MAR 20090006: RACEHORSE CREEK

Received date: Mar 24, 2009

Public release date: Dec 30, 2010

DISCLAIMER

By accessing and using the Alberta Energy website to download or otherwise obtain a scanned mineral assessment report, you ("User") agree to be bound by the following terms and conditions:

- a) Each scanned mineral assessment report that is downloaded or otherwise obtained from Alberta Energy is provided "AS IS", with no warranties or representations of any kind whatsoever from Her Majesty the Queen in Right of Alberta, as represented by the Minister of Energy ("Minister"), expressed or implied, including, but not limited to, no warranties or other representations from the Minister, regarding the content, accuracy, reliability, use or results from the use of or the integrity, completeness, quality or legibility of each such scanned mineral assessment report;
- b) To the fullest extent permitted by applicable laws, the Minister hereby expressly disclaims, and is released from, liability and responsibility for all warranties and conditions, expressed or implied, in relation to each scanned mineral assessment report shown or displayed on the Alberta Energy website including but not limited to warranties as to the satisfactory quality of or the fitness of the scanned mineral assessment report for a particular purpose and warranties as to the non-infringement or other non-violation of the proprietary rights held by any third party in respect of the scanned mineral assessment report:
- c) To the fullest extent permitted by applicable law, the Minister, and the Minister's employees and agents, exclude and disclaim liability to the User for losses and damages of whatsoever nature and howsoever arising including, without limitation, any direct, indirect, special, consequential, punitive or incidental damages, loss of use, loss of data, loss caused by a virus, loss of income or profit, claims of third parties, even if Alberta Energy have been advised of the possibility of such damages or losses, arising out of or in connection with the use of the Alberta Energy website, including the accessing or downloading of the scanned mineral assessment report and the use for any purpose of the scanned mineral assessment report so downloaded or retrieved.
- d) User agrees to indemnify and hold harmless the Minister, and the Minister's employees and agents against and from any and all third party claims, losses, liabilities, demands, actions or proceedings related to the downloading, distribution, transmissions, storage, redistribution, reproduction or exploitation of each scanned mineral assessment report obtained by the User from Alberta Energy.

Assessment Report -Part B

RACE HORSE CREEK PROJECT

Metallic & Industrial Minerals Permit No. 9397030045

Report author: Dr. Melvin Kropinak For client: Dr. Melvin Kropinak

Date: March 17, 2009

TABLE OF CONTENTS

Laboratory identification	Page 1
Detection limits of minerals	Page 2
Detection limits of minerals	Page 3
Detection limits of minerals	Page 4
Detection limits of minerals	Page 5
Detection limits of minerals	Page 6
Detection limits of minerals	Page 7
Sample location and type	Page 8
Laboratory methodology	Page 9
Introduction, Body and Conclusion of Report Location Map	Page 10 Page 13
Soil Sample Map	Page 14
Summary Expenditures	Page 15
Part C Prospecting Map	At End

Quality Analysis ...

Innovative Technologies

Date Submitted: 28-Jan-08

Invoice No.:

A08-0406

Invoice Date:

14-Feb-08

Your Reference:

Mel Kropinak # 2-1611 Bowen Rd. Nanaimo BC Y9S LG5 Canada

ATTN: Mel Kropinak

CERTIFICATE OF ANALYSIS

29 Soil samples were submitted for analysis.

The following analytical package was requested:

Code 7-Enzyme Leach Enzyme Leach ICP/MS(ENZYME)

REPORT

A08-0406

This report may be reproduced without our consent. If only selected portions of the report are reproduced, permission must be obtained. If no instructions were given at time of sample submittal regarding excess material, it will be discarded within 90 days of this report. Our liability is limited solely to the analytical cost of these analyses. Test results are representative only of material submitted for analysis.

Notes:

CERTIFIED BY

C. Douglas Read, B.Sc. Laboratory Manager

ACTIVATION LABORATORIES LTD.

