MAR 20090018: WHISKEY GAP

Received date: Sep 25, 2009

Public release date: Jan 04, 2011

DISCLAIMER

By accessing and using the Alberta Energy website to download or otherwise obtain a scanned mineral assessment report, you ("User") agree to be bound by the following terms and conditions:

- a) Each scanned mineral assessment report that is downloaded or otherwise obtained from Alberta Energy is provided "AS IS", with no warranties or representations of any kind whatsoever from Her Majesty the Queen in Right of Alberta, as represented by the Minister of Energy ("Minister"), expressed or implied, including, but not limited to, no warranties or other representations from the Minister, regarding the content, accuracy, reliability, use or results from the use of or the integrity, completeness, quality or legibility of each such scanned mineral assessment report;
- b) To the fullest extent permitted by applicable laws, the Minister hereby expressly disclaims, and is released from, liability and responsibility for all warranties and conditions, expressed or implied, in relation to each scanned mineral assessment report shown or displayed on the Alberta Energy website including but not limited to warranties as to the satisfactory quality of or the fitness of the scanned mineral assessment report for a particular purpose and warranties as to the non-infringement or other non-violation of the proprietary rights held by any third party in respect of the scanned mineral assessment report;
- c) To the fullest extent permitted by applicable law, the Minister, and the Minister's employees and agents, exclude and disclaim liability to the User for losses and damages of whatsoever nature and howsoever arising including, without limitation, any direct, indirect, special, consequential, punitive or incidental damages, loss of use, loss of data, loss caused by a virus, loss of income or profit, claims of third parties, even if Alberta Energy have been advised of the possibility of such damages or losses, arising out of or in connection with the use of the Alberta Energy website, including the accessing or downloading of the scanned mineral assessment report and the use for any purpose of the scanned mineral assessment report.
- d) User agrees to indemnify and hold harmless the Minister, and the Minister's employees and agents against and from any and all third party claims, losses, liabilities, demands, actions or proceedings related to the downloading, distribution, transmissions, storage, redistribution, reproduction or exploitation of each scanned mineral assessment report obtained by the User from Alberta Energy.

Alberta

Alberta Mineral Assessment Reporting System

SEP 2 5 2009 20090018

The Whiskey Gap Uranium Project

Alberta Permit Numbers

093 9305050704, 093 9305050703, 093 9306031154

Part B

Summery of Exploration Drilling

NTS 83H

for North American Gem Ltd

and

International Ranger Corp

by

G.S. Hartley P.Geol.

September 30, 2009

Table of Contents Parts B and C

1.0 EXECUTIVE SUMMARY 1.1 Lands 1.2 The Diamond Drill Program 1.3 The Reverse Circulation Drill Program 1.4.0 Results 1.4.1 Observed Alteration 1.4.2 Radioactive Intersections 1.4.3 Heavy Metal Enrichment 1.4.4 Uranium Mineralization 1.4.5 Recommendations	4
2.0 INTRODUCTION AND TERMS OF REFERENCE	7
3.0 DISCLAIMER	8
4.0 PROPERTY LOCATION AND ACCESS	
5.0 PHYSIOGRAPHY	10
6.0 HISTORY	
7.0 GEOLOGY	
8.0 FIELD GEOLOGY	13
 9.0 EXPLORATION CONCEPT 9.1 Radon Uranium and Sulphate in Water data 9.1.1 Radon Data 9.1.2 Uranium in Water 9.1.3 Sulphate in Water 	14
10.0 DRILLING 10.1 Operations and Logistics	17
11.0 ASSAY	
12.0 RECLAMATION	19
13.0 INTERPRETATION	
14.0 RECOMMENDATIONS AND CONCLUSIONS	
15.0 CERTIFICATE/QUALIFICATIONS	
16.0 Exploration Expenditures	
17.0 REFERENCES	

Table of Figures

Figure 1 – Location of the Whiskey Gap Property	9
Figure 2—Whiskey Gap Lands	10
Figure 3 – Typical Physiography looking west	10
Figure 4 - Geological map of the Drilling Area	11
Figure 5 – Stratigraphic Succession Southeast Albert	12
Figure 6 – Strongly Oxidized outcrop of Willow Creek Formation	13
Figure 7 – Radioactive Limonitic Mudstones	14
Figure 8 – Conceptual Model of Uranium Roll Front Deposit	15
Figure 9 – Radon Generation	16
Figure 10 – Drill Hole Locations	16
Figure 11 – Dolmans Reverse Circulation Drill	17

Table of Appendices Part C

Appendix 1	Reverse Circulation Lithological Descriptions
Appendix 2	Assay Results
Appendix 3	Geophysical Logs

1.0 Executive Summery

This report was prepared to document the Exploration program conducted by North American Gem Ltd of Vancouver on lands optioned from International Ranger Corp of Vancouver.

The target is Roll Front, Sandstone hosted Uranium Mineralization. In the US sandstone Uranium orebodies vary from 400 to 4000 ppm U.

The best intersection recovered during previous diamond drilling by North American Gem was 132 ppm Uranium.

The Whiskey Gap area was originally defined by a strong radon in water anomaly(5000 Bqi/l by work conducted by International Ranger (Hartley, 2006)

During 2007 a follow up investigation of the area, conducted by the Alberta Geological Survey, a program of water sampling obtained strongly anomalous radon values of 5994 Bq/L or 222 pic/l and anomalous heavy metals (AGS Report 2007-08, Olsen and Anderson) from a water well immediately north of the historic Whiskey Gap town site.

This area has been defined by North American Gem as prospective and lies approximately 1.6 km east of the site of previous drilling by NAG. The drilling had returned weak uranium and radioactivity associated with strong heavy metal enrichment in sandstones.

The 2008 program conducted by North American Gem consisted of five reverse circulation drill holes drilled near the site of the town of Whiskey Gap. This program failed to explain the strong radon anomaly identified by the Alberta Geological survey.

Taken in the context of all exploration to data in the immediate area, these results suggest that the rate of ground water flow in the aquifer is easterly and occurs at a higher rate of speed than previously thought.

Further drilling be conducted west of the AGS Radon high and east of Nag's previous drilling

1.1 Lands

The project lands totaling 18248.8 hectares are located immediately north of the US Canada border near Delbonita Alberta.

International Ranger conducted Radon sampling of domestic water wells in the area, during August 2005, outlining an area of high radon occurrence up to a maximum of 5000 picocuries / liter Radon.

North American Gem and Ranger entered in to an option agreement on the property, October 5, 2005.

1.2 The Diamond Drill Program

Alliance Sonic Drilling of Whitehorse was contracted to drill 750 meters of NQ diamond drilling in December 2007, drilling commenced in January 2008.

The contract was terminated in March 2008 by North American Gem, due to non performance, with approximately 30 meters of drilling completed and no core recovered. North American Gem subsequently obtained an uncontested sheriffs seizure of the drill and all of the onsite assets of Alliance Sonic Drilling to recover value for monies previously advanced to Alliance.

1.3 The Reverse Circulation Drill Program

In late February 2008, Dolman Drilling of Pincher Creek was contracted to conduct a program of exploration drilling on the property, in order to test the zone originally planned for diamond drilling. The holes were logged quantitatively logged by Go Gamma Wireline Services of Edmonton to define the radioactive zones, as an aid to the sampling for assay. One were relogged by Electrolog Services of Calgary to establish continuity with holes previously drilled by North American Gem.

1.4.0 Results

1.4.1 Observed Alteration

All drill holes contained strongly oxidized hematite rich zones. See attached litho logs.

1.4.2 Radioactive intersections

Anomalous radioactivity was encountered in 2 of 5 exploration holes. Thickness of the zones varied from less than 1 meter to 2 meters in width.

1.4.3 Heavy metal enrichment

Only weak heavy metal encrichment of 22 ppm arsenic and .8 ppm molybdenum occurred in association with the radioactive zones of the 2008 drill program, The heavy metal enrichment of the sandstones intersected was much lower than those zones encountered during the 2006 drill program.

Anomalous, to very strong Heavy Metals enrichment was associated with the radioactive zones, encountered in 2006 program. Heavy metals included, Arsenic, Copper, Molybdenum Antimony, Selenium, and Barium. The maximum values of heavy metals occurring in the radioactive zones were: Arsenic 593 ppm, Copper 62 ppm Antimony 18 ppm, Selenium 12 ppm Barium 3740 ppm Molybdenum 79 ppm. Uranium mineralization, in all instances, occurred within an "envelope" of heavy metals

1.4.4 Uranium mineralization

No economic grades of Uranium mineralization were encountered. The highest assay of the 2008 program was 30 ppm U recovered over a five meter interval from drill hole WG 08-4.

The best assay of both Phase 1 and 2 drill programs conducted in 2006 was 136 ppm Uranium over a 30 centimeter interval in DDH 05-02.

