edge of riverbank	Between 5 & 7
8	Oct 17, 2010	Approx. 1 Kg mineralized quartze	Between 53.233861 – 116.564126 and 53.231407 – 116.559405	Taken from edge of riverbank	Between 5 & 7
9	Oct 17, 2010	Approx. 500 g chip taken from rock in excess of 7 Kg unknown mineralization	Between 53.233861 – 116.564126 and 53.231407 – 116.559405	Taken from edge of riverbank	Between 5 & 7

Sample #	Date collected	Size and type of sample	Location coordinates	Observed physical or geological characteristics	Corresponding map #
10	Oct 17, 2010	Chips taken from a rock over 5 Kg quartze mineralized rock	Between 53.233861 – 116.564126 and 53.231407 – 116.559405	Taken from edge of riverbank	Between 5 & 7
11	Oct 18, 2010	Rock chips from a larger sample mineralized quartze	Between 53.233861 – 116.564126 and 53.231407 – 116.559405	Taken from edge of riverbank	Between 5 & 7
12	Oct 18, 2010	Approx. 400 g mineralized quartze	Between 53.233861 – 116.564126 and 53.231407 – 116.559405	Taken from edge of riverbank	Between 5 & 7
13	Oct 18, 2010	Approx. 500 g taken from bigger rock quartze conglomerate	Between 53.233861 – 116.564126 and 53.231407 – 116.559405	Taken from edge of riverbank	Between 5 & 7
14	May 11 – 16, 2011	Approx. 2.5 Kg mineralized guartze	53.234195 - 116.4727	Taken from edge of riverbank	57
15	May 11 – 16, 2011	Approx. 1 Kg mineralized quartze	53.2316 - 116.559877	Taken from edge of riverbank	58
16	May 11 – 16, 2011	Approx. 1.5 Kg quartze	53.231973 - 116.56095	Taken from edge of riverbank	59
17	May 11 – 16, 2011	Approx. 1.5 Kg mineralized quartze	53.233642 - 116.563118	Taken from edge of riverbank	60
18	July 13 – 16, 2011	Approx. 1 Kg schist	53.255111 - 116.585348	Taken from edge of riverbank	55
19	July 13 – 16, 2011	Approx. 2 Kg garnitiferous schist	53.256113 - 116.586828	Taken from edge of riverbank	11
20	Aug 3 – 6, 2011	Sample taken from 22 – 24 Kg quartze rock	53.239537 – 116.568203	Taken from edge of riverbank	10
21	Sep 14 - 17, 2011	Approx. 3 Kg quartze with high pyrite level	53.227926 - 116.551316	Taken from edge of riverbank	13
22	Aug 3 – 6, 2011	Sample taken from 20 Kg quartze rock	53.239884 - 116.568203	Taken from edge of riverbank	14

I

ł

ł

Sample #	Date collected	Size and type of sample	Location coordinates	Observed physical or geological characteristics	Corresponding map #	
23	Jul 13 – 16, 2011	Approx. 1.5 Kg quartze conglomerate	53.251504 - 116.582494	Taken from edge of riverbank	63	
24	24 Jul 13 – 16, Appro 2011 miner quartz		53.248628 – 116.57743	Taken from gravel bar	64	
25	5 Sep 14 – 17, Approx. 8 Kg 2011 Quartze conglomerate		53.224561 – 116.542668	Taken from edge of riverbank	18	
26 Nov 15 – 19, 2011		Approx. 1 Kg quartze conglomerate	53.258783 - 116.591098	Taken from edge of riverbank	19	
27 Sep 14 - 17, 2011 28 Nov 15 - 19,		Chip off rock that was approx 10 Kg	53.227451 – 116.552056	Taken from edge of riverbank	21	
28	Nov 15 – 19, 2011	Approx. 300 g mineralized quartze	53.25022 – 116.581239	Taken from edge of riverbank	22	
29	Sep 14 – 17, 2011	Approx. 3 Kg mineralized quartze	53.263249 – 116.599821	Taken from edge of riverbank	25	
30	Nov 15 – 19, 2011	Approx. 2.5 Kg quaartze	53.269448 - 116.61305	Taken from edge of riverbank	27	
31	Sep 14 – 17, 2011	Chip from rock over 6 Kg mineralized quartze	53.227451 – 116.552056	Taken from edge of riverbank	21	
32	Aug 3 – 6, 2011	Chip from rock approx. 12 – 15 Kg mineralized quartze	53.240231 – 116.567795	Taken from edge of riverbank	28	
33	Oct 5 - 8, 2011	Chip from rock approx 10 Kg mineralized guartze	53.228363 - 116.55093	Taken from edge of riverbank	29	
34	June 1 – 4, 2011	Approx. 2 Kg mineralized quartze	53.22758 – 116.552646	Taken from edge of riverbank	30	
35	Nov 15 – 19, 2011	Approx. 800 g mineralized quartze	53.277352 – 116.607406	Taken from edge of riverbank	32	
36	Jul 13 – 16, 2011	Chips from rock approx. 2.5 Kg metallic unknown	53.255727 – 116.586335	Taken from edge of riverbank	33	