								ctivati	on La	borato	ries L	td.	Rep	ort:	A08-0	406								
Analyte Symbol	CI	Br	1	V	As	Se	Mo	Sb	Te	W	Re	Au	Ha	Th	U	Co	Ni	Cu	Zn	Pb	Ga	Ge	Ag	Cd
Unit Symbol	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb							
Detection Limit	2000	5	2	1	1	5	1	0.1	1	1	0.01	0.05	1	0.1	0.1	1	3	3	10	1	1	0.5	0.2	0.2
Analysis Method	ENZ-MS	ENZ-MS	ENZ-MS	ENZ-MS	ENZ-MS	ENZ-MS	ENZ-MS	ENZ-MS	ENZ-MS	ENZ-MS	ENZ-MS	ENZ-MS	ENZ-MS	ENZ-MS	ENZ-MS	ENZ-MS	ENZ-MS							
1	< 2000	52	59	37	6	< 5	4	2.0	< 1	<1	0.01	< 0.05	< 1	3.1	1.2	26	- 11	17	90	21	2	< 0.5	< 0.2	4.8
2	< 2000	91	80	15	< 1	< 5	< 1	0.7	< 1	< 1	0.01	< 0.05	< 1	6.4	1.5	4	7	7	20	9	2	< 0.5	0.4	1.9
3	< 2000	111	89	50	1	< 5	< 1	0.9	< 1	< 1	< 0.01	< 0.05	< 1	1.8	1,1	18	9	< 3	40	8	<1	< 0.5	< 0.2	4.0
4	< 2000	83	69	69	8	< 5	2	1.8	< 1	< 1	< 0.01	< 0.05	< 1	8.9	1.6	24	16	16	90	12	3	< 0.5	0.4	5.1
5	< 2000	91	55	33	2	< 5	1	0.7	< 1	< 1	< 0.01	< 0.05	< 1	3.3	1.2	8	14	6	40	10	2	< 0.5	< 0.2	3.5
6	< 2000	91	45	45	7	< 5	2	1.2	< 1	< 1	< 0.01	< 0.05	< 1	3.0	1.2	8	10	6	20	6	2	< 0.5	< 0.2	3.1
7	6000	193	110	119	5	6	5	1.7	< 1	< 1	< 0.01	< 0.05	<1	2.3	2.5	23	18	18	20	9	3	< 0.5	0.5	5.1
8	< 2000	71	55	26	2	< 5	< 1	0.7	< 1	< 1	< 0.01	< 0.05	< 1	4.3	1.0	27	6	6	40	9	<1	< 0.5	< 0.2	2.1
9	4000	51	32	35	6	< 5	1	1.0	< 1	< 1	< 0.01	< 0.05	< 1	2.3	1.1	40	34	13	150	14	<1	< 0.5	< 0.2	5.4
10	< 2000	64	37	25	7	< 5	3	0.7	< 1	< 1	< 0.01	< 0.05	< 1	4.7	0.9	28	23	11	150	11	2	< 0.5	< 0.2	4.2
12	< 2000	57	30	26	4	< 5	1	0.5	< 1	< 1	< 0.01	< 0.05	<1	3.2	1.0	27	18	10	180	7	1	< 0.5	< 0.2	5.4
13	< 2000	56	43	27	3	< 5	< 1	0.7	<1	< 1	< 0.01	< 0.05	< 1	5.0	0.9	10	11	7	50	8	< 1	< 0.5	< 0.2	4.0
15	< 2000	62	53	38	7	< 5	2	1.5	< 1	< 1	< 0.01	< 0.05	<1	2.8	1.0	27	25	6	180	18	4	< 0.5	< 0.2	5.5
18	< 2000	78	62	23	3	< 5	1	0.8	< 1	< 1	< 0.01	< 0.05	< 1	6.0	1.4	22	15	9	50	11	3	< 0.5	< 0.2	3.1
19	3000	152	103	35	2	< 5	< 1	0.6	<1	< 1	< 0.01	< 0.05	< 1	2.1	1,5	10	13	6	40	8	2	< 0.5	0.2	3.8
20	< 2000	95	53	23	2	< 5	< 1	0.4	< 1	< 1	< 0.01	< 0.05	< 1	2.3	1.1	8	18	17	150	9	3	< 0.5	< 0.2	6.6
21	5000	72	58	16	1	< 5	< 1	0.4	< 1	< 1	< 0.01	< 0.05	< 1	5.4	1.7	14	16	8	130	23	<1	< 0.5	< 0.2	5.4
22	3000	79	60	27	3	< 5	4	0.8	< 1	< 1	< 0.01	< 0.05	< 1	4.6	1.6	16	11	16	70	9	1	< 0.5	< 0.2	3.6
23	5000	88	60	31	3	< 5	3	1.0	< 1	< 1	< 0.01	< 0.05	< 1	4.2	1.4	7	9	10	30	14	2	< 0.5	< 0.2	2.2
24	< 2000	60	45	14	2	< 5	1	0.7	< 1	< 1	< 0.01	< 0.05	< 1	5.0	1.3	4	6	11	30	13	< 1	< 0.5	< 0.2	1.5
26	5000	67	67	29	4	< 5	3	1.6	< 1	< 1	< 0.01	< 0.05	< 1	2.0	1.3	10	10	9	30	12	2	0.8	< 0.2	5.2
30	13000	149	50	148	10	19	14	3.0	< 1	1	0.05	< 0.05	< 1	1.0	0.6	8	49	18	350	9	1	1.0	< 0.2	6.4
31	6000	237	64	81	4	23	11	2.2	< 1	1	0.05	< 0.05	< 1	0.4	0.6	5	26	15	30	9	3	0.5	< 0.2	2.6
32	7000	156	85	104	4	14	8	2.0	<1	1	0.01	< 0.05	< 1	0.6	0.6	6	31	10	< 10	4	3	0.7	0.2	1.1
33	10000	148	39	107	5	14	12	1.4	< 1	< 1	0.02	< 0.05	< 1	0.5	0.8	8	28	12	120	9	2	0.6	0.2	6.0
34	9000	108	52	30	3	< 5	5	1.4	< 1	< 1	< 0.01	< 0.05	< 1	0.9	1.2	19	14	6	50	29	3	< 0.5	< 0.2	
35	3000	68	62	35	5	< 5	3	1.2	< 1	< 1	< 0.01	< 0.05	< 1	3.5	4.5	13	10	13	20	13	3	< 0.5		7.1
36	11000	233	73	80	8	17	10	2.1	< 1	< 1	0.07	< 0.05	< 1	0.5	0.6	6	37	19	450	14	< 1		0.2	4.6
37	8000	83	52	147	8	< 5	6	1.9	< 1	< 1	0.02	< 0.05	<1	3.5	0.5	13	16	15	70	15	< 1	0.6	< 0.2	8.7 3.9

