MAR 20040011: SWAN HILLS

Received date: Jul 29, 2004

Public release date: Feb 08, 2007

DISCLAIMER

By accessing and using the Alberta Energy website to download or otherwise obtain a scanned mineral assessment report, you ("User") agree to be bound by the following terms and conditions:

- a) Each scanned mineral assessment report that is downloaded or otherwise obtained from Alberta Energy is provided "AS IS", with no warranties or representations of any kind whatsoever from Her Majesty the Queen in Right of Alberta, as represented by the Minister of Energy ("Minister"), expressed or implied, including, but not limited to, no warranties or other representations from the Minister, regarding the content, accuracy, reliability, use or results from the use of or the integrity, completeness, quality or legibility of each such scanned mineral assessment report;
- b) To the fullest extent permitted by applicable laws, the Minister hereby expressly disclaims, and is released from, liability and responsibility for all warranties and conditions, expressed or implied, in relation to each scanned mineral assessment report shown or displayed on the Alberta Energy website including but not limited to warranties as to the satisfactory quality of or the fitness of the scanned mineral assessment report for a particular purpose and warranties as to the non-infringement or other non-violation of the proprietary rights held by any third party in respect of the scanned mineral assessment report;
- c) To the fullest extent permitted by applicable law, the Minister, and the Minister's employees and agents, exclude and disclaim liability to the User for losses and damages of whatsoever nature and howsoever arising including, without limitation, any direct, indirect, special, consequential, punitive or incidental damages, loss of use, loss of data, loss caused by a virus, loss of income or profit, claims of third parties, even if Alberta Energy have been advised of the possibility of such damages or losses, arising out of or in connection with the use of the Alberta Energy website, including the accessing or downloading of the scanned mineral assessment report and the use for any purpose of the scanned mineral assessment report.
- d) User agrees to indemnify and hold harmless the Minister, and the Minister's employees and agents against and from any and all third party claims, losses, liabilities, demands, actions or proceedings related to the downloading, distribution, transmissions, storage, redistribution, reproduction or exploitation of each scanned mineral assessment report obtained by the User from Alberta Energy.

Alberta

Alberta Mineral Assessment Reporting System

JUL 2 9 2004 2004 0011

NTS 83 K/9, 10, 15, 16, J/12, 13, O/4, N/1,2

ASSESSMENT REPORT SWAN HILLS PROPERTY, NORTH-CENTRAL ALBERTA MINERAL PERMITS 9302040003 to 9302040023

Prepared for

808685 Alberta Ltd. and Sovereign Mining and Exploration Ltd.

Report and Figures

APEX Geoscience Ltd.

March, 2005

2

M.B. Dufresne

ASSESSMENT REPORT SWAN HILLS PROPERTY, NORTH-CENTRAL ALBERTA MINERAL PERMITS 9302040003 to 9302040023

TABLE OF CONTENTS

	<u>PAGE</u>
SUMMARY	1
INTRODUCTION	
Terms of Reference	
Property Description, Location and Access	
REGIONAL GEOLOGY	7
Precambrian	7
Phanerozoic	9
Late Tertiary - Quaternary	12
Structural Geology	13
PREVIOUS EXPLORATION	14
2002 – 2003 EXPLORATION	21
Surface Sampling	21
Trenching and Trench Sampling	21
Geophysical Surveys	
2002 – 2003 EXPLORATION RESULTS AND DISCUSSION	
Surface Sampling Results	
Diamond Exploration	

TABLE OF CONTENTS (CONT.)

	Gold Exploration	30
	Geophysical Survey Results	31
2002 –	2003 EXPLORATION EXPENDITURES	31
RECOM	MMENDATIONS	32
REFER	RENCES	33
CERTI	FICATION	37

<u>TABLES</u>

<u>TABL</u>	<u>.E</u>	<u>PAGE</u>
.1	PROPERTY DESCRIPTION	6
2	REGIONAL STRATIGRAPHY FOR THE SWAN HILLS AREA	11

FIGURES

FIGU	IRE	<u>PAGE</u>
1	PROPERTY LOCATION	4
2	PERMIT LOCATIONS	5
3	BASEMENT GEOLOGY, ALBERTA	8
4	GENERALIZED GEOLOGY, ALBERTA	10
5	2002-2003 SAMPLE LOCATIONS AND TRENCH PIT LOCATIONS	

¢

TABLE OF CONTENTS (CONT.)

6	2002-2003 SILICATE DIAMOND INDICATOR RESULTS	23
7	2002-2003 TOTAL DIAMOND INDICATOR RESULTS	24
8	2002-2003 PICKED GOLD GRAIN RESULTS	25

APPENDICES

<u>APPE</u>	ENDIX	PAGE
1	2002-2003 SAMPLE AND TRENCH/PIT LOCATIONS	AT END
2	2002-2003 GROUND GEOPHYSICAL DATA AND RESULTS	AT END
3	2002-2003 DIAMOND INDICATOR RESULTS	AT END
4	2002-2003 GEOCEHMICAL RESULTS	AT END
5	2002-2003 GOLD GRAIN RESULTS	AT END
6	2002-2003 EXPLORATION EXPENDITURES	AT END

_

SUMMARY

APEX Geoscience Ltd. (APEX), was retained during the spring of 1999 as consultants by Sovereign Mining and Exploration Ltd. (Sovereign) and 808685 Alberta Ltd. (808685) to prepare an independent evaluation of the gold and diamond potential of Sovereign's and 808685's Swan Hills property. The Swan Hills property comprises 30 metallic and industrial mineral permits, covering 272,832 hectares, and is located approximately 20 km west of the town of Swan Hills and about 45 km northwest of Whitecourt, Alberta. This report includes data compilation and interpretation of results from the 2002 and 2003 exploration programs, which includes systematic heavy mineral sampling of streams draining the property for gold and diamond indicator minerals during 2002, till and stream sediment sampling for gold and diamond indicator minerals during 2003, as well as rock sampling from trench pits for gold, base metals and bentonite during 2003.

A total of 326 samples were collected during the 2002 and 2003 exploration programs, which consisted predominantly of collecting stream and beach heavy mineral concentrate, rock grab, stream silt, till and drill cuttings composite samples. All of the samples were sent to the Saskatchewan Research Council (SRC) in Saskatoon, Saskatchewan where they underwent standard diamond indicator mineral and sieve gold analyses, whole rock and multielement inductively coupled plasma (ICP) analyses. Potential diamond indicator minerals picked by the SRC were subsequently sent to Tom Bonli of the University of Saskatchewan for the picked grains to be microprobed.

The 2002 and 2003 diamond indicator sampling has confirmed and extended a high quality diamond indicator anomaly from the anomalous ridge area south of Lightbulb Lake and north of the Goose River (known from previously sampling) to as far northwest as Snipe Lake. In addition, the 2002 sampling combined with the results of previous work by Ashton Mining of Canada Inc. (Ashton) has resulted in the identification of other lower priority anomalous areas including the Meekwap Lake area, and an area from losegun Lake east to the headwaters of Atikkamek Creek, bounded by the Sakwatamau River.

The 2002 sampling program yielded a number of high quality diamond indicator anomalies in creeks north of the Goose River draining the Lightbulb Lake Ridge that trends northwest from south of Lightbulb Lake all the way to Snipe Lake a distance of more than 50 km. The 2002 program yielded a total of 14 creek sites on the new permits and 4 sites on the old permits draining the Lightbulb Lake Ridge that yielded at least one silicate indicator mineral, and in a number of cases multiple grains, indicative of kimberlite. The new 2002 sampling in the Lightbulb Lake Ridge area also yielded a number of significant milestone geochemical results including a total of 4 borderline G10 pyrope garnets, with two of the garnets yielding 11 and 12 weight percent Cr_2O_3 . The high chromium, low titanium G10 pyrope garnets can be diagnostic of potentially diamond bearing high-pressure peridotite mantle that was sampled and brought to surface by kimberlites in the region. Samples collected during 2002 from the Lightbulb Lake Ridge area also yielded a significant population of true low iron eclogitic garnets that were likely derived from eclogitic mantle brought to surface in kimberlites. A total of 11 eclogitic garnets were recovered from 6 separate samples. At least one of the eclogitic garnets also yields elevated sodium with 0.06 weight percent Na₂O. Concentrations of Na₂O greater than 0.07 weight percent in eclogitic garnets are often associated with high pressure eclogitic garnets were collected from the diamond stability field. All of the samples containing eclogitic garnets were collected from drainages draining the Lightbulb Lake Ridge. In addition, all of these samples also yielded at least one or more other kimberlitic minerals such as pyrope garnet or picroilmenite. A few eclogitic garnets had been recovered during prior sampling programs but only one grain of the quality exhibited by those recovered during the 2002 program was recovered during prior sampling programs.

The recent and past results of diamond exploration in the Swan hills has resulted in the identification of a least one high priority target area for future diamond and kimberlite exploration and a couple of lower priority areas that require follow-up reconnaissance work. Follow-up sampling, prospecting, an airborne geophysical survey followed by ground geophysical surveying is considered high priority for future exploration of the Swan Hills property. The current existing airborne geophysical data covers mostly the eastern portion of the Swan Hills property; therefore, it is highly recommended that airborne geophysical data for the western portion, in particular for the Lightbulb Lake Ridge area be acquired. Based upon the fact that overburden is likely thin over most of the Swan Hills property, and the recent successful discovery of kimberlites by Ashton employing magnetic and electromagnetic surveys, strong consideration should be given to flying the entire Lightbulb Lake Ridge with a helicopter magnetic and electromagnetic survey in order to identify prospective kimberlite targets for drilling. Follow-up sampling and prospecting should be focused on the Lightbulb Lake Ridge area and the Atikkamek Ridge area and the drainages surrounding these areas, where most of the encouraging results have come from to date.

Strong consideration should be given to conducting a 5,000 line-km helicopter magnetic and electromagnetic survey over a portion of the Lightbulb Lake Ridge area. The survey cost including fuel and subcontract costs will likely be on the order of \$600,000 at an all up cost of about \$120 per line-km. Alternatively, a fixed wing Geotem survey that would also provide magnetic and electromagnetic data for kimberlite exploration could be flown at about an all up cost of about \$60 per line-km for a total cost of about \$300,000. It is strongly recommended that existing available magnetic data be acquired for the region outside of the existing Swan Hills magnetic survey. This data will help to prioritize which portion of the Lightbulb Lake Ridge area should be flown using magnetic and electromagnetic methods. Consideration should also be given to conducting a detailed creek and till sampling survey over the Lightbulb Lake Ridge and further reconnaissance sampling for diamond indicator minerals in the losegun Lake and Atikkamek Ridge areas. The sampling program should be conducted during late September to October in order to take advantage of partial freeze up and the resulting better access. The estimated cost to conduct such a program would be on the order of about \$200,000 including sample processing and diamond indicator analysis.

INTRODUCTION

Terms of Reference

APEX Geoscience Ltd. (APEX) was retained by Sovereign Mining and Exploration Ltd. (Sovereign) and 808685 Alberta Ltd. (808685) as consultants, during the spring of 1999 to conduct exploration on Sovereign's and 808685's Swan Hills property. Exploration during 1999 to 2002 is documented in previous assessment reports for Sovereign and 808685 completed by Dufresne and Copeland (2000) and Dufresne and Kim (2002). The Swan Hills property consists collectively of the original Lightbulb Lake Permit, and an additional 31 permits that were acquired during July 2000 and during early 2003. APEX personnel have been continually involved in the exploration fieldwork within Sovereign's and 808685's Swan Hills property since 1998. This evaluation has been prepared on the basis of available published and unpublished material provided by Sovereign along with several fieldwork campaigns conducted by APEX between the spring of 2000 and the late fall of 2003 at the Swan Hills property.

Property Description, Location and Access

Sovereign and 808685 hold 30 metallic and industrial mineral permits in the Swan Hills area totalling approximately 272,832 hectares (Figures 1 and 2). The permits, collectively referred to as the Swan Hills property, and their legal descriptions are provided in Table 1. Sovereign also holds a mining lease (9496050002) in the region, the Marie's Creek property with a legal Dominion Land Survey (DLS) description of Quarter Sections 1NW, 2NE, 11SE and 12SW in Township 68, Range 15 West of the 5th Meridian (W5-068-15: 1NW, 2NE, 11SE, 12SW). The Marie's Creek property is completed encompassed by land held by 679424 Alberta Ltd., which is part of a separate joint venture with Sovereign. The joint venture between Sovereign and 679424 Alberta Ltd., consists of a total of 26 metallic and industrial mineral permits for an approximate total of 239,616 ha east of the existing Sovereign and 808685 joint venture permits. These properties were originally staked based on the proximity of the Mountain Lake Kimberlite, the favourable geological setting and the encouraging results of preliminary prospecting by the present owners (Figure 1). The accessibility is year round via Provincial Highways 32 and 43, numerous forestry roads, cutlines and seismic lines, using four wheel drive vehicles, all terrain vehicles (ATV's) and/or snowmobiles (during winter). The Swan Hills property lies within portions of National Topographic System (NTS) 1:250 000 scale map sheets 83J, K, N, and O.

This current assessment report is being filed on permits 9302040003 to 9302040023, which are held 100% by 808685 on behalf of the joint venture. The work being reported on was conducted on these permits as well as permits 9300070004 to 9300070008, 9300080009 to 9300080011 and 9397120049, which are all contiguous and are grouped and are being grouped for the purpose of grouping expenditures.

Legend

Metallic Mineral Permits Held By 808685 Alberta Ltd. and Sovereign Mining & Exploration Ltd.

Metallic Mineral Permits Held By Robert Miller and Sovereign Mining & Exploration Ltd.

2

5

2

Metallic Mineral Permits Held By 679424 Alberta Ltd. and Sovereign Mining & Exploration Ltd.

Township/Range

Road Trails Major Drainage Minor

Drainage

				and the second
SOVER	EIGN N	/INING AN	ID EXPLO	RATION LTD.
		SWAN HILLS	PROPERTY	
F	PER	MIT L	OCAT	TIONS
		K/9, 10, 15, 16 JTM GRID ZON		
	5	0	5	10 Km
		Scale 1:3 APEX Geos	00,000 science Ltd.	
Edmonton, A	Iberta			March 200
				FIGURE 2

TABLE 1 PROPERTY DESCRIPTION

2 J 4

اي چې

فستؤسست

5

Permit Identifier	Permit Holder	Date Issued	Expiry Date	Size (ha)	Legal Description
9397120049	Sovereign & Robert Miller	12/15/1997	12/15/2007	9,216	5-16-067:25–36 5-16-068:1-24
9300070004	Sovereign & 808685 Ab Ltd.	7/26/2000	7/26/2010	6,144	5-16-067:1-24
9300070005	Sovereign & 808685 Ab Ltd.	7/26/2000	7/26/2010	9,216	5-16-068:25-36 5-16-069:1-24
9300070006	Sovereign & 808685 Ab Ltd.	7/26/2000	7/26/2010	9,216	5-17-067:1-36
9300070007	Sovereign & 808685 Ab Ltd.	7/26/2000	7/26/2010	9,216	5-17-068:1-36
9300070008	Sovereign & 808685 Ab Ltd.	7/26/2000	7/26/2010	9,216	5-17-068:1-36
9300080009	Sovereign & 808685 Ab Ltd.	8/26/2000	8/26/2010	9,216	5-15-065:1-36
9300080010	Sovereign & 808685 Ab Ltd.	8/26/2000	8/26/2010	9,216	5-15-066:1-36
9300080011	Sovereign & 808685 Ab Ltd.	8/26/2000	8/26/2010	9,216	5-15-067:1-36
9302040003	Sovereign & 808685 Ab Ltd.	04/02/2002	04/02/2012	9,216	5-15-063:1-36
9302040004	Sovereign & 808685 Ab Ltd.	04/02/2002	04/02/2012	9,216	5-16-063:1-36
9302040005	Sovereign & 808685 Ab Ltd.	04/02/2002	04/02/2012	9,216	5-17-063:1-36
9302040006	Sovereign & 808685 Ab Ltd.	04/02/2002	04/02/2012	9,216	5-18-063:1-36
9302040007	Sovereign & 808685 Ab Ltd.	04/02/2002	04/02/2012	9,216	5-19-063:1-36
9302040008	Sovereign & 808685 Ab Ltd.	04/02/2002	04/02/2012	9,216	5-18-064:1-36
9302040009	Sovereign & 808685 Ab Ltd.	04/02/2002	04/02/2012	9,216	5-19-064:1-36
9302040010	Sovereign & 808685 Ab Ltd.	04/02/2002	04/02/2012	9,216	5-18-065:1-36
9302040011	Sovereign & 808685 Ab Ltd.	04/02/2002	04/02/2012	9,216	5-19-065:1-36
9302040012	Sovereign & 808685 Ab Ltd.	04/02/2002	04/02/2012	9,216	5-18-066:1-36
9302040013	Sovereign & 808685 Ab Ltd.	04/02/2002	04/02/2012	9,216	5-19-066:1-36
9302040014	Sovereign & 808685 Ab Ltd.	04/02/2002	04/02/2012	9,216	5-18-067:1-36
9302040015	Sovereign & 808685 Ab Ltd.	04/02/2002	04/02/2012	9,216	5-19-067:1-36
9302040016	Sovereign & 808685 Ab Ltd.	04/02/2002	04/02/2012	9,216	5-18-068:1-36
9302040017	Sovereign & 808685 Ab Ltd.	04/02/2002	04/02/2012	9,216	5-19-068:1-36
9302040018	Sovereign & 808685 Ab Ltd.	04/02/2002	04/02/2012	9,216	5-18-069:1-36
9302040019	Sovereign & 808685 Ab Ltd.	04/02/2002	04/02/2012	9,216	5-19-069:1-36
9302040020	Sovereign & 808685 Ab Ltd.	04/02/2002	04/02/2012	8,640	5-18-070:1- 29,32S,NE;33-36
9302040021	Sovereign & 808685 Ab Ltd.	04/02/2002	04/02/2012	9,216	5-19-070:1-36
9302040022	Sovereign & 808685 Ab Ltd.	04/02/2002	04/02/2012	9,216	5-18-071:1-36
9302040023	Sovereign & 808685 Ab Ltd.	04/02/2002	04/02/2012	9,216	5-19-071:1-36
30 permits			Total area		272,832 ha

_

REGIONAL GEOLOGY

Precambrian

The Swan Hills property lies near the centre of the Western Canada Sedimentary Basin within the southern segments of the Peace River Arch (PRA). Precambrian rocks are not exposed within the permit areas. The basement underlying the PRA comprises several terranes including the Buffalo Head and the Chinchaga Low (Figure 3), both of which are thought to have been accreted to the western edge of North America between 1.8 and 2.4 billion years (Ga) ago and collectively form the Buffalo Head Craton (Ross *et al.*, 1991, 1998). Due to the presence of thick crust, potentially Archean protolith and their relatively stable history since accretion, the Buffalo Head and Chinchaga terranes are currently the focus of extensive diamond exploration in northern Alberta.

The area underlying the permits straddles the boundary between two basement terranes, the Buffalo Head Terrane (BHT) to the east and the Chinchaga Low to the west (Figure 3). The BHT is an area of high positive magnetic relief with a north to northeasterly trending fabric (Villeneuve *et al.*, 1993). Ashton Mining of Canada Inc.'s (Ashton) diamondiferous kimberlites are underlain by basement of the BHT. Part of the Churchill Structural Province (Rae Subprovince), the BHT may represent either Archean crust that has been thermally reworked during the Hudsonian (Proterozoic) Orogeny (Burwash *et al.*, 1962; Burwash and Culbert, 1976; Burwash *et al.*, 1994) or an accreted Proterozoic terrane that may or may not have an Archean component (Ross and Stephenson, 1989; Ross *et al.*, 1991; Villeneuve *et al.*, 1993). Precambrian rocks, felsic metavolcanic rocks and high-grade gneisses (Villeneuve *et al.*, 1993).

The Chinchaga Low is a prominent, curvilinear, westward convex aeromagnetic low, which is concordant with the outline of the BHT to the east (Villeneuve *et al.*, 1993). Drill core taken from the basement in the region comprise metaplutonic and metasedimentary gneisses of comparable age to that of the BHT. In comparison to the BHT, the Chinchaga Low appears to be devoid of either an aeromagnetic or gravity gradient fabric. The boundaries of the Chinchaga Low show no gravity gradient from the surrounding terranes.

The presence of numerous eclogitic garnets, eclogitic pyroxenes and chromiumbearing corundums in association with kimberlites or related intrusions in northern Alberta may indicate the presence of a significant volume of accreted and subducted oceanic basalt and sedimentary protolith in the lower crust and/or upper mantle beneath the BHT and the Chinchaga Low. Seismic refraction and reflection studies indicate that the crust in the losegun Lake region is likely between 35 to 40 km thick, a trait favourable for the formation and preservation of diamonds in the upper mantle (Dufresne *et al.*, 1996).

Phanerozoic

Overlying the basement in the Swan Hills region is a thick sequence of Phanerozoic rocks comprised mainly of Cretaceous sandstones and shales near surface and Mississippian to Devonian carbonates and salts at depth (Glass, 1990). Bedrock exposures within the permit block are common along river and stream cuts and topographic highs. Further information pertaining to the distribution and character of these and older Phanerozoic-aged units can be obtained from well log data in government databases and various geological and hydrogeological reports (Green *et al.*, 1970; Tokarsky, 1977; Glass, 1990; Mossop and Shetson, 1994).

Underlying the near surface Cretaceous units in the area is a thick succession of Devonian to Mississippian carbonates, calcareous shales and salt horizons (Mossop and Shetson, 1994). Several of the Devonian carbonate units form the Swan Hills Reef Complex, which may be related to the Grosmont Reef Complex, a large structure that extends in a northwesterly direction from east of Lesser Slave Lake to the N.W.T. (Bloy and Hadley, 1989). Both the Grosmont and the Swan Hills Reef complexes are likely the result of tectonic uplift or down warping along large-scale arches or rifts during the Devonian. These structures, in conjunction with the PRA, may have played a significant role in the localization of faults and other structures that could have provided favourable pathways for kimberlite volcanism.

The Cretaceous strata underlying Sovereign's permits are composed of alternating units of marine and nonmarine sandstones, shales, siltstones, mudstones and bentonites (Figure 4). The regional stratigraphy of the Swan Hills area is summarized in Table 2. The oldest documented units exposed in the permit area belong to the Wapiti Formation, a sequence of Upper Cretaceous sandstones with minor siltstones and conglomerates. It is possible that older units from the top of the Smoky Group may be exposed locally along the West Prairie River.

The Shaftesbury Formation is lower Upper Cretaceous in age and is comprised of marine shales with fish-scale bearing silts, thin bentonitic streaks and ironstones. The upper contact is conformable and transitional with the Dunvegan Formation, where the Dunvegan Formation is present. Evidence of extensive volcanism during deposition of the Shaftesbury Formation exists in the form of numerous bentonitic horizons throughout the formation, especially within and near the Fish Scales Horizon (Leckie *et al.*, 1992; Bloch *et al.*, 1993). The deposition of the Shaftesbury Formation is chronologically correlative with the deposition of the Crowsnest Formation volcanics of southwest Alberta (Olson *et al.*, 1994; Dufresne *et al.*, 1995) and with kimberlitic volcanism near Fort à la Corne in Saskatchewan (Lehnert -Thiel *et al.*, 1992; Scott Smith *et al.*, 1994).

TABLE 2 REGIONAL STRATIGRAPHY FOR THE SWAN HILLS AREA

SYSTEM	GROUP	FORMATION	AGE* (MA)	DOMINANT LITHOLOGY
Pleistocene			Recent	Glacial till and associated sediments.
Tertiary			6.5 to Recent	Pre-glacial sand and gravel.
Upper Cretaceous		Wapiti	70 to 80	Sandstones and minor siltstone with conglomerates.
	Smoky	Puskwaskau	75 to 86	Thinly bedded dark marine shales, ironstone, First White Specks.
		Badheart	86 to 88	Sandstone.
		Kaskapau	88 to 92	Marine fossiliferous shale, Second White Specks.
		Dunvegan	92 to 95	Marine, non-marine and deltaic sandstones.
	Fort St. John	Shaftesbury	95 to 98	Friable dark marine shales with bentonitic layers; Fish Scale Zone.

*Ages approximated from Green et al., (1970), Glass, (1990), Dufresne et al. (1996) and Leckie et al. (1997).

Deltaic to marine, feldspathic sandstones, silty shales and laminated carbonaceous siltstones characterize the Dunvegan Formation. The unit is overlain conformably by shales of the Kaskapau Formation of the Smoky Group. It should be noted that the Ashton pipes exist just above or near the contact between the Kaskapau and the Dunvegan formations (Dufresne *et al.*, 1995).

The Smoky Group is Upper Cretaceous in age and is comprised of thinly bedded, marine, silty shale with occasional ironstone and claystone nodules and thin bentonite streaks. The group is divided into three formations: (a) a lower shale unit, Kaskapau, which includes the Second White Specks marker unit (SWS); (b) a middle sandstone, named the Badheart; and, (c) an upper shale, Puskwaskau, which contains the First White Specks marker unit. The Kaskapau Formation contains abundant ammonite fossils and concretions. In addition, foraminifera are present in the lower arenaceous units (Glass, 1990). Exposures of the Smoky Group, if present, will be limited to river and stream cuts. There is strong evidence of volcanism associated within the depositional time span of the Smoky Group in the vicinity of the PRA (Auston, 1998; Carlson *et al.*, 1998). Ashton's recently discovered Buffalo Head Hills kimberlites yield emplacement ages of 86 to 88 Ma (Auston, 1998; Carlson *et al.*, 1998). In addition, kimberlites discovered in the Birch Mountains by Kennecott Canada Exploration Inc. (Kennecott) in a joint venture with Montello Resources Ltd. (Montello) and Redwood Resources Inc. (Redwood) are reported to yield emplacement ages of about 82 Ma.

These volcanic events would have taken place during deposition of the Smoky Group sedimentary succession.

The youngest unit underlying the Swan Hills mineral permits is the Late Campanian to Early Paleocene Wapiti Formation (Figure 4). The Wapiti Formation is primarily composed of medium to coarse-grained, feldspathic, argillaceous to carbonaceous sandstones interbedded with siltstones and silty shale (Chu, 1978; Glass, 1990). Thin and laterally discontinuous coal seams may be present. In addition, some of the sandstones and shales may be bentonitic. The Wapiti Formation in this region is thick, often exceeding several hundred metres. Outcropping Wapiti Formation is common along river and stream cuts and on topographic highs throughout the property. The Wapiti Formation is of particular exploration interest in this area because of its chronological and stratigraphic relationship to the Mountain Lake Kimberlite, located about 75 km west of High Prairie (Dufresne and Copeland, 2000). Although, the Mountain Lake Kimberlite is reported to be highly altered and poorly diamondiferous (Leckie et al., 1997), its presence in the Wapiti Formation with an intrusion date of somewhere between 69 and 75 Ma is significant as it indicates the presence of kimberlitic magmatism coeval with the deposition of Wapiti Formation sediments. An age of 70 Ma has also been reported for one of Montello-Kennecott kimberlites in the Birch Mountains. If kimberlites of similar age to the Mountain Lake Kimberlite exist within the Swan Hills mineral permits they would be relatively near surface.

Late Tertiary – Quaternary

Data and information about the surficial geology in central to northern Alberta is sparse and regional in nature. Prior to continental glaciation during the Pleistocene, most of Alberta, including the losegun Lake region, had reached a mature stage of erosion. The Swan Hills drained into large, broad, northeasterly flowing paleochannels and their tributaries northwest of the region (Dufresne *et al.*, 1996). Fluvial sand and gravel was deposited pre-glacially in these channels. The exact age of these channels is uncertain.

Several of the topographic highs in the Swan Hills region are capped by preglacial gravel deposits of probable Late Tertiary age (Klassen, 1989). The exact age of the unit is uncertain due to a scarcity of data. Containing no evidence of glacial origin, this unit is comprised of fine to coarse-grained sand and quartzite pebble-gravel derived from the Cordillera. Typically thin, less than 10 m, and discontinuous, the sand and gravel unit may be remnants resulting from erosion and river incision associated with uplift of the PRA or some other local tectonic feature underlying the Swan Hills.

During the Pleistocene, multiple southwesterly and southerly glacial advances of the Laurentide Ice Sheet across the region resulted in the deposition of ground moraine and associated sediments in northern Alberta (Dufresne *et al.*, 1996). The advance of glacial ice may have resulted in the erosion of the underlying substrate and modification of bedrock topography. Dominant ice flow directions within the Swan Hills property appear to be topographically controlled, following the contours of the Swan Hills. It is uncertain whether thick continental ice covered the Swan Hills completely. The presence of Tertiary gravels at topographic highs within the Swan Hills just east of the permit areas, the thinness of the drift cover, and the lack of glacial erosional features such grooves or flutes may indicate that glacial erosion was not as prevalent or strong as initially anticipated. Hummocky supraglacial and meltout till plains with associated small, localized organic deposits are prevalent in depressional areas and at lower elevations in the Swan Hills region.

Glacial ice is believed to have receded from the area between 15,000 and 10,000 years ago. After the final glacial retreat, lacustrine clays and silts were deposited in low-lying regions along with organic sediments. Drainage regimes previously re-routed due to glaciation, re-established drainage patterns similar to that of the pre-Pleistocene. Alluvial deposits in the form of channel bars and floodplains are present along portions of the West Prairie River. Extensive colluvial sediments accompanied post-glacial river and stream incision.

The majority of the Swan Hills property is covered by drift of variable thickness, ranging from a discontinuous veneer to less than 15 m (Pawlowicz and Fenton, 1995a,b). Bedrock may be exposed locally, in areas of higher topographic relief. Unfortunately, local drift thickness for the properties cannot be easily delineated due to the scarcity of publicly available hydrogeological data for the region. Limited general information regarding bedrock topography and drift thickness in northern Alberta is available from the logs of holes drilled for petroleum, coal or groundwater exploration and from regional government compilations (Mossop and Shetson, 1994; Pawlowicz and Fenton, 1995a,b; Dufresne *et al.*, 1996).

Structural Geology

In north-central Alberta, the PRA is a region where the younger Phanerozoic and Cenozoic rocks, which overlie the Precambrian basement, have undergone periodic vertical and, possibly, compressive deformation from the Proterozoic into Tertiary time (Cant, 1988; O'Connell *et al.*, 1990; Dufresne *et al.*, 1995, 1996). This pattern of long-lived, periodic uplift and subsidence has imposed a structural control on the deposition patterns of the Phanerozoic, and to a lesser extent the Cenozoic, strata in northern Alberta. In addition, this periodic movement has resulted in a rectilinear pattern of faults that not only is responsible for structurally controlled oil and gas pools, but may have provided potential pathways for later deep-seated intrusive kimberlitic magmas.

There is a well-documented northwest trending δO^{18} alteration feature in the basement rocks beneath the Swan Hills property near or along the eastern boundary of the Chinchaga Low (Muehlenbachs *et al.*, 1993 and 1994). This feature lies in close proximity to the properties and potentially may indicate that an important deep-seated structure may underlie the properties. This type of a structure, as evidenced by the presence of the Mountain Lake Kimberlite near or along the western edge of the Chinchaga Low and several of the Buffalo Head Hills Kimberlites along the western edge of the Grosmont High, may have played a critical role in determining whether kimberlites reached surface in the vicinity of the properties during the Phanerozoic.

During the mid-Cretaceous and Early Tertiary, compressive deformation occurred as a result of the orogenic event that eventually led to the formation of the Rocky Mountains. The PRA was emergent during this period resulting in the reactivation of many prominent basement faults. The Phanerozoic rocks beneath the Swan Hills property lie along the southern edge of the PRA and are underlain by and proximal to basement faults that may also be related to the Swan Hills Reef Complex (Bloy and Hadley, 1989; Dufresne et al., 1996). There is strong evidence that basement faults manifested in the overlying Phanerozoic sedimentary succession may have controlled the emplacement of the Mountain Lake Kimberlite and the Buffalo Head Hills Kimberlites northwest and north of the properties (Dufresne et al., 1996; Leckie et al., 1997). It is unclear whether the kimberlites discovered to date show any spatial relationship to structures in the underlying basement and/or Phanerozoic succession. However, structures observed proximal to the two properties resulting from tectonic activity associated with movement along the PRA or even along contacts between different basement terranes could be pathways for kimberlitic volcanism.

PREVIOUS EXPLORATION

During the summer of 1997, Teuton Resource Corp. (Teuton) conducted a reconnaissance till sampling program on their Swan Hills mineral permits, of which a portion of it is currently included in Sovereign's Swan Hills property (Kruchkowski, 2000). During the spring of 1998, Spectra Exploration Geoscience Corp. (Spectra) flew a high-resolution airborne magnetic (HRAM) survey on Teuton's mineral permits (Kruchkowski, 2000). The airborne survey was then reviewed and interpreted by APEX, on behalf of Teuton (Dufresne and Chin, 1998). Then in late 1998, Teuton conducted ground geophysics on seven high priority magnetic anomalies that were picked and prioritised by APEX personnel (Kruchkowski, 2000). Teuton has since relinquished all of its land holdings in the region.

The first field visit to Sovereign's Swan Hills property by APEX personnel, which at that time only included the Lightbulb Lake and Marie's Creek permits, was conducted during the fall of 1998 (Chin, 1998). During March of 1999, a high-resolution airborne magnetic (HRAM) survey, flown at a drape altitude of 100 m above surface with eastwest traverse lines at a spacing of 100 m and north-south control lines every 1000 m. was flown over the Lightbulb Lake permit. The survey was completed by Spectra and covered the Lightbulb Lake and Marie's Creek permits (Spectra, 1999). The data collected from the HRAM survey was reviewed by APEX and interpreted for magnetic anomalies potentially indicative of kimberlites or related intrusions (Dufresne and Copeland, 2000). Magnetic anomalies were chosen and rated based upon similar magnetic characteristics to those of Ashton's Buffalo Head Hills Kimberlites, Monopros Ltd.'s Mountain Lake Kimberlite and other kimberlites or associated intrusive rocks in the Western Canada Sedimentary Basin of Alberta and Saskatchewan. A total of ten airborne magnetic anomalies from within the Lightbulb Lake permit were initially selected and ranked for follow-up exploration, based on anomaly intensity, anomaly shape, noise levels and presence of topographic features or culture (Chin, 1999; Dufresne and Copeland, 2000). Of these ten anomalies, four were classified as moderate priority and six as low priority anomalies. With further review of the data, a number of other low to moderate priority anomalies were added. In addition, the HRAM data yielded a prominent east to slightly east-northeast trending magnetic lineament corresponding to a prominent ridge along the southern boundary of the Lightbulb Lake permit (Dufresne and Copeland, 2000).

During June and September of 1999, APEX conducted systematic till, soil, stream and rock grab sampling on behalf of Sovereign within the Lightbulb Lake and Marie's Creek permits. A total of 21 till samples, approximately 25 kg each, were collected down-ice of magnetic anomalies and along the southern boundary of the permit areas. A total of 47 stream silt and 47 screened heavy mineral concentrate (HMC) samples, each about 10 kg, were collected from regions proximal to airborne magnetic anomalies for diamond indicator minerals (DIMs), particulate gold grains and trace metal geochemistry. One hundred and fourteen soil samples were collected over or across three of the discreet aeromagnetic anomalies and at the southwest trending magnetic lineament at the south end of the Lightbulb Lake permit. Finally, a total of 13 rock grab samples were collected from areas of outcropping Cretaceous sedimentary All the samples, with the exception of the soil samples, were sent to the rocks. Saskatchewan Research Council (SRC) in Saskatoon, Saskatchewan for a variety of analyses. The soil samples were processed and analyzed by Activation Laboratories Ltd. (Activation) in Ancaster, Ontario (Dufresne and Copeland, 2000).

The sampling conducted between June and September 1999, resulted in the discovery of a large number of DIM anomalies on the Lightbulb Lake permit, the majority of which were comprised of chromites (Dufresne and Copeland, 2000). Diamond indicator mineral analysis of till and stream HMC samples from the Lightbulb Lake and Marie's Creek permit areas yielded widespread high magnesium chromites that are often associated with kimberlites or related intrusions. Only 8 of 51 HMC samples did not yield chromites, and it was estimated that more than 30 of the samples would contain greater than 10 chromites if the concentrates were fully picked. Dufresne and Copeland (2000) indicate that of the chromites that were recovered within the Lightbulb Lake permit area, only a few might be truly diagnostic of kimberlite or lamproite volcanism. Fipke et al. (1995) indicate that only chromites with greater than 40 weight percent (wt%) Cr₂O₃ and greater than 2 wt% TiO₂ are unique to kimberlites and lamproites. Dufresne and Copeland (2000) indicate that a large number of the Lightbulb Lake chromites are similar in character to mantle derived chromites with high Cr, high Mg and low Ti. In fact they suggest that several of the chromites recovered compare favourably to the high Cr and high Mg chromites that are found as inclusions in diamonds (the diamond inclusion field). Therefore, Dufresne and Copeland (2000) concluded that it is possible that some of the chromites may be derived from mantle that was formed within the diamond stability field and may have contained diamonds. However, they concluded also that similar to the magmatic chromites, the source of the mantle chromites is not easily identifiable based upon the widespread distribution of the chromites and the lack of associated abundant silicate indicator minerals such as

pyrope garnet, chrome diopside and olivine. Chromites tend to be the longest surviving of the suite of DIMs and can be preserved through multiple periods of recycling, travelling large distances in river, delta and beach systems. The silicate DIMs tend to not survive multiple cycles of erosion or large distances of travel and are a better indication of proximity to source.

Dufresne and Copeland (2000) point out that large numbers of chromites have been encountered in the foothills region of western Alberta but almost exclusively restricted to areas of Upper Cretaceous sedimentary rocks and areas influenced by Cordilleran glacial events. This is the first known occurrence of large volumes of chromites that have been encountered well east of the Foothills in an area dominantly influenced by Continental glaciation. Dufresne and Copeland concluded that based upon the widespread distribution of the chromites recovered from the till and HMC samples, it is likely that the chromites are derived from either the Cretaceous Wapiti Formation or from the pre-glacial Swan Hills gravels that cap many of the upland areas within the Swan Hills. Most of the pre-glacial gravel deposits have largely escaped or have been only moderately affected by glaciation. Chromites contained within the Cretaceous Wapiti Formation or within the Swan Hills gravels could be originally sourced either locally from kimberlites or related intrusions, which could exist in the region or are some distance away, or through recycling of sedimentary successions from the Rocky Mountains. Because of the distance involved to recycle chromites from intrusions in the Rocky Mountains, derivation from more local source areas is the more favoured alternative.

As well as the DIM anomalies, particulate and geochemical gold anomalies as well as a few pathfinder element anomalies were discovered with no clear indication of either kimberlites, sulphides or alteration zones on the Lightbulb Lake permit (Dufresne and Copeland, 2000). Heavy mineral concentrate samples, recovered from the southwest corner of the Lightbulb Lake permit and draining a prominent ridge, yielded the highest number of particulate gold grains encountered by APEX geologists in Alberta sampling programs to date. A number of HMC samples from the area yielded counts ranging from 400 up to about 1,200 particulate gold grains. Soil geochemical anomalies were encountered on several of the grids overlying airborne magnetic anomalies and along profiles across the upland ridge along the southern boundary of the permit area. Further overburden and bedrock sampling was recommended to clarify the relationship between soil geochemical anomalies and the magnetic anomalies. It was further recommended that additional tightly spaced and systematic soil sampling be done to outline areas of mineralization underlying the southern ridge (Dufresne and Copeland, 2000).

Despite the limited number of rock samples collected during reconnaissance sampling, a few samples yielded anomalous concentrations of elements such as arsenic (As), antimony (Sb) and tellurium (Te) (Dufresne and Copeland, 2000). Other geochemical results of interest include the discovery of ironstone with up to 52.2 wt% total Fe as Fe_2O_3 along the southwest trending ridge at the south end of the Lightbulb Lake permit (Dufresne and Copeland, 2000). Because of the scarcity of outcrop and

the present limitation in the understanding of the stratigraphy underlying the permit area, it was recommended that some form of cost effective drilling be performed to collect further bedrock samples in order to determine the source and the origin of the ironstone and gold. None of the rock samples collected to date indicated derivation from a kimberlitic or mantle parent (Dufresne and Copeland, 2000).

Detailed ground geophysical surveying over selected priority airborne magnetic anomalies within the properties was conducted during January 2000 by APEX. Four grids with 100 m line spacing were constructed with station readings taken every 25 m. The surveyed grids totalled 3 line-km over an area of approximately 500 m squared. The magnetic surveys over anomalies A6 and A20 were successful in delineating two of the airborne magnetic anomalies, although none were attributed to kimberlite diatremes (Dufresne and Copeland, 2000). Further work was recommended for the two magnetic anomalies.

Exploration within the Swan Hills property during the fall of 2000 consisted mostly of regional till, stream and rock grab sampling as the number of mineral permits were increased, emphasis was placed on certain areas for sampling based on: (1) previously unsampled areas; (2) existing geochemical anomalies; (3) existing DIM anomalies; (4) existing HRAM anomalies from data reviewed in publicly available assessment reports; and (5) geologically favourable areas. Consequently, sampling was targeted primarily along the Goose River, Atikkamek Creek, Wallace River and West Prairie River drainage systems (Dufresne and Kim, 2002). Follow-up exploration was conducted during the fall of 2001, as recommended from the outcome of the 2000 sampling program. This included semi-detailed to reconnaissance HMC and stream silt sampling near anomalous samples sites identified from the 2000 fall exploration; in particular, a number of the tributaries near the headwaters of the Goose River and Atikkamek Creek (Dufresne and Kim, 2002). A total of 220 samples were collected during the 2000 and 2001 exploration programs (131 and 89 samples, respectively), which consisted of HMC, rock grab, stream silt and till samples (Dufresne and Kim, 2002).

Two drilling programs were conducted on the Swan Hills property during March 2000 and February 2001. The 2000 drilling, completed by Canadian Geological Drilling Ltd. (Canadian Geological), consisted of auger and hollow-stem auger drilling, as well as one back-hoe excavation. The locations for the auger drillholes were chosen based upon their location with respect to magnetic targets A3, A20, the ridge at the southwest portion of the Lightbulb Lake permit and the ease of accessibility (Dufresne and Kim, 2002).

Aggressive Diamond Drilling Ltd. (Aggressive Drilling) conducted the 2001 drilling program, which consisted of diamond drilling magnetic anomaly A3, one of the higher priority magnetic anomalies from the 1999 Spectra HRAM survey that was ground geophysically surveyed (Dufresne and Copeland, 2000), and the prominent easterly trending ridge located in the southern portion of the Lightbulb Lake permit (9397120049) and the northern portion of permit 9300070004 (Dufresne and Kim, 2002). This ridge

was targeted based upon the large number of DIM's and particulate gold grains that obtained in HMC samples collected from immature creeks draining the ridge.

The 2000 and 2001 sampling programs, which were composed of semi-detailed to reconnaissance stream sediment sampling across the Swan Hills property, resulted in the identification of several new kimberlite indicator mineral grain anomalies across the western half of the Swan Hills Property (Dufresne and Kim, 2002). The diamond indicator results for the 220 samples collected from the Swan Hills property during the 2000 and 2001 sampling programs resulted in the delineation of four main anomalous drainage areas containing diamond indicator minerals, comprised principally of one or more of pyrope garnet, eclogitic garnet, chrome diopside or picroilmenite: (1) Goose River; (2) Atikkamek Creek; (3) West Prairie River; and (4) Wallace and East Prairie Rivers (Dufresne and Kim, 2002). Regional sampling from both the 2000 and 2001 exploration programs yielded a total of 27 pyrope garnets, 11 chrome diopsides, 6 eclogitic garnets and 2 olivines, 11 chrome grossular garnets, 8 picroilmenites and 707 chromites (Figure 8: Appendix 2). Total microprobe confirmed chromites and picroilmenites for all of the surface sampling conducted to date on the Swan Hills property are displayed on Figure 7. Overall, it is guite evident that chromite is abundant and widespread throughout the Swan Hills property with less than 10 samples yielding no chromites. The picroilmenites are much less abundant and they show a strong correlation to samples and/or drainages that also yield either pyrope garnets, eclogitic garnets or chrome diopsides (Dufresne and Kim, 2002). The maximum number of chromites that were microprobe confirmed for one sample is 62 grains in sample 0ANH002 (Dufresne and Kim, 2002). However, it should be noted that in most cases only a small portion of the oxide concentrate for most samples was picked for possible chromites and that if the entire oxide concentrate had been picked for all of the anomalous samples that many of the samples would likely have yielded hundreds of chromites. A large number of pyrope garnets were recovered from a number of creeks in the vicinity of the Goose River with several samples yielding multiple, large pyrope grains up to a maximum of 4 grains in sample 0WAH103. Several of these samples also yielded picroilmenites, chrome diopsides and eclogitic garnets (Dufresne and Kim, 2002).

Although a few indicator minerals were recovered from the Atikkamek Creek area, the best results were obtained from samples collected along tributaries to the Goose River to the south and southwest of the Lightbulb Lake permit. The highlight of the 2000 and 2001 exploration programs was the delineation of multiple samples yielding pyrope garnets accompanied by picroilmenites in two previously unsampled or poorly sampled drainages to the southwest of the Lightbulb Lake permit in Township 67, Ranges 17 and 18 (Dufresne and Kim, 2002). A couple of the pyrope garnets were identified with partial orange peel texture and/or partial kelyphyte rim, often used as an indicators that are likely indicative of kimberlite are concentrated along the western portion of the property, especially in the area of the Goose River. The pyrope garnets direction (Dufresne and kim, 2002); furthermore, they plot approximately along the same trend as

the flanks of the Total Field magnetic high, likely a result of Proterozoic or Archean basement, on the Total Field Magnetics. Dufresne and Kim (2002) suggested that the Goose River and to the west and northwest of the Goose River require follow-up exploration including sampling. They also indicated that three other drainages require a small amount of follow-up sampling based upon the 2000 and 2001 sampling results including the headwaters of Atikkamek Creek in Township 64, Range 16, a tributary to the Wallace River in Township 67, Range 15 and a tributary to the East Prairie River in Township 68, Range 14. All three areas have yielded pyrope garnets with two of the drainages also yielding picroilmenites (Dufresne and Kim, 2002).

The airborne magnetic survey from the Lightbulb Lake property and a publicly available assessment report filed by Teuton Resources Ltd. for the Swan Hills were reviewed in detail during the 2000 and 2001 exploration programs. Several interesting magnetic anomalies in proximity to drainages yielding important diamond indicator minerals were identified in Township 65, Range 15, Township 66, Ranges 15 and 16, and Township 67, Range 15 (Dufresne and Kim, 2002).

Dufresne and Kim (2002) indicate that the 2000 and 2001 gold sampling programs yielded a few interesting geographic patterns. A total of 6 samples from the 2000 and 2001 sampling programs yielded greater 59 gold grains (95th percentile) up to a maximum of 171 grains. The average total gold count was 18 grains, with the highest total gold grain count of 171 grains in sample 0WAH113. The bulk of the anomalous samples are concentrated in the west-central portion of the Swan Hills property centered around the Goose River and in the vicinity of the prominent ridge along the south boundary of the Lightbulb Lake permit (Dufresne and Kim, 2002). A few anomalous samples were also identified from Atikkamek Creek near the southwest corner of the property.

Dufresne and Kim (2002) suggested that the eastern half of the property yields most of the samples with the lowest gold grain counts and the lowest calculated concentrations of gold. The eastern half of the property area represents the highest topographic portion of the property and is predominantly capped by the Swan Hills Tertiary gravels. The high gold counts and high estimated concentrations of gold for samples collected from the western half of the property are the most spectacular gold results that we have seen for Alberta with perhaps the only exception being the North Saskatchewan River from Rocky Mountain House to Edmonton. If much of the gold in the western portion of the property was derived from the erosion and reworking of the Swan Hills Tertiary gravels it would be expected to see somewhat higher gold grain counts and concentrations in the eastern half of the property in close proximity to the Swan Hills gravels. This may suggest that there is some contribution to the present day streams from local bedrock sources including placer gold in Cretaceous to Early Tertiary sandstones or vein to replacement type gold introduced into the local bedrock from hydrothermal processes. Some of the rough calculated concentrations obtained from samples along the Goose River approach the concentrations required for gold placer operations, which generally require a minimum cutoff from 200 to 500 ppb gold. However, one must keep in mind that the gold found in the Swan Hills is guite finegrained relative to normal placer type operations, hence recovery would be an issue. The Goose River and Atikkamek Creek represent much better potential placer gold targets than the ridge area along the southwestern limit of the Lightbulb Lake property based upon the size of the drainages and the volume of gravels associated with each of these two drainages. In particular, the Goose River gravels yield as high, if not higher, estimated concentrations of gold as the samples from the south portion of the Lightbulb Lake property.

The 2000 drilling program was comprised 17 auger holes and 5 hollow-stem auger holes (Appendix 5). One or two bags of cuttings from each of the auger drillholes (samples OAH-01 to OAH-17) were sent to the SRC for standard diamond indicator analysis. The core from the hollow-stem auger drillholes (SAH-001 to SAH-005) was logged, sampled and also sent to the SRC for standard diamond indicator analysis (Dufresne and Kim, 2002). A total of 132 diamond indicator minerals were recovered from the 2000 drill samples, however, it most if not all of the indicator minerals recovered were derived from overburden or surficial sediments rather than the local Cretaceous bedrock.

Two diamond drillholes (DDH-A3-01 and DDH-SR-01) were completed within the Swan Hills property in 2001 (Dufresne and Kim, 2002). DDH-A3-01 resulted in 538 feet of core, having drilled tested the magnetic anomaly A3 identified during the January 2000 ground geophysical survey (Dufresne and Copeland, 2000). DDH-SR-01 was drilled in the southwest portion of the Lightbulb Lake permit 9397120049, on a ridge where the drainages containing multiple diamond indicator minerals originated (Dufresne and Kim, 2002). The drill core from both drillholes was logged, sampled and sent to the SRC for standard diamond indicator and gold analysis, but the results have not been reported to date.

Based upon the results of the 2000 and 2001 exploration programs, a two phase follow-up kimberlite exploration program was strongly recommended by Dufresne and Kim (2002). The Phase 1 program should consist of sampling, prospecting and the acquisition of existing and/or new airborne geophysical data. The current geophysical database covers mostly the eastern portion of the Swan Hills property; therefore, it is highly recommended that airborne geophysical data for the western portion of the property be acquired prior to any field work being conducted. Where adequate existing proprietary airborne magnetic data is not available to purchase, strong consideration should be give to conducting an airborne geophysical survey, particularly west of the Lightbulb Lake permit. Once all of the airborne geophysical survey data is acquired ground geophysical surveys should be conducted as part of the Phase 2 program in order to identify drill collars for potential kimberlite targets prior to drill testing.

Surface Sampling

Exploration within the Swan Hills property during the fall of 2002 was conducted by a three to four man APEX crew over a period of about one month from October 23 to November 22, 2002. A one to three man prospecting and sampling crew was also provided by Sovereign over the course of the program to assist with the exploration. The sampling program was based out of the communities of Whitecourt, Valleyview and High Prairie, Alberta. Access to sample sites was by four-wheeled drive trucks and ATV's, and foot, as necessary. The fall 2003 exploration program at the Swan Hills property consisted of a 3 to 4 man APEX crew over a two month period from October 30 to December 23, 2003 and was based predominantly out of High Prairie, Alberta. Additional help in the form of one or two prospectors or samplers was also provided by Sovereign over the course of the program to assist with the exploration. Access to sample sites was by four-wheeled drive trucks, ATV's, and foot, as necessary.

The 2002 fall exploration involved regional till, stream (including pan heavy mineral concentrate [HMC], suction dredge and silt sampling), beach and rock grab sampling within the Swan Hills property. Sampling was targeted primarily along the Goose River, Golden Creek, MacGowan Creek, West Prairie River and Atikkamek Creek drainage systems, as well as in the vicinity of Snipe Lake and Iosegun Lake (Figures 5 to 8). All sample locations and brief descriptions are given in Appendix 1.

Follow-up exploration was conducted during the fall of 2003, as recommended from the outcome of the 2002 sampling program. This included semi-detailed to reconnaissance HMC and till sampling near anomalous samples sites identified from the 2002 fall exploration; in particular, lines of till samples were constructed across the ridges near the headwaters of the Goose River (the Lightbulb Lake Ridge) and Atikkamek Creek (Atikkamek Ridge). All sample locations and brief descriptions are given in Appendix 1.

Trenching and Trench Sampling

A trenching program was conducted on the Swan Hills property between December 12 and 14, 2003. The trenching was completed by Williscroft Brothers Construction Ltd. (Williscroft) using a tracked 270 backhoe for excavating. A total of seven pits ranging from 14 to 22 feet in depth were excavated. The trenching program was initiated to obtain bedrock and basal till samples for diamond, gold and bentonite analyses. The locations for the trenches were chosen based prior work that had identified anomalously thick bentonites in outcrop. The locations of the trenches are shown on Figure 5. Pit locations and all associated sample locations and brief descriptions are given in Appendix 1.

Ground Geophysical Surveys

During the fall 2002 exploration program, APEX constructed two ground geophysical grids in order to conduct ground magnetometer surveys over three magnetic targets identified by Dufresne and Kim (2002). The locations of the grids are shown on Figure 5. The magnetic data, including contoured colour images, are provided in Appendix 2.

2002 – 2003 EXPLORATION RESULTS AND DISCUSSION

Surface Sampling Results

A total of 326 samples were collected during the 2002 and 2003 exploration programs (89 and 237 samples, respectively), which consisted of HMC, surface rock grab, trench rock grab, stream silt and till samples (Appendix 1). All HMC and till samples were sent to the SRC for standard diamond indicator mineral (DIM) analyses (Appendix 3). The picked diamond indicator grains were then sent to Mr. Tom Bonli of the University of Saskatchewan, Saskatoon, Saskatchewan for microprobe analyses, which are included in Appendix 3. The confirmed oxide and silicate indicator results for all the samples, to date, are presented in Appendix 3 and on Figures 6 and 7. Stream silt samples collected during 2002 were sent to the SRC for standard sieve and ICP trace geochemical analysis. The results are included in Appendix 4. All trench rock grab samples were sent to the SRC and analyzed by whole rock ICP analysis, an analytical techniques designed to look at the geochemistry of the bentonites and bentonitic mudstones. All the stream and beach HMC samples as well as the till samples were tabled and picked for gold grains. The results are presented in Appendix 5 and are displayed on Figure 8.

Diamond and gold exploration during the falls of 2002 and 2003 were concentrated on the newly staked permits in the Sakwatamau River to losegun Lake area and the Meekwap Lake to Snipe Lake area. A total of 40 regional HMC creek samples, 7 HMC suction dredge samples, 4 HMC beach samples, 31 stream silt samples and 7 rock samples were collected during the fall 2002 program (Appendix 1). During 2003, a significant amount of follow-up till sampling was conducted in the Lightbulb Lake Ridge area in order to look at the potential for concentrations of diamond indicator minerals and gold grains contained within deposits of till along the ridge. A total of 163 till samples, 30 composite drill cuttings samples, 13 HMC stream samples and 31 rock grab samples from excavated trenches were collected (Appendix 1).

Diamond Exploration

The 2002 diamond indicator sampling confirmed and extended a high quality diamond indicator anomaly from the anomalous ridge area south of Lightbulb Lake and north of the Goose River (known from previously sampling) to as far northwest as Snipe Lake. In addition, the 2002 sampling combined with the results of previous work by

Ashton Mining of Canada Inc. (Ashton) has resulted in the identification of other lower priority anomalous areas including the Meekwap Lake area, and an area from Iosegun Lake east to the headwaters of Atikkamek Creek, bounded by the Sakwatamau River. Work by Ashton has also resulted in the identification of a number of other potentially anomalous areas yielding possible olivine including north of the Swan Hills permits in the vicinity of the West and East Prairie rivers, and east-southeast of the Swan Hills permits in the vicinity of Highway 32 and the Freeman River.

The 2002 creek sampling program yielded a number of high quality diamond indicator anomalies in creeks north of the Goose River draining the Lightbulb Lake Ridge that trends northwest from south of Lightbulb Lake all the way to Snipe Lake a distance of more than 50 km. This area is considered a high priority target for follow-up kimberlite exploration based upon the results of the 2002 and prior sampling programs. The 2002 program yielded a total of 14 creek sites on the new permits and 4 sites on the old permits draining the Lightbulb Lake Ridge that yielded at least one silicate indicator mineral, and in a number of cases multiple grains, indicative of kimberlite.

The new 2002 sampling in the Lightbulb Lake Ridge area also yielded a number of significant milestone geochemical results in this high priority target area. A total of 4 borderline G10 pyrope garnets, with two of the garnets yielding 11 and 12 wt% Cr_2O_3 , were from samples collected during the 2002 program. The G10 pyrope garnets represent a very distinct and different population of garnets then the G9 pyrope garnets that have been recovered in the past. The high Cr, low Ti G10 pyrope garnets can be diagnostic of potentially diamond bearing high-pressure peridotite mantle that was sampled and brought to surface by kimberlites in the region. Two of the G10 pyrope garnets, including one of the high Cr grains, were obtained from beach sand collected from the east shore of Snipe Lake along with a G9 pyrope garnet. The other high Cr G10 pyrope garnet was obtained from a creek draining into the Goose River, along with a high Cr chrome diopside in Township 67, Range 19. The high Cr chrome diopside is also most likely derived from peridotitic mantle via kimberlite.

Samples collected during 2002 from the Lightbulb Lake Ridge area also yielded a significant population of true low Fe eclogitic garnets that were likely derived from eclogitic mantle brought to surface in kimberlites. A total of 11 eclogitic garnets were recovered from 6 separate samples with a range in Fe ranging from 10.57 wt% up to 20.08 wt% total Fe as Fe₂O₃. At least one of the eclogitic garnets also yields elevated Na with 0.06 wt% Na₂O. Concentrations of Na₂O greater than 0.07 wt% in eclogitic garnets are often associated with high pressure eclogitic garnets were collected from drainages draining the Lightbulb Lake Ridge. In addition, all of these samples also yielded at least one or more other kimberlitic minerals such as pyrope garnet or picroilmenite. A few eclogitic garnets had been recovered during prior sampling programs but only one grain of the quality exhibited by those recovered during the 2002 program was recovered during prior sampling programs.

The 2002 sampling program also yielded two sample sites with one and two kimberlitic picroilmenites, respectively, draining the southwest flank of the Lightbulb Lake Ridge from or near the Goose River. The sample that yielded the two kimberlitic picroilmenites also yielded a number of chromites, one of which contains greater than 60 wt% Cr₂O₃, and a second that contains 59.75 wt% Cr₂O₃, therefore both potentially derived from the diamond stability field for chromite-bearing peridotite mantle. Almost all of the creek sites draining the Lightbulb Lake Ridge in the vicinity of the Lightbulb Lake permit and the Goose River yield a number of chromites. A number of high Ti and high Cr kimberlitic chromites were recovered from the Lightbulb Lake Ridge area during the 2002 sampling program. Interestingly, samples collected from drainages further to the northwest in the vicinity of Snipe Lake yielded few if any chromites, however, a number of the samples yielded anomalous silicate indicator minerals. The reason for this is unclear, however it could be related to a change in the tertiary sedimentary environment responsible for the chromites and it may help to confirm that the bulk of the chromites being recovered in the Swan Hills are not likely derived from kimberlite intrusions and/or that they represent several cycles of erosion and are not related to the silicate indicator mineral assemblage that is being recovered.