I

Ì

I

ł

ł

Sample #	Date collected	Size and type of sample	Location coordinates	Observed physical or geological characteristics	Corresponding map #
37	Oct 5 – 8, 2011	Approx. 500 g reddish colored mineralized rock	53.277987 – 116.607599	Taken from edge of riverbank	34
38	Jul 13 – 16, 2011	Approx. 500 g mineralized quartze	53.273888 - 116.610292	Taken from edge of riverbank	36
39	Jun 1 – 4, 2011	Approx. 1.2 Kg mineralized quartze	53.230213 - 116.557174	Taken from gravel bar	37
40	Jun 1 – 4, 2011	Chip taken from rock over 8 Kg mineralized quartze	53.227978 – 116.550372	Taken from edge of riverbank	39
41	Jul 13 – 16, 2011	Approx. 1 Kg quartze conglomerate	53.269371 – 116.611269	Taken from edge of riverbank	40
42	May 11 – 14, 2011	Approx. 600 g mineralized quartze	53.199439 – 116.583717	Taken from edge of riverbank	41
43	Jun 1 – 4, 2011	Chip off rock over 8 Kg mineralized quartze	53.227785 – 116.553032	Taken from edge of riverbank	42
44	Jul 13 – 16, 2011	Approx. 800 g mineralized quartze	53.262659 – 116.59996	Taken from edge of riverbank	43
45	Oct 5 – 8, 2011	Chips from rock approx. 200 Kg schist with garnets	53.254264 – 116.584361	Rock situated in middle of stream	44
46	May 11 – 14, 2011	Approx. 300 g quartze	53.22916 - 116.556144	Taken from edge of riverbank	45
47	Sep 14 – 17, 2011	Approx. 1 Kg mineralized quartze	53.260259 – 116.593072	Taken from edge of riverbank	46
48	Jun 1 – 4, 2011	Chip off of a rock approx. 6 Kg mineralized quartze	53.227695 – 116.549942	Taken from edge of riverbank	47
49	Aug 30 – Sep 6, 2012	Approx. 500 g test soil out of trommel	53.232409 – 116.561894	Near the large boulder sample #6	48
50	Sep 26 – 30, 2012	Approx. 300 g test soil out of trommel	53.27512 – 116.603179	Near the large boulder sample #6	49

Sample #	Date collected	Size and type of sample	Location coordinates	Observed physical or geological characteristics	Corresponding map #
51	Jun 1 – 4, 2011	Approx. 1 Kg test soil	53.245572 - 116.563439	Taken approx. 5 meters above river bottom	50
52	Jun 1 – 4, 2011	Approx. 1 Kg test soil	53.246009 - 116.563482	Taken approx. 15 meters above river bottom	51
53	Jun 1 – 4, 2011	Approx. 500 g test soil	53.246009 - 116.563482	Taken approx. 15 meters above river bottom	51
54	Jun 1 – 4, 2011	Approx. 500 g test soil	53.246009 - 116.563482	Taken approx. 15 meters above river bottom	51
55	Jul 13 – 16, 2011	Chip off a larger rock mineralized quartze	53.254829 – 116.584661	Taken from edge of riverbank	52
56	Sep 26 – 30, 2012	Dark red liquid from river bank	53.231253 - 116.559534	Taken from river bank across from gravel bar	53
57	May 11 – 14, 2011	Approx. 400 g mineralized quartze	53.198115 - 116.585712	Taken from gravel bar	54

I

۲

I

Certified Laboratory Reports

I

I

I

I

I

I

I

Loring Laboratories (Alberta) Ltd.