							A	ctivat	ion La	borato	ries L	td.	Repo	ort:	A08-0	406								
Analyte Symbol	In	Sn	TI	Bi	Ti	Cr	Y	Zr	Nb	Hr	Ta	La	Ce	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yt
Unit Symbol	ppb	ppt																						
Detection Limit	0.1	0.8	0.1	0.8	100	20	0.5	1	1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
Analysis Method	ENZ-MS																							
1	< 0.1	< 0.8	< 0.1	< 0.8	200	< 20	16.5	42	< 1	1.4	< 0.1	7.7	26.0	3.2	14.5	4.1	1,1	3.8	0.6	2.8	0.5	1.6	0.2	1.5
2	< 0.1	< 0.8	< 0.1	< 0.8	< 100	< 20	13.2	78	< 1	2.6	< 0.1	13.9	28.3	2.6	9.6	2.1	0.8	2.2	0.4	1.9	0.4	1.0	0.1	1.0
3	< 0.1	< 0.8	< 0.1	< 0.8	300	< 20	10.5	47	< 1	1.3	< 0.1	7.6	13.9	2.1	8.2	1.8	0.7	2.0	0.3	1.5	0.3	1.0	0.1	1.1
4	< 0.1	< 0.8	0.1	< 0.8	500	< 20	15.0	89	.1	2.7	< 0.1	9.2	24.3	3.1	12.8	3.2	1.0	3.2	0.5	2.6	0.5	1.5	0.2	1.5
5	< 0.1	< 0.8	< 0.1	< 0.8	200	< 20	4.9	37	< 1	1.2	< 0.1	3.0	6.6	0.9	3.9	1.1	0.4	1.0	0.2	0.9	0.2	0.5	< 0.1	0.5
6	< 0.1	< 0.8	< 0.1	< 0.8	400	< 20	3.8	38	< 1	1.2	< 0.1	2.4	5.3	8.0	3.3	0.9	0.4	0.8	0.1	0.7	0.1	0.4	< 0.1	0.4
7	< 0.1	< 0.8	0.6	< 0.8	700	< 20	15.5	104	2	2.8	< 0.1	10.7	7.2	2.7	10.4	2.5	0.7	2.5	0.4	2.0	0.4	1.1	0.2	1.2
8	< 0.1	< 0.8	0.1	< 0.8	< 100	< 20	7.9	42	< 1	1.3	< 0.1	4.3	9.7	1.6	7.2	2.0	0.6	2.0	0.3	1.5	0.3	0.7	< 0.1	0.6
9	< 0.1	< 0.8	< 0.1	< 0.8	400	< 20	2.5	23	< 1	0.9	< 0.1	1.8	4.1	0.6	2.7	0.7	0.3	0.6	0.1	0.5	< 0.1	0.2	< 0.1	0.2
10	< 0.1	< 0.8	< 0.1	< 0.8	400	< 20	2.0	43	< 1	1.5	< 0.1	1.4	3.4	0.4	1.5	0.4	0.2	0.4	< 0.1	0.4	< 0.1	0.2	< 0.1	0.2
12	< 0.1	< 0.8	< 0.1	< 0.8	400	< 20	3.7	32	1	1.1	< 0.1	2.5	6.4	0.8	3.6	1.0	0.4	0.9	0.1	0.7	0.1	0.4	< 0.1	0.3
13	< 0.1	< 0.8	< 0.1	< 0.8	< 100	< 20	8.3	29	< 1	0.8	< 0.1	4.3	12.3	1.8	8.3	2.3	0.7	2.1	0.3	1.6	0.3	0.8	< 0.1	0.7
15	< 0.1	< 0.8	0.1	< 0.8	300	< 20	4.2	31	< 1	1.0	< 0.1	2.6	6.9	1.0	4.2	1.2	0.6	1.0	0.2	0.8	0.2	0.4	< 0.1	0.4
18	< 0.1	< 0.8	< 0.1	< 0.8	400	< 20	6.5	45	< 1	1.5	< 0.1	4.2	12.3	1.4	6.2	1.6	0.6	1.6	0.2	1.2	0.2	0,6	< 0.1	0.6
19	< 0.1	< 0.8	0.1	< 0.8	300	< 20	5.9	55	< 1	1.7	< 0.1	5.2	10.9	1.4	6.1	1.6	0.8	1.5	0.2	1.2	0.2	0.6	< 0.1	0.6
20	< 0.1	< 0.8	< 0.1	< 0.8	300	< 20	2.9	41	< 1	1.3	< 0.1	2.4	4.9	0.7	2.8	0.7	0.3	0.6	< 0.1	0.5	0.1	0.3	< 0.1	0.3
21	< 0.1	< 0.8	0.2	< 0.8	< 100	< 20	6.2	49	< 1	1.6	< 0.1	4.2	9.5	1.3	6.2	1.6	0.6	1.6	0.2	1.1	0.2	0.6	< 0.1	0.6
22	< 0.1	< 0.8	< 0.1	< 0.8	200	< 20	12.9	37	< 1	1,3	< 0.1	10.3	13.6	2.8	13.3	3.7	1.0	3.4	0.5	2.5	0.5	1.2	0.2	1.1
23	< 0.1	< 0.8	< 0.1	< 0.8	400	< 20	12.2	59	< 1	1.9	< 0.1	6.8	5.7	2.8	12.3	3.5	1.0	3.2	0.4	2.2	0.4	1.1	0.1	1.0
24	< 0.1	< 0.8	< 0.1	< 0.8	200	< 20	8.8	40	< 1	1.6	< 0.1	4.4	5.3	2.0	9.3	2.8	0.8	2.5	0.4	1.8	0.3	0.9	0.1	0.9
26	< 0.1	< 0.8	< 0.1	< 0.8	200	< 20	12.6	23	< 1	0.8	< 0.1	8.1	5.1	2.8	12.3	3.1	0.9	2.9	0.4	2.0	0.4	1.0	0.1	0.9
30	< 0.1	< 0.8	< 0.1	< 0.8	200	< 20	20.6	7	< 1	0.2	0.1	12.1	5.4	2.2	9.0	1.9	0.5	2.4	0.3	1.5	0.3	1.1	0.1	0.9
31	< 0.1	< 0.8	0.2	< 0.8	200	< 20	12.5	15	< 1	0.4	< 0.1	7.9	3.8	1.5	6.3	1.3	0.3	1,5	0.2	1.0	0.2	0.7	< 0.1	0.7
32	< 0.1	< 0.8	< 0.1	< 0.8	400	< 20	14.7	41	1	1.0	0.1	10.0	2.5	2.1	8.2	1.7	0.4	1.8	0.2	1.3	0.3	0.9	0.1	0.9
33	< 0.1	< 0.8	0.6	< 0.8	300	< 20	11.8	16	<1	0.4	< 0.1	7.9	2.2	1.4	5.4	1.1	0.3	1.2	0.2	0.9	0.3	0.6	< 0.1	0.6
34	< 0.1	< 0.8	0.6	< 0.8	400	< 20	7.2	32	<1	0.9	< 0.1	5.4	7.1	1.2	5.0	1.1	0.4	1.1	0.2	0.9	0.2	0.5	< 0.1	0.5
35	< 0.1	< 0.8	0.1	< 0.8	200	< 20	17.3	43	< 1	1.3	< 0.1	11.4	10.1	3.1	13.3	3.2	1.1	3.2	0.5	2.4	0.5	1.3		1.3
86	< 0.1	< 0.8	0.2	< 0.8	300	< 20	15.3	7	<1	0.2	< 0.1	9.2	4.0	1.7	6.9	1.4	0.4	1,5	0.2	1.2	0.5		0.2	
37	< 0.1	< 0.8	0.1	< 0.8	200	< 20	12.5	14	<1	0.5	< 0.1	7.1	15.3	2.8	12.1	3.3	0.9	2.8	0.2	1.9	0.4	0.8	0.1	0.8

