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Appendix A

Analytical Conditions

Sample Mount Heat: Random powder
Glycol: Orientated slide
Potassium Saturated: Oriented slide

Rotation Rotation off to improve counting statistics.

Mineralogical Database International Centre Diffraction Data Pattern
Diffraction File 4+2007 (PDF4+2007)

Quantitative Software Rigaku Whole Pattern Fitting

Software Conditions
Jade v. 8 1ICDD PDF4+2007)

Condition Application
Background Cubic spline applied to background.
ka Stripped




Results

Disclaimer: Due to uncertainty inherent in XRD analysis, the unambiguous identification of
poorly crystalline and trace phases is not possible in all instances. In such cases, XRD analysis
can, at best, provide an insight into phases that may be present in the sample. Mineral

percentages derived by Rietveld analysis should be tempered with this information.

1. Heated Runs

By heating the sample, it is possible to eliminate some clays that may have overlapping peaks. .
By heating to 550°C, chlorite will increase in intensity and trioctahedral vermiculite and
montmorillonite will collapse the d-spacing from 15 A to 10 A. For the wavelength of copper
sourced radiation which was used on this project, this corresponds to 5.9 degrees to 8.8 degrees
2 Theta.

Heated runs of dried and hand-ground samples were heated to 550°C and held at that temperature
for a half an hour. The samples were then sealed in an airtight sample container until run to

avoid humidity effects on the clays.

HW414- No change between heated and dry runs. This agrees with the rietveld analysis in
which illite was the dominant clay mineral present.

HW415- No change between heated and dry runs. This agrees with the rietveld analysis in
which illite was the dominant clay mineral present.

HW418- No change between heated and dry runs. This agrees with the rietveld analysis in
which illite was the dominant clay mineral present.

HW422- Little change between heated and dry runs. This agrees with the rietveld analysis in
which illite and kaolinite were the clay minerals present.

HW432- Little change between heated and dry runs. This agrees with the rietveld analysis in
which illite and kaolinite were the clay minerals present.

HW433- Little change between heated and dry runs. This agrees with the rietveld analysis in
which illite and kaolinite were the clay minerals present.

HW518- Dramatic change between heated and dry runs. The 15 A peak is completely lost, and
an increase in the intensity of the 10 A peak occurs. This narrows the search to
vermiculite and montmorillonite.



HWS522- Dramatic change between heated and dry runs. The 15 A peak is completely lost, and
an increase in the intensity of the 10 A peak occurs. This narrows the search to
vermiculite and montmorillonite.

HW525- Dramatic change between heated and dry runs. The 15 A peak is completely lost, and
an increase in the intensity of the 10 A peak occurs. This narrows the search to
vermiculite and montmorillonite.

HW526- Dramatic change between heated and dry runs. The 15 A peak is completely lost, and
an increase in the intensity of the 10 A peak occurs. This narrows the search to
vermiculite and montmorillonite.

HW531- Dramatic change between heated and dry runs. The 15 A peak is completely lost, and
an increase in the intensity of the 10 A peak occurs. This narrows the search to
vermiculite and montmorillonite.

HW532- Dramatic change between heated and dry runs. The 15 A peak is completely lost, and
an increase in the intensity of the 10 A peak occurs. This narrows the search to
vermiculite and montmorillonite.

HW547- Dramatic change between heated and dry runs. The 15 A peak is completely lost, and
an increase in the intensity of the 10 A peak occurs. This narrows the search to
vermiculite and montmorillonite.

2. Glycolated Runs

Glycolation will differentiate between naturally occurring Mg-vermiculite and montmorillonite.
Glycol will cause swelling of the montmorillonite reflection (001) to ~17.7 A (Moore and
Reynolds, 1989). The vermiculite will remain unaffected by the glycolation. The results would
indicate that the d-spacing did expand, and therefore the major component is montmorillonite.

Glycolated runs were done by the saturation method, in which ethylene glycol was dripped onto
a prepared smear mount slide. Excess glycol was dabbed off with a lab tissue or left in the
fumehood until excess was no longer visible but the sample still appeared wet. Those samples
with cation exchange capacity of 54 meq or greater were chosen for testing by ethylene glycol

expansion.

HW518- Untreated peak at 15.7 A, which expands to 17 A with the ethylene glycol treatment.
HW522- Untreated peak at 15.2 A, which expands to 16.7 A with ethylene glycol treatment.

HW547- Untreated peak at 15.8 A, which expands to 17 A with ethylene glycol treatment.



3. Composition

The clay mineral of interest is likely montmorillonite with the potential of small amounts of illite
interstratified throughout. A slight peak shift from the expected position could be explained by
the presence of interstratified clay or it could be explained by the sources of error listed in the
section below. Illite is found throughout the sample series and is commonly found in association
with smectite as a diagenetic product (Howard, 1981). Rectorite, which is a regularly stratified

smectite/illite clay, was found in a few samples.

The peak shifted well with the ethylene glycol saturation, suggesting that the composition is rich
in smectite (Moore and Reynolds, 1989).

4. Sources of Error

Due to the nature of the samples, ideal sample preparation would have been extremely difficult
to achieve. Samples were hand ground, and were not pulverized to the point of having uniform
particle size. The crystalline non-clay minerals were left at a slightly larger size in order to
preserve the structure of the clay minerals during grinding. Microabsorption effects will be
present because of the particle size variation and the slight difference in mass attenuation
coefficients between clay minerals and SiO, polymorphs (Madsen et al., 2001). Particle
statistics, intensities, and error in precision will be affected, which in turn will affect the accuracy
of semi-quantitative rietveld analysis. It was deemed that errors caused by particle size
deviations would be less of an issue than destroyed clays.

Clays by their nature are difficult to quantify. It is rare in smectites to have well defined internal
stacking that will have perfect translational order. Smectites are strongly susceptible to
turbostratic stacking, in which the clay plates are randomly oriented, much like a disordered
stack of cards (Moore and Reyolds, 1989). In smectites, non-rational basal plane reflections
(001) caused by this mismatch results in peaks that are not well fitted to a calculated position
(APDW, 2008). Smectites are particularly sensitive to slight variations due to their cation

exchange capacity and different sized cations filling the interlayer space. Different hydration



states will affect the results, for example one or two water layers can be absorbed from the
environment after drying and can coexist in one stack. As well, we see line broadening on the
basal plane (001), which is a result of the long length, platy nature and orientation of the clay
(APDW, 2008).

Rietveld algorithms have not been determined to take all the complexities of clay minerals into
consideration, and therefore results should not be taken as highly accurate (Rienhard Kleeburg,

Frieberg University, pers. communication, 2008)
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RAW AND HEATED X-RAY DIFFRACTOGRAMS
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RAW AND GLYCOL TREATED X-RAY DIFFRACTOGRAMS
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RAW X-RAY DIFFRACTOGRAMS AND MINERAL CALCULATIONS
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