629 Beaverdam Road N.E., Calgary Alberta T2K 4W7 Tel: 274-2777 Fax: 275-0541 loringlabs@telus.net

ISO9001:2008 Certified

TO: Wood Group Exploration Ltd. 5019 9 Ave. Edson, AB, T7E 1E8 Tel: 780-723-2846 File No : 5 4 0 1 0 Date : Feb. 02/2011

Certificate of Assay

Sample		Au	Ag	Pd	Pt	Rh	
ID		ppb	ppm	ррр	aqq	ppp	
Assay Analysis	1.1						
Sample # 1		18	1.0	<5	<5	<5	
Sample # 2		<5	1.1	<5	<5	<5	
Sample # 3		<5	1.0	<5	<5	<5	
Sample # 4		19	0.7	<5	<5	<5	
Sample # 5		<5	0.6	<5	<5	<5	
Sample # 6	100	<5	0.7	<5	<5	<5	
Sample # 7		<5	1.5	<5	<5	<5	
lethodology:	Au,Pd,Pt,F Ag-HNO3	Rh- 30 gram digestion	Fire Assay	v with AA a sh.	nd ICP fini	sh	
eceived date:	Jan. 28/20	11					

I HEREBY CERTIFY that the above results are those assa made by me upon the herein described samples:

Assayer: Alex Tamaian

FORM ASYC-015

ISO9001:2008 Certified

TO: Wood Group Exploration Ltd. 5019 9 Ave. Edson, AB, T7E 1E8 Tel: 780-723-2846 Loring Laboratories (Alberta) Ltd. 629 Beaverdam Road N.E., Calgary Alberta T2K 4W7 Tel: 403-274-2777 Fax:403- 275-0541

> File No : 5 4 0 1 0 Date : Feb. 02, 2011

Attn: Jason Wood

S

30ELEMENT ICP ANALYSIS

The second second second second		and interest																												
Sample	Ag	AI	As	Au	В	Ba	Bi	Ca	Cd	Co	Cr	Cu	Fe	K	La	Mg	Mn	Mo	Na	Ni	Р	Pb	Sb	Sr	Th	Ti	U	V	W	Zn
No.	ppm	%	ppm	ppb	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%	%	ppm	%	ppm	ppm	%	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm
#1	1.0	0.90	5	18	<1	27	3	0.11	2	5	77	50	1.68	0.12	12	0.31	78	1	< 0.01	21	0.02	17	3	14	20	< 0.01	<1	10	<1	12
#2	1.1	0.44	<1	<5	<1	451	1	1.06	1	4	117	10	1.21	0.11	<1	0.40	298	<1	0.02	10	0.03	25	3	28	11	< 0.01	<1	3	<1	17
#3	1.0	0.75	1	<5	<1	81	5	0.24	1	3	132	7	1.29	0.17	20	0.24	231	<1	0.02	8	0.01	14	3	15	19	<0.01	<1	9	<1	20
#4	0.7	0.67	2	19	13	69	4	0.30	<1	2	83	6	0.94	0.16	16	0.20	213	<1	0.02	6	0.03	21	2	20	13	<0.01	<1	3	<1	13
#5	0.6	0.36	<1	<5	4	46	2	0.40	1	3	190	3	1.27	0.04	2	0.13	508	1	0.01	8	<0.01	11	4	12	12	< 0.01	<1	7	<1	15
#6	0.7	0.93	<1	<5	<1	57	8	0.08	1	3	77	12	1.29	0.19	8	0.18	110	<1	0.03	7	0.02	14	2	4	24	0.02	<1	7	<1	23
#7	1.5	2.53	<1	<5	<1	161	11	0.21	3	6	201	20	2.73	0.54	32	0.42	321	2	0.10	15	0.03	66	6	14	43	0.09	<1	26	1	68

Sample received on Jan. 28, 2011

Sample is total digested with multi acid.

Au, Ag report Fire Assay and AA results.

Certified by:

Loring Laboratories (Alberta) Ltd.

629 Beaverdam Road N.E., Calgary Alberta T2K 4W7 Tel: 274-2777 Fax: 275-0541 loringlabs@telus.net

ISO9001:2008 Certified

TO: Wood Group Exploration Ltd. 5019 9 Ave. Edson, AB, T7E 1E8 Tel: 780-723-2846 File No : 5 4 1 0 1 Date : March 14/2011

Certificate of Assay

Sample	States and	Au	Ag	Pd	Pt	Rh ppb	
U		hhn	ppm	hhn	Phe	L. L	
Assay Analysis							
Sample # 8		9	1.0	<5	<5	<5	
Sample # 9		10	0.8	<5	<5	<5	
Sample # 10		<5	<0.5	<5	<5	<5	
Sample # 11		8	1.0	<5	<5	<5	
Sample # 12		9	1.0	<5	<5	<5	
Sample # 13		<5	0.5	<5	<5	<5	
	1 1 1 1						
	1.						
Nethodology:	Au,Pd,Pt,Rh Ag-HNO3 di	n- 30 gram igestion	n Fire Assay with AA fini	/ with AA a sh.	nd ICP fini	sh	
Received date:	March 09/20	011					

made by me upon the herein described samples:

Assayer: Alex Tamaian

9

FORM ASYC-015

ISO9001:2008 Certified

TO: Wood Group Exploration Ltd. 5019 9 Ave. Edson, AB, T7E 1E8 Tel: 780-723-2846

Attn: Jason Wood

0

Loring Laboratories (Alberta) Ltd. 629 Beaverdam Road N.E., Calgary Alberta T2K 4W7 Tel: 403-274-2777 Fax:403-275-0541

> File No : 5 4 1 0 1 Date : March 14/2011

30ELEMENT ICP ANALYSIS

p 10 - 11 - 10 -	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	9 9 10 <5	ppm <1 <1	ррт 26 30	ppm 2 3	% 1.08	ppm <1	ppm 2	<u>ppm</u> 99	29 ppm	%	%	ppm	%	ppm	ppm	%	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm
:0 · :1 · :0 ·	<1 <1 <1	9 10 <5	<1 <1	26 30	2	1.08	<1	2	99	39	1 19																	and the second sec
0 ·	<1 <1	10 <5	<1	30	3						1.10	0.07	<1	0.26	389	<1	0.02	5	<0.01	19	<1	67	14	<0.01	<1	2	<1	18
0	<1	<5				7.64	<1	3	9	47	1.25	0.05	2	1.32	287	<1	0.02	7	0.02	6	<1	501	7	<0.01	<1	4	<1	32
1			<1	33	<1	0.17	<1	1	132	54	0.40	0.07	2	0.02	31	<1	<0.01	4	<0.01	3	1	15	3	<0.01	<1	1	<1	3
	8	8	<1	99	11	0.06	<1	9	112	65	4.68	0.25	<1	1.31	355	1	0.03	21	<0.01	39	<1	9	43	<0.01	<1	23	<1	108
3	<1	9	<1	13	2	4.84	<1	<1	93	45	0.98	0.02	<1	0.21	3325	<1	0.01	5	<0.01	54	<1	575	5	< 0.01	<1	3	<1	17
1	<1	<5	<1	26	3	2.72	<1	1	100	42	1.46	0.08	1	1.14	525	<1	0.02	3	0.01	24	<1	113	9	<0.01	<1	5	<1	12
																										•		
ived	on M	larch 09	9, 2011																									
	-									-																		
	ived	ived on M	ived on March 09	ived on March 09, 2011																								

0.500 Gram sample is digested with Aqua Regia at 95C for one hour and bulked to 20 ml with distilled water. Partial dissolution for Al, B, Ba,Ca, Cr,Fe,K,La,Mg,Mn,Na,P,Sr,Ti and W. Au,Ag - Fire Assay results.

Certified b

ATTO .

Loring Laboratories (Alberta) Ltd.

629 Beaverdam Road N.E., Calgary Alberta T2K 4W7 Tel: 274-2777 Fax: 275-0541 loringlabs@telus.net

ISO9001:2008 Certified

File No : 5 4 3 2 0 Date : April 24/2012

11

TO: Wood Group Exploration Ltd. 5017 9 Ave. Edson, AB, T7E 1E8 Attn: Jason R Wood

Certificate of Assay

Sample ID		Au ppb	Ag ppm	Pd ppb	Pt ppb	Rh ppb	
Assay Analysis	1 2 3						
Sample # 14	1.2.5.1	92	2.5	<5	<5	<5	
Sample # 15		744	2.5	<5	25	<5	
Sample # 16		234	0.5	35	21	<5	
Sample # 17		42	0.5	<5	<5	<5	
Dupl. Sample # 14		86	2.5	<5	<5	<5	
lethodology:	Au,Pd,Pt,I Ag-HNO3	Rh- 30 gram digestion v	Fire Assay	with AA a sh.	nd ICP finis	sh	
Received date:	April 16/20	012					

Certified by:

FORM ASYC-015

Loring Laboratories(Alberta) Ltd.