1.4.5 Recommendations

Uranium mineralization up to .9% U308 occurs within rare organic fossil debris within the Willow Creek section west of the Whiskey Gap Property (Firestone Ventures news release).

This exploration program, confirms that processes capable of uranium transport and deposition, responsible for the formation of Sandstone Uranium deposits are active in the Project area.

During North American Gem's 2006 program, weak Uranium in association with strong heavy metal enrichment was encountered in drill hole 06-20. Massive disseminated pyrite and rare organics also were encountered in this drill hole on the Gunninger farm approximately 2 km the west of the 2008 drill program.

The presence of very high Radon in well water near the Whiskey Gap town site (as noted by the AGS) and the very low values of Uranium and heavy metals encountered in 2008 drill holes, suggests that ground water flow in the region may be in an west to east direction through the Whiskey Gap town site.

Separation of radon transported in water, and insitu uranium and heavy metal mineralization is dependant on rate of ground water flow through the Willow Creek and St Mary River formations, thus is possible that the 2008 drill program was conducted "down flow" of Sandstone hosted Uranium mineralization.

It is suggested that further drilling on the project be conducted west of the Radon High located at Whiskey Gap townsite.

Drilling should target the location and definition of strongly reducing conditions, previously encountered in drill hole 6-20.

2.0 Introduction

Ignored as an exploration model in Canada, Sandstone hosted Uranium deposits have been mined for many years in the USA

Sandstone deposits constitute about 18% of world uranium resources. Ore bodies of this type are commonly low to medium grade ($0.05 - 0.4\% U_3O_8$) and individual ore bodies are small to medium in size (ranging up to a maximum of 50 000 t U_3O_8). The main primary uranium minerals are uraninite and coffinite. Conventional mining/milling operations of sandstone deposits have been progressively undercut by cheaper in situ leach mining methods.

The United States has large resources in sandstone deposits in the Western Cordillera region, and most of its uranium production has been from these deposits, recently by in situ leach (ISL) mining. The Powder River Basin in Wyoming, the Colorado Plateau and the Gulf Coast Plain in south Texas are major sandstone uranium provinces.

The Smith Ranch uranium mine located in the Powder River Basin is the newest and largest uranium production centre in the United States, and today is producing at a rate of 580 tU (1.5 million lbs U_3O_8) per year.

International Ranger's exploration concept is that the Tertiary and Cretaceous sediments in Southern Alberta are analogous to sediments in parts of the USA that host economically viable Uranium deposits.

In order to test this analogy, Ranger conducted regional water sampling of domestic water sources in the area during August 2005. Survey results are detailed in the report by this Author entitled "Radon Sampling on the Whiskey Gap Property" dated September 10, 2005.

The highest priority exploration target, identified during the Ranger program, was a radon in water anomaly of 5000 picocuries per liter collected from a domestic water well located in Sec 34,TWP1, RGE 23 west of the 4th meridian, known as the Thomson ranch.

North American Gem (NAG) and Ranger entered in to an option agreement on the property, October 5, 2005.

A drill program consisting of 1300 meters of Diamond core and 25 reverse circulation drill holes was carried out in during the winter of 2006.

North American Gem was subsequently contacted by members of the Alberta Geological Survey to provide a detailed list of the well water sample locations and radon values used in the original International Ranger survey. North American Gem geologists refused to provide the information in order to encourage the Survey to implement systematic collection of regional Radon data, rather than merely confirmation data, of already known anomalies.

The AGS subsequently published radon in water of the Whiskey Gap Area survey information as paper 07-08, Olsen and Anderson. The AGS report included water sample data for a well location that Gem geologists had previously been unable to locate the registered owner, in order to obtain permission to sample.

This well located near the Whiskey Gap town site yielded 5994 Pic/liter or 222Bq/l the highest Radon values yet recorded in the area.

This site became the target of North American Gems 2008 Drill program.

North American Gem contracted both diamond drilling and reverse circulation drilling services for a further program in 2008, only the reverse circulation drilling conducted by Dolmans drilling of Pincher creek, was able to complete the contracted 5 drill holes near the Whiskey Gap townsite.

3.0 Disclaimer

This Report is directed solely for the development and presentation of data with recommendations to allow for North American Gem and International Ranger. to reach informed decisions.

This report is intended to be read as a whole, and sections should not be read or relied upon out of context.

The author personally collected the drill cuttings, or supervised their collection during this project.

The author assumes that all the analytical work conducted by the SRC (Saskatchewan Research Council) is technically sound and accurately reported.

All Reverse circulation samples were geologically described by Sheldon Dolman and sampled by Project manager Mike Hartley under the supervision of the author.

All drill holes were quantitatively logged for total count radiometric response by Mike Hartley using an anilog Widco wireline system and slim hole Gerhart Owens total count tool provided by GoGamma Wireline Services. These quantitative logs were used only to determine the assay intervals, and are not included in this report.

Controlled Radiometric data was provided by Electro Log Services of Calgary, for hole WGRC-08-5, of the program. Logging tools were calibrated, and logging depths accurately determined.

This log was done to provide a consistent control of radiometric data for comparison to the 2006 drill program conducted by North American Gem. (and is included as appendix 3)

Chip Samples were shipped to the Saskatchewan Research Council (SRC) for chemical analysis. Cuttings from non core holes from the Dolman Drilling program, were collected on 1 to 5 foot intervals, split and shipped to the SRC using the uncontrolled total count Radiometric logs to determine the sampled interval and relative level of Radioactivity

4.0 Property Location and Access

The Whiskey Gap Property consists of 2 metallic mineral permits, each containing approximately an area of 36 square miles of favorable fluvial sandstone. The property lies along the Alberta Montana border.

Access thorough the property is by paved Alberta highways #501 and #2, graveled grid roads traverse the property lands and service the local farming community.

Figure 1. Location of the Whiskey Gap Property

Figure 2 Whiskey Gap lands

5.0 Physiography

The permits are flat to gently rolling farm and ranch land. Drainage is mature, and bedrock exposures are poor excepting along major drainage and in occasional road cuts

Figure3. Typical physiography near the center of Ranger Permits

6.0 History

See previous reports filed 2007

7.0 Geology

The geology of the area is characterized by poorly exposed bedrock subcrops of upper Cretaceous sandstones and shales (Bear Paw, Blood Reserve, St Mary River, and Willow Creek Formations, The Bear paw is the oldest and stratigraphically lowest formation and the Willow Creek is the youngest and stratigraphically highest formation. The Paleocene Del Bonita gravels lie in the eastern half of Permit 2

TERTIARY

Td

PLIOCENE/MIOCENE

DEL BONITA GRAVELS gravel, minor thin beds and lenses of sand, nonmarine

TERTIARY AND CRETACEOUS

PALEOCENE AND UPPER CRETACEOUS

WILLOW CREEK FORMATION: pale grey, fine-grained, calcareous sandstone, thick bedded and coarse grained in upper part; grey, green and pink bentonitic mudstone with abundant white-weathering calcareous concretions, scattered thin limestone beds normarine.

UPPER CRETACEOUS

Figure 4 Geological map of the Drilling area, Whiskey Gap

7.1 The Willow Creek Formation

This formation overlies the Knee hills tuff zone and is comprised of about 1200 ft of in part volcanically derived shale and sandstones The Willow creek formation can easily be identified by alternating red and white , hemititic and strongly oxidized sandstones of non marine origin.

7.2 The St Mary River Formation

The St Mary river formation is a fluvial sandstone sequence that overlies the marine Bear Paw shale deposited as the Bear paw Sea regressed eastward across Saskatchewan and parts of Manitoba.

The formation consists of approximately 1500 feet of fluvially derived greenish sands and siltstones; the Formation is overlain by the volcanic Knee Hills Tuff zone.

7.3 The Blood Reserve Formation

This formation is comprised of grey to green thick bedded feldspathic sandstones deposited as a shore line complex .Both marine and non marine in origin.

Figure 5. Stratigraphic succession south east Alberta

8.0 Field Geology

The Writer examined well information for 118 water wells drilled on the Ranger permits, on file with Alberta Environment, (the data can be viewed at <u>Http://www.telusgeomatics.com/tgpub/ag_water/menue/drillingreport.asp</u>).

The data yielded positive information strong hematite alteration was noted to be present in some bore holes drilled in the Willow Creek formation. Locations of highly oxidized lithology were recorded and integrated in to the geological interpretation.

Figure 6 Strongly oxidized out crop of Willow Creek Formation

Figure 7 Radioactive limonitic mudstones

Initial investigation of outcrops a Urtec UG 135 was used to measure total count radioactivity, Three radioactive outcrops were located in place radioactivity up to 235cps (about 4X background). Radioactivity occurs in a carbonaceous mud stone with trace to strong limonite.