Based upon the results of the 2002 sampling program the Lightbulb Lake Ridge area should be considered a high priority target area for the presence of kimberlites and follow-up exploration. The 2002 sampling program, with the recovery of a few borderline but high Cr G10 pyrope garnets, a few high Cr chromites and a number of excellent chemistry eclogitic garnets, also demonstrates that the Lightbulb Lake Ridge area may have at least moderate potential for diamondiferous kimberlites. The Lightbulb Lake Ridge area requires follow-up sampling, airborne and ground geophysical surveys followed by drilling. The bulk of the Lightbulb Lake Ridge area has not been covered with a detailed airborne geophysical survey. Strong consideration should be given to flying a helicopter magnetic-electromagnetic survey in order to delineate possible kimberlite targets in the area.

In order to test the possibility that a large number of the highly favourable diamond indicator minerals recovered to date from the Lightbulb Lake area are being derived from a blanket of till overlying the ridge, a till sampling program was conducted during 2003. Al total of 131 till samples were collected in five till lines across the Lightbulb Lake Ridge and northwest of Snipe Lake to test for indicator minerals in the till (Figures 5 to 7). A total of 18 till samples yielded at least 1 picked diamond indicator mineral up to a maximum of 4 DIMs, however, only 8 samples actually yielded silicate DIMs up to a maximum of 4 grains (Appendix 3 and Figures 6 and 7). Although microprobe results have not been received for the 2003 till samples to date, it is evident that the sparse number of indicator minerals recovered from till samples in the Lightbulb Lake Ridge area may potentially indicate that the large numbers of indicator minerals being recovered from drainages surrounding the ridge are locally derived from buried kimberlites.

One sample collected from the Meekwap Lake area during the 2002 sampling program yielded a pyrope garnet. This sample adds to a number of anomalous samples collected from along the Goose River that have yielded indicator minerals that could be shedding from the Meekwap Lake area. A compilation of prior sampling data from Ashton also indicates the presence of olivine in a couple of till sample sites in the vicinity of the Meekwap Lake area. However, it should be noted that the Ashton diamond indicator data represents picked and not microprobe confirmed data. The Meekwap Lake area is considered a lower priority target area that does require followup sampling as it has had much less sampling then the area north of he Goose River due to difficulties with access and low somewhat swampy land. The Meekwap Lake area may require till sampling to advance the area any further. No work was conducted in the Meekwap Lake area during the 2003 program. Strong consideration should be give to purchasing the 400 m airborne magnetic data for the area prior to conducting any airborne geophysical surveys.

A third area within the Swan Hills permits has yielded a number of indicator minerals during the 2002 sampling program and requires follow-up exploration. The anomalous area is located near the south end of the property between losegun Lake and the Sakwatamau River. The area can be divided into two distinct geographic domains with the swampy lowlands in the vicinity of losegun Lake and the better drained uplands forming a ridge (Atikkamek Ridge) that divides the headwaters of Atikkamek Creek from the Sakwatamau River. The anomalous samples in the losegun Lake area are comprised of one creek sample from the losegun River that yielded two pyrope garnets and a second sample site in a tributary to the losegun River that yielded three chromites, one of which contains almost 3 wt% TiO₂ and 44.26 wt% Cr₂O₃, and is most likely derived from a kimberlite. In addition, prior till sampling by Ashton to the southeast of the area indicates the possible presence of olivines, picroilmenites, eclogitic garnets and kimberlitic chromites in till that is potentially down ice of the area. For the most part, the till is thought to be relatively thin in the region. Hence, the Ashton results could indicate a potential kimberlite source in the vicinity of the losegun Lake and losegun River area. The area is considered low to moderate priority but does warrant a small amount of follow-up exploration for kimberlites.

Sampling of Atikkamek Creek, the Sakwatamau River and their tributaries indicate that the northeast-southwest trending ridge that divides the two drainages is a strong candidate for the presence of possible kimberlites. A number of samples collected from drainages along the ridge have yielded pyrope garnets, olivine, picroilmenites and kimberlitic chromites. One sample, 02CPH002 from the Sakwatamau River, yielded three chromites, one of which is cored by a grain of forsteritic (high Mg) olivine and could be considered a kimberlite fragment. The potential for the presence of kimberlites is considered moderate to high for the Atikkamek Ridge area, however, the diamond potential is considered lower than the Lightbulb Lake Ridge area due to a lack of definitive indicator grains that indicate the presence of mantle that could have been derived from the diamond stability field. It should be noted however, that the area has seen far less sampling than the Lightbulb Lake Ridge area and therefore warrants further exploration. Follow-up work during

2003 resulted in the collection of 27 till samples in the Attikamek Creek Ridge area of which only two of the samples yielded picked DIMs (Appendix 3 and Figures 6 and 7). The distinct lack of significant numbers of indicator minerals in the till samples may also point to a local source such as buried kimberlite for the DIMs that have been recovered to date in the Attikamek drainages.

Gold Exploration

Standard heavy mineral creek sampling during the 2002 exploration program has confirmed that the highest gold concentrations, including number of grains and calculated gold concentrations, are centered on the southeast portion of the Lightbulb Lake Ridge and the Goose River immediately south of the Lightbulb Lake Ridge. The larges number of gold grains recovered from the 2002 sampling program was 29 in a sample collected from a tributary to the Sakwatamau River at the south border of the property, and 21 grains in a sample collected from the headwaters of the West Prairie River. The largest calculated concentration of gold was 54 ppb for a sample collected from a south draining tributary to the Goose River along the south side of the Lightbulb Lake Ridge. A number of samples collected from the Lightbulb Lake Ridge area yield calculated gold concentrations of 20 up o 54 ppb. In terms of potential economic placer concentrations, the overall picture is that the gold concentration and the potential for any kind of volume are somewhat restricted in the uplands area in the vicinity of the Lightbulb Lake Ridge. Based upon the sampling conducted to date the Goose River and a couple of its south draining tributaries represent the only target drainages that could have the combined character of gold grade and volume of mineable gravel. To determine the potential of the Goose River and its tributaries further sampling, including bulk sampling, will be required to determine the placer gold potential.

Although gold has been found in almost every sample across the Swan Hills property, the eastern half of the property yields most of the samples with the lowest gold grain counts and the lowest calculated concentrations of gold. The eastern half of the property area represents the highest topographic portion of the property and is predominantly capped by the Swan Hills Tertiary gravels. The high gold counts and high estimated concentrations of gold for samples collected from the western half of the property are the most spectacular gold results that I have seen for Alberta with perhaps the only exception being the North Saskatchewan River from Rocky Mountain House to Edmonton. If much of the gold in the western portion of the property was derived from the erosion and reworking of the Swan Hills Tertiary gravels it would be expected to see somewhat higher gold grain counts and concentrations in the eastern half of the property in close proximity to the Swan Hills gravels. This may suggest that there is some contribution to the present day streams from local bedrock sources including placer gold in Cretaceous to Early Tertiary sandstones or vein to replacement type gold introduced into the local bedrock from hydrothermal processes. Some of the rough calculated concentrations obtained from samples along the Goose River approach the concentrations required for gold placer operations, which generally require a minimum cutoff from 200 to 500 ppb gold. However, one must keep in mind that the gold found in the Swan Hills is quite fine-grained relative to normal placer type operations, hence

recovery would be an issue. The Goose River and associated tributaries represent the best potential placer gold targets draining the Lightbulb Lake Ridge area based upon the size of the drainages and the volume of gravels associated with these drainages

The Lightbulb Lake Ridge area represents one of the largest and strongest gold in drainage anomalies in Alberta. Based upon the amount of gold found in a number of immature upland drainages it is highly likely that some of the gold sourcing from the Lightbulb Lake Ridge drainages could be related to a bedrock source. In order to aid in determining whether any of the Lightbulb Lake Ridge results could indicate a bedrock source for gold, a suction dredge sampling protocol was employed based upon the recommendations of Mr. Alex Burton. A total of seven samples were collected using a pump with attached suction hose connected to a small sluice box and running about a 0.5 to 1 m³ sample of gravel through the sluice until the riffles and carpet were filled. The carpet concentrates were then screened at 140 mesh (0.1mm) in order to create a +0.1mm and --0.1mm concentrate, which were both then fire assayed for gold. The theory is that placer gold traps will yield high concentrations of gold in both the +0.1mm and -0.1mm size fractions. Gold lodes will tend to yield high concentrations of gold in the fine fraction and little or no gold in the coarse size fraction. The critical data is the relative distribution of gold in the two fractions not the absolute concentration. The actual grade of the drainage sites is not critical and has not been back calculated as neither weight nor volume were recorded for each of the sluice sample sites. Six samples were collected from drainages around the Lightbulb Lake Ridge. Three of the samples, yielded high concentrations of gold in the fine size fraction and low concentrations of gold in the coarse size fraction, including the original anomalous sample site at the headwaters of the West Prairie River, suggesting that the potential is perhaps high that there are multiple lode gold sources in the Lightbulb Lake Ridge area. Further sampling and exploration are required to evaluate this possibility.

Geophysical Survey Results

Three airborne geophysical anomalies potentially representative of kimberlite targets were covered with two magnetic surveys during the fall of 2002 (Appendix 2 and Figure 5). High intensity spike like magnetic anomalies coincident with burnt coal rich horizons were observed at target SB5 (Anomaly 31). Little or no magnetic anomaly was detected in the survey over anomaly CS6-7 (Appendix 2).

2002 - 2003 EXPLORATION EXPENDITURES

Exploration expenditures for the 2002 and 2003 exploration programs for the Swan Hills property were \$319,601.81. Appendix 6 presents a breakdown of these expenses as received from Sovereign.
RECOMMENDATIONS

The recent and past results of diamond exploration in the Swan Hills has resulted in the identification of a least one high priority target area for future diamond and kimberlite exploration. Follow-up sampling, prospecting, an airborne geophysical survey followed by ground geophysical surveying is considered high priority for future exploration of the Swan Hills property. The current existing airborne geophysical data covers mostly the eastern portion of the Swan Hills property; therefore, it is highly recommended that airborne geophysical data for the western portion, in particular for the Lightbulb Lake Ridge area be acquired. Based upon the fact that overburden is likely thin over most of the Swan Hills property, and the recent successful discovery of kimberlites by Ashton employing magnetic and electromagnetic surveys, strong consideration should be given to flying the entire Lightbulb Lake Ridge with a helicopter magnetic and electromagnetic survey in order to identify prospective kimberlite targets for drilling. Follow-up sampling and prospecting should be focused on the Lightbulb Lake Ridge area and the Atikkamek Ridge area and the drainages surrounding these areas, where most of the encouraging results have come from to date.

Strong consideration should be given to conducting a 5,000 line-km helicopter magnetic and electromagnetic survey over a portion of the Lightbulb Lake Ridge area. The survey cost including fuel and subcontract costs will likely be on the order of \$600,000 at an all up cost of \$120 per line-km. Alternatively, a fixed wing Geotem survey that would also provide magnetic and electromagnetic data for kimberlite exploration could be flown at about an all up cost of about \$60 per line-km for a total cost of about \$300,000. It is strongly recommended that existing available magnetic data be acquired for the region outside of the existing Swan Hills magnetic survey. This data will help to prioritize which portion of the Lightbulb Lake Ridge area should be flown using magnetic and electromagnetic methods. Consideration should also be given to conducting a follow-up detailed creek and till sampling over the Lightbulb Lake Ridge and further reconnaissance sampling for diamond indicator minerals in the losegun Lake and Atikkamek Ridge areas. The program should be conducted during late September to October in order to take advantage of partial freeze up and the resulting better access. The estimated cost to conduct such a program would be on the order of about \$200,000 including sample processing and diamond indicator analysis.

PERENT TO PEACEGE APEX Geozcisms itcl. Signature ð 06 Data_ PERMIT NUMBER: P-5824 The Association of Professional Engineers, Geologists and Geophysicists of Alberta

Edmonton, Alberta March, 2005

REFERENCES

- Auston, J. (1998). Discovery and Exploration of the Buffalo Hills Kimberlites, Northcentral Alberta; Mineral Exploration Group, 7th Calgary Mining Forum, April 8-9, 1998, p. 24.
- Bloch, J., Schroder-Adams, C., Leckie, D.A., McIntyre, D.J., Craig, J. and Staniland, M. (1993). Revised stratigraphy of the Lower Colorado Group (Albian to Turonian), Western Canada; Bulletin of Canadian Petroleum Geology, vol. 41, no. 3, pp. 325-348.
- Bloy, G.R. and Hadley, M.G. (1989). The development of porosity in carbonate reservoirs. Canadian Society of Petroleum Geologists, Continuing education Short Course.
- Burwash, R.A., Baadsgaard, H., and Peterman, Z.E. (1962). Precambrian K Ar dates from the western Canada Sedimentary Basin. Journal of Geophysical Research, 67, pp. 1617-1625.
- Burwash, R.A. and Culbert, R.R. (1976). Multivariate geochemical and mineral patterns in the Precambrian basement of Western Canada. Tectonophysics. vol. 20, pp. 193-201.
- Burwash, R.A., McGregor, C.R. and Wilson, J.A. (1994). Precambrian basement beneath the Western Canada Sedimentary Basin; *In* G.D. Mossop and I. Shetsen (eds.), *Geological Atlas of the Western Canada Sedimentary Basin*, published jointly by the Canadian Society of Petroleum Geologists and the Alberta Research Council, Chapter 5, pp. 49-56.
- Cant, D.J. (1988). Regional structure and development of the Peace River Arch, Alberta: A Paleozoic failed-rift system?; Bulletin of Canadian Petroleum Geology, 36:284-295.
- Carlson, S.M., Hiller, W.D., Hood, C.T., Pryde, R.P. and Skelton, D.N. (1998). The Buffalo Hills Kimberlite Province, North-central Alberta, Canada; unpublished abstract by Ashton Mining of Canada, April 1998.
- Chin, L. (1998). Property and exploration potential evaluation of the Sovereign Mining and Exploration Ltd. property southwest of Slave Lake; unpublished letter report for Sovereign Mining and Exploration Ltd., prepared by APEX Geoscience Ltd.
- Chin, L. (1999). Preliminary report, Lightbulb Lake Township data analysis results; unpublished letter report for Sovereign Mining and Exploration Ltd., prepared by APEX Geoscience Ltd.

- Chu, M. (1978). Geology and coal resources of the Wapiti Formation of North Central Alberta. Alberta Research Council, Open File Report 1978-12.
- Dufresne, M.B. and Copeland, D. (2000). Diamond and gold potential of Sovereign Mining Ltd.'s Metallic and Industrial Mineral Permit No. 9397120049 and Lease No. 9496050002, Swan Hills Area, North-Central Alberta; Unpublished Assessment Report Prepared on behalf of Sovereign Mining Ltd. by APEX Geoscience Ltd., 29 pp.
- Dufresne, M.B., Eccles, D.R., McKinstry, B., Schmitt, D.R., Fenton, M.M., Pawlowicz, J.G. and Edwards, W.A.D. (1996). The Diamond Potential of Alberta; Alberta Geological Survey, Bulletin No. 63, 158 pp.
- Dufresne, M.B., Olson, R.A., Schmitt, D.R., McKinstry, B., Eccles, D.R., Fenton, M.M., Pawlowicz, J.G., Edwards, W.A.D. and Richardson, R.J.H. (1995). The Diamond Potential of Alberta: A Regional Synthesis of the Structural and Stratigraphic Setting, and Other Preliminary Indications of Diamond Potential. MDA Project M93-04-037, Alberta Research Council Open File Report 1994-10.
- Fipke, C.E., Gurney, J.J. and Moore, R.O. (1995). Diamond exploration techniques emphasising indicator mineral geochemistry and Canadian examples; Geological Survey of Canada, Bulletin 423, 86 p.
- Glass, D.J. (1990). Lexicon of Canadian Stratigraphy, Volume 4. Western Canada, including Eastern British Columbia, Alberta, Saskatchewan and Southern Manitoba; Canadian Society of Petroleum Geologists.
- Green, R., Mellon, G.B. and Carrigy, M.A. (1970). Bedrock Geology of Northern Alberta. Alberta Research Council, Unnumbered Map (scale 1:500,000).
- Klassen, R.W. (1989). Quaternary geology of the Southern Canadian Interior Plains; *in* Chapter 2 of the Quaternary Geology of Canada and Greenland, R.J. Fulton (*ed.*), Geological Survey of Canada, Geology of Canada, no. 1, pp. 138-174.
- Kruchkowski, E.R. (2000). Report on Swan Hills permit area; Unpublished Assessment report prepared on behalf of Teuton Resource Corp. 20 pp.
- Leckie, D.A., Singh, C., Bloch, J., Wilson, M. and Wall, J. (1992). An Anoxic event at the Albian-Cenomanian Boundary: the Fish Scale Marker Bed, Northern Alberta, Canada; Palaeogeography, Palaeoclimatology, Palaeoecology, vol. 92, pp. 139-166.
- Leckie, D.A., Kjarsgaard, B.A., Peirce, J.W., Grist, A.M., Collins, M., Sweet, A., Stasiuk, L., Tomica, M.A., Eccles, R., Dufresne, M.B., Fenton, M.M., Pawlowicz, J.G., Balzer, S.A., McIntyre, D.J. and McNeil, D.H. (1997). Geology of a Late Cretaceous Possible Kimberlite at Mountain Lake, Alberta – Chemistry, Petrology, Indicator Minerals, Aeromagnetic Signature, Age, Stratigraphic Position and Setting; Geological Survey of Canada, Open file 3441, 202 p.

- Lehnert-Thiel, K., Loewer, R., Orr, R.G. and Robertshaw, P. (1992). Diamond-bearing kimberlites in Saskatchewan, Canada: The Fort à la Corne case history; Exploration Mining Geology, Journal of the Geological Society of CIM, vol. 1, pp. 391-403.
- Mossop, G. and Shetsen, I. (eds.) (1994). Geological Atlas of the Western Canada Sedimentary Basin. Calgary, Canadian Society of Petroleum Geologists and Alberta Research Council, 510 pp.
- Muehlenbachs, K., Burwash, R.A. and Chacko, T. (1993). A major oxygen isotope anomaly in the basement rocks of Alberta; *In* Ross, G.M. (ed.), *Lithoprobe* Alberta Basement Transect Workshop, Lithoprobe Secretariat, University of British Columbia, Lithoprobe Report #31, pp. 120-124.
- Muehlenbachs, K., Burwash, R.A. and Chacko, T. (1994). The oxygen and hydrogen isotope composition of Alberta basement rocks: Possible implications for crustal and paleogeographic reconstructions of basement terrains; *In* Ross, G.M. (ed.), *Lithoprobe* Alberta Basement Transect Workshop, Lithoprobe Secretariat, University of British Columbia, Lithoprobe Report #37, pp. 250-253.
- O'Connell, S.C., Dix, G.R. and Barclay, J.E. (1990). The origin, history and regional structural development of the Peace River Arch, Western Canada; Bulletin of Canadian Petroleum Geology, 38A:4-24.
- Olson, R.A., Dufresne, M.B., Freeman, M.E., Eccles, D.R., and Richardson, R.J.H. (1994). Regional Metallogenic Evaluation of Alberta; Alberta Geological Survey, Open File Report 1994-08.
- Pawlowicz, J.J. and Fenton, M.M. (1995a). Bedrock topography of Alberta. Alberta Geological Survey, Energy and Utilities Board, Map 226, scale 1:2,000,000.
- Pawlowicz, J.J. and Fenton, M.M. (1995b). Drift thickness of Alberta. Alberta Geological Survey, Energy and Utilities Board, Map 227, scale 1:2,000,000.
- Ross, G.M. and Stephenson, R.A. (1989). Crystalline Basement: The Foundation of Western Canada Sedimentary Basin; *In* B.D. Ricketts (ed.) Western Canada Sedimentary Basin, A Case History; Canadian Society of Petroleum Geologists, Calgary, Alberta, pp. 33-45.
- Ross, G.M., Parrish, R.R., Villeneuve, M.E. and Bowring, S.A. (1991). Geophysics and geochronology of the crystalline basement of the Alberta Basin, western Canada; Canadian Journal of Earth Sciences, vol. 28, pp. 512-522.

- Ross, G.M., Theriault, R. and Villeneuve, M. (1998). Buffalo Head Terrane and Buffalo Head Craton; What's the difference and does it matter?; Calgary Mineral Exploration Group, 7th Annual Calgary Mining Forum, p. 19-20.
- Scott Smith, B.H., Orr, R.G., Robertshaw, P. and Avery, R.W. (1994). Geology of the Fort à la Corne kimberlites, Saskatchewan; Extended Abstract, The Sixteenth CIM Annual General Meeting, Vancouver, British Columbia, October 11 to 15, 1994, Paper No. 68.
- Spectra Exploration Geoscience Corp. (1999). Lightbulb Lake HRAM Survey, March 1, 1999 March 7, 1999 Weekly Report; unpublished letter report.
- Tokarsky, O. (1977). Hydrogeology of the Iosegun Lake Area, Alberta. Research Council of Alberta, Report 76-2.
- Villeneuve, M.E., Ross, G.M., Theriault, R.J., Miles, W., Parrish, R.R. and Broome, J. (1993). Tectonic subdivision and U-Pb geochronology of the crystalline basement of the Alberta basin, western Canada; Geological Survey of Canada, Bulletin 447.

CERTIFICATION

I, M.B. DUFRESNE OF 267 BURTON ROAD, EDMONTON, ALBERTA, CERTIFY AND DECLARE THAT I AM A GRADUATE OF THE UNIVERSITY OF NORTH CAROLINA AT WILMINGTON WITH A B.SC. DEGREE IN GEOLOGY (1983) AND A GRADUATE OF THE UNIVERSITY OF ALBERTA WITH A M.SC. DEGREE IN ECONOMIC GEOLOGY (1987). I AM REGISTERED AS A PROFESSIONAL GEOLOGIST WITH THE ASSOCIATION OF PROFESSIONAL ENGINEERS, GEOLOGISTS AND GEOPHYSICISTS OF ALBERTA.

MY EXPERIENCE INCLUDES SERVICE AS AN EXPLORATION GEOLOGIST WITH THE DEPARTMENT OF INDIAN AFFAIRS AND NORTHERN DEVELOPMENT, YUKON, FROM 1983 TO 1985. FROM 1986 TO 1993, I HAVE CONDUCTED AND DIRECTED PROPERTY EXAMINATIONS AND EXPLORATION PROGRAMS ON BEHALF OF COMPANIES AS A GEOLOGIST IN THE EMPLOY OF R.A. OLSON CONSULTING LTD. AND ITS PREDECESSOR COMPANY TRIGG, WOOLLETT, OLSON CONSULTING LTD. OF EDMONTON, ALBERTA. SINCE JANUARY 1994, I HAVE CONDUCTED AND DIRECTED PROPERTY EXAMINATIONS, PROPERTY EVALUATIONS AND EXPLORATION PROGRAMS ON BEHALF OF COMPANIES AS A PRINCIPAL IN APEX GEOSCIENCE LTD.

I CURRENTLY DO NOT HAVE AN INTEREST IN SOVEREIGN MINING AND EXPLORATION LTD. APEX GEOSCIENCE LTD. HAS NO INTEREST, DIRECT OR INDIRECT, IN THE PROPERTIES, OR SECURITIES OF SOVEREIGN MINING AND EXPLORATION LTD., NOR DOES IT EXPECT TO RECEIVE SUCH INTEREST.

THIS REPORT ENTITLED "ASSESSMENT REPORT SWAN HILLS PROPERTY, NORTH-CENTRAL ALBERTA MINERAL PERMITS 9302040003 TO 9302040023" IS BASED UPON THE STUDY OF PUBLISHED AND UNPUBLISHED DATA AND FIELD EXAMINATIONS CONDUCTED THEREON.

I HEREBY GRANT SOVEREIGN MINING AND EXPLORATION LTD. OF DRAYTON VALLEY, ALBERTA, PERMISSION TO USE THIS REPORT AS AN ASSESSMENT REPORT FOR THE SWAN HILLS PROPERTY AS WELL FOR PROSPECTUS OR AIF FILINGS FOR THE PURPOSE OF CORPORATE FINANCING.

MARCH, 2005 EDMONTON, ALBERTA APPENDIX 1 2002-2003 SAMPLE AND TRENCH/PIT LOCATIONS 38

Sample				UTM Easting	UTM_Northing			Result
Number	Sample Type	Date	Sampler	N27	N27	Zone	Analysia Type	Received
2002 Sample List	Campic Type	Date	Sampler	1127		20116	Analysis Type	Received
02BWP100	Rock Grab	1-Nov	BW	507683	6057601	11	Whole Rock, Au & Multielement ICP by agua regia	No
02BWP101	Rock Grab	2-Nov	BW/WC	522871	6074860	11	Whole Rock, Au & Multielement ICP by aqua regia	No
02BWP102	Rock Grab	4-Nov	BW/WC	513387	6070512	11	Whole Rock, Au & Multielement ICP by aqua regia	No
02CPP100	Rock Grab	22-Nov	BW/CP	453231	6063070	11	Whole Rock, Au & Multielement ICP by aqua regia	No
02CPP101	Rock Grab	22-Nov	BW/CP	542959	6063077	11	Whole Rock, Au & Multielement ICP by aqua regia	No
02CDP107	Rock Grab	22-1107	Diviol	531900	6092775	11	Whole Rock, Au & Multielement ICP by aqua regia	No
02ACDGP108	Rock Grab	· · · · · · · · · · · · · · · · · · ·		536751	6076463	11	Whole Rock, Au & Multielement ICP by aqua regia	No
02BWS001	Stream Silt	25-Oct	BW	543192	6034194	11	Sieve at -80 mesh, Au & multielement ICP by aqua regia	Yes
02BWS002	Stream Silt	1-Nov	BW	507683	6057601		Sieve at -80 mesh, Au & multielement ICP by aqua regia	Yes
02BWS003	Stream Silt	2-Nov	BW/WC	523913	6077223	11	Sieve at -80 mesh, Au & multielement ICP by aqua regia	Yes
02BWS004	Stream Silt	2-Nov	BW/WC	521778	6076871	<u>11</u>	Sieve at -80 mesh, Au & multielement ICP by aqua regia	Yes
02BWS005	Stream Silt	2-Nov	BW/WC	521125	6076909		Sieve at -80 mesh, Au & multielement ICP by aqua regia	Yes
02BWS006	Stream Silt	3-Nov	BW/WC	520804	6080359	11	Sieve at -80 mesh, Au & multielement ICP by aqua regia	Yes
02BWS007	Stream Silt	3-Nov	BW/WC	521697	6080407	11	Sieve at -80 mesh, Au & multielement ICP by aqua regia	Yes
02BWS008	Stream Silt	3-Nov	BW/WC	519860	6083018	11	Sieve at -80 mesh, Au & multielement ICP by aqua regia	Yes
02BWS009	Stream Silt	4-Nov	BW/WC	521447	6071161	11	Sieve at -80 mesh, Au & multielement ICP by aqua regia	Yes
02BWS010	Stream Silt	4-Nov	BW/WC	517447	6070996	11	Sieve at -80 mesh, Au & multielement ICP by aqua regia	Yes
02BWS011	Stream Silt	4-Nov	BW/WC	512938	6071389	11	Sieve at -80 mesh, Au & multielement ICP by aqua regia	Yes
02BWS012	Stream Silt	4-Nov	BW/WC	513387	6070512	11	Sieve at -80 mesh, Au & multielement ICP by aqua regia	Yes
02BWS013	Stream Silt	6-Nov	BW/WC	524032	6105754	11	Sieve at -80 mesh, Au & multielement ICP by aqua regia	Yes
02BWS014	Stream Silt	6-Nov	BW/WC	524851	6104069	11	Sieve at -80 mesh, Au & multielement ICP by aqua regia	Yes
02BWS015	Stream Silt	6-Nov	BWAWC	521781	6097986	11	Sieve at -80 mesh, Au & multielement ICP by aqua regia	Yes
02BWS016	Stream Silt	6-Nov	BW/WC	522229	6101511	11	Sieve at -80 mesh, Au & multielement ICP by aqua regia	Yes
02BWS017	Stream Silt	8-Nov	BW/WC	537266	6083335	11	Sieve at -80 mesh, Au & multielement ICP by aqua regia	Yes
02BWS018	Stream Silt	8-Nov	BW/WC	536301	6080230	11	Sieve at -80 mesh, Au & multielement ICP by aqua regia	Yes
02BWS019	Stream Silt	8-Nov	BW/WC	533462	6084326	11	Sieve at -80 mesh, Au & multielement ICP by aqua regia	Yes
02BW\$020	Stream Silt	19-Nov	BW/CP	541766	6089963	11	Sieve at -80 mesh, Au & multielement ICP by aqua regia	Yes
02BWS021	Stream Silt	19-Nov	BW/CP	531896	6092778	11	Sieve at -80 mesh, Au & multielement ICP by aqua regia	Yes
02CPS001	Stream Silt	23-Oct	CP	555745	6034004	11	Sieve at -80 mesh, Au & multielement ICP by aqua regia	Yes
02CPS002	Stream Silt	23-Oct	CP	556848	6033502	11	Sieve at -80 mesh, Au & multielement ICP by aqua regia	Yes
02CP\$003	Stream Silt	24-Oct	CP	537272	6040839	11	Sieve at -80 mesh, Au & multielement ICP by aqua regia	Yes
02CPS004	Stream Silt	24-Oct	CP	534606	6040594	11	Sieve at -80 mesh, Au & multielement ICP by aqua regia	Yes
02HK\$001	Stream Silt	24-Oct	CP	555977	6031735	11	Sieve at -80 mesh, Au & multielement ICP by aqua regia	Yes
02HKS002	Stream Silt	24-Oct	нк	539711	6039312	11	Sieve at -80 mesh, Au & multielement ICP by aqua regia	Yes
02HKS003	Stream Silt	24-Oct	НК	542325	6046363	11	Sieve at -80 mesh, Au & multielement ICP by aqua regia	Yes
02WCS001	Stream Silt	1-Nov	MD/WC	517674	6037705	11	Sieve at -80 mesh, Au & multielement ICP by aqua regia	Yes
02WCS002	Stream Silt	1-Nov	MD/WC	517674	6037705	11	Sieve at -80 mesh, Au & multielement ICP by aqua regia	Yes
02WCS003	Stream Silt	1-Nov	MD/WC	523646	6035396	11	Sieve at -80 mesh, Au & multielement ICP by aqua regia	Yes
02BWH001	Pan Concentrate (HMC)	25-Oct	BW	543192	6034194	11	Table for Gold Grains, Diamond Indicator Process and Pick	Yes
02BWH002	Pan Concentrate (HMC)	25-Oct	BW	541234	6031587	11	Table for Gold Grains, Diamond Indicator Process and Pick	Yes
02BWH005	Pan Concentrate (HMC)	1-Nov	BW	507683	6057601	11	Table for Gold Grains, Diamond Indicator Process and Pick	Yes
02BWH006	Pan Concentrate (HMC)	1-Nov	BW	525393	6050432	11	Table for Gold Grains, Diamond Indicator Process and Pick	Yes
02BWH007	Pan Concentrate (HMC)	2-Nov	BW/WC	523913	6077223	11	Table for Gold Grains, Diamond Indicator Process and Pick	Yes
02BWH008	Pan Concentrate (HMC)	2-Nov	BW/WC	521778	6076871	11	Table for Gold Grains, Diamond Indicator Process and Pick	Yes
02BWH009	Pan Concentrate (HMC)	2-Nov	BW/WC	521125	6076909	11	Table for Gold Grains, Diamond Indicator Process and Pick	Yes
02BWH010	Pan Concentrate (HMC)	3-Nov	BW/WC	520804	6080359	11	Table for Gold Grains, Diamond Indicator Process and Pick	Yes
02BWH011	Pan Concentrate (HMC)	3-Nov	BW/WC	521736	6080478	11	Table for Gold Grains, Diamond Indicator Process and Pick	Yes
02BWH012	Pan Concentrate (HMC)	3-Nov	BW/WC	521697	6080407	11	Table for Gold Grains, Diamond Indicator Process and Pick	Yes
02BWH013	Pan Concentrate (HMC)	3-Nov	BW/WC	519860	6083018	11	Table for Gold Grains, Diamond Indicator Process and Pick	Yes
02BWH014	Pan Concentrate (HMC)	4-Nov	BW/WC	521447	6071161	11	Table for Gold Grains, Diamond Indicator Process and Pick	Yes
02BWH015	Pan Concentrate (HMC)	4-Nov	BW/WC	517447	6070996	11	Table for Gold Grains, Diamond Indicator Process and Pick	Yes
02BWH016	Pan Concentrate (HMC)	4-Nov	BW/WC	512938	6071389	11	Table for Gold Grains, Diamond Indicator Process and Pick	Yes
02BWH017	Pan Concentrate (HMC)	4-Nov	BW/WC	513387	6070512	11	Table for Gold Grains, Diamond Indicator Process and Pick	Yes
02BWH018	Pan Concentrate (HMC)	6-Nov	BW/WC	524032	6105754	11	Table for Gold Grains, Diamond Indicator Process and Pick	Yes
02BWH019	Pan Concentrate (HMC)	6-Nov	BW/WC	524851	6104069	11	Table for Gold Grains, Diamond Indicator Process and Pick	Yes
02BWH020	Pan Concentrate (HMC)	6-Nov	BW/WC	521781	6097986	11	Table for Gold Grains, Diamond Indicator Process and Pick	Yes
		0,10,	2		000,000		reare for overa orano, oraniona indicator i rucess alla Flok	162

Sample				UTM Easting	UTM_Northing		I	Result
Number	Sample Type	Date	Sampler	N27	N27	Zone	Analysis Type	Received
02BWH021	Pan Concentrate (HMC)	6-Nov	BW/WC	522229	6101511	11	Table for Gold Grains, Diamond Indicator Process and Pick	Yes
02BWH022	Pan Concentrate (HMC)	8-Nov	BW/WC	537266	6083335	11	Table for Gold Grains, Diamond Indicator Process and Pick	Yes
02BWH023	Pan Concentrate (HMC)	8-Nov	BW/WC	536301	6080230	11	Table for Gold Grains, Diamond Indicator Process and Pick	Yes
02BWH024	Pan Concentrate (HMC)	8-Nov	BW/WC	533345	6086447	11	Table for Gold Grains, Diamond Indicator Process and Pick	Yes
02BWH025	Pan Concentrate (HMC)	8-Nov	BW/WC	533462	6084326	11	Table for Gold Grains, Diamond Indicator Process and Pick	Yes
02BWH026	Pan Concentrate (HMC)	19-Nov	BW/CP	541766	6089963	11	Table for Gold Grains, Diamond Indicator Process and Pick	Yes
02BWH027	Pan Concentrate (HMC)	19-Nov	BW/CP	531896	6092778	11	Table for Gold Grains, Diamond Indicator Process and Pick	Yes
02CPH001	Pan Concentrate (HMC)	23-Oct	CP/HK	555745	6034004	11	Table for Gold Grains, Diamond Indicator Process and Fick	Yes
02CPH002	Pan Concentrate (HMC)	23-Oct	CP/HK	556848	6033502	11	Table for Gold Grains, Diamond Indicator Process and Pick	Yes
02CPH003	Pan Concentrate (HMC)	24-Oct	CP	537272	6040839	11	Table for Gold Grains, Diamond Indicator Process and Pick	Yes
02CPH004	Pan Concentrate (HMC)	24-Oct	CP	534606	6040594	11	Table for Gold Grains, Diamond Indicator Process and Pick	Yes
02HKH001	Pan Concentrate (HMC)	24-Oct	BW/HK	555977	6031735	11	Table for Gold Grains, Diamond Indicator Process and Pick	Yes
02HKH002	Pan Concentrate (HMC)	24-Oct	НК	539711	6039312	11	Table for Gold Grains, Diamond Indicator Process and Pick	Yes
02HKH003	Pan Concentrate (HMC)	24-Oct	НК	542325	6046363	11	Table for Gold Grains, Diamond Indicator Process and Pick	Yes
02MDH102	Pan Concentrate (HMC)	2-Nov	MD	513619	6094434	11	Table for Gold Grains, Diamond Indicator Process and Pick	Yes
02MDH103	Pan Concentrate (HMC)	2-Nov	MD	513505	6094322	11	Table for Gold Grains, Diamond Indicator Process and Pick	Yes
02WCH001	Pan Concentrate (HMC)	1-Nov	MD/WC	514781	6044811	11	Table for Gold Grains, Diamond Indicator Process and Pick	Yes
02WCH002	Pan Concentrate (HMC)	1-Nov	MD/WC	513776	6043896	11	Table for Gold Grains, Diamond Indicator Process and Pick	Yes
02WCH003	Pan Concentrate (HMC)	1-Nov	MD/WC	513315	6040184	11	Table for Gold Grains, Diamond Indicator Process and Pick	Yes
02WCH004	Pan Concentrate (HMC)	1-Nov	MD/WC	517682	6037764	11	Table for Gold Grains, Diamond Indicator Process and Pick	Yes
02WCH005	Pan Concentrate (HMC)	1-Nov	MD/WC	517674	6037705	11	Table for Gold Grains, Diamond Indicator Process and Pick	Yes
02WCH006	Pan Concentrate (HMC)	1-Nov	MD/WC	523646	6035396	11	Table for Gold Grains, Diamond Indicator Process and Pick	Yes
02MDH104	Suction Dredge	2-Nov	MD	518048	6066707	11	Sieve at 140 mesh and Fire Assay fro Au -140 and +140 fractions	Yes
02MDH105	Suction Dredge	3-Nov	MD	517087	6073974	11	Sieve at 140 mesh and Fire Assay ito Au -140 and +140 mactions	Yes
02MDH106	Suction Dredge	3-Nov	MD	509423	6092937	11	Sieve at 140 mesh and Fire Assay fro Au -140 and +140 fractions	Yes
02MDH107	Suction Dredge	3-Nov	MD	506378	6095322	11	Sieve at 140 mesh and Fire Assay fro Au -140 and +140 fractions	Yes
02CDH103	Suction Dredge		СН	531900	6092775	11	Sieve at 140 mesh and Fire Assay fro Au -140 and +140 fractions	Yes
02ACDGH108	Suction Dredge		СН	536751	6076463	11	Sieve at 140 mesh and Fire Assay fro Au -140 and +140 fractions	Yes
02CJOH002	Suction Dredge		СН	580455	6047510	11	Sieve at 140 mesh and Fire Assay fro Au -140 and +140 fractions	Yes
02BWH003	Beach	31-Oct	BW	512565	6034805	11	Table for Gold Grains, Diamond Indicator Process and Pick	Yes
02BWH004	Beach	31-Oct	BW	512510	6034574	11	Table for Gold Grains, Diamond Indicator Process and Pick	Yes
02MDH100	Beach	2-Nov	MD	511549	6107259	11	Table for Gold Grains, Diamond Indicator Process and Pick	Yes
02MDH101	Beach	2-Nov	MD	517684	6108161	11	Table for Gold Grains, Diamond Indicator Process and Pick	Yes
2003 Sample List		_						100
03NVT001	Till	1-Nov	AM/NV/BW	532557	6083523	- 11	Table for Gold Grains, Diamond Indicator Process and Pick	Yes
03NVT002	Till	1-Nov	AM/NV/BW	532292	6083436	11	Table for Gold Grains, Diamond Indicator Process and Pick	Yes
03NVT003	Till	1-Nov	AM/NV/BW	532097	6083249	11	Table for Gold Grains, Diamond Indicator Process and Pick	Yes
03NVT004	Till	1-Nov	AM/NV/BW	531892	6083088	11	Table for Gold Grains, Diamond Indicator Process and Pick	Yes
03NVT005	Till	1-Nov	AM/NV/BW	531747	6082889	11	Table for Gold Grains, Diamond Indicator Process and Pick	Yes
03NVT006	Till	1-Nov	AM/NV/BW	531678	6082622	11	Table for Gold Grains, Diamond Indicator Process and Pick	Yes
03NVT007	Till	1-Nov	AM/NV/BW	531675	6082393	11	Table for Gold Grains, Diamond Indicator Process and Pick	Yes
03NVT008	Till	1-Nov	AM/NV/BW	531735	6082142	11	Table for Gold Grains, Diamond Indicator Process and Pick	Yes
03NVT009	Till	2-Nov	AM/NV/BW	531675	6081661	11	Table for Gold Grains, Diamond Indicator Process and Pick	Yes
03NVT010	Till	2-Nov	AM/NV/BW	532128	6081408	11	Table for Gold Grains, Diamond Indicator Process and Pick	Yes
03NVT011	Till	2-Nov	AM/NV/BW	531095	6077657	11	Table for Gold Grains, Diamond Indicator Process and Pick	Yes
03NVT012	Till	3-Nov	NV/AM	529235	6075769	11	Table for Gold Grains, Diamond Indicator Process and Pick	Yes
03NVT013	Till	3-Nov	NV/AM	529466	6075843	11	Table for Gold Grains, Diamond Indicator Process and Pick	Yes
03NVT014	Till	3-Nov	NV/AM	529591	6075905	11	Table for Gold Grains, Diamond Indicator Process and Pick	Yes
03NVT015	Till	3-Nov	NV/AM	529959	6076228	11	Table for Gold Grains, Diamond Indicator Process and Pick	Yes
03NVT016	Till	3-Nov	NV/AM	530190	6076336	11	Table for Gold Grains, Diamond Indicator Process and Pick	Yes
03NVT017	Till	3-Nov	NV/AM	530431	6076424	11	Table for Gold Grains, Diamond Indicator Process and Pick	Yes
03NVT018	Till	3-Nov	NV/AM	530639	6076587	11	Table for Gold Grains, Diamond Indicator Process and Pick	Yes
03NVT019	Till	5-Nov	AM/NV	530986	6076674	11	Table for Gold Grains, Diamond Indicator Process and Pick	Yes
03NVT020	Till	5-Nov	AM/NV	531214	6077145	11	Table for Gold Grains, Diamond Indicator Process and Pick	Yes
03NVT020	Till	6-Nov	AM/NV/PW	531054	6078181	11	Table for Gold Grains, Diamond Indicator Process and Pick	Yee
	Till Till	6-Nov 6-Nov	AM/NV/PW AM/NV/PW	531054 531131	6078181 6078642	11	Table for Gold Grains, Diamond Indicator Process and Pick Table for Gold Grains, Diamond Indicator Process and Pick	Yes Yes

Sample			·	UTM Easting	UTM_Northing			Result
Number	Sample Type	Date	Sampler	N27	N27	Zone	Analysis Type	Received
03NVT024	Till	6-Nov	AM/NV/PW	531494	6078925	11	Table for Gold Grains, Diamond Indicator Process and Pick	Yes
03NVT025	Till	6-Nov	AM/NV/PW	531773	6079605	11	Table for Gold Grains, Diamond Indicator Process and Pick	Yes
03NVT026	Till	6-Nov	AM/NV/PW	531696	6079072	11	Table for Gold Grains, Diamond Indicator Process and Pick	Yes
03NVT027	Till	6-Nov	AM/NV/PW	531828	6080153	11	Table for Gold Grains, Diamond Indicator Process and Pick	Yes
03NVT028	Till	6-Nov	AM/NV/PW	531869	6080625	11	Table for Gold Grains, Diamond Indicator Process and Pick	Yes
03NVT029	Till	6-Nov	AM/NV/PW	532404	6081079	11	Table for Gold Grains, Diamond Indicator Process and Pick	Yes
03NVT030	Till	9-Nov	PW/AM/NV	527472	6090112	11	Table for Gold Grains, Diamond Indicator Process and Pick	Yes
03NVT031	Till	8-Nov	PW/AM/NV	526661	6088821	11	Table for Gold Grains, Diamond Indicator Process and Pick	Yes
03NVT032	ТіІІ	9-Nov	PW/AM/NV	527297	6089887	11	Table for Gold Grains, Diamond Indicator Process and Pick	Yes
03NVT033	Till	9-Nov	PW/AM/NV	527066	6089829	11	Table for Gold Grains, Diamond Indicator Process and Pick	Yes
03NVT034	Till	9-Nov	PW/AM/NV	527117	6089501	11	Table for Gold Grains, Diamond Indicator Process and Pick	Yes
03NVT035	Till	9-Nov	PW/AM/NV	526942	6089292	11	Table for Gold Grains, Diamond Indicator Process and Pick	Yes
03NVT036	Till	9-Nov	PW/AM/NV	526493	6088622	11	Table for Gold Grains, Diamond Indicator Process and Pick	Yes
03NVT037	Till	9-Nov	PW/AM/NV	526375	6088391	11	Table for Gold Grains, Diamond Indicator Process and Pick	Yes
03NVT038	Till	9-Nov	PW/AM/NV	526210	6088204	11	Table for Gold Grains, Diamond Indicator Process and Pick	Yes
03NVT039	Till	9-Nov	PW/AM/NV	526095	6087995	11	Table for Gold Grains, Diamond Indicator Process and Pick	Yes
03NVT040	Till	9-Nov	PW/AM/NV	525903	6087744	11	Table for Gold Grains, Diamond Indicator Process and Pick	Yes
03NVT041	Till	10-Nov	NV/AM/PW	522839	6083175	11	Table for Gold Grains, Diamond Indicator Process and Pick	Yes
03NVT042	Till	10-Nov	NV/AM/PW	522985	6083408	11	Table for Gold Grains, Diamond Indicator Process and Pick	Yes
03NVT043	Till	10-Nov	NV/AM/PW	523119	6083625	11	Table for Gold Grains, Diamond Indicator Process and Pick	Yes
03NVT044	Till	10-Nov	NV/AM/PW	523272	6083825	11	Table for Gold Grains, Diamond Indicator Process and Pick	Yes
03NVT045	Till	10-Nov	NV/AM/PW	523462	6084143	11	Table for Gold Grains, Diamond Indicator Process and Pick	Yes
03NVT046	Till	10-Nov	NV/AM/PW	523621	6084339	11	Table for Gold Grains, Diamond Indicator Process and Pick	Yes
03NVT047	Till	10-Nov	NV/AM/PW	523742	6084549	11	Table for Gold Grains, Diamond Indicator Process and Pick	Yes
03NVT048	Till	10-Nov	NV/AM/PW	523947	6084854	11	Table for Gold Grains, Diamond Indicator Process and Pick	Yes
03NVT049	Till	10-Nov	NV/AM/PW	524120	6085111	11	Table for Gold Grains, Diamond Indicator Process and Pick	Yes
03NVT050	Till	10-Nov	NV/AM/PW	524277	6085309	11	Table for Gold Grains, Diamond Indicator Process and Pick	Yes
03NVT051	Till	11-Nov	AM/PW	524408	6085528	11	Table for Gold Grains, Diamond Indicator Process and Pick	Yes
03NVT052	Till	11-Nov	AM/PW	524566	6085755	11	Table for Gold Grains, Diamond Indicator Process and Pick	Yes
03NVT053	Till	11-Nov	AM/PW	524707	6085954	11	Table for Gold Grains, Diamond Indicator Process and Pick	Yes
03NVT054	Till	11-Nov	AM/PW	524833	6086164	11	Table for Gold Grains, Diamond Indicator Process and Pick	Yes
03NVT055	Till	11-Nov	AM/PW	524987	6086366	11	Table for Gold Grains, Diamond Indicator Process and Pick	Yes
03NVT056	Till	11-Nov	AM/PW	525140	6086583	11	Table for Gold Grains, Diamond Indicator Process and Pick	Yes
03NVT057	Till	11-Nov	AM/PW	525253	6086787	11	Table for Gold Grains, Diamond Indicator Process and Pick	Yes
03NVT058	Till	11-Nov	AM/PW	525390	6087019	11	Table for Gold Grains, Diamond Indicator Process and Pick	Yes
03NVT059	Till	12-Nov	PW/AM	525547	6087208	11	Table for Gold Grains, Diamond Indicator Process and Pick	Yes
03NVT060	Till	12-Nov	PW/AM	522679	6082949	11	Table for Gold Grains, Diamond Indicator Process and Pick	Yes
03NVT061	Titl	12-Nov	PW/AM	525692	6087388	11	Table for Gold Grains, Diamond Indicator Process and Pick	Yes
03NVT062	Titl	12-Nov	PW/AM	525789	6087574	11	Table for Gold Grains, Diamond Indicator Process and Pick	Yes
03NVT063	Till	15-Nov	AM/PW	531523	6094924	11	Table for Gold Grains, Diamond Indicator Process and Pick	Yes
03NVT064	Till	15-Nov	AM/PW	532036	6094937	11	Table for Gold Grains, Diamond Indicator Process and Pick	Yes
03NVT065	Till	15-Nov	AM/PW	532527	6094895	11	Table for Gold Grains, Diamond Indicator Process and Pick	Yes
03NVT066	Till	17-Nov	PW/AM	533013	6094830	11	Table for Gold Grains, Diamond Indicator Process and Pick	Yes
03NVT067	Till	17-Nov	PW/AM	533541	6094840	11	Table for Gold Grains, Diamond Indicator Process and Pick	Yes
03NVT068	Till	17-Nov	PW/AM	534044	6094808	11	Table for Gold Grains, Diamond Indicator Process and Pick	Yes
03NVT069	Till	17-Nov	PW/AM	534557	6094768	11	Table for Gold Grains, Diamond Indicator Process and Pick	Yes
03NVT070	Till	17-Nov	PW/AM	535047	6094705	11	Table for Gold Grains, Diamond Indicator Process and Pick	Yes
03NVT071	Till	17-Nov	PW/AM	535550	6094679	11	Table for Gold Grains, Diamond Indicator Process and Pick	Yes
03NVT072	Till	17-Nov	PW/AM	536122	6094641	11	Table for Gold Grains, Diamond Indicator Process and Pick	Yes
03NVT073	Till	17-Nov	PW/AM	536619	6094676	11	Table for Gold Grains, Diamond Indicator Process and Pick	Yes
03NVT074	Till	17-Nov	PW/AM	537157	6094714	11	Table for Gold Grains, Diamond Indicator Process and Pick	Yes
03NVT075	Till	17-Nov	PW/AM	537648	6094675	11	Table for Gold Grains, Diamond Indicator Process and Pick	Yes
03NVT076	Till	18-Nov	AM/PW	538206	6094984	11	Table for Gold Grains, Diamond Indicator Process and Pick	Yes
03NVT077	Till	18-Nov	AM/PW	538641	6095146	11	Table for Gold Grains, Diamond Indicator Process and Pick	Yes
03NVT078	Till	18-Nov	AM/PW	539078	6095391	11	Table for Gold Grains, Diamond Indicator Process and Pick	Yes
03NVT079	Till	18-Nov	AM/PW	539578	6095533	11	Table for Gold Grains, Diamond Indicator Process and Pick	Yes
03NVT080	Till	18-Nov	AM/PW	540067	6094564	11	Table for Gold Grains, Diamond Indicator Process and Pick	Yes

Sample		T		LITM Fasting	UTM_Northing			Result
Number	Sample Type	Date	Sampler	N27	N27	Zone	Analysis Type	Received
03NVT081	Till	23-Nov	AM/PW	522519	6098433	11	Table for Gold Grains, Diamond Indicator Process and Pick	Yes
03NVT082	Til	23-Nov	AM/PW	522741	6098572	11	Table for Gold Grains, Diamond Indicator Process and Pick	Yes
03NVT083	Till	23-Nov	AM/PW	522958	6098688	11	Table for Gold Grains, Diamond Indicator Process and Pick	Yes
03NVT084	Till	23-Nov	AM/PW	523182	6098810	11	Table for Gold Grains, Diamond Indicator Process and Pick	Yes
03NVT085	Till	25-Nov	PW/AM	521633	6097935	11	Table for Gold Grains, Diamond Indicator Process and Pick	Yes
03NVT086	Till	25-Nov	PW/AM	521873	6098028	11	Table for Gold Grains, Diamond Indicator Process and Pick	Yes
03NVT087	Till	25-Nov	PW/AM	522077	6098152	11	Table for Gold Grains, Diamond Indicator Process and Pick	Yes
03NVT088	Till	25-Nov	PW/AM	522311	6098304	11	Table for Gold Grains, Diamond Indicator Process and Pick	Yes
03NVT089	Till	26-Nov	PW/AM	523422	6098946	11	Table for Gold Grains, Diamond Indicator Process and Pick	Yes
03NVT090	TII	26-Nov	AM/PW	521253	6097626	11	Table for Gold Grains, Diamond Indicator Process and Pick	Yes
03NVT091	Till	26-Nov	AM/PW	521458	6097783	11	Table for Gold Grains, Diamond Indicator Process and Pick	Yes
03NVT092	Till	27-Nov	PW/AM	521010	6097460	11	Table for Gold Grains, Diamond Indicator Process and Pick	Yes
03NVT093	ТШ	27-Nov	PW/AM	520807	6097380	11	Table for Gold Grains, Diamond Indicator Process and Pick	Yes
03NVT094	Till	27-Nov	PW/AM	520054	6096912	11	Table for Gold Grains, Diamond Indicator Process and Pick	Yes
03NVT095	Till	27-Nov	PW/AM	519844	6096802	11	Table for Gold Grains, Diamond Indicator Process and Pick	Yes
03NVT096	Till	27-Nov	PW/AM	519648	6096672	11	Table for Gold Grains, Diamond Indicator Process and Pick	Yes
03NVT097	Till	28-Nov	AM/PW	519449	6096537	11	Table for Gold Grains, Diamond Indicator Process and Pick	Yes
03NVT098	Till	28-Nov	AM/PW	519240	6096397	11	Table for Gold Grains, Diamond Indicator Process and Pick	Yes
03NVT099	Till	28-Nov	AM/PW	519029	6096261	11	Table for Gold Grains, Diamond Indicator Process and Pick	Yes
03NVT100	Till	28-Nov	AM/PW	518828	6096099	11	Table for Gold Grains, Diamond Indicator Process and Pick	
03NVT101	Till	28-Nov	AM/PW	518648	6095937	11		Yes
03NVT102		28-Nov	AM/PW	518456	6095776	11	Table for Gold Grains, Diamond Indicator Process and Pick	Yes
03NVT103	Till	28-Nov	AM/PW	518249	6095600	11	Table for Gold Grains, Diamond Indicator Process and Pick	Yes
03NVT104	Till	20-Nov	PW/AM	518042	6095459		Table for Gold Grains, Diamond Indicator Process and Pick	Yes
03NVT105	Till	29-Nov	PW/AM	523631		11	Table for Gold Grains, Diamond Indicator Process and Pick	Yes
03NVT106					6099089	11	Table for Gold Grains, Diamond Indicator Process and Pick	Yes
03NVT107		29-Nov 29-Nov	PW/AM	523949	6099289	11	Table for Gold Grains, Diamond Indicator Process and Pick	Yes
03NVT107	Till		PW/AM PW/AM	524152	6099450	11	Table for Gold Grains, Diamond Indicator Process and Pick	Yes
03NVT109	Till	29-Nov		524391	6099563		Table for Gold Grains, Diamond Indicator Process and Pick	Yes
03NVT110	Till	29-Nov	PW/AM	524617	6099676	11	Table for Gold Grains, Diamond Indicator Process and Pick	Yes
03NVT110		2-Dec	PW/AM	516134	6094400	11	Table for Gold Grains, Diamond Indicator Process and Pick	Yes
		2-Dec	PW/AM	515933	6094289	11	Table for Gold Grains, Diamond Indicator Process and Pick	Yes
03NVT112		2-Dec	PW/AM	515716	6094159	11	Table for Gold Grains, Diamond Indicator Process and Pick	Yes
03NVT113	Till	15-Dec	PW/AM	516573	6114682	11	Table for Gold Grains, Diamond Indicator Process and Pick	Yes
03NVT114	Till	15-Dec	PW/AM	515555	6114622	11	Table for Gold Grains, Diamond Indicator Process and Pick	Yes
03NVT115	Till	15-Dec	PW/AM	514865	6115384	11	Table for Gold Grains, Diamond Indicator Process and Pick	Yes
03NVT116	Till	15-Dec	PW/AM	514124	6114911	11	Table for Gold Grains, Diamond Indicator Process and Pick	Yes
03NVT117	Till	15-Dec	PW/AM	513190	6114535	11	Table for Gold Grains, Diamond Indicator Process and Pick	Yes
03NVT118	Till	15-Dec	PW/AM	512481	6113794	11	Table for Gold Grains, Diamond Indicator Process and Pick	Yes
03NVT119	Till	15-Dec	PW/AM	512280	6112801	11	Table for Gold Grains, Diamond Indicator Process and Pick	Yes
03NVT120	Till	15-Dec	PW/AM	511131	6112245	11	Table for Gold Grains, Diamond Indicator Process and Pick	Yes
03NVT121	Till	15-Dec	PW/AM	510072	6112328	11	Table for Gold Grains, Diamond Indicator Process and Pick	Yes
03NVT122		15-Dec	PW/AM	509008	6112065	11	Table for Gold Grains, Diamond Indicator Process and Pick	Yes
03NVT123	Till	15-Dec	PW/AM	507766	6111994	11	Table for Gold Grains, Diamond Indicator Process and Pick	Yes
03NVT124	Till	15-Dec	PW/AM	506512	6111963	11	Table for Gold Grains, Diamond Indicator Process and Pick	Yes
03NVT125	Till	20-Dec	PW/AM/BA	547681	6037671	11	Table for Gold Grains, Diamond Indicator Process and Pick	Yes
03NVT126	Till	20-Dec	PW/AM/BA	547024	6037227	11	Table for Gold Grains, Diamond Indicator Process and Pick	Yes
03NVT127	Till	20-Dec	PW/AM/BA	546528	6036566	11	Table for Gold Grains, Diamond Indicator Process and Pick	Yes
03NVT128	Till	21-Dec	PW/AM/BA	546029	6036334	11	Table for Gold Grains, Diamond Indicator Process and Pick	Yes
03NVT129	Till	21-Dec	PW/AM/BA	545558	6036426	11	Table for Gold Grains, Diamond Indicator Process and Pick	Yes
03NVT130	Till	21-Dec	PW/AM/BA	545105	6036629	11	Table for Gold Grains, Diamond Indicator Process and Pick	Yes
03NVT131	Till	21-Dec	PW/AM/BA	544709	6037032	11	Table for Gold Grains, Diamond Indicator Process and Pick	Yes
03NVT132	Till	21-Dec	PW/AM/BA	544203	6036844	11	Table for Gold Grains, Diamond Indicator Process and Pick	Yes
03NVT133		21-Dec	PW/AM/BA	543810	6036638	11	Table for Gold Grains, Diamond Indicator Process and Pick	Yes
03NVT134	Till	21-Dec	PW/AM/BA	543339	6036969	11	Table for Gold Grains, Diamond Indicator Process and Pick	Yes
03NVT135	Till	21-Dec	PW/AM/BA	542976	6037330	11	Table for Gold Grains, Diamond Indicator Process and Pick	Yes
03NVT136	Till	21-Dec	PW/AM/BA	542473	6037428	11	Table for Gold Grains, Diamond Indicator Process and Pick	Yes
						11		1 103