629 Beaverdam Road N.E., Calgary Alberta T2K 4W7 Tel: 403- 274-2777 Fax:403- 275-0541 loringlabs@telus.net

TO: Wood Group Exploration 5017 9 Ave Edson AB T7E 1E8

Attn: Jason R Wood

12

30ELEMENT ICP ANALYSIS

Sample	Ag	AI	As	Au	В	Ba	Bi	Ca	Cd	Co	Cr	Cu	Fe	К	La	Mg	Mn	Mo	Na	Ni	P	Pb	Sb	Sr	Th	Ti	U	V	W	70
NO.	ppm	%	ppm	ppb	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%	%	ppm	%	ppm	ppm	%	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm
# 14 # 15 # 16 # 17 Dup.14	2.5 2.5 0.5 0.5 2.5	2.78 0.10 0.18 0.03 2.82	<1 <1 <1 <1 <1	92 744 234 42 86	3 2 5 4 3	41 15 31 10 39	16 15 3 1	0.28 6.34 0.04 0.02 0.27	8 7 2 <1 8	6 5 5 <1 6	126 107 193 141 125	7 9 8 4 6	6.76 6.25 1.41 0.33 6.74	0.06 0.02 0.01 <0.01 0.06	5 <1 19 <1 5	1.15 3.03 0.04 <0.01 1.14	391 1066 176 61 397	2 <1 <1 <1 1	<0.01 0.02 <0.01 <0.01 <0.01	24 34 25 4 23	0.03 0.02 0.01 <0.01 0.03	142 58 8 50 139	6 3 2 1 5	18 50 1 2 17	38 30 17 2 38	<0.01 <0.01 <0.01 <0.01 <0.01	<1 <1 <1 <1 <1	17 7 3 <1 17	3 2 1 <1 2	135 133 26 10 133
Blank	<0.5	<0.01	<1	<1	<1	<1	<1	<0.01	1 <1	<1	<1	<1	<0.01	<0.01	<1	<0.01	<1	<1	<0.01	<1	<0.01	<1	<1	<1	<1	<0.01	<1	<1	<1	<1
		Sample Partial Au valu	e is dige dissolu ue using	ested w ition for g Fire A	ith Aqu Al, B, ssay re	ua Reg Ba,Ca esults.	gia at , Cr, F	95C fe e,K,L	or one a,Mg,N	hour and An,Na,P,S	bulked to Sr, Ti and	o 20 ml W.	with dis	tilled wa	ater.															

* Sample received on Apr. 16, 2012

Certified by:

Denn takt

FILE: 55320

DATE: April 24, 2012

Sample Type: Rock

Loring Laboratories (Alberta) Ltd.

629 Beaverdam Road N.E., Calgary Alberta T2K 4W7 Tel: 274-2777 Fax: 275-0541 loringlabs@telus.net

ISO9001:2008 Certified

TO: Wood Group Exploration Ltd. 5017 9 Ave. Edson, AB, T7E 1E8 Attn: Jason R Wood File No : 5 5 4 6 8 Date : June 26, 2012 Samples:

Certificate of Assay

Sample		Au	Ag	Pd	Pt	Rh	
ID		ppb	ppm	ppb	ppb	ppb	
Assay Analysis							
Sample # 18		145	<0.5	<5	<5	<5	
Sample # 19		159	<0.5	<5	<5	<5	
Sample # 20		47	<0.5	<5	<5	<5	
Sample # 21		<5	<0.5	<5	<5	<5	
Sample # 22		50	<0.5	<5	<5	<5	
Sample # 23		55	<0.5	<5	<5	<5	
Sample # 24		40	<0.5	<5	<5	<5	
Sample # 25		11	<0.5	<5	<5	<5	
Sample # 26		47	<0.5	<5	<5	<5	
Sample # 27		19	<0.5	<5	<5	<5	
Sample # 28		20	<0.5	<5	<5	<5	
Sample # 29	22333	8	<0.5	<5	<5	<5	
Sample # 30		<5	<0.5	<5	<5	<5	
Sample # 31		63	<0.5	<5	<5	<5	
Sample # 32		9	<0.5	<5	<5	<5	
Sample # 33		24	<0.5	<5	<5	<5	
Dupl. Sample # 27		7	<0.5	<5	<5	<5	
ethodology:	Au,Pd,Pt,Rh-	30 gram	Fire Assay	with AA a	nd ICP finis	sh	
eceived date:	June 13, 201	2					

I HEREBY CERTIFY that the above results are those assay made by me upon the herein described samples:

Certified by:

FORM ASYC-015

SO9001:2008 Certified

FO: Wood Group Exploration Ltd. 5017 9 Ave. Edson, AB, T7E 1E8 Fel: 780-723-2846

Attn: Jason Wood

Loring Laboratories (Alberta) Ltd. 629 Beaverdam Road N.E., Calgary Alberta T2K 4W7 Tel: 403-274-2777 Fax:403- 275-0541