9.0 Exploration Concept

Uranium mineralization occurs within strongly oxidized porous fluvial sandstones often spatially associated with volcanic rocks in the Midwestern states, where these sandstones are saturated with ground water, Radon gas has successfully been used to indicate exploration targets.

CONCEPTUAL MODEL OF URANIUM ROLL FRONT DEPOSIT (After Devoto, 1978)

Figure 8. Conceptual model of a Uranium Roll Front Deposit

9.1 Radon Uranium and Sulphate in Water data

Radon is a naturally occurring, colorless, odorless, radioactive gas produced by the radioactive decay of the element radium, as part of the Uranium decay series, Uranium mineralization decays to Radium 226 that in turn emits radon 222, a gas that is dissolved, and transported in ground water.

Radon 222 decays very quickly thus its presence and distribution in ground water is a function of the amount of Radium 226 present, rate of ground water movement and porosity of the aquifer.

A common exploration technique is sampling untreated well waters, and measuring the amount of dissolved radon gas in a fixed volume of water.

Radon gas has a very short half life (3.8 days) thus high radon content of domestic well waters, may indicate that a sandstone uranium ore body may be in close proximity.

Modified from Clark and Briar, 1993

Figure 9 Radon Generation

9.1.1 Radon Data

This project was done to test the area of a strong radon anomaly defined in 2007 by the Alberta Geological survey and published as (AGS Report 2007-08, Olsen and Anderson)

10.0 Drilling

Dolman Water Well Drilling of Pincher Creek Alberta was contracted to drill a non specified number of reverse circulation holes on the Ney and Gunninger properties in early 2008. The drill was a Bycrus Erie 1200 mounted on a Kenworth W-900. Actual total of reverse circulation drilling was 381.0 meters (1250 feet) in holes

A list of possible hole locations were surveyed, by hand held GPS, as possible sites to set up the drills depending on the results obtained from the previously completed holes. Only the following locations were drilled.

Reverse Circulation Drill hole Locations

(GPS Datum WGS 84).

Holes are located in sections 16 and 17 Twp 1 Rng 23 W4

Drill hole location number		UTM	Ľ
WG RCDH-08-1	NAG- 08-03	12N 0351687E	5433150N
WG RCDH-08-2	NAG-08-04	12N 0351536E	5433297N
WG RCDH-08-3	NAG-08-05	12N 0351418E	5433451N
WG RCDH-08-4	NAG-08-09	12N 0350746E	5433672N
WG RCDH-08-5	NAG-08-07	12N 0351474E	5433378N

Fig 10 Drill Hole location Map

All of the Reverse circulation holes were drilled to completion by Dolmans drilling One diamond drill hole was attempted By Alliance Sonic Drilling, at NAG -08-01 UTM coordinates 12N 0352035N 5433002E

No core was recovered and the hole was abandoned at approximately 30 meters.

Figure 11 Dolmans Reverse Circulation Drill

10.1 Operations and Logistics

Drilling was conducted on a 6 to 10 hour shift basis, depending on the prevailing winter conditions. The Drilling operations were managed by Mr. Mike Hartley who provided day to day project management and direction to the drill crew the Geophysical logging contractor and environmental restoration.

Drill cuttings were generally returned wet due to the high water table. Cuttings were bagged and the lithology noted at 1 foot (30.4cm) (Hole 1 only) or 5 foot(1.52m) intervals by the driller, Sheldon Dolman.

Cuttings were dewatered on a screen and placed in labeled sample bags. Freezing conditions were problematic.

It should be noted that although a good deal of care was taken with the samples, only the chips were assayed thus any fine material was lost to the drill fluid. Geophysical logs provide the best information on drill intersections encountered under these difficult winter drilling conditions.

Samples for assay were selected of the basis the down hole gamma response recorded in the drill logs. The intervals were numbered as collected, Gamma logging was done after the hole was drilled.

11.0 Assay

Samples from various intervals were placed in numbered plastic sample bags for shipment to the SRC, the other half retained in the for reference.

In all cases the Sample numbers, on the Assay sheets, include the Hole location number rather than the sequential hole number and the depth (in feet) at the top of the interval (example NAG-08-150),

12.0 Reclamation

After Geophysical logging, casing was pulled and the hole sealed with bentonite chips as stipulated in the exploration permit. Cuttings were removed or harrowed and the area reseeded with native grass. Local farmer Brad Ney expressed approval of the reclamation program

13.0 Interpretation

Only weak geophysical and geochemical response was noted from borehole logging and chemical assay, the highest assay obtained was 30 ppm uranium over 5 feet in NAG-08-03, acompanied by insignificant heavy metal values.

These very low values in association with very high radon in water in the same location suggest that the drill program was conducted down flow of sandstone hosted uranium mineralization.

14.0 Recommendations and Conclusions

Uranium mineralization up to 7640 ppm (.901%U3O8) was previously documented within the Willow Creek formation, occurring within fossil bone fragments (Firestone Ventures news release May 3, 2005)

This exploration program, confirms that processes, capable of uranium transport and deposition of Sandstone Uranium deposits, are active in the Project area.

Drilling conducted by North American Gem in 2006 intersected reducing conditions radioactivity with significant heavy metal association in hole NWG 06-20

It is suggested that Sandstone hosted Uranium mineralization could lie in an area west of the current drilling area and east of Drill hole NWG-06-20.

The very high Radon values found at the site of this drill program are the result of easterly flowing Ground water at approximately 150 ft below surface.

It is suggested that any further work on the Project be directed toward evaluating the formations, present on the Gunninger farm.

In DH 06-20 a mineralized package of weak Uranium mineralization, heavy metals, and pyrite occur in the presence of organic trash (thin coals) over a combined stratigraphic thickness of 28 feet. The presence of strongly reducing conditions within the sequence, here is highly encouraging.

15.0 CERTIFICATE/QUALIFICATIONS

- I, Glenn S. Hartley of 7302-118a street Edmonton, hereby state that:
 - I am a graduate of the University of Alberta, Department of Geology (B.Sc. 1977).
 - 2. I am a registered Professional Geologist in the Province of Alberta. I am the "Qualified person" for this project
 - 3. Since 1970, I have been employed by various mineral exploration firms, and have conducted field programs is Alberta, British Columbia, Saskatchewan, Northwest Territories, Nunavut, and the Yukon.

Respectfully submitted Glenn S Martley P. Geol.

16.0 Certificate of Exploration Expenditure

The following financial information summery was extracted from data provided by the Accounts department of North American Gem Ltd. following and independent Audit by the financial firm Mackay LLP.

North American Gem Ltd Whiskey Gap Project Expenditure ALL costs are from independent audit figures done by Mackay LLP (As of March 31, 2008)

Category	Cost
Surface Access (land costs)	13,500.00
Geological Field work	137,000.00
Drilling and Geophysical Logging	42,802.88
Assay Costs	1618.84
Field equipment	500.00
Total Whiskey Gap Exploration	195,421.72
Ten percent administration	19,542.17
Total	\$ 214,963.89

I have been supplied with these exploration expense figures by North American Gem Ltd and believe them to be a true representation of Exploration Expenditure on the Whiskey Gap Project.

GI	enn S	S. Har	ley F	Geo	1.	
X	X F.	Sept 3	0, 20	09	\bigcirc	
~	Y					

17.0 REFERENCES

Alberta Environment Website, <u>http://www.telusgeomatics.com/tgpub/ag_water/</u> © 2001-2002 <u>Government of Alberta</u>

Beaman, M.and Tissot, P, (2004) Radon in ground water of the South Texas Uranium district, ERSI

Conference, San

Francisco

Harshman E.N.(1974) Distribution of Elements in Some Roll-Type Uranium Deposits.

FORMATION OF URANIUM ORE DEPOSITS, International Atomic Energy Agency, Vienna 1974.

Stantec Consulting, (2002) Regional Assessment of Potable Water in County of Warner #5, Nov 2, 2002, 1-02-15277.