Sample				UTM Easting	UTM Northing			Result
Number	Sample Type	Date	Sampler	N27	N27	Zone	Analysis Type	Received
03NVT138	Till	21-Dec	PW/AM/BA	541673	6036668	11	Table for Gold Grains, Diamond Indicator Process and Pick	Yes
D3NVT139	Till	21-Dec	PW/AM/BA	541173	6036222	11	Table for Gold Grains, Diamond Indicator Process and Pick	Yes
03NVT140	Till	21-Dec	PW/AM/BA	540675	6035936	11	Table for Gold Grains, Diamond Indicator Process and Pick	Yes
03NVT141	Till	21-Dec	PW/AM/BA	540390	6035442	11	Table for Gold Grains, Diamond Indicator Process and Pick	Yes
03NVT142	Till	21-Dec	PW/AM/BA	540286	6034954	11	Table for Gold Grains, Diamond Indicator Process and Pick	Yes
03NVT143	Till	21-Dec	PW/AM/BA	540015	6034403	11	Table for Gold Grains, Diamond Indicator Process and Pick	Yes
03NVT144	Till	21-Dec	PW/AM/BA	539642	6033903	11	Table for Gold Grains, Diamond Indicator Process and Pick	Yes
03NVT145	Till	21-Dec	PW/AM/BA	539433	6033397	11	Table for Gold Grains, Diamond Indicator Process and Pick	Yes
03NVT146	Till	21-Dec	PW/AM/BA	539005	6033224	11	Table for Gold Grains, Diamond Indicator Process and Pick	Yes
03NVT147	Till	22-Dec	BA/PW/AM	556158	6031855	11	Table for Gold Grains, Diamond Indicator Process and Pick	Yes
03NVT148	ТШ	22-Dec	BA/PW/AM	555805	6031468	11	Table for Gold Grains, Diamond Indicator Process and Pick	Yes
03NVT149	Till	22-Dec	BA/PW/AM	555568	6030985	11	Table for Gold Grains, Diamond Indicator Process and Pick	Yes
03NVT150	Till	22-Dec	BA/PW/AM	555773	6030531	11	Table for Gold Grains, Diamond Indicator Process and Pick	Yes
03NVT151	Till	22-Dec	BA/PW/AM	556229	6030148	11	Table for Gold Grains, Diamond Indicator Process and Pick	Yes
03NVT152	Till	22-Dec	BA/PW/AM	566328	6041870	11	Table for Gold Grains, Diamond Indicator Process and Pick	Yes
03NVT153	Till	22-Dec	BA/PW/AM	567688	6043455	11	Table for Gold Grains, Diamond Indicator Process and Pick	Yes
03NVT154	Till	22-Dec	BA/PW/AM	568884	6045163	11	Table for Gold Grains, Diamond Indicator Process and Pick	Yes
03NVT155	Till	22-Dec 22-Dec	BA/PW/AM	570619	6046593	11	Table for Gold Grains, Diamond Indicator Process and Pick	
03NVT156	Till	22-Dec	BA/PW/AM	572284	6048023	11	Table for Gold Grains, Diamond Indicator Process and Pick	Yes Yes
03NVT400	Till	12-Dec	PW/AM/MD	539573	6092586	11	Table for Gold Grains, Diamond Indicator Process and Pick	Yes
03NVT401	Till	12-Dec	PW/AM/MD	539788	6092519	11		
03NVT402	Till	12-Dec 13-Dec	AM/PW/MD	540017	6092636	11	Table for Gold Grains, Diamond Indicator Process and Pick	Yes
03NVT403	Till	13-Dec	AM/PW/MD	539933			Table for Gold Grains, Diamond Indicator Process and Pick	Yes
03NVT404	Till	13-Dec	AM/PW/MD		6092705	11	Table for Gold Grains, Diamond Indicator Process and Pick	Yes
03NVT404	Till	14-Dec		539842	6092720	11	Table for Gold Grains, Diamond Indicator Process and Pick	Yes
03NVT405	Till		MD	540313	6092565	11	Table for Gold Grains, Diamond Indicator Process and Pick	Yes
D-03-01-001	Drill Tailings Composite	14-Dec	MD AM	540313	6092565	11	Table for Gold Grains, Diamond Indicator Process and Pick	Yes
		16-Dec		541598	6092573	11	Table for Gold Grains, Diamond Indicator Process and Pick	No
D-03-01-002	Drill Tailings Composite	16-Dec	AM	541499	6092576	11	Table for Gold Grains, Diamond Indicator Process and Pick	No
D-03-01-003	Drill Tailings Composite	16-Dec	AM	541310	6092572	11	Table for Gold Grains, Diamond Indicator Process and Pick	No
D-03-01-004	Drill Tailings Composite	16-Dec	AM	541098	6092568	11	Table for Gold Grains, Diamond Indicator Process and Pick	No
D-03-01-005	Drill Tailings Composite	16-Dec	AM	541004	6092552	11	Table for Gold Grains, Diamond Indicator Process and Pick	No
D-03-01-006	Drill Tailings Composite	16-Dec	AM	540706	6092543	11	Table for Gold Grains, Diamond Indicator Process and Pick	No
D-03-01-007	Drill Tailings Composite	16-Dec	AM	540517	6092533	11	Table for Gold Grains, Diamond Indicator Process and Pick	No
D-03-01-008	Drill Tailings Composite	16-Dec	AM	540417	6092535	11	Table for Gold Grains, Diamond Indicator Process and Pick	No
D-03-01-009	Drill Tailings Composite	16-Dec	AM	540309	6092532	11	Table for Gold Grains, Diamond Indicator Process and Pick	No
D-03-01-010	Drill Tailings Composite	16-Dec	AM	540190	6092521	11	Table for Gold Grains, Diamond Indicator Process and Pick	No
D-03-01-011	Drill Tailings Composite	17-Dec	BA/PW	540045	6092496	11	Table for Gold Grains, Diamond Indicator Process and Pick	No
D-03-01-012	Drill Tailings Composite	17-Dec	BA/PW	539450	6092487	11	Table for Gold Grains, Diamond Indicator Process and Pick	No
D-03-01-013	Drill Tailings Composite	17-Dec	BA/PW	538723	6092451	11	Table for Gold Grains, Diamond Indicator Process and Pick	No
D-03-01-014	Drill Tailings Composite	17-Dec	BA/PW	538020	6092428	11	Table for Gold Grains, Diamond Indicator Process and Pick	No
D-03-01-015	Drill Tailings Composite	17-Dec	BA/AM/PW	539112	6092349	11	Table for Gold Grains, Diamond Indicator Process and Pick	No
D-03-01-016	Drill Tailings Composite	17-Dec	BA/AM/PW	538640	6091595	11	Table for Gold Grains, Diamond Indicator Process and Pick	No
D-03-01-017	Drill Tailings Composite	17-Dec	BA/AM/PW	539388	6092790	11	Table for Gold Grains, Diamond Indicator Process and Pick	No
D-03-01-018	Drill Tailings Composite	17-Dec	BA/AM/PW	539709	6093287	11	Table for Gold Grains, Diamond Indicator Process and Pick	No
D-03-01-019	Drill Tailings Composite	18-Dec	PW	541687	6091474	11	Table for Gold Grains, Diamond Indicator Process and Pick	No
D-03-01-020	Drill Tailings Composite	18-Dec	PW	541015	6091900	11	Table for Gold Grains, Diamond Indicator Process and Pick	No
D-03-01-021	Drill Tailings Composite	18-Dec	PW	540449	6092234	11	Table for Gold Grains, Diamond Indicator Process and Pick	No
D-03-01-022	Drill Tailings Composite	18-Dec	PW	540068	6092459	11	Table for Gold Grains, Diamond Indicator Process and Pick	No
D-03-02-001	Drill Tailings Composite	16-Dec	AM/PW	535357	6092314	11	Table for Gold Grains, Diamond Indicator Process and Pick	No
D-03-02-002	Drill Tailings Composite	16-Dec	AM/PW	535371	6092303	11	Table for Gold Grains, Diamond Indicator Process and Pick	No
D-03-02-003	Drill Tailings Composite	17-Dec	BA	537721	6092418	11	Table for Gold Grains, Diamond Indicator Process and Pick	No
D-03-02-004	Drill Tailings Composite	18-Dec	BA	537418	6094251	11	Table for Gold Grains, Diamond Indicator Process and Pick	No
D-03-02-005	Drill Tailings Composite	18-Dec	BA	537895	6093899	11	Table for Gold Grains, Diamond Indicator Process and Pick	No
D-03-02-006	Drill Tailings Composite	18-Dec	BA	539183	6092997	11	Table for Gold Grains, Diamond Indicator Process and Pick	No
D-03-02-007	Drill Tailings Composite	18-Dec	BA/PW	539566	6092765	11	Table for Gold Grains, Diamond Indicator Process and Pick	No
D-03-02-008	Drill Tailings Composite	18-Dec	BA/PW	539854	6092601	11	Table for Gold Grains, Diamond Indicator Process and Pick	No
			AM/MD/PW	528740	6094548	11	Table for Gold Grains, Diamond Indicator Process and Pick	

Sample			1	UTM_Easting	UTM_Northing			Result
Number	Sample Type	Date	Sampler	N27	N27	Zone	Analysis Type	Received
03AMH002	Pan Concentrate (HMC)	15-Nov	AM/MD/PW	527696	6095668	11	Table for Gold Grains, Diamond Indicator Process and Pick	No
03AMH003	Pan Concentrate (HMC)	16-Nov	AM/MD/PW	508037	6132106	11	Table for Gold Grains, Diamond Indicator Process and Pick	No
03AMH004	Pan Concentrate (HMC)	16-Nov	PW/MD/AM	502498	6119965	11	Table for Gold Grains, Diamond Indicator Process and Pick	No
03AMH005	Pan Concentrate (HMC)	16-Nov	AM/MD/PW	508000	6122246	11	Table for Gold Grains, Diamond Indicator Process and Pick	No No
03AMH006	Pan Concentrate (HMC)	19-Nov	AM/PW	541042	6094509	11	Table for Gold Grains, Diamond Indicator Process and Pick	No
03AMH007	Pan Concentrate (HMC)	20-Nov	AM/PW	539984	6090395	11	Table for Gold Grains, Diamond Indicator Process and Pick	No
03AMH008	Pan Concentrate (HMC)	20-Nov	AM/PW	539843	6097006	11	Table for Gold Grains, Diamond Indicator Process and Pick	No
03AMH009	Pan Concentrate (HMC)	20-Nov	AM/PW	538813	6113789	11	Table for Gold Grains, Diamond Indicator Process and Pick	No
03AMH010	Pan Concentrate (HMC)	21-Nov	PW/AM	511968	6089325	11	Table for Gold Grains, Diamond Indicator Process and Pick	No
03AMH011	Pan Concentrate (HMC)	1-Dec	AM/PW	525786	6094728	11	Table for Gold Grains, Diamond Indicator Process and Pick	No
03AMH012	Pan Concentrate (HMC)	3-Dec	AM/PW	516164	6091847	11	Table for Gold Grains, Diamond Indicator Process and Pick	No
03AMH013	Pan Concentrate (HMC)	6-Dec	PW/AM	516201	6091156	11	Table for Gold Grains, Diamond Indicator Process and Pick	No
P-03-01-001	Rock Grab	12-Dec	MD/AM/PW	539788	6092519	11	Whole Rock, Au & Multielement ICP by agua regia	Yes
P-03-01-002	Rock Grab	12-Dec	MD/AM/PW	539788	6092519	11	Whole Rock, Au & Multielement ICP by agua regia	Yes
P-03-01-003	Rock Grab	12-Dec	MD/AM/PW	539788	6092519	11	Whole Rock, Au & Multielement ICP by aqua regia	Yes
P-03-02-001	Rock Grab	12-Dec	MD/AM/PW	539573	6092586	11	Whole Rock, Au & Multielement ICP by aqua regia	Yes
P-03-02-002	Rock Grab	12-Dec	MD/AM/PW	539573	6092586	11	Whole Rock, Au & Multielement ICP by aqua regia	Yes
P-03-02-003	Rock Grab	12-Dec	MD/AM/PW	539573	6092586	11	Whole Rock, Au & Multielement ICP by aqua regia	Yes
P-03-02-004	Rock Grab	12-Dec	MD/AM/PW	539573	6092586	11	Whole Rock, Au & Multielement ICP by aqua regia	Yes
P-03-02-005	Rock Grab	12-Dec	MD/AM/PW	539573	6092586	11	Whole Rock, Au & Multielement ICP by aqua regia	Yes
P-03-02-006	Rock Grab	12-Dec	MD/AM/PW	539573	6092586	11	Whole Rock, Au & Multielement ICP by aqua regia	Yes
P-03-03-001	Rock Grab	13-Dec	MD/AM/PW	540025	6092638	11	Whole Rock, Au & Multielement ICP by aqua regia	Yes
P-03-03-002	Rock Grab	13-Dec	MD/AM/PW	540025	6092638	11	Whole Rock, Au & Multielement ICP by aqua regia	Yes
P-03-03-003	Rock Grab	13-Dec	MD/AM/PW	540025	6092638	11	Whole Rock, Au & Multielement ICP by aqua regia	Yes
P-03-03-004	Rock Grab	13-Dec	MD/AM/PW	540025	6092638	11	Whole Rock, Au & Multielement ICP by aqua regia	Yes
P-03-04-001	Rock Grab	13-Dec	MD/AM/PW	539937	6092710	11	Whole Rock, Au & Multielement ICP by aqua regia	Yes
P-03-04-002	Rock Grab	13-Dec	MD/AM/PW	539937	6092710	11	Whole Rock, Au & Multielement ICP by aqua regia	Yes
P-03-04-003	Rock Grab	13-Dec	MD/AM/PW	539937	6092710	11	Whole Rock, Au & Multielement ICP by aqua regia	Yes
P-03-05-001	Rock Grab	13-Dec	MD/AM/PW	539847	6092717	11	Whole Rock, Au & Multielement ICP by aqua regia	Yes
P-03-06-001	Rock Grab	14-Dec	MD	540313	6092565	11	Whole Rock, Au & Multielement ICP by aqua regia	Yes
P-03-06-002	Rock Grab	14-Dec	MD	540313	6092565	11	Whole Rock, Au & Multielement ICP by aqua regia	Yes
P-03-06-003	Rock Grab	14-Dec	MD	540313	6092565	11	Whole Rock, Au & Multielement ICP by aqua regia	Yes
P-03-06-004	Rock Grab	14-Dec	MD	540313	6092565	11	Whole Rock, Au & Multielement ICP by aqua regia	Yes
P-03-07-001	Rock Grab	14-Dec	AM	539946	6092559	11	Whole Rock, Au & Multielement ICP by aqua regia	Yes
P-03-07-002	Rock Grab	14-Dec	AM	539946	6092559	11	Whole Rock, Au & Multielement ICP by aqua regia	Yes
P-03-07-003	Rock Grab	14-Dec	AM	539946	6092559	11	Whole Rock, Au & Multielement ICP by aqua regia	Yes
P-03-07-004	Rock Grab	14-Dec	AM	539946	6092559	11	Whole Rock, Au & Multielement ICP by aqua regia	Yes
P-03-07-005	Rock Grab	14-Dec	AM	539946	6092559	11	Whole Rock, Au & Multielement ICP by aqua regia	Yes
T-03-01-001	Rock Grab	14-Dec	AM	539942	6092544	11	Whole Rock, Au & Multielement ICP by aqua regia	
T-03-01-002	Rock Grab	14-Dec	AM	539942	6092544	11	Whole Rock, Au & Multielement ICP by aqua regia	Yes
T-03-01-003	Rock Grab	14-Dec	AM	539942	6092544	11	Whole Rock, Au & Multielement ICP by aqua regia	Yes
T-03-01-004	Rock Grab	14-Dec	AM	539942	6092544	11	Whole Rock, Au & Multielement ICP by aqua regia	Yes
T-03-01-005	Rock Grab	14-Dec	AM	539942	6092544	11	Whole Rock, Au & Multielement ICP by aqua regia	Yes Yes

2003 Trench/Pit Locations, Elevations and Geology - Swan Hills Property Sovereign Mining and Exploration Ltd.

Trench Pit 03-01:		- ₋	
Surveyed Elev. (m a.s.l.):	833.432	Samples*:	
· · · · · · · · · · · · · · · · · · ·			
826.73	0 ft		grey silty bentonitic mudstone
827.64	3 ft.	P-03-01-003	
021.04	5 11.	P-03-01-001	green micaceous bentonitic siltstone
828.25	5 ft.	1-03-01-001	brown regolith developed on silty bentonitic rock - some Fe stain
		P-03-01-002	
829.01	7.5 ft.		good basal till with loads of local bedrock - organics
Trench Pit 03-02:			
Surveyed Elev. (m a.s.l.):	846.684	Samples:	
839.98	0.4	-	
039.90	0 ft.	P-03-02-002,	dark grey bentonitic mudstone to bentonite - some green tinted material
		P-03-02-002,	
840.59	2 ft.		rusty silty zone
		-	
841.29	4.3 ft.		light grey low Fe silty unit
0.40.44		P-03-02-004	
842.11	7 ft		Fe stained, same silt rich unit
843.18	10.5 ft.		light grey silt rich bentonitic unit
		P-03-02-001	
844.40	14.5 ft.		brown-stained organic rich unit - some Fe
		P-03-02-005	
844.86	16 ft.		grey to Fe stained silty clay bentonitic unit
945 54	40.05.0	P-03-02-006	
845.54	18.25 ft.		organic rich zone, likely regolith
846.23	20.5 ft.		Fe stained sand lenses and reworked till
Trench Pit 03-03;	20.0 11.		
Surveyed Elev. (m a.s.l.):	831.517		
, ,,,, ,,, ,,,		Samples;	
			nice grey massive weathering blocky tan bentonitic unit, conchoidal fracture, not very dense, good
824.81	0 ft		bentonitic mudstone, no planar cleavage
825.73	2.4	P-03-03-001	
020.73	3 ft.	P-03-03-002	P-03-03-004 combines P-03-03-001 and -002 material for bulk sample
826.95	7 ft.	1-03-03-002	yellow weathered version of same massive blocky unit of bentonitic material
	· ····	P-03-03-003	
828.47	12 ft.		dark brown paleosol developed in lower till to upper bedrock
829.08	14 ft		brown, clay rich till
Trench Pit 03-04: Suveyed Elev. (m a.s.l.):	835.203		
ouveyed Liev. (in a.s.i.).	033.203	Samples:	
		Gampies.	rusty sandstone (red) and blocky black organic rich mudstone - minor blocks of green bentonite,
828.50	O ft.		weathered bentonitic mudstone
		P-03-04-001	
			black pedogenic mudstone zone developed on sst-shale bedrock - red Fe stain, reddish-brown
920.44	o #		blocky sandy siltstone in often around coal. Red colour is because of weathering - lies under till lay
829.41	3 ft	D 02 04 000	that allows water to percolate down and weather the rock
830.33	6 ft.	P-03-04-002	till going from bedrock rich clay to boulder-cobble rich clay with abundant foreign clasts
Trench Pit 03-05:		-†	and some with addition may to bounder-couble num day with additional foreign clasts
	839.195		
		Samples:	
832.61 - 835.05	0 - 8 ft. E side of pit		yellow tan sandstone
832.61 826 72	0 12 5 4 Minide -5 -3	P-03-05-001	
832.61 - 836.73	0-13.5 ft. W side of pit		yellow tan sandstone (sloped contact)
		1	
335.05/836.73	8/13.5 ft		brown till
335.05/836.73 Trench Pit 03-06:	8/13.5 ft.		brown till
Trench Pit 03-06:	8/13.5 ft. 822.447		brown till
Suveyed Elev. (m a.s.l.):	822.447	Samples:	
Trench Pit 03-06:			brown till bright green @ bottom to light green tan bentonitic clay
Trench Pit 03-06: Suveyed Elev. (m a.s.l.): 816.05	822.447 0 ft.	Samples: P-03-06-001	
Trench Pit 03-06: Suveyed Elev. (m a.s.l.): 816.05	822.447	P-03-06-001	
Trench Pit 03-06: Suveyed Elev. (m a.s.l.): 816.05 816.96	822.447 0 ft. 3 ft.	P-03-06-001 P-03-06-002	bright green @ bottom to light green Ian bentonitic clay
Trench Pit 03-06: Suveyed Elev. (m a.s.l.): 316.05 316.96 317.57	822.447 0 ft. 3 ft. 5 ft.	P-03-06-001 P-03-06-002 P-03-06-003	bright green @ bottom to light green tan bentonitic clay
Trench Pit 03-06: Suveyed Elev. (m a.s.l.): 316.05 316.96 317.57	822.447 0 ft. 3 ft.	P-03-06-001 P-03-06-002	bright green @ bottom to light green lan bentonitic clay
Trench Pit 03-06: Suveyed Elev. (m a.s.l.): 816.05 816.96 817.57 817.88	822.447 0 ft. 3 ft. 5 ft. 6 ft.	P-03-06-001 P-03-06-002 P-03-06-003	bright green @ bottom to light green tan bentonitic clay just below black coal seam black coal to dirty coal - sub bituminous to bituminous coal
Trench Pit 03-06: Suveyed Elev. (m a.s.l.): 316.05 316.96 317.57	822.447 0 ft. 3 ft. 5 ft.	P-03-06-001 P-03-06-002 P-03-06-003	bright green @ bottom to light green tan bentonitic clay

2003 Trench/Pit Locations, Elevations and Geology - Swan Hills Property Sovereign Mining and Exploration Ltd.

Trench Pit 03-07:			
Suveyed Elev. (m a.s.l.):	832.776		
	(pit 19 ft. deep)	Samples:	
826.98	O fi.		start of bentonitic zone that may likely be in Pit 03-03, composite sample taken (P-03-07-005), finely laminated bentonite, very iron stained, under thick sandy unit.
		P-03-07-005	
828.81	6 ft.		yellow-orange sand layer
		P-03-07-001	
830.95	13 ft.		Fe stained, very blocky competent bentonitic mudstone unit, ~grey colour to tan, massive (P-03-07- 002)
		P-03-07-002	
832.47	18 ft.		mottled, partly blocky yellow brown bentonitic unit - P-03-07-003
		T-03-01-001	
833.08	20 ft. (above surface on o/c wall)		yellow weathered bentonitic unit below paleosoil - P-03-07-004
		T-03-01-002	
833.23	21.5 ft.		grey blocky laminated bentonitic unit
		T-03-01-003	
834.91	26 ft.		
		T-03-01-004	
			more massive blocky grey bentonitic unit with increasing yellow colour - weathering towards brown
835.82	29 ft.		till contact
		T-03-01-005	
837.65	35 ft.		brown till
PIT 03-01	539788	6092519	
PIT 03-02	539788	6092586	
PIT 03-03	540025	6092638	
PIT 03-04	539937	6092710	
PIT 03-05	539847	6092717	
PIT 03-06	540313	6092565	
PIT 03-07	539946	6092559	
Spearhead Gas Well:			
Ground Elevation:	833.5 m a.s.l.		
KB Elevation:	838.5 m a.s.l.		
	ween elevations to represent the int	erval from which	h they were taken

PIT Locations are all in UTM Coordinates in Zone 11, NAD1927

<u>APPENDIX 2</u> 2002-2003 GROUND GEOPHYSICAL DATA AND RESULTS

<u>Ground Geophysical Grids - 2002</u> Sovereign Mining and Exploration Ltd.

Anomaly	Grid	GridSize	utmx_n27	utmy_n27	Remark
	CS6-7	400x550m	553445	6075900	Location = center of grid
S5a	APEX31	700x800m	542990	6063100	Center of anomaly
S5b	APEX31	700x800m	543250	6062800	Center of anomaly

5

5400 Fall

Grid Coordinates UTM Z11, NAD27

35+50E:57+00N = 553545E:6075700N

:

153950	ne 5200	station 3000	58457.67	Corrected Magnetics (nT) 56055.54	FieldStrengt 99
154022	5175	3000	58457.55	56054,53	99
154106	5150	3000	58462.37	56058.42	99
154146	5125	3000	58462.21	56057.62	99
154218	5100	3000	58461.56	56057.03	99
154250	5075	3000	58454.04	56050.52	99
154322	5050	3000	58446.07	56043.92	99
154358	5025	3000	58443.73	56042.68	99
154430	5000	3000	58436.62	56035.7	99
154506	4975	3000	58318.22	55916.7	99
91238	4950	3000	58567.23	56229.19	99
91322 91354	4925	3000	58522.93	56183.16	99
91354	4900 4875	3000 3000	58298.23	55962.57	99
91428	4875	3000	58367.36 58386.04	56029.15 56047.47	99 99
91530	4825	3000	58396.44	56060.25	99
91602	4800	3000	58381.44	56048.45	99
91634	4775	3000	58378.9	56035,21	99
91710	4750	3000	58333.29	56002.11	99
91738	4725	3000	58293.3	55963.59	99
91806	4700	3000	58356.34	56018.67	99
92458	4700	3250	58392.34	56055.85	99
92518	4700	3237.5	58387.31	56055.1	99
92538	4700	3225	58387.47	56055.41	99
92558	4700	3212.5	58391.63	56054.25	99
92614	4700	3200	58394.59	56056.11	99
92634	4700	3187.5	58393.58	56055	99
92658	4700	3175	58394.79	56055.3	99
92718	4700	3162.5	58396.16	56054.92	99
92742	4700	3150	58397.99	56053.85	99
92802 92822	4700 4700	3137.5 3125	58403.09	56055.36	99
92822	4700	3125	58404.42 58406.3	56054.05	99
92938	4700	3112.5	58406.3	56053.83 56052.81	99 99
93002	4700	3087.5	58407.13	56053.62	99
93022	4700	3075	58405.87	56053.16	99
93042	4700	3062.5	58403.05	56052.1	99
93102	4700	3050	58400.41	56051.62	99
93122	4700	3037.5	58395.81	56049	99
93138	4700	3025	58391.03	56045.78	99
93154	4700	3012.5	58384.61	56040.75	99
93210	4700	3000	58362.5	56019.19	99
93226	4700	2987.5	58331.96	55989.26	99
93250.7	4700	2975	58548.32	56207.36	99
93310	4700	2962.5	58286.49	55947.22	99
93330	4700 4700	2950 2937,5	58357.85	56019.48	99
93350	4700	2937.5	58380.26 58382.91	56042.77	99
93434	4700	2925	58389.11	56046.01	99 99
93454	4700	2900	58387.91	56052.29 56051.88	99
93514	4700	2887.5	58388.41	56052.93	99
93534	4700	2875	58385.72	56050.82	99
93554	4700	2862.5	58383.06	56049.78	99
93614	4700	2850	58380.89	56049.76	99
93634	4700	2837.5	58378.58	56049.56	99
93654	4700	2825	58379.22	56051.52	99
93714	4700	2812.5	58381.82	56054.31	99
93734	4700	2800	58380.85	56052.56	99
94134	4800	2750	58379,93	56052.11	99
94154	4800	2762.5	58377.75	56049,63	99
94214	4800	2775	58381.48	56053.27	99
94238	4800	2787.5	58452.43	56123.69	99
94310 94334.6	4800	2800	58347.05	56018.81	99
94334.6	4800	2812.5	58380.84 58382.55	56053.42 56054.74	99 99
94304	4800	2837.5	58379.75	56050.63	99
94438	4800	2850	58378.4	56048.38	99
94506	4800	2862.5	58380.12	56048.28	99
94534	4800	2875	58389.62	56056.05	99
94558	4800	2887.5	58388.26	56052.77	99
94618	4800	2900	58392.58	56054.82	99
94638	4800	2912.5	58393.56	56054.23	99
94702	4800	2925	58392.28	56051.63	99
94722	4800	2937.5	58396.56	56054.88	99
94746	4800	2950	58402.07	56060.57	99
94806	4800	2962.5	58398.12	56056.36	99
94830	4800	2975	58391.99	56049.38	99
94858	4800	2987.5	58407.83	56064.97	99
94930	4800	3000	58388.43	56046.47	99
94958	4800	3012.5	58394.33	56051.6	99
95022	4800	3025	58395.22	56052.13	99
95042.5	4800	3037.5	58393.54	56051.58	99
95106	4800	3050	58394.94	56053.09	99
95126	4800	3062.5	58395.88	56052.39	99
95202	4800	3075	58398.4	56053.97	99
95226	4800	3087.5	58398.38	56053.26	99
95250	4800	3100	58397.99	56054.2	99

95338	ne 4800	station R 3125	58398.01	Corrected Magnetics (nT) 56055.1	99
95402	4800	3137.5	58400.05	56054.95	99
95418	4800	3150	58400.87	56054.95	99
95438	4800	3162.5	58403.71	56055.68	99
95454	4800	3175	58403.41	56055.48	99
95514	4800	3187.5	58403.19	56055.33	99
95534	4800	3200	58403.3	56054.96	99
95554	4800	3212.5	58403.8	56055.26	99
95614	4800	3225	58406.93	56055.87	99
95634	4800	3237.5	58409.63	56056.38	
95654	4800	3250	58410.05		99
95858	4900	3250	58415.35	56055.81	99
95918	4900	3237.5	58414.48	56058.73	99
95942	4900	3237.5	58413.02	56058.17	99
100002	4900	3212.5	58411.5	56058.26	99
100030	4900	3212.5	58410.65	56058.27	99
100054	4900	3187.5	58412.05	56056.53	99
100034	4900	3187.5		56056.67	99
100134	4900		58414.76	56057.82	99
100158	4900	3162.5	58414.6	56057.74	99
100158		3150	58413.27	56056.65	99
	4900	3137.5	58412.61	56056.22	99
100238	4900	3125	58412.5	56056.43	99
100258	4900	3112.5	58412.37	56055.87	99
100318	4900	3100	58412.72	56055.64	99
100342	4900	3087.5	58411.19	56053.7	99
100402	4900	3075	58411.83	56054.24	99
100422	4900	3062.5	58409.22	56052.45	99
100458	4900	3050	58406.9	56048.15	99
100518	4900	3037.5	58399.31	56041.08	99
100538	4900	3025	58384.58	56028,19	99
100558	4900	3012.5	58351.76	55995.93	99
100618	4900	3000	58316.47	55962.61	99
100638	4900	2987.5	58601.65	56250.65	99
100714	4900	2975	58296.86	55944.71	99
100738	4900	2962.5	58383.68	56029.29	99
100802	4900	2950	58385.49	56030.48	99
100822	4900	2937.5	58401.46	56044.39	99
100846	4900	2925	58410.62	56051.6	99
100910	4900	2912.5	58414.34	56053,92	99
100930	4900	2900	58416.1	56054.64	99
100954	4900	2887.5	58416.72	56055.47	99
101014	4900	2875	58413.07	56053.06	99
101034	4900	2862.5	58412.71	56053.13	99
101058	4900	2850	58412.43	56053.94	99
101118	4900	2837.5	58408.16	56049.82	99
101142	4900	2825	58412.43	56053.54	99
101202	4900	2812.5	58415.39	56055.28	99
101226	4900	2800	58416.92	56052.7	99
101250	4900	2787.5	58406.17	56039.14	99
101314	4900	2775	58372.96	56003.65	99
101342	4900	2762.5	58378.98	56010.63	99
101410	4900	2750	58414.04	56047.42	99
101702	4950	2750	58407.3	56038.34	99
101730	4950	2762.5	58410.99	56038.1	99
101758	4950	2775	58417.88	56041.86	99
101830	4950	2787.5	58429.13	56049.01	99
101910	4950	2800	58434.13	56052.5	99
101934	4950	2812.5	58435.33	56053.31	99
101954	4950	2825	58434.9	56051.83	99
102014	4950	2837.5	58433.34	56050.8	99
102034	4950	2850	58434.48	56051.83	99
102054	4950	2862.5	58432.9	56051.4	99
102122	4950	2875	58433.82	56051.61	99
102146	4950	2887.5	58435.13	56054.06	99
102210	4950	2900	58433.6	56051.74	99
102246	4950	2912.5	58435.27	56050.21	99
102310	4950	2925	58431.9	56047.9	99
102334	4950	2937.5	58423.35	56042.27	99
102402	4950	2950	58400.38	56026	99
102426	4950	2962.5	58345.95	55977.93	99
102446	4950	2975	58199.22	55832.95	99
102530	4950	2987.5	59340.86	56975.47	99
102558	4950	3000	58578.46	56214.77	99
103442	4950	3012.5	58381.37	56008.96	99
103506	4950	3025	58343.5	55969.48	99
103534	4950	3037.5	58398.2	56025.13	
103558	4950	3037.5	58398.2		99
103558				56042.39	99
	4950	3062.5	58423.72	56049.83	99
103642	4950	3075	58427.46	56052.96	99
103702	4950	3087.5	58431.71	56055	99
103730	4950	3100	58431.4	56054.92	99
103758	4950	3112.5	58435.61	56057.58	99
103822	4950	3125	58439.05	56058.24	99
103842	4950	3137.5	58441.89	56057.82	99
103902	4950	3150	58445.72	56058.35	99
103926	4950	3162.5	58448.16	56058.9	99
103954	4950	3175	58448.52	56057.07	99
104018					

-

404040				Corrected Magnetics (nT	
104042	4950	3200	58451.53	56058.29	99
104106	4950	3212.5	58451.58	56058.19	99
104130	4950	3225	58451.2	56059.02	99
104154	4950	3237.5	58446.26	56058.9	99
104218	4950	3250	58441,36	56058.68	99
104322	5000	3250	58441.04	56060.25	99
104342	5000	3237.5	58441.57	56059.31	99
104410	5000	3225	58444.59	56060.33	99
104442	5000	3212.5	58443,49	56059.27	99
104506	5000	3200	58444.9	56060.48	99
				and the second se	
104530	5000	3187.5	58444.26	56058.84	99
104558	5000	3175	58441.88	56057.67	99
104626.8	5000	3162.5	58444	56060.02	99
104646	5000	3150	58443.9	56059.04	99
104710	5000	3137.5	58446.17	56059.28	99
104734	5000	3125	58445.65	56058.36	99
104754	5000	3112.5	58444.45	56057.54	99
104826	5000	3100	58445,34	56059.02	99
104846	5000	3087.5	58442.74	56059.26	99
104918	5000	3075	58435.76	56056.67	99
104942	5000	3062.5	58435.26	56056,25	99
105002	5000	3050	58430.25	56051.83	99
105022	5000	3037.5	58431.65	56052.72	99
105050	5000	3025	58430.44	56050.72	99
105114	5000	3012.5	58459.52	56075.31	99
105146	5000	3000	58426.33	56036.73	99
105214	5000	2987.5	58435.86	56042.2	99
105242	5000	2975	58439.05	56043.45	99
105306	5000	2962.5	58438.42	56041.85	99
105326	5000	2950	58441.33	56044,48	99
105350	5000	2937.5	58448.09	56049.79	99
105410	5000	2925	58451	56051,45	99
105434	5000	2912.5	58453.06	56052.52	99
105458	5000	2912.5	58452.39		99
				56053.31	
105518	5000	2887.5	58453.03	56053.43	99
105542	5000	2875	58458.27	56061.14	99
105606	5000	2862.5	58452,93	56054.57	99
105626	5000	2850	58449.21	56052.52	99
105654	5000	2837.5	58449.23	56052.66	99
105714	5000	2825	58452.15	56054.32	99
105734	5000	2812.5	58452,25	56054,99	99
105754	5000	2800	58447,96	56054.27	99
105818	5000	2787.5	58442.83	56054,95	99
105842	5000	2775	58441.26	56055,93	99
105914	5000	2762.5	58437.42	56052,16	99
105954	5000	2750	58445.05	56053,74	99
110026	5000	2737.5	58437.56	56048,48	99
110058	5000		58435.75		
		2725		56050.15	99
110134	5000	2712.5	58426.67	56054.81	99
110158	5000	2700	58420.32	56054.74	99
110222	5000	2687.5	58418.77	56054.97	99
110246	5000	2675	58418.62	56053.72	99
110318	5000	2662.5	58425.04	56054.37	99
110354	5000	2650	58428.1	56052.47	99
110426	5000	2637.5	58424.19	56052.98	99
110446	5000	2625	58422.84	56056.59	99
110522	5000	2612.5	58414.33	56053.14	99
110558	5000	2600	58415.85	56055.7	99
110626	5000	2587.5	58415.11	56053,4	99
110626	5000	2567.5	58413,72		
440740	6000	0500 5	70.100.07	56049.42	99
110/10	5000	2562.5	58423.27	56055.19	99
110730	5000	2550	58420.36	56051.48	99
110754	5000	2537.5	58419.39	56052.23	99
10818.9	5000	2525	58415.47	56051.84	99
110842	5000	2512.5	58413.52	56052.5	99
110902	5000	2500	58411.75	56052.25	99
110922	5000	2487.5	58412.24	56052.11	99
110942	5000	2475	58412.51	56051.09	99
111006	5000	2462.5	58412.86	56051.17	99
111030	5000	2450	58416.17	56052.51	99
111050	5000	2437.5	58413.31	56048.43	99
111110	5000	2425	58416.16	56049.86	99
111130	5000	2412.5	58419.36	56052.48	99
111150	5000	2400	58418.97	56051.82	99
111454	5100	2400	58414.52	56051.78	99
111454		2400			
	5100		58420.52	56056.07	99
111546	5100	2425	58416.15	56052.36	99
111606	5100	2437.5	58415.11	56051.86	99
111626	5100	2450	58418.12	56054.31	99
	5100	2462.5	58416.49	56052.14	99
111646	5100	2475	58420.07	56052.98	99
			58421.32	56051.38	99
111710	51001			50001.00	, 33
111710 111734	5100	2487.5			00
111710 111734 111754	5100	2500	58422.82	56052.57	99
111710 111734 111754 111822	5100 5100	2500 2512.5	58422.82 58422.54	56052.57 56052.22	99
111710 111734 111754 111822 111858	5100 5100 5100	2500 2512.5 2525	58422.82 58422.54 58420.89	56052.57 56052.22 56053.2	99 99
111710 111734 111754 111822	5100 5100	2500 2512.5	58422.82 58422.54	56052.57 56052.22	99

time li 112026	ne s 5100	tation 2575	58418.22	Corrected Magnetics (nT) 56053.38	FieldStrengt 99
112050	5100	2587.5	58416.7	56053.2	99
112110	5100	2600	58416.63	56054.26	99
112138	5100	2612.5	58418.55	56054.9	99
112158	5100	2625	58421.5	56054.66	99
112222	5100	2637.5	58424.03	56053.98	99
112258	5100	2650	58427.44	56055,36	99
112322	5100	2662.5	58424.9	56054.41	99
112342	5100	2675	58420.01	56052.35	99
112402	5100	2687.5	58416.57	56050.37	99
112430	5100	2700	58418.21	56052.33	99
112454	5100	2712.5	58420.83	56054.6	99
112514 112538	5100 5100	2725	58419.98 58420.75	56053.66	99
112606	5100	2737.5 2750	58421.06	56053.97 56054.8	99 99
112630	5100	2762.5	58419.99	56054.09	99
112706	5100	2775	58419.97	56053.57	99
112826	5100	2787.5	58420.48	56056.58	99
112858	5100	2800	58421.84	56056.72	99
112922	5100	2812.5	58420.4	56054.26	99
112942	5100	2825	58419.82	56052.71	99
113002	5100	2837.5	58424.31	56056.59	99
113022	5100	2850	58427.88	56060.11	99
113050	5100	2862.5	58425.74	56057.64	99
113106	5100	2875	58432.12	56063.62	99
113130	5100	2887.5	58429,12	56060.38	99
113154	5100	2900	58428.34	56059.63	99
113214	5100	2912.5	58418.51	56050.53	99
113234 113258	5100	2925	58413.65	56046.07	99
113258	5100 5100	2937.5 2950	58417.77 58421.74	56050.12 56052.8	99
113346	5100	2950	58425.09	56052.8 56054.18	99
113402	5100	2975	58426.49	56054,15	99
113422	5100	2987.5	58426,73	56053.53	99
113450	5100	3000	58429.76	56055.54	99
113522	5100	3012.5	58431.98	56056.58	99
113546	5100	3025	58433.78	56056.71	99
113610	5100	3037.5	58435.9	56058.45	99
113634	5100	3050	58435.78	56059.07	99
113702	5100	3062.5	58434.98	56059.44	99
113722	5100	3075	58432.77	56059.07	99
113746	5100	3087.5	58430.74	56058.47	99
113814	5100	3100	58428.89	56058.42	99
113838 113902	5100 5100	3112.5	58428.27	56058.01	99
113902	5100	3125 3137.5	58430.5 58432.05	56059.24 56059.06	99
113946	5100	3150	58434.84	56059.96	99 99
114006	5100	3162.5	58435.2	56059.6	99
114030	5100	3175	58435.35	56059.77	99
114054	5100	3187.5	58434.38	56060.06	99
114118	5100	3200	58434,12	56060.91	99
114146	5100	3212.5	58432.08	56060.71	99
114218	5100	3225	58430.94	56061.22	99
114238	5100	3237.5	58428.53	56060.26	99
114302	5100	3250	58427.97	56061.55	99
114638	5200	3250	58433.29	56061.86	99
114702.6 114738	5200	3237.5	58432.28	56061.55	99
114738	5200 5200	3225 3212.5	58433.88 58433.93	56063.42	99
114830	5200	3212.5	58433.93	56063.19 56063.04	99 99
114850	5200	3187.5	58434.96	56062.59	99
114906	5200	3175	58433.87	56061.16	99
114922.3	5200	3162.5	58433.78	56061.36	99
114954	5200	3150	58428.22	56054.63	99
115018	5200	3137.5	58436.35	56063.85	99
115046	5200	3125	58436.33	56064.75	99
115110	5200	3112.5	58432.24	56060.24	99
15134.8	5200	3100	58433.14	56060.95	99
115154 115214	5200	3087.5	58432.88	56061.49	99
115214	5200	3075	58434.49	56063,67	99
115238	5200 5200	3062.5 3050	58431.57 58431.97	56060.61 56061.42	99 99
1153302	5200	3037.5	58431.97	56060.92	99
115346	5200	3025	58428.89	56058.39	99
115406	5200	3012.5	58429.21	56058.38	99
115426	5200	3000	58427.07	56056.47	99
115446	5200	2987.5	58425.54	56055.29	99
115506	5200	2975	58429.56	56059.93	99
115522	5200	2962.5	58426.87	56057.33	99
115538	5200	2950	58431.92	56061.55	99
115558	5200	2937.5	58428.83	56058.8	99
115622	5200	2925	58427.02	56058.15	99
115646	5200	2912.5	58427.94	56060.22	99
115714	5200	2900	58422.06	56056,9	99
115742	5200	2887.5	58420.79	56056.39	99
115806	5200	2875	58422.39	56058.1	99
115830	5200	2862.5	58421.79	56056.58	99
115858	5200	2850			

				Corrected Magnetics (nT)	FieldStreng
115922	5200	2837.5	58420.15	56054.81	99
115958	5200	2825	58417.87	56052.43	99
120326	5200	2812.5	58388.97	56019.28	99
120438	5200	2800	58198.11	55828	99
120522	5200	2787.5	58161.49	55793.62	99
120546	5200	2775	58198.14	55833.3	99
120642	5200	2762.5	58197.78	55835.21	99
120658	5200	2750	58212.16	55849.17	99
120714	5200	2737.5	58199.86	55836.91	99
120738	5200	2725	58297.41	· · · · · · · · · · · · · · · · · · ·	99
				55934.88	
120802	5200	2712.5	58356.8	55993.57	99
120842	5200	2700	58966.99	56604.54	99
120910	5200	2687.5	58446.36	56085.96	99
120938	5200	2675	58407.84	56049.71	99
120954.9	5200	2662.5	58409.42	56051.06	99
121030	5200	2650	58411.56	56051.65	99
121950	5200	2637.5	58420.04	56054.94	99
122018	5200	2625	58419.26	56055.09	99
122046	5200	2612.5	58421.5	56055.8	99
122118	5200	2600	58419.69	56055.22	99
122142	5200	2587.5	58419.18	56055.62	99
122202	5200	2575	58417.58	56053.84	99
122230	5200	2562.5	58418,44	56055.41	99
122302	5200	2550	58414.78	56053.8	99
122330	5200	2537.5	58415.06	56054.75	99
122402.4	5200	2525	58411.45		
122402.4		2525		56052.91	99
	5200		58412.43	56055.62	99
122502	5200	2500	58410.22	56054.83	99
122526	5200	2487.5	58411.71	56054.53	99
122554	5200	2475	58414.83	56054.02	99
122614	5200	2462.5	58416.23	56053.19	99
122638.7	5200	2450	58416.87	56052.59	99
122702	5200	2437.5	58415.11	56050.17	99
122726	5200	2425	58427.05	56060.75	99
122750	5200	2412.5	58423.32	56057.29	99
122826	5200	2400	58415.88	56050.13	99
124238	5250	2400	58412.18	56053,93	99
124258	5250	2412.5	58412.71	56053.46	99
124322	5250	2425	58413.42	56053.23	99
124342	5250	2437.5	58415	56054.06	99
124406	5250	2450	58413.48	56051.8	99
124430	5250	2462.5	58415.52	56052.64	99
124450	5250	2475	58416.98	56053,58	99
124510	5250	2487.5	58418.69	56054,43	99
124534	5250	2500	58420.09	56054.22	99
124558	5250	2512.5	58421.14	56053,47	99
124622	5250	2525	58423.94	56055.21	99
124646	5250	2537.5	58423.98	56055.04	99
124710	5250	2550		and the second	
124734	5250		58423.29	56055.11	99
		2562.5	58422.22	56054.68	99
124758	5250	2575	58423.91	56055.24	99
124826	5250	2587.5	58426.05	56055.65	99
124858	5250	2600	58428.87	56057.28	99
124918	5250	2612.5	58428.36	56057.67	99
124942	5250	2625	58424	56053.95	99
125006	5250	2637.5	58423.77	56054.12	99
125030	5250	2650	58420.48	56051.83	99
125102	5250	2662.5	58418.77	56051.56	99
125126	5250	2675	58416.13	56048.42	99
125158	5250	2687.5	58417.84	56049.05	99
125230	5250	2700	58414.96	56045,74	99
125302	5250	2712.5	58412.05	56042.07	99
125326	5250	2725	58395.75	56025.18	99
125402	5250	2737.5	58381.31	56010.38	99
125422	5250	2750	58372.77	56002.26	99
125446	5250	2762.5	58370.5	55999.54	99
125510	5250	2775	58360.38	55991.35	99
125538	5250	2787.5	58374.38	56006.36	99
125606	5250	2800	58389.72	- 56024.11	99
125630	5250	2812.5	58407	56043.01	99
125654	5250	2812.5	58412.11	56050.11	99
125718	5250	2837.5	58415.27	56054.11	
125754	5250	2850	58414.21	56054.34	99 99
125822	5250	2862.5	58414.74	56054.68	
125846					99
	5250	2875	58416.39	56056.3	99
133810	5300	2900	58424.46	56061.7	99
133834	5300	2887.5	58427.41	56064.63	99
133854	5300	2875	58420.35	56058.47	99
133914	5300	2862.5	58416.5	56055.16	99
133938	5300	2850	58417.46	56057.06	99
133958	5300	2837.5	58414.35	56054.71	99
134014	5300	2825	58414.97	56055.42	99
134034.3	5300	2812.5	58415.11	56055.36	99
134058	5300	2800	58415.28	56054.82	99
134122	5300	2787.5	58415.62	56053.74	99
134150	5300	2775	58417.56	56053.24	99
134222	5300	2762.5	58417.36	56052.61	99

ime li 134314	ne 5300	station F 2737.5	58417.66	Corrected Magnetics (nT) 56053.72	FieldStreng
134334	5300	2737.5	58419.95		99
134358	5300	2725	58419.95	56056.12	99
				56054.67	99
134426	5300	2700	58425.1	56062.05	99
134450.9	5300	2687.5	58423.2	56060.94	99
134514	5300	2675	58418.15	56055.19	99
134538	5300	2662.5	58422.29	56059.34	99
134606	5300	2650	58419.52	56055,72	99
141054	5300	2637.5	58423.55	56057,21	99
141114	5300	2625	58422.99	56056.53	99
141134	5300	2612.5	58421.09	56054.78	99
141158	5300	2600	58422.61	56056.23	99
141218	5300	2587.5	58421.27		
141250	5300	2575		56054.52	99
			58420.91	56054.1	99
141318	5300	2562.5	58424.38	56057.17	99
141342	5300	2550	58426.13	56058.35	99
141402	5300	2537.5	58426.98	56058,64	99
141422	5300	2525	58425.32	56056.62	99
141446	5300	2512.5	58423.39	56054.44	99
141514	5300	2500	58424.84	56055.54	99
141534	5300	2487.5	58423.94	56054.33	99
141558	5300	2475	58426.67	56056.03	99
141622	5300	2462.5	58425.08		la state a state
				56053.77	99
141646	5300	2450	58426.55	56054.96	99
141714	5300	2437.5	58425.49	56053.62	99
141742	5300	2425	58424.79	56053.73	99
141802	5300	2412.5	58425.18	56054,47	99
141826	5300	2400	58424.06	56053.29	99
144226	5400	2400	58432.06	56055.92	99
144254	5400	2412.5	58435.02	56058.51	99
144318	5400	2425	58435.07	56057.71	99
144334	5400	2437.5	58433.86	56055.94	99
144354	5400	2450	58432.88		
144418	5400	2462.5	58436.82	56054.22	99
144442				56057.1	99
	5400	2475	58436	56055.12	99
144534	5400	2487.5	58439.21	56057.78	99
144554	5400	2500	58438.27	56056.26	99
144622	5400	2512.5	58438.92	56056.15	99
144646	5400	2525	58439.59	56057,09	99
144710	5400	2537.5	58440.99	56059.2	99
144734	5400	2550	58438.09	56056.81	99
144754	5400	2562.5	58438.07	56057.02	99
144822	5400	2575	58437.75	56056.42	99
144842	5400	2587.5	58439.55		
144906	5400	2600		56057.76	99
144938			58440.22	56057.6	99
	5400	2612.5	58440.25	56057.19	99
145006	5400	2625	58439.67	56057.34	99
145038	5400	2637.5	58441.39	56060.72	99
145106	5400	2650	58437.45	56057.67	99
145130	5400	2662.5	58437.91	56058.08	99
145150	5400	2675	58438.71	56058.89	99
145214	5400	2687.5	58437.07	56057.45	99
145242	5400	2700	58439.18	56059.7	
145306	5400	2712.5	58440.87		99
145300	5400			56061.36	99
the second s		2725	58440.02	56060.14	99
145358	5400	2737.5	58437.21	56057.81	99
145430	5400	2750	58437.48	56060.27	99
145502	5400	2762.5	58434.54	56058.6	99
145526	5400	2775	58435.25	56060.58	99
145550	5400	2787.5	58432.72	56058.59	99
145618	5400	2800	58434.73	56059.82	99
145643	5400	2812.5	58435.15	56057.86	99
145710	5400	2825	58440.11	56059.24	99
145734	5400	2837.5	58442.85	56059.58	99
145758	5400	2850	58443.84	56059.69	
134934	5400	2650	58418.95		99
135026	5375		58419.13	56059	99
1351026		2650		56060.97	99
	5350	2650	58419.33	56060.8	99
135154	5325	2650	58414.7	56056.21	99
135230	5300	2650	58416.68	56059.14	99
135314	5275	2650	58416.82	56058.25	99
135430	5250	2650	58413.33	56053,59	99
135514	5225	2650	58412.61	56054.34	99
135554	5200	2650	58408.84	56050.78	99
	5175	2650	58411.66		
135634	terrer and the second second			56055.58	99
135634	5150	2650	58413.17	56055.36	99
135726		2650	58414.96	56054.89	99
135726 135810	5125				
135726 135810 135902	5100	2650	58419.41	56056.06	99
135726 135810				56056.06 56055.35	99 99
135726 135810 135902	5100	2650	58419.41 58420.34	56055.35	99
135726 135810 135902 135950	5100 5075	2650 2650	58419.41		

	line		Raw Magnetics (nT)		FieldStreng
111522	3225	6225	58691.79	56011.84	99
111546	3225	6212.5	58686.81	56006.97	99
111606	3225	6200	58700.74	56020.72	99
111630	3225	6187.5	58686.27	56006.26	99
111654	3225	6175	58684.29	56004.39	99
111726	3225	6162.5	58682.57	56002.94	
111746	3225				99
		6150	58689.59	56010.47	99
111814	3225	6137.5	58684.68	56005.43	99
111834	3225	6125	58684.4	56004.89	99
111858	3225	6112.5	58704.04	56024.39	99
111926	3225	6100	58698.9	56019.68	99
111954	3225	6087.5	58690.55	56010.63	99
112014	3225	6075	58682.49	56002.49	99
112042	3225	6062.5	58691.13	56010.87	99
112106	3225	6050	58704.55		99
				56024.66	
112146	3225	6037.5	58685.47	56005.23	99
112202	3225	6025	58683.23	56003.33	99
112234	3225	6012.5	58690.92	56011.26	99
112254	3225	6000	58679.59	56000.04	99
112322	3225	5987.5	58686.86	56007.57	99
112354	3225	5975	58687.02	56008.03	99
12422.2	3225	5962.5	58685.98	56006.34	99
112442	3225	5950	58686.02		
				56006.11	99
112614	3225	5937.5	58683.75	56004.66	99
112630.8	3225	5925	58688.93	56009.75	99
112658	3225	5912.5	58697.34	56018.02	99
112718	3225	5900	58687.7	56007.96	99
12746.6	3225	5887.5	58677.9	55997.7	99
112806	3225	5875	58684.44	56003.61	99
112842	3225	5862.5	58682.51	56001.35	99
112906	3225	5850	58686.53	56005.22	99
112938	3225	5837.5	58682.43		
112958	3225	5825		55999.98	99
			58685.09	56002.46	99
113030	3225	5812.5	58685.15	56002.44	99
113046	3225	5800	58684.27	56001.97	99
113158	3225	5787.5	58694.97	56013.6	99
113214	3225	5775	58683.8	56003.45	99
113246	3225	5762.5	58686.84	56007.74	99
113306	3225	5750	58691.87	56012.82	99
113342	3225	5737.5	58703.6	56025.06	99
113402	3225	5725			
			58680.06	56002.37	99
113430	3225	5712.5	58691.68	56013.87	99
113450	3225	5700	58670.62	55991.97	99
113518	3225	5687.5	58670.84	55990.23	99
113538	3225	5675	58676.57	55995.05	99
113602	3225	5662.5	58675.11	55993	99
113634	3225	5650	58686.9	56005.21	99
113658	3225	5637.5	58673.42	55992.29	99
113722	3225	5625	58680.96	56000.33	99
113918	3275	5625	58666.68		
113938				55987,75	99
	3275	5637.5	58668.79	55989.25	99
113954	3275	5650	58671.36	55991.43	99
114018	3275	5662.5	58676.61	55996.21	99
114042	3275	5675	58667.89	55987.18	99
114110	3275	5687.5	58672.03	55991.39	99
114130	3275	5700	58670.5	55990.22	99
114158	3275	5712.5	58675.02	55995.51	99
114130	3275	5725			
			58677.42	55998.12	99
114238	3275	5737.5	58676.63	55997.77	99
114258	3275	5750	58683.77	56005.29	99
114326	3275	5762.5	58675.64	55997.26	99
114346	3275	5775	58684.19	56005,49	99
114410	3275	5787.5	58676.02	55996.82	99
114438	3275	5800	58677.34	55997.8	99
114506	3275	5812.5	58677.32	55997.35	99
114530	3275	5825	58683.52	56003.3	99
114554	3275		58677.2		
114554		5837.5		55997.04	99
	3275	5850	58680.9	56001.2	99
114642	3275	5862.5	58681.54	56002.23	99
114710	3275	5875	58675,91	55996.59	99
114738	3275	5887.5	58681.19	56001.65	99
114758	3275	5900	58695.73	56016.22	99
114902	3275	5912.5	58675.54	55996.85	99
114926	3275	5925	58685.25	56006.77	99
114954	3275	5937.5	58690.02	56011.75	99
115022	3275	5950	58676.39	55998,1	
					99
115046	3275	5962.5	58677.58	55999.37	99
115106	3275	5975	58684.6	56006.15	99
115146	3275	5987.5	58686.91	56007,97	99
115218	3275	6000	58685.53	56005.96	99
115254	3275	6012.5	58688.8	56008.48	99
115314	3275	6025			
			58673.65	55993.36	99
115338	3275	6037.5	58679.56	55999.44	99
115358	3275	6050	58663.77	55983.58	99
115430	3275	6062.5	58673.98	55994.09	99
115522	3275	6075	58676.01	55997.49	99
115730	3275	6087.5	58668.35	55990.51	99
115754					
115754 115826	<u>3275</u> 3275	6100 6112.5	58685.52 58687.92	56007.05 56008.58	99

ime li 115846	ne 2075	station	Raw Magnetics (nT)	Corrected Magnetics (nT)	FieldStrengt
	3275	6125	58684.92	56005.17	99
115910.8	3275	6137.5	58680.02	55999.88	99
115946	3275	6150	58693.58	56013.25	99
120042	3275	6162.5	58687.9	56007.35	99
120122	3275	6175	58692.33	56011.53	99
120158	3275	6187.5	58688,77	56008.07	99
120222	3275	6200	58687.31	56006.68	99
120242	3275	6212.5	58686.85	56006.2	
120302	3275	6225			99
			58692.15	56011.66	99
120426	3325	6225	58686.65	56007.14	99
120454	3325	6212.5	58678.72	55999.11	99
120514	3325	6200	58684.99	56005.48	99
120546	3325	6187.5	58683.35	56003.44	99
120614	3325	6175	58679.82	55999.76	99
120742	3325	6162.5	58688.11	56007.93	99
120802	3325	6150	58701.14	56021.16	99
120834	3325	6137.5	58693.19	56013.36	99
120854	3325	6125	58682.46		
120918				56002.46	99
	3325	6112.5	58691.74	56011.61	99
120958	3325	6100	58706.06	56026.1	99
121022	3325	6087.5	58697.09	56017.25	99
121050	3325	6075	58694.05	56014.15	99
121138	3325	6062.5	58690.58	56010.37	99
121202	3325	6050	58682.83	56002.87	99
121234	3325	6037.5	58691.09		
				56011.55	99
121254	3325	6025	58684.57	56005.22	99
121334	3325	6012.5	58691.48	56012.59	99
121358	3325	6000	58679.36	56000.19	99
121438	3325	5987.5	58669.6	55989.74	99
121506	3325	5975	58672.75	55992.57	99
121530	3325	5962.5	58670.68	55990.41	99
121546	3325	5950	58683.22	56002.93	99
121614	3325	5937.5	58674.11	55993.64	99
121642	3325	5925	58692.22		
121714				56011.74	99
	3325	5912.5	58699.67	56019.24	99
121742	3325	5900	58704.8	56024.35	
121810	3325	5887.5	58697.08	56016.97	99
121834	3325	5875	58668.34	55988.28	99
121858	3325	5862.5	58675.44	55995.34	99
121922	3325	5850	58677.88	55997.56	99
122006	3325	5837.5	58689.88	56009.62	99
122050	3325	5825	58693.97	56014.09	99
122202	3325	5812.5	58695.35		
22234.6				56015.03	99
	3325	5800	58698.38	56017.79	99
122306	3325	5787.5	58679.01	55998.22	99
122334	3325	5775	58687.3	56006.27	99
122402	3325	5762.5	58686.64	56005.34	99
122430	3325	5750	58696.17	56014.59	99
122454	3325	5737.5	58691.51	56009.89	99
122514	3325	5725	58683.1	56001.32	99
122542	3325	5712.5	58691.21	56009.52	99
122610	3325	5700			
			58685.03	56003.76	99
122638	3325	5687.5	58680.5	55999.81	99
122654	3325	5675	58680.22	55999.89	99
122718	3325	5662.5	58688.11	56008.24	99
122734	3325	5650	58681.13	56001.39	99
122758	3325	5637.5	58681.88	56002.09	99
122826	3325	5625	58681.21	56001.42	99
23518.4	3375	5625	58666.38	55984.94	99
123602		_			
123630	3375	5637.5	58674.33	55993.07	99
	3375	5650	58670.61	55989.17	99
123706	3375	5662.5	58670.2	55988.05	99
123722	3375	5675	58676.17	55993.54	99
123742	3375	5687.5	58678.46	55995.42	99
123806	3375	5700	58679.75	55996.53	99
123850	3375	5712.5	58688.43	56005.75	99
123914	3375	5725	58668.29	55985.85	99
123946	3375	5737.5	58689.5		
124018	3375	5750		56007.68	99
			58672.67	55991.26	99
124042	3375	5762.5	58684.56	56003.24	99
124102	3375	5775	58683.71	56002.45	99
124138	3375	5787.5	58674.1	55992.42	99
124158	3375	5800	58681.99	56000	99
124230	3375	5812.5	58695.78	56013.07	99
124314	3375	5825	58692.21	56009.03	99
124350	3375	5837.5	58685.57	56002.83	
124414	3375	5850			99
			58682.61	56000.19	99
124434	3375	5862.5	58686.52	56004.34	99
124454	3375	5875	58694.01	56011.97	99
124530	3375	5887.5	58682.48	56000.53	99
124602	3375	5900	58694.1	56012.53	99
124630	3375	5912.5	58676.93		
124658				55995.76	99
	3375	5925	58682.22	56001.14	99
124742	3375	5937.5	58690.34	56009.05	99
124802	3375	5950	58684.32	56002.88	99
124838	3375	5962.5	58683.12	56001.73	99
	3375	5975	58696.84	56015.43	99
1248581				00010.70	55
124858	3375	5987.5	58691.4	56009.01	99

.