							Δ	ctivati	ion Lal	borato	ries Li	td.	Report:	A08-0406
Analyte Symbol	Lu	Li	Be	Sc	Mn	Rb	Sr	Cs	Ва	Ru	Pd	Os	Pt	
Unit Symbol	ppb	ppb	ppb	ppb	ppb	ppb								
Detection Limit	0.1	2	2	100	1	1	1	0.1	1	1	1	1	1	
Analysis Method	ENZ-MS	ENZ-MS	ENZ-MS	ENZ-MS	ENZ-MS	ENZ-MS								
1	0.2	3	< 2	< 100	6710	15	134	0.2	961	2	< 1	< 1	< 1	
2	0.1	5	6	< 100	1040	17	290	< 0.1	2540	< 1	< 1	< 1	< 1	
3	0.2	4	3	< 100	1200	26	164	< 0.1	2140	< 1	< 1	< 1	< 1	
4	0.2	4	3	< 100	6160	23	142	0.4	1280	< 1	< 1	< 1	< 1	
5	< 0.1	10	3	< 100	295	23	145	0.2	1040	2	< 1	< 1	< 1	
6	< 0.1	5	< 2	< 100	703	16	132	< 0.1	1120	< 1	< 1	< 1	< 1	
7	0.2	2	< 2	< 100	4050	68	500	0.2	735	< 1	< 1	< 1	< 1	
8	0.1	8	5	< 100	800	26	139	0.4	1290	< 1	< 1	< 1	< 1	
9	< 0.1	34	3	< 100	1660	30	111	0.1	1100	< 1	< 1	< 1	< 1	
10	< 0.1	10	3	< 100	2000	10	96	< 0.1	836	< 1	< 1	< 1	< 1	
12	< 0.1	22	2	< 100	2010	8	67	< 0.1	1140	< 1	< 1	< 1	< 1	
13	0.1	11	4	< 100	373	23	164	0.3	1430	< 1	< 1	< 1	< 1	
15	< 0.1	3	2	< 100	16700	36	271	< 0.1	2530	< 1	< 1	< 1	< 1	
18	< 0.1	13	3	< 100	2670	24	136	0.3	1470	< 1	< 1	< 1	< 1	
19	< 0.1	< 2	3	< 100	919	25	208	0.1	2480	< 1	< 1	< 1	< 1	
20	< 0.1	16	< 2	< 100	442	24	86	0.1	765	< 1	< 1	< 1	< 1	
21	< 0.1	19	6	< 100	371	43	83	0.2	1550	< 1	< 1	< 1	< 1	
22	0.2	9	2	< 100	742	11	131	0.1	1270	< 1	< 1	< 1	< 1	
23	0.2	3	< 2	< 100	745	16	142	0.2	1680	< 1	< 1	< 1	< 1	
24	0.1	8	< 2	< 100	230	19	125	0.2	857	< 1	< 1	< 1	< 1	
26	0.1	< 2	< 2	< 100	3070	11	166	0.1	1470	1	< 1	< 1	< 1	
30	0.2	9	< 2	< 100	2900	3	1980	< 0.1	318	< 1	< 1	< 1	< 1	
31	0.1	< 2	< 2	< 100	1880	6	635	< 0.1	284	< 1	< 1	< 1	< 1	
32	0.2	< 2	< 2	< 100	1300	3	820	< 0.1	396	< 1	< 1	< 1	< 1	
33	0.1	< 2	< 2	< 100	1300	80	1010	0.2	298	< 1	< 1	< 1	< 1	
34	< 0.1	2	< 2	< 100	6220	82	407	0.3	983	< 1	< 1	< 1	< 1	
35	0.2	3	< 2	< 100	3410	25	537	0.1	2580	< 1	< 1	< 1	< 1	
36	0.1	6	< 2	< 100	3460	8	1580	< 0.1	372	< 1	< 1	< 1	< 1	
37	0.1	14	< 2	< 100	5800	12	358	0.3	976	< 1	< 1	< 1	< 1	