Appendix 1

Drill Logs

North American Gem Inc. Whiskey Gap F RCDH 08-01 location #03 Total hole depth : 250 feet			key Gap	Project 12n 0351687E 5433150N	Dip 90	Driller: Sheldon Dolman Logger: Sheldon Dolman	
nterval (Ft)	To (ft)	Interval (m)	To (m)	Lithology	Color	Assay interval	
0	11	0	3.35	clay gravel and boulders	1	(See Below)	
11	41	3.35	12.49	red grey shale	L'and the lot		
41	42	12.49	12.8	grey sst			
42	57	12.8	17.37	red grey silty shales			
57	61	17.37	18.59	grey sst			
61	71	18.59	21.64	red grey shale			
71	75	21.64	22.86	tan bentonitic sst			
75	102	22.86	31.08	red grey silty shales			
102	105	31.08	32	multi colored shales			
105	114	32	34.74	red grey sst			
114	116	34.74	35.35	tan to grey sst			
116	139	35.35	42.36	red grey shale		See NAGWG-08-1-135 to 155	
139	160	42.36	48.76	grey fg sst		(In Appendix 2)	
160	172	48.76	52.42	grey sst limonitic stain			
172	182	52.42	55.47	silty red grey shales			
182	186	55.47	56.69	grey cgr sst			
186	212	56.69	64.61	grey shale			
212	217	64.61	66.14	fg sst			
217	222	66.14	67.66	grey shale			
222	227	67.66	69.18	grey sst shale			
227	234	69.18	71.32	grey shale			
234	238	71.32	72.54	grey sst			
238	242	72.54	73.76	grey shale			
242	245	73.76	74.67	grey sst			
245	250	74.67	76.2	grey shale			

North American Gem Inc. Whiskey Gap Pr RCDH 08-02 location #04 Total hole depth : 250 feet				Project 12n 0351536E 5433297N Dip 9	90	Driller: Sheldon Dolman Logger: Sheldon Dolman	
Interval (Ft)	To(ft)	Interval (m)	To(m)	Lithology	Color	Assav interval	
0	8	0	2.43	clay gravel and boulders	CO.	(See below)	
8	14	2.43	4.26	grey shale			
14	16	4.26	4.87	grey sst			
16	56	4.87	17.06	red grey sandy shales			
56	57	17.06	17.37	grey sst			
57	75	17.37	22.86	red grey shale			
75	78	22.86	23.77	tan bentonitic sst			
78	83	23.77	25.29	red grey shales			
83	89	25.29	27.92	grey sst			
89	96	27.92	29.26	grey slty shale			
96	118	29.26	37.79	grey red sst and shale			
118	124	37.79	35.96	grey sst			
124	137	35.96	41.75	red and brown sst and shale			
137	141	41.75	42.97	grey sst			
141	144	42.97	43.89	grey shales		NAGWG-08-04-140-160	
144	147	43.89	44.8	grey siltstn		See Appendix 2	
147	176	44.8	53.64	red and grey shale			
176	177	53.64	53.94	grey and tan sst			
177	204	53.94	62,17	red and grey shale			
204	216	62.17	65.83	grey cg sst			
216	217	65,83	66.14	red and grey shale, water			
217	222	66.14	67.66	grey sst			
222	227	67.66	69.18	grey and red shale			
227	238	68.18	72.54	grey sst			

238	242	72.54	73.76
242	248	73,76	75.59
246	250	75.59	76.2

grey shale	-		-
dark grey shal	e shells p	oyrite	
fg grey sst			

Interval (Ft)To(ft)Interval (m)To(m)LithologyColorAssay inter0702.13clay gravel and boulders(No Assays7462.1314.02red grey shale(No Assays464714.0214.32grey shale(Interval (m)476514.3219.81red grey silty shales(Interval (m)656719.8120.42tan limonitic sst water(Interval (m)	ione)
0 7 0 2.13 clay gravel and boulders (No Assays 7 46 2.13 14.02 red grey shale (No Assays 46 47 14.02 14.32 grey shale (Interpretent of the state of t	lone)
7 46 2.13 14.02 red grey shale Image: constraint of the state of the	
46 47 14.02 14.32 grey shale Image: Constraint of the state of the	
47 65 14.32 19.81 red grey silty shales 65 67 19.81 20.42 tan limonitic sst water	
65 67 19.81 20.42 tan limonitic sst water	
67 78 20,42 23.77 red grey silty shale	
78 81 23,77 24.68 gret cg sst	
81 97 24,68 29.56 red grey silty shales	
97 102 29,56 31.08 grey sst	
102 106 31,08 32.3 red grey silty sst	
106 121 32.3 36.88 tan to grey sst	
121 135 36.88 41.14 cg sst and shale, water	
135 141 41.14 42.97 grey fg sst	
141 152 42.97 46.32 red grey sst and shale	
152 163 46.32 49.68 grey and tan sst and thin shales	
163 172 49.68 52.42 red grey shales	1
172 175 52.42 53.34 grey sst	
175 193 53.34 58.82 red and grey shales	
193 196 58.82 59.74 grey to tan fg sst	
196 206 59.74 62.78 red and grey shale	
206 225 62.78 68.58 fg sst thin grey shale	1
225 228 68.58 69.49 grey shales	

1	228	239	69.49	72.84	cg grey sst	
	239	250	72.84	76.2	grey shale	

North Amer RCDH 08-0 Total hole dep	ican Ge 4 loc oth : 250	em Inc. Whis cation #08 feet	key Gap	Project 12n 0350746E 5433672 N Dip	90	Driller: Sheldon Dolman Logger: Sheldon Dolman	
Interval (Et)	To(ft)	Interval (m)	To(m)	Lithology	Color	RC drilling	
0	3	0	0.91	clay	COIO	(No Assave done.)	
3	6	0.91	1.82	red arev shale		(NO Assays done)	
6	31	1.82	9.44	tan grev sst			
31	69	9.44	21.03	red grey silty shales			
69	75	21.03	22.86	grey sst			
75	98	22.86	29.87	red grey shale water			
98	107	29.87	32.61	grey sst			
107	114	32.61	31.08	grey silty shales			
114	116	31.08	34.74	red brown sst, water 20 gal/min			
116	134	34.74	40.84	red grey sst			
134	137	40.84	41.75	tan to grey bentonitic shale			
116	139	41.75	42.36	red grey shale water 25 gal/min			
139	142	42.36	43.28	sltstn			
142	156	43.28	47.54	red grey shale			
156	160	47.54	48.76	tan grey sst	1		
168	176	48.76	53.64	grey cgr sst			
176	194	53.64	59.13	red grey shale			
194	196	59.13	59.74	fg greysst			
196	199	59.74	60.65	grey shale			
199	204	60,65	62.17	grey sst			
204	224	62,17	68.27	red grey shale			
224	235	68.27	71.62	grey sst			

North Ame RCDH 08-0 Total hole de	rican Ge 15 Io pth : 250	em Inc. Whis cation #09 feet	key Gap	Project 12n 0351474 E 5433378 N Dip	90	Driller: Sheldon Dolman Logger: Sheldon Dolman	
Interval (Ft)	To(ft)	Interval (m)	To(m)	Lithology	Color	Assav interval	
0	7	0	2.1	clay gravel		(See interval below)	
7	44	2.1	13.41	red grey shale			
44	46	13.41	14.02	grey sst			
46	58	14.02	17.67	red grey silty shales			
57	76	17.67	23.15	red grey silty shale water @61			
76	78	23.16	23,77	grey shale water	1		
78	94	23.77	28.65	sandy shale			
94	96	28.65	29.26	grey sst, water			
96	101	29.26	30.78	multi colored shales			
101	103	30.78	31.39	tan grey sst	hard and the second		
114	116	31.39	35.35	red to grey sandy shale			
116	131	35.35	39.92	tan grey shale		NAGWG-08-09-130-160	
131	134	39.92	40.84	grey red shale		See Appendix 2	
134	141	40.84	42.97	grey sst red shale limonitic stain			
141	158	42.97	48,15	silty red grey shales			
158	162	48.15	49.37	grey cgr sst	-		
162	205	49.37	62.48	tan red grey shale silt			
205	216	62.48	65.73	grey sst			
216	250	65.73	76.2	red and grey shale			

250

71.62

76.2

grey shale

|--|--|--|

North American Gem	
Inc	
Attention:	
PO #/Project:	
Samples: 36	
ICP TOTAL	

		Ag	As	Bi	Co	Cu	Ge	Hg	Mo	Ni	Pb	Sb	Se	Те	U, FI	V	Zn	Ag	AI2O3
		ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	wt %
Description	Date				-		-	-				-							
	03-31-																		
CG515/LS4	2008	<0.1	12.7	1.4	38.1	49.3	<0.2	<0.2	12.4	50	23.4	<0.2	<0.2	<0.2	31	98.6	209	<0.2	17.5
	03-31-																		
NAG-WG-08 1-135	2008	<0.1	<0.2	1	6	11.3	<0.2	<0.2	0.8	13.7	2.97	2.4	<0.2	<0.2	1.43	12.1	47.3	<0.2	9.42
	03-31-																		
NAG-WG-08 1-136	2008	<0.1	<0.2	0.7	6	7.2	<0.2	<0.2	0.6	12.2	2.42	1	<0.2	<0.2	0.82	11.6	43.4	<0.2	9.6
	03-31-																		
NAG-WG-08 1-137	2008	<0.1	1.4	0.7	6.5	15.7	<0.2	<0.2	0.4	13.7	6.93	<0.2	<0.2	<0.2	0.77	14.9	43.1	<0.2	11.6
	03-31-																		
NAG-WG-08 1-138	2008	<0.1	0.5	1.4	9.8	30.3	<0.2	<0.2	0.5	19.4	13.3	<0.2	<0.2	<0.2	1.44	17.8	76.7	<0.2	13.1
	03-31-																		
NAG-WG-08 1-139	2008	<0.1	<0.2	1.1	8.7	25.5	<0.2	<0.2	0.4	17.7	14.9	1.5	<0.2	<0.2	1.82	17.4	69.9	<0.2	11.5
	03-31-																		
NAG-WG-08 1-140	2008	<0.1	6.9	1	10.3	30.8	<0.2	<0.2	0.5	20.6	12.7	<0.2	<0.2	<0.2	1.2	20.7	81.4	<0.2	14.9
	03-31-																		
NAG-WG-08 1-141	2008	<0.1	3.1	1.2	11.1	25.1	<0.2	<0.2	0.5	19.9	8.14	0.8	<0.2	<0.2	1.24	23.8	80.4	<0.2	12.7