1.00 C

time li 125130	ine 3375	station 6012.5	Raw Magnetics (nT)	Corrected Magnetics (nT)	FieldStrength
125130	3375	6012.5	58702.65	56018.87	99
			58696.24	56012.57	99
125218	3375	6037.5	58687,49	56004.28	99
125242	3375	6050	58691,62	56009.01	99
125318	3375	6062.5	58702.32	56020,18	99
125338	3375	6075	58705.12	56023.04	99
125406	3375	6087.5	58688.49	56006.15	99
125430	3375	6100	58696.54	56013.92	99
125502	3375	6112.5	58695.96	56012.92	99
125526	3375	6125	58693.22	56009,97	99
125550	3375	6137.5	58692.36	56009.16	
125610	3375	6150			99
			58689.17	56006.08	99
125638	3375	6162.5	58692.23	56009.12	99
125654	3375	6175	58692.55	56009.45	99
125750	3375	6187.5	58690.24	56007.71	99
125810	3375	6200	58695.48	56012.98	99
125838	3375	6212.5	58691.87	56009.13	99
125910.6	3375	6225	58683.28	56000.28	99
132714	3425	5625	58667.53	55985.01	99
132814	3425	5637.5	58680.21	55998	99
132834	3425	5650	58684.82	56002.87	99
132910	3425	5662.5	58680.29	55998.17	99
132934	3425				
133002	3425	5675	58683.04	56000.08	99
			58670.57	55987.47	99
133046	3425	5700	58685.75	56003.3	99
133310	3425	5712.5	58671.9	55990.18	99
133418	3425	5725	58662.19	55981.7	99
133442	3425	5737.5	58667.63	55987.27	99
133502	3425	5750	58673.6	55993.29	99
133530	3425	5762.5	58674.13	55994.3	99
133634	3425	5775	58678.75	56001.07	99
133722	3425	5787.5	58679.21		
133730	3425	5787.5	58679.51	56002.12	99
133814				56002.34	99
	3425	5812.5	58675.86	55998.87	99
133838	3425	5825	58674.35	55997.72	99
133926	3425	5837.5	58673.86	55997.04	99
134002	3425	5850	58678.75	56001.94	99
134042	3425	5862.5	58678.9	56003.25	99
134210	3425	5875	58667.35	55993.62	99
134238	3425	5887.5	58674.66	56000.7	99
134342	3425	5900	58680.99		
134430	3425	5912.5		56005.91	99
134454			58668.22	55992.78	99
	3425	5925	58664.38	55988.61	99
134538	3425	5937.5	58666.5	55990.19	99
134642	3425	5950	58666.76	55990.5	99
134714	3425	5962.5	58674.56	55997.23	99
134746	3425	5975	58674.33	55995.85	99
134814	3425	5987.5	58679.76	56000.52	99
134830	3425	6000	58676.31	55996.8	99
134854	3425	6012.5	58676.17	55996.38	99
134914	3425	6025	58678.29	55998.38	99
134934	3425	6037.5	58681.22	56001.08	
141114	3425	6050			99
41506.8			58697.11	56004.49	99
	3425	6062.5	58708.91	56012.94	99
141526	3425	6075	58715.44	56019.81	99
141630	3425	6087.5	58718.44	56021.68	99
141650	3425	6100	58716.56	56019.52	99
141722	3425	6112.5	58710,56	56013.97	99
141818	3425	6125	58711.75	56016.02	99
141926	3425	6137.5	58712	56016.75	99
142006	3425	6150	58708.91	56014.25	99
142126	3425	6162.5	58723.67	56028.44	99
142154	3425	6175	58712.22	56016.93	
142250	3425	6187.5	58707.48		99
142342	3425	6200		56013.01	99
			58711.84	56017.52	99
142446	3425	6212.5	58705.64	56010.85	99
142506	3425	6225	58718.32	56023.44	99
142854	3475	6225	58725.81	56024.5	99
142930	3475	6212.5	58727.4	56026.07	99
142954	3475	6200	58715.15	56013.88	99
143026	3475	6187.5	58702.89	56001.92	99
143118	3475	6175	58708.47	56007.86	99
143150	3475	6162.5	58730.2	56029.73	99
143250	3475	6150	58716.72	56015.93	99
143326	3475	6137.5	58710.69	56009.6	
143402	3475	6125			99
143402			58711.53	56010.19	99
	3475	6112.5	58712.38	56011.34	99
143554	3475	6100	58707.64	56006.8	99
143634	3475	6087.5	58706.26	56006.9	99
143706	3475	6075	58705.87	56008.14	99
143814	3475	6062.5	58706.34	56010.11	99
143842	3475	6050	58708.91	56012.68	99 - 99
143910	3475	6037.5	58703.34	56007.2	
143934	3475	6037.5	58710.82		99
				56014.42	99
143958	3475	6025	58702.15	56005.66	99
144018	3475	6012.5	58705.87	56009.65	99
144034	3475	6000	58708.92	56012.97	99
	3475	5987.5	58711.93	56016,19	99
4 4 4 9 4 9					
44210 44306	3475	5975	58715.15	56018.53	99

120 12 10

9

1

			Raw Magnetics (nT)	Corrected Magnetics (nT)	FieldStrengt
144326	3475	5962.5	58721.45	56025.24	99
144346	3475	5950	58709.54	56013.93	99
144642	3475	5937.5	58703.6	56011.46	99
144738	3475	5925	58708.92	56016.36	99
145142	3475	5912.5	58715.89	56014.25	99
145522	3475	5900	58707.53	55998.65	99
145554	3475	5887.5	58730.62	56022.02	99
145618	3475	5875	58716.24	56008.78	99
132210	3475	5862.5	58693.25	56009.37	99
132226	3475	5850	58696.11	56012.32	99
	3475				
132250		5837.5	58699.61	56015.77	99
132306	3475	5825	58690.31	56006.5	99
132334	3475	5812.5	58698.76	56015.1	99
132354	3475	5800	58692.93	56009.52	99
132430	3475	5787.5	58695.42	56012.11	99
132454	3475	5775	58683.54	55999.81	99
132502	3475	5775	58687.08	56003.77	99
132650	3475	5762.5	58681.89	55998.27	99
132710	3475	5750	58684.11	56000.79	99
132730	3475	5737.5			
			58687.93	56004.04	99
132750	3475	5725	58680.98	55997.65	99
132814	3475	5712.5	58681.92	55998.29	99
132838	3475	5700	58690.71	56006.71	99
132906	3475	5687.5	58687.61	56003.6	99
132930	3475	5675	58693.76	56009.97	99
132950	3475	5662.5	58690.37	56006.56	99
133010	3475	5650	58701.29	56017.82	99
133030	3475	5637.5			
			58694.21	56009.84	99
133050	3475	5625	58684.59	56000.73	99
133138	3525	5625	58681.64	55997.09	99
133158	3525	5637.5	58676.6	55992.3	99
133214	3525	5650	58680	55995.64	99
133238	3525	5662.5	58689.54	56005.1	99
133310	3525	5675	58685.95	56001.96	99
133334	3525	5687.5	58686.52	56003,13	99
133402	3525	5700	58687.26	56004.04	99
133430	3525	5712.5	58692.07	56009.23	99
133454	3525				
		5725	58680.7	55998.01	99
133514	3525	5737.5	58682.04	55999.37	99
133530	3525	5750	58678.31	55995.74	99
133558	3525	5762.5	58677.04	55994.4	99
133626	3525	5775	58682.35	56000.05	99
133654	3525	5787.5	58691.8	56009.88	99
133714	3525	5800	58681.15	55998.88	99
133738	3525	5812.5	58684.42	56002.74	99
133806	3525	5825	58690.82	56009.4	
133838					99
	3525	5837.5	58684.43	56002.99	99
133858	3525	5850	58680.12	55998.53	99
133934	3525	5862.5	58684.95	56002.95	99
133954	3525	5875	58685.53	56003.5	99
134030	3525	5887.5	58687.65	56004.99	99
134142	3525	5900	58685.7	56002.1	99
134158	3525	5912.5	58687.62	56004.31	99
134214	3525	5925	58686.59	56002.52	99
134234	3525	5937.5			
			58694.9	56010.77	99
134258	3525	5950	58703.83	56018.81	99
134318	3525	5962.5	58695.11	56009.57	99
134338	3525	5975	58693.77	56007.65	99
134358	3525	5987.5	58698.27	56011.78	99
134422	3525	6000	58691.74	56005.26	99
134446	3525	6012.5	58698.37	56011.66	99
134514	3525	6025	58690.47	56003.78	99
134610	3525	6037.5	58695.35	56007.83	99
134642	3575	6025	58698.37	56010.46	99
134714	3575	6012.5	58701.77		
				56013.87	99
134738	3575	6000	58694.85	56007.1	99
134806	3575	5987.5	58695.46	56008.21	99
134830	3575	5975	58689.41	56002.21	99
134910	3575	5962.5	58689,63	56003.24	99
134930	3575	5950	58691.03	56004.32	99
135022	3575	5937.5	58690.13	56003.95	99
135050	3575	5925	58694.54	56008.33	99
135114	3575	5912.5	58697.31	56010.67	99
135146	3575	5900	58689.63		
135214	3575			56002.84	99
		5887.5	58700.49	56013.83	99
135234	3575	5875	58693.38	56006.91	99
135302	3575	5862.5	58692.74	56007	99
135334	3575	5850	58699.86	56014.77	99
135354	3575	5837.5	58700.27	56015.04	99
135414	3575	5825	58681.08		-
				55996.21	99
135438	3575	5812.5	58687.76	56003.39	99
135502	3575	5800	58696.25	56012.37	99
135526	3575	5787.5	58700.94	56017.72	99
135634	3575	5775	58702.16	56019.98	99
135658	3575	5762.5	58695.15	56013.21	99
135726	3575	5750	58687.5		
135750				56005.86	99
1.121721171	3575	5737.5	58688.39	56007.36	99
135814 135846	3575 3575	5725 5712.5	58690.05 58683.37	56008.84 56002.34	99 99

time	line	station	Raw Magnetics (nT)	Corrected Magnetics (nT)	FieldStrengt
135914	3575	5700	58690.65	56009.8	99
135954	3575	5687.5	58691.85	56011.83	99
140050	3575	5675	58689.05	56009.21	99
140422	3575	5662.5	58686.25	56006.14	99
140454	3575	5650	58688.45	56008.68	99
140802	3575	5637.5	58694	56013.6	99
140742	3575	5625	58699.36	56019.5	99
140930	3625	5625	58680.87	55999.63	99
141002	3625	5637.5	58691.74	56010.49	99
141018	3625	5650	58680.34	55998.65	99
141050	3625	5662.5	58690.01	56008.62	99
141114	3625	5675	58676,27	55995.43	99
141138	3625	5687.5	58684.44	56003.51	99
141202	3625	5700	58682.24	56001.34	99
141202	3625	5712.5	58677.33	55996.59	99
141242	3625	5725	58679.99		99
					99
141302	3625	5737.5	58689.7	56008.4	
141322	3625	5750	58681.93	56000.6	99
141346	3625	5762.5	58688.88	56007.47	99
141406	3625	5775	58691.65	56010.68	99
141430	3625	5787.5	58690.8	56010.3	99
141450	3625	5800	58696.19	56015.74	99
141510	3625	5812.5	58684.08	56003.98	99
141534	3625	5825	58685.81	56005.64	99
141602	3625	5837.5	58685.65	56005.65	99
141622	3625	5850	58686.52	56006.79	99
141646	3625	5862.5	58682.23	56002.61	99
141714	3625	5875	58688.43	56008.8	99
141734	3625	5887.5	58686.19	56006.09	99
141802	3625	5900	58686.04	56005.44	99
141826	3625	5912.5	58684.42	56003.37	99
					99
141846	3625	5925	58690.12	56008.62	
141906	3625	5937.5	58689.51	56007.86	99
141930	3625	5950	58691.79	56009.57	99
142010	3625	5962.5	58687.35	56004.22	99
142050	3625	5975	58691.68	56007.78	99
142122	3625	5987.5	58691.78	56007.39	99
142150	3625	6000	58682.47	55997.85	99
142218	3625	6012.5	58686.8	56001.92	99
142302	3625	6025	58687,01	56002	99
143326	3675	5625	58677.67	55994.48	99
143358	3675	5637.5	58679.71	55996.51	99
143418	3675	5650	58675.04	55991.78	99
143442	3675	5662.5	58686.68	56003.62	99
143502	3675	5675	58680.81	55997.66	99
143522	3675	5687.5	58684.06	56000.93	99
143542	3675	5700	58673.78	55990.64	99
143542	3675	5712.5	58675.27	55990.64	99
		5725			
143642	3675		58681.79	55998.73	99
143714	3675	5737.5	58688.3	56005.33	99
143746	3675	5750	58689,93	56006.85	99
143810	3675	5762.5	58689.14	56005.8	99
143826	3675	5775	58687.98	56004.66	99
143850	3675	5787.5	58684.18	56000.71	99
143910	3675	5800	58688.32	56004.85	99
143930	3675	5812.5	58687.85	56004.44	99
143950	3675	5825	58690.12	56006.61	99
144018	3675	5837.5	58690.25	56006.26	99
144034.1	3675	5850	58690.52	56006.58	99
144102	3675	5862.5	58699.26	56015.2	99
144126	3675	5875	58693.11	56009.17	99
144150	3675	5887.5	58693.36	56009.5	99
144210	3675	5900	58693.12	56009.28	99
144238	3675	5912.5	58701.83	56017.8	99
144254	3675	5925	58700.37	56016.33	99
144326	3675	5937.5	58705.07	56021,3	99
144346	3675	5950	58694.68	56010.89	99
144346	3675	5962.5		56008.69	
			58692		99
144442	3675	5975	58693.09	56009.69	99
144518	3675	5987.5	58690.85	56007.6	99
144542	3675	6000	58694.08	56010.88	99
144602	3675	6012.5	58691.2	56008.25	99
144634	3675	6025	58690,76	56007.88	99

APPENDIX 3 2002-2003 DIAMOND INDICATOR RESULTS

÷

e.

Sample Number	Sample Type	Date	Sampler	UMT Easting	UTM Northing N27	Denes	Eclogitic	Chrome					Total	Total	Total Silicates	Total All
02BWH001	Pan Con	25-Oct	BW	543192	6034194	Pyrope	Garnet	Diopside	Cr-Gross	Olivine	Picroilmenite	Chromite	Silicates	Oxides	Picroilmenite	DIMs
02BWH002	Pan Con	25-Oct	BW	541234	6031587	0	0	0	0	0	0	0	0	0	0	0
02BWH003	Beach	31-Oct	BW	512565		0	0	0	0	0	0	0	0	0	0	0
028WH004	Beach	31-Oct	BW	512505	6034805	0	0	0	0	0	0	0	0	0	0	0
028WH005	Pan Con	1-Nov	BW		6034574	0	0	0	0	0	0	0	0	0	0	0
02BWH006	Pan Con	1-Nov	BW	507683	6057601	1	0	0	0	0	0	0	1	0	1	1
02BWH007	Pan Con	2-Nov		525393	6050432	0	0	0	0	0	0	1	0	1	0	1
02BWH008	Pan Con	2-Nov	BW/WC	523913	6077223	0	0	0	0	0	0	0	0	0	0	0
02BWH009	Pan Con	2-Nov	BW/WC	521778	6076871	1	0	0	0	0	0	0	1	0	1	1
02BWH010	Pan Con	3-Nov	BW/WC	521125	6076909	0	0	0	0	0	0	7	0	7	0	7
02BWH011	Pan Con		BW/WC	520804	6080359	1	0	0	0	0	0	2	1	2	1	3
02BWH012	Pan Con	3-Nov	BW/WC	521736	6080478	0	0	0	0	0	0	0	0	0	0	0
02BWH012	Pan Con Pan Con	3-Nov	BW/WC	521697	6080407	1	0	0	0	0	0	1	1	1	1	2
02BWH013		3-Nov	BW/WC	519860	6083018	1	1	0	0	0	0	3	2	3	2	5
02BWH015	Pan Con	4-Nov	BW/WC	521447	6071161	0	0	0	0	0	0	2	0	2	0	2
	Pan Con	4-Nov	BW/WC	517447	6070996	1	1	0	0	0	0	4	2	4	2	6
02BWH016	Pan Con	4-Nov	BW/WC	512938	6071389	1	0	1	0	0	0	0	2	0	2	2
02BWH017	Pan Con	4-Nov	BW/WC	513387	6070512	0	0	0	0	0	0	1	0	1	0	1
02BWH018	Pan Con	6-Nov	BW/WC	524032	6105754	0	0	0	0	0	0	0	0	0	0	0
02BWH019	Pan Con	6-Nov	BW/WC	524851	6104069	0	0	0	0	0	0	0	0	0	0	0
02BWH020	Pan Con	6-Nov	BW/WC	521781	6097986	0	0	0	0	0	0	0	0	0	0	0
02BWH021	Pan Con	6-Nov	BW/WC	522229	6101511	0	0	0	0	0	0	0	ő	0	0	0
02BWH022	Pan Con	8-Nov	BW/WC	537266	6083335	1	0	2	0	0	0	2	3	2	3	5
02BWH023	Pan Con	8-Nov	BW/WC	536301	6080230	0	0	0	0	0	0	3	0	3	0	3
02BWH024	Pan Con	8-Nov	BW/WC	533345	6086447	2	0	0	0	1	0	4	3	4	3	7
02BWH025	Pan Con	8-Nov	BW/WC	533462	6084326	1	0	0	0	0	0	1	1	4	1	
02BWH026	Pan Con	19-Nov	BW/CP	541766	6089963	0	0	0	0	0	0	4	0	4		2
02BWH027	Pan Con	19-Nov	BW/CP	531896	6092778	0	0	0	0	0	0	2	0		0	4
02CPH001	Pan Con	23-Oct	CP/HK	555745	6034004	0	0	0	0	0	0	4	0	2	0	2
02CPH002	Pan Con	23-Oct	CP/HK	556848	6033502	0	0	0	0	1	0	3		4	0	4
2CPH003	Pan Con	24-Oct	CP	537272	6040839	1	0	0	0	0	0		1	3	1	4
2CPH004	Pan Con	24-Oct	CP	534606	6040594	0	0	0	0	0	0	0	1	0	1	1
2HKH001	Pan Con	24-Oct	BW/HK	555977	6031735	1	0	0	0	0	0	0	0	0	0	0
2HKH002	Pan Con	24-Oct	HK	539711	6039312	0	0	0	0	0		9	1	9	1	10
2HKH003	Pan Con	24-Oct	HK	542325	6046363	1	0	0	0		0	1	0	1	0	1
2MDH100	Beach	2-Nov	MD	511549	6107259	0	0	0		0	0	2	1	2	1	3
2MDH101	Beach	2-Nov	MD	517684	6108161	3	0		0	0	0	0	0	0	0	0
2MDH102	Pan Con	2-Nov	MD	513619	6094434	2	0	0	1	0	0	0	4	0	4	4
2MDH103	Pan Con	2-Nov	MD	513505	6094322	0	0	0	0	0	0	0	2	0	2	2
2MDH104	Suction Dedge	2-Nov	MD	518048	6066707	0	1		0	0	0	0	0	0	0	0
2MDH105	Suction Dedge	3-Nov	MD	517087	6073974	1		0	0	1	1	15	2	16	3	18
2MDH106	Suction Dedge	3-Nov	MD	509423	6092937	-	0	0	0	0	2	23	1	25	3	26
2MDH107	Suction Dedge	3-Nov	MD	506378	6092937	1		0	0	0	0	0	3	0	3	3
2WCH001	Pan Con	1-Nov	MD/WC	514781	6044811	1	4	0	0	0	0	1	5	1	5	6
2WCH002	Pan Con	1-Nov	MD/WC	513776			0	0	0	0	0	0	0	0	0	0
2WCH003	Pan Con	1-Nov	MD/WC	513315	6043896	0	0	0	0	0	0	0	0	0	0	0
2WCH004	Pan Con	1-Nov	MD/WC	513315	6040184	2	0	0	0	0	0	1	2	1	2	3
2WCH005	Pan Con	1-Nov	MD/WC	517682	6037764	0	0	0	0	0	0	0	0	0	0	0
2WCH006	Pan Con	1-Nov	MD/WC	the second se	6037705	0	0	0	0	0	0	3	0	3	0	3
2ACDGH108	Suction Dedge	1-1404	MD/WVG	523646	6035396	0	0	0	0	0	0	0	0	0	0	0
2CDH103	Suction Dedge			536751	6076463	0	0	0	0	0	0	0	0	0	0	0
2CJOH002	Suction Dedge			531900	6092775	1	2	0	0	0	0	1	3	1	3	4
3NVT001	Till	1 11-11	ALLER DUTINAL	580455	6047510	0	0	0	0	0	0	2	0	2	0	2
3NVT002	Till	1-Nov	AM/NV/BW	532557	6083523	0	0	0	0	0	0	0	0	0	0	0
3NVT002		1-Nov	AM/NV/BW	532292	6083436	0	0	0	0	0	0	0	0	0	0	0
3NVT004	Till	1-Nov	AM/NV/BW	532097	6083249	0	0	0	0	0	0	0	0	0	0	0
	Till	1-Nov	AM/NV/BW	531892	6083088	0	0	0	0	0	0	0	0	0	0	0
3NVT005	Till	1-Nov	AM/NV/BW	531747	6082889	0	0	0	0	0	0	0	0	0	0	0

Sample Number	Sample Type	Date	Sampler	UMT Easting N27	UTM Northing N27	Pyrope	Eclogitic Garnet	Chrome Diopside	Cr-Gross	Olivine	Picroilmenite	Chromite	Total Silicates	Total Oxides	Total Silicates Picroilmenite	Total Ali DIMs
03NVT006	Till	1-Nov	AM/NV/BW	531678	6082622	0	0	0	0	0	1	0	0	0	1	1
03NVT007	Till	1-Nov	AM/NV/BW	531675	6082393	0	0	0	0	0	0	0	0	1	0	0
03NVT008	Till	1-Nov	AM/NV/BW	531735	6082142	0	0	0	0	0	0	0	0	0	0	0
03NVT009	Till	2-Nov	AM/NV/BW	531675	6081661	0	0	0	0	0	0	0	0	0	0	0
03NVT010	Till	2-Nov	AM/NV/BW	532128	6081408	0	0	0	0	0	0	Ő	0	0	0	0
03NVT011	Till	2-Nov	AM/NV/BW	531095	6077657	0	0	0	0	0	0	0	0	0	0	0
03NVT012	Till	3-Nov	NV/AM	529235	6075769	0	0	0	0	0	0	0	0	0	0	0
03NVT013	Till	3-Nov	NV/AM	529466	6075843	0	0	0	0	0	0	0	0	0	0	0
03NVT014	Till	3-Nov	NV/AM	529591	6075905	0	0	0	0	0	0	1	0	1	0	1
03NVT015	Till	3-Nov	NV/AM	529959	6076228	0	0	0	0	0	0	1	0	1	0	1
03NVT016	Till	3-Nov	NV/AM	530190	6076336	0	0	0	0	0	0	1	0	1	0	1
03NVT017	Till	3-Nov	NV/AM	530431	6076424	0	0	0	0	0	0	1	0	1	0	1
03NVT018	Till	3-Nov	NV/AM	530639	6076587	0	0	0	0	0	0	0	0	0	0	0
03NVT019	Till	5-Nov	AM/NV	530986	6076674	0	0	0	0	0	0	0	0	0	0	0
03NVT020	Till	5-Nov	AM/NV	531214	6077145	0	0	0	0	0	0	0	0	0	0	0
03NVT021	Till	6-Nov	AM/NV/PW	531054	6078181	0	0	0	0	0	0	0	0	0	0	0
03NVT022	Till	6-Nov	AM/NV/PW	531131	6078642	0	0	0	0	0	0	0	0	0	0	0
03NVT023	Till	6-Nov	AM/NV/PW	531248	6078867	0	0	0	0	0	0	0	0	0	0	0
03NVT024	Till	6-Nov	AM/NV/PW	531494	6078925	0	0	0	0	0	0	0	0	0	0	0
03NVT025	Till	6-Nov	AM/NV/PW	531773	6079605	0	0	0	0	0	0	0	0	0	0	0
03NVT026	Till	6-Nov	AM/NV/PW	531696	6079072	0	0	0	0	0	0	0	0	0	0	0
03NVT027	Till	6-Nov	AM/NV/PW	531828	6080153	0	0	0	0	0	0	0	0	0	0	0
03NVT028	Till	6-Nov	AM/NV/PW	531869	6080625	0	0	0	0	0	0	0	0	0	0	0
03NVT029	Till	6-Nov	AM/NV/PW	532404	6081079	0	0	0	0	0	0	0	0	0	0	0
03NVT030	Till	9-Nov	PW/AM/NV	527472	6090112	0	0	0	0	0	0	0	0	0	0	0
03NVT031	Till	8-Nov	PW/AM/NV	526661	6088821	0	0	0	0	0	0	0	0	0	0	0
03NVT032	Till	9-Nov	PW/AM/NV	527297	6089887	2	0	1	0	0	1	0	3	0	4	4
03NVT033	Till	9-Nov	PW/AM/NV	527066	6089829	0	0	0	0	0	0	1	0	2	0	1
03NVT034	Till	9-Nov	PW/AM/NV	527117	6089501	1	0	0	0	0	0	0	1	0	1	1
03NVT035	Till	9-Nov	PW/AM/NV	526942	6089292	0	0	0	0	0	0	0	0	0	0	0
03NVT036	Till	9-Nov	PW/AM/NV	526493	6088622	0	0	0	0	0	0	0	0	0	0	0
03NVT037	Till	9-Nov	PW/AM/NV	526375	6088391	0	0	0	0	0	0	0	0	0	0	0
03NVT038	Till	9-Nov	PW/AM/NV	526210	6088204	0	0	0	0	0	0	0	0	0	0	0
03NVT039	Till	9-Nov	PW/AM/NV	526095	6087995	0	0	0	0	0	0	0	0	0	0	0
03NVT040	Till	9-Nov	PW/AM/NV	525903	6087744	0	0	0	0	0	0	0	0	0	0	0
03NVT041	Till	10-Nov	NV/AM/PW	522839	6083175	0	0	0	0	0	0	0	0	0	0	0
03NVT042	Till	10-Nov	NV/AM/PW	522985	6083408	0	0	0	0	0	0	0	0	0	0	0
03NVT043	Till	10-Nov	NV/AM/PW	523119	6083625	0	0	0	0	0	0	0	0	0	0	0
03NVT044	Till	10-Nov	NV/AM/PW	523272	6083825	0	0	0	0	0	0	0	0	0	0	0
03NVT045	Till	10-Nov	NV/AM/PW	523462	6084143	0	0	0	0	0	0	0	0	0	0	0
03NVT046	Till	10-Nov	NV/AM/PW	523621	6084339	0	0	0	0	0	0	0	0	0	0	0
03NVT047	Till	10-Nov	NV/AM/PW	523742	6084549	0	0	0	0	0	0	0	0	0	0	0
03NVT048	Till	10-Nov	NV/AM/PW	523947	6084854	0	0	0	0	0	0	0	0	0	0	0
03NVT049	Till	10-Nov	NV/AM/PW	524120	6085111	0	0	0	0	0	0	0	0	0	0	0
03NVT050	Till	10-Nov	NV/AM/PW	524277	6085309	0	0	0	0	0	0	0	0	0	0	0
03NVT051	Till	11-Nov	AM/PW	524408	6085528	0	0	0	0	0	0	0	0	0	0	0
03NVT052	Till	11-Nov	AM/PW	524566	6085755	0	0	0	0	0	0	0	0	0	0	0
03NVT053	Till	11-Nov	AM/PW	524707	6085954	0	0	0	0	0	0	0	0	0	0	0
03NVT054	Till	11-Nov	AM/PW	524833	6086164	0	0	0	0	0	0	0	0	0	0	0
03NVT055	Till	11-Nov	AM/PW	524987	6086366	0	0	0	0	0	0	1	0	1	0	1
03NVT056	Till	11-Nov	AM/PW	525140	6086583	0	0	0	0	0	0	0	0	0	0	0
03NVT057	Till	11-Nov	AM/PW	525253	6086787	0	0	0	0	0	0	0	0	0	0	0
03NVT058	Till	11-Nov	AM/PW	525390	6087019	0	0	0	0	0	0	0	0	0	0	0
03NVT059	Till	12-Nov	PW/AM	525547	6087208	1	0	0	0	0	0	0	1	0	1	1
03NVT060	Till	12-Nov	PW/AM	522679	6082949	0	0	0	0	0	0	0	0	0	0	0
03NVT061	Till	12-Nov	PW/AM	525692	6087388	0	0	0	0	0	0	3	0	3	0	3

Sample Number	Sample Type	Date	Sampler	UMT Easting N27	UTM Northing N27	Pyrope	Eclogitic Gamet	Chrome Diopside	Cr-Gross	Olivine	Picroilmenite	Chromite	Total Silicates	Total Oxides	Total Silicates Picroilmenite	Total All DIMs
03NVT062	Till	12-Nov	PW/AM	525789	6087574	0	0	0	0	0	0	1	0	1	0	1
03NVT063	Till	15-Nov	AM/PW	531523	6094924	0	0	0	0	0	0	0	0	0	0	0
03NVT064	Till	15-Nov	AM/PW	532036	6094937	0	0	0	0	0	0	0	0	0	0	0
03NVT065	Till	15-Nov	AM/PW	532527	6094895	0	0	0	0	0	0	0	0	0	0	0
03NVT066	Till	17-Nov	PW/AM	533013	6094830	0	0	0	0	0	0	Ő	0	0	0	0
03NVT067	Till	17-Nov	PW/AM	533541	6094840	1	0	1	0	0	0	0	2	0	2	2
03NVT068	Till	17-Nov	PW/AM	534044	6094808	0	0	0	Ő	0	0	0	0	0	0	0
03NVT069	Till	17-Nov	PW/AM	534557	6094768	0	0	0	0	0	0	0	0	0	0	0
03NVT070	Till	17-Nov	PW/AM	535047	6094705	0	0	0	0	0	0	0	0	0	0	0
03NVT071	Till	17-Nov	PW/AM	535550	6094679	0	0	0	0	0	0	0	0	0	0	0
03NVT072	Till	17-Nov	PW/AM	536122	6094641	0	0	0	0	0	0	0	0	0	0	0
03NVT073	Till	17-Nov	PW/AM	536619	6094676	0	0	0	0	4	0	0	4	0	4	4
03NVT074	Till	17-Nov	PW/AM	537157	6094714	0	0	0	0	2	0	0	2	0	2	2
03NVT075	Till	17-Nov	PW/AM	537648	6094675	0	0	0	0	0	0	0	0	0	0	0
03NVT076	Till	18-Nov	AM/PW	538206	6094984	0	0	0	0	0	0	0	0	0	0	0
03NVT077	Till	18-Nov	AM/PW	538641	6095146	0	0	0	0	0	0	0	0	0	0	0
03NVT078	Till	18-Nov	AM/PW	539078	6095391	0	0	0	0	0	0	0	0	0	0	0
03NVT079	Till	18-Nov	AM/PW	539578	6095533	0	0	0	0	0	0	0	0	0	0	0
03NVT080	Till	18-Nov	AM/PW	540067	6094564	0	0	0	0	0	0	0	0	0	0	0
03NVT081	Till	23-Nov	AM/PW	522519	6098433	0	0	0	0	0	0	0	0	0	0	0
03NVT082	Till	23-Nov	AM/PW	522741	6098572	2	0	1	0	0	0	0	3	0	3	3
03NVT083	Till	23-Nov	AM/PW	522958	6098688	0	0	0	0	0	0	0	0	0	0	0
03NVT084	Till	23-Nov	AM/PW	523182	6098810	0	0	0	0	0	0	1	0	1	0	1
03NVT085	Till	25-Nov	PW/AM	521633	6097935	0	0	0	0	0	0	0	0	0	0	0
03NVT086	Till	25-Nov	PW/AM	521873	6098028	0	0	0	0	0	0	0	0	0	0	0
03NVT087	Till	25-Nov	PW/AM	522077	6098152	0	0	0	0	0	0	0	0	0	0	0
03NVT088	Till	25-Nov	PW/AM	522311	6098304	0	0	0	0	0	0	0	0	0	0	0
03NVT089	Till	26-Nov	PW/AM	523422	6098946	0	0	0	0	0	0	0	0	0	0	0
03NVT090	Till	26-Nov	AM/PW	521253	6097626	0	0	0	0	0	0	0	0	0	0	0
03NVT091	Till	26-Nov	AM/PW	521458	6097783	0	0	0	0	0	0	0	0	0	0	0
03NVT092	Till	27-Nov	PW/AM	521010	6097460	0	0	0	0	0	0	0	0	0	0	0
03NVT093	Till	27-Nov	PW/AM	520807	6097380	0	0	0	0	0	0	0	0	0	0	0
03NVT094	Till	27-Nov	PW/AM	520054	6096912	0	0	0	0	0	0	0	0	0	0	0
03NVT095	Till	27-Nov	PW/AM	519844	6096802	0	0	0	0	0	0	0	0	0	0	0
03NVT096	Till	27-Nov	PW/AM	519648	6096672	0	0	0	0	0	0	0	0	0	0	0
03NVT097	Till	28-Nov	AM/PW	519449	6096537	0	0	0	0	0	0	0	0	0	0	0
03NVT098	Till	28-Nov	AM/PW	519240	6096397	0	0	0	0	0	0	0	0	0	0	0
03NVT099	Till	28-Nov	AM/PW	519029	6096261	0	0	0	0	0	0	0	0	0	0	0
03NVT100	Till	28-Nov	AM/PW	518828	6096099	0	0	0	0	0	0	0	0	0	0	0
03NVT101	Till	28-Nov	AM/PW	518648	6095937	0	0	0	0	0	0	0	0	0	0	0
03NVT102	Till	28-Nov	AM/PW	518456	6095776	0	0	0	0	0	0	0	Ő	0	0	0
03NVT103	Till	28-Nov	AM/PW	518249	6095600	0	0	0	0	0	0	0	0	0	0	0
03NVT104	Till	29-Nov	PW/AM	518042	6095459	0	0	0	0	0	0	0	0	0	0	0
03NVT105	Till	29-Nov	PW/AM	523631	6099089	0	0	0	0	0	0	0	0	0	0	0
03NVT106	Till	29-Nov	PW/AM	523949	6099289	0	0	0	0	0	0	0	0	0	0	0
03NVT107	Till	29-Nov	PW/AM	524152	6099450	0	0	0	0	0	0	0	0	0	0	0
03NVT108	Till	29-Nov	PW/AM	524391	6099563	0	0	0	0	0	0	0	0	0	0	0
03NVT109	Till	29-Nov	PW/AM	524617	6099676	0	0	0	0	0	0	0	0	0	0	0
03NVT110	Till	2-Dec	PW/AM	516134	6094400	0	0	0	0	0	0	0	0	0	0	0
03NVT111	Till	2-Dec	PW/AM	515933	6094289	0	0	0	0	0	0	0	0	0	0	0
03NVT112	Till	2-Dec	PW/AM	515716	6094159	0	0	0	0	0	0	0	0	0	0	0
03NVT113	Till	15-Dec	PW/AM	516573	6114682	0	0	0	0	0	0	0	0	0	0	0
03NVT114	Till	15-Dec	PW/AM	515555	6114622	0	0	0	0	0	0	0	0	0	0	0
03NVT115	Till	15-Dec	PW/AM	514865	6115384	0	0	0	0	2	0	0	2	0	2	2
03NVT116	Till	15-Dec	PW/AM	514124	6114911	0	0	0	Ö	0	0	0	0	0	0	0
03NVT117	Till	15-Dec	PW/AM	513190	6114535	0	0	0	0	0	0	0	0	0	0	0

Sample Number	Sample Type	Date	Sampler	UMT Easting N27	UTM Northing N27	Pyrope	Eclogitic Garnet	Chrome	Cr-Gross	Olivine	Picroilmenite	Chromite	Total Silicates	Total Oxides	Total Silicates Picroilmenite	Total All DIMs
03NVT118	Till	15-Dec	PW/AM	512481	6113794	0	0	0	0	0	0	0	0	0	0	0
03NVT119	Till	15-Dec	PW/AM	512280	6112801	0	0	0	0	0	0	0	0	0	0	0
03NVT120	Till	15-Dec	PW/AM	511131	6112245	0	0	0	0	0	0	0	0	0	0	0
03NVT121	Till	15-Dec	PW/AM	510072	6112328	0	0	0	0	0	0	0	0	0	0	0
03NVT122	Till	15-Dec	PW/AM	509008	6112065	0	0	0	0	0	0	0	0	0	0	0
D3NVT123	Till	15-Dec	PW/AM	507766	6111994	0	0	0	0	0	0	0	0	0	0	0
03NVT124	Till	15-Dec	PW/AM	506512	6111963	0	0	0	0	0	0	0	0	0	0	0
03NVT125	Till	20-Dec	PW/AM/BA	547681	6037671	0	0	0	0	0	0	0	0	0	0	0
03NVT126	Till	20-Dec	PW/AM/BA	547024	6037227	0	0	0	0	0	0	0	0	0		-
03NVT127	Till	20-Dec	PW/AM/BA	546528	6036566	0	0	0	0	0	0	0	0	0	0	0
03NVT128	Till	21-Dec	PW/AM/BA	546029	6036334	0	0	0	0	0	0	0	0	-		0
03NVT129	Till	21-Dec	PW/AM/BA	545558	6036426	0	0	0	0	0	0	0		0	0	0
03NVT130	Till	21-Dec	PW/AM/BA	545105	6036629	0	0	0	0	0	0	0	0	0	0	0
03NVT131	Till	21-Dec	PW/AM/BA	544709	6037032	0	0	0	0	0			0	0	0	0
03NVT132	Till	21-Dec	PW/AM/BA	544203	6036844	0	0	0	0	0	0	0	0	0	0	0
3NVT133	Till	21-Dec	PW/AM/BA	543810	6036638	0	0	0	0	0	0	0	0	0	0	0
03NVT134	Till	21-Dec	PW/AM/BA	543339	6036969	0	0	0	0	0		-	0	0	0	0
3NVT135	Till	21-Dec	PW/AM/BA	542976	6037330	0	0	2	0		0	0	0	0	0	0
3NVT136	Till	21-Dec	PW/AM/BA	542473	6037428	0	0	0		1	0	0	3	0	3	3
3NVT137	Till	21-Dec	PW/AM/BA	542053	6037114	0	0	0	0	0	0	0	0	0	0	0
3NVT138	Till	21-Dec	PW/AM/BA	541673	6036668	0		-	0	0	0	0	0	0	0	0
3NVT139	Till	21-Dec	PW/AM/BA	541173	6036222		0	0	0	0	0	0	0	0	0	0
I3NVT140	Till	21-Dec	PW/AM/BA	540675	6035936	0	0	0	0	0	0	0	0	0	0	0
I3NVT141	Till	21-Dec	PW/AM/BA	540390	6035442	0	0	0	0	0	0	0	0	0	0	0
3NVT142	Till	21-Dec	PW/AM/BA	540286	6034954	0	0	0	0	0	0	0	0	0	0	0
3NVT143	Till	21-Dec	PW/AM/BA	540015		0	0	0	0	0	1	0	0	0	1	1
3NVT144	Till	21-Dec	PW/AM/BA	539642	6034403	0	0	0	0	0	0	0	0	1	0	0
3NVT145	Till	21-Dec	PW/AM/BA	539433	6033903	0	0	0	0	0	0	0	0	0	0	0
3NVT146	Till	21-Dec	PW/AM/BA	539433	6033397	0	0	0	0	0	0	0	0	0	0	0
3NVT147	Till	22-Dec	BA/PW/AM		6033224	0	0	0	0	0	0	0	0	0	0	0
3NVT148	Till	22-Dec	BA/PW/AM BA/PW/AM	556158	6031855	0	0	0	0	0	0	0	0	0	0	0
3NVT149	Till	22-Dec	BA/PW/AM BA/PW/AM	555805	6031468	0	0	0	0	0	0	1	0	1	0	1
3NVT150	Till	22-Dec 22-Dec	BA/PW/AM BA/PW/AM	555568	6030985	0	0	0	0	0	0	0	0	0	0	0
3NVT151	Till	22-Dec 22-Dec	BA/PW/AM BA/PW/AM	555773	6030531	0	0	0	0	0	0	0	0	0	0	0
3NVT152	Till	22-Dec 22-Dec	BA/PW/AM BA/PW/AM	556229	6030148	0	0	0	0	0	0	0	0	0	0	0
3NVT153	Till	22-Dec		566328	6041870	0	0	0	0	0	0	0	0	0	0	0
3NVT154	Till		BA/PW/AM	567688	6043455	0	0	0	0	0	0	0	0	0	0	0
3NVT154	Till	22-Dec 22-Dec	BA/PW/AM	568884	6045163	0	0	0	0	0	0	0	0	0	0	0
3NVT155	Till	22-Dec 22-Dec	BA/PW/AM	570619	6046593	0	0	0	0	0	0	0	0	0	0	0
3NVT400	Till		BA/PW/AM	572284	6048023	0	0	0	0	0	0	0	0	0	0	0
3NVT400		12-Dec	PW/AM/MD	539573	6092586	0	0	0	0	0	0	0	0	0	0	0
3NVT401	Till	12-Dec	PW/AM/MD	539788	6092519	0	0	0	0	0	0	0	0	0	0	0
3NVT402 3NVT403	Till	13-Dec	AM/PW/MD	540017	6092636	0	0	0	0	0	0	0	0	0	0	0
	Till	13-Dec	AM/PW/MD	539933	6092705	0	0	0	0	0	0	0	0	0	0	0
3NVT404	Till	13-Dec	AM/PW/MD	539842	6092720	0	0	0	0	0	0	0	0	0	0	0
3NVT405	Till	14-Dec	MD	540313	6092565	0	0	0	0	0	0	0	0	0	0	0
3NVT406	Till	14-Dec	MD	540313	6092565	0	0	0	0	0	0	0	0	0	0	0

2002 Microprobe Data - Diamond Indicator Minerals - Swan Hills Property Sovereign Mining and Exploration Ltd.

Sample#			· ·															
02BWH-005	Min-id Mineral	Pt#	SiO2	TiO2	AI2O3	Cr2O3	FeO	MgO	MnO	CaO	Na2O	K2O	Total	NiO	ZnO	ZrO2	Nb2O5	Picked Mineral
02BWH-006	G_02_HIGH_TITANIUM_PYROPE		41.76	0.91	17.52	6.26	7.43	20.17	0.23	5.65	0.05	0.03	99.99	na	na	na	na	pos pyrope
02BWH-008		2	0.00	1.33	17.24	45.02	19.64	16.68	0.18	na	na	па	100.46	0.2644	0.0489	0.0557	0	pos chrom
02BWH-009	G_01_TITANIAN_PYROPE	2	41.34	0.81	16.56	6.31	8.05	20.30	0.31	5.61	0.09	0.00	99.38	na	na	na	na	pos pyrope
02BWH-009	PICRO_CHROMITE	3	0.12	1.23	16.47 18.98	43.78	22,50	14.58	0.20	na	na	na	99.26	0.2539	0.0178	0.0637	0.0398	pos chrom
02BWH-009	PICRO_CHROMITE	.4	0.08	0.68	9.42	47.61	19.71 27.99	16.49 12.56	0.18	na	na	na	100.87	0.1852	0.1174		0.0532	pos chrom
02BWH-009	PICRO_CHROMITE	5	0.03	0.42	17.23	47.01	23.54	12.58	0.27	na	na na	na na	98,83 99,59	0.1059	0.0573	0	0.0332	pos chrom pos chrom
02BWH-009	PICRO_CHROMITE	6	0.03	0.65	10.63	44.06	31.55	11.49	0.24	na	ла	na	98.92	0.1011	0.0155	0	0.0342	pos chrom
028WH-009	PICRO CHROMITE	7	0.04	0.10	11.02	55.01	22.46	9.63	0.41	na	na	na	99.09	0.0349	0.2854	0.0172	0.0847	pos chrom
02BWH-009	PICRO_CHROMITE	8	0.12	1.16	14.18	49,60	18.08	16.55	0.17	na	na	na	100.13	0.2209	0.042	0.0172	0.0047	pos chrom
02BWH-010	G_09_CHROME_PYROPE	3	42.37	0.12	20.23	4.26	8.54	18.48	0.46	5.55	0.03	0.00	100.04	na	na	na	na	def pyrope
02BWH-010	PICRO_CHROMITE	34	0.04	2.19	13.90	43.40	25.35	14.18	0.19	na	na	na	99.67	0.3075	0.0727	0	0.0397	pos chrom
02BWH-010	PICRO_CHROMITE	35	0.09	0.28	10.02	51.07	21.18	16.72	0.20	na	na	na	99.81	0.1413	0	0.0833	0.0202	pos chrom
02BWH-012	G_09_CHROME_PYROPE	4	42.41	0.14	20,13	4.59	6.92	19.77	0.34	5.30	0.02	0.00	99.62	na	na	na	na	pos pyrope
02BWH-012	PICRO_CHROMITE	36	0.14	2.26	12.68	42.37	27.64	12.75	0.20	na	na	na	98.41	0.2506	0.0575	0.0555	0	pos chrom
02BWH-013	G_06_PYROPE_GROSSULAR_ALMANDINE	6	41.69	0.10	22.85	0.12	10.57	12.15	0.28	12.60	0.06	0.00	100.40	na	na	na	na	pos eclog
02BWH-013	G_10_LOW_CALCIUM_CHROME_PYROPE	5	41.92	0.05	19,59	6.07	7.31	19.45	0.38	5.72	0.02	0.00	100.52	na	na	na	лâ	def pyrope
02BWH-013	PICRO_CHROMITE	25	0.10	1.35	15.98	43.24	23.93	14.56	0.23	na	na	na	99.72	0.2083	0.0631	0.0462	0	pos chrom
02BWH-013 02BWH-013	PICRO_CHROMITE	26	0.13	2.99	8.80	44.26	29.98	11.57	0.34	na	na	na	98.25	0.1436	0.02	0	0	pos chrom
02BWH-013	UNKNOWN (SubPicroChromite)	24	0.05	0.09	30.61	32.05	20.98	15.86	0.18	ла	na	na	100.16	0.1857	0.1621	0.0087	0	pos chrom
02BWH-014	SUB_PICRO_CHROMITE	32	0.37	0.36	24.54	37.30	19.54	17.79	0.12	na	na	na	100.30	0.2556	0.0184	0	0	pos chrom
02BWH-015	G_03_CALCIC_PYROPE_ALMANDINE	33	0.41 41.99	0.40	24,22 22.99	37.29	18.95	17.62	0.20	na 8.58	na	na	99.41	0.2996	0.0162	0	0.0051	pos chrom
02BWH-015	G_09_CHROME_PYROPE	9	41.99	0.01	17.44	0.00	11.82 9.58	14.83 18.04	0.27	8.58	0.00	0.00	100.48	na	na	na	na	pos eclog
02BWH-015	PICRO_CHROMITE	28	42.17	1.14	17.44	45.79	21,11	14.72	0.47	6.48	0.00	0.00	100.56 99.86	na 0.2084	na 0.1021	na 0	na 0	pos pyrope
02BWH-015	PICRO_CHROMITE	30	0.10	0.32	16.42	45.79	27.24	8.31	0.27	na na	na na	na na	99.86	0.0395	0.1021	0	0.01	pos chrom pos chrom
02BWH-015	PICRO CHROMITE	31	0.04	0.14	8.23	56.28	26.42	8.57	0.41	na	na		100.44	0.0595	0.4259	0.0436	0.01	
02BWH-015	UNKNOWN (PicroChromite)	29	0.00	0.03	13.58	56.35	13.34	15.91	0.43	na	na	na	99.87	0.0501	0.1003	0.0436	0	pos chrom pos chrom
02BWH-016	CPX_05_CHROME_DIOPSIDE	11	55.73	0.17	1.46	2.49	2,60	16.61	0.12	18.32	1.85	0.03	99.39	0.1403 na	na	0.0030 na	na	pos chroni
02BWH-016	G_12_KNORRINGITIC_UVAROVITE_PYROPE	28	41.40	0.17	15.50	11.02	6.71	18.62	0.42	6.27	0.03	0.00	100.13	na	na	na	na	def pyrope
02BWH-017	PICRO_CHROMITE	27	0.04	1.77	6.29	45.65	36.56	9.24	0.38	па	na	na	100.10	0.2215	0.0901	0	0	pos chrom
02BWH-022	CPX_02_DIOPSIDE	13	54.26	0.06	1.31	0.75	5.68	15.25	0.22	21.36	0.70	0.00	99.58	na	na	na	na	pos cpx
02BWH-022	CPX_05_CHROME_DIOPSIDE	14	52.45	0.23	6.08	0.77	2.45	14.82	0.12	21.38	1.24	0.01	99.55	na	na	na	na	pos cpx
02BWH-022	G_09_CHROME_PYROPE	12	42.65	0.09	20.29	3.99	8.47	18.91	0.58	5.13	0.02	0.00	100.13	na	na	na	na	def pyrope
02BWH-022	PICRO_CHROMITE	14	0.00	0.18	17.39	50.91	17.56	12.78	0.37	na	na	na	99.55	0.065	0.1936	0.0979	0.0146	pos chrom
02BWH-022	UNKNOWN (SubPicroChromite)	15	0.08	1.14	21.04	29.23	34.39	11.27	0.22	ла	na	na	97.94	0.2647	0.1845	0	0.1299	pos chrom
02BWH-023	PICRO_CHROMITE	21	0.09	1.07	16.46	44.84	25.47	11.75	0.33	na	na	na	100.29	0.1807	0.0725	0.0278	0	pos chrom
02BWH-023	PICRO_CHROMITE	23	0.12	1.13	14.07	49.02	19.81	15.86	0.19	na	na	na	100.61	0.2692	0.098	0.0185	0.0203	pos chrom
02BWH-023	SUB_PICRO_CHROMITE	22	0.16	0.93	22.66	38.68	22.17	14.44	0.23	na	na	na	99.65	0.2199	0.0666	0.0816	0	pos chrom
02BWH-024	G_10_LOW_CALCIUM_CHROME_PYROPE	15	42.11	0.05	17.90	7.89	6.94	19.65	0.41	5.38	0.04	0.00	100.36	na	na	na	na	def pyrope
02BWH-024	G_11_UVAROVITE_PYROPE	16	41.84	0.35	18.26	6.94	6.75	19.93	0.38	5.58	0.03	0.00	100.06	na	na	na	na	def pyrope
02BWH-024	OLIVINE	2	41.34	0.00	0.00	0.01	7.83	49.34	0.12	0.00	na	na	99.06	0.4198	na	na	na	pos olivine
02BWH-024	PICRO_CHROMITE	17	0.00	0.06	11.38	53.70	24.43	9.19	0.40	na	na	na	99.57	0.038	0.3333	0	0.0445	pos chrom
02BWH-024 02BWH-024	PICRO_CHROMITE	18	0.06	1.18	15.94	45.14	20.15	16.08	0.17	na	na	na	98.98	0.2113	0	0.0372	0	pos chrom
028WH-024		19	0.08	1.56	14.71	45.25	23.25	14.74	0.25	na	na	na	100.15	0.2319	0.0691	0.0091	0	pos chrom
028WH-025	UNKNOWN (PicroChromite) G 10 LOW CALCIUM CHROME PYROPE	20	0.10 41.90	0.27	7.06	56.31	19.45 7.41	15.99	0.25	na	na	na	99.73	0.075	0.0663	0.0995	0.0545	pos chrom
02BWH-025	PICRO_CHROMITE	16	0.07	0.07	18.39 23.86	6.87 41.79	15.86	18.72 17.87	0.38	6.45	0.01	0.00	100.19	na	na	na	na 0	def pyrope
02BWH-026	PICRO CHROMITE	10	0.07	0.66	9.55	41.75	28.71	14.91	0.24	na na	na	na na	100.02 98.82	0.1863	0.0311	0	0.1061	pos chrom
02EWH-026	PICRO CHROMITE	13	0.05	0.38	6.57	53.37	22.74	15.60	0.23	na	na na	na	99.02	0.2076	0.0212	0	0.1061	pos chrom
02BWH-026	UNKNOWN (SubPicraChromite)	11	0.03	0.35	31.18	28.15	22.83	16.26	0.35	na	na	na	99.54	0.2317	0.1089	0	0.0461	pos chrom
02BWH-026	UNKNOWN (SubPicroChromite)	12	0.00	0.05	34,88	27.06	20.22	16.08	0.15	na	па	na	98.88	0.2128	0.1745	0.0474	0.0401	pos chrom pos chrom
02BWH-027	PICRO_CHROMITE	54	0.11	0.10	23.04	40.72	22.37	12.62	0.33	na	na	na	99.72	0.0549	0.1533	0.1002	0.1344	pos chrom
02BWH-027	PICRO_CHROMITE	55	0.12	0.91	18.34	44.63	18.67	16.48	0.33	na	па	па	99.62	0.0349	0.0915	0.1002	0.1344	pos chrom
02CDH-103	Chromite	1	0.07	0.07	18.19	50.48	15.72	15.00	0.19	na	na	na	99.95	0.1412	0.0511	0.0437	0	pos chrom
02CDH-103	Eclogitic Garnet	3	39.85	0.01	21.81	0.00	20.08	10.75	0.61	6.60	0.04	0.00	99.76	na	na	0.0407	na	pos eclog.
02CDH-103	Eclogitic Garnet	4	40.46	0.04	22.22	0.00	18.44	11.70	0.37	7.06	0.01	0.00	100,30	na	na	na	na	pos eclog.
02CDH-103	Pyrope	1	41.81	0.00	17.73	7.34	7.84	18.72	0.47	6.37	0.03	0.01	100.32	na	na	na	na	def pyrope
02CJOH-002	Chromite	2	0.07	2.33	13.48	42.38	27.59	12.56	0.24	na	na	na	98.97	0.2047	0.0427	0	0.0738	pos chro
02CJOH-002	Chromite	3	0.11	1.40	23.59	33.56	26.39	13.82	0.18	na	na	na	99.45	0.2087	0.1202	0.0452	0.0189	pos chro
02CPH-001	PICRO_CHROMITE	50	0.07	1.46	16.89	41.25	25.09	13.97	0.26	ла	na	na	99.33	0.2174	0.1163	0	0.0136	pos chrom
02CPH-001	PICRO_CHROMITE	51	0.00	0.08	22.91	45.57	15.65	15.82	0.24	na	na	na	100.54	0.049	0.1291	0.0462	0.0404	pos chrom
02CPH-001	PICRO_CHROMITE	52	0.11	0.07	25.87	40.89	16.76	15.38	0.16	na	na	na	99.75	0.114	0.1966	0.0093	0.1923	pos chrom
02CPH-001	SUB_PICRO_CHROMITE	53	0.09	0.22	27.99	38.58	14.16	18.47	0.18	na	na	na	99.99	0.2493	0	0.0279	0.0102	pos chrom
D2CPH-002	OLIVINE		41.55	0.02	0.89	0.04	7.98	48.88	0.14	0.00	na	na	99.98	0.4914	na	na	na	olivine in core of chro
02CPH-002	PICRO_CHROMITE	47	0.10	2.09	14.05	43.01	27.12	13.16	0.26	na	na	na	100.11	0.211	0.0658	0	0.0348	pos chrom
02CPH-002	PICRO_CHROMITE	48	0.11	0.08	26.75	40.00	18.83	14.34	0.30	ла	na	na	100.71	0.0987	0.17	0	0.0331	pos chrom
02CPH-002	PICRO_CHROMITE	49	0.11	1.11	16.59	46.61	19.17	16.42	0.22	na	na	na	100.64	0.2447	0.1018	0	0.0414	pos chrom
02CPH-003	G_10_LOW_CALCIUM_CHROME_PYROPE	17	42.18	0.12	17.97	7.52	7.19	18.76	0.42	6.25	0.00	0.00	100.41	na	na	na	na	def pyrope
02HKH-001	G_09_CHROME_PYROPE	18	42.44	0.31	19.18	5.93	6.75	20.38	0.37	4.95	0.03	0.00	100.34	na	na	na	na	def pyrope
	PICRO_CHROMITE	38	0.06	0.44	14.62	47.08	24.56	12.94	0.26	na	na	na	100.15	0.0938	0.0896	0	0	pos chrom
02HKH-001	PICRO_CHROMITE	39	0.03	0.24	14.96	52.63	15.93	15.41	0.32	na	na	na	99.78	0.2248	0.0321	0	0	pos chrom
02HKH-001				017	19.22	46.22	20.23	13,46	0.30	na	na	na	99.83	0.0461	0.1069	0.0409	0	pos chrom
02HKH-001 02HKH-001		41				54.00	20.27	44.04	0.04	-			106 2 .		0.4			
02HKH-001 02HKH-001 02HKH-001	PICRO_CHROMITE	42	0.01	0.08	12.17	54.98	20.37	11.84	0.31	na	na	na	100.01	0.0469	0.1613	0.0401	0	pos chrom
02HKH-001 02HKH-001 02HKH-001 02HKH-001 02HKH-001	PICRO_CHROMITE PICRO_CHROMITE	42 43	0.01	0.08	12.17 17.63	44.48	20.67	15.62	0.19	na	na	na	99.95	0.2141	0.0633	0.0401	0	pos chrom
02HKH-001 02HKH-001 02HKH-001	PICRO_CHROMITE	42	0.01	0.08	12.17											0.0401	0	
2002 Microprobe Data - Diamond Indicator Minerals - Swan Hills Property Sovereign Mining and Exploration Ltd.