> File No : 5 5 4 6 8 Date : June 25/2012 Sample : Rocks

30ELEMENT ICP ANALYSIS

Sample	Ag	AI	As	В	Ba	Bi	Ca	Cd	Co	Cr	Cu	Fe	K	La	Mg	Mn	Mo	Na	Ni	P	Pb	Sb	Sr	Th	Ti	U	V	w	Zn	7r
No.	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%	%	ppm	%	ppm	ppm	%	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm
Sample # 18	<0.5	0.36	26	24	68	13	0.08	3	20	57	42	3.43	0.15	12	0 44	263	4	0.03	62	0.02	5	5	4	22	-0.01	-1	5	-1	CE.	1
Sample # 19	<0.5	1.95	5	24	65	7	0.54	2	8	106	22	2 37	0.12	20	1 12	174	1	0.03	16	0.12	4	2	4	20	-0.01	-1	0	-1	00	1
Sample # 20	<0.5	0.07	9	41	20	2	0.46	<1	1	102	9	0.49	0.02	===	0.02	142	-1	0.04	12	0.10	4	4	10	20	0.02	51	14	SI	11	2
Sample # 21	<0.5	0.48	10	26	66	8	1 08	2	5	94	7	2 28	0.02	3	0.02	662	1	0.01	15	0.10	4	2	93	4	<0.01	4	1	51	0	<1
Sample # 22	<0.5	0.05	5	31	24	4	0.05	1	2	106	A	1 24	0.00	-1	0.02	452	-1	-0.04	0	-0.01	11	2	11	20	<0.01	4	4	<1	21	1
Sample # 23	<0.5	0.15	8	38	45	3	0.34	-1	2	90	44	0.00	0.04	7	0.02	102	-1	0.01	0	0.42	3	2	3	8	<0.01	<1	2	<1	15	<1
Sample # 24	<0.5	0.22	10	29	74	2	0.06	4	2	112	0	1.00	0.00	10	0.01	203	-1	0.01	0	0.12	40	1	52	10	<0.01	<1	2	<1	20	3
Sample # 25	<0.5	0.62	1	32	60	5	0.70	1	2	144	0	1.20	0.11	10	0.02	120	-	0.03	-	0.02	13	2	12	1/	<0.01	<1	2	<1	15	3
Sample # 26	<0.5	0.11	4	29	23	4	1 10	-1	2	141	4	1.34	0.09		0.21	304	12	0.02	9	0.06	8	Z	26	15	<0.01	<1	6	<1	16	3
Sample # 27	<0.5	0.22	1	33	20	4	0.24	-1	0	132	0	0.04	0.05	51	0.23	220	<1	0.01	8	0.01	13	2	37	8	<0.01	<1	3	<1	10	2
Sample # 28	<0.5	0.02	-1	30	20	7	0.24	2	4	110	0	0.78	0.04	51	0.13	91	<1	0.03	6	0.02	21	2	28	7	< 0.01	<1	2	<1	9	2
Sample # 29	<0.5	0.25	-1	25	20	2	2.10	-4	-	129	1	2.04	<0.01	<1	1.38	506	<1	0.01	8	0.01	3	2	44	14	< 0.01	<1	3	<1	26	<1
Sample # 30	<0.5	0.48	2	24	20	5	1.04		4	149	4	0.88	0.06	<1	0.10	237	1	<0.01	6	<0.01	3	2	4	7	<0.01	<1	3	<1	4	3
Sample # 31	<0.5	0.40	2	31	03	5	1.04	1	4	142	12	1.46	0.02	<1	0.30	410	<1	<0.01	9	0.01	127	2	53	11	<0.01	<1	4	<1	26	<1
Sample # 32	<0.5	0.59	3	22	90	0	1.50	1	3	111	2	1.48	0.15	10	0.08	631	<1	0.03	5	0.01	8	2	36	16	< 0.01	<1	3	<1	10	3
Sample # 33	-0.5	1.04	2	33	59	6	1.24	2	2	129	2	1.71	0.08	<1	0.26	1085	<1	0.02	8	0.04	47	2	70	15	<0.01	<1	3	<1	19	3
Dup Sample # 19	-0.5	1.01	<1	32	14	8	0.65	2	4	110	15	2.29	0.15	7	0.47	732	<1	0.02	12	0.01	27	2	50	26	<0.01	<1	7	<1	52	4
Dup. Sample # 18	<0.5	0.39	24	22	70	14 -	0.08	4	19	59	43	3.58	0.16	13	0.48	276	3	0.03	59	0.02	5	3	4	35	<0.01	· <1	6	<1	67	1
Blank	<0.5	<0.01	<1	<1	<1	<1	<0.01	<1	<1	<1	<1	<0.01	<0.01	<1	<0.01	<1	<1	<0.01	<1	<0.01	<1	<1	<1	<1	<0.01	<1	<1	<1	<1	<1

0.500 Gram sample is digested with Aqua Regia at 95C for one hour and bulked to 25 ml with distilled water. Partial dissolution for Al, B, Ba,Ca, Cr,Fe,K,La,Mg,Mn,Na,P,Sr,Ti and W.

Sample received on June 13, 2012

Certified by:

Loring Laboratories (Alberta) Ltd.