	03-31-																		
NAG-WG-08 1-142	2008 03-31-	<0.1	2.2	1.1	10.4	19.9	<0.2	<0.2	0.6	19.9	8.13	1	<0.2	<0.2	1.31	23.1	71.3	<0.2	11.7
NAG-WG-08 1-143	2008	1.1	4.8	0.5	8.3	17.1	<0.2	<0.2	0.2	15.7	13	<0.2	<0.2	<0.2	1.28	19.2	55.4	1.2	15.2
NAG-WG-08 1-144	2008	0.6	0.5	0.6	5.8	24.3	<0.2	<0.2	<0.1	11.1	10.7	<0.2	<0.2	<0.2	0.95	5.2	35.4	0.7	15.8
NAG-WG-08 1-145	00.01	0.1	1.4	0.8	9.2	28.1	<0.2	<0.2	0.4	20.5	11.7	<0.2	<0.2	<0.2	1.07	13.8	66.9	<0.2	15.7
NAG-WG-08 1-146	2008	<0.1	2.2	0.8	10.8	21.8	<0.2	<0.2	0.1	21.4	11.8	<0.2	<0.2	<0.2	0.79	20.5	72.8	<0.2	15
NAG-WG-08 1-147	2008	1.7	5.4	0.6	8.4	34.2	<0.2	<0.2	0.2	15.7	14	<0.2	<0.2	<0.2	1.34	9	44.1	1.8	15.8
NAG-WG-08 1-148	2008	0.2	1.1	0.7	9	28.6	<0.2	<0.2	0.2	19.2	12.9	<0.2	<0.2	<0.2	0.65	14.9	62.1	<0.2	14.9
NAG-WG-08 1-149	2008	0.3	0.6	0.5	5.2	29.7	<0.2	<0.2	0.2	13	18.8	<0.2	<0.2	<0.2	0.6	9.5	39	<0.2	17.2
NAG-WG-08 1-150	2008	0.1	0.8	0.6	9.2	30.1	<0.2	<0.2	<0.1	23.1	13.3	<0.2	<0.2	<0.2	0.8	14.2	66	<0.2	15.9
NAG-WG-08 1-151	2008	0.2	1.1	0.6	9.1	31.8	<0.2	<0.2	0.2	23	11.4	<0.2	<0.2	<0.2	0.86	12.6	64.3	<0.2	15.7
NAG-WG-08 1-152	2008	<0.1	1.6	0.6	9.8	27.7	<0.2	<0.2	<0.1	20.9	10.7	<0.2	<0.2	<0.2	1.12	12.6	72.4	<0.2	15.1
NAG-WG-08 1-153	2008	<0.1	1	0.8	11.5	20.3	<0.2	<0.2	0.1	19.9	9.74	<0.2	<0.2	<0.2	1.18	15.5	81.6	<0.2	14.5
CG515/LS4	03-31- 2008	<0.1	11.5	1.2	37.4	47.7	<0.2	<0.2	11.6	49.7	23.4	<0.2	<0.2	<0.2	31.8	97.2	208	<0.2	17.8
NAG-WG-08 1-154	03-31- 2008 03-31-	0.2	0.8	1.4	8.8	22.9	<0.2	<0.2	0.6	17.1	11.9	1	<0.2	<0.2	1.9	19.1	74	<0.2	13.2
NAG-WG-08 1-155	2008	0.2	22	1.7	15.8	21.3	<0.2	<0.2	0.8	20.9	21.3	2.8	<0.2	<0.2	2.4	25.1	71.6	<0.2	12.7
NAG-WG-08 4-140	03-31- 2008 03-31-	<0.1	0.5	0.4	6.3	9.4	<0.2	<0.2	0.4	13.1	3.58	<0.2	<0.2	<0.2	1.09	11.8	45.7	<0.2	12.4
NAG-WG-08 4-145	2008	<0.1	<0.2	0.7	8.4	19.5	<0.2	<0.2	0.4	14.3	7.43	<0.2	<0.2	<0.2	6.7	11.5	56.1	<0.2	13
NAG-WG-08 4-150	2008	<0.1	0.2	0.6	6.3	10.1	<0.2	<0.2	0.3	11.2	20.9	<0.2	<0.2	<0.2	18.8	7.6	30.5	<0.2	17.3
NAG-WG-08 4-155	2008	<0.1	2.6	0.6	10	18.5	<0.2	<0.2	0.2	21	8.11	<0.2	<0.2	<0.2	7	19.4	55.9	<0.2	14.2

NAG-WG-08 4-160	03-31-	0.1	36	0.8	10.1	20.4	-0.2	-0.2	0.4	21.2	8 03	-0.2	-0.2	-0.2	1 22	10.0	50 1	-0.2	12.0
NAG-WG-00 4-100	2000	0.1	0.0	0.0	10.1	20.4	20.2	<u.2< th=""><th>0.4</th><th>21.0</th><th>0.90</th><th><u.2< th=""><th><0.Z</th><th>\$0.2</th><th>1.02</th><th>19.9</th><th>33.1</th><th><u.2< th=""><th>10.9</th></u.2<></th></u.2<></th></u.2<>	0.4	21.0	0.90	<u.2< th=""><th><0.Z</th><th>\$0.2</th><th>1.02</th><th>19.9</th><th>33.1</th><th><u.2< th=""><th>10.9</th></u.2<></th></u.2<>	<0.Z	\$0.2	1.02	19.9	33.1	<u.2< th=""><th>10.9</th></u.2<>	10.9
	03-31-															1.1.1			
NAG-WG-08 9-130	2008 03-31-	<0.1	3.1	0.6	5.8	6.5	<0.2	<0.2	0.7	14.9	3.45	<0.2	<0.2	<0.2	1.05	14.5	37.4	<0.2	9.09
NAG-WG-08 9-135	2008	<0.1	2.9	0.4	5.2	8.4	< 0.2	<0.2	0.4	13	5.18	<0.2	<0.2	<0.2	1.12	15.1	38	<0.2	10.8
	03-31-																		
NAG-WG-08 9-140	2008	<0.1	11.1	1.1	9.2	17.6	<0.2	<0.2	0.7	18.2	6.8	1.6	< 0.2	< 0.2	1.12	27.4	66.3	<0.2	11.1
	03-31-																		
NAG-WG-08 9-145	2008	<0.1	0.6	0.9	8.6	22.2	<0.2	<0.2	0.3	17.4	9.9	<0.2	<0.2	<0.2	4.13	17.9	70.7	<0.2	14.5
	03-31-																		
NAG-WG-08 9-150	2008	<0.1	<0.2	1.1	7.2	22.1	< 0.2	<0.2	0.6	15	13.3	1.2	<0.2	<0.2	13.2	17	62.1	<0.2	11.7
	03-31-																		
NAG-WG-08 9-155	2008	<0.1	0.6	0.5	5.1	6	< 0.2	<0.2	0.2	9.2	14.9	<0.2	<0.2	<0.2	7.88	7.8	19.2	<0.2	15.5
	03-31-																		
NAG-WG-08 9-160	2008	<0.1	1.6	0.6	6.6	12	<0.2	<0.2	0.6	13.8	5.72	<0.2	<0.2	<0.2	1.02	15.8	45.9	<0.2	11.4
	03-31-										100 C 10								
NAG-WG-08 9-145 R	2008	<0.1	0.8	1	8.8	21.3	<0.2	<0.2	0.3	16.7	9.74	<0.2	<0.2	<0.2	4.1	17	71.9	<0.2	14.3

SRC Geoanalytical Laboratories 125 - 15 Innovation Blvd., Saskatoon, Saskatchewan, S7N 2X8 Tel: (306) 933-8118 Fax: (306) 933-5656 Email: geolab@src.sk.ca