product P Sol

Sample#	Min-id Mineral	Pt#	SiO2	TiO2	AI2O3	Cr2O3	FeO	MgO	MnO	CaO	Na2O	K20	Total	NiO	ZnO	ZrO2	Nb2O5	Picked Mineral
02HKH-001	UNKNOWN (PicroChromite)	40	0.24	0.10	10.83	56.59	15.81	16.26	0.19	па	na	na	100.26	0.1654	0.0927	0	0	pos chrom
02HKH-002 02HKH-003	PICRO_CHROMITE	37	0.11	0.34	17.41	47.60	19.05	15.05	0.21	na	na	na	99.96	0.1237	0.0766	0	ŏ	pos chrom
02HKH-003	G_10_LOW_CALCIUM_CHROME_PYROPE	23	41.52	0.02	17.73	7.59	6.96	19.49	0.35	6.59	0.02	0.00	100.26	na	na	na	na	def pyrope
02HKH-003	PICRO_CHROMITE	59	0.64	1.06	15.97	43.37	24.38	13.59	0.25	na	na	na	99.63	0.2077	0.1568	0	0	pos chrom
02MDH-101	SUB_PICRO_CHROMITE Cr_GROSSULAR	60	0.82	1.51	19.42	39.37	22.85	15.09	0.22	na	na	na	99.59	0.2084	0.095	0.0092	0	pos chrom
02MDH-101	G_09_CHROME_PYROPE	19 22	39.07	0.19	18.73	4.37	0.13	0.19	0.15	36.00	0.01	0.00	98.85	na	na	na	na	pos cpx
02MDH-101	G_10_LOW_CALCIUM_CHROME_PYROPE	22	42.02	0.29	19.94 15.97	4.25	9.03	19.48	0.46	4.78	0.07	0.01	100.32	na	na	na	na	pos pyrope
02MDH-101	G_12_KNORRINGITIC_UVAROVITE_PYROPE	20	41.94	0.08	15.97	9.67	6.93	18.99	0.39	5.93	0.01	0.00	99.91	na	па	na	na	def pyrope
02MDH-102	G_01_TITANIAN PYROPE	24	42.36	0.62	20.70	12.06 2.80	6.48	18.33	0.34	6.35	0.04	0.00	99.38	na	na	na	na	def pyrope
02MDH-102	G_09_CHROME_PYROPE	25	41.55	0.05	20.88	3.36	7.48	21.21	0.27	4.82	0.04	0.01	100.31	na	na	na	na	def pyrope
02MDH-104	Chromite	5	0.07	0.46	6.83	52.69	24.91	19.56	0.56	5.14	0.04	0.01	99.86	na	na	na	na	def pyrope
02MDH-104	Chromite	6	0.11	3.86	23.39	25.24	32.41	14.30	0.27	na na	na na	na na	99.72 99.79	0.1946	0.1049	0	0	pos chrom
02MDH-104	Chromite	7	0.14	0.66	18.03	46,77	15.98	17.16	0.20	na	na	na	99.24	0.1984	0.0144	0	0.0379	pos chrom
02MDH-104	Chromite	8	0.06	0.27	18.44	43.83	23.69	12.23	0.22	na	na	na	99.16	0.0747	0.1882	0.0207	0.1387	pos chrom pos chrom
02MDH-104	Chromite	9	0.07	0.13	19.59	45.84	20.25	12.52	0.38	na	na	na	99.11	0.1279	0.105	0.0207	0.0546	pos chrom
02MDH-104 02MDH-104	Chromite	10	0.11	0.63	10.53	52.05	20.91	15.60	0.27	na	na	na	100.33	0.2307	0.105	0.0400	0.0040	pos chrom
02MDH-104	Chromite	11	0.14	1.40	15.04	45.96	20.46	15.38	0.18	na	na	na	98.96	0.2322	0.0412	0.0425	0.0889	pos chrom
02MDH-104	Chromite Chromite	12	0.04	0.98	3.53	58.29	26.20	9.19	0.48	na	па	ла	98.88	0.0729	0.0941	0	0	pos chrom
02MDH-104	Chromite	13	0.05	0.01	27.91	39.88	13.13	17.37	0.23	na	na	na	99.22	0.0314	0.6067	0	0	pos chrom
02MDH-104	Chromite	14	0.07	0.19	15.87	53.25	17.76	11.93	0.32	na	na	na	99.76	0.0579	0.1266	0	0.1764	pos chrom
02MDH-104	Chromite	15	0.11	1.28	15.32	46.25	19.36	15.59	0.29	па	na	na	98.58	0.2247	0.1095	0	0.0355	pos chrom
02MDH-104	Chromite	17	0.07	0.28	5.02 15.96	50.31 46.93	36.44 25.32	5.43	0.57	na	na	па	98.66	0.0761	0.4421	0.0815	0	pos chrom
02MDH-104	Chromite	18	0.15	1.33	17.75	46.93	25.32	10.24 15.05	0.34	na	ла	na	99.46	0.0223	0.218	0	0.1379	pos chrom
02MDH-104	Chromite	19	0.08	0.62	8.70	49.64	26.71	13.05	0.23	na	na	na	99.13	0.1971	0.111	0.021	0	pos chrom
02MDH-104	Eclogitic Garnet	5	40.70	0.02	21.97	0.08	14.73	12.54	0.29	na 8.95	na 0.02	na 0.00	100.23	0.1885 na	0.0798	0.2046	0	pos chrom
02MDH-104	Olivine	1	41.34	0.02	1.40	0.02	9.02	48.16	0.16	0.02		na 0.00	100.46	0.3313	na na	na	na	pos eclog
02MDH-104	Picroilmenite	4	0.10	50.49	0.15	2.04	32.68	12.74	0.28	na	па	na	99.08	0.0685	0.1385	na 0.105	na 0.2817	pos olivine
02MDH-105	Chromite	20	0.04	0.57	25.54	38.43	18.08	16.71	0.19	na	na	na	99.74	0.0827	0.0984	0.105	0.2017	pos chrom pos chrom
02MDH-105	Chromite	21	0.06	2.86	17.23	36.15	28.66	13.91	0.17	па	na	na	99,47	0.2142	0.1004	0.1274	ŏ	pos chrom
02MDH-105 02MDH-105	Chromite	22	0.09	0.17	7.65	53.97	28.80	7.22	0.35	na	na	na	98.58	0.0671	0.1435	0.1225	ő	pos chrom
02MDH-105	Chromite	23	0.10	0.14	8.01	54.50	28.44	7.28	0.37	na	па	na	99.21	0.0843	0.2138	0.0818	0	pos chrom
02MDH-105	Chromite Chromite	24	0.08	0.36	8.27	51.78	24.06	14.61	0.33	na	na	na	99.81	0.1204	0.1163	0.0817	0	pos chrom
02MDH-105	Chromite	25 26	0.00	0.04	21.42	45.76	18.28	13.17	0.27	na	na	na	99.27	0.0362	0.1537	0.1489	0	pos chrom
02MDH-105	Chromite	20	0.07	0.03	8.70	60.62	19.31	10.94	0.30	na	na	na	100.35	0.0506	0.1991	0.1205	0	pos chrom
02MDH-105	Chromite	27	0.04	0.42	14.78 24.69	45.85	30.17	6.72	0.36	na	na	na	98.85	0.0873	0.2316	0.187	0	pos chrom
02MDH-105	Chromite	29	0.03	0.35	5.63	55.36	17.99 22.99	15.05 14.27	0.27	na	na	na	99.34	0.1332	0.1319	0.1074	0.0897	pos chrom
02MDH-105	Chromite	30	0.09	0.00	6.01	59.75	24.99	7.51	0.27	na	na na	na	99.14	0.0661	0.0672	0.0616	0.0515	pos chrom
02MDH-105	Chromite	31	0.04	0.01	16.71	49.05	22.15	11.04	0.34	na	na	na na	99.14 99.54	0.0026	0.2461	0.1587	0	pos chrom
02MDH-105	Chromite	32	0.08	1.64	26.24	29.78	26.02	14.41	0.14	na	na	na	99.54	0.0439	0.1572 0.2003	0	0	pos chrom
02MDH-105	Chromite	33	0.06	0.50	5.98	49.04	29.11	13.86	0.34	na	na	na	99.19	0.1773	0.0328	0.1299	0.0843	pos chrom pos chrom
02MDH-105	Chromite	34	0.10	1.42	13.30	45.63	28.01	10.17	0.20	na	ла	па	99.12	0.1483	0.1042	0.0416	0.0043	pos chrom
02MDH-105	Chromite	36	0.08	1.52	17.20	42.42	23.76	13.94	0.25	na	na	na	99.50	0.1967	0.1208	0.0410	0	pos chrom
02MDH-105	Chromite	37	0.05	0.01	39.08	27.75	14.44	18.42	0.15	na	na	na	100.42	0.2436	0.0926	0.1789	0.0187	pos chrom
02MDH-105 02MDH-105	Chromite	38	0.08	0.35	4.24	50.24	32.53	11.14	0.45	na	na	na	99.36	0.1419	0.1183	0	0.0684	pos chrom
02MDH-105	Chromite	39	0.10	1.20	14.96	45.46	24.85	12.30	0.22	na	na	na	99.54	0.2288	0.1149	0	0.105	pos chrom
02MDH-105	Chromite Chromite	40	0.02	0.05	8.25	57.04	25.02	7.84	0.36	na	na	na	98.92	0.0513	0.2036	0	0.0853	pos chrom
02MDH-105	Chromite	41	0.05	0.00	15.15	52.10	20.50	11.00	0.30	na	na	na	99.32	0.0532	0.1639	0	0	pos chrom
D2MDH-105	Chromite	42	0.10	1.15	16.57 19.81	45.86 40.16	19.29	15.66	0.14	na	na	na	99.13	0.2537	0	0	0.1035	pos chrom
D2MDH-105	Picroilmenite	35	0.02	53.13	0.21	40.16	22.08 30.93	15.11	0.24	na	na	na	99.25	0.1615	0.0601	0.1251	0.0523	pos chrom
D2MDH-105	Picroilmenite	44	0.04	53.71	0.21	0.95	31.02	13.17 13.50	0.32	na na	na	na	99.10	0.0584	0	0.0972	0.1789	pos chrom
02MDH-105	Pyrope	6	42.21	0.13	20.27	3.99	7.55	19.75	0.26	na 5.02	na 0.05	na 0.00	100.01	0.069	0.0051	0.1391	0.1666	pos chrom
02MDH-106	Eclogitic Garnet	8	40.89	0.03	22.27	0.05	14.93	12.68	0.30	8.85	0.05	0.00	99.26 100.12	na	na	na	na	pos pyrope
02MDH-106	Eclogitic Garnet	9	40.54	0.01	22.86	0.03	16.15	14.56	0.42	5.82	0.00	0.00	100.12	na na	na na	na na	na	pos elcog
02MDH-106	Ругоре	7	41.93	0.02	20.56	3.65	8,40	18.67	0.54	5.67	0.02	0.00	99.46	na	na	na na	na	pos elcog
2MDH-107	Chromite	45	0.10	1.58	13.24	46.62	24.46	13.49	0.22	na	na	na	99.95	0.1599	0.0609	0	0.0175	pos pyrope pos chrom
2MDH-107	Eclogitic Garnet	11	40.62	0.14	22.41	0.04	16.57	12.97	0.22	7.23	0.01	0.00	100.22	na	na	na	na	pos eclog
2MDH-107 2MDH-107	Eclogitic Garnet	12	40.66	0.09	_22.31	0.13	14.08	11.26	0.24	11.59	0.02	0.00	100.38	na	na	na	na	pos eclog
02MDH-107	Eclogitic Garnet	13	40.37	0.11	21.68	0.00	16.16	11.07	0.35	9.76	0.00	0.00	99.50	na	na	na	na	pos eclog
02MDH-107	Eclogitic Garnet	14	40.03	0.05	21.77	0.15	18.39	8.97	0.43	10.59	0.01	0.00	100.39	na	па	na	na	pos eclog
2WCH-003	Pyrope G_09_CHROME_PYROPE	10	41.66	0.05	20.73	3.67	9.57	18.12	0.69	5.84	0.05	0.00	100.37	na	na	na	na	def pyrope
2WCH-003	G_09_CHROME_PYROPE G_10_LOW_CALCIUM_CHROME_PYROPE	26 27	41,94	0.04	20.75	3.82	8.13	19.25	0.47	5.24	0.01	0.01	99.67	na	ла	na	na	def pyrope
2WCH-003	PICRO_CHROMITE	- 27	42.01	0.13	19.24 15.84	5.67	7.81	19.06	0.50	5.21	0.04	0.00	99.68	na	na	na	ла	def pyrope
2WCH-005	PICRO CHROMITE	9 57	0.14	2.09		47.79	17.98	16.10	0.26	na	na	na	99.44	0.1641	0.0994	0.035	0	pos chrom
2WCH-005	PICRO_CHROMITE	58	0.00	0.19	3.73 8.32	50.32 56.18	32.00	8.97	0.43	na	na	ла	97.93	0.1511	0.1529	0.0438	0.0384	pos chrom
				0.13	0.92	20,10	24.17	10.21	0.37	na	na	na	99.76	0.093	0.0976	0	0	a a a ale sa sa
2WCH-005	SUB_PICRO_CHROMITE	56	0.06	0.04	27.53	37.84	17.23	16.81	0.30	na	na	na	100.13	0.0933	0.1443	0.0648		pos chrom pos chrom

APPENDIX 4 2002-2003 GEOCEHMICAL RESULTS

•

SOVEREIGN MINING Attention: Neil Torry PO #/Project: Samples: 34

Geoanalytical Laboratories SRC 125 - 15 Innovation Blvd., Saskatoon, Saskatchewan, S7N 2X8 Tel: (306) 933-8118 Fax: (306) 933-5656 Email: geochem@src.sk.ca

Report No: 03-50 Date: February 12, 2003

Column Header Details

Ag by ICP in ppm (Ag) Al2O3 by ICP in wt % (Al2O3) As by ICP in ppm (As) Ba by ICP in ppm (Ba) Be by ICP in ppm (Be)

Bi by ICP in ppm (Bi) CaO by ICP in wt % (CaO) Cd by ICP in ppm (Cd) Co by ICP in ppm (Co) Cr by ICP in ppm (Cr)

Cu by ICP in ppm (Cu) Fe2O2 by ICP in wt % (Fe2O3) K2O by ICP in wt % (K2O) MgO by ICP in wt % (MgO) MnO by ICP in wt % (MnO)

Mo by ICP in ppm (Mo) Na2O by ICP in wt % (Na2O) Ni by ICP in ppm (Ni) P2O5 by ICP in wt % (P2O5) Pb by ICP in ppm (Pb) Sr by ICP in ppm (Sr) TiO2 by ICP in wt % (TiO2) V by ICP in ppm (V) W by ICP in ppm (W)

Sb by ICP in ppm (Sb)

Sc by ICP in ppm (Sc)

Sn by ICP in ppm (Sn)

Y by ICP in ppm (Y) Zn by ICP in ppm (Zn) Zr by ICP in ppm (Zr)

Gold by Fire Assay ICP in ppb (Au) Gold by Fire Assay ICP Repeat in ppb (Au R)

Page 1 of 3

		Tel: (30	5 - 15 Innovat 06) 933-8118	Fax: (306)	933-5656 E	mail: geoch	em@src.sk.c	a				eport No: 03- ate: February						
Sample Number		AI2O3	As	Ba	Be	Bi	CaO	Cđ	Co	Cr	Cu	Fe2O3	K2O	MgO	MnO	Мо	Na2O	N
Number	r ppm	w t %	ppm	ppm	ppm	ppm	wt%	ppm	ppm	ppm	ppm	wt%	w t %	wt%	wt%	ppm	wt %	ppm
QC1	<0.2	5.67	10	295	1.9	<1	0.48	1	38	72	48	10.7	0.47	1.09	0.602	17	0.02	50
02BWS	1 <0.2	1.43	4	177	<0.5	<1	0.68	<1	6	11	9	1.44	0.05	0.38	0.042	<1	0.01	12
02BWS	2 <0.2	1.26	6	164	0.5	<1	1.42	<1	9	12	14	2.22	0.09	0.73	0.041	<1	0.01	20
02BWS	3 <0.2	0.91	4	115	<0.5	<1	0.61	<1	5	8	8	1.66	0.05	0.45	0.028	<1	0.01	11
02BWS	4 <0.2	1.19	3	156	0.5	<1	0.48	<1	6	11	11	1.75	0.06	0.38	0.028	<1	0.04	15
02BWS	5 <0.2	0.91	4	159	0.5	<1	0.61	<1	10	10	9	2.45	0.05	0.07				
02BWS		1.41	8	198	0.7	<1	1.58	<1	9			2.15	0.05	0.37	0.082	<1	0.02	16
02BWS		0.95	3	147	<0.5	<1	0.44		9 7	13	23	2.72	0.12	0.83	0.073	1	0.02	27
02BWS		1.65	6	197	0.7	<1		<1		10	9	1.68	0.06	0.37	0.036	<1	0.01	14
02BWS		1.03	2	134	<0.5	<1	0.97	<1	11	16	24	3.61	0.11	0.71	0.054	<1	0.02	29
020113	-0.2	1.22	2	134	×0.5	<1	0.49	<1	5	12	9	1.53	0.05	0.44	0.023	<1	0.01	13
02BWS		0.91	3	132	<0.5	<1	0.56	<1	6	9	9	1.51	0.05	0.41	0.021	<1	0.01	14
02BWS		1.37	8	331	0.6	<1	1.65	<1	8	13	20	2.51	0.12	0.87	0.035	1	0.01	23
02 BWS		1.52	6	206	0.6	<1	2.03	<1	8	14	22	2.49	0.13	0.95	0.041	1	0.02	23
02BWS		1.66	3	158	0.5	<1	0.53	<1	6	14	10	2.68	0.11	0,48	0.022	<1	0.01	14
02BWS	14 <0.2	0.68	3	121	<0.5	<1	0.53	<1	6	8	7	1.49	0.05	0.37	0.024	<1	0.01	12
02BWS	15 <0.2	1.05	4	160	0.5	<1	0.58	<1	8	10	13	1.61	0,08	0.41	0.039	<1	0.03	17
02BWS	16 <0.2	1.06	4	189	0.5	<1	0.63	<1	8	10	14	1.94	0.09	0.46	0.032	<1	0.03	19
02BWS	17 <0.2	1.31	6	139	0.6	<1	0.57	<1	6	12	12	2.31	0.09	0.40	0.025	<1	0.02	15
02BWS	18 <0.2	1.15	3	125	<0.5	<1	0.61	<1	7	9	9	1.65	0.05	0.36	0.027	<1	0.01	13
02BWS	19 <0.2	1.12	4	131	0.5	<1	0.61	<1	7	9	9	1.53	0.05	0.37	0.036	<1	0.02	12
QC2	<0.2	5.77	10	308	1.9	<1	0.49	1	39	70	49		.					
02BWS		0.91	4	142	<0.5	<1	0.73	, <1	6	,0 9	49	11.1 1.47	0.49	1.11	0.631	18	0.02	50
02BWS		1.52	4	175	0.5	<1	0.72	<1	7	13			0.07	0.51	0.031	<1	0.02	14
02CPS		1.51	5	202	<0.5	<1	1.03	<1	8	13	14	1.83	0.11	0.49	0.032	<1	0.01	16
02CPS		2.02	7	262	0.6	<1	1.05	<1	10	14	11 21	2.15 2.87	0.08 0.12	0.68 0.86	0.076 0.085	<1 <1	0.01 0. 02	18 27
02CPS :	3 <0.2		-															
02CPS		1.91	5	194	0.6	<1	0.71	<1	8	15	12	2.63	0.08	0.59	0.038	<1	0.01	19
02CPS		1.86	6	198	0.5	<1	0.73	<1	9	13	11	2.44	0.08	0.52	0.061	<1	0.01	16
		1.55	3	192	<0.5	<1	0.61	<1	5	14	9	1.56	0.06	0.52	0.012	<1	0.02	16
02HKS 2 02HKS 2		1.54	5	190	<0.5	<1	0.65	<1	7	12	11	2.06	0.08	0.53	0.039	<1	0.01	16
UZHKS	3 <0.2	1.65	3	210	0.5	<1	0.73	<1	9	13	11	2.03	0.08	0.55	0.028	<1	0.02	18
02WCS		0.89	4	139	<0.5	<1	1.21	<1	6	10	8	1.87	0.06	0.75	0.044	<1	0.01	14
02WCS		1.32	4	145	<0.5	<1	0.87	<1	7	12	10	2.06	0.07	0.61	0.041	<1	0.01	14
02WCS	3 <0.2	1.32	7	169	<0.5	<1	1.29	<1	9	14	10	2.81	0.08	0.71	0.089	<1	0.01	20
02CPS 3	3R <0.2	1.84	5	194	0.6	<1	0.71	<1	8	15	13	2.63	0.08	0.59	0.039	<1	0.01	19

Page 2 of 3

SOVEREIG Attention: Ne PO #/Project: Samples: 34	eil Torry		- 15 Innovat 6) 933-8118	ion Blvd., S	askatoon, Sa			a				port No: 03-: te: February		
Sample	P2O5	Pb	Sb	Sc	Sn	Sr	TiO2	v	w	Y	Zn	Zr	Au	Au R
Number	wt %	ppm	ppm	ppm	ppm	ppm	wt %	ppm	ppm	ppm	ppm	ppm	ррҌ	ppb
QC1	0.529	16	<1	5	<1	24	0.14	98	<1	16	194	<1	N/R	N/R
02BWS 1	0.102	8	<1	1	<1	36	0.01	17	<1	6	54	1	59	25
02BWS 2	0.112	9	<1	2	<1	27	0.01	22	<1	8	58	4	19	N/R
02BWS 3	0.109	8	<1	1	<1	25	0.02	15	<1	7	39	3	280	7
02BWS 4	0.096	10	<1	2	<1	30	0.01	19	<1	9	46	4	19	N/R
02BWS 5	0.111	8	<1	1	<1	28	0.03	19	<1	9	43	5	13	N/R
02BWS 6	0.114	12	<1	3	<1	47	0.02	23	<1	12	64	9	15	N/R
02BWS 7	0.103	7	<1	1	<1	25	0.02	17	<1	7	40	3	5	N/R
02BWS 8	0.119	13	<1	4	<1	34	0.02	27	<1	12	70	6	867	8
02BWS 9	0.092	8	<1	1	<1	27	0.01	19	<1	6	53	1	16	N/R
02BWS 10	0.105	7	<1	1	<1	23	0.01	15	<1	7	47	3	5	N/R
02BWS 11	0.126	11	<1	3	<1	46	0.01	24	<1	11	65	5	18	N/R
02BWS 12	0.133	11	<1	3	<1	46	0.01	25	<1	12	74	6	5	N/R
02BWS 13	0.126	9	<1	2	<1	31	0.01	24	<1	7	56	2	7	N/R
02BWS 14	0.098	6	<1	1	<1	19	0.02	15	<1	6	43	3	5	N/R
02BWS 15	0.085	9	<1	2	<1	28	0.02	17	<1	10	52	4	18	N/R
02BWS 16	0.097	10	<1	2	<1	31	0.02	18	<1	9	59	4	17	N/R
02BWS 17	0.116	10	<1	2	<1	30	0.01	21	<1	9	57	3	106	2
02BWS 18	0.089	9	<1	1	<1	27	0.01	16	<1	7	49	1	7	N/R
02BWS 19	0.081	11	<1	1	<1	29	0.01	16	<1	7	43	3	2	N/R
QC2	0.535	16	<1	6	<1	25	0,15	99	<1	16	200	<1	N/R	N/R
02BWS 20	0.091	7	<1	1	<1	25	0.01	14	<1	8	45	5	2	N/R
02BWS 21	0.082	9	<1	2	<1	31	0.01	22	<1	8	56	1	3	N/R
02CPS 1	0.115	8	<1	2	<1	31	0.02	22	<1	8	56	3	5	N/R
02CPS 2	0.127	11	<1	3	<1	45	0.02	30	<1	12	67	5	5	N/R
02CPS 3	0.447	40												
02CPS 3 02CPS 4	0.117 0.118	10	<1	2	<1	31	0.01	25	<1	10	59	1	4	N/R
		11	<1	1	<1	31	<0.01	25	<1	8	70	<1	10	N/R
02HKS 1	0.098	8	<1	2	<1	28	0.02	21	<1	7	61	3	1030	27
02HKS 2	0.112	9	<1	2	<1	30	0.01	21	<1	7	57	1	3	N/R
02HKS 3	0.1 04	10	<1	2	<1	35	0.01	21	<1	8	67	2	22	N/R
02WCS 1	0.141	6	<1	1	<1	25	0.01	17	<1	8	43	2	9	N/R
02WCS 2	0.111	9	<1	2	<1	33	0.01	18	<1	7	61	2	3	N/R
02WCS 3	0.126	9	<1	2	<1	36	0.01	24	<1	8	55	3	15	N/R
02CPS 3R	0.115	10	<1	2	<1	31	0.01	24	<1	10	60	1	11	N/R

Standards QC1 and QC2 are LS3

Fire Assay: A 30 g pulp is subjected to standard fire assaying proceedures Aqua Regia: A 0.5 g pulp is digested with 2.00 ml of 3:1 HCL:HNO3 for 1 hour at 95 C.

Page 3 of 3

Sovereign Mining

Attention: Neil Torry PO #/Project: Samples: 33 Geoanalytical Laboratories SRC

125 - 15 Innovation Blvd., Saskatoon, Saskatchewan, S7N 2X8 Tel: (306) 933-8118 Fax: (306) 933-5656 Email: geochem@src.sk.ca

Report No: 04-91 Date: March 02, 2004

ICP Whole Rock Assay Lithium Metaborate Fusion

Column Header Details

Al2O3 by ICP in wt % (Al2O3) CaO by ICP in wt % (CaO) Fe2O3 by ICP in wt % (Fe2O3) K2O by ICP in wt % (K2O) MgO by ICP in wt % (MgO)

MnO by ICP in wt % (MnO) Na2O by ICP in wt % (Na2O) P2O5 by ICP in wt % (P2O5) TiO2 by ICP in wt % (TiO2) SiO2 by ICP in wt % (SiO2)

Sample Number	AI2O3	CaO	Fe2O3	K20	MgO	MnO	Na2O	P2O5	TiO2	SiO2
Number	wt %	wt %	wt %	wt %	wt %	wt %	wt %	wt %	wt %	wt %
MRG1	8.36	14.3	17.5	0.21	13.2	0.16	0.71	0.06	3.65	39.4
P-03-01-001	14.0	1.58	3.91	2.44	1.64	0.03	1.21	0.03	0.41	65.8
P-03-01-002	15.7	2.54	6.08	1.06	2.28	0.02	0.99	0.00	0.48	64.9
P-03-01-003	15.5	2.01	6.50	1.14	2.54	0.02	0.74	0.07	0.40	63.1
P-03-02-001	16.8	0.88	4.11	2.75	1.01	<0.01	1.18	0.02	0.49	67.4
P-03-02-002	16.6	0.67	3.08	3.91	1.42	0.02	1.26	0.08	0.78	66.4
P-03-02-003	15.7	0.89	5.58	3.67	1.07	0.02	1.03	0.03	0.70	64.7
P-03-02-004	15.6	0.65	2.87	3.08	0.79	0.01	1.23	0.03	0.74	68.2
P-03-02-005	19.2	0.78	2.41	1.75	0.58	<0.01	0.61	0.01	0.74	66.9
P-03-02-006	17.3	1.03	5.21	3.37	1.21	0.01	0.83	0.09	0.73	63.7
						0.01	0.00	0.00	0.70	03.7
P-03-03-001	14.2	1.61	4.61	2.34	1.51	0.03	1.20	0.04	0.39	66.2
P-03-03-002	13.7	1.53	3.81	2.59	1.33	0.03	1.34	0.03	0.36	64.7
P-03-03-003	15.0	1.91	7.19	1.20	2.04	0.03	0.77	0.03	0.41	60.0
P-03-03-004	13.1	1.45	3.32	2.83	1.14	0.03	1.57	0.05	0.40	67.8
P-03-04-001	16.5	1.87	5.60	1.65	2.67	0.03	0.53	0.03	0.56	64.5
P-03-04-002	13.0	1.22	2.15	3.54	0.58	0.03	1.94	0.02	0.18	<u> </u>
P-03-04-003	11.9	1.89	2.54	2.08	0.70	0.03	1.40	0.02	0.18	68.2
P-03-05-001	13.6	3.27	3.99	2.49	1.72	0.06	2.06	0.10	0.62	65.8
P-03-06-001	14.9	1.09	5.10	1.58	0.82	<0.00	0.93	0.03	0.62	66.0
 P-03-06-002 	17.8	0.88	2.77	2.00	0.83	<0.01	0.92	<0.03	0.78	67.1 67.1
					0100	0.01	0.02	-0.01	0.70	07.1
MRG1	8.35	14.3	18.0	0.23	13.3	0.16	0.69	0.05	3.65	40.0
P-03-06-003	16.9	0.76	2.10	1.55	0.64	< 0.01	0.81	0.01	0.49	69.2
P-03-07-001	12.7	3.29	2.84	2.14	1.61	0.03	2.17	0.10	0.54	68.1
P-03-07-002	13.7	2.47	4.72	2.37	1.94	0.02	1.71	0.12	0.65	66.9
P-03-07-003	14.2	1.89	3.90	2.09	1.09	0.04	1.50	0.07	0.36	67.5
P-03-07-004	17.2	2.18	5.80	0.91	2.23	0.03	0.83	0.02	0.39	62.9

Sovereign Mining Attention: Neil Torry PO #/Project:		1	Geo 125 - 15 Innova Sel: (306) 933-81	-	katoon, Saskatc	hewan, S7N 22			Report No: 04-9 Date: March 02,	
Samples: 33					Rock Assay					
Sample Number	AI2O3 wt %	CaO wt %	Fe2O3 wt %	K2O wt %	MgO wt %	MnO wt %	Na2O wt %	P2O5 wt %	TiO2 wt %	SiO2 wt %
P-03-07-005 T-03-01-001 T-03-01-002 T-03-01-003 T-03-01-004	14.9 14.7 14.2 14.9 13.2	2.71 1.66 1.67 1.62 1.38	5.77 5.89 2.91 3.50 3.42	2.87 1.09 2.03 2.65 2.71	2.29 1.38 0.70 1.28 1.23	0.43 0.03 0.03 0.03 0.03 0.03	1.59 0.59 1.53 1.40 1.41	0.13 <0.01 0.03 0.05 0.05	0.71 0.41 0.35 0.34 0.37	61.4 66.8 66.8 66.0 67.2
T-03-01-005 P-03-01-002 R	14.1 15.0	1.78 2.40	5.14 6.01	2.04 1.05	1.76 2.22	0.03 0.02	1.17 0.95	0.06 0.12	0.39 0.46	66.1 65.2

Whole Rock Analysis: A 0.1 gram pulp is fused at 1000 C with lithium metaborate then dissolved in dilute HNO3.

Sovereign Mining

Attention: Neil Torry PO #/Project: Samples: 33

Geoanalytical Laboratories SRC

125 - 15 Innovation Blvd., Saskatoon, Saskatchewan, S7N 2X8 Tel: (306) 933-8118 Fax: (306) 933-5656 Email: geochem@src.sk.ca

Report No: 04-91 Date: March 02, 2004

ICP Whole Rock Assay Lithium Metaborate Fusion

Column Header Details

Ba by ICP in ppm (Ba) Cr by ICP in ppm (Cr) Sc by ICP in ppm (Sc) Sr by ICP in ppm (Sr) Y by ICP in ppm (Y)

Zr by ICP in ppm (Zr) Loss on Ignition in wt % (LOI) SUM (SUM)

Sample Number	Ba ppm	Cr ppm	Sc ppm	Sr ppm	Y ppm	Zr ppm	LOI wt %	SUM
MDG								
MRG1	44	434	53	261	13	93	N/R	97.55
P-03-01-001	1020	96	6	149	21	154	7.8	98.85
P-03-01-002	1130	159	6	217	24	210	6.0	100.17
P-03-01-003	638	226	8	149	24	179	7.1	99.21
P-03-02-001	663	172	16	137	24	150	5.4	100.25
P-03-02-002	915	275	16	119	26	135	5.2	99.42
P-03-02-003	977	154	17	118	27	121	5.0	98.39
P-03-02-004	821	130	16	118	36	147	4.7	97.89
P-03-02-005	553	157	10	83	15	225	7.1	
P-03-02-006	736	182	19	116	26	131	5.8	100.11
	700	102	19	110	20	131	5.8	99.28
P-03-03-001	964	167	6	155	22	151	7.1	99.23
P-03-03-002	1080	77	5	156	18	152	9.5	98.92
P-03-03-003	677	176	6	137	20	171	11.4	99.98
P-03-03-004	1180	41	5	170	22	149	6.7	98.39
P-03-04-001	1100	71	7	120	19	165	8.0	101.94
			•	120	15	105	0.0	101.94
P-03-04-002	684	95	3	108	25	182	8.6	99.46
P-03-04-003	850	163	7	169	43	204	12.6	99.32
P-03-05-001	1570	125	14	350	20	176	5.8	99.71
P-03-06-001	531	119	12	121	61	148	5.9	98.06
P-03-06-002	570	113	13	105	11	173	6.3	
	010	110	15	105	11	113	0.3	99.38
MRG1	44	459	54	263	14	98	N/R	98.73
P-03-06-003	657	70	9	97	9	134	5.9	98.36
P-03-07-001	1190	147	10	343	19	166	5.3	98.82
P-03-07-002	771	190	13	241	25	141	5.1	99.70
P-03-07-003	773	166	4	185	25	143	7.6	100.24
		100	-	100	25	140	7.0	100.24
P-03-07-004	499	508	5	186	18	158	7.0	99.49
P-03-07-005	812	261	15	228	24	120	6.2	99.00
T-03-01-001	364	61	8	147	14	166	6.3	98.85
T-03-01-002	767	46	6	174	28	180	8.3	98.55
			-		20		0.0	30.33

Sovereign Mining Attention: Neil Torry PO #/Project:		125 - 15 Inno	vation Blvd., Sasl	boratories SRC katoon, Saskatche 933-5656 Email:	wan, S7N 2X8	c.ca	•	No: 04-91 arch 02, 2004
Samples: 33				Rock Assay				
Sample	Ba	Cr	Sc	Sr	Y	Zr	LOI	SUM
Number	ppm	ppm	ppm	ppm	mqq	ppm	wt %	
T-03-01-003	952	77	5	142	20	129	6.7	98.46
T-03-01-004	1060	159	5	162	21	146	7.1	98.10
T-03-01-005	874	49	6	162	21	160	6.6	99.17
P-03-01-002 R	1060	82	6	208	23	205	6.1	99.53

Whole Rock Analysis: A 0.1 gram pulp is fused at 1000 C with lithium metaborate then dissolved in dilute HNO3.

.

.

APPENDIX 5 2002-2003 GOLD GRAIN RESULTS

Sample			Sample	Carrowla	0	<u> </u>				L				
Number	utmx n27	utmy n27		Sample	Grains	Grains		Estimated		1	Factor wt	Grade grams/	Grade oz/	Estimated
02BWH001	543192	6034194	Pan HMC	Weight(kg)	Picked	Est.	(um)	(um)corr	mg	g	to 1000kg	tonne (ppm)	ton	Conc. ppb
02BWH002	541234	6031587	Beach HMC	6.50 10.20	0	0	0	0	0	0	153.84615	0.00000	0.00000	0.0
02BWH003	512565	6034805	Beach HMC		4	4	12.29	12.29	0.01229	0.00001229	98.039216	0.00120	0.00004	1.2
02BWH004	512510	6034574	Pan HMC	17.50 15.80	20	20	52.67	52.67	0.05267	0.00005267	57.142857	0.00301	0.00009	3.0
02BWH005	511549	6107259	Pan HMC Pan HMC		1	1	0.71	0.71	0.00071	0.00000071	63.291139	0.00004	0.00000	0.0
02BWH006	517684	6108161		8.80	6	6	15.83	15.83	0.01583	0.00001583	113.63636	0.00180	0.00005	1.8
02BWH007	523913	6077223	Pan HMC	7.10	14	14	46.93	46.93	0.04693	0.00004693	140.84507	0.00661	0.00019	6.6
02BWH008	521778	6076871	Pan HMC	5.25	6	6	15.03	15.03	0.01503	0.00001503	190.47619	0.00286	0.00008	2.9
02BWH009	521776	6076909	Pan HMC	5.15	6	6	224.78	224.78	0.22478	0.00022478	194.17476	0.04365	0.00127	43.6
02BWH010	520804	6080359	Pan HMC	9.85	0	0	0	0	0	0	101.52284	0.00000	0.00000	0.0
02BWH010	520804	6080478	Pan HMC	6.70	17	17	361.83	361.83	0.36183	0.00036183	149.25373	0.05400	0.00158	54.0
02BWH012			Pan HMC	7.60	3	3	23.87	23.87	0.02387	0.00002387	131.57895	0.00314	0.00009	3.1
02BWH013	521697	6080407	Pan HMC	10.80	7	7	18.52	18.52	0.01852	0.00001852	92.592593	0.00171	0.00005	1.7
02BWH013	-	6083018	Pan HMC	7.25	18	18	166.72	166.72	0.16672	0.00016672	137.93103	0.02300	0.00067	23.0
	521447	6071161	Pan HMC	8.00	14	14	89.83	89.83	0.08983	0.00008983	125	0.01123	0.00033	11.2
02BWH015 02BWH016	517447	6070996	Pan HMC	7.95	17	17	291.83	291.83	0.29183	0.00029183	125.78616	0.03671	0.00107	36.7
	512938	6071389	Pan HMC	6.70	5	5	59.64	59.64	0.05964	0.00005964	149.25373	0.00890	0.00026	8.9
02BWH017	513387	6070512	Pan HMC	3.90	5	5	35.84	35.84	0.03584	0.00003584	256.41026	0.00919	0.00027	9.2
02BWH018	524032	6105754	Pan HMC	8.10	1	1	6	6	0.006	0.000006	123.45679	0.00074	0.00002	0.7
02BWH019	524851	6104069	Pan HMC	7.60	6	6	213.13	213.13	0.21313	0.00021313	131.57895	0.02804	0.00082	28.0
02BWH020	521781	6097986	Pan HMC	3.95	8	8	15.29	15.29	0.01529	0.00001529	253.16456	0.00387	0.00011	3.9
02BWH021	522229	6101511	Pan HMC	6.10	4	4	18.04	18.04	0.01804	0.00001804	163.93443	0.00296	0.00009	3.0
02BWH022	537266	6083335	Pan HMC	6.85	3	3	9.17	9.17	0.00917	0.00000917	145.9854	0.00134	0.00004	1.3
02BWH023	536301	6080230	Pan HMC	9.40	14	14	371.68	371.68	0.37168	0.00037168	106.38298	0.03954	0.00115	39.5
02BWH024	533345	6086447	Pan HMC	4.60	18	18	142.4	142.4	0.1424	0.0001424	217.3913	0.03096	0.00090	31.0
02BWH025	533462	6084326	Pan HMC	7.10	2	2	10.97	10.97	0.01097	0.00001097	140.84507	0.00155	0.00005	1.5
02BWH026	541766	6089963	Pan HMC	16.25	21	21	61.04	61.04	0.06104	0.00006104	61.538462	0.00376	0.00011	3.8
02BWH027	531896	6092778	Pan HMC	11.70	4	4	20.7	20.7	0.0207	0.0000207	85.470085	0.00177	0.00005	1.8
02CPH001	555745	6034004	Pan HMC	7.80	8	8	30.41	30.41	0.03041	0.00003041	128.20513	0.00390	0.00011	3.9
02CPH002	556848	6033502	Pan HMC	16.65	3	3	5.38	5.38	0.00538	0.00000538	60.06006	0.00032	0.00001	0.3
02CPH003	537272	6040839	Pan HMC	18.80	8	8	111.08	111.08	0.11108	0.00011108	53.191489	0.00591	0.00017	5.9
02CPH004	534606	6040594	Pan HMC	18.35	6	6	37.42	37.42	0.03742	0.00003742	54.495913	0.00204	0.00006	2.0
02HKH001	555977	6031735	Pan HMC	9.60	29	29	112.38	112.38	0.11238	0.00011238	104.16667	0.01171	0.00034	11.7
02HKH002	539711	6039312	Pan HMC	7.30	1	1	9.85	9.85	0.00985	0.00000985	136.9863	0.00135	0.00004	1.3
02HKH003	542325	6046363	Pan HMC	8.05	1	1	16.98	16.98	0.01698	0.00001698	124.2236	0.00211	0.00006	2.1
02MDH100	511549	6107259	Beach HMC	16.95	3	3	15.73	15.73	0.01573	0.00001573	58.99705	0.00093	0.00003	0.9
02MDH101	517684	6108161	Beach HMC	19.25	4	4	123.08	123.08	0.12308	0.00012308	51.948052	0.00639	0.00019	6.4
02MDH102	513619	6094434	Pan HMC	7.50	9	9	149.61	149.61	0.14961	0.00014961	133.33333	0.01995	0.00058	19.9
02MDH103	513505	6094322	Pan HMC	6.75	0	0	0	0	0	0	148.14815	0.00000	0.00000	0.0
02WCH001	514781	6044811	Pan HMC	15.60	1	1	3.25	3.25	0.00325	0.00000325	64.102564	0.00021	0.00001	0.0
02WCH002	513776	6043896	Pan HMC	11.15	0	0	0	0	0	0	89.686099	0.00000	0.00000	0.0
02WCH003	513315	6040184	Pan HMC	8.50	1	1	13.11	13.11	0.01311	0.00001311	117.64706	0.00154	0.00000	1.5
02WCH004	517682	6037764	Pan HMC	6.60	3	3	71.47	71.47	0.07147	0.00007147	151.51515	0.01083	0.00032	10.8
02WCH005	517674	6037705	Pan HMC	7.50	0	0	0	0	0	0	133.33333	0.00000	0.00000	0.0
02WCH006	523646	6035396	Pan HMC	4.95	1	1	26.73	26.73	0.02673	0.00002673	202.0202	0.00540	0.00000	<u> </u>
02MDH104	518048	6066707	Suction Dredge	Geochem Gold	Results Re	ceived Av	vaiting San	nole Weights	0.02070	0.0002070	202.0202	0.00040	0.00010	5.4
02MDH105	517087	6073974	Suction Dredge	Geochem Gold	Results Re	ceived Av	vaiting San	nle Weights						
02MDH106	509423	6092937		Geochem Gold										
02MDH107	506378	6095322	Suction Dredge									1		

.

Sample			Sample	Sample	Grains	Grains		Estimated	Weight of	Αυ	Factor wt	Grade grams/	Grade oz/	Estimated
Number	utmx_n27	utmy_n27	Type	Weight(kg)	Picked	Est.	(um)	(um)corr	mg	g	to 1000kg	tonne (ppm)	ton	Conc. ppb
02CDH103	531900	6092775	Suction Dredge							9	to recently	tonno (ppin)		conc. ppb
02ACDGH108	536751	6076463		Geochem Gold										
02CJOH002	580455	6047510		Geochem Gold										
03NVT001	532557	6083523	Till	14.00	0	0	0	0	0	0	71.428571	0.00000	0.00000	0.0
03NVT002	532292	6083436	Till	14.15	6	6	42.41	42.41	0.04241	0.00004241	70.671378	0.00300	0.00009	3.0
03NVT003	532097	6083249	Till	13.25	1	1	1.05	1.05	0.00105	0.00000105	75.471698	0.00008	0.00000	0.1
03NVT004	531892	6083088	Ťill	11.90	3	3	2.63	2.63	0.00263	0.00000263	84.033613	0.00022	0.00001	0.2
03NVT005	531747	6082889	Till	15.30	1	1	0.28	0.28	0.00028	0.00000028	65.359477	0.00002	0.00000	0.0
03NVT006	531678	6082622	Till	12.90	1	1	4.97	4.97	0.00497	0.00000497	77.51938	0.00039	0.00001	0.4
03NVT007	531675	6082393	Till	15.10	0	0	0	0	0	0	66.225166	0.00000	0.00000	0.0
03NVT008	531735	6082142	Till	17.40	0	0	0	0	0	0	57.471264	0.00000	0.00000	0.0
03NVT009	531675	6081661	Till	13.10	1	1	8.43	8.43	0.00843	0.00000843	76.335878	0.00064	0.00002	0.6
03NVT010	532128	6081408	Till	20.25	1	1	0.1	0.1	0.0001	0.0000001	49.382716	0.00000	0.00000	0.0
03NVT011	531095	6077657	Till	15.65	3	3	53.88	53.88	0.05388	0.00005388	63.897764	0.00344	0.00010	3.4
03NVT012	529235	6075769	Till	14.20	0	0	0	0	0	0	70.422535	0.00000	0.00000	0.0
03NVT013	529466	6075843	Till	15.20	0	0	0	0	0	0	65.789474	0.00000	0.00000	0.0
03NVT014	529591	6075905	Till	18.10	0	0	0	0	0	0	55.248619	0.00000	0.00000	0.0
03NVT015	529959	6076228	Till	18.20	1	1	0.46	0.46	0.00046	0.00000046	54.945055	0.00003	0.00000	0.0
03NVT016	530190	6076336	Till	15.85	3	3	1.84	1.84	0.00184	0.00000184	63.091483	0.00012	0.00000	0.1
03NVT017	530431	6076424	Till	15.35	0	0	0	0	0	0	65.14658	0.00000	0.00000	0.0
03NVT018	530639	6076587	Till	15.45	1	1	4.97	4.97	0.00497	0.00000497	64.724919	0.00032	0.00001	0.3
03NVT019	530986	6076674	Till	17.05	0	0	0	0	0	0	58.651026	0.00000	0.00000	0.0
03NVT020	531214	6077145	Till	14.35	0	0	0	0	0	0	69.686411	0.00000	0.00000	0.0
03NVT021	531054	6078181	Till	13.75	3	3	0.91	0.91	0.00091	0.00000091	72.727273	0.00007	0.00000	0.1
03NVT022	531131	6078642	Till	13.40	4	4	3.16	3.16	0.00316	0.00000316	74.626866	0.00024	0.00001	0.2
03NVT023	531248	6078867	Till	15.40	2	2	0.26	0.26	0.00026	0.00000026	64.935065	0.00002	0.00000	0.0
03NVT024	531494	6078925	Till	12.45	1	1	1.05	1.05	0.00105	0.00000105	80.321285	0.00008	0.00000	0.1
03NVT025	531773	6079605	Till	17.20	1	1	0.71	0.71	0.00071	0.00000071	58.139535	0.00004	0.00000	0.0
03NVT026	531696	6079072	Till	14.20	1	1	1.46	1.46	0.00146	0.00000146	70.422535	0.00010	0.00000	0.1
03NVT027	531828	6080153	Till	12.60	1	1	6	6	0.006	0.000006	79.365079	0.00048	0.00001	0.5
03NVT028	531869	6080625	Till	15.75	1	1	0.28	0.28	0.00028	0.00000028	63.492063	0.00002	0.00000	0.0
03NVT029	532404	6081079	Till	13.05	0	0	0	0	0	0	76.628352	0.00000	0.00000	0.0
03NVT030	527472	6090112	Till	16.30	0	0	0	0	0	0	61.349693	0.00000	0.00000	0.0
03NVT031	526661	6088821	Till	15.65	1	1	3.25	3.25	0.00325	0.00000325	63.897764	0.00021	0.00001	0.2
03NVT032	527297	6089887	Till	16.20	2	2	2.51	2.51	0.00251	0.00000251	61.728395	0.00015	0.00000	0.2
03NVT033	527066	6089829	Till	14.65	0	0	0	0	0	0	68.259386	0.00000	0.00000	0.0
03NVT034	527117	6089501	Till	14.45	0	0	0	0	0	0	69.204152	0.00000	0.00000	0.0
03NVT035	526942	6089292	Till	15.05	0	0	0	0	0	0	66.445183	0.00000	0.00000	0.0
03NVT036	526493	6088622	Till	14.05	0	0	0	0	0	0	71.174377	0.00000	0.00000	0.0
03NVT037	526375	6088391	Till	16.15	1	1	0.28	0.28	0.00028	0.00000028	61.919505	0.00002	0.00000	0.0
03NVT038	526210	6088204	Till	14.40	0	0	0	0	0	0	69,444444	0.00000	0.00000	0.0
03NVT039	526095	6087995	Till	13.30	0	0	0	0	0	0	75.18797	0.00000	0.00000	0.0
03NVT040	525903	6087744	Till	15.60	0	0	0	0	0	0	64.102564	0.00000	0.00000	0.0
03NVT041	522839	6083175	Till	17.95	4	4	10.27	10.27	0.01027	0.00001027	55.710306	0.00057	0.00002	0.6
03NVT042	522985	6083408	Till	15.35	1	1	0.46	0.46	0.00046	0.00000046	65.14658	0.00003	0.00000	0.0
03NVT043	523119	6083625	Till	16.60	0	0	0	0	0	0	60.240964	0.00000	0.00000	0.0
03NVT044	523272	6083825	Till	18.15	0	0	0	0	0	0	55.096419	0.00000	0.00000	0.0
03NVT045	523462	6084143	Till	19.55	0	0	0	0	0	0	51.150895	0.00000	0.00000	0.0
03NVT046	523621	6084339	Till	16.95	0	0	0	0	0	0	58.99705	0.00000	0.00000	0.0
						_	5			<u> </u>	30.33103	0.00000	0	0.0