Certificate of Assay

629 Beaverdam Road N.E., Calgary Alberta T2K 4W7 Tel: 274-2777 Fax: 275-0541 loringlabs@telus.net

ISO9001:2008 Certified

TO: Wood Group Exploration Ltd. 5017 9 Ave. Edson, AB, T7E 1E8 Attn: Jason R Wood

File No : 55907 : October 31, 2012 Date Samples: Rock

Sample	Au	Ag	Pd	Pt	Rh	
ID	ppb	ppm	ppp	php	ppp	
Assay Analysis						
		-0.5	-5	<5	<5	
Sample # 34	28	<0.5	<5	<5	<5	
Sample # 35	28	<0.5	15	<5	<5	
Sample # 36	24	<0.5	<5	<5	<5	
Sample # 37	<5	4.0	<5	<5	<5	
Sample # 38	<5	<0.5	<5	<5	15	
Sample # 39	<5	1.0	<5	<5	<5	
Sample # 40	32	2.0	<5	<5	<5	
Sample # 41	<5	<0.5	<5	<5	<5	
Sample # 42	<5	<0.5	<5	<5	<5	
Sample # 43	<5	<0.5	<5	<5	<5	
Sample # 44	24	<0.5	<5	<5	<5	
Sample # 45	<5	<0.5	<5	<5	<5	
Sample # 46	<5	<0.5	<5	<5	<5	
Sample # 47	<5	<0.5	<5	<5	<5	
Sample # 48	<5	<0.5	<5	<5	<5	
Sample # 40	266	1.0	<5	<5	<5	
Sample # 49	374	10	<5	<5	<5	
Sample # 50	19	1.0	<5	<5	<5	
Sample # 51	10	1.5	<5	<5	<5	
Sample # 52	10	2.0	<5	<5	<5	
Sample # 53	18	1.0	<5	<5	<5	
Sample # 54	24	1.0	~5	<5	<5	
Sample # 55	30	1.0	-5	-5	<5	
Sample # 56	92	2.0	~5	~5	c5	
Sample # 57	20	2.0	02	1100 6-	inh	
Methodology:	Au,Pd,Pt,Rh- 30 gran	n Fire Assa	y with AA	and ICP fir	lish	
Received date:	October 22, 2012					

I HEREBY CERTIFY that the above results are those assays made by me upon the herein described samples:

Certified by:

FORM ASYC-015

Alter State

TO: Wood Group Exploration Ltd. 5017 9 Ave. Edson, AB, T7E 1E8 Tel: 780-723-2846

Attn: Jason Wood

Loring Laboratories (Alberta) Ltd. 629 Beaverdam Road N.E., Calgary Alberta T2K 4W7 Tel: 403-274-2777 Fax:403- 275-0541