North American Gem Inc Attention: PO #/Project: Samples: 36

		Ba	Be	CaO wt	Cd	Ce	Co	Cr	Cu	Dy	Er	Eu	Fe2O3	Ga	Gd	Hf	Ho	K2O wt	La	Li	MgO
		ppm	ppm	%	ppm	wt %	ppm	ppm	ppm	ppm	%	ppm	ppm	wt %							
Description	Date																				
	03-31-																				
CG515/LS4	2008	2280	2	4.77	0.6	159	18	117	3	3	2.6	2.6	7,27	23	5.4	4.2	1.2	3.15	88	30	2.88
NAG-WG-08 1-	03-31-																				
135	2008	1660	1.1	10.4	0.6	42	6	111	12	1.4	1.8	0.9	1.98	10	3.1	2.1	0.7	1.83	23	23	3.53
NAG-WG-08 1-	03-31-																				
136	2008	1950	1.1	7.14	0.6	47	6	86	8	1.8	1.7	0.8	1.95	10	2.8	2	0.6	1.76	26	24	3.5
NAG-WG-08 1-	03-31-																				
137	2008	549	1.6	2.66	0.7	57	6	81	18	2.9	1.7	1.1	3.02	13	3.5	2.8	0.7	2.3	32	27	3.04
NAG-WG-08 1-	03-31-																				
138	2008	564	1.9	7.37	1	65	8	54	30	3.3	2.6	1.2	3.54	16	4.3	3.1	1	3.08	34	36	3.92
NAG-WG-08 1-	03-31-																				
139	2008	484	1.6	9.69	1.1	60	7	52	26	2.9	2.5	1.1	3.03	14	4.2	2.8	0.9	2.49	32	32	4.08

NAG-WG-08 1-03-31-2008 140 622 2.5 3.81 0.9 63 10 56 33 3.4 2.5 1.2 5.61 21 4 3.3 0.9 3.74 32 42 3.63 NAG-WG-08 1-03-31-141 2008 494 1.8 9.31 0.8 61 11 54 25 3.5 2.7 1.2 4.15 16 4.4 2.7 1 2.9 33 38 4.52 NAG-WG-08 1-03-31-142 2008 436 1.6 9.2 0.8 61 52 20 3.3 2.4 1.2 3.59 4.3 2.9 2.48 33 36 4.92 11 14 0.9 NAG-WG-08 1-03-31-0.6 143 2008 566 2.2 0.82 71 8 60 19 3.3 2.1 1.3 6.72 22 3.6 3.2 0.9 3.56 37 40 2.24 NAG-WG-08 1-03-31-144 2008 587 3.1 0.42 0.9 45 52 0.9 5.2 20 2.4 3.6 8 35 2.7 1.7 0.8 4.18 22 27 2.17 NAG-WG-08 1-03-31-145 2008 665 2.4 2.16 0.8 63 9 60 31 2.9 2 1.1 4.73 21 3.4 3.2 0.8 3.91 32 41 3 NAG-WG-08 1-03-31-2008 2.1 64 23 3 2 1.2 21 3.2 146 577 1.83 0.6 11 56 5.48 3.6 0.8 3.64 33 43 3.07 NAG-WG-08 1-03-31-147 2008 620 46 2.9 0.86 0.7 47 10 41 2.8 1.8 1 5.16 20 2.6 3.4 0.8 3.81 23 30 2.3 NAG-WG-08 1-03-31-2008 2.4 2.1 4.27 148 653 2.98 0.8 60 9 62 30 3.2 1.2 20 3.7 3.4 0.9 3.7 31 36 3.23 NAG-WG-08 1-03-31-149 2008 481 2.4 0.76 1 43 7 35 38 2.5 1.7 0.8 3.49 19 2.5 4 0.7 2.54 23 36 2.36 NAG-WG-08 1-03-31-150 2008 612 2.8 0.58 0.8 53 10 50 38 3.6 2.1 1.1 4.67 22 3.6 3.8 3.85 0.9 27 35 2.44 NAG-WG-08 1-03-31-151 2008 592 2.8 0.61 0.8 48 10 46 40 3.2 2 4.9 20 3 3.8 0.9 3.75 1 25 31 2.33 NAG-WG-08 1-03-31-152 2008 624 2.6 1.33 0.7 56 9 47 32 3.3 2.1 1.2 5.17 20 3.4 3.3 0.9 3.63 34 2.55 29 NAG-WG-08 1-03-31-2008 153 630 2.2 2.72 0.7 58 12 50 20 2.9 2.2 4.66 3.2 3.2 1.1 20 0.9 3.54 31 41 3.3 03-31-CG515/LS4 2008 2330 2.1 4.86 0.7 163 17 118 2 3.2 2.6 2.7 7.44 23 5.5 3.9 1.2 3.24 92 31 2.91 NAG-WG-08 1-03-31-154 2008 544 1.9 9.63 58 8 48 24 2.9 2.6 1.2 3.91 4.2 2.8 39 3.63 1 17 1 3.16 31 NAG-WG-08 1-03-31-155 2008 588 1.7 13.7 0.8 64 16 50 22 3.7 2.8 1.4 4.26 16 5 2.5 1.1 2.91 38 37 3.48 NAG-WG-08 4-03-31-140 2008 1030 3.28 0.6 54 5 78 12 1.5 2.2 3.2 1.4 2.2 1 2.83 13 2.9 0.6 2.11 28 28 NAG-WG-08 4-03-31-145 2008 2.2 4.75 0.9 57 8 48 23 3.3 2.3 3.33 16 2.8 606 1.1 3.6 0.8 2.63 30 29 4.14

NAG-WG-08 4-03-31-2.6 2.9 1.41 1.3 7 3.9 2.2 2008 936 66 45 13 4.4 1.1 3.7 21 4.5 31 50 2.63 150 1 NAG-WG-08 4-03-31-2.2 0.66 0.7 21 3.3 2.1 3.7 3 3.08 32 36 2.09 155 2008 702 63 10 59 1.2 4.65 20 0.9 NAG-WG-08 4-03-31-1.2 160 2008 762 2.3 2.97 0.8 60 10 58 24 3.5 2.4 4.56 18 4 3.2 0.9 3.05 31 37 3.09 NAG-WG-08 9-03-31-2 23 130 2008 654 1.1 5.8 0.6 47 6 111 9 1.6 0.8 2.49 10 3 1.7 0.6 1.64 24 2.88 NAG-WG-08 9-03-31-2008 1.4 1.34 0.7 78 89 3.5 2 1.3 3.2 13 4.6 3.2 0.8 1.86 24 1.85 135 972 5 11 40 NAG-WG-08 9-03-31-10.2 0.8 2.3 2.3 3.8 2.37 140 2008 526 1.8 55 10 63 19 2.3 1.1 3.96 14 3.9 0.9 30 31 NAG-WG-08 9-03-31-4.5 1.2 3.2 145 2008 789 2.3 3.21 1 67 9 53 24 3 4.16 19 4.4 1.1 3.39 35 36 3.57 NAG-WG-08 9-03-31-8.88 1.1 31 150 2008 1.6 57 6 69 23 3.4 2.4 2.83 13 4.1 2.9 0.9 2.4 32 4.8 701 1 NAG-WG-08 9-03-31-1.1 2008 403 2.5 0.88 0.9 68 6 56 8 3.3 2 3.9 19 3.6 4 0.9 2.06 32 34 2.09 155 NAG-WG-08 9-03-31-1.6 0.7 2.7 3.2 160 2008 750 4.47 42 6 70 13 2 0.9 3.04 13 2.4 0.8 2.08 23 30 3.2 NAG-WG-08 9-03-31-25 2.8 1.2 4.2 3.5 145 R 2008 776 2.3 3.15 0.8 65 9 50 4.2 4.08 18 3 1 3.34 33 36

SRC
Geoanalytical
Laboratories
125 - 15
Innovation Blvd.,
Saskatoon,
Saskatchewan,
S7N 2X8
Tel: (306) 933-
8118 Fax: (306)
933-5656 Email:
geolab@src.sk.ca

North American Gem Inc Attention: PO #/Project: Samples: 36

-

		MgO	MnO	Mo	Na2O	Nb	Nd	Ni	P2O5	Pb	Pr	Sc	Sm	Sn	Sr	Та	Tb	Th	TiO2	U,	V
		wt %	wt %	ppm	wt %	ppm	ppm	ppm	wt %	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	wt %	ppm	ppn
Description	Date																				
	03-31-																				
CG515/LS4	2008	2.88	0.074	<1	3.28	8	60	24	0.671	20	16	13	9.1	2	1170	<1	< 0.3	14	1.1	<2	130
NAG-WG-08 1-	03-31-																				
135	2008	3.53	0.096	1	1.52	5	16	14	0.105	10	5	5	5.5	<1	192	<1	<0.3	6	0.321	<2	47
NAG-WG-08 1-	03-31-																				
136	2008	3.5	0.056	<1	1.58	6	18	13	0.107	9	5	5	4.9	<1	182	<1	<0.3	7	0.342	<2	50
NAG-WG-08 1-	03-31-																				
137	2008	3.04	0.016	<1	1.64	8	26	15	0.123	18	6	8	4.9	<1	144	<1	< 0.3	8	0.424	<2	69
NAG-WG-08 1-	03-31-																				
138	2008	3.92	0.057	1	1.67	9	27	20	0.144	23	7	10	6.4	<1	126	<1	<0.3	10	0.503	<2	74
NAG-WG-08 1-	03-31-	4.08	0.08	1	1.71	7	24	18	0.142	27	7	8	6.6	<1	133	<1	0.4	9	0.45	<2	64