Number utmy_m2 utmy_m2 <thutmy_m2< th=""> <thutmy_m2< th=""> <thut< th=""><th>Sample</th><th></th><th></th><th>Sample</th><th>Sample</th><th>Grains</th><th>Grains</th><th></th><th>Estimated</th><th>Weight of</th><th>Au</th><th>Factor wt</th><th>Grade grams/</th><th>Grade oz/</th><th>Estimated</th></thut<></thutmy_m2<></thutmy_m2<>	Sample			Sample	Sample	Grains	Grains		Estimated	Weight of	Au	Factor wt	Grade grams/	Grade oz/	Estimated
03AVT047 523/42 508/456 TIII 15.70 4 4 10.23 10.22 0.001023 51.584268 C 0.0065 D 0.0002 0.00025 51.584268 C 0.0065 D 0.0000 0.00000 0.000025 51.57168 0.00000 0.00000 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.000025 0.00000 0		utmx_n27	utmy_n27	Туре	Weight(kg)	Picked	Est.				r		-		Conc. ppb
OBANT1046 529497 6004341 Till 13.26 0 0 0 0 0 75.471686 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.000000 0.00		523742	6084549			4	4				<u> </u>				
03-NVT064 524120 6085310 TIII 11 4.05 4.06 0.00405 0.0000405 61.16208 0.00025 0.00000 0.1 03-NVT061 524476 6065308 TIII 16.20 2 2 192 1.92 0.0012 0.000112 54.94565 0.00001 0.0 0 0.5771463 0.00000 0.00000 0.00000 0.0 03NVT053 524497 6068584 TIII 17.60 0 0 0 0 55.971483 0.00000 0.00000 0.0 03NVT054 524987 6068586 TIII 11.85 1 1.146 1.44 0.000118 0.00001 0.00000 0.0 03NVT054 525556 606858 TIII 1.35 1 1.146 1.46 0.00118 0.000011 0.00000 6.3 03NVT055 525556 606878 TIII 1.36 3 1.86 1.80 0.00016 0.000011 0.00000 0.00001 0.00001		523947	6084854	Till	13.25	0	0	0	0	0					
0BNVT050 524277 6068309 Till 17.10 1 1 2.56 2.56 0.00266 0.0000256 58.475632 0.00011 0.00000 0.1 GSNVT061 524465 6068528 Till 15.7 0 0 0 0 9.871463 0.00000 0.00000 0.0 GSNVT051 524707 6068594 Till 17.60 0 0 0 0.851812 0.00000 0.0000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.000000		524120	6085111	Till	16.35	1	1	4.05	4.05	0.00405	0.00000405				
03N-T1051 524408 6068528 TIII 18.20 2 2 192 1.92 0.001012 2.6494565 0.00011 0.000000			6085309	Till	17.10	1	1	2.56							
03NVT022 524366 6085765 TIII 16.75 0 0 0 0 68701403 0.00000 0		524408	6085528	Till	18.20	2	2								
03NVT063 524'07 608594 Till 17.60 0 0 0 0 6881882 0.000000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.000000 0.00000 0.000000 0.00000 0.00000 0.000000 0.00000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.0000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000			6085755	Till	16.75	0	0	0	0	0	0				
DSIMUT054 524833 6086196 Till 19.05 1 11 19.54 19.54 19.54 19.54 10.55 10.55 10.00011 0.00000 6.3 DSIN/T056 622437 60863663 Till 13.85 1 1 14.6 0.001145 5.24233 0.000216 0.00000 0.0 0 0 0 0.000016 0.00000		524707	6085954	Till	17.60	0	0	0	0	0	0				
03NVT055 524987 6068366 Till 19.05 1 119.54 0.11954 0.001185 52430430 0.00028 0.00018 1 119.54 0.11954 0.001186 52240340 0.00028 0.00000 0.00000 0.00000 0.00000 0.00000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.00000		524833	6086164	Till	16.50	2	2	0.44	0.44	0.00044	0.00000044				
03N/T056 525140 6686533 Till 13.85 1 1 1.46 0.000146 72.02166 0.00011 0.00000 0.01000 03N/T057 525253 60867019 Till 14.15 1 1 1.05 0.00015 6.000016 76.7378 0.00007 0.00000 0.13 03N/T050 522547 6082949 Till 13.95 0 0 0 0 0 0 0.000016 67.9778 0.00000 0.013 0.00000 0.013 0.00000 0.013 0.00000 0.013 0.00000 0.013 0.00000 0.013 0.00000 0.013 0.00000 0.013 0.00000 0.000		524987	6086366	Till	19.05	1	1	119.54	119.54	0.11954					
03NVT057 552535 6086787 Till 12.0 0 <td></td> <td></td> <td>6086583</td> <td>Till</td> <td>13.85</td> <td>1</td> <td>1</td> <td>1.46</td> <td>1.46</td> <td>0.00146</td> <td></td> <td></td> <td></td> <td></td> <td></td>			6086583	Till	13.85	1	1	1.46	1.46	0.00146					
03NVT058 523390 6087019 Till 14.15 1 1 1.05 1.05 0.00105 0.0000105 70.671378 0.00007 0.00000 0.1 03NVT050 522678 6082249 Till 13.95 0 0 0 0 0 71.884588 0.00006 0.000006 0.000006 0.000006 0.000006 0.000006 0.000006 0.000006 0.000006 0.000006 0.000006 0.000006 0.000006 0.000006 0.000006 0.000000 0.000000 0.000000 0.00000 0.00000 0.00000 0.00000 0.000000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.000000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.000000 0.00000 0.00000 0.00000 0.00000	03NVT057	525253	6086787	Till	12.50	0	0	0	0	0					
03NVT059 525547 6007208 Till 14.30 3 3 1.86 1.00166 0.000107 6.93007 0.00000 0.00000 0.0 03NVT050 5225678 602249 Till 17.25 1 1 1.05 1.00105 0.00000 0.00000 0.0 03NVT051 525678 6007388 Till 17.25 1 1 1.05 0.00105 57.971014 0.00006 0.0 0.0 0 0.00101 66.45183 0.00000		525390	6087019	Till	14.15	1	1	1.05	1.05	0.00105	0.00000105				
03NVT050 522679 6082949 Till 13.95 0 </td <td></td> <td>525547</td> <td>6087208</td> <td>Till</td> <td>14.30</td> <td>3</td> <td>3</td> <td>1.86</td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td>		525547	6087208	Till	14.30	3	3	1.86		-					
03NVT061 525692 6087388 Till 17.25 1 1 1 1 1 0.6 1.05 0.000016 57.971014 0.000006 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.0000000 0.000000 0.0000000 0.0000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.0000000 0.000000			6082949	Till		0	0	0							
03NVT062 525769 6087574 TIII 13.30 3 3 5 41 5.41 0.00041 0.00001 C.A 03NVT064 531236 6094937 TIII 15.95 0 0 0 0 66.45163 0.00000 0.00001 0.3 0.00001 0.3 0.00001 0.00001 0.00001 0.00001 0.00001 0.00001 0.00000 0.0 0.00001 0.000001 0.00000 0.0 0.00001 0.00000 0.0 0.00001 0.00001 0.00000 0.0 0.00010 0.00000 0.0 0.00010 0.00000 0.0 0.00010 0.00000 0.00000		525692	6087388	Till	17.25	1	1		-	0.00105			and the second		
OSNVT063 531523 6094924 Till 15.05 0 </td <td></td> <td>525789</td> <td>6087574</td> <td>Till</td> <td></td> <td>3</td> <td>3</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		525789	6087574	Till		3	3								
03NVT064 532036 6094937 Till 19.95 0 0 0 0 62.959235 000000 0.000000 0.00000			6094924	Till	15.05	0	0	0							
03NVT065 532227 6094895 Till 14.75 0 0 0 0 67.76661 0.00000 0.00001 0.3 03NVT067 533541 6094800 Till 18.00 5 5 4.92 0.00422 0.000002 55.55555 0.00027 0.00001 0.3 03NVT068 534044 6094808 Till 15.30 4 4 25.12 0.02512 60.389776 0.00001 0.00001 0.3 03NVT069 534557 6094768 Till 13.40 1 1 1.05 1.05 0.00001 0.00001 0.00000 0.1 03NVT070 535047 6094705 Till 17.85 4 4 2.77 2.0277 0.0000277 66.02409 0.00000 0.0 0 0.00000 0.0 0 0.00000 0.00000 0.0 0 0.00000 0.0 0 0.00000 0.0 0 0.00000 0.00000 0.0 0 0.00000 0.		532036	6094937	Till	15.95	0	0	0	0						
OSMVT066 533013 609430 Till 18.00 5 5 4.92 4.92 0.00042 0.556556 0.00027 0.00001 0.3 03MVT068 534044 6094908 Till 15.65 1 3.25 3.25 0.00325 63.897764 0.00021 0.00001 0.2 03MVT068 534657 6094768 Till 15.30 4 4 25.12 0.0212 0.0000157 63.58477 0.00006 0.0000 0.1 03MVT071 53550 6094679 Till 17.85 4 4 2.77 2.77 0.000017 6.035647 0.00000 0.0 03MVT071 53550 6094679 Till 17.75 0 0 0 0 0 0 579714 0.00000 0.00000 0.0 03MVT073 53619 6094676 Till 13.75 1 1 0.28 0.28 0.00028 72.72723 0.00000 0.00000 0.0 <t< td=""><td></td><td>532527</td><td>6094895</td><td>Till</td><td>14.75</td><td>0</td><td>0</td><td>0</td><td>0</td><td>-</td><td>_</td><td></td><td></td><td></td><td></td></t<>		532527	6094895	Till	14.75	0	0	0	0	-	_				
03MVT067 533541 0094840 Till 15.55 1 1 3.25 3.25 0.000235 63.897764 0.00021 0.00001 0.2 03MVT069 534557 6094768 Till 15.30 4 4 25.12 25.12 0.000125 65.359477 0.00164 0.00005 1.6 03MVT070 5335047 6094768 Till 17.85 4 4 2.77 2.77 0.000105 74.526866 0.00006 0.00000 0.2 03MVT071 533550 6094647 Till 17.85 4 4 2.77 2.77 0.000106 40.00000 0.0000	03NVT066	533013	6094830	Till	18.00	5	5	4.92	4.92	0.00492	-				
03NVT068 534044 6094808 Till 15.30 4 4 25.12 0.02512 0.0002512 65.359477 0.00164 0.00005 1.6 03NVT070 535047 6094705 Till 17.85 4 4 2.77 0.00277 0.0000017 76.622408 0.000000	03NVT067	533541	6094840	Till	15.65	1	1		3.25	0.00325					
03NVT069 534557 6094768 Till 13.40 1 1 1.05 1.05 0.00105 74.624666 0.00008 0.00000 0.1 03NVT071 53550 6094795 Till 17.85 4 4 2.77 2.77 0.000277 66.022409 0.00016 0.00000 0.0 0.00000 0.00	03NVT068	534044	6094808	Till	15.30	4	4								
03NVT070 535047 6094705 Till 17.85 4 4 2.77 2.77 0.00277 56.022406 0.00016 0.00000 0.2 03NVT071 535550 6094679 Till 20.40 1 1 1.96 1.96 0.00196 0.000016 49.019608 0.00010 0.00000 0.1 03NVT071 535612 6094671 Till 17.25 0 0 0 0 5.371014 0.000000 <td>03NVT069</td> <td>534557</td> <td>6094768</td> <td>Till</td> <td>13.40</td> <td>1</td> <td>1</td> <td>1.05</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	03NVT069	534557	6094768	Till	13.40	1	1	1.05							
03NVT071 535550 6094679 Till 20.40 1 1 1.96 1.96 0.00196 49.019608 0.00010 0.00000 0.1 03NVT072 536619 6094676 Till 17.25 0 0 0 0 57.971014 0.00000 0.01 0.0000014 0.00000	03NVT070	535047	6094705	Till	17.85	4	4								
03NVT072 536122 6094641 Till 17.25 0 0 0 0 0 57.971014 0.000000 0.000000 0.00	03NVT071	535550	6094679	Till	20.40	1	1			0.00196	0.00000196	-			
03NVT073 536619 6094676 Till 13.75 1 1 0.28 0.28 0.00028 72.727273 0.00002 0.00000 0.0000 03NVT074 537157 6094714 Till 19.45 0 0 0 0 0 0 0 0 0 0.000000 0.000000 0.000000		536122	6094641	Till	17.25	0	0	0	0						
03NVT074 537157 6094714 Till 19.45 0 0 0 0 0 0 0 0 0.000000 0.000000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.000000 0.00000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.0000000 0.0000000 <td></td> <td>536619</td> <td>6094676</td> <td>Till</td> <td>13.75</td> <td>1</td> <td>1</td> <td>0.28</td> <td>0.28</td> <td>0.00028</td> <td>0.00000028</td> <td></td> <td></td> <td></td> <td></td>		536619	6094676	Till	13.75	1	1	0.28	0.28	0.00028	0.00000028				
03NVT075 537648 6094975 Till 17.00 2 2 10.31 10.31 0.01031 58.823529 0.00061 0.00002 0.6 03NVT076 538206 6094984 Till 14.85 0 0 0 0 0 6 7.34067 0.00000 0.00000 0.0 0 67.34067 0.00000 0.00000 0.0 0 0 67.34067 0.00000 0.00000 0.0 0 0 67.34067 0.00000 0.00000 0.0 0		537157	6094714	Till	19.45	0	0	0	0	0					
(03NVT076 538206 6094984 Till 14.85 0 0 0 0 0 67.340067 0.00000 0.000	03NVT075	537648	6094675	Till	17.00	2	2	10.31	10.31	0.01031	0.00001031				
03NVT077 538641 6095146 Till 14.75 2 2 2.1 2.1 0.0021 67.79661 0.0014 0.00000 0.1 03NVT078 539078 6095391 Till 15.60 1 1 0.46 0.46 0.000046 64.102564 0.00003 0.00000 0.0 03NVT079 539578 6095533 Till 12.30 3 3 1.31 0.0131 0.0000131 81.30813 0.00011 0.00000 0.1 03NVT080 540067 6094564 Till 14.90 7 7 3.77 3.77 0.00377 6.0000037 67.14094 0.00025 0.00001 0.30000 0.000031 0.30001 0.000001 0.20 0.00001 0.000001 0.20 0.00001 0.20 0.00001 0.20 0.00001 0.20 0.00001 0.20 0.00001 0.22 0.30VT081 522519 609868 Till 17.10 4 4 3.41 3.41 0.000116 0.	03NVT076	538206	6094984	Till	14.85	0	0	0	0	0					
03NVT078 539078 6095391 Till 15.60 1 1 0.46 0.46 0.00046 64.102564 0.00033 0.00000 0.0 03NVT079 539578 6095533 Till 12.30 3 3 1.31 1.31 0.00131 0.0000131 81.300813 0.00011 0.00000 0.1 03NVT080 540067 6094564 Till 14.90 7 7 3.77 3.77 0.000377 67.114094 0.00025 0.00001 0.3 03NVT081 522519 6098433 Till 21.05 1 1 0.16 0.0016 0.0000016 47.505938 0.00001 0.00000 0.0 0.0 0.00002 0.000001 0.000001 0.000001 0.00000 0.0 0.0 0.000001 0.000001 0.000001 0.000001 0.000000 0.0 0.0 0.0 0.00001 0.000001 0.000000 0.0 0.0 0.0 0.0 0.00011 0.00000 0.00000 0.0	03NVT077	538641	6095146	Till	14.75	2	2	2.1	2.1	0.0021	0.0000021				
03NVT079 539578 6095533 Till 12.30 3 3 1.31 1.31 0.00131 0.0000131 81.300813 0.00011 0.00000 0.1 03NVT080 540067 6094564 Till 14.90 7 7 3.77 3.77 0.00377 0.00000377 67.114094 0.00025 0.00001 0.3 03NVT081 522519 6098633 Till 21.05 1 1 0.16 0.16 0.000016 47.505938 0.00001 0.00000 0.0 03NVT082 522741 6098572 Till 17.10 4 4 3.41 3.41 0.00341 58.479532 0.00001 0.20000 0.00001 0.28 03NVT083 522958 6098688 Till 17.05 7 7 14.17 14.17 0.001417 58.61026 0.000001 0.00000 0.0 03NVT084 523182 6098028 Till 16.70 1 1 0.28 0.28 0.0028		539078	6095391	Till	15.60	1	1	0.46		0.00046	0.00000046				
03NVT080 540067 6094564 Till 14.90 7 7 3.77 3.77 0.00377 67.114094 0.0025 0.00001 0.3 03NVT081 522519 6098433 Till 21.05 1 1 0.16 0.0016 0.000016 47.505938 0.0001 0.00000 0.0 03NVT082 522741 6098572 Till 17.10 4 4 3.41 3.41 0.00014 7.505938 0.00001 0.00000 0.0 03NVT083 522958 6098688 Till 17.05 7 7 14.17 14.17 0.01417 58.651026 0.00083 0.00002 0.8 03NVT084 523182 609810 Till 18.80 1 1 0.16 0.0016 0.0000016 53.191489 0.00001 0.00000 0.0 03NVT085 521633 609735 Till 16.70 1 1 0.28 0.28 0.00028 0.80024 0.00000 0.00000 <		539578	6095533	Till	12.30	3	3	1.31	1.31	0.00131					
03NVT081 522519 6098433 Till 21.05 1 1 0.16 0.0016 0.000016 47.505938 0.0001 0.00000 0.0 03NVT082 522741 6098572 Till 17.10 4 4 3.41 3.41 0.00341 0.0000341 58.479532 0.00020 0.00001 0.2 03NVT083 522958 6098688 Till 17.05 7 7 14.17 14.17 0.01417 0.000016 53.191489 0.00001 0.00000 0.0 03NVT084 523182 6098810 Till 18.80 1 1 0.16 0.16 0.00016 0.0000016 53.191489 0.00001 0.00000 0.0 03NVT085 521633 6097935 Till 16.70 1 1 0.28 0.28 0.00028 59.88024 0.00002 0.00000 0.0 03NVT086 521873 6098028 Till 15.20 0 0 0 0 0 0.000	03NVT080	540067	6094564	Till	14.90	7	7	3.77	3.77	0.00377					
03NVT082 522741 6098572 Till 17.10 4 4 3.41 3.41 0.00341 58.479532 0.00020 0.00001 0.2 03NVT083 522958 6098688 Till 17.05 7 7 14.17 14.17 0.01417 58.651026 0.00083 0.00002 0.8 03NVT084 523182 6098810 Till 18.80 1 1 0.16 0.0016 0.0000016 53.191489 0.00002 0.00000 0.0 03NVT085 521633 6097935 Till 16.70 1 1 0.28 0.28 0.000028 59.88024 0.00002 0.00000 0.0 03NVT086 521873 6098028 Till 15.35 3 3 1.09 1.09 0.00109 0.514658 0.00007 0.00000 0.0 0.0 03NVT087 522077 6098152 Till 15.20 0 0 0 0 0 0.00003186 57.142857 0.00182		522519	6098433	Till	21.05	1	1	0.16	0.16	0.00016	0.00000016				
03NVT083 522958 6098688 Till 17.05 7 7 14.17 14.17 0.01417 58.651026 0.00083 0.00002 0.8 03NVT084 523182 6098810 Till 18.80 1 1 0.16 0.0016 0.000016 53.191489 0.00001 0.00000 0.0 03NVT085 521633 6097935 Till 16.70 1 1 0.28 0.28 0.000028 59.88024 0.00002 0.00000 0.0 03NVT086 521873 6098028 Till 15.35 3 3 1.09 1.09 0.00109 0.0000019 65.14658 0.00007 0.00000 0.0 03NVT087 522077 6098152 Till 15.20 0 0 0 0 0 0.0000186 57.142857 0.00182 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 <		522741	6098572			4	4	3.41	3.41	0.00341					
03NVT084 523182 6098810 Till 18.80 1 1 0.16 0.0016 0.000016 53.191489 0.00001 0.00000 0.0 03NVT085 521633 6097935 Till 16.70 1 1 0.28 0.28 0.00028 59.88024 0.00002 0.00000 0.0 03NVT086 521873 6098028 Till 15.35 3 3 1.09 1.09 0.00109 0.0000109 65.14658 0.00007 0.00000 0.1 03NVT087 522077 6098152 Till 15.20 0 0 0 0 0 65.789474 0.00000 0.00000 0.0 03NVT088 522311 6098304 Till 17.50 3 3 31.86 31.86 0.03186 57.142857 0.00182 0.00000 0.0 0.0 0 0 0.0 0.0 0.0 0.0 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 <td></td> <td>522958</td> <td>6098688</td> <td>Till</td> <td>17.05</td> <td>7</td> <td>7</td> <td>14.17</td> <td>14.17</td> <td>0.01417</td> <td>0.00001417</td> <td></td> <td></td> <td></td> <td></td>		522958	6098688	Till	17.05	7	7	14.17	14.17	0.01417	0.00001417				
03NVT085 521633 6097935 Till 16.70 1 1 0.28 0.28 0.00028 59.88024 0.00002 0.000000 0.00000 0.00000			6098810	Till	18.80	1	1	0.16	0.16	0.00016					
03NVT086 521873 6098028 Till 15.35 3 3 1.09 1.09 0.00109 0.0000109 65.14658 0.0007 0.00000 0.1 03NVT087 522077 6098152 Till 15.20 0 0 0 0 0 0 0.0000109 65.14658 0.00007 0.00000 0.0 03NVT087 522077 6098152 Till 15.20 0 0 0 0 0 65.789474 0.00000 0.00000 0.0 03NVT088 522311 6098304 Till 17.50 3 3 31.86 31.86 0.03186 57.142857 0.00182 0.00005 1.8 03NVT089 523422 6098946 Till 16.60 0 0 0 0 0 0 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000					16.70	1	1	0.28	0.28	0.00028	0.0000028				
03NVT087 522077 6098152 Till 15.20 0 0 0 0 0 65.789474 0.000000 0.000000 0.00					15.35	3	3	1.09	1.09	0.00109					
03NVT088 522311 6098304 Till 17.50 3 3 31.86 31.86 0.0013186 57.142857 0.00182 0.00005 1.8 03NVT089 523422 6098946 Till 16.60 0 0 0 0 0 0 0.0003186 57.142857 0.00182 0.00000 0.00000 0.0 03NVT090 521253 6097626 Till 15.15 0 0 0 0 0 0 0.000000				Till	15.20	0	0	0	0	0					
03NVT089 523422 6098946 Till 16.60 0 </td <td></td> <td></td> <td>6098304</td> <td>Till</td> <td>17.50</td> <td>3</td> <td>3</td> <td>31.86</td> <td>31.86</td> <td>0.03186</td> <td>0.00003186</td> <td>57.142857</td> <td></td> <td></td> <td></td>			6098304	Till	17.50	3	3	31.86	31.86	0.03186	0.00003186	57.142857			
03NVT090 521253 6097626 Till 15.15 0 </td <td></td> <td>523422</td> <td>6098946</td> <td>Till</td> <td>16.60</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		523422	6098946	Till	16.60	0	0	0	0						
03NVT091 521458 6097783 Till 17.05 2 2 0.56 0.00056 0.0000056 58.651026 0.00003 0.00000 0.00 03NVT092 521010 6097460 Till 16.00 0 0 0 0 0 0 0.00000					15.15	0	0	0	0	0	0				
03NVT092 521010 6097460 Till 16.00 0 0 0 0 0 0 0 62.5 0.00000 0.00000 0.0				Till	17.05	2	2	0.56	0.56	0.00056	0.00000056				
		521010	6097460		16.00	0	0	0	0	0					
<u>03NV1093</u> 520807 6097380 1ill 17.20 0 0 0 0 0 0 0 58.139535 0.00000 0.00000 0.0	03NVT093	520807	6097380	Till	17.20	0	0	0	0	0	0	58.139535	0.00000		
03NVT094 520054 6096912 Till 16.35 2 2 2.17 2.17 0.00217 0.0000217 61.16208 0.00013 0.00000 0.1	03NVT094	520054	6096912	Till	16.35	2	2	2.17	2.17	0.00217	0.00000217				
03NVT095 519844 6096802 Till 20.05 2 2 2.42 2.42 0.00242 49.875312 0.00012 0.00000 0.1	03NVT095	519844	6096802	Till	20.05	2	2	2.42							

Sample			Sample	Sample	Grains	Grains		Estimated	Weight of	Au	Factor wt	Grade grams/	Grade oz/	Estimated
Number	utmx_n27	utmy_n27	Туре	Weight(kg)	Picked	Est.	(um)	(um)corr	mg	g	to 1000kg	tonne (ppm)	ton	Conc. ppb
03NVT096	519648	6096672	Till	18.15	2	2	6.46	6.46	0.00646	0.00000646	55.096419	0.00036	0.00001	0.4
03NVT097	519449	6096537	Till	16.00	0	0	0	0	0	0	62.5	0.00000	0.00000	0.0
03NVT098	519240	6096397	Till	17.25	0	0	0	0	0	0	57.971014	0.00000	0.00000	0.0
03NVT099	519029	6096261	Till	15.55	0	0	0	0	0	0	64.308682	0.00000	0.00000	0.0
03NVT100	518828	6096099	Till	16.45	3	3	1.27	1.27	0.00127	0.00000127	60.790274	0.00008	0.00000	0.1
03NVT101	518648	6095937	Till	16.80	2	2	13.39	13.39	0.01339	0.00001339	59.52381	0.00080	0.00002	0.8
03NVT102	518456	6095776	Till	17.60	4	4	2.62	2.62	0.00262	0.00000262	56.818182	0.00015	0.00000	0.1
03NVT103	518249	6095600	Till	17.90	2	2	0.56	0.56	0.00056	0.00000056	55.865922	0.00003	0.00000	0.0
03NVT104	518042	6095459	Till	16.65	0	0	0	0	0	0	60.06006	0.00000	0.00000	0.0
03NVT105	523631	6099089	Till	14.55	1	1	0.16	0.16	0.00016	0.00000016	68.728522	0.00001	0.00000	0.0
03NVT106	523949	6099289	Till	14.30	1	1	1.05	1.05	0.00105	0.00000105	69.93007	0.00007	0.00000	0.1
03NVT107	524152	6099450	Till	16.60	0	0	0	0	0	0	60.240964	0.00000	0.00000	0.0
03NVT108	524391	6099563	Till	15.90	0	0	0	0	0	0	62.893082	0.00000	0.00000	0.0
03NVT109	524617	6099676	Till	13.95	0	0	0	0	0	0	71.684588	0.00000	0.00000	0.0
03NVT110	516134	6094400	Till	15.35	1	1	1.05	1.05	0.00105	0.00000105	65.14658	0.00007	0.00000	0.1
03NVT111	515933	6094289	Till	13.90	3	3	1.33	1.33	0.00133	0.00000133	71.942446	0.00010	0.00000	0.1
03NVT112	515716	6094159	Till	14.80	0	0	0	0	0	0	67.567568	0.00000	0.00000	0.0
03NVT113	516573	6114682	Тів	10.20	0	0	0	0	0	0	98.039216	0.00000	0.00000	0.0
03NVT114	515555	6114622	Till	14.00	0	0	0	0	0	0	71.428571	0.00000	0.00000	0.0
03NVT115	514865	6115384	Till	14.55	0	0	0	0	0	0	68.728522	0.00000	0.00000	0.0
03NVT116	514124	6114911	Till	13.05	1	1	0.16	0.16	0.00016	0.00000016	76.628352	0.00001	0.00000	0.0
03NVT117	513190	6114535	Till	12.60	0	0	0	0	0	0	79.365079	0.00000	0.00000	0.0
03NVT118	512481	6113794	Till	12.70	0	0	0	0	0	0	78.740157	0.00000	0.00000	0.0
03NVT119	512280	6112801	Till	12.90	0	0	0	0	0	0	77.51938	0.00000	0.00000	0.0
03NVT120	511131	6112245	Till	12.75	0	0	0	0	0	0	78.431373	0.00000	0.00000	0.0
03NVT121	510072	6112328	Till	11.90	0	0	0	0	0	0	84.033613	0.00000	0.00000	0.0
03NVT122	509008	6112065	Till	11.00	1	1	0.16	0.16	0.00016	0.00000016	90.909091	0.00001	0.00000	0.0
03NVT123	507 7 66	6111994	Till	8.40	0	0	0	0	0	0	119.04762	0.00000	0.00000	0.0
03NVT124	506512	6111963	Till	11.30	0	0	0	0	0	0	88.495575	0.00000	0.00000	0.0
03NVT125	547681	6037671	Till	19.40	4	4	6.08	6.08	0.00608	0.00000608	51.546392	0.00031	0.00001	0.3
03NVT126	547024	6037227	Till	17.65	1	1	4.97	4.97	0.00497	0.00000497	56.657224	0.00028	0.00001	0.3
03NVT127	546528	6036566	Till	19.60	2	2	5.12	5.12	0.00512	0.00000512	51.020408	0.00026	0.00001	0.3
03NVT128	546029	6036334	Till	15.45	1	1	1.05	1.05	0.00105	0.00000105	64.724919	0.00007	0.00000	0.1
03NVT129	545558	6036426	Till	20.00	5	5	2.44	2.44	0.00244	0.00000244	50	0.00012	0.00000	0.1
03NVT130	545105	6036629	Till	16.20	6	6	5.81	5.81	0.00581	0.00000581	61.728395	0.00036	0.00001	0.4
03NVT131	544709	6037032	Till	13.85	0	0	0	0	0	0	72.202166	0.00000	0.00000	0.0
03NVT132	544203	6036844	Till	17.25	0	0	0	0	0	0	57.971014	0.00000	0.00000	0.0
03NVT133	543810	6036638	Till	16.00	4	4	11.56	11.56	0.01156	0.00001156	62.5	0.00072	0.00002	0.7
03NVT134	543339	6036969	Till	21.30	1	1	0.46	0.46	0.00046	0.00000046	46.948357	0.00002	0.00000	0.0
03NVT135	542976	6037330	Till	16.85	1	1	0.28	0.28	0.00028	0.0000028	59.347181	0.00002	0.00000	0.0
03NVT136	542473	6037428	Till	19.25	3	3	2.52	2.52	0.00252	0.00000252	51.948052	0.00013	0.00000	0.1
03NVT137	542053	6037114	Till	17.50	0	0	0	0	0	0	57.142857	0.00000	0.00000	0.0
03NVT138	541673	6036668	Till	13.25	0	0	0	0	0	0	75.471698	0.00000	0.00000	0.0
03NVT139	541173	6036222	Till	14.05	0	0	0	0	0	0	71.174377	0.00000	0.00000	0.0
03NVT140	540675	6035936	Till	17.90	4	4	121.33	121.33	0.12133	0.00012133	55.865922	0.00678	0.00020	6.8
03NVT141	540390	6035442	Till	14.65	1	1	1.46	1.46	0.00146	0.00000146	68.259386	0.00010	0.00000	0.1
03NVT142	540286	6034954	Till	16.85	4	4	22.81	22.81	0.02281	0.00002281	59.347181	0.00135	0.00004	1.4
03NVT143	540015	6034403	Till	20.50	0	0	0	0	0	0	48.780488	0.00000	0.00000	0.0
03NVT144	539642	6033903	Till	19.30	1	1	0.28	0.28	0.00028	0.00000028	51.813472	0.00001	0.00000	0.0

Sovereign	Mining	and	Exp	loratio	วท Lt	d.

Sample			Sample	Sample	Grains	Grains		Estimated	Weight of	Δ	Factor wt	Grade grams/	Grade oz/	Estimated
Number	utmx_n27	utmy_n27	Туре	Weight(kg)	Picked	Est.	(um)	(um)corr	mg	g	to 1000kg	tonne (ppm)	ton	Conc. ppb
03NVT145	539433	6033397	Till	15.85	3	3	85.3	85.3	0.0853	0.0000853	63.091483	0.00538	0.00016	5.4
03NVT146	539005	6033224	Till	13.95	2	2	22.96	22.96	0.02296	0.00002296		0.00165	0.00005	1.6
03NVT147	556158	6031855	Till	16.10	1	1	1.96	1.96	0.00196	0.00000196		0.00012	0.00000	0.1
03NVT148	555805	6031468	Till	18.15	6	6	11.16	11.16	0.01116	0.00001116	55.096419	0.00061	0.00002	0.6
03NVT149	555568	6030985	Till	16.60	2	2	6.5	6.5	0.0065	0.0000065	60.240964	0.00039	0.00001	0.4
03NVT150	555773	6030531	Till	14.65	1	1	0.71	0.71	0.00071	0.00000071	68.259386	0.00005	0.00000	0.0
03NVT151	556229	6030148	Till	16.80	4	4	8.13	8.13	0.00813	0.00000813	59.52381	0.00048	0.00001	0.5
03NVT152	566328	6041870	Till	13.40	1	1	1.05	1.05	0.00105	0.00000105	74.626866	0.00008	0.00000	0.1
03NVT153	567688	6043455	Till	16.95	1	1	0.71	0.71	0.00071	0.00000071	58.99705	0.00004	0.00000	0.0
03NVT154	568884	6045163	Till	14.70	0	0	0	0	0	0	68.027211	0.00000	0.00000	0.0
03NVT155	570619	6046593	Till	13.15	12	12	13.73	13.73	0.01373	0.00001373		0.00104	0.00003	1.0
03NVT156	572284	6048023	Till	15.20	1	1	1.46	1.46	0.00146	0.00000146	65.789474	0.00010	0.00000	0.1
03NVT400	539573	6092586	Till	10.75	1	1	1.96	1.96	0.00196	0.00000196	93.023256	0.00018	0.00001	0.2
03NVT401	539788	6092519	Till	24.35	0	0	0	0	0	0	41.067762	0.00000	0.00000	0.0
03NVT402	540017	6092636	Till	20.75	0	0	0	0	0	0	48.192771	0.00000	0.00000	0.0
03NVT403	539933	6092705	Till	20.05	1	1	0.46	0.46		0.00000046	49.875312	0.00002	0.00000	0.0
03NVT404	539842	6092720	Till	20.65	1	1	1.96	1.96	0.00196	0.00000196	48.42615	0.00009	0.00000	0.1
03NVT405	540313	6092565	Till	22.20	0	0	0	0	0	0	45.045045	0.00000	0.00000	0.0
03NVT406	540313	6092565	Till	18.80	1	1	6	6	0.006	0.000006	53.191489	0.00032	0.00001	0.3
03AMH001	528740	6094548	Pan HMC	Awaiting Result	s							0.00002	0.00001	0.0
03AMH002	527696	6095668	Pan HMC	Awaiting Result			_							
03AMH003	508037	6132106	Pan HMC	Awaiting Result					·					
03AMH004	502498	6119965	Pan HMC	Awaiting Result	s				~~					
03AMH005	508000	6122246	Pan HMC	Awaiting Result	S .									
03AMH006	541042	6094509	Pan HMC	Awaiting Result	s									
03AMH007	539984	6090395	Pan HMC	Awaiting Result	s			·						
03AMH008	539843	6097006	Pan HMC	Awaiting Result	s				-					
03AMH009	538813	6113789	Pan HMC	Awaiting Result	s									
03AMH010	511968	6089325	Pan HMC	Awaiting Result	s									
03AMH011	525786	6094728	Pan HMC	Awaiting Result	s		·							
03AMH012	516164	6091847	Pan HMC	Awaiting Result	s									
03AMH013	516201	6091156	Pan HMC	Awaiting Result	s					······································				
D-03-01-001	541598	6092573	Drill Tailings	Awaiting Result	s									
D-03-01-002	541499	6092576	Drill Tailings	Awaiting Result	s									
D-03-01-003	541310	6092572	Drill Tailings	Awaiting Result	s		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		·					
D-03-01-004	541098	6092568	Drill Tailings	Awaiting Result	s				·					
D-03-01-005	541004	6092552	Drill Tailings	Awaiting Result										
D-03-01-006	540706	6092543	Drill Tailings	Awaiting Result	s									
D-03-01-007	540517	6092533	Drill Tailings	Awaiting Result	s									
D-03-01-008	540417	6092535	Drill Tailings	Awaiting Result	s									
D-03-01-009	540309	6092532	Drill Tailings	Awaiting Result										
D-03-01-010	540190	6092521	Drill Tailings	Awaiting Result	S									
D-03-01-011	540045	6092496	Drill Tailings	Awaiting Result										
D-03-01-012	539450	6092487	Drill Tailings	Awaiting Result							*			
D-03-01-013	538723	6092451	Drill Tailings	Awaiting Result										
D-03-01-014	538020	6092428		Awaiting Result	5									
D-03-01-015	539112	6092349	Drill Tailings	Awaiting Results	S		-							
D-03-01-016	538640	6091595	Drill Tailings	Awaiting Results	5									
D-03-01-017	539388	6092790	Drill Tailings	Awaiting Results	S									

.

Sample			Sample	Sample	Grains	Grains		Estimated V	Neight of A	Au	Factor wt	Grade grams/	Grade oz/	Estimated
Number	utmx_n27	utmy_n27	Туре	Weight(kg)	Picked	Est.	(um)	(um)corr	mg	q	to 1000kg	tonne (ppm)	ton	Conc. ppb
D-03-01-018	539709	6093287	Drill Tailings	Awaiting Resul	ts					3	to receing	tonio (ppin)		Conc. ppb
D-03-01-019	541687	6091474	Drill Tailings	Awaiting Resul	ts		·							
D-03-01-020	541015	6091900	Drill Tailings	Awaiting Resul	ts								·	·
D-03-01-021	540449	6092234	Drill Tailings	Awaiting Resul	ts		·							
D-03-01-022	540068	6092459	Drill Tailings	Awaiting Resul										
D-03-02-001	535357	6092314	Drill Tailings	Awaiting Resul										
D-03-02-002	535371	6092303	Drill Tailings	Awaiting Resul				1						·
D-03-02-003	537721	6092418	Drill Tailings	Awaiting Resul										
D-03-02-004	537418	6094251	Drill Tailings	Awaiting Resul				1						
D-03-02-005	537895	6093899	Drill Tailings	Awaiting Resul				+						
D-03-02-006	539183	6092997	Drill Tailings	Awaiting Resul									~~	
D-03-02-007	539566	6092765	Drill Tailings	Awaiting Resul										
D-03-02-008	539854	6092601	Drill Tailings	Awaiting Result		†		+						

2002 Suction Dredge Assay Results - Swan Hills Property Sovereign Mining and Exploration Ltd.

						ppb Au +140	ppb Au +140
			UTM Easting	UTM Northing	ppb Au -140	Sieve	Sieve
Sample Number	Sample Type	Sampler	N27	N27	Sieve (<106um)	(>106um)#1	(>106um)#2
02MDH104	Suction Dredge	MD	518048	6066707	6279	149	9
02MDH105	Suction Dredge	MD	517087	6073974	2062	1011	80
02MDH106	Suction Dredge	MD	509423	6092937	11	1	1
02MDH107	Suction Dredge	MD	506378	6095322	1165	90	67
02CDH103	Suction Dredge	CH	531900	6092775	59	44	26
02ACDGH108	Suction Dredge	СН	536751	6076463	289	1	1
02CJOH002	Suction Dredge	СН	580455	6047510	359	164	2

APPENDIX 6 2002-2003 EXPLORATION EXPENDITURES

2003 - 2004 Statement of Expenditures - Swan Hills Property Sovereign Mining and Exploration Ltd.

	DESCRIPTION	COST (\$)	TOTAL COST (\$)
Salary a	nd Wages		78,673.7
	Field Supervisor		
		49,500.00	
	Field Labourers	1.000.00	
		4,800.00	
		2,673.70	
		21,700.00	
ield Co	usts		14,518.5
	Fuel	967.81	14,510.5
	Accommodation	1,702.33	
	Hotels in High Prairie and Slave Lake	1,702.00	
	for C. Hay and N. Torry		
	Satellite Phone	2,145.51	
	Meals		
	Trip to Sask Research Council	350.13	
	Meeting in Drayton Valley	25.26	
	Meeting in Edmonton	126.71	
	Field Supplies	3,529.85	
	batteries, bags, containers, flashlights		
	propane, winch and other miscellaneous		
	items		
	Water Hauling	395.28	
	Equipment Hauling	770.00	
	Equipment Repairs Chainsaw	2,664.54	
	Generator	674.48	
		1,166.66	
tental E	quipment		45,220.00
	Trackhoe Rental 1 month @ \$4000 per month Generator Rental 2 months @ \$1100 per month	4,000.00	
		2,200.00	
	Quad Rental 7 months @ \$2010 per month 0.5 month @ 2140 per month	14,070.00	
	Argo Rental 8 months @ \$2985 per month	1,070.00 23,880.00	
		23,000.00	
ubcont	racting Services		450 442 0
	Analysis		152,143.02
	Saskatchewan Research Council	25,579.20	
	Loring Labs	208.00	
	Geological Consultants		
	Apex Geoscience	112,442.11	······
	Geologists	· · · · · ·	
	Burton Consulting	8,676.21	
	Geologist and indepependant opinion		
	on samples, etc.		
	Dig Samples		
	Williscroft Bros.	5,237.50	
	narges, Administrative, General		29,055.53
	Administration Costs at 10%	29,055.53	

808685 AB Ltd. Box 7859 Drayton Valley, AB T7A 1S9 Ph: (780) 542-2201 Fax: (780) 542-2550

2004

alle

5

A 8: 20

August 4, 2004

Mineral Agreements and Sales Alberta Resource Development 9945 108th Street Edmonton, AB T5K 2G6

Attached are 2 copies of the assessment work report of Metallic and Industrial Minerals Permit Nos. 9302040003 to 9302040023. All permits are continguous and have been grouped to facilitate the dispersal of exploration expenditures for our Sovereign Mining project.

We wish to surrender permit nos. 9302040003, 9302040004, 9302040005, 9302040006, 9302040007, 9302040009, 9302040011, 9302040013, 9302040015, 9302040017, 9302040019, 9302040021, 9302040022, and 9302040023.

I have attached authorization to reproduce or copy this report.

If you need further information, please call me at (780) 542-1979. Thank you.

/ Néil Torry 808685 AB Ltd.

Enclosures

20040011 JUL 292003

ASSESSMENT REPORT

Sovereign Mining Project Swan Hills

808685 AB LTD. METALLIC AND INDUSTRIAL MINERALS PERMIT NOS. 9302040003 TO 9302040023

SUBMITTED BY: 808685 AB LTD.

AUGUST 4, 2004

7

Authorization to Reproduce or Copy

808685 AB Ltr. hereby authorizes the Governent of Alberta to reproduce or copy the attached Assessment Report at the end of the 1 year confidentiality period.

Neil[Totry 808685 AB Ltd.

ڪر.

ENCLOSURES

ډ.

MAP IDENTIFYING PERMIT NUMBERS AND BOUNDARIES STATEMENT OF EXPENDITURES CANCELLATIONS AND AMENDMENTS ALLOCATION OF EXPENDITURES * ALL TOWNSHIPS É RANGES ARE WE

	, 20°5			801	0462
72	-116.9189005				72 ^{Assin} I.F
71	93020- 93020- 40023 46022		East Prairi Metis Settlem 4		71
l 20	Snipe 93020- 936020- 18 17 40021 40020 17	8036434 16		4 13 12	11 10
69	93020 - 93020 - 40019 40018			8072666	69
68	93020-93020- 40017 40016	0034723			68
67	93020 - 93020- 40015 40014 80553	83			67
66	93020- 93020- 40013 40012			8072659	66
65	93020- 93020- 40011 40010				65
64	93020- 93020- 40009 40008				64
63	93020- 93020- 93020- 40007 4000 6 40005	- 93020-9 40004-92	€RMIT # 3020 - 1/ € 70003 - 54		63
62	Alexander I.R.	Fox Cree 134A			62
61			43		61

8316, N 8316, N 8316/7, 8, 10, 15 83N/2

claims

(v. L)

technology is our business

March 3, 2004

TO:	Neil Torry, Sovereign Mining
FROM:	David Quirt, SRC
RE:	'Bentonite' analyses

Neil:

This memo deals with the analyses of your clay samples for 'bentonite' content and with general specifications and uses of bentonite clay. Firstly, 'bentonite' actually refers to a clay mineral-rich sediment composed dominantly of the clay mineral 'montmorillonite' - a swelling, or expandable, clay that expands its layer structure when wet by incorporating water between its structural layers. Currently, the clay mineral 'montmorillonite' is usually called 'smectite'.

The analytical work done on your samples included a brief visual observation, whole-rock geochemical analyses, and whole-rock XRD mineralogical analyses. In addition, a series of product specifications and descriptive notes were obtained from several commercial producers of bentonite.

The geochemical data (see attached table) are fairly similar for the samples. They are all dominated by silica (SiO₂: 60-70%) with lesser alumina (Al₂O₃: 12-18%) and iron (Fe₂O₃: 2-6%). Elements of interest for bentonite characterization include calcium, sodium, and magnesium, and these elements are present in moderate amounts (CaO: 0.6-3.3%; Na₂O: 0.6-2.2%; MgO: 0.6-2.7%). A comparison with a typical Wyorning bentonite is provided in the table below. From this table, it can be seen that the samples contain similar silica, iron, and magnesium contents, lower alumina, sodium, and LOI (Loss On Ignition: dehydration) contents, and higher calcium, potassium, titanium contents than the Wyoming bentonite. These differences can be explained by the mineralogical data.

Element (in wt% oxide form)	Sovereign Mining samples (range)	Wyoming bentonite 1	Wyoming bentonite 2
SiO ₂	60 - 70	61.4	60.34
TiOz	0.4 - 0.7	0.2	0.22
Al ₂ O ₃	12 - 18	18.1	19.28
Fe ₂ O ₃	2 - 6	3.5	3:48
ĊaO	0.6 - 3.3	0.4	0.38
MgO	0.6 - 2.7	1.7	1.67
K ₂ O	0.9 - 3.5	0.1	0.10
Na ₂ O	0.6 - 2.2	2.3	2.34
other	0.02 - 0.57	0.07	0.07
LOI	5 - 12	12.2	12.12

The XRD mineralogical data (see attached table) indicate that the samples are mostly rich in expandable clay (smectite: generally 25-70%), with lesser quartz and cristobalite (both are SiO₂; generally 10-40% in total) and plagioclase feldspar ((Na,Ca)AlSi₃O₈: 5-25%). Other clay minerals are consistently present and occur in minor amounts: illite (KAl₂Si₄O₁₀(OH)₂: 3-12%), kaolinite (Al₂Si₂O₅(OH)₄: 0-17%), and chlorite ((Fe,Mg,Al)₆Si₄O₁₀(OH)₈: 0-5%). The smectite content is typically inversely proportional to the quartz+cristobalite+feldspar content.

Comparison with a commercial Wyoming bentonite is provided in the attached mineralogical data table and in the table below in which three examples from the sample suite are listed along with the commercial bentonite (Bara-kade 90). The XRD diffractograms for these samples are also attached for illustration purposes.

mineral (wt%)	'poor' sample P-03-02-005	'average' sample P-03-06-001	'good' sample P-03-07-004	Bara-kade 90
smectite	7	41	77	79
quartz+cristobalite	69	43	6	15
feldspar	2	8	12	5
illite	5	4	4	0
kaolinite	17	1	0	0
chlorite	1	3	1	0

The presence of illite and chlorite in the sampes is likely responsible for the greenish coloration of the clay. Most of the samples contain excess silica (in quartz+cristobalite) relative to Wyoming bentonite, resulting in relatively low smectite contents (40-50%). Similarly, the presence of minor amounts of feldspar lowers the typical smectite content. Removal of most of the quartz and feldspar would result in a suitable high smectite content. However, other physical properties of the smectitic material would also have to meet the specifications for commercial bentonite before the resource could become economic (see below). With respect to commercial production of bentonite and the various specifications for this material, the uses of bentonite are many. It is used in the environmental, animal feed, foundry, industrial, oil field, pet litter, water treatment, and other specialty uses. Typical specifications for commercial bentonite include:

- screen analyses (various size ranges)

- industrial properties - moisture (eg. 9%; 12 maximum)

- swelling index (eg. 28 milliliters)

- water absorption (eg. 850% over 18 hours)

- pH (eg. 9.6)

- CaO content (eg. 0.6 wt%)

- In many cases, the bentonite must have a specified high degree of swelling:

- 2 grams of the material is to swell to an apparent volume of 16 mls or more when added to 100 mls of distilled water.

In the environmental sector, bentonite is used as a scalant in the construction of liners, caps, and other hydraulic barrier facilities, including landfills, tailings ponds, sewage lagoons, and other hazardous waste sites. For these uses, typical properties include:

- viscosity (eg. 19 to 37, using FANN 600rpm)

- apparent viscosity (eg. 9.5 to 18.5 cps)

- plastic viscosity (eg. 9 to 12 PV)

- yield point (eg. 10 to 13 lb/100ft²; 3x PV maximum)

Foundry applications include use as a binder material for foundry sands and in iron ore pelleting operations. Similarly, in animal feed operations bentonite is used as a binder for livestock feed and mineral supplements. Oil field uses include bore hole and trench stabilization, drilling mud, and slurry trenching. Bentonite is also used in the pet litter sector with untreated sodium bentonite being optimized to produce good 'clumping' characteristics, natural coloration, and low dust production. Bentonite is used in water treatment for clarification by aiding coagulation of the impurities with the bentonite allowing case of filtering out of the inpurities.

Dave Quirt

Mineral Exploration Section Environment/Minerals Division

المستحدين المائم الالفان التعرية تعملته ليترعب المسمع مصيد مالد بمريه مممر والرو

بالمتحد والمتصادين فيتشرك فيستعاده والمتعاد والمتعاد

				_		\sim			$ \frown $				<u>t - e</u>	•. · · · ·	<u>.</u>				
Sample	SiO2	TIO2	AI2O3		CaO	MgO	MnO	K20	Na2O	P205	LOI	Sum	Ba	Cr	Sc	St	Ŷ.	Zr	Total
	w1 %	wt %	wt %	<u>wt %</u>	W1 %	M %	<u>) wt %</u>	wt %	wt %) wt %	wt %	W1 %	ppm	ppm		ppm	ppm	ppm	w1%
MRG1 standard	39.4	3.65	8.36	17.5	4.5	13.2	0.16	0.21	0.71	0.06		97.55	44	434	53	261	19	93	97.64
P-03-01-001	65.8	0.41	14.0	3,91	1,58	1.64	0.03	2,44	1.21	0.03	7.8	98.85	1020	96	6	149	21	154	98.99
P-03-01-002	64.9	0.48	15.7	6.08	2.54	2.28	0.02	1.06	0.99	0.12	6.0	100.17	1130	159	6	217	24	210	100.34
P-03-01-003	63.1	0.49	15.5	6.50	2.01	2.54	0.03	1.14	0.74	0.07	7.1	99.22	638	226	8	149	24	179	99.34
P-03-02-001	67.4	0.70	16.8	4.11	0.88	1.01	<0.01	2.75	1.10	0.02	5.4	100.25	663	172	16	137	24	150	100.37
P-03-02-002	66.4	0.78	16.6	3.08	0.67	1.42	0.02	3.91	1.26	0.08	5.2	99.42	915	275	16	119	26	135	99.57
P-03-02-003	64.7	0.70	15.7	5.58	0.89	1.07	0.02	3.67	1.03	0.03	5.0	98.39	977	154	17	118	27	121	98.53
P-03-02-004	68.2	0.74	15.6	2.87	0.65	0.79	0.01	3.08	1.23	0.03	4.7	97.90	821	130	16	118	36	147	98.03
P-03-02-005	66.9	0.77	19.2	2.41	0.78	0.58	< 0.01	1.75	0.61	0.01	7.1	100.11	553	157	11	83	15		100.21
P-03-02-006	63.7	0.73	17.3	5.21	1.03	1.21	0,01	3.37	0.83	0.09	5.8		736	182	19	116	26	131	99.40
P-03-03-001	66.2	0.39	14.2	4.61	1.61	1.51	0.03	2.34	1.20	0.04	7.1	99.23	964	167	6	155	22	151	99.38
P-03-03-002	64.7	0.36	13.7	3.81	1.53	1.33	0.03	2.59	1.34	0,03	9.5	98.92	1080	77	5	156	18	152	99.07
P-03-03-003	60.0	0.41	15.0	7.19	1.91	2.04	0.03	1.20	0.77	0.03	11.4	99.98	677	176	6	137	20		100.10
P-03-03-004	67.8	0.40	13.1	3.32	1.45	1.14	0.03	2.83	1.57	0.05	6.7	98.39	1180	41	5	170		171	
P-03-04-001	64.5	0.56	16.5	5.60	1.87	2.67	0.03	1.65	0.53	0.03	8.0	101.94	1100	71	5 7		22	149	98.55
P-03-04-002	68.2	0.18	13.0	2.15	1.22	0.58	0.03	3.54	1.94	0.02	8.6	99.46	684	95		120 108	19	165	102.09
P-03-04-003	65.8	0.32	11.9	2.54	1.89	0.70	0.03	2.08	1.40	0.06	12.6	99.32	850	163	3		25	182	99.57
P-03-05-001	66.0	0.62	13.6	3.99	3.27	1.72	0.06	2.49	2.06	0.10	5.8	99.71	1570	125	14	169	43	204	99.46
P-03-06-001	67.1	0.61	14.9	5.10	1.09	0.82	< 0.01	1.58	0.93	0.03	5.9	98.06	531	125	12	350	20	176	99.94
P-03-06-002	67.1	0.78	17.8	2,77	0.88	0.83	<0.01	2,00	0.92	< 0.00	6.3	99.38	570	113		121	61	148	98.16
MRG1 standard	40.0	3.65	8.35	18.0	14.3	13.3	0.18	0.23	0.69	0.05	0.0	98.73	44		13	105	11	173	99.48
P-03-06-003	69.2	0.49	16.9	2.10	0.76	0.64	<0.01	1.55	0.81	0.03	5.9	98.36	657	459 70	54	263	14	98	98.82
P-03-07-001	68.1	0.54	12.7	2.84	3.29	1.61	0.03	2.14	2.17	0.10	5.3	98.82	1190	147	<u>9</u> 10	97	9	134	98.46
P-03-07-002	66.9	0.65	13.7	4.72	2.47	1.94	0.02	2.37	1.71	0.12	5.1	99.70	771			343	19	166	99.01
P-03-07-003	67.5	0.36	14.2	3.90	1.89	1.09	0.04	2.09	1.50	0.07	7.6	100.24	773	190	13	241	25	141	99.84
P 03-07-004	62.9	0.39	17.2	5.80	2.18	2.23	0.03	0.91	0.83	0.02	7.0	99.49		166	4	185	2 5	143	100.37
P-03-07-005	61.4	0.71	14.9	5.77	2.71	2.29	0.43	2.87	1.59	0.02	6.2	99.00	499	508	5	186	18	158	99.63
T-03-01-001	66.8	0.41	14.7	5.89	1.66	1.38	0.03	1.09	0.59				812	261	15	228	24	120	99.15
T-03-01-002	66.8	0.35	14.2	2.91	1.67	0.70	0.03	2.03	1.53	<0.01	6.3	98.85	364	61	8	147	14	166	98.93
T-03-01-003	66.0	0.34	14.9	3.50	1.62	1.28	0.03	2.65	1,40	0.03 0.05	8.3 6.7	98.55	767	46	6	174	28	180	98.67
T-03-01-004	67.2	0.37	13.2	3.42	1.38	1.23	0.03	2.05		-		98.47	952	77	5	142	20	129	9 8.60
T-03-01-005	66.1	0.39	14.1	5.14	1.78	1.76	0.03		1.41	0.05	7.1	98.10	1060	159	5	162	21	146	98.26
P-09-01-002 repeat	65.2	0.46	15.0	5.14 6.01	2.40	2.22	0.03	2.04	1.17	0.06	6.6	99.17	874	49	6	162	21	160	99.30
		0.40	10,0	0.01	2.40	<u>L.LL</u>	<u>U.UZ</u>	1.05	0.95	0.12	_ 6 .1	<u>99.</u> 53	1060	82	6	208	23	205	99.69

Sovereign Mining (Attention: Neil Torry; February 16/2004) GeoAnalytical Group # 2004-91 (agate grind)

법 년

-H

دوريان ن ∪ ن

D.D

č

570

Sample	sample description (note: colour noted while sample was in a damp' state (not dried))	Induration	bedding
P-03-01-001	greenish to dark grey clay	weak	fine-mod (2 mm-3 cm)
P-03-01-002	Olive greenish to greenish-grey clay	weak	massive
P-03-01-003	medium olive greenish clay	weak	
P-03-02-001	medium olive green clay	plastic	(somi-)massive massive
P-03-02-002	dark grey clay	weak	
P-03-02-002	medium olive green clay		massive
P-03-02-004	light olive green clay	friable to weak	massive
P-03-02-004		friable to weak	(semi-)massive
P-03-02-005	dark brownish-grey clay	plastic to weak	maselve
	medium olive green clay	friable to plastic	(semi-)massive
P-03-03-001	light to dark beds of olive green clay	weak	fine (1-10 mm)
P-03-03-002	light to dark beds of olive green clay	weak	fine (1-10 mm)
P-03-03-003	dark olive green clay	weak	(semi-)massive
P-03-03-004	medium green clay	weak	massive
P-03-04-001	dark olive greenish-grey clay	weak	massive
P-03-04-002	coal-bearing, dark brown clayey silty sediment	friable to weak	(semi-)massive
P-03-04-003	coal-bearing, very dark brown clayey silty sediment	friable to weak	(semi-)massive
P-09-05-001	medium ollve green clay	friable to plastic	(semi-)massive
P-03-06-001	medium olive green clay	friable to weak	massive
P-03-06-002	medium olive greenish-grey clay	plastic	massive
P-03-06-003	medlum greenish-grey clay	plastic	massive
P-03-06-004	black coal; with some clay and silt; porous	moderate	fine (2-8 mm)
P-03-07-001	medium ofive green clay	friable to plastic	massive
P-03-07-002	medium olive green clay	friable to weak	massive
P-03-07-003	medium ollve green to dark greyish-green clay; trace coal streaks	friable	massive
P-03-07-004	medium to dark olive green clay	friable	massive
P-03-07-005	dark olive greenish-grey clay	friable to weak	weak (2-15 mm)
T-03-01-001	dark olive green clay	friable to plastic	massive
T-03-01-002	dark brown, silt- and coal-bearing(??) clay	friable to weak	(semi-)massive
T-03-01-003	medium greyish clay	weak	massive to laminated (mm-s
T-03-01-004	medium greyish clay	weak	massive
T-03-01-005	medium olove green to greenish-grey clay	weak	massive to laminated (mm-s
Bara-kade Standar	off-white to greyish powder	n/a	n/a
Bara-kade 90	off-white to greyish powder	n/a	n/a

007.041 200

20

ວບີບ ອີວັວ

1.1.1.0

しがく

G Č

Sovereign Mining (Attention: Neil Torry; February/2004) GeoAnalytical Group # 2004-91

DRY

~	XOXS	ə:[MIN	ŀ
R.	NGR'	QE		D/
Altera Historia			2 CM	
Sove	ereign Mir	ning (Att	۲	1.1.0

/TON (STD) 1- 7 (90)-2-7

6	Sovereign Mining (Att	REMOVE	D/ Groß)	REMOVET	007	aute	w C	ANT					•
			cristobalite				1. 11/4 -	1 - P			<u> </u>	1	
	Sample	quariz	cistobalite ('opaline silica	plagioclase	' K-leidspa	rismectite	illite	kaolin	chlorite		quartz/'opaline'	'illite/	kaolin/
	P-03-01-001	11.8	2.6	8.8	0.0	57.9	12.8	0.0	6.1	<u>smectite</u> 0.04	<u>silica</u> 4.57	smectite 0.22	smectite
	P-03-01-002	15.0	2.7	16.4	0.0	62.0	3.2	0.0	0.6	0.04	4.37 5.47	0.22	0.00
	P-03-01-003	9.5	2.1	11.3	0.0	69.3	5.5	0.0	2.4	0.04	4.43	0.05	0.00
	P-03-02-001	45.4	0.6	11.8	0.0 0.0	35.2	4 .1	2.8	0.0	0.03	80.00		0.00
	P-03-02-002	41.5	0.1	12.7	0.0	14.7 ··	10.6	12.9	0.0 7.5	0.02	297.00	0.12	0.08
	P-03-02-003	60.6	0.3	17.0	0.0	4.9	11.9	3.1	2.3	0.06		0.72	0.88
	P-03-02-004	30.9	0.0	9.9	0.0	36.9	9.4	12.9	0.0	0.00	198.00 v/a	2.43	0.62
7	P-03-02-005	68.0	0.7	1.7	0.0	6.7	4.6	17.2	1.1	0.11	94.29	0.25	0.35
,	P-03-02-006	41.3	0.8	10.1	0.0	36.5	4.0 6.6	2.2	2.4	0.02	94.29 51.92	0.70	2.59
	P-03-03-001	17.5	0.9	8.1	0.0	68.5	3.9	0.0	1,1	0.02	19.64	0.18	0.06
· · · · · ·	P-03-03-002	9.0	3.4	6.6	0.0 [°]	74.4	3. 3 4.1	0.0	2.4	0.01	2.67		0.00
	P-03-03-003	11.1	2.1	6.3	0.0	75.6	4.1	0.2	2.4 0.6	0.03		0.06	0.00
1	P-03-03-004	20.6	3.3	5.2	0.0	55.6	11.5	0.2 3.9	0.0	0.03	5.32	0.05	0.00
· • •	P-03-04-001	- 7.1	2,7	7.3	0.0	68.4	12.1	3.9 2,4	0.0	0.08	6.29	0.21	0.07
	P-03-04-002	9.1	2.6	9.0	0.0	72.4	2.7	0.0	4.2	0.04	2.63	0.18	0.03
	P-03-04-003	- 4.7	3,3	16.2	0.0	65.1	5.5	0.0	4.2 5.2		3.57	0.04	0.00
8	P-03-05-001	37.3	0.5	17.4	0.0	36.6	5.8 5.8			0.05	1.41	0.08	0.00
	P-03-06-001	37.2	5.6	8.0	0.0	41.4	3.5	0.4	1.9	0.01	73.13	0.16	0.01
	P-03-06-002	30.7	2.2	6.2	0.0			1.4	2.9	0.13	6.69	0.08	0.03
·	P-03-06-003	33.5	4.3	0.2 5.8	9.9	40.8 25.0	3.6 0.8	15.2 [°]	1.3	0.05	14.00	0.09	0.37
	P-03-06-004	JJ.J	4.0	0.0	9.3	25.0	0.0	18.3	2,4	0.17	7.77 [%]	0.03	0.73
1 A A	P-03-07-001	38.3	1.7	23.9	0.0	027	70	0.4	4.0	0.07			
	P-03-07-002	38.5	2.8	23.9 25.7	0.0	23.7 26.1	7.2	3.4	1.8	0.07	22.17	0.30	0.14
<u> </u>	P-03-07-003	12.0	2.0	3,9			5.3	0.9	0.7	0.11	13.95	0.20	0.03
	P-03-07-004	- 4.6	2.3 1.4 -	3,9 11.9.~	0.0	71.8	6.3	0.0	3.7	0.03	5.15	0.09	0.00
- T	P-03-07-004	36.1	2.5		0.0	76.7	4.1	0.0	1.3	0.02	3.30	0.05	0.00
	T-03-01-001			21.5	0.0	25.8	7.9	1.9	4.3	0.10	14.74	0.91	0.07
1	T-03-01-002	13.7	2,5 0.7	13.1 14.3	0.0	69.1	6.1	0.0	1.5	0.04	5.42	0.10	0.00
	T-03-01-002	24.1			0.0	72.9	0.0	3.4	5.2	0.01	5.09	0.00	0.05
	T-03-01-003	· · · · · · · · · · · · · · · · · · ·	2.4	9.3	0.0	45.9	15.6	0.5	2.2	0.05	10.22	0.34	0.01
	T-03-01-004 T-03-01-005	15.4 20.2	3.3 5.0	9.4 7.0	0.0	54.8	12.6	0.5	3.9	0.06	4.63	0.23	0.01
				7.8	0.0	58.9	3.9	0.0	4.2	0.09	4.02	0.07	0.00
	Bara-kade Standard Bara-kade 90	6.9 3.5	5.7	5.3	0.0	78.4	3.7	0.0	0.0	0.07	1.21	0.05	0.00
	Dala-kaup 90	3.5	11.8	5.2	0.0	79.4	0.0	0.0	0.0	0.15	0.30	0.00	0.00

PossiBility COMMERICAL

QUMPTZ Refet for ANT

10/10/03 FRI 15:55 FAX

CONFIDENTIAL REPORT

Review of the Swan Hills property of Sovereign Mining & Exploration Limited for gold and diamond potential

David Quirt

by

Saskatchewan Research Council 15 Innovation Blvd. Saskatoon, Sask., S7N 2X8 Phone: (306) 933-5487 Fax: (306) 933-5493 e-mail: quirt@src.sk.ca SRC Publication No. 10400-7C03

Mineral Exploration Branch

September, 2003

Page

i

TABLE OF CONTENTS

1.1	Nature and Purpose of Investigation	• • • •	• • • •	• • •	1 1
1.2					
PRO	PERTY DATA REVIEW			• • •	2
2.1 2.2	Gold	• • • • •	• • • •	•••	2 3
	OMMENDATIONS			1	0
REC	OMMENDATIONS	·		Ŧ	1
REF	ERENCES	••••••	•••		•
		*		· · ·	

Appendix A Gold grain data
LIST OF TABLES

Table 1 .

Table 2

• • • •

.

.

.

.

.

. ^{. .}

10/10/03 FRI 15:56 FAX

1. INTRODUCTION

1.1 Nature and Purpose of Investigation

In September 2003, Neil Torrey of Sovereign Mining & Exploration Ltd. (Sovereign) requested that a short review and evaluation be performed by the Saskatchewan Research Council (SRC) Mineral Exploration Section on the available gold grain and Kimberlite Indicator. Mineral (KIM) data and interpretations resulting from Sovereign's 1997 to 2002 exploration efforts on their Swan Hills, Alberta, mineral property, located about 45 km northwest of Whitecourt, Alberta (NTS 83J, K, N, O). The permits making up this mineral property were originally staked for diamond exploration primarily due to proximity to the nearby Mountain Lake kimberlite, located northeast of Grande Prairie, Alberta. 2004

1.2 Method of Investigation

The gold grain and kimberlite indicator mineral data obtained from samples from Sovereign's Swan Hills property (SRC sample batch numbers OT00:267, OT01:260, OT03:09, and OT03:10) were examined for anomalous characteristics and spatial relationships. A series of written communications from SRC to Bredal Energy Corp (Bredal) concerning these data were reviewed (Quirt, 2001a,b,c,d, 2002, 2003a,b). A 2003 exploration update report on the Swan Hills property, prepared by APEX Geoscience Ltd. (APEX; Dufresne, 2003), was reviewed. This report contained four maps depicting: (1) summary of kimberlite indicator mineral results, (2) oxide kimberlite indicator mineral results, (3) HM total gold grain count (# of Au grains), and (4) HMC gold grain count and estimated total weight gold (ppb Au).

2. PROPERTY DATA REVIEW

2.1 Gold

The Swan Hills data presented on the Dufresne (2003) maps for (1) HM total gold grain count (# of Au grains), and (2) HMC gold grain count and estimated total weight gold (ppb Au) include the data presented in SRC GeoAnalytical lab reports and in the data tables (summarizing 143 samples in sample batches with SRC identifiers OT00:267 and OT01:260) accompanying written communications to Bredal Energy Corp. (Quirt, 2001a,b, 2002). The 'ppb Au' data is equivalent to the 'Au wt (μ g/10 kg)' values using the following relationship: 1 ppb Au = 10 μ g Au/10 kg. These gold grain data are presented in Appendix A and summarized in Table 1.

The description of the gold grain data in Dufresne (2003) included information obtained from three sets of till, soil, and rock survey data: 1997-1999, 2000-2001, and 2002.

1. The information from the 1997-1999 survey data, data which this author has not seen, indicates that very abundant particulate gold grains (400-1200 grains per sample) were obtained from samples from the southwest corner of the Lightbulb Lake permit, a region draining a prominent ridge.

2. The 2000-2001 survey data returned eight samples considered to be anomalous using a 95^{th} percentile value of 57.1 ppb Au (or 571 μ g Au/10 kg sample). The general location of these anomalous samples was not given in Dufresnc (2003), however, their locations are easily found (north of the Goose River) on the map displaying total gold grain counts. 3. The 2002 survey program was focussed on the Lightbulb Lake Ridge area (see 1. above). Results from this program confirmed the high grain counts and calculated gold concentrations obtained from this area during earlier surveys. In particular, samples taken from the Lightbulb Lake Ridge area and a south-draining tributary consistently contained elevated gold contents.

Dufresne (2003) summarized the gold sampling program by noting that the eastern half of the Swan Hills property produced samples containing relatively low gold contents, while samples from the western half of the property often contained relatively 'spectacular' gold contents. These same spatial relationships were noted in Quirt (2001d). Samples from the region along the Goose River and its northern tributary system (which includes the Lightbulb Lake Ridge area) were identified as returning particularly high gold grain counts and gold contents.

The results of the suction dredge sampling program resulted in three samples yielding high gold concentrations in the -0.1 mm size fraction (<100 μ m) and low concentrations in the >100 μ m material, while the other three samples returned relatively low gold concentrations. This pattern of gold concentration was interpreted by Dufresne (2003) as being suggestive of lode gold sources in the Lightbulb Lake Ridge area. However, the results of the 2000 and 2001 gold analyses indicates that much of the gold in the till samples is relatively coarse (>100 μ m; see Table 1). The presence of high proportions of gold grains >100 μ m in size suggests that the till material may be more representative of placer-style gold concentrations and/or derivation from relatively local placer-style source(s), in contrast to the stream sediment sampled by the suction dredge.

2.2 Kimberlite/Diamonds

In a manner similar to the gold grain data, abundant KIMs have been obtained from samples representing the Lightbulb Lake Ridge area. Fe-oxide KIMs were prevalent, particularly Cr-spinels (chromites), while silicate KIMs were only found in much lesser numbers. Many samples that did contain silicate KIMs contained no, or only a few, chromites. As chromites survive transport better than the other KIMs, the presence of chromite anomalies may represent a relatively distal source or the bimodal distributions of the silicate and oxide KIMs may reflect the influence of different environments of transport/drainage and/or different episodes of transport.