File No : 55907

Date : October 30/2012

Sample : Rocks/Soil

30ELEMENT ICP ANALYSIS

Sample	Ag	Al	As	В	Ba	Bi	Ca	Cd	Co	Cr	Cu	Fe	K	La	Mg	Mn	Mo	Na	Ni	P	Pb	Sb	Sr	Th	Ti	U	V	W	Zn	Zr
No.	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%	%	ppm	%	ppm	ppm	%	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm
34	<0.5	1.01	<1	36	13	7	0.07	2	1	110	9	1 90	0.02	-1	0.54	151	1	0.04	11	0.02	5	1	2	24	<0.01	<1	8	1	15	1
35	<0.5	0.16	<1	34	44	A	0.07	4	-1	110	0	1.09	0.02	E	0.16	300	1	0.01	4	0.02	17	1	60	12	<0.01	21	3	1	8	2
36	<0.5	2 24	<1	22	03	12	0.00	2	2	66	4	2 22	0.00	-1	0.10	027	4	0.04	14	0.02	1	2	0	22	20.01	21	20	1	74	4
37	4.0	0.32	<1	14	202	70	4.20	22	-1	16	4	11 07	0.00	-1	0.90	921	4	0.03	14	0.03	7	10	35	157	0.01	c1	83	1	10	10
38	<0.5	0.02	<1	20	11	6	4.29	4	-1	101	2	1 52	0.05	-1	0.40	227	1	0.03	11	0.13	4	1	8	12	<0.01	=1	3	4	27	1
39	1.0	0.01	<1	20	11	7	2.02	2	-1	66	2	1.02	0.01	-1	1.40	EGO	-1	0.01	10	0.03	70	4	27	14	<0.01	-1	4	5	AGA	-1
40	2.0	2 27	3	16	22	17	0.02	4		00	3	1.01	0.00	-1	1.4/	742	4	0.01	22	0.01	74	2	60	38	20.01	21	18	1	76	2
41	<0.5	0.13	2	21	40	2	0.00	4	4	122	0	4.20	0.05		1.00	110	1	0.02	23	0.00	24	1	10	0	<0.01	c1	2	-1	15	2
42	<0.5	1.05	1	10	25	9	0.00	2	~1	123	20	0.02	0.04	4	0.01	140	4	0.02	14	0.02	5	2	10	10	<0.01	=1	8	1	22	2
43	<0.5	0.26	4	10	78	0	0.15	2	1	0.9	20	2.02	0.00	2	0.01	275	1	0.01	7	0.04	10	2	4	25	<0.01	-1	5	-1	26	4
44	<0.5	0.09	<1	37	22	3	0.20	4	-1	460	2	2.20	0.14	0	0.00	002	1	0.02	12	0.02	10	4	255	5	<0.01	-1	4	21	20	4
45	<0.5	1 63	<1	23	52	G	0.20	2	5	102	20	1.00	0.01	0	0.00	172	1	0.01	25	0.01	2	2	0	24	<0.01	<1	12	1	17	1
46	<0.5	0.10	1	18	34	4	0.20	4	2	117	12	1.00	0.11	2	0.01	115	1	0.03	10	0.00	22	2	56	12	<0.01	<1	1	-1	1	3
47	<0.5	0.13	11	22	28	3	0.00	1	-1	02	6	1.13	0.03	2	0.14	236	4	0.03	7	0.03	12	1	4	12	<0.01	<1	2	c1	2	1
48	<0.5	0.10	1	18	28	5	0.05	1	-1	30	2	1.22	0.04	0	0.01	476	4	0.04	7	0.01	24	4	6	12	<0.01	21	3	21	15	2
49	10	0.75	4	10	132	4	0.00	2	2	77	7	1.55	0.00	14	0.02	220	1	0.01	10	0.02	6	1	27	15	0.02	21	28	4	24	1
50	1.0	0.65	5	17	102	5	0.95	4	2	74	7	1.00	0.00	14	0.44	350	4	0.02	10	0.00	8	1	25	13	0.02	<1	20	1	27	4
51	10	1 17	<1	15	265	4	0.90	1	-1	14	12	1.42	0.00	0	0.50	501	-1	0.02	. 10	<0.04	1 12	1	113	13	c0.01	1	13	1	79	28
52	1.5	0.96	3	16	157	e e	4.07	2	2	24	16	1.04	0.10	2 7	1 24	300	4	0.02	22	0.05	8	4	04	16	0.01	<1	21	1	54	7
53	20	1 09	3	15	230	8	4.07	2	2	40	20	1.72	0.00	7	1 20	146	1	0.01	25	0.05	0	1	104	18	0.01	<1	23	1	57	8
54	1.0	1.00	4	23	171	7	9.41	2	4	30	20	2.11	0.00		0.06	526	1	0.01	20	0.00	9	1	65	20	0.01	<1	32	1	65	7
55	1.0	0.13	<1	22	54	G	2.70	2	-1	70	20	1.66	0.03	7 61	1 17	660	1	0.02	1 11	0.00	5	1	15	16	<0.01	1 <1	7	=1	15	2
56	2.0	0.73	204	17	506	20	1 02	44	2	72	10	8.44	0.01	2 24	0.30	752	1	0.14	20	0.00	10	ß	65	83	0.01	<1	10	1	22	4
57	20	0.06	2	19	26	7	5 77	2	-1	GA	1	1 90	0.00	2 -1	2.22	915	2	0.04	1 7	0.00	2	1	107	1 14	<0.01	1 11	8	-1	20	2
check #34	<0.5	1.07	<1	33	14	7	0.08	2	1	109	9	1.95	0.02	2 <1	0.52	158	1	0.0	1 11	0.02	2 4	2	2	21	<0.0	1 <1	8	1	47	1

0.500 Gram sample is digested with Aqua Regia at 95C for three hours and bulked to 25 ml with distilled water. Partial dissolution for Al, B, Ba,Ca, Cr,Fe,K,La,Mg,Mn,Na,P,Sr,Ti and W.

Sample received on Oct. 22, 2012

Certified by:

A Contraction

Loring Laboratories (Alberta) Ltd.

629 Beaverdam Road N.E., Calgary Alberta T2K 4W7 Tel: 274-2777 Fax: 275-0541

ISO 9001:2008 Certified

FILE # : 55907-1

CLIENT NAME: WOOD GROUP EXPLORATION LTD.

DATE : Nov 28, 2012

	ORIGINAL WEIGHT	Sci	reen Analys	sis	TABLE CONC.	MIDDLINGS 2.9 - 3.3 SG	HEAVIES >3.3 \$G
SAMPLE ID.	Gram	+ 10 mesh Gram	10 x 80 mesh Gram	-80 mesh Gram	+80 mesh Gram		
Sample #45	165.50	11.76	104.39	49.34			22.87
							NO GRAIN PICKED