		Activation Laboratories Ltd				td.	Rep	ort:	A08-0	406														
Quality Contro	ol																							
Analyte Symbol	CI	Br	1	V	As	Se	Mo	Sb	Те	W	Re	Au	Hg	Th	U	Co	Ni	Cu	Zn	Pb	Ga	Ge	Ag	C
Unit Symbol	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppl
Detection Limit	2000	5	2	1	1	5	1	0.1	1	1	0.01	0.05	1	0.1	0.1	1	3	3	10	1	1	0.5	0.2	0.2
Analysis Method	ENZ-MS	ENZ-MS	ENZ-MS	ENZ-MS	ENZ-MS	ENZ-MS	ENZ-MS	ENZ-MS	ENZ-MS	ENZ-MS	ENZ-MS	ENZ-MS	ENZ-MS	ENZ-MS	ENZ-MS	ENZ-MS	ENZ-MS	ENZ-MS	ENZ-MS	ENZ-MS	ENZ-MS	ENZ-MS	ENZ-MS	ENZ-MS
SO-2 (Depleted) Meas				22									< 1			12	32	19	290	7				
SO-2 (Depleted) Cert				64000									82.0			9000	8000	7000	124000	21000				
TILL-1 Meas													< 1											
TILL-1 Cert													90.0											
10 Orig	< 2000	62	37	25	7	< 5	4	0.6	< 1	< 1	< 0.01	< 0.05	< 1	4.6	0.9	28	23	11	140	11	2	< 0.5	< 0.2	4.3
10 Dup	< 2000	65	37	25	7	< 5	3	0.7	< 1	< 1	< 0.01	< 0.05	< 1	4.8	0.8	28	23	11	160	12	2	< 0.5	< 0.2	4.1
23 Orig	5000	83	57	31	3	< 5	2	0.9	< 1	< 1	< 0.01	< 0.05	< 1	3.9	1.2	7	9	9	30	12	1	< 0.5	< 0.2	1.9
23 Dup	5000	94	64	32	3	< 5	3	1.0	< 1	< 1	0.01	< 0.05	< 1	4.5	1.6	7	9	10	30	15	2	< 0.5	0.2	2.4
36 Orig	10000	226	71	78	8	16	10	2.0	< 1	< 1	0.07	< 0.05	< 1	0.5	0.8	6	35	18	430	15	< 1	0.5	< 0.2	8.1
36 Dup	11000	239	75	82	9	18	11	2.3	< 1	< 1	0.07	< 0.05	< 1	0.4	0.5	7	39	20	480	14	-1	0.7	< 0.2	9.3
Method Blank Method Blank	< 2000	< 5	< 2	< 1	< 1	< 5	< 1	< 0.1	< 1	< 1	< 0.01	< 0.05	< 1	< 0.1	< 0.1	< 1	< 3	< 3	< 10	< 1	< 1	< 0.5	< 0.2	< 0.2

							A	ctivati	on La	borato	ries L	td.	Rep	ort:	A08-0	406								
Quality Control																								
Analyte Symbol	In	Sn	TI	В	Ti	Cr	Y	Zr	Nb	Hf	Та	La	Ce	Pr	Nd	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yt
Unit Symbol	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppb	ppt
Detection Limit	0.1	0.8	0.1	0.8	100	20	0.5	1	1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1
Analysis Method	ENZ-MS	ENZ-MS	ENZ-MS	ENZ-MS	ENZ-MS	ENZ-MS	ENZ-MS	ENZ-MS	ENZ-MS	ENZ-MS	ENZ-MS	ENZ-MS	ENZ-MS	ENZ-MS	ENZ-MS	ENZ-MS	ENZ-MS	ENZ-MS	ENZ-MS	ENZ-MS	ENZ-MS	ENZ-MS	ENZ-MS	ENZ-MS
SO-2 (Depleted) Meas					500	< 20																		
SO-2 (Depleted) Cert					8600000	16000																		
TILL-1 Meas																								
TILL-1 Cert																								
10 Orig	< 0.1	< 0.8	< 0.1	< 0.8	400	< 20	2.1	44	< 1	1.5	< 0.1	1.5	3.5	0.4	1.5	0.4	0.2	0.4	< 0.1	0.4	< 0.1	0.2	< 0.1	0.2
10 Dup	< 0.1	< 0.8	< 0.1	< 0.8	400	< 20	2.0	43	< 1	1.5	< 0.1	1.4	3.3	0.3	1.5	0.4	0.2	0.4	< 0.1	0.4	< 0.1	0.2	< 0.1	0.2
23 Orig	< 0.1	< 0.8	< 0.1	< 0.8	400	< 20	11.7	56	< 1	1.8	< 0.1	6.5	6.0	2.7	11.7	3.4	1.0	3.0	0.4	2.1	0.4	1.1	0.1	1.0
23 Dup	< 0.1	< 0.8	< 0.1	< 0.8	400	< 20	12.7	62	< 1	2.0	< 0.1	7.0	5.4	2.9	12.9	3.6	1.0	3.3	0.4	2.3	0.4	1.2	0.1	1.0
36 Orig	< 0.1	< 0.8	0.1	< 0.8	200	< 20	15.0	7	< 1	0.2	< 0.1	9.2	4.3	1.7	7.0	1.5	0.4	1.6	0.2	1.2	0.3	0.8	0.1	0.8
36 Dup	< 0.1	< 0.8	0.2	< 0.8	300	< 20	15.5	7	< 1	0.2	< 0.1	9.2	3.8	1.6	6.8	1.4	0.4	1.5	0.2	1.2	0.2	0.8	0.1	0.8
Method Blank Method Blank	< 0.1	< 0.8	< 0.1	< 0.8	< 100	< 20	< 0.5	< 1	< 1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1

	i
7	+
	9.
	5

							A	ctivati	on La	borato	ries L	td.	Report:	: A08-0406
Quality Control														
Analyte Symbol	Lu	Li	Be	Sc	Mn	Rb	Sr	Cs	Ba	Ru	Pd	Os	Pt	
Unit Symbol	ppb	ppb	ppb	ppb	ppb	ppb								
Detection Limit	0.1	2	2	100	1	1	1	0.1	1	1	1	1	1	
Analysis Method	ENZ-MS	ENZ-MS	ENZ-MS	ENZ-MS	ENZ-MS	ENZ-MS								
SO-2 (Depleted) Meas					1870	81	197		619					
SO-2 (Depleted) Cert					720000	78000	340000		966000					
TILL-1 Meas														
TILL-1 Cert														
10 Orig	< 0.1	11	3	< 100	2030	10	100	< 0.1	862	< 1	< 1	< 1	< 1	
10 Dup	< 0.1	10	4	< 100	1980	9	92	< 0.1	809	< 1	< 1	< 1	< 1	
23 Orig	0.1	3	< 2	< 100	738	15	137	0.2	1620	< 1	< 1	< 1	< 1	
23 Dup	0.2	4	< 2	< 100	751	16	146	0.2	1730	< 1	< 1	< 1	< 1	
36 Orig	0.1	6	< 2	< 100	3380	8	1540	< 0.1	357	< 1	< 1	< 1	< 1	
36 Dup	0.1	6	< 2	< 100	3530	8	1630	< 0.1	386	< 1	< 1	< 1	< 1	
Method Blank Method	< 0.1	< 2	< 2	< 100	< 1	< 1	< 1	< 0.1	< 1	< 1	< 1	< 1	< 1	