139	2008																				
NAG-WG-08 1-	03-31-																				
140	2008	3.63	0.039	1	1.56	9	26	22	0 161	24	6	12	53	<1	114	<1	<0.3	10	0.529	<2	90
NAG-WG-08 1-	03-31-	5100		÷.			20		0.101		Ŷ		0.0	-	113	31	40.0	10	01020		00
141	2008	4.52	0.071	1	1.54	8	26	20	0 148	17	7	10	65	<1	142	<1	0.5	9	0 476	<2	76
NAG-WG-08 1-	03-31-		0.07.1		1.01	0	20	20	0.110			10	0.0	-		-	0.0	0	0.110		10
142	2008	4.92	0.053	<1	1.52	7	25	20	0 145	16	6	9	66	<1	145	<1	<0.3	9	0.452	=2	71
NAG-WG-08 1-	03-31-							20	0.1.10		•		010		110	31	1010		OTIOL	-	
143	2008	2.24	0.016	1	1.52	10	29	19	0.147	24	6	13	4.7	<1	140	<1	< 0.3	11	0.585	<2	100
NAG-WG-08 1-	03-31-												,		110	2.			0.000		
144	2008	2.17	0.014	<1	1.53	9	17	16	0.095	21	3	12	2.9	2	145	<1	< 0.3	11	0.592	<2	72
NAG-WG-08 1-	03-31-			-	148.00																
145	2008	3	0.026	<1	1.62	9	24	22	0.125	20	6	13	4.7	<1	122	<1	< 0.3	11	0.529	<2	86
NAG-WG-08 1-	03-31-						21					10									
146	2008	3.07	0.026	<1	1.57	9	26	23	0.148	21	6	13	4.7	<1	111	<1	< 0.3	10	0.556	<2	90
NAG-WG-08 1-	03-31-														222					100	12.01
147	2008	2.3	0.016	<1	1.43	9	20	19	0.141	25	4	11	3.5	1	154	<1	< 0.3	11	0.545	<2	88
NAG-WG-08 1-	03-31-												0.0						210.00		
148	2008	3.23	0.028	<1	1.62	9	25	21	0,141	22	6	12	4.9	<1	124	<1	< 0.3	10	0.495	<2	85
NAG-WG-08 1-	03-31-												-0.2				10 M C 3 C	10			20
149	2008	2.36	0.012	<1	1.68	9	17	17	0.096	35	4	10	3	<1	247	<1	< 0.3	11	0.549	<2	77
NAG-WG-08 1-	03-31-																				
150	2008	2.44	0.019	<1	1.76	10	22	27	0.182	28	5	13	4	З	161	3	< 0.3	11	0.57	<2	102
NAG-WG-08 1-	03-31-																				
151	2008	2.33	0.017	<1	1.71	10	20	26	0.161	25	4	12	3.6	1	158	1	< 0.3	10	0.562	<2	94
NAG-WG-08 1-	03-31-																				
152	2008	2.55	0.021	<1	1.66	9	24	23	0.164	25	5	12	4.3	<1	142	1	< 0.3	11	0.531	<2	84
NAG-WG-08 1-	03-31-																				
153	2008	3.3	0.03	<1	1.7	8	23	21	0.143	21	6	11	4.5	<1	115	1	< 0.3	10	0.5	<2	78
	03-31-																				
CG515/LS4	2008	2.91	0.076	<1	3.34	9	63	24	0.664	19	17	14	9.2	4	1210	1	<0.3	14	1.13	<2	134
NAG-WG-08 1-	03-31-																				
154	2008	3.63	0.085	1	1.55	8	24	18	0.136	25	6	10	6.3	<1	139	1	< 0.3	9	0,463	<2	76
NAG-WG-08 1-	03-31-																				
155	2008	3.48	0.091	2	1.29	8	27	21	0.13	35	7	10	8.1	<1	169	<1	0.5	9	0.457	<2	80
NAG-WG-08 4-	03-31-										100	1.1				1.				100	1.1
140	2008	3.2	0.028	<1	1.94	6	22	14	0.12	12	6	6	4.2	<1	238	<1	< 0.3	7	0.389	<2	53
NAG-WG-08 4-	03-31-	4.14	0.027	<1	1.55	10	23	16	0.161	19	6	9	5.2	<1	175	<1	<0.3	9	0.498	7	75

145	2008																				
NAG-WG-08 4-	03-31-																				
150	2008	2.63	0.012	<1	1.67	12	24	17	0.081	32	6	11	4.4	<1	265	<1	< 0.3	13	0.538	30	76
NAG-WG-08 4-	03-31-																				
155	2008	2.09	0.019	<1	1.74	9	26	22	0.134	16	6	11	4.7	1	135	<1	<0.3	10	0.496	8	84
NAG-WG-08 4-	03-31-																				
160	2008	3.09	0.032	1	1.67	9	26	23	0.137	19	6	11	5	<1	131	<1	<0.3	10	0.521	<2	81
NAG-WG-08 9-	03-31-				12.25			-	100	-			100				-	1.00			
130	2008	2.88	0.047	1	1.62	6	18	15	0.106	14	5	6	4.4	<1	160	1	<0.3	7	0.357	<2	53
NAG-WG-08 9-	03-31-																				
135	2008	1.85	0.02	<1	1.85	7	34	15	0.146	14	8	7	5.7	<1	181	<1	<0.3	11	0.452	<2	60
NAG-WG-08 9-	03-31-																				
140	2008	3.8	0.096	1	1.5	6	22	17	0.137	15	6	8	6.2	<1	154	<1	0.6	8	0.418	<2	70
NAG-WG-08 9-	03-31-																				
145	2008	3.57	0.029	1	1.66	10	27	19	0.146	19	7	11	5.4	<1	140	<1	<0.3	11	0.543	4	82
NAG-WG-08 9-	03-31-																				
150	2008	4.8	0.045	1	1.37	9	23	16	0.149	25	6	8	6.1	<1	175	<1	<0.3	9	0.458	15	78
NAG-WG-08 9-	03-31-																				
155	2008	2.09	0.01	<1	1.88	11	27	13	0.063	27	6	10	4.6	<1	247	<1	< 0.3	12	0.489	11	69
NAG-WG-08 9-	03-31-																				
160	2008	3.2	0.038	1	1.81	7	18	14	0.12	19	4	7	4.2	<1	149	3	<0.3	7	0.424	<2	59
NAG-WG-08 9-	03-31-																				
145 R	2008	3.5	0.029	<1	1.64	10	27	19	0.145	21	6	11	5	<1	137	<1	< 0.3	10	0.538	5	81

	 	_	 	 		1
SRC Geoanalytical Laboratories 125 - 15 Innovation Blvd., Saskatoon, Saskatchewan, S7N 2X8 Tel: (306) 933- 8118 Fax: (306) 933-5656 Email: geolab@src.sk.ca						
North American Gem Inc Attention: PO #/Project: Samples: 36						
Samples. 50	 	 _				

U, V W Y Yb Zn Zr ppm ppm ppm ppm ppm ppm

Description	Date							
CG515/LS4	03- 31- 2008	<2	130	2	21	1.9	84	202
	03-							
NAG-WG-08 1-	31-							
135	2008	<2	47	1	18	1.8	51	86
	03-							
NAG-WG-08 1-	31-							
136	2008	<2	50	1	15	1.6	43	89
	03-							
NAG-WG-08 1-	31-							
137	2008	<2	69	1	15	1.8	51	110
	03-							
NAG-WG-08 1-	31-							
138	2008	<2	74	<1	23	2.6	79	121
	03-							
NAG-WG-08 1-	31-							
139	2008	<2	64	<1	24	2.5	71	108