The domination of chromite can be seen in the listing of the picked KIM grains (Table 2). ~90% of the grains picked were chromites, while the next most common KIM picked was garnet (~8%). In general, the chromites were quite magnesian, typically being magnesian chromites and picrochromites, and followed the typical crustal and lherzolitic mantle pattern of moderate Cr_2O_3

	visible Au	VISIBLE AU	AU Wt	est ppb Au (= Au Wi	% grains "I	% Au grains	> 150 um
0100:267	(# grains)	(grains/10 kg)	(ug/10kg)	in ug per 10kg/10)		> 100 um	20
OANH 1	<u>(v g/ano)</u> 5	4.5	40.2	4.V 9.9	10	90	60
OANH 2	10	5.4	98.7	1.3	50	100	50
OANH 3	2	1.0	12.6	1.5	29	86	43
OANH 4	7	2.5	14.8	3.1	14	100	- 86
OANH 5	7	3.2	31.5 0.0	0.0	n/a	n/a	n/a
OANH 6	0	0.0	14.6	1.5	44		
OANH 7	9	4.4 15.0	202.2	20.2	43		
OANH B OANH 9	37 30	17.1	171.8	17.2	33		
OANH 9	45	18.4	116.8	11.7	42		
OANH 10 OANH 11	25	16.6	355.0	35.5	40 29		
OANH 12	21	10.6	51.7	5.2 15.4	36		
OANH 13	25	19.4	153.7	4.0	36	·	50
OANH 14	14	5.5	40.1	62.8	42		
OANH 15	12	11.0	628.3 169.8	17.0	67		
OANH 16	9	6.3 8.6	147.1	14.7	38		1
OANH 17	13	7.0	73.2	7.3	4		
OANH 18	11 2	1.9	4.8	0.5	50	1	
QANH 19 OANH 20	9	7.8	117.7	11.8	5(n/a	-1	
OANH 20 OANH 21	ō	0.0	0.0	0.0	6		
OANH 22	3	4.1	15.3	1.5 2.4	7	· •	
OANH 23	4	4.1	24.1	2.4	n/a		n/a
OANH 24	0	0.0	0.0	6.4	1		
OANH 25	12	12.9	64,3 53.6	5.4	3		
OANH 28	3	2.3 45.9	226.2	22,6		4 6	
OANH 27	53	45.5 6.1	43.1	4.3	. 1		
OANH 28	8 66	32.0	-	35.3		39 09	· · · · ·
OANH 29 OANH 30	11	8.5		12.1		* 1 :	
OANH 31	0	0.0		0.0 23.9			0 40
OANH 32	5			23.2		0 10	0 50
OANH 33	2						5 70
OANH 34	20			1.4		0 10	
OANH 35	5			28.4			8 51 6 71
OANH 36	55			40.0	3		6 71 6 55
OANH 37	98	the second se		49.9			3 53
OWAH 101 OWAH 102	60) 278.5	27.9			53
OWAH 103	34					-	8 83
OWAH 104	52					-	0 50
OWAH 105	12						50 20
OWAH 106	1 E						50 50
OWAH 107				, o,		-1	94 51 49
OWAH 108	35			17.		* 1	90 48 00 50
OWAH 109	2	а 4.		6.	~		00 50 87 70
OWAH 110	3			1 18.		V 1	96 78
OWAH 111 OWAH 112			1 140.3				92 80
OWAH 113		1 81.					98 81
OWAH 114	5	4 28.		·		0 1	00 88
OWAH 115		8 4.		· ·		ol	90 80
OWAH 116	1		-	/		2	76 58
OWAH 117			-	8 2	.4	0 1	00 86 00 77
OWAH 118	11 -	7 3. 3 8.		7 15		-1	00 77 95 79
OWAH 119		9 19		g 35			00 75
OWAH 120 OWAH 121		8 6			.7	13 1	<u>vvi</u>
UWAR 12							

Table 1. Summary of gold grain data: SRC batch numbers OT00:267 and OT01:260.

			A	est ppb Au (= Au wt	% grains "!"		% Au grains
0100:267	visible Au	Visible Au	Au wt (ug/10kg)	in ug per 10kg/10)		> 100 um	> 150 um
	(# grains)	(grains/10kg)	(ug/10kg) 22.5	2.2	20	80	40
OWAH 122	5	2.8 7.7	172.8	17.3	0	100	87 75
OWAH 123	15 4	2.7	24.9	2.5	0	100	
OWAH 124	7	3.8	39.6	4.0	0	100	
OWAH 125		0.4	5.8	0.6	0	100	n/a
OWAH 126	Ó	0.0	0.0	0.0	n/a	n/a 100	
OWAH 127 OWAH 128	5	2.5	18.2	1.8	0 0		
OWAH 129	7	3.9	56.6	5.7	0	1	
OWAH 130	4	2.6	4.3	0.4 0.0	n/a	n/a	n/a
OWAH 131	0	0.0	0.0	8.7			87
OWAH 132	15	8.2	87.1	0.0	n/a	n/a	n/a
OWAH 133	0	0.0	0.0	1.4	C		
OWAH 134	2	1.4	13.9 0.6	0.1	C		
OWAH 135	1	0.6 2.6	-	6.8	C		
OWAH 136	4	Q.5		0.1	Ċ	100	
OWAH 137	1			5.4	(
OWAH 138	6			2,0	(
OWAH 139	5			6.0	2		1
OWAH 140	5			3.6			-
OWAH 141	õ	·		0.0	n/a		
OWAH 142 OWAH 143	59			62.6		-1	
OWAH 143	12		i 72.4	7.2		0 10 B 7	
OWAH 145	12		50.2	5.0	•		-1 1
OWAH 146	10			A		0 10	1
OWAH 147	33		355.4			0 10	
OWAH 148	1						0 60
OWAH 149		5 2.1			the second s	0 10	0 100
OANT 1		0.7				0 10	
OANP 100		5 2.0		' or		0 10	
OANP 101		0.6	·	·		0	0 0
OANP 102		1 0.7					41 59
OT01:260	1 3	2 1	5 149.2	2 14.9		-TI	34 59 38 65
01WAH-00	. N			34.		-	83
01WAH-00		•		2 59.8		T	93
01WAH-00	-n :	•		17.		v i	59
01WAH-00 01WAH-00	- "IL	•		3 32.		-	100
01WAH-00	-11		3 99.3	B 10. 5 32.			94 84
01WAH-00	-	2 2					ao 56
D1WAH-00	· a .	8 1	0 104.				00 47
01WAH-00	·~ B .	5	9 182.	10			84 44
01WAH-01			8 138.	U 40	-	4	92 58
01WAH-01	1 2		B 138.	y 14			88 58
01WAH-01	2 3		0 145. 5 830.			-1	95 63
01WAH-01	, ~ h	•				-1	93 74 95 73
01WAH-01		-		1 29.	2	-1	**1 00
DTWAH-01			7 81.	.3 8.			
01WAH-01		6	5 60	.8 6			00 38 80 50
01WAH-0	14	8 20 ¹	11 53	2 5	.3	5	93 67
01WAH-0			42 671	<u>е</u> 67		0	98 92
01WAH-0			36 1389	.3 138		0 4	87 104
01WAH-0			14 569			0	50 50
01WAH-0		4	3 71		.2	13	75 63
01WAH-0	22	8	8 245			0	100 100
01WAH-0	24	1	•		.0 .4	ŏ	712
01WAH-0		7	5 53	.6			and a second second Second second
PINANO	1						i de la companya de la

Table 1. Continued.

008

						% Au grains	% AU ORNUS
0100:267	visible Au	visible Au	Au wt	est ppb Au (= Au wt	% grains "I"	> 100 um	> 150 um
0100.201	(# grains)	(grains/10 kg)	(ug/10kg)	in ug per 10kg/10)			73
		<u>(giaine to g</u>	206.1	20.6		93	56
01WAH-026		28	238.4	23.8	0	88	75
01WAH-027	23	16	298.2	29.8	5	90	n/a
01WAH-028		Ő	0.0	0.0	п/а	n/a	
01WAH-029		4	8,5	0.8	0	75	25
01DBH-300	4	8	90.7	9.1	· 0	100	71
01DBH-301	2	2	5.1	0.5	· 0		
01DBH-302		6	83.3	8.3	0		
01DBH-303		5	27.7	2.8	0	100	
01DBH-304	4	· 0	0.0	0.0	n/a	n/a	n/a
01DBH-305	0	ŏ	0.0	0.0	n/a	n/a	n/a
01DBH-306	-	13	297.0	29.7	0	100	
01DBH-307	16	5	43.0	4.3	0		
01DBH-308	6	3	38.9	3.9	Ó	100	
01DBH-309	4	34	60.6	6.1	C	100	
01DBH-310	7	-	367.9	36.8	0		
01DBH-311	30	19	357.5	35.0	C	100	
01DBH-312		21	151.7	15.2	20	100	60
01DBH-313		10	393.2	39.3	C		
01DBH-314	12	13	23.9	2.4	· · · ·	100	
01DBH-315	3	3	23.9 0.0	0.0	n/e	n/a	
01DBH-318		. 0	6.6	0.7	(100	
01DBH-317	l 1	1		0.7		100	100
01DBH-318		י	7.1	11.4	Ċ		
01DBH-319	5	4	113.8	22.2		100	
01MDH-001	10	- 8	221.6	1.5		100	67
01MDH-002			15.3			100	50
01MDH-003	2		4.9			90	50
01MDH-004	10	7	48.2	4.0			

Table 1. Continued.

and MgO contents (40-55% and 6-18%, respectively) which fall below the values needed for inclusion in Diamond Intergrowth and Diamond Inclusion fields. However, a significant number of chromite grains (~6%) did contain greater than 60% Cr_2O_3 and plotted in, or very close to, the original Diamond Inclusion and Diamond Intergrowth fields ($Cr_2O_3 > 60\%$, MgO > 12%).

Only minor quantities of ilmenite were found (23 grains) and most were distinctly of crustal origin, containing low amounts of MgO (<4%) and Cr_2O_3 . Only 4 of these ilmenites displayed compositions compatible with a kimberlite origin.

The garnets picked were mostly peridototic G9 and eclogitic G3 garnets, with a significant number of 'other' Cr-rich crustal grossular/uvarovite and andradite-uvarovite garnets. A number of the G9 garnets lie along the G9-G10 division line on a CaO-Cr₂O₃ plot, however, these compositions represent slightly Ca-depleted members of the G9 lherzolitic association, not

group OT00:267	mineral	number of grains	percentage
oxide	ilmenite	10	2.3
	Cr-spincl ('chromite')	428	97.3
	low-Cr spinel (Ti-magnetite)	2	0.4
silicate	garnet	41	69.5
	pyroxene ('diopside')	16	27.1
	olivine	1	1.7
	quartz	1	<u>1.7</u>
oxide total		440	88.2
silicate total		59	11.8

group OT01:260	mineral	number of grains	percentage
oxide	ilmenite	10	3.5
CAIGO	Cr-spinel ('chromite')	279	96.5
	low-Cr spinel (Ti-magnetite)	0	0.0
silicate	gamet	19	86.4
smcate	pyroxene ('diopside')	2	9.1
	olivine	1	4.5
	duartz	0	0.0
oxide total		289	92.9
silicate total		22	7.1

groups OT03:09,10	mineral	number of grains	percentage
oxide	ilmenite	3	2.9
	Cr-spinel ('chromite')	102	97.1
	low-Cr spinel (Ti-magnetite)	0	0.0
silicale	garnet	39	86.7
	pyroxene ('diopside')	3	6.7
	olivine	3	6.7
	quartz	0	
oxide total		105	70.0
silicate total		45	30.0

Table 2. Oxide and silicate KIM picking data.

the G10 harzbergitic association. Several grains classified as 'G10' based on the Dawson & Stephens criteria, however, the mineral chemistry of these 'G10' grains were only <u>slightly</u> sub-calcic and actually plotted directly on the Gurney G9-G10 85% line (CaO-Cr₂O₃ plot) and do not fall into the diamond potential field. Thus these grains should be considered as 'transitional G10' grains that actually belong to the G9 lherzolitic trend and not as true G10 harzburgitic diamond potential grains.

Some of the low-chromium (< 2% Cr₂O₃), moderate-iron 'eclogitic' garnets (eg. G3, G6) fall into the Diamond Inclusion field on a TiO₂-CaO diagram, but only two of the 15 'eclogitic' garnets contain sufficient sodium (> 0.06% Na₂O) to be considered as diamond indicator garnets.

A small number of clinopyroxene grains displayed the sub-calcic, high-magnesium, and low-aluminum composition typical of kimberlitic Diamond Inclusion pyroxenes, however, only a few grains also fell into the Diamond Inclusion field on a Ca-Mg-Fe2+ diagram. Most the grains were classified as C2 'diopsides', with only a few as C1 'subcalcic diopside', C5 'chrome diopside', and C6 'ureyitic diopside'. Many of the C5 and C6 clinopyroxenes contained over 1% Cr_2O_3 and were termed 'Cr-diopsides'. Note that the 'Diamond Inclusion fields' in many mineral chemistry plots for pyroxenes are not as exclusive as those, for example, for garnet. This is because some non-inclusion pyroxene grains can have compositions similar to kimberlitic pyroxenes and some non-kimberlitic pyroxenes.

The few olivinc grains found were strongly magnesian which is typical of kimberlitic olivine. However, they essentially lacked chromium and were not sufficiently magnesian to fall into the field representative of diamond inclusion olivine.

In summary, most of the ilmenite grains of this sample suite did not appear prospective as kimberlite or diamond indicators. Many of the garnet and olivine grains did display KIM compositions and several of the pyroxene grains appeared to display some promise as diamond indicators, but the caveat stated above applies here. However, very few of these silicate grains showed compositions characteristic of Diamond Inclusions or Intergrowths. The most promising diamond indicators in the sample suite were the chromites, as a minor but significant proportion (~6%) of these grains plotted in the original or extended Diamond Inclusion or Diamond Intergrowth fields.

The SRC written communication (Quirt, 2001d) and the APEX report (Dufresne, 2003) described the locations of the samples containing the best KIM results. Several points are apparent from these reports:

1. The samples with the highest indicator grain counts were not particularly spatially well-related and were on different drainage systems,

2. Nearly adjacent samples typically gave widely varying indicator grain counts. However, despite these points, the only area in the Swan Hills property to produce consistent indicator mineral grain counts in the 5-30 grains/10 kg range was the west-central part around the Goose River and its tributary systems. The south part of the property (Atikkamek Creek area) produced lower indicator grain counts, but several samples produced prospective diamond indicator mineral grains and the area has not been sufficiently sampled. The northeast corner of the property (East Prairie River, Goldsmith Creek, Driftpile River, Wallace River) produced low indicator mineral grain counts. The northwest corner of the property (West Prairie River) also typically produced low grain counts, although some samples around Snipe Lake returned high numbers.

3. **RECOMMENDATIONS**

It is recommended that:

- 1. The gold grain data from the 1997-1999 and 2002 Swan Hills surveys be summarized and reviewed in a manner similar to that done for the 2000 and 2001 data.
- 2. The Lightbulb Lake and the Lightbulb Lake Ridge map features be identified on the sample base maps, as these areas show the most prospective Au grain and KIM results.
- 3. The relationship(s) between gold grain size-fractionation in till samples versus stream sediment suction dredge samples be investigated, since somewhat conflicting data have been obtained from the dredge sampling program.
- 4. The Goose River and its northern tributary system (ic. the Lightbulb Lake Ridge area) be further sampled to evaluate the potential for placer gold and for the presence of kimberlites, because samples from this region returned the highest gold grain counts and sample gold content, and the current diamond indicator mineral data and Au data both indicate that this area is the most prospective on the property.
- 5. The Meekwap Lake/Atikkamek Creek/Iosegun River region be further sampled to evaluate the potential for the presence of kimberlites, because the current low-density sampling has yielded some interesting KIM results despite the few available samples.
- 6. The follow-up sampling in the Lightbulb Lake Ridge area include till sampling on a grid and/or fence pattern oriented perpendicular to the dominant glacial iceflow direction.
- 7. The recommendations given in Dufresne (2003) be adopted.

4. **REFERENCES**

- Dufresne, M.B. (2003): Update on 2002 diamond and gold exploration, Swan Hills property, Sovereign Mining and Exploration Ltd. August 18 2003 APEX Geoscience Ltd. written communication to Sovereign Mining and Exploration Ltd., 13 p. plus 4 maps.
- Quirt, D.H. (2001a): Geochemistry and Au grain analyses: batch OT00.267. Written communication to Neil Torry, Bredal Energy Corp., February 20, 2001; SRC file: <Bredal01mcm1.wpd>
- Quirt, D.H. (2001b): Indicator Mineral Identification and Classification for Bredal Energy Corporation: Sample batch OT00:267. Saskatchewan Research Council Publication No. 10400-12C01, 6 p. plus Appendices.
- Quirt, D.H. (2001c): Diamond indicator minerals: batch OT00.267. Written communication to Neil Torry, Brcdal Energy Corp., June 18, 2001; SRC file: <Bredal01mem2.wpd>
- Quirt, D.H. (2001d): Spatial relationships: sample batch OT00:267. Written communication to Neil Torry, Bredal Energy Corp., August 3, 2001; SRC file: <Bredal01mem3.wpd>.
- Quirt, D.H. (2002): Geochemistry and Au grain analyses: batch OT01.260. Written communication to Neil Torry, Bredal Energy Corp., February 3, 2002; SRC file: <Bredal02mem1.wpd>.
- Quirt, D.H. (2003a): KIM classifications and interpretations: batch OT01.260. Written communication to Neil Torry, Bredal Energy Corp., July 3, 2003; SRC file: <a href="https://www.sec.upd/secu.upd/secu.up
- Quirt, D.H. (2003b): KIM classifications and interpretations: batches OT03.09 and OT03:10. Written communication to Neil Torry, Bredal Energy Corp., July 7, 2003; SRC file: <Bredal03mem2.wpd>.

Appendix A

015

Gold grain data

<u> </u>
<u>H</u>
0
ò
చ
-
FRI
i-i-i-i-i-i-i-i-i-i-i-i-i-i-i-i-i-i-i-
-
8
••
00
0
FAJ
2

A-1

						visible Au	Au wi	est ppb Au	dialos A'/	grains "L'	avo Au w	Au I	(Au grains >	% Au		(Au grains >	% Au
0100:267	sample wt.v			igrains A'			มหมายกา เมษายายายา	(= Au #t in t	otal oralins	total grains		grains	100 um¥ 10 kg	grains>	grains>	150 um)/10 kg	
1 1	(9)	(grains)	(ug est.) ⁻ A'	1			ug per	(%)	(%)	(ug/grain)	-		100 um			160 um
1 1						kg		10kg/10)	\~)	()							
				<u> </u>		4.6	40.2	4.0	80	20	9.0	4	3.6	BC	<u> </u>	0.9	
DANHI	11.16	5	44.8			. 6.4		9.9	90	10			4.9			3.2	
OANH 2	18.50	-10			· I	1.0	-	1.9	60	50		2	1.0) 100	1	0.5	
OANH 3	19.15	2	24.0		: 2			1.5	71	29		6	2.1			1.1	
OANH 4	29.15	7	41.7		-	3.2	-		66	14		7	3.3			2.7	
OANH 5	21.90	7	68.9	- 1			-		rva	n/a	n/a	0	0.1			0.0	
OANH6	24.00	0	0.0	- 1					68	44	3.3	9	4.0			. 1.8	
OANH7	20.60	9	30.0	-	-		•		67			37	16.1	0 100	27	10.0	
OANH8	24.70	97							67				14.	9 81	17	9,1	-
OANH 9	17.50	30				· · ·			68	-			17.	6 91	5 25		
OANH 10	24.40	46					• • • • • •		60				16.	6 10	B 17		
OANH 11	15.05	25				1	-		71) 9.'	8 9	0] 10		
OANH 12	19.75	21			-	-			64				18.	6 8	6] 16		
OANH 13	12.90	25					•		64	•			5 5.	1 9	3] 7		-
OANH 14	25.35	14			9 1	5 5.	•						10.	0 9	2 11		
OANH 15	10.96	12			7	5 11.	-	-		-			6.	3 10	ol e		
DANH 16	14.30	Ę		· · · ·	9	6 6	• • • • • •						38.	6 10	a 12	2 7.	
OANH 17	15.10	13			8	6 8					•		•	3 9	1 7		
OANH 18	15.75				6	6 7				-	-	- E	2 1.	.9 10		0.	
OANH 19	10.65				1	1 1	-	-			-	-1	97.	.8 10	ol 7	76.	
DANH 20	11.55		9 195,		4	5 7		-				•	0 0	.0 n/i	a) () 0.	
OANH 21	9.00		0.0.		Q	0 0		•		-			3 4	.1 10	0	1 1.	
OANH 22	7.40		3 11.		1		.1 15.	-		-	5 5		4 4	.1 10	0	3 3	
OANH 23	9.70		4 29.		1	-	.1 24. .1 0.	-	•		-	-	o o	.0 n/	a i		.0 n/e
OANH 24	10.00			00Į	Q	-		-			7 5		i 11	.3 9	2	77	.2 68
OANH 25	9.75	i 1	2 62.	6 5 [1	0	2 12		-		•	3 23			.3 10	ю	2 1	.5 67
OANH 28	13.00)	3 69.		2	-	.9 59.		•	6			3 28			5 13	
OANH 27	11.58	5 5	3 281	26	51	2 46										6 4	.6 71
OANH 28	19.10)	8 66		7	-	43.		-	ю. 17	3 11		•			4 21	
OANH 20	20.6K) 6	6 728		84		.0 359.		-		0 14					86	1.2 7
OANH 30	12.9	51	11 166		11		1.5 121		•		-).0 n		õ).0 n/a
OANH 31	10.6	5		.00	0).0 0.				20 52		-			2 1	1.8 4
OANH 32	10.8	6	5 269		-4		1.6 239			50 i	-	.5	-		••).9 5
OANH 33	10.8	5		.94	2		.8 17		-	10 35	5 15					4 9	9,1 7
OANH 34	15.4	0 .1	20 302		19	· ·	3.0 198		•			.1				9 2	2.0 B
OANH 36	, 14.9	0	5 20		6	-1	3.4 19			20							7.5 5
OANH 38	18.0	0 !	65 454		65	-	4.4 289		• •	00							B.8 7
OANH 37	11.3	: 0	14 122	.68	14	Q 1	2.4 106	i. <u>5</u> 10.	0 1								

10/10/03 FRI 16:00 FAX

UJ FKI IV.VV Line

0100:287	sample wt. v			rainsgral	ng v	risible Au	Auwie	sippb Au gra = Au wt in total	ns"A"/ gre	los 'l's	avg Au wi nisig req	#Au grains	(Augrains: 100 um)/10 k	> % Au grains>		(Au grains> 150 um ¥10 kg	grains >
	(kg)	(grains) (tu	gent.)	•A•	¹ " (gnavnsviu (u kog)	igi i ukbi f	upper 10ko/10)	(%)	(%)	(ug/gealn)	>100 um		100 um	150 um	30 9	150 um
OWAH 101	17.45	98 8	70.36	98	21-	56.2	498.8	49.9	88	2	8.9	84 50	48. 30.			30 9 19.6	
DWAH 102	15.20		51.23	60	0	37.0	278.5	27.9	100	0	7.5 7.8	50 31	20.		-18	11.8	53
DWAH 103	15.50		64.37	34	D	21.8	170.8	17.1 29.7	100 100	8	18.2	51	18.	• •	43	15.2	
DWAH 104	28.35		42.18	52	0	18.3 6.1	297.1 28.4	2.8	100	ŏ	4,7	12	θ.			3.0	
OWAH 105	10.70		55.97 10.50	12 5	0	2.5	5.2	0.5	100	ō	2.1	3	1.			0.6 0.6	
DWAH 106	20.20	-	28.87	4	0	1.3	9.6	1.0	100	0	7.5		1.			9.0 8.8	
DWAH 107	81.25 25.95		23.16	35	ō	13.5	88.0	5.6	100	0	6.4	33	12.			7.4	
DWAH 108	18.90		21.24	29	ō	16.3	170.0	17.0	100	0	11.1		13.	-		2.2	
DWAH 109 DWAH 109 DWAH 110 DWAH 111	18.30		12.20	В	0	4.4	61.3	6.1	100	0	14.0 9.2		17.				70
OWAH 111	15.00	9D 2	274.66	80	0	20.0	143.1	18.3 14.0	100	0	13.8		9.				
OWAH 112	22.80		110.79	23	0	10.1	140.3 1176.4	117.6	97	3	14.5		74.				
DWAH 118	21.10	171 24		166	6	81.0 28.0	488.4	48.8	100	ō	17.5			-			
DWAH 114	19.30		942.60 198.02	54 B	ň	4.0	97.5	9.8	100	D	24.5						
DWAH 115	20.10 19.15		186.97	10	ŏ	5.2	98.7	9.9	100	0	18.6						
DWAH 118 DWAH 117	21.10		205.16	130	2	62.8	571.2	57.1	98	2	9.1						-
DWAH 118	19.60	7	48.25	7	0	3.8	23.6	2.4	100	0	8.(17.(-	.9 10	• I • •		8 77
DWAH 119		13 1	228.60	13	0	8.8	158.7	15.7 35.2	100 100	0	17.		-				
DWAH 120			693.23	39	익	19.8	351_9 67.2	6.7	88	13	10.	-) (.4 10			
DWAH 121	12.50	8	84.01	7	- 11	8.4 2.8	22.5	2.2	80	20	. 8.			.2 8			
DWAH 122		5 15	40.08 338.71	15	6	7.7	172.0	17.3	100	Ð				.7 10	-	9 6. 3 2.	-
DWAH 123			36.52	4	ŏ	2.7	24.9	2.5	100	0		· (10 1.0 10		4 2	
DWAH 124		-	72.01	7	Ó	5.8	39.8	4.0	100	0				10 14 10		1 0.	
OWAH 12			14.96	1	0	0.4	5.8	0.8	100	0				/.=s is }.0 n/	-1	a õ	
OWAH 12			0.00	0	0	0.0	0.0	0.0	n/a 100	.n/a 0	ah 7	· •		5 10	- 1	5 2	.5 100
OWAH 12			35.94	5	0	2,5	18.2	1.8 5.7	100	0				1.0 10	ю	•	8 71
OWAH 12			101.02	7	0	3.9 2.6	56.6 4.3		100	Ō		-		2.6 10		-	.3 60
OWAH 13			6.54		0	0.0	0.0		n/a	. п/а			•	1a 0.0	~ (•	.0 n/m .1 87
OWAH 13			0.00	15	ŏ	8.2	87.1	8.7	100	C	· · · ·		•				0 п/н
OWAH 13			0.00	1 .	0	0.0	0.0	0.0	n/a	n <i>h</i> a			•	0,0- л/ 1.4 10	- 1		.7 50
OWAH 13 OWAH 19			20.82		0	1.4	13.8		100		10		-		••1		.0 0
OWAH 13	· II ·		1,05	1	0	0.6	0.0		100		25						.6 100
OWAH 19	a 15.20		103.37		0	2.6 0.5	68.C 1.C		100	i i	2		1		200	•	0.0
OWAH 18			1.96		0		. 54.0		100	i	16	.9	-		00		1.2 100 1.8 100
OWAH 13			101.60 \$5.60	1 -	ŏ		19.7		109		- 1	1			00 00		.8 75
OWAH 13		•	94.01		2	-	59.5		75	2					60		3.3 100
OWAH 1	- 8	•	54.9		0		86.		100	n/e	0 11 N				/a).O n/a
OWAH 14		o 0	0.0		0	1		-	n/a 100	1116	0 21						3.2 78
OWAH 14		• • • •	1239.3		0	1			100	1.	0 10		2	8.6 i	00		5.5 83
OWAH 1					0	6.6 7.9			.82		8 6	.3	9		75	•	4.6 58 4.5 80
OWAH 1			75.8 331.3		2	1		-	80	2			.9	-	90		4.5 BO B.3 D4
OWAH 1		•							100		0 16						5.9 67
OWAH 1					Ċ		121.		100				15 5		6 0		1.3 60
OWAH 1		-	64,3		1	2.1			80			2.9 3.4	5		00		0,7 100
DANT 1	14.0	10 1	8,4	3 1		0.7			100			2.5	5		00		0.5 20
DANP 1	10 19.0	10 5				2 2.0			100			5.0	1		100	•	0.6 100
DANP 1	ז 11 17.6					0 0.1 0 0.1	-	-	100			0.1	D	0.0	<u>0</u>	0	0,0 0
DANP 1	14.5	<u> 1</u>	.0.1	<u>u</u>	1	<u></u>											

A-2

Report No: 04-406

SRC Geoanalytical Laboratories

125 - 15 Innovation Blvd., Saskatoon, Saskatchewan, S7N 2X8 Tel: (306) 933-8118 Fax: (306) 933-5656 Email: geochem@src.sk.ca Email: geochem@src.sk.ca

Sovereign Mining

Attention: Neil Torry PO #/Project:

- Samples: 163

Sample #	Sample Weight in Kg	Visible Gold Grain Count	Estimated Weight of Gold in μg
03NVT001 03NVT002	14.00 14.15	0 6	42.41
03NVT003	13.25	1	1.05
03NVT004	11.90	. 3	2.63
03NVT005	15.30	1	0.28
03NVT006	12.90	1	4.97
03NVT007	.15.10	0	
03NVT008	17.40	0	8.43
03NVT009 03NVT010	13.10 20.25	1 1	0.1
03NVT011	15.65	3	53.88
03NVT012	14.20	0	30.00
03NVT013	15.20	0	
03NVT014	18.10	Õ	•
03NVT015	18.20	1	0.46
03NVT016	15.85	3	1.84
03NVT017	15.35	0	
03NVT018	15.45	1	4.97
03NVT019	17.05	0	
03NVT020	14.35	0	
03NVT021	13.75	· 3	0.91
03NVT022	13.40	4	3.16
03NVT023	15.40	2	0.26
03NVT024	12.45	1	1.05
03NVT025	17.20	1	0.71
03NVT026	14.20	1	1.46
03NVT027	12.60	1	6
03NVT028	15.75	1	0.28
03NVT029	13.05	0	
03NVT030	16.30	0	
03NVT031	15.65	1	3.25
03NVT032 ·	16.20 14.65	2 0	2.51
03NVT033 03NVT034	14.65	0	
03NVT035	15.05	0	
03NVT036	14.05	0	
03NVT037	16.15	1	0.28
03NVT038	14.40	Ö	0.20
03NVT039	13.30	ő	
03NVT040	15.60	ŏ	
03NVT041	17.95	4	10.27
03NVT042	15.35	1	0.46
03NVT043	16.60	Ó	
03NVT044	18.15	Ō	
03NVT045	19.55	0	
03NVT046	16.95	0	
03NVT047	15.70	4	10.23
03NVT048	13.25	Ó	
03NVT049	16.35	1	4.05

125 - 15 Innovation Blvd., Saskatoon, Saskatchewan, S7N 2X8 Tel: (306) 933-8118 Fax: (306) 933-5656 Email: geochem@src.sk.ca Email: geochem@src.sk.ca

Sovereign Mining

Attention: Neil Torry PO #/Project:

PO #/Project:			
Sample #	Sample Weight in Kg	Visible Gold Grain Count	Estimated Weight of Gold in µg
03NVT050 03NVT051 03NVT052 03NVT053 03NVT054	17.10 18.20 16.75 17.60 16.50	1 2 0 0 2	2.56 1.92 0.44
03NVT055 03NVT056 03NVT057 03NVT058 03NVT059	19.05 13.85 12.50 14.15 14.30	1 1 0 1 3	119.54 1.46 1.05 1.86
03NVT060 03NVT061 03NVT062 03NVT063 03NVT064	13.95 17.25 13.30 15.05 15.95	0 1 3 0 0	1.05 5.41
03NVT065 03NVT066 03NVT067 03NVT068 03NVT069	14.75 18.00 15.65 15.30 13.40	0 5 1 4 1	4.92 3.25 25.12 1.05
03NVT070 03NVT071 03NVT072 03NVT073 03NVT074	17.85 20.40 17.25 13.75 19.45	4 1 0 1 0	2.77 1.96 0.28
03NVT075 03NVT076 03NVT077 03NVT078 03NVT079	17.00 14.85 14.75 15.60 12.30	2 0 2 1 3	10.31 2.1 0.46 1.31
03NVT080 03NVT081 03NVT082 03NVT083 03NVT084	14.90 21.05 17.10 17.05 18.80	7 1 4 7 1	3.77 0.16 3.41 14.17 0.16
03NVT085 03NVT086 03NVT087 03NVT088 03NVT089	16.70 15.35 15.20 17.50 16.60	1 3 0 3 0	0.28 1.09 31.86
03NVT090 03NVT091 03NVT092 03NVT093 03NVT094	15.15 17.05 16.00 17.20 16.35	0 2 0 0 2	. 0.56 2.17
03NVT095 03NVT096 03NVT097 03NVT098 03NVT099	20.05 18.15 16.00 17.25 15.55	2 2 0 0 0	2.42 6.46
03NVT100	16.45	3	1.27

Report No: 04-406

SRC Geoanalytical Laboratories

125 - 15 Innovation Blvd., Saskatoon, Saskatchewan, S7N 2X8 Tel: (306) 933-8118 Fax: (306) 933-5656 Email: geochem@src.sk.ca Email: geochem@src.sk.ca

Sovereign Mining

¢

Attention: Neil Torry PO #/Project:

PO #/Project:				
Sample #	Sample Weight in Kg	Visible Gold Grain Count	Estimated Weight of Gold in μg	
03NVT101 03NVT102 03NVT103 03NVT104	16.80 17.60 17.90 16.65	2 4 2 0	13.3 2.6 0.5	52 56
03NVT105	14.55	· 1	0.1	0
03NVT106 03NVT107 03NVT108 03NVT109 03NVT110	14.30 16.60 15.90 13.95 15.35	1 0 0 . 0 1	1.0	
03NVT111 03NVT112 03NVT113 03NVT114 03NVT115	13.90 14.80 10.20 14.00 14.55	3 0 0 0 0	1.3	13
03NVT116 03NVT117 03NVT118 03NVT119 03NVT120	13.05 12.60 12.70 12.90 12.75	1 0 0 0 0	0.1	6
03NVT121 03NVT122 03NVT123 03NVT124 03NVT125	11.90 11.00 8.40 11.30 19.40	0 1 0 0 4	0.1	
03NVT126 03NVT127 03NVT128 03NVT129 03NVT130	17.65 19.60 15.45 20.00 16.20	1 2 1 5 6	4.9 5.1 1.0 2.4 5.8	2 5 4
03NVT131 03NVT132 03NVT133 03NVT134 03NVT135	13.85 17.25 16.00 21.30 16.85	0 0 4 1 1	11.5 0.4 0.2	6
03NVT136 03NVT137 03NVT138 03NVT139 03NVT140	19.25 17.50 13.25 14.05 17.90	3 0 . 0 0 . 4	2.5 121.3	
03NVT141 03NVT142 03NVT143 03NVT144 03NVT145	14.65 16.85 20.50 19.30 15.85	1 4 0 1 3	1.4 22.8 0.2 85.	1 8
03NVT146 03NVT147 03NVT148 03NVT149 03NVT150	13.95 16.10 18.15 16.60 14.65	2 1 6 2 1	22.9 1.9 11.1 6. 0.7	6 6 5
03NVT151	16.80	4	8.1	3

July 7, 2004

SRC Geoanalytical Laboratories

125 - 15 Innovation Blvd., Saskatoon, Saskatchewan, S7N 2X8 Tel: (306) 933-8118 Fax: (306) 933-5656 Email: geochem@src.sk.ca Email: geochem@src.sk.ca

Sovereign Mining

Attention: Neil Torry PO #/Project:

Sample #	Sample Weight in Kg	Visible Gold Grain Count	Estimated Weight of Gold in µg
03NVT152	13.40	1	1.05
03NVT153	16.95	1	0.71
03NVT154	14.70	0	
03NVT155	13.15	12	13.73
03NVT156	15.20	1	1.46
03NVT400	10.75	1	1.96
03NVT401	24.35	0	
03NVT402	20.75	0	
03NVT403	20.05	1	0.46
03NVT404	20.65	1	1.96
03NVT405	22.20	0	
03NVT406	18.80	1	6
	18.80	1	e

125 - 15 Innovation Blvd., Saskatoon, Saskatchewan, S7N 2X8 Tel: (306) 933-8118 Fax: (306) 933-5656 Email: geochem@src.sk.ca Email: geochem@src.sk.ca

Sovereign Mining

Attention: Neil Torry PO #/Project:

Sample Number: 03NVT002

Estimated Weight of Gold in micrograms: 42.41

Length in µm	Width in µm	Description
600	200	l
100	80	1
100	80	
80	60	
60	60	1
40	40	А

Delicate (D) - Bedrock gold crystallizes as pitted granular masses with smooth protruding crystals.

Irregular (I) - After short ice transport, crystals are removed leaving smaller pitted grains with several protrusions. Grains may become curled.

Abraded (A) - With increasing transport, protrusions break off irregular grains producing several smaller leaf shaped grains. Pitted surfaces become smooth.

Rounded (R) - results from continued abrasion, producing small polished spherical or ellipsoidal grains.

Please note that combinations of the descriptions may be used if different characteristics within each individual grain are obser

July 7, 2004

Page 5 of 101

125 - 15 Innovation Blvd., Saskatoon, Saskatchewan, S7N 2X8 Tel: (306) 933-8118 Fax: (306) 933-5656 Email: geochem@src.sk.ca Email: geochem@src.sk.ca

Sovereign Mining

Attention: Neil Torry PO #/Project:

Sample Number: 03NVT003

Estimated Weight of Gold in micrograms: 1.05

Length in µm	Width in µm	Description	
100	80	А	

Delicate (D) - Bedrock gold crystallizes as pitted granular masses with smooth protruding crystals.

Irregular (I) - After short ice transport, crystals are removed leaving smaller pitted grains with several protrusions. Grains may become curled.

Abraded (A) - With increasing transport, protrusions break off irregular grains producing several smaller leaf shaped grains. Pitted surfaces become smooth.

Rounded (R) - results from continued abrasion, producing small polished spherical or ellipsoidal grains.

Please note that combinations of the descriptions may be used if different characteristics within each individual grain are obser

Page 6 of 101

Report No: 04-406

SRC Geoanalytical Laboratories

125 - 15 Innovation Blvd., Saskatoon, Saskatchewan, S7N 2X8 Tel: (306) 933-8118 Fax: (306) 933-5656 Email: geochem@src.sk.ca Email: geochem@src.sk.ca

Sovereign Mining

Attention: Neil Torry PO #/Project:

Sample Number: 03NVT004

Estimated Weight of Gold in micrograms: 2.63

Length in µm	Width in µm	Description
120	80	А
80	80	A
80	60	I

Delicate (D) - Bedrock gold crystallizes as pitted granular masses with smooth protruding crystals.

Irregular (I) - After short ice transport, crystals are removed leaving smaller pitted grains with several protrusions. Grains may become curled.

Abraded (A) - With increasing transport, protrusions break off irregular grains producing several smaller leaf shaped grains. Pitted surfaces become smooth.

Rounded (R) - results from continued abrasion, producing small polished spherical or ellipsoidal grains.

Please note that combinations of the descriptions may be used if different characteristics within each individual grain are obser

125 - 15 Innovation Blvd., Saskatoon, Saskatchewan, S7N 2X8 Tel: (306) 933-8118 Fax: (306) 933-5656 Email: geochem@src.sk.ca Email: geochem@src.sk.ca

Sovereign Mining

Attention: Neil Torry PO #/Project:

Sample Number: 03NVT005

Estimated Weight of Gold in micrograms: 0.28

Length in µm	Width in µm	Description
60	60	А

Delicate (D) - Bedrock gold crystallizes as pitted granular masses with smooth protruding crystals.

Irregular (I) - After short ice transport, crystals are removed leaving smaller pitted grains with several protrusions. Grains may become curled.

Abraded (A) - With increasing transport, protrusions break off irregular grains producing several smaller leaf shaped grains. Pitted surfaces become smooth.

Rounded (R) - results from continued abrasion, producing small polished spherical or ellipsoidal grains.

Please note that combinations of the descriptions may be used if different characteristics within each individual grain are obser

Page 8 of101

125 - 15 Innovation Blvd., Saskatoon, Saskatchewan, S7N 2X8 Tel: (306) 933-8118 Fax: (306) 933-5656 Email: geochem@src.sk.ca Email: geochem@src.sk.ca

Sovereign Mining Attention: Neil Torry PO #/Project:

Sample Number: 03NVT006

Estimated Weight of Gold in micrograms: 4.97

Length in µm	Width in µm	Description
160	140	А

July 7, 2004

Delicate (D) - Bedrock gold crystallizes as pitted granular masses with smooth protruding crystals.

Irregular (I) - After short ice transport, crystals are removed leaving smaller pitted grains with several protrusions. Grains may become curled.

Abraded (A) - With increasing transport, protrusions break off irregular grains producing several smaller leaf shaped grains. Pitted surfaces become smooth.

Rounded (R) - results from continued abrasion, producing small polished spherical or ellipsoidal grains.

Please note that combinations of the descriptions may be used if different characteristics within each individual grain are obser

Page 9 of101

125 - 15 Innovation Blvd., Saskatoon, Saskatchewan, S7N 2X8 Tel: (306) 933-8118 Fax: (306) 933-5656 Email: geochem@src.sk.ca Email: geochem@src.sk.ca

Sovereign Mining

Attention: Neil Torry PO #/Project:

Sample Number: 03NVT009

Estimated Weight of Gold in micrograms: 8.43

Length in µm	Width in µm	Description	
220	140	А	

Delicate (D) - Bedrock gold crystallizes as pitted granular masses with smooth protruding crystals.

Irregular (I) - After short ice transport, crystals are removed leaving smaller pitted grains with several protrusions. Grains may become curled.

Abraded (A) - With increasing transport, protrusions break off irregular grains producing several smaller leaf shaped grains. Pitted surfaces become smooth.

Rounded (R) - results from continued abrasion, producing small polished spherical or ellipsoidal grains.

Please note that combinations of the descriptions may be used if different characteristics within each individual grain are obser

125 - 15 Innovation Blvd., Saskatoon, Saskatchewan, S7N 2X8 Tel: (306) 933-8118 Fax: (306) 933-5656 Email: geochem@src.sk.ca Email: geochem@src.sk.ca

Sovereign Mining

Attention: Neil Torry PO #/Project:

Sample Number: 03NVT010

Estimated Weight of Gold in micrograms: 0.1

Length in µm	Width in µm	Description	
40	20	А	

Delicate (D) - Bedrock gold crystallizes as pitted granular masses with smooth protruding crystals.

Irregular (I) - After short ice transport, crystals are removed leaving smaller pitted grains with several protrusions. Grains may become curled.

Abraded (A) - With increasing transport, protrusions break off irregular grains producing several smaller leaf shaped grains. Pitted surfaces become smooth.

Rounded (R) - results from continued abrasion, producing small polished spherical or ellipsoidal grains.

Please note that combinations of the descriptions may be used if different characteristics within each individual grain are obser

July 7, 2004

Page 11 of 101

125 - 15 Innovation Blvd., Saskatoon, Saskatchewan, S7N 2X8 Tel: (306) 933-8118 Fax: (306) 933-5656 Email: geochem@src.sk.ca Email: geochem@src.sk.ca

Sovereign Mining

Attention: Neil Torry PO #/Project:

Sample Number: 03NVT011

Estimated Weight of Gold in micrograms: 53.88

Length in µm	Width in µm	Description
440	240	А
160	60 /	А
80	. 80	R

Delicate (D) - Bedrock gold crystallizes as pitted granular masses with smooth protruding crystals.

Irregular (I) - After short ice transport, crystals are removed leaving smaller pitted grains with several protrusions. Grains may become curled.

Abraded (A) - With increasing transport, protrusions break off irregular grains producing several smaller leaf shaped grains. Pitted surfaces become smooth.

Rounded (R) - results from continued abrasion, producing small polished spherical or ellipsoidal grains. .

Please note that combinations of the descriptions may be used if different characteristics within each individual grain are obser

Page 12 of 101

125 - 15 Innovation Blvd., Saskatoon, Saskatchewan, S7N 2X8 Tel: (306) 933-8118 Fax: (306) 933-5656 Email: geochem@src.sk.ca Email: geochem@src.sk.ca

Sovereign Mining

Attention: Neil Torry PO #/Project:

Sample Number: 03NVT015

Estimated Weight of Gold in micrograms: 0.46

Length in µm	Width in µm	ć	Description
80	60		А

Delicate (D) - Bedrock gold crystallizes as pitted granular masses with smooth protruding crystals.

Irregular (I) - After short ice transport, crystals are removed leaving smaller pitted grains with several protrusions. Grains may become curled.

Abraded (A) - With increasing transport, protrusions break off irregular grains producing several smaller leaf shaped grains. Pitted surfaces become smooth.

Rounded (R) - results from continued abrasion, producing small polished spherical or ellipsoidal grains.

Please note that combinations of the descriptions may be used if different characteristics within each individual grain are obser

Page 13 of101

Report No: 04-406

SRC Geoanalytical Laboratories

125 - 15 Innovation Blvd., Saskatoon, Saskatchewan, S7N 2X8 Tel: (306) 933-8118 Fax: (306) 933-5656 Email: geochem@src.sk.ca Email: geochem@src.sk.ca

Sovereign Mining

Attention: Neil Torry PO #/Project:

Sample Number: 03NVT016

Estimated Weight of Gold in micrograms: 1.84

Length in µm	Width in µm	Description
140	60	А
80	40	А
60	20	А

Delicate (D) - Bedrock gold crystallizes as pitted granular masses with smooth protruding crystals.

Irregular (I) - After short ice transport, crystals are removed leaving smaller pitted grains with several protrusions. Grains may become curled.

Abraded (A) - With increasing transport, protrusions break off irregular grains producing several smaller leaf shaped grains. Pitted surfaces become smooth.

Rounded (R) - results from continued abrasion, producing small polished spherical or ellipsoidal grains.

Please note that combinations of the descriptions may be used if different characteristics within each individual grain are obser

125 - 15 Innovation Blvd., Saskatoon, Saskatchewan, S7N 2X8 Tel: (306) 933-8118 Fax: (306) 933-5656 Email: geochem@src.sk.ca Email: geochem@src.sk.ca

Sovereign Mining

Attention: Neil Torry PO #/Project:

Sample Number: 03NVT018

Estimated Weight of Gold in micrograms: 4.97

Length in µm	Width in µm	Description
200	100	А

Delicate (D) - Bedrock gold crystallizes as pitted granular masses with smooth protruding crystals.

Irregular (I) - After short ice transport, crystals are removed leaving smaller pitted grains with several protrusions. Grains may become curled.

Abraded (A) - With increasing transport, protrusions break off irregular grains producing several smaller leaf shaped grains. Pitted surfaces become smooth.

Rounded (R) - results from continued abrasion, producing small polished spherical or ellipsoidal grains.

Please note that combinations of the descriptions may be used if different characteristics within each individual grain are obser

Page 15 of 101

125 - 15 Innovation Blvd., Saskatoon, Saskatchewan, S7N 2X8 Tel: (306) 933-8118 Fax: (306) 933-5656 Email: geochem@src.sk.ca Email: geochem@src.sk.ca

Sovereign Mining

Attention: Neil Torry PO #/Project:

Sample Number: 03NVT021

Estimated Weight of Gold in micrograms: 0.91

Length in µm	Width in µm	Description
100	60	1
40	40	А
40	40	А

Delicate (D) - Bedrock gold crystallizes as pitted granular masses with smooth protruding crystals.

Irregular (I) - After short ice transport, crystals are removed leaving smaller pitted grains with several protrusions. Grains may become curled.

Abraded (A) - With increasing transport, protrusions break off irregular grains producing several smaller leaf shaped grains. Pitted surfaces become smooth.

Rounded (R) - results from continued abrasion, producing small polished spherical or ellipsoidal grains.

Please note that combinations of the descriptions may be used if different characteristics within each individual grain are obser

125 - 15 Innovation Blvd., Saskatoon, Saskatchewan, S7N 2X8 Tel: (306) 933-8118 Fax: (306) 933-5656 Email: geochem@src.sk.ca Email: geochem@src.sk.ca

Sovereign Mining

Attention: Neil Torry PO #/Project:

Sample Number: 03NVT022

Estimated Weight of Gold in micrograms: 3.16

Length in µm	Width in µm	Description
120	100	
80	60	1
80	60	A
80	40	A

Delicate (D) - Bedrock gold crystallizes as pitted granular masses with smooth protruding crystals.

Irregular (I) - After short ice transport, crystals are removed leaving smaller pitted grains with several protrusions. Grains may become curled.

Abraded (A) - With increasing transport, protrusions break off irregular grains producing several smaller leaf shaped grains. Pitted surfaces become smooth.

Rounded (R) - results from continued abrasion, producing small polished spherical or ellipsoidal grains.

Please note that combinations of the descriptions may be used if different characteristics within each individual grain are obser

125 - 15 Innovation Blvd., Saskatoon, Saskatchewan, S7N 2X8 Tel: (306) 933-8118 Fax: (306) 933-5656 Email: geochem@src.sk.ca Email: geochem@src.sk.ca

Sovereign Mining

Attention: Neil Torry PO #/Project:

Sample Number: 03NVT023

Estimated Weight of Gold in micrograms: 0.26

Length in µm	Width in μm	Description
60	40	l
40	40	A

July 7, 2004

Delicate (D) - Bedrock gold crystallizes as pitted granular masses with smooth protruding crystals.

Irregular (I) - After short ice transport, crystals are removed leaving smaller pitted grains with several protrusions. Grains may become curled.

Abraded (A) - With increasing transport, protrusions break off irregular grains producing several smaller leaf shaped grains. Pitted surfaces become smooth.

Rounded (R) - results from continued abrasion, producing small polished spherical or ellipsoidal grains.

Please note that combinations of the descriptions may be used if different characteristics within each individual grain are obser

125 - 15 Innovation Blvd., Saskatoon, Saskatchewan, S7N 2X8 Tel: (306) 933-8118 Fax: (306) 933-5656 Email: geochem@src.sk.ca Email: geochem@src.sk.ca

Sovereign Mining

Attention: Neil Torry PO #/Project:

Sample Number: 03NVT024

Estimated Weight of Gold in micrograms: 1.05

Length in µm	Width in µm	Description
120	60	А

Delicate (D) - Bedrock gold crystallizes as pitted granular masses with smooth protruding crystals.

Irregular (I) - After short ice transport, crystals are removed leaving smaller pitted grains with several protrusions. Grains may become curled.

Abraded (A) - With increasing transport, protrusions break off irregular grains producing several smaller leaf shaped grains. Pitted surfaces become smooth.

Rounded (R) - results from continued abrasion, producing small polished spherical or ellipsoidal grains.

Please note that combinations of the descriptions may be used if different characteristics within each individual grain are obser

Page .19 of 101

125 - 15 Innovation Blvd., Saskatoon, Saskatchewan, S7N 2X8 Tel: (306) 933-8118 Fax: (306) 933-5656 Email: geochem@src.sk.ca Email: geochem@src.sk.ca

Sovereign Mining Attention: Neil Torry PO #/Project:

Sample Number: 03NVT025

Estimated Weight of Gold in micrograms: 0.71

Length in µm	Width in µm	Description
80	80	I

July 7, 2004

Delicate (D) - Bedrock gold crystallizes as pitted granular masses with smooth protruding crystals.

Irregular (I) - After short ice transport, crystals are removed leaving smaller pitted grains with several protrusions. Grains may become curled.

Abraded (A) - With increasing transport, protrusions break off irregular grains producing several smaller leaf shaped grains. Pitted surfaces become smooth.

Rounded (R) - results from continued abrasion, producing small polished spherical or ellipsoidal grains.

Please note that combinations of the descriptions may be used if different characteristics within each individual grain are obser

125 - 15 Innovation Blvd., Saskatoon, Saskatchewan, S7N 2X8 Tel: (306) 933-8118 Fax: (306) 933-5656 Email: geochem@src.sk.ca Email: geochem@src.sk.ca

Sovereign Mining

Attention: Neil Torry PO #/Project:

Sample Number: 03NVT026

Estimated Weight of Gold in micrograms: 1.46

Length in µm	Width in µm	Description
120	80	R

Delicate (D) - Bedrock gold crystallizes as pitted granular masses with smooth protruding crystals.

Irregular (I) - After short ice transport, crystals are removed leaving smaller pitted grains with several protrusions. Grains may become curled.

Abraded (A) - With increasing transport, protrusions break off irregular grains producing several smaller leaf shaped grains. Pitted surfaces become smooth.

Rounded (R) - results from continued abrasion, producing small polished spherical or ellipsoidal grains.

Please note that combinations of the descriptions may be used if different characteristics within each individual grain are obser

Page 21 of101
125 - 15 Innovation Blvd., Saskatoon, Saskatchewan, S7N 2X8 Tel: (306) 933-8118 Fax: (306) 933-5656 Email: geochem@src.sk.ca Email: geochem@src.sk.ca

Sovereign Mining

Attention: Neil Torry PO #/Project:

Sample Number: 03NVT027

Estimated Weight of Gold in micrograms: 6

Length in µm	Width in µm	Description
160	160	А

Delicate (D) - Bedrock gold crystallizes as pitted granular masses with smooth protruding crystals.

Irregular (I) - After short ice transport, crystals are removed leaving smaller pitted grains with several protrusions. Grains may become curled.

Abraded (A) - With increasing transport, protrusions break off irregular grains producing several smaller leaf shaped grains. Pitted surfaces become smooth.

Rounded (R) - results from continued abrasion, producing small polished spherical or ellipsoidal grains.

Please note that combinations of the descriptions may be used if different characteristics within each individual grain are obser

July 7, 2004

Page 22 of 101

125 - 15 Innovation Blvd., Saskatoon, Saskatchewan, S7N 2X8 Tel: (306) 933-8118 Fax: (306) 933-5656 Email: geochem@src.sk.ca Email: geochem@src.sk.ca

Sovereign Mining

Attention: Neil Torry PO #/Project:

Sample Number: 03NVT028

Estimated Weight of Gold in micrograms: 0.28

Length in µm	Width in µm	Description
60	60	А

Delicate (D) - Bedrock gold crystallizes as pitted granular masses with smooth protruding crystals.

Irregular (I) - After short ice transport, crystals are removed leaving smaller pitted grains with several protrusions. Grains may become curled.

Abraded (A) - With increasing transport, protrusions break off irregular grains producing several smaller leaf shaped grains. Pitted surfaces become smooth.

Rounded (R) - results from continued abrasion, producing small polished spherical or ellipsoidal grains.

Please note that combinations of the descriptions may be used if different characteristics within each individual grain are obser

Page 23 of 101

125 - 15 Innovation Blvd., Saskatoon, Saskatchewan, S7N 2X8 Tel: (306) 933-8118 Fax: (306) 933-5656 Email: geochem@src.sk.ca Email: geochem@src.sk.ca

Sovereign Mining

Attention: Neil Torry PO #/Project:

Sample Number: 03NVT031

Estimated Weight of Gold in micrograms: 3.25

Length in µm	ິ Width in μm	Description
160	100	А

Delicate (D) - Bedrock gold crystallizes as pitted granular masses with smooth protruding crystals.

Irregular (I) - After short ice transport, crystals are removed leaving smaller pitted grains with several protrusions. Grains may become curled.

Abraded (A) - With increasing transport, protrusions break off irregular grains producing several smaller leaf shaped grains. Pitted surfaces become smooth.

Rounded (R) - results from continued abrasion, producing small polished spherical or ellipsoidal grains.

Please note that combinations of the descriptions may be used if different characteristics within each individual grain are obser

Page 24 of 101

125 - 15 Innovation Blvd., Saskatoon, Saskatchewan, S7N 2X8 Tel: (306) 933-8118 Fax: (306) 933-5656 Email: geochem@src.sk.ca Email: geochem@src.sk.ca

Sovereign Mining

Attention: Neil Torry PO #/Project:

Sample Number: 03NVT032

Estimated Weight of Gold in micrograms: 2.51

Length in µm	Width in µm	Description
140 120	60 60	A

Delicate (D) - Bedrock gold crystallizes as pitted granular masses with smooth protruding crystals.

Irregular (I) - After short ice transport, crystals are removed leaving smaller pitted grains with several protrusions. Grains may become curled.

Abraded (A) - With increasing transport, protrusions break off irregular grains producing several smaller leaf shaped grains. Pitted surfaces become smooth.

Rounded (R) - results from continued abrasion, producing small polished spherical or ellipsoidal grains.

Please note that combinations of the descriptions may be used if different characteristics within each individual grain are obser

125 - 15 Innovation Blvd., Saskatoon, Saskatchewan, S7N 2X8 Tel: (306) 933-8118 Fax: (306) 933-5656 Email: geochem@src.sk.ca Email: geochem@src.sk.ca

Sovereign Mining

Attention: Neil Torry PO #/Project:

Sample Number: 03NVT037

Estimated Weight of Gold in micrograms: 0.28

Length in µm	Width in µm	Description
60	60	А

Delicate (D) - Bedrock gold crystallizes as pitted granular masses with smooth protruding crystals.

Irregular (I) - After short ice transport, crystals are removed leaving smaller pitted grains with several protrusions. Grains may become curled.

Abraded (A) - With increasing transport, protrusions break off irregular grains producing several smaller leaf shaped grains. Pitted surfaces become smooth.

Rounded (R) - results from continued abrasion, producing small polished spherical or ellipsoidal grains.

Please note that combinations of the descriptions may be used if different characteristics within each individual grain are obser

Page 26 of101

125 - 15 Innovation Blvd., Saskatoon, Saskatchewan, S7N 2X8 Tel: (306) 933-8118 Fax: (306) 933-5656 Email: geochem@src.sk.ca Email: geochem@src.sk.ca

Sovereign Mining

Attention: Neil Torry PO #/Project:

Sample Number: 03NVT041

Estimated Weight of Gold in micrograms: 10.27

Length in µm	Width in µm	Description
280	100	А
60	40	` A
60	40	A
60	20	· A

Delicate (D) - Bedrock gold crystallizes as pitted granular masses with smooth protruding crystals.

Irregular (I) - After short ice transport, crystals are removed leaving smaller pitted grains with several protrusions. Grains may become curled.

Abraded (A) - With increasing transport, protrusions break off irregular grains producing several smaller leaf shaped grains. Pitted surfaces become smooth.

Rounded (R) - results from continued abrasion, producing small polished spherical or ellipsoidal grains.

Please note that combinations of the descriptions may be used if different characteristics within each individual grain are obser

Page 27 of 101

125 - 15 Innovation Blvd., Saskatoon, Saskatchewan, S7N 2X8 Tel: (306) 933-8118 Fax: (306) 933-5656 Email: geochem@src.sk.ca Email: geochem@src.sk.ca

Sovereign Mining Attention: Neil Torry

PO #/Project:

Sample Number: 03NVT042

Estimated Weight of Gold in micrograms: 0.46

Length in µm	Width in µm	Description
80	60	Α

Delicate (D) - Bedrock gold crystallizes as pitted granular masses with smooth protruding crystals.

Irregular (I) - After short ice transport, crystals are removed leaving smaller pitted grains with several protrusions. Grains may become curled.

Abraded (A) - With increasing transport, protrusions break off irregular grains producing several smaller leaf shaped grains. Pitted surfaces become smooth.

Rounded (R) - results from continued abrasion, producing small polished spherical or ellipsoidal grains.

Please note that combinations of the descriptions may be used if different characteristics within each individual grain are obser

125 - 15 Innovation Blvd., Saskatoon, Saskatchewan, S7N 2X8 Tel: (306) 933-8118 Fax: (306) 933-5656 Email: geochem@src.sk.ca Email: geochem@src.sk.ca

Sovereign Mining

Attention: Neil Torry PO #/Project:

Sample Number: 03NVT047

Estimated Weight of Gold in micrograms: 10.23

Length in µm	Width in µm	Description
220	80	Α
160	120	А
120	60	А
60	40	А

Delicate (D) - Bedrock gold crystallizes as pitted granular masses with smooth protruding crystals.

Irregular (I) - After short ice transport, crystals are removed leaving smaller pitted grains with several protrusions. Grains may become curled.