	Sample			Location	
ID # (A08-0406)	When collected	Method	Description	GPS Reading	Location Notes
	June 9/07	soil gathered	Amt. ½ kg soil		Tributary of
		From 3 depth	and fine rocks		South Race-
			No vegetation		horse Creek
					South side
					of creek
1	"	"	"	N49 46 216 W114 37 708	
2	"	"	"	N49 46 219 W114 37 704	"
3	"	"	"	N49 46 220 W114 37 702	"
4	u u	"	"	N49 46 230 W114 37 692	"
5	ü	"	"	N49 46 228 W114 37 690	"
6	"	"	"	N49 46 231 W114 37 688	"
7	· · ·	"	"	N49 46 229 W114 37 687	"
8	11	11	"	N49 46 236 W114 37 687	"
9	"	· ·	"	N 49 46 238 W114 37 68	5 "
10	"	"	· ·	N49 46 238 W114 37 681	. "
12	"	"	n n	N49 46 249 W114 37 678	3 "
13	"	"	"	N49 46 245 W114 37 676	5 "
15	"	u u	· II	N49 46 244 W114 37 672	2 "
18	July 26, 2007	u	"	N49 46 246 W11r 37 670	North side of
					Creek
19	"	u	"	N49 46 249 W114 37 667	7
20	"	· ·	"	N49 46 251 W114 37 664	"
21	"	"	"	N49 46 258 W114 37 66	0 "
22	"	u ·	"	N49 46 261 W114 37 66	1 "
23	"	ii .	"	N49 46 268 W114 37 65	5 "
24	"	"	"	N49 46 269 W114 37 65	2 "
26	"	n n	"	N49 46 272 W114 37 65	1 "
30	"	"	"	N49 46 269 W114 37 64	6 "
31	"	"	"	N49 46 276 W114 37 64	2 "
32	"	"	"	N49 46 276 W114 37 63	5 "
33	"	"	"	N49 46 281 W114 37 63	4 "
34	"	"	"	N49 46 282 W114 37 62	6 "
35	"	"	"	N49 46 281 W114 37 62	0 "
36	"	"	"	N49 46 290 W114 37 61	7 "
37	"	"	"	N49 46 291 W114 37 61	.2 "

The lab methodology used for the 29 soil samples that were sent to Act Labs is named by the Act Labs geochemists as an Enzyme Leach selective extraction. It is mostly accomplished by mass spectrometry and the technical name is inductively coupled plasma emission mass spectrometry or ICP-MS. Most of the elements of the Periodic Table are measured and labelled for each soil sample by using this method.

This report is authored by Melvin Kropinak who has been prospecting in this area of southwestern Alberta for approximately the last 40 years.


During 2007 and 2008 assessment work included prospecting and the collection of soil samples for the purpose of geochemical testing for precious and base metals. Geochemical tests were carried out by Actlabs of Ancaster, Ontario.

Over the course of both years, three other people, supervised by myself, were involved in the assessment work. Collecting soil samples and surface prospecting, as opposed to shaft sinking or trenching is preferred in our exploration in order to eliminate surface disturbance although more trenching was done last year. The work performed also included studying terrain and studying various rock types, occurred in the summer months of 2007 and 2008 and amounted to between sixty and sixty-five days.

The location of the work is township 9, range 5, west 4 meridian and the land is designated by permit number 9397030045. The name of the permit holder is Melvin Kropinak.

Soil samples collected are highlighted on the map provided (section C). The red ink line on the map designates the soil samples that were sent to the lab in Ancaster, Ontario and the red circle area designates where soil from holes and trenches were taken and placed in a dry-washer. Most of the work involved digging holes in soil down to bedrock (where possible), then placing this soil in a small dry-washer that was powered by battery and solar energy. This small machine would separate lighter rocks and soil from heavier rock that could conceivably be a sought after mineral. A dry-washer was used because many areas worked were not near a creek or other water supply. The holes were mostly dug in a grid pattern.

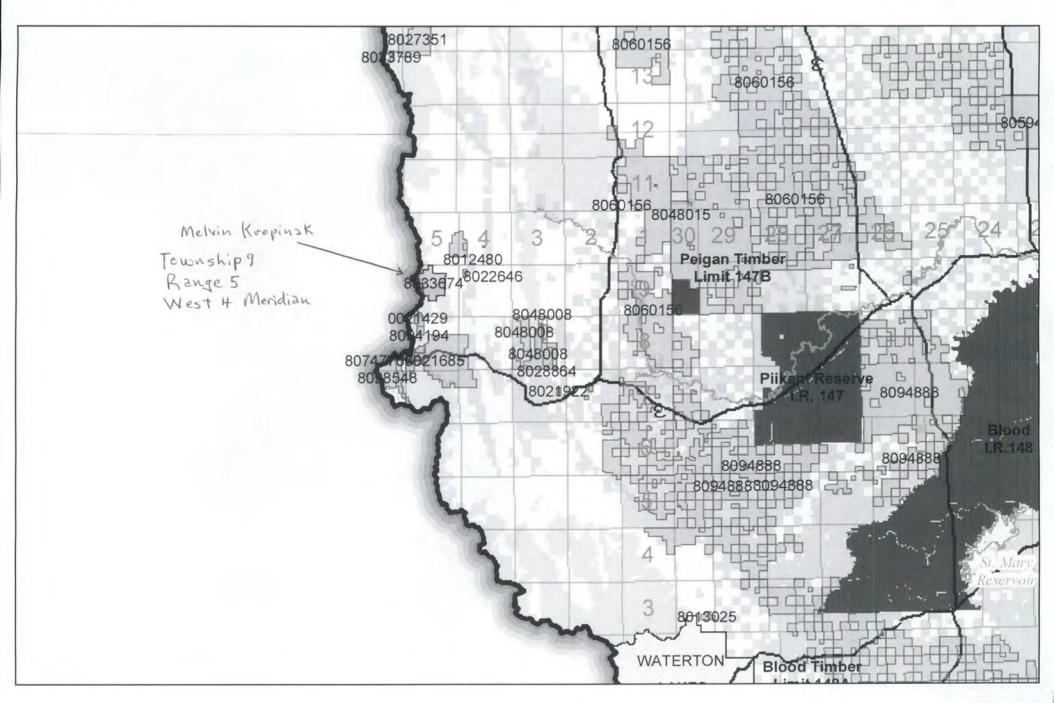
The soil samples did not show any appreciable amounts of precious or base metals, nor did any of the other indicator minerals for base metals appear to be in sufficient quantities to warrant further exploration in this particular location.