	03-							1	
NAG-WG-08 1-	31-								
140	2008	<2	90	<1	24	2.8	90	127	
NAG-WG-08 1-	31-								
141	2008	<2	76	<1	27	2.9	83	111	
NAG WG 08 1	03-								
142	2008	<2	71	<1	23	2.5	75	107	
	03-					2020			
NAG-WG-08 1-	31-								
143	2008	<2	100	<1	19	2.4	73	129	
NAG-WG-08 1-	31-								
144	2008	<2	72	<1	16	2	69	137	
	03-								
NAG-WG-08 1-	31-							Sec.	
145	2008	<2	86	<1	18	2.3	79	120	
NAG-WG-08 1-	31-							- Co. 10	
146	2008	<2	90	<1	18	2.3	80	119	
	03-								
NAG-WG-08 1-	31-								
147	2008	<2	88	<1	16	2	74	122	
NAG-WG-08 1-	31-								
148	2008	<2	85	<1	19	2.4	73	128	
	03-							1.1	
NAG-WG-08 1-	31-							2.05	
149	2008	<2	77	<1	15	1.8	63	145	
NAC MC 00 1	03-								
150	2008	-2	102	-1	21	25	80	157	
150	03-	~~	102	~1	21	2.0	09	157	
NAG-WG-08 1-	31-								
151	2008	<2	94	<1	19	2.3	87	157	
	03-								
NAG-WG-08 1-	31-							and a s	
152	2008	<2	84	<1	21	2.4	90	140	

NAG-WG-08 1-	03- 31- 2008	-2	78	-1	10	23	86	120
100	03-	~~	70	-	13	2.0	00	120
	31-							
CG515/I S4	2008	<2	134	<1	21	19	86	200
000101201	03-		101			1.0	00	200
NAG-WG-08 1-	31-							
154	2008	<2	76	<1	25	2.7	77	110
	03-				50			
NAG-WG-08 1-	31-							
155	2008	<2	80	<1	31	3	75	98
	03-							
NAG-WG-08 4-	31-							
140	2008	<2	53	<1	14	1.5	51	83
	03-				1.1	1.1.2		
NAG-WG-08 4-	31-							
145	2008	7	75	<1	21	2.2	70	115
	03-							
NAG-WG-08 4-	31-							
150	2008	30	76	1	26	2.5	51	173
	03-							
NAG-WG-08 4-	31-							
155	2008	8	84	<1	18	2.4	66	117
	03-							
NAG-WG-08 4-	31-							
160	2008	<2	81	1	20	2.5	69	117
	03-			1				
NAG-WG-08 9-	31-			1				
130	2008	<2	53	<1	14	1.6	38	81
	03-			1.1.1			2.2	
NAG-WG-08 9-	31-							
135	2008	<2	60	<1	18	2.1	46	128
	03-		12.20		1.7		100	100
NAG-WG-08 9-	31-							
140	2008	<2	70	<1	24	2.4	69	95
NAG-WG-08 9-	03-							
145	31-	4	82	<1	32	3.1	81	127

2008 03-31-NAG-WG-08 9-2008 15 25 2.4 150 78 <1 64 117 03-NAG-WG-08 9-31-155 2008 11 69 <1 17 2.2 36 155 03-NAG-WG-08 9-31-<2 160 2008 59 <1 17 2.1 48 108 03-NAG-WG-08 9-31-145 R 2008 29 5 81 2.8 79 125 1

Appendix 3 GEOPHYSICAL LOG

۶

ELECTROLOG	ERVICES INC).		GA	MA	RAY	ST3M	283			+										-	 			
2109 - 1 S CALGARY, (403) 276	FREET N.V. ALBERTA 5-6459				LO	G	10 88.00 1 8.05 50.05															1.00			
FILE NO. .SD. FEC. NGE.	Company Well Location FIELD PROVINCE	NORTH BOLINA Intiski Alber	INNER I I I I I I I I I I I I I I I I I I I	orn GD JGRC-	08-	5	DEPTH: 3.08	GRZ																	
. н	LSD, RGE-	SEC. W.		TWP.		Other	S									-				+		•••	-		
	TOTAL DATE . A LONG 'T		E1:	ew.		Elev.			-	1	1	A	A	4	1	my-	A	4	H	V	M	-	0		4
ermanent Datum: (ny Measured Frame ell Depth Measure	G. L. Al d From: GROUND	Deve P	erm Da	tum:	1000 - MILLION C	G	A EMA		4	1						+					-	 N	4	Y	Y
ermaneri Datum: (ny Measured Frame (ell Depth Measure Rus En.	G. L. A	Deve P	erm Da	t.um:		G	amma R							-		+						 ~			V
ermanent Datum: (ny Measured Frame ell Depth Measure tum En. hate	G. L. AL A From: GROUN BNE ZZ MARCH 200		erni Da	tum:		G	Gamma R	KB													1	 1			
ermanent Datum: (ny Measured Frame ell Depth Measure tun En. Nate First Reading	G. L. A) of From: GROUN ONE 22 MARCH 200 72.30	Deve Po		t:		G	Gamma Ř	H KB														 1		2	
ermanent Datum: (og Measured Frame ell Depth Measure tum En. Date first Reading Last Reading	G. L. A) d From: GROUN BNE 22 MARCH 200 72.30 9.7	oove Po 3	arm Da	tum:		G	Gamma R	DEPTH KB																25	
ermanent Datum: (.og Measured Frame: /ell Depth Measure /uw Eo. Date First Reading Last Reading /setage Logged	G. L. AU d From: GROUN ONE 22 MORCH 200 72.30 0.7 71.6	3	erm Da	t		G	Gamma R	A DEPTH K																25	
ermanent Datum: (og Measured Frame ell Depth Measure Num En. Date First Reading Last Reading Costage Logged Depth Reached	G. L. A) d From: GROUNS BNE 22 MARCH 200 72.30 9.7 71.6 72.5	3	erm Da	t		G	Gamma R	158 DEPTH KB																25	
ermanent Datum: (.og Measured Frame (e)1 Depth Measure tum En. Date First Reading Last Reading Costage Logged Depth Reached Depth Driller	G. L. A) G. L. A) G. From: GROUNS ONE 22 MARCH 200 72.30 0.7 71.6 72.5 N/R	3	ern Da	t		G	Gamma R	158 DEPTH KB													~			25	
ermanent Datum: (og Measured Frame ell Depth Measure tus En. Nate First Reading Cast Reading Costage Logged Depth Reached Depth Driller Casing Electrolog	G. L. A) ed From: GROUNS ENE 22 MARCH 200 72.30 9.7 71.6 72.5 N/R	3	ern Da	t		G	Gamma R	158 DEPTH KB									A				·			25	
ermanent Datum: (.og Measured Frame: lell Depth Measure two Ho. Date First Reading Costage Logged Depth Reached Depth Driller Lasing Biectroleg asing Driller	G. L. A) d From: GROUN ONE 22 MARCH 2000 72.30 0.7 71.6 72.5 N/R PLASTIC TO T	.B.	erm Da	t		G	Gamma R	158 DEPTH K									1				·	N		25	
ermanent Datum: (.og Measured Frame: Nell Depth Measure Rum En. Date First Reading Last Reading Costage Logged Depth Reached Depth Driller 'asing Klectrolog asing Driller 'luid Type	G. L. A) ed From: GROUNS BNE 22 MARCH 200 72.30 9.7 71.6 72.5 N/R PLASTIC TO T WATER			t		G	Gamma R	SR 158 DEPTH KR									1			V	~	N		25	
ermanent Datum: (.og Measured Frame: Aell Depth Measure Rus En. Date First Reading Last Reading Last Reading Costage Logged Depth Reached Depth Driller Lasing Electrolog Asing Driller Luid Type Lauid Level	G. L. A) d From: GROUN ONE 22 MARCH 2000 72.30 0.7 71.6 72.5 N/R PLASTIC TO T WATER N/R	3 .B.	erm Da	t.sam:		G	Gamma R	GR 158 DEPTH KR	CPS								1					N		25	
Permanent Datum: (.og Measured Frame: Nell Depth Measure Rus Ec. Date First Reading Last Reading Veetage Logged Depth Driller Veetage Logged Depth Driller Vestage Logged Depth Driller Vestage Logged Depth Driller Vestage Logged Depth Driller Vestage Logged Depth Driller Vestage Logged Depth Driller	G. L. A) ed From: CROUNS ONE 22 MARCH 200 72.3% 0.7 71.6 72.5 N/R PLASTIC TO T WATER N/R	- B.	ern Da	t		G	uves (jamma Ř	GR 158 DEPTH K	CPS													N		25	
Permanent Datum: (Log Measured Frame: Nell Depth Measure Rus En. Date First Reading Last Reading Postage Logged Depth Reached Depth Driller lasing Electrolog asing Driller luid Type iquid Level in. Diameter perating Time	G. L. A) G. L. A) G. From: GROUN BNE 22 MARCH 2000 72.3b 9.7 71.6 72.5 N/R PLASTIC TO T MATER N/A 1.0 HR.		Ern Da	t		G	E RUN * 6 53 MM3 8	GR 158 DEPTH KR	CPS													N		25	