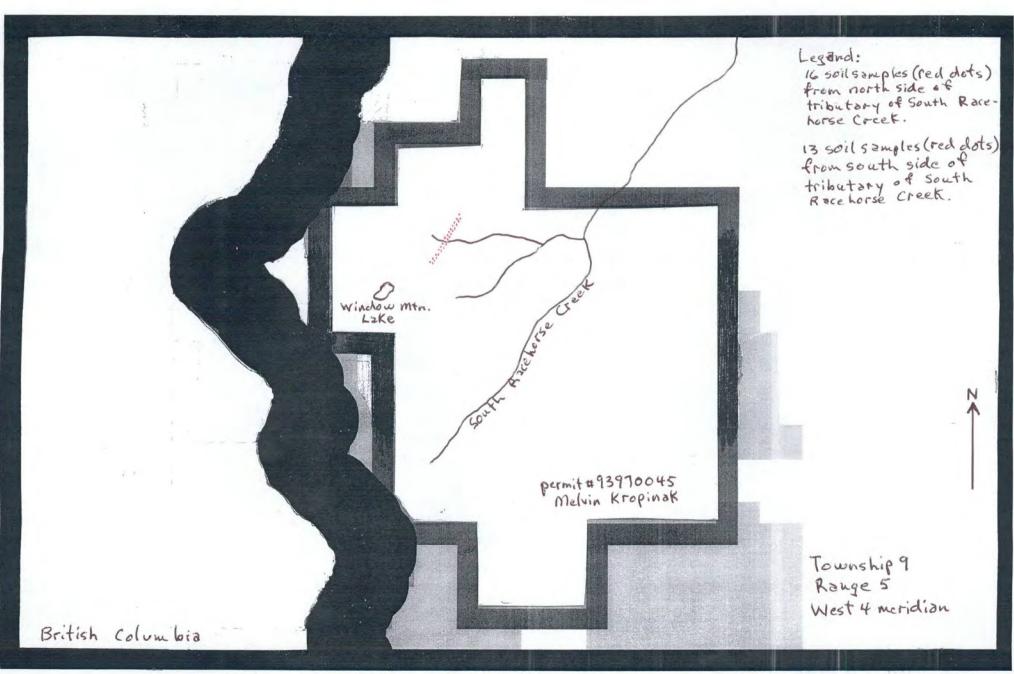
This report is authored by Melvin Kropinak who has prospected on the land designated by permit number 93970045. The permit holder is Melvin Kropinak and the permit location is township 9, range 5, West 4 meridian.

The area is accessed for prospecting by turning north, off of Highway 3, about one mile west of Coleman, Alberta. Approximately six miles of travel on Atlas road, which is an all-weather gravel road, leads to an old logging road which runs west towards Racehorse Pass. A four wheel drive vehicle is necessary to traverse this road as it is not well used and has many washouts. After 1 1/2 miles the vehicles are parked and the prospecting group walks south to the prospecting area. The walk is immediately down a steep slope to the tributary of South Racehorse Creek and after crossing the creek there is a steep climb up the other side until the top of the ridge is reached. The south bank of this creek is heavily wooded with many deadfall trees and shrub undergrowth, making prospecting difficult on this side of the creek. This southern side of the creek was also the area where the trenching part of the work was carried out. The trenching work done comprised of digging a two foot wide trench about six feet in length. The trenches are dug until bedrock was reached or to a depth of at least four feet. This work proved to be the most difficult, because not only are we working on sloped land but there seems to be a tree or shrub root every two inches. The soil near the bedrock would be placed in a dry washer and after processing, it would be examined to see if any remnants of base or precious metals could be found. The dry-washer was powered by battery and separated lighter rocks and soil from heavier material that could be a sought after mineral. The larger rocks that were found at depth in the trench were broken and examined. In those trenches that were dug closer to the creek the soil was panned to get the same results. The short straight lines on the map designate the area where the trenching was done and the work was done over a period of about twenty days, but not consecutively.

In 2007 and 2008, the rest of the prospecting took place in the oval area marked on the map. This area runs about one mile east to west and about one-half mile north to south and includes the above mentioned creek with its steep sloping banks, but also a flatter, plateau-like area to the south of the creek once the top of the ridge has been reached. In this oval area we would walk and dig a hole every fifty yards or so and then run the soil through the dry washer. This work took place within the oval area that was accessed from the same logging road mentioned above and the oval area was crossed quite a few times as the samples were taken. Walking and sampling was generally done in an east-west and north-south direction so there was some semblance of a grid pattern but the contours of the land make a neat pattern very difficult to accomplish. The soil was obtained from a two foot depth to try to avoid roots and twigs as much as possible. These locations were not recorded by GPS readings as we are just interested in what that particular hole can show us at that time. Other activities included looking at terrain, looking for faults, and studying rocks, and even though much of the area has been logged in the past there is still a lot of coverage by pine forests, which hampers prospecting to some extent. Beyond the western part of the oval area marked on the map, the land starts sloping up steeply the closer one gets to the provincial border. This type of prospecting was done in June, July and August of both 2007 and 2008 and took just over forty days.

Twenty-nine soil samples were done towards the western part of the area marked by the oval and are designated by red dots (a larger version of the permit area was made to more precisely show the exact location of the holes made for these samples). The taking of these samples took two days to complete, one day for those samples on the south side of the creek and one day for those on the north side of the creek. The total of forty-eight days referenced previously includes these two days and also the days digging individual holes for the dry washer and general prospecting including studying terrain, studying rock types, etc. Only a small percentage of the total soil samples are sent for laboratory analysis due to the high cost of analysing hundreds of samples this way.


The soil samples and the dry washer sampling did not show any appreciable amounts of base or precious metals so for the time being no further exploration will take place in the area designated by the oval.



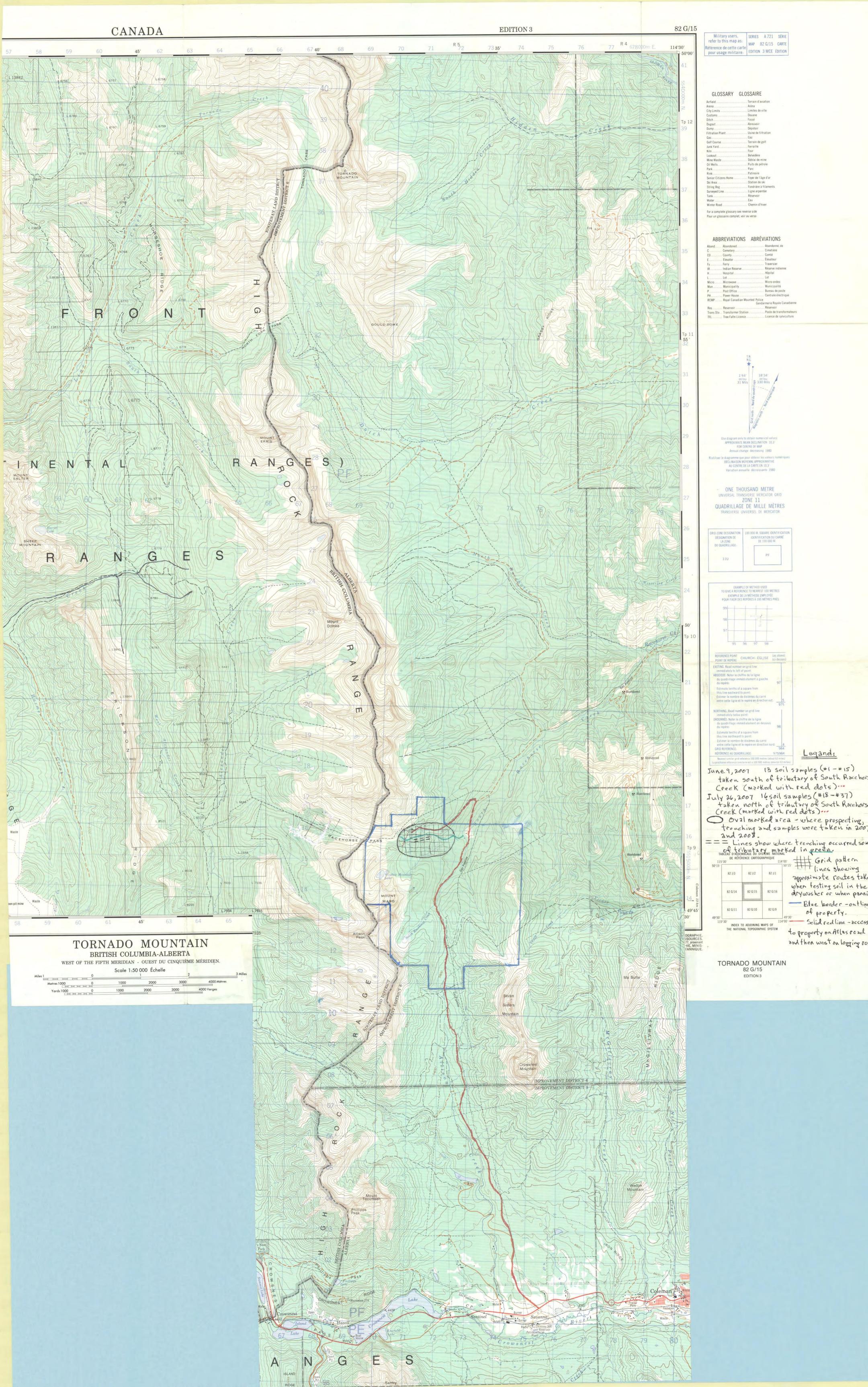
prospector M. Kropinak

Trenching Locations

Trench	GPS reading	Location		
1	N49 46' 105 W 114 37' 341	South of tribu	itary of S. Race	horse Creek
2	N49 46' 198 W 114 37' 322	u	u	"
3	N49 46' 185 W 114 37' 203	u	"	"
4	N49 46' 221 W114 37' 215	"	u	u
5	N49 46' 175 W 114 37' 053	u	u	"
6	N49 46' 250 W 114 37' 057	u	u	u

Larger version of permit area.

MINERAL ASSESSMENT EXPENDITURE BREAKDOWN BY TYPE OF WORK


roject Name: Racehorse C	reek Project
	AMOUNT
. Prospecting	\$ 10,600.00
Geological Mapping & Petrography	\$ 26.00
. Geophysical Surveys	
a. Airborne	\$
b. Ground	\$
. Geochemical Surveys	\$ 1,065.75
. Trenching and Stripping	\$_10,500.00
. Drilling	\$
. Assaying & whole rock analysis	\$
. Other Work: Field costs	\$
SUBTOTAL	\$ 22,991.75
. Administration (up to 10% of subtotal)	\$ 2,299.00
TOTAL	\$ 25,290.75
Melvin Kropinak UBMITTED BY (Print Name)	may 9, 2009

RACEHORSE CREEK PROJECT - Part C

Metallic & Industrial Permit No. 9397030045

Client name: Melvin Kropinak

Date: March 17, 2009