Abraded (A) - With increasing transport, protrusions break off irregular grains producing several smaller leaf shaped grains. Pitted surfaces become smooth.

Rounded (R) - results from continued abrasion, producing small polished spherical or ellipsoidal grains.

Please note that combinations of the descriptions may be used if different characteristics within each individual grain are obser

125 - 15 Innovation Blvd., Saskatoon, Saskatchewan, S7N 2X8 Tel: (306) 933-8118 Fax: (306) 933-5656 Email: geochem@src.sk.ca Email: geochem@src.sk.ca

Sovereign Mining

Attention: Neil Torry PO #/Project:

Sample Number: 03NVT049

Estimated Weight of Gold in micrograms: 4.05

Length in µm	Width in µm	Description
180	100	А

Delicate (D) - Bedrock gold crystallizes as pitted granular masses with smooth protruding crystals.

Irregular (I) - After short ice transport, crystals are removed leaving smaller pitted grains with several protrusions. Grains may become curled.

Abraded (A) - With increasing transport, protrusions break off irregular grains producing several smaller leaf shaped grains. Pitted surfaces become smooth.

Rounded (R) - results from continued abrasion, producing small polished spherical or ellipsoidal grains.

Please note that combinations of the descriptions may be used if different characteristics within each individual grain are obser

Page 30 of101

125 - 15 Innovation Blvd., Saskatoon, Saskatchewan, S7N 2X8 Tel: (306) 933-8118 Fax: (306) 933-5656 Email: geochem@src.sk.ca Email: geochem@src.sk.ca

Sovereign Mining

Attention: Neil Torry PO #/Project:

Sample Number: 03NVT050

Estimated Weight of Gold in micrograms: 2.56

Length in µm	Width in µm	Description	
140	100	А	

Delicate (D) - Bedrock gold crystallizes as pitted granular masses with smooth protruding crystals.

Irregular (I) - After short ice transport, crystals are removed leaving smaller pitted grains with several protrusions. Grains may become curled.

Abraded (A) - With increasing transport, protrusions break off irregular grains producing several smaller leaf shaped grains. Pitted surfaces become smooth.

Rounded (R) - results from continued abrasion, producing small polished spherical or ellipsoidal grains.

Please note that combinations of the descriptions may be used if different characteristics within each individual grain are obser

Page 31 of 101

125 - 15 Innovation Blvd., Saskatoon, Saskatchewan, S7N 2X8 Tel: (306) 933-8118 Fax: (306) 933-5656 Email: geochem@src.sk.ca Email: geochem@src.sk.ca

Sovereign Mining

Attention: Neil Torry PO #/Project:

Sample Number: 03NVT051

Estimated Weight of Gold in micrograms: 1.92

Length in µm	Width in µm	Description
100 60	100 80	A

Delicate (D) - Bedrock gold crystallizes as pitted granular masses with smooth protruding crystals.

Irregular (I) - After short ice transport, crystals are removed leaving smaller pitted grains with several protrusions. Grains may become curled.

Abraded (A) - With increasing transport, protrusions break off irregular grains producing several smaller leaf shaped grains. Pitted surfaces become smooth.

Rounded (R) - results from continued abrasion, producing small polished spherical or ellipsoidal grains.

Please note that combinations of the descriptions may be used if different characteristics within each individual grain are obser

Page 32 of101

125 - 15 Innovation Blvd., Saskatoon, Saskatchewan, S7N 2X8 Tel: (306) 933-8118 Fax: (306) 933-5656 Email: geochem@src.sk.ca Email: geochem@src.sk.ca

Sovereign Mining

Attention: Neil Torry PO #/Project:

Sample Number: 03NVT054

Estimated Weight of Gold in micrograms: 0.44

Length in µm	Width in µm	Description
80	40	A
60	40	A

Delicate (D) - Bedrock gold crystallizes as pitted granular masses with smooth protruding crystals.

Irregular (I) - After short ice transport, crystals are removed leaving smaller pitted grains with several protrusions. Grains may become curled.

Abraded (A) - With increasing transport, protrusions break off irregular grains producing several smaller leaf shaped grains. Pitted surfaces become smooth.

Rounded (R) - results from continued abrasion, producing small polished spherical or ellipsoidal grains.

Please note that combinations of the descriptions may be used if different characteristics within each individual grain are obser

Page 33 of 101

125 - 15 Innovation Blvd., Saskatoon, Saskatchewan, S7N 2X8 Tel: (306) 933-8118 Fax: (306) 933-5656 Email: geochem@src.sk.ca Email: geochem@src.sk.ca

Sovereign Mining

Attention: Neil Torry PO #/Project:

Sample Number: 03NVT055

Estimated Weight of Gold in micrograms: 119.54

Length in µm	Width in µm	Description	
600	320	А	

Delicate (D) - Bedrock gold crystallizes as pitted granular masses with smooth protruding crystals.

Irregular (I) - After short ice transport, crystals are removed leaving smaller pitted grains with several protrusions. Grains may become curled.

Abraded (A) - With increasing transport, protrusions break off irregular grains producing several smaller leaf shaped grains. Pitted surfaces become smooth.

Rounded (R) - results from continued abrasion, producing small polished spherical or ellipsoidal grains.

Please note that combinations of the descriptions may be used if different characteristics within each individual grain are obser

Page 34 of 101

125 - 15 Innovation Blvd., Saskatoon, Saskatchewan, S7N 2X8 Tel: (306) 933-8118 Fax: (306) 933-5656 Email: geochem@src.sk.ca Email: geochem@src.sk.ca

Sovereign Mining

Attention: Neil Torry PO #/Project:

Sample Number: 03NVT056

Estimated Weight of Gold in micrograms: 1.46

Length in µm	Width in µm	Description
120	80	А

Delicate (D) - Bedrock gold crystallizes as pitted granular masses with smooth protruding crystals.

Irregular (I) - After short ice transport, crystals are removed leaving smaller pitted grains with several protrusions. Grains may become curled.

Abraded (A) - With increasing transport, protrusions break off irregular grains producing several smaller leaf shaped grains. Pitted surfaces become smooth.

Rounded (R) - results from continued abrasion, producing small polished spherical or ellipsoidal grains.

Please note that combinations of the descriptions may be used if different characteristics within each individual grain are obser

125 - 15 Innovation Blvd., Saskatoon, Saskatchewan, S7N 2X8 Tel: (306) 933-8118 Fax: (306) 933-5656 Email: geochem@src.sk.ca Email: geochem@src.sk.ca

Sovereign Mining

Attention: Neil Torry PO #/Project:

Sample Number: 03NVT058

Estimated Weight of Gold in micrograms: 1.05

Length in µm	Width in µm	Description
120	60	А

Delicate (D) - Bedrock gold crystallizes as pitted granular masses with smooth protruding crystals.

Irregular (I) - After short ice transport, crystals are removed leaving smaller pitted grains with several protrusions. Grains may become curled.

Abraded (A) - With increasing transport, protrusions break off irregular grains producing several smaller leaf shaped grains. Pitted surfaces become smooth.

Rounded (R) - results from continued abrasion, producing small polished spherical or ellipsoidal grains.

Please note that combinations of the descriptions may be used if different characteristics within each individual grain are obser

125 - 15 Innovation Blvd., Saskatoon, Saskatchewan, S7N 2X8 Tel: (306) 933-8118 Fax: (306) 933-5656 Email: geochem@src.sk.ca Email: geochem@src.sk.ca

Sovereign Mining

Attention: Neil Torry PO #/Project:

Sample Number: 03NVT059

Estimated Weight of Gold in micrograms: 1.86

Width in µm	Description
80	А
60	А
20	А
	in µm 80 60

Delicate (D) - Bedrock gold crystallizes as pitted granular masses with smooth protruding crystals.

Irregular (I) - After short ice transport, crystals are removed leaving smaller pitted grains with several protrusions. Grains may become curled.

Abraded (A) - With increasing transport, protrusions break off irregular grains producing several smaller leaf shaped grains. Pitted surfaces become smooth.

Rounded (R) - results from continued abrasion, producing small polished spherical or ellipsoidal grains.

Please note that combinations of the descriptions may be used if different characteristics within each individual grain are obser

125 - 15 Innovation Blvd., Saskatoon, Saskatchewan, S7N 2X8 Tel: (306) 933-8118 Fax: (306) 933-5656 Email: geochem@src.sk.ca Email: geochem@src.sk.ca

Sovereign Mining

Attention: Neil Torry PO #/Project:

Sample Number: 03NVT061

Estimated Weight of Gold in micrograms: 1.05

Length in µm	Width in µm	Description
100	80	А

Delicate (D) - Bedrock gold crystallizes as pitted granular masses with smooth protruding crystals.

Irregular (I) - After short ice transport, crystals are removed leaving smaller pitted grains with several protrusions. Grains may become curled.

Abraded (A) - With increasing transport, protrusions break off irregular grains producing several smaller leaf shaped grains. Pitted surfaces become smooth.

Rounded (R) - results from continued abrasion, producing small polished spherical or ellipsoidal grains.

Please note that combinations of the descriptions may be used if different characteristics within each individual grain are obser

Page 38 of 101

125 - 15 Innovation Blvd., Saskatoon, Saskatchewan, S7N 2X8 Tel: (306) 933-8118 Fax: (306) 933-5656 Email: geochem@src.sk.ca Email: geochem@src.sk.ca

Sovereign Mining

Attention: Neil Torry PO #/Project:

Sample Number: 03NVT062

Estimated Weight of Gold in micrograms: 5.41

Length in µm	Width in µm	Description
180 80	120 40	I R
60	40	A

Delicate (D) - Bedrock gold crystallizes as pitted granular masses with smooth protruding crystals.

Irregular (I) - After short ice transport, crystals are removed leaving smaller pitted grains with several protrusions. Grains may become curled.

Abraded (A) - With increasing transport, protrusions break off irregular grains producing several smaller leaf shaped grains. Pitted surfaces become smooth.

Rounded (R) - results from continued abrasion, producing small polished spherical or ellipsoidal grains.

Please note that combinations of the descriptions may be used if different characteristics within each individual grain are obser

Page 39 of101

125 - 15 Innovation Blvd., Saskatoon, Saskatchewan, S7N 2X8 Tel: (306) 933-8118 Fax: (306) 933-5656 Email: geochem@src.sk.ca Email: geochem@src.sk.ca

Sovereign Mining

Attention: Neil Torry PO #/Project:

Sample Number: 03NVT066

Estimated Weight of Gold in micrograms: 4.92

Length in µm	Width in µm	Description
160	80	Α
120	80	A
80	60	А
80	40	A
60	40	A
80	40	A

Delicate (D) - Bedrock gold crystallizes as pitted granular masses with smooth protruding crystals.

Irregular (I) - After short ice transport, crystals are removed leaving smaller pitted grains with several protrusions. Grains may become curled.

Abraded (A) - With increasing transport, protrusions break off irregular grains producing several smaller leaf shaped grains. Pitted surfaces become smooth.

Rounded (R) - results from continued abrasion, producing small polished spherical or ellipsoidal grains.

Please note that combinations of the descriptions may be used if different characteristics within each individual grain are obser

July 7, 2004

Page 40 of 101

125 - 15 Innovation Blvd., Saskatoon, Saskatchewan, S7N 2X8 Tel: (306) 933-8118 Fax: (306) 933-5656 Email: geochem@src.sk.ca Email: geochem@src.sk.ca

Sovereign Mining

Attention: Neil Torry -PO #/Project:

Sample Number: 03NVT067

Estimated Weight of Gold in micrograms: 3.25

Length in µm	Width in µm	Description
140	120	A

Delicate (D) - Bedrock gold crystallizes as pitted granular masses with smooth protruding crystals.

Irregular (I) - After short ice transport, crystals are removed leaving smaller pitted grains with several protrusions. Grains may become curled.

Abraded (A) - With increasing transport, protrusions break off irregular grains producing several smaller leaf shaped grains. Pitted surfaces become smooth.

Rounded (R) - results from continued abrasion, producing small polished spherical or ellipsoidal grains.

Please note that combinations of the descriptions may be used if different characteristics within each individual grain are obser

July 7, 2004

Page 41 of101

125 - 15 Innovation Blvd., Saskatoon, Saskatchewan, S7N 2X8 Tel: (306) 933-8118 Fax: (306) 933-5656 Email: geochem@src.sk.ca Email: geochem@src.sk.ca

Sovereign Mining

Attention: Neil Torry PO #/Project:

Sample Number: 03NVT068

Estimated Weight of Gold in micrograms: 25.12

ngth m	Width in µm	Description	
280	180	А	
200	140	, I	
80	80	А	
60	60	A	
280 200 80	180 140 80	1	

Delicate (D) - Bedrock gold crystallizes as pitted granular masses with smooth protruding crystals.

Irregular (I) - After short ice transport, crystals are removed leaving smaller pitted grains with several protrusions. Grains may become curled.

Abraded (A) - With increasing transport, protrusions break off irregular grains producing several smaller leaf shaped grains. Pitted surfaces become smooth.

Rounded (R) - results from continued abrasion, producing small polished spherical or ellipsoidal grains.

Please note that combinations of the descriptions may be used if different characteristics within each individual grain are obser

125 - 15 Innovation Blvd., Saskatoon, Saskatchewan, S7N 2X8 Tel: (306) 933-8118 Fax: (306) 933-5656 Email: geochem@src.sk.ca Email: geochem@src.sk.ca

Sovereign Mining

Attention: Neil Torry PO #/Project:

Sample Number: 03NVT069

Estimated Weight of Gold in micrograms: 1.05

Length in µm	Width in µm	Description
in più		
100	80	А

Delicate (D) - Bedrock gold crystallizes as pitted granular masses with smooth protruding crystals.

Irregular (I) - After short ice transport, crystals are removed leaving smaller pitted grains with several protrusions. Grains may become curled.

Abraded (A) - With increasing transport, protrusions break off irregular grains producing several smaller leaf shaped grains. Pitted surfaces become smooth.

Rounded (R) - results from continued abrasion, producing small polished spherical or ellipsoidal grains.

Please note that combinations of the descriptions may be used if different characteristics within each individual grain are obser

125 - 15 Innovation Blvd., Saskatoon, Saskatchewan, S7N 2X8 Tel: (306) 933-8118 Fax: (306) 933-5656 Email: geochem@src.sk.ca Email: geochem@src.sk.ca

Sovereign Mining

Attention: Neil Torry PO #/Project:

Sample Number: 03NVT070

Estimated Weight of Gold in micrograms: 2.77

Length in µm	Width in µm	Description
120	80	А
100	80	R
60	40	R
40	20	R

Delicate (D) - Bedrock gold crystallizes as pitted granular masses with smooth protruding crystals.

Irregular (I) - After short ice transport, crystals are removed leaving smaller pitted grains with several protrusions. Grains may become curled.

Abraded (A) - With increasing transport, protrusions break off irregular grains producing several smaller leaf shaped grains. Pitted surfaces become smooth.

Rounded (R) - results from continued abrasion, producing small polished spherical or ellipsoidal grains.

Please note that combinations of the descriptions may be used if different characteristics within each individual grain are obser

125 - 15 Innovation Blvd., Saskatoon, Saskatchewan, S7N 2X8 Tel: (306) 933-8118 Fax: (306) 933-5656 Email: geochem@src.sk.ca Email: geochem@src.sk.ca

Sovereign Mining

Attention: Neil Torry PO #/Project:

Sample Number: 03NVT071

Estimated Weight of Gold in micrograms: 1.96

Length in µm	Width in µm	Description
140	80	А

Delicate (D) - Bedrock gold crystallizes as pitted granular masses with smooth protruding crystals.

Irregular (I) - After short ice transport, crystals are removed leaving smaller pitted grains with several protrusions. Grains may become curled.

Abraded (A) - With increasing transport, protrusions break off irregular grains producing several smaller leaf shaped grains. Pitted surfaces become smooth.

Rounded (R) - results from continued abrasion, producing small polished spherical or ellipsoidal grains.

Please note that combinations of the descriptions may be used if different characteristics within each individual grain are obser

125 - 15 Innovation Blvd., Saskatoon, Saskatchewan, S7N 2X8 Tel: (306) 933-8118 Fax: (306) 933-5656 Email: geochem@src.sk.ca Email: geochem@src.sk.ca

Sovereign Mining

Attention: Neil Torry PO #/Project:

Sample Number: 03NVT073

Estimated Weight of Gold in micrograms: 0.28

Length in μm	Width in μm	Description
80	40	А

Delicate (D) - Bedrock gold crystallizes as pitted granular masses with smooth protruding crystals.

Irregular (I) - After short ice transport, crystals are removed leaving smaller pitted grains with several protrusions. Grains may become curled.

Abraded (A) - With increasing transport, protrusions break off irregular grains producing several smaller leaf shaped grains. Pitted surfaces become smooth.

Rounded (R) - results from continued abrasion, producing small polished spherical or ellipsoidal grains.

Please note that combinations of the descriptions may be used if different characteristics within each individual grain are obser

SRC Geoanalytical Laboratories 125 - 15 Innovation Blvd., Saskatoon, Saskatchewan, S7N 2X8 Tel: (306) 933-8118 Fax: (306) 933-5656 Email: geochem@src.sk.ca

Email: geochem@src.sk.ca

Sovereign Mining

Attention: Neil Torry PO #/Project:

Sample Number: 03NVT075

Estimated Weight of Gold in micrograms: 10.31

Length in µm	Width in µm	Description
220	160	А
100	40	А

Delicate (D) - Bedrock gold crystallizes as pitted granular masses with smooth protruding crystals.

Irregular (I) - After short ice transport, crystals are removed leaving smaller pitted grains with several protrusions. Grains may become curled.

Abraded (A) - With increasing transport, protrusions break off irregular grains producing several smaller leaf shaped grains. Pitted surfaces become smooth.

Rounded (R) - results from continued abrasion, producing small polished spherical or ellipsoidal grains.

Please note that combinations of the descriptions may be used if different characteristics within each individual grain are obser

125 - 15 Innovation Blvd., Saskatoon, Saskatchewan, S7N 2X8 Tel: (306) 933-8118 Fax: (306) 933-5656 Email: geochem@src.sk.ca Email: geochem@src.sk.ca

Sovereign Mining

Attention: Neil Torry PO #/Project:

Sample Number: 03NVT077

Estimated Weight of Gold in micrograms: 2.1

Length in µm	Width in μm	Description
100	80	А
100	80	A

Delicate (D) - Bedrock gold crystallizes as pitted granular masses with smooth protruding crystals.

Irregular (I) - After short ice transport, crystals are removed leaving smaller pitted grains with several protrusions. Grains may become curled.

Abraded (A) - With increasing transport, protrusions break off irregular grains producing several smaller leaf shaped grains. Pitted surfaces become smooth.

Rounded (R) - results from continued abrasion, producing small polished spherical or ellipsoidal grains.

Please note that combinations of the descriptions may be used if different characteristics within each individual grain are obser

July 7, 2004

Page 48 of 101

125 - 15 Innovation Blvd., Saskatoon, Saskatchewan, S7N 2X8 Tel: (306) 933-8118 Fax: (306) 933-5656 Email: geochem@src.sk.ca Email: geochem@src.sk.ca

Sovereign Mining

Attention: Neil Torry PO #/Project:

Sample Number: 03NVT078

Estimated Weight of Gold in micrograms: 0.46

Length in µm	Width in µm	Description
80	60	А

Delicate (D) - Bedrock gold crystallizes as pitted granular masses with smooth protruding crystals.

Irregular (I) - After short ice transport, crystals are removed leaving smaller pitted grains with several protrusions. Grains may become curled.

Abraded (A) - With increasing transport, protrusions break off irregular grains producing several smaller leaf shaped grains. Pitted surfaces become smooth.

Rounded (R) - results from continued abrasion, producing small polished spherical or ellipsoidal grains.

Please note that combinations of the descriptions may be used if different characteristics within each individual grain are obser

Page 49 of101

125 - 15 Innovation Blvd., Saskatoon, Saskatchewan, S7N 2X8 Tel: (306) 933-8118 Fax: (306) 933-5656 Email: geochem@src.sk.ca Email: geochem@src.sk.ca

Sovereign Mining

Attention: Neil Torry PO #/Project:

Sample Number: 03NVT079

Estimated Weight of Gold in micrograms: 1.31

Length in µm	Width in µm	Description
100	80	А
60	40	А
40	40	А

Delicate (D) - Bedrock gold crystallizes as pitted granular masses with smooth protruding crystals.

Irregular (I) - After short ice transport, crystals are removed leaving smaller pitted grains with several protrusions. Grains may become curled.

Abraded (A) - With increasing transport, protrusions break off irregular grains producing several smaller leaf shaped grains. Pitted surfaces become smooth

Rounded (R) - results from continued abrasion, producing small polished spherical or ellipsoidal grains.

Please note that combinations of the descriptions may be used if different characteristics within each individual grain are obser

125 - 15 Innovation Blvd., Saskatoon, Saskatchewan, S7N 2X8 Tel: (306) 933-8118 Fax: (306) 933-5656 Email: geochem@src.sk.ca Email: geochem@src.sk.ca

Sovereign Mining

Attention: Neil Torry PO #/Project:

Sample Number: 03NVT080

Estimated Weight of Gold in micrograms: 3.77

Length in µm	Width in µm	Description
120	100	<u>`</u>
100	60	I
100	40	А
80	40	A
60	40	А
60	20	А
40	20	A

Delicate (D) - Bedrock gold crystallizes as pitted granular masses with smooth protruding crystals.

Irregular (I) - After short ice transport, crystals are removed leaving smaller pitted grains with several protrusions. Grains may become curled.

Abraded (A) - With increasing transport, protrusions break off irregular grains producing several smaller leaf shaped grains. Pitted surfaces become smooth.

Rounded (R) - results from continued abrasion, producing small polished spherical or ellipsoidal grains.

Please note that combinations of the descriptions may be used if different characteristics within each individual grain are obser

125 - 15 Innovation Blvd., Saskatoon, Saskatchewan, S7N 2X8 Tel: (306) 933-8118 Fax: (306) 933-5656 Email: geochem@src.sk.ca Email: geochem@src.sk.ca

Sovereign Mining

Attention: Neil Torry PO #/Project:

Sample Number: 03NVT081

Estimated Weight of Gold in micrograms: 0.16

Length in µm	Width in µm	Description
60	40	А

Delicate (D) - Bedrock gold crystallizes as pitted granular masses with smooth protruding crystals.

Irregular (I) - After short ice transport, crystals are removed leaving smaller pitted grains with several protrusions. Grains may become curled.

Abraded (A) - With increasing transport, protrusions break off irregular grains producing several smaller leaf shaped grains. Pitted surfaces become smooth.

Rounded (R) - results from continued abrasion, producing small polished spherical or ellipsoidal grains.

Please note that combinations of the descriptions may be used if different characteristics within each individual grain are obser

Page 52 of 101

125 - 15 Innovation Blvd., Saskatoon, Saskatchewan, S7N 2X8 Tel: (306) 933-8118 Fax: (306) 933-5656 Email: geochem@src.sk.ca Email: geochem@src.sk.ca

Sovereign Mining

Attention: Neil Torry PO #/Project:

Sample Number: 03NVT082

Estimated Weight of Gold in micrograms: 3.41

Length in µm	Width in µm	Description
120	100	A .
100	60	А
80	60	А
60	60	А

Delicate (D) - Bedrock gold crystallizes as pitted granular masses with smooth protruding crystals.

Irregular (I) - After short ice transport, crystals are removed leaving smaller pitted grains with several protrusions. Grains may become curled.

Abraded (A) - With increasing transport, protrusions break off irregular grains producing several smaller leaf shaped grains. Pitted surfaces become smooth.

Rounded (R) - results from continued abrasion, producing small polished spherical or ellipsoidal grains.

Please note that combinations of the descriptions may be used if different characteristics within each individual grain are obser

Page 53 of 101

125 - 15 Innovation Blvd., Saskatoon, Saskatchewan, S7N 2X8 Tel: (306) 933-8118 Fax: (306) 933-5656 Email: geochem@src.sk.ca Email: geochem@src.sk.ca

Sovereign Mining

Attention: Neil Torry PO #/Project:

Sample Number: 03NVT083

Estimated Weight of Gold in micrograms: 14.17

Length in µm	Width in µm	Description
220	140	А
140	80	А
120	80	А
100	80	А
80	80	A
80	60	А
40	40	А

Delicate (D) - Bedrock gold crystallizes as pitted granular masses with smooth protruding crystals.

Irregular (I) - After short ice transport, crystals are removed leaving smaller pitted grains with several protrusions. Grains may become curled.

Abraded (A) - With increasing transport, protrusions break off irregular grains producing several smaller leaf shaped grains. Pitted surfaces become smooth.

Rounded (R) - results from continued abrasion, producing small polished spherical or ellipsoidal grains.

Please note that combinations of the descriptions may be used if different characteristics within each individual grain are obser

125 - 15 Innovation Blvd., Saskatoon, Saskatchewan, S7N 2X8 Tel: (306) 933-8118 Fax: (306) 933-5656 Email: geochem@src.sk.ca Email: geochem@src.sk.ca

Sovereign Mining

Attention: Neil Torry PO #/Project:

Sample Number: 03NVT084

Estimated Weight of Gold in micrograms: 0.16

Length in µm	Width in µm	Description
60	40	А

Delicate (D) - Bedrock gold crystallizes as pitted granular masses with smooth protruding crystals.

Irregular (I) - After short ice transport, crystals are removed leaving smaller pitted grains with several protrusions. Grains may become curled.

Abraded (A) - With increasing transport, protrusions break off irregular grains producing several smaller leaf shaped grains. Pitted surfaces become smooth.

Rounded (R) - results from continued abrasion, producing small polished spherical or ellipsoidal grains.

Please note that combinations of the descriptions may be used if different characteristics within each individual grain are obser

Page 55 of 101

Report No: 04-406

125 - 15 Innovation Blvd., Saskatoon, Saskatchewan, S7N 2X8 Tel: (306) 933-8118 Fax: (306) 933-5656 Email: geochem@src.sk.ca Email: geochem@src.sk.ca

Sovereign Mining

Attention: Neil Torry PO #/Project:

Sample Number: 03NVT085

Estimated Weight of Gold in micrograms: 0.28

Length in µm	Width in µm	Description
60	60	I

July 7, 2004

Delicate (D) - Bedrock gold crystallizes as pitted granular masses with smooth protruding crystals.

Irregular (I) - After short ice transport, crystals are removed leaving smaller pitted grains with several protrusions. Grains may become curled.

Abraded (A) - With increasing transport, protrusions break off irregular grains producing several smaller leaf shaped grains. Pitted surfaces become smooth.

Rounded (R) - results from continued abrasion, producing small polished spherical or ellipsoidal grains.

Please note that combinations of the descriptions may be used if different characteristics within each individual grain are obser

Page 56 of 101

125 - 15 Innovation Blvd., Saskatoon, Saskatchewan, S7N 2X8 Tel: (306) 933-8118 Fax: (306) 933-5656 Email: geochem@src.sk.ca Email: geochem@src.sk.ca

Sovereign Mining

Attention: Neil Torry PO #/Project:

Sample Number: 03NVT086

Estimated Weight of Gold in micrograms: 1.09

Length in µm	Width in µm	Description
100	60	А
- 80	40	A
40	20	A

Delicate (D) - Bedrock gold crystallizes as pitted granular masses with smooth protruding crystals.

Irregular (I) - After short ice transport, crystals are removed leaving smaller pitted grains with several protrusions. Grains may become curled.

Abraded (A) - With increasing transport, protrusions break off irregular grains producing several smaller leaf shaped grains. Pitted surfaces become smooth.

Rounded (R) - results from continued abrasion, producing small polished spherical or ellipsoidal grains.

Please note that combinations of the descriptions may be used if different characteristics within each individual grain are obser

Page 57 of 101
125 - 15 Innovation Blvd., Saskatoon, Saskatchewan, S7N 2X8 Tel: (306) 933-8118 Fax: (306) 933-5656 Email: geochem@src.sk.ca Email: geochem@src.sk.ca

Sovereign Mining

Attention: Neil Torry PO #/Project:

Sample Number: 03NVT088

Estimated Weight of Gold in micrograms: 31.86

Length in µm	Width in µm	Description
300 120	260 100	A R
60	60	A

Delicate (D) - Bedrock gold crystallizes as pitted granular masses with smooth protruding crystals.

Irregular (I) - After short ice transport, crystals are removed leaving smaller pitted grains with several protrusions. Grains may become curled.

Abraded (A) - With increasing transport, protrusions break off irregular grains producing several smaller leaf shaped grains. Pitted surfaces become smooth.

Rounded (R) - results from continued abrasion, producing small polished spherical or ellipsoidal grains.

Please note that combinations of the descriptions may be used if different characteristics within each individual grain are obser

Page 58 of 101

125 - 15 Innovation Blvd., Saskatoon, Saskatchewan, S7N 2X8 Tel: (306) 933-8118 Fax: (306) 933-5656 Email: geochem@src.sk.ca Email: geochem@src.sk.ca

Sovereign Mining

Attention: Neil Torry PO #/Project:

Sample Number: 03NVT091

Estimated Weight of Gold in micrograms: 0.56

Length in µm	Width in µm	Description
80	40	А
80	40	А

Delicate (D) - Bedrock gold crystallizes as pitted granular masses with smooth protruding crystals.

Irregular (I) - After short ice transport, crystals are removed leaving smaller pitted grains with several protrusions. Grains may become curled.

Abraded (A) - With increasing transport, protrusions break off irregular grains producing several smaller leaf shaped grains. Pitted surfaces become smooth.

Rounded (R) - results from continued abrasion, producing small polished spherical or ellipsoidal grains.

Please note that combinations of the descriptions may be used if different characteristics within each individual grain are obser

Page 59 of101

125 - 15 Innovation Blvd., Saskatoon, Saskatchewan, S7N 2X8 Tel: (306) 933-8118 Fax: (306) 933-5656 Email: geochem@src.sk.ca Email: geochem@src.sk.ca

Sovereign Mining

Attention: Neil Torry PO #/Project:

Sample Number: 03NVT094

Estimated Weight of Gold in micrograms: 2.17

Length in µm	Width in µm	Description
140	60	А
80	80	А

Delicate (D) - Bedrock gold crystallizes as pitted granular masses with smooth protruding crystals.

Irregular (I) - After short ice transport, crystals are removed leaving smaller pitted grains with several protrusions. Grains may become curled.

Abraded (A) - With increasing transport, protrusions break off irregular grains producing several smaller leaf shaped grains. Pitted surfaces become smooth.

Rounded (R) - results from continued abrasion, producing small polished spherical or ellipsoidal grains.

Please note that combinations of the descriptions may be used if different characteristics within each individual grain are obser

125 - 15 Innovation Blvd., Saskatoon, Saskatchewan, S7N 2X8 Tel: (306) 933-8118 Fax: (306) 933-5656 Email: geochem@src.sk.ca Email: geochem@src.sk.ca

Sovereign Mining

Attention: Neil Torry PO #/Project:

Sample Number: 03NVT095

Estimated Weight of Gold in micrograms: 2.42

Length in µm	Width in µm	Description
140	80	I
100	40	A

Delicate (D) - Bedrock gold crystallizes as pitted granular masses with smooth protruding crystals.

Irregular (I) - After short ice transport, crystals are removed leaving smaller pitted grains with several protrusions. Grains may become curled.

Abraded (A) - With increasing transport, protrusions break off irregular grains producing several smaller leaf shaped grains. Pitted surfaces become smooth.

Rounded (R) - results from continued abrasion, producing small polished spherical or ellipsoidal grains.

Please note that combinations of the descriptions may be used if different characteristics within each individual grain are obser

Page 61 of 101

125 - 15 Innovation Blvd., Saskatoon, Saskatchewan, S7N 2X8 Tel: (306) 933-8118 Fax: (306) 933-5656 Email: geochem@src.sk.ca Email: geochem@src.sk.ca

Sovereign Mining

Attention: Neil Torry PO #/Project:

Sample Number: 03NVT096

Estimated Weight of Gold in micrograms: 6.46

Length in µm	Width in µm	Description		
200	120	А		
80	60	I		

Delicate (D) - Bedrock gold crystallizes as pitted granular masses with smooth protruding crystals.

Irregular (I) - After short ice transport, crystals are removed leaving smaller pitted grains with several protrusions. Grains may become curled.

Abraded (A) - With increasing transport, protrusions break off irregular grains producing several smaller leaf shaped grains. Pitted surfaces become smooth.

Rounded (R) - results from continued abrasion, producing small polished spherical or ellipsoidal grains.

Please note that combinations of the descriptions may be used if different characteristics within each individual grain are obser

Page 62 of 101

125 - 15 Innovation Blvd., Saskatoon, Saskatchewan, S7N 2X8 Tel: (306) 933-8118 Fax: (306) 933-5656 Email: geochem@src.sk.ca Email: geochem@src.sk.ca

Sovereign Mining

Attention: Neil Torry PO #/Project:

Sample Number: 03NVT100

Estimated Weight of Gold in micrograms: 1.27

Length in µm	Width in µm	Description
100	60	А
80	60	А
40	40	A

Delicate (D) - Bedrock gold crystallizes as pitted granular masses with smooth protruding crystals.

Irregular (I) - After short ice transport, crystals are removed leaving smaller pitted grains with several protrusions. Grains may become curled.

Abraded (A) - With increasing transport, protrusions break off irregular grains producing several smaller leaf shaped grains. Pitted surfaces become smooth.

Rounded (R) - results from continued abrasion, producing small polished spherical or ellipsoidal grains.

Please note that combinations of the descriptions may be used if different characteristics within each individual grain are obser

Page 63 of 101

125 - 15 Innovation Blvd., Saskatoon, Saskatchewan, S7N 2X8 Tel: (306) 933-8118 Fax: (306) 933-5656 Email: geochem@src.sk.ca Email: geochem@src.sk.ca

Sovereign Mining

Attention: Neil Torry PO #/Project:

Sample Number: 03NVT101

Estimated Weight of Gold in micrograms: 13.39

Length in µm	Width in μm	Description
240	180	Α
60	60	А

Delicate (D) - Bedrock gold crystallizes as pitted granular masses with smooth protruding crystals.

Irregular (I) - After short ice transport, crystals are removed leaving smaller pitted grains with several protrusions. Grains may become curled.

Abraded (A) - With increasing transport, protrusions break off irregular grains producing several smaller leaf shaped grains. Pitted surfaces become smooth.

Rounded (R) - results from continued abrasion, producing small polished spherical or ellipsoidal grains.

Please note that combinations of the descriptions may be used if different characteristics within each individual grain are obser

July 7, 2004

Page 64 of 101

125 - 15 Innovation Blvd., Saskatoon, Saskatchewan, S7N 2X8 Tel: (306) 933-8118 Fax: (306) 933-5656 Email: geochem@src.sk.ca Email: geochem@src.sk.ca

Sovereign Mining

Attention: Neil Torry PO #/Project:

Sample Number: 03NVT102

Estimated Weight of Gold in micrograms: 2.62

Length in µm	Width in µm	Description
120	100	А
80	60	А
40	40	А
40	40	A

Delicate (D) - Bedrock gold crystallizes as pitted granular masses with smooth protruding crystals.

Irregular (I) - After short ice transport, crystals are removed leaving smaller pitted grains with several protrusions. Grains may become curled.

Abraded (A) - With increasing transport, protrusions break off irregular grains producing several smaller leaf shaped grains. Pitted surfaces become smooth.

Rounded (R) - results from continued abrasion, producing small polished spherical or ellipsoidal grains.

Please note that combinations of the descriptions may be used if different characteristics within each individual grain are obser

Page 65 of 101

125 - 15 Innovation Blvd., Saskatoon, Saskatchewan, S7N 2X8 Tel: (306) 933-8118 Fax: (306) 933-5656 Email: geochem@src.sk.ca Email: geochem@src.sk.ca

Sovereign Mining Attention: Neil Torry PO #/Project:

Sample Number: 03NVT103

Estimated Weight of Gold in micrograms: 0.56

Length in µm	Width in μm	Description
80	40	A
80	40	A

Delicate (D) - Bedrock gold crystallizes as pitted granular masses with smooth protruding crystals.

Irregular (I) - After short ice transport, crystals are removed leaving smaller pitted grains with several protrusions. Grains may become curled.

Abraded (A) - With increasing transport, protrusions break off irregular grains producing several smaller leaf shaped grains. Pitted surfaces become smooth.

Rounded (R) - results from continued abrasion, producing small polished spherical or ellipsoidal grains.

Please note that combinations of the descriptions may be used if different characteristics within each individual grain are obser

July 7, 2004

Page 66 of 101

125 - 15 Innovation Blvd., Saskatoon, Saskatchewan, S7N 2X8 Tel: (306) 933-8118 Fax: (306) 933-5656 Email: geochem@src.sk.ca Email: geochem@src.sk.ca

Sovereign Mining Attention: Neil Torry PO #/Project: July 7, 2004

Sample Number: 03NVT105

Estimated Weight of Gold in micrograms: 0.16

Length in µm	Width in µm	Description
60	40	А

Delicate (D) - Bedrock gold crystallizes as pitted granular masses with smooth protruding crystals.

Irregular (I) - After short ice transport, crystals are removed leaving smaller pitted grains with several protrusions. Grains may become curled.

Abraded (A) - With increasing transport, protrusions break off irregular grains producing several smaller leaf shaped grains. Pitted surfaces become smooth.

Rounded (R) - results from continued abrasion, producing small polished spherical or ellipsoidal grains.

Please note that combinations of the descriptions may be used if different characteristics within each individual grain are obser

Page 67 of 101

125 - 15 Innovation Blvd., Saskatoon, Saskatchewan, S7N 2X8 Tel: (306) 933-8118 Fax: (306) 933-5656 Email: geochem@src.sk.ca Email: geochem@src.sk.ca

Sovereign Mining

Attention: Neil Torry PO #/Project:

Sample Number: 03NVT106

Estimated Weight of Gold in micrograms: 1.05

Length in µm	Width in µm	Description
100	80	А

Delicate (D) - Bedrock gold crystallizes as pitted granular masses with smooth protruding crystals.

Irregular (I) - After short ice transport, crystals are removed leaving smaller pitted grains with several protrusions. Grains may become curled.

Abraded (A) - With increasing transport, protrusions break off irregular grains producing several smaller leaf shaped grains. Pitted surfaces become smooth.

Rounded (R) - results from continued abrasion, producing small polished spherical or ellipsoidal grains.

Please note that combinations of the descriptions may be used if different characteristics within each individual grain are obser

Page 68 of 101

125 - 15 Innovation Blvd., Saskatoon, Saskatchewan, S7N 2X8 Tel: (306) 933-8118 Fax: (306) 933-5656 Email: geochem@src.sk.ca Email: geochem@src.sk.ca

Sovereign Mining

Attention: Neil Torry PO #/Project:

Sample Number: 03NVT110

Estimated Weight of Gold in micrograms: 1.05

Length in µm	Width in µm	Description
100	80	А

Delicate (D) - Bedrock gold crystallizes as pitted granular masses with smooth protruding crystals.

Irregular (I) - After short ice transport, crystals are removed leaving smaller pitted grains with several protrusions. Grains may become curled.

Abraded (A) - With increasing transport, protrusions break off irregular grains producing several smaller leaf shaped grains. Pitted surfaces become smooth.

Rounded (R) - results from continued abrasion, producing small polished spherical or ellipsoidal grains.

Please note that combinations of the descriptions may be used if different characteristics within each individual grain are obser

Page 69 of101

125 - 15 Innovation Blvd., Saskatoon, Saskatchewan, S7N 2X8 Tel: (306) 933-8118 Fax: (306) 933-5656 Email: geochem@src.sk.ca Email: geochem@src.sk.ca

Sovereign Mining

Attention: Neil Torry PO #/Project:

Sample Number: 03NVT111

Estimated Weight of Gold in micrograms: 1.33

Length in µm	Width in µm	Description
80	80	А
80	60	A
60	40	А

Delicate (D) - Bedrock gold crystallizes as pitted granular masses with smooth protruding crystals.

Irregular (I) - After short ice transport, crystals are removed leaving smaller pitted grains with several protrusions. Grains may become curled.

Abraded (A) - With increasing transport, protrusions break off irregular grains producing several smaller leaf shaped grains. Pitted surfaces become smooth.

Rounded (R) - results from continued abrasion, producing small polished spherical or ellipsoidal grains.

Please note that combinations of the descriptions may be used if different characteristics within each individual grain are obser

125 - 15 Innovation Blvd., Saskatoon, Saskatchewan, S7N 2X8 Tel: (306) 933-8118 Fax: (306) 933-5656 Email: geochem@src.sk.ca Email: geochem@src.sk.ca

Sovereign Mining

Attention: Neil Torry PO #/Project:

Sample Number: 03NVT116

Estimated Weight of Gold in micrograms: 0.16

Length in µm	Width in µm	Description
60	40	А

July 7, 2004

Delicate (D) - Bedrock gold crystallizes as pitted granular masses with smooth protruding crystals.

Irregular (I) - After short ice transport, crystals are removed leaving smaller pitted grains with several protrusions. Grains may become curled.

Abraded (A) - With increasing transport, protrusions break off irregular grains producing several smaller leaf shaped grains. Pitted surfaces become smooth.

Rounded (R) - results from continued abrasion, producing small polished spherical or ellipsoidal grains.

Please note that combinations of the descriptions may be used if different characteristics within each individual grain are obser

Page 71 of 101

125 - 15 Innovation Blvd., Saskatoon, Saskatchewan, S7N 2X8 Tel: (306) 933-8118 Fax: (306) 933-5656 Email: geochem@src.sk.ca Email: geochem@src.sk.ca

Sovereign Mining

Attention: Neil Torry PO #/Project:

Sample Number: 03NVT122

Estimated Weight of Gold in micrograms: 0.16

Length in µm	Width in µm	Description
80	20	А

Delicate (D) - Bedrock gold crystallizes as pitted granular masses with smooth protruding crystals.

Irregular (I) - After short ice transport, crystals are removed leaving smaller pitted grains with several protrusions. Grains may become curled.

Abraded (A) - With increasing transport, protrusions break off irregular grains producing several smaller leaf shaped grains. Pitted surfaces become smooth.

Rounded (R) - results from continued abrasion, producing small polished spherical or ellipsoidal grains.

Please note that combinations of the descriptions may be used if different characteristics within each individual grain are obser

Page 72 of101

125 - 15 Innovation Blvd., Saskatoon, Saskatchewan, S7N 2X8 Tel: (306) 933-8118 Fax: (306) 933-5656 Email: geochem@src.sk.ca Email: geochem@src.sk.ca

Sovereign Mining

Attention: Neil Torry PO #/Project:

Sample Number: 03NVT125

Estimated Weight of Gold in micrograms: 6.08

Length in µm	ິWidth in µm	Description
160	80	Α
140	80	A
120	80	A
40	40	А

Delicate (D) - Bedrock gold crystallizes as pitted granular masses with smooth protruding crystals.

Irregular (I) - After short ice transport, crystals are removed leaving smaller pitted grains with several protrusions. Grains may become curled.

Abraded (A) - With increasing transport, protrusions break off irregular grains producing several smaller leaf shaped grains. Pitted surfaces become smooth.

Rounded (R) - results from continued abrasion, producing small polished spherical or ellipsoidal grains.

Please note that combinations of the descriptions may be used if different characteristics within each individual grain are obser

Page 73 of101

125 - 15 Innovation Blvd., Saskatoon, Saskatchewan, S7N 2X8 Tel: (306) 933-8118 Fax: (306) 933-5656 Email: geochem@src.sk.ca Email: geochem@src.sk.ca

Sovereign Mining

Attention: Neil Torry PO #/Project:

Sample Number: 03NVT126

Estimated Weight of Gold in micrograms: 4.97

Length in µm	Width in µm	Description
180	120	A

Delicate (D) - Bedrock gold crystallizes as pitted granular masses with smooth protruding crystals.

Irregular (I) - After short ice transport, crystals are removed leaving smaller pitted grains with several protrusions. Grains may become curled.

Abraded (A) - With increasing transport, protrusions break off irregular grains producing several smaller leaf shaped grains. Pitted surfaces become smooth.

Rounded (R) - results from continued abrasion, producing small polished spherical or ellipsoidal grains.

Please note that combinations of the descriptions may be used if different characteristics within each individual grain are obser

125 - 15 Innovation Blvd., Saskatoon, Saskatchewan, S7N 2X8 Tel: (306) 933-8118 Fax: (306) 933-5656 Email: geochem@src.sk.ca Email: geochem@src.sk.ca

Sovereign Mining

Attention: Neil Torry PO #/Project:

Sample Number: 03NVT127

Estimated Weight of Gold in micrograms: 5.12

Length in µm	Width in µm	Description		
120	120	A		
120	120	A		

Delicate (D) - Bedrock gold crystallizes as pitted granular masses with smooth protruding crystals.

Irregular (I) - After short ice transport, crystals are removed leaving smaller pitted grains with several protrusions. Grains may become curled.

Abraded (A) - With increasing transport, protrusions break off irregular grains producing several smaller leaf shaped grains. Pitted surfaces become smooth.

Rounded (R) - results from continued abrasion, producing small polished spherical or ellipsoidal grains.

Please note that combinations of the descriptions may be used if different characteristics within each individual grain are obser

Page 75 of101

125 - 15 Innovation Blvd., Saskatoon, Saskatchewan, S7N 2X8 Tel: (306) 933-8118 Fax: (306) 933-5656 Email: geochem@src.sk.ca Email: geochem@src.sk.ca

Sovereign Mining

Attention: Neil Torry PO #/Project:

Sample Number: 03NVT128

Estimated Weight of Gold in micrograms: 1.05

Length in μm	Width in µm	Description	
100	80	A	

Delicate (D) - Bedrock gold crystallizes as pitted granular masses with smooth protruding crystals.

Irregular (I) - After short ice transport, crystals are removed leaving smaller pitted grains with several protrusions. Grains may become curled.

Abraded (A) - With increasing transport, protrusions break off irregular grains producing several smaller leaf shaped grains. Pitted surfaces become smooth.

Rounded (R) - results from continued abrasion, producing small polished spherical or ellipsoidal grains.

Please note that combinations of the descriptions may be used if different characteristics within each individual grain are obser

Page 76 of 101

125 - 15 Innovation Blvd., Saskatoon, Saskatchewan, S7N 2X8 Tel: (306) 933-8118 Fax: (306) 933-5656 Email: geochem@src.sk.ca Email: geochem@src.sk.ca

Sovereign Mining

Attention: Neil Torry PO #/Project:

Sample Number: 03NVT129

Estimated Weight of Gold in micrograms: 2.44

Length in µm	Width in µm	Description
100	60	А
100	60	А
80	60	A
80	40	А
60	60	A

Delicate (D) - Bedrock gold crystallizes as pitted granular masses with smooth protruding crystals.

Irregular (I) - After short ice transport, crystals are removed leaving smaller pitted grains with several protrusions. Grains may become curled.

Abraded (A) - With increasing transport, protrusions break off irregular grains producing several smaller leaf shaped grains. Pitted surfaces become smooth.

Rounded (R) - results from continued abrasion, producing small polished spherical or ellipsoidal grains.

Please note that combinations of the descriptions may be used if different characteristics within each individual grain are obser

Page 77 of 101

125 - 15 Innovation Blvd., Saskatoon, Saskatchewan, S7N 2X8 Tel: (306) 933-8118 Fax: (306) 933-5656 Email: geochem@src.sk.ca Email: geochem@src.sk.ca

Sovereign Mining

Attention: Neil Torry PO #/Project:

Sample Number: 03NVT130

Estimated Weight of Gold in micrograms: 5.81

Length in µm	Width in µm	Description
180	20	А
160	80	А
100	60	А
80	60	А
80	60	A
60	40	A

Delicate (D) - Bedrock gold crystallizes as pitted granular masses with smooth protruding crystals.

Irregular (I) - After short ice transport, crystals are removed leaving smaller pitted grains with several protrusions. Grains may become curled.

Abraded (A) - With increasing transport, protrusions break off irregular grains producing several smaller leaf shaped grains. Pitted surfaces become smooth.

Rounded (R) - results from continued abrasion, producing small polished spherical or ellipsoidal grains.

Please note that combinations of the descriptions may be used if different characteristics within each individual grain are obser

125 - 15 Innovation Blvd., Saskatoon, Saskatchewan, S7N 2X8 Tel: (306) 933-8118 Fax: (306) 933-5656 Email: geochem@src.sk.ca .Email: geochem@src.sk.ca

Sovereign Mining

Attention: Neil Torry PO #/Project:

Sample Number: 03NVT133

Estimated Weight of Gold in micrograms: 11.56

Length in µm	Width in µm	Description
220	140	А
140	80	А
100	40	A
80	80	Α

Delicate (D) - Bedrock gold crystallizes as pitted granular masses with smooth protruding crystals.

Irregular (I) - After short ice transport, crystals are removed leaving smaller pitted grains with several protrusions. Grains may become curled.

Abraded (A) - With increasing transport, protrusions break off irregular grains producing several smaller leaf shaped grains. Pitted surfaces become smooth.

Rounded (R) - results from continued abrasion, producing small polished spherical or ellipsoidal grains.

Please note that combinations of the descriptions may be used if different characteristics within each individual grain are obser

Page 79 of101

125 - 15 Innovation Blvd., Saskatoon, Saskatchewan, S7N 2X8 Tel: (306) 933-8118 Fax: (306) 933-5656 Email: geochem@src.sk.ca Email: geochem@src.sk.ca

Sovereign Mining

Attention: Neil Torry PO #/Project:

Sample Number: 03NVT134

Estimated Weight of Gold in micrograms: 0.46

Length in µm	ີ Width in μm	Description	
100	40	А	

Delicate (D) - Bedrock gold crystallizes as pitted granular masses with smooth protruding crystals.

Irregular (I) - After short ice transport, crystals are removed leaving smaller pitted grains with several protrusions. Grains may become curled.

Abraded (A) - With increasing transport, protrusions break off irregular grains producing several smaller leaf shaped grains. Pitted surfaces become smooth.

Rounded (R) - results from continued abrasion, producing small polished spherical or ellipsoidal grains.

Please note that combinations of the descriptions may be used if different characteristics within each individual grain are obser

Page 80 of101

125 - 15 Innovation Blvd., Saskatoon, Saskatchewan, S7N 2X8 Tel: (306) 933-8118 Fax: (306) 933-5656 Email: geochem@src.sk.ca Email: geochem@src.sk.ca

Sovereign Mining

Attention: Neil Torry PO #/Project:

Sample Number: 03NVT135

Estimated Weight of Gold in micrograms: 0.28

Length in µm	Width in µm	Description	
60	60	. 1	

Delicate (D) - Bedrock gold crystallizes as pitted granular masses with smooth protruding crystals.

Irregular (I) - After short ice transport, crystals are removed leaving smaller pitted grains with several protrusions. Grains may become curled.

Abraded (A) - With increasing transport, protrusions break off irregular grains producing several smaller leaf shaped grains. Pitted surfaces become smooth.

Rounded (R) - results from continued abrasion, producing small polished spherical or ellipsoidal grains.

Please note that combinations of the descriptions may be used if different characteristics within each individual grain are obser

125 - 15 Innovation Blvd., Saskatoon, Saskatchewan, S7N 2X8 Tel: (306) 933-8118 Fax: (306) 933-5656 Email: geochem@src.sk.ca Email: geochem@src.sk.ca

Sovereign Mining

Attention: Neil Torry PO #/Project:

Sample Number: 03NVT136

Estimated Weight of Gold in micrograms: 2.52

Length in µm	Width in µm	Description
120	100	А
80	40	A
60	60	А

Delicate (D) - Bedrock gold crystallizes as pitted granular masses with smooth protruding crystals.

Irregular (I) - After short ice transport, crystals are removed leaving smaller pitted grains with several protrusions. Grains may become curled.

Abraded (A) - With increasing transport, protrusions break off irregular grains producing several smaller leaf shaped grains. Pitted surfaces become smooth.

Rounded (R) - results from continued abrasion, producing small polished spherical or ellipsoidal grains.

Please note that combinations of the descriptions may be used if different characteristics within each individual grain are obser

125 - 15 Innovation Blvd., Saskatoon, Saskatchewan, S7N 2X8 Tel: (306) 933-8118 Fax: (306) 933-5656 Email: geochem@src.sk.ca Email: geochem@src.sk.ca

Sovereign Mining

Attention: Neil Torry PO #/Project:

Sample Number: 03NVT140

Estimated Weight of Gold in micrograms: 121.33

Length in µm	Width in µm	Description
560	360	А
100	80	А
80	60	А
60	60	A

Delicate (D) - Bedrock gold crystallizes as pitted granular masses with smooth protruding crystals.

Irregular (I) - After short ice transport, crystals are removed leaving smaller pitted grains with several protrusions. Grains may become curled.

Abraded (A) - With increasing transport, protrusions break off irregular grains producing several smaller leaf shaped grains. Pitted surfaces become smooth.

Rounded (R) - results from continued abrasion, producing small polished spherical or ellipsoidal grains.

Please note that combinations of the descriptions may be used if different characteristics within each individual grain are obser

Page 83 of101

125 - 15 Innovation Blvd., Saskatoon, Saskatchewan, S7N 2X8 Tel: (306) 933-8118 Fax: (306) 933-5656 Email: geochem@src.sk.ca Email: geochem@src.sk.ca

Sovereign Mining

Attention: Neil Torry PO #/Project:

Sample Number: 03NVT141

Estimated Weight of Gold in micrograms: 1.46

Length in µm	Width in µm	Description
140	60	А

July 7, 2004

Delicate (D) - Bedrock gold crystallizes as pitted granular masses with smooth protruding crystals.

Irregular (I) - After short ice transport, crystals are removed leaving smaller pitted grains with several protrusions. Grains may become curled.

Abraded (A) - With increasing transport, protrusions break off irregular grains producing several smaller leaf shaped grains. Pitted surfaces become smooth.

Rounded (R) - results from continued abrasion, producing small polished spherical or ellipsoidal grains.

Please note that combinations of the descriptions may be used if different characteristics within each individual grain are obser

Page 84 of 101

125 - 15 Innovation Blvd., Saskatoon, Saskatchewan, S7N 2X8 Tel: (306) 933-8118 Fax: (306) 933-5656 Email: geochem@src.sk.ca Email: geochem@src.sk.ca

Sovereign Mining

Attention: Neil Torry PO #/Project:

Sample Number: 03NVT142

Estimated Weight of Gold in micrograms: 22.81

Length in µm	Width in µm	Description
280	220	А
100	80	А
60	40	A
40	40	A

Delicate (D) - Bedrock gold crystallizes as pitted granular masses with smooth protruding crystals.

Irregular (I) - After short ice transport, crystals are removed leaving smaller pitted grains with several protrusions. Grains may become curled.

Abraded (A) - With increasing transport, protrusions break off irregular grains producing several smaller leaf shaped grains. Pitted surfaces become smooth.

Rounded (R) - results from continued abrasion, producing small polished spherical or ellipsoidal grains.

Please note that combinations of the descriptions may be used if different characteristics within each individual grain are obser

Page 85 of 101

125 - 15 Innovation Blvd., Saskatoon, Saskatchewan, S7N 2X8 Tel: (306) 933-8118 Fax: (306) 933-5656 Email: geochem@src.sk.ca Email: geochem@src.sk.ca

Sovereign Mining

Attention: Neil Torry PO #/Project:

Sample Number: 03NVT144

Estimated Weight of Gold in micrograms: 0.28

Length in µm	Width in µm	Description
80	40	А

Delicate (D) - Bedrock gold crystallizes as pitted granular masses with smooth protruding crystals.

Irregular (I) - After short ice transport, crystals are removed leaving smaller pitted grains with several protrusions. Grains may become curled.

Abraded (A) - With increasing transport, protrusions break off irregular grains producing several smaller leaf shaped grains. Pitted surfaces become smooth.

Rounded (R) - results from continued abrasion, producing small polished spherical or ellipsoidal grains.

Please note that combinations of the descriptions may be used if different characteristics within each individual grain are obser

125 - 15 Innovation Blvd., Saskatoon, Saskatchewan, S7N 2X8 Tel: (306) 933-8118 Fax: (306) 933-5656 Email: geochem@src.sk.ca Email: geochem@src.sk.ca

Sovereign Mining

Attention: Neil Torry PO #/Project:

Sample Number: 03NVT145

Estimated Weight of Gold in micrograms: 85.3

Length in µm	Width in µm	Description
500	280	А
180	180	А
140	60	A

Delicate (D) - Bedrock gold crystallizes as pitted granular masses with smooth protruding crystals.

Irregular (I) - After short ice transport, crystals are removed leaving smaller pitted grains with several protrusions. Grains may become curled.

Abraded (A) - With increasing transport, protrusions break off irregular grains producing several smaller leaf shaped grains. Pitted surfaces become smooth.

Rounded (R) - results from continued abrasion, producing small polished spherical or ellipsoidal grains.

Please note that combinations of the descriptions may be used if different characteristics within each individual grain are obser

Page 87 of 101

125 - 15 Innovation Blvd., Saskatoon, Saskatchewan, S7N 2X8 Tel: (306) 933-8118 Fax: (306) 933-5656 Email: geochem@src.sk.ca Email: geochem@src.sk.ca

Sovereign Mining

Attention: Neil Torry PO #/Project:

Sample Number: 03NVT146

Estimated Weight of Gold in micrograms: 22.96

Length in µm	ੇ Width in μm	Description
260	240	I
100	100	1

Delicate (D) - Bedrock gold crystallizes as pitted granular masses with smooth protruding crystals.

Irregular (I) - After short ice transport, crystals are removed leaving smaller pitted grains with several protrusions. Grains may become curled.

Abraded (A) - With increasing transport, protrusions break off irregular grains producing several smaller leaf shaped grains: Pitted surfaces become smooth.

Rounded (R) - results from continued abrasion, producing small polished spherical or ellipsoidal grains.

Please note that combinations of the descriptions may be used if different characteristics within each individual grain are obser

125 - 15 Innovation Blvd., Saskatoon, Saskatchewan, S7N 2X8 Tel: (306) 933-8118 Fax: (306) 933-5656 Email: geochem@src.sk.ca Email: geochem@src.sk.ca

Sovereign Mining

Attention: Neil Torry PO #/Project:

Sample Number: 03NVT147

Estimated Weight of Gold in micrograms: 1.96

Length in µm	Width in µm	Description	
120	100	А	

Delicate (D) - Bedrock gold crystallizes as pitted granular masses with smooth protruding crystals.

Irregular (I) - After short ice transport, crystals are removed leaving smaller pitted grains with several protrusions. Grains may become curled.

Abraded (A) - With increasing transport, protrusions break off irregular grains producing several smaller leaf shaped grains. Pitted surfaces become smooth.

Rounded (R) - results from continued abrasion, producing small polished spherical or ellipsoidal grains.

Please note that combinations of the descriptions may be used if different characteristics within each individual grain are obser

Page 89 of101

July 7, 2004'

125 - 15 Innovation Blvd., Saskatoon, Saskatchewan, S7N 2X8 Tel: (306) 933-8118 Fax: (306) 933-5656 Email: geochem@src.sk.ca Email: geochem@src.sk.ca

Sovereign Mining

Attention: Neil Torry PO #/Project:

Sample Number: 03NVT148

Estimated Weight of Gold in micrograms: 11.16

Length in µm	Width in µm	Description
180	' 100	А
180	80	А
120	100	Â
120	60	А
100	60	A
20	20	А

Delicate (D) - Bedrock gold crystallizes as pitted granular masses with smooth protruding crystals.

Irregular (I) - After short ice transport, crystals are removed leaving smaller pitted grains with several protrusions. Grains may become curled.

Abraded (A) - With increasing transport, protrusions break off irregular grains producing several smaller leaf shaped grains. Pitted surfaces become smooth.

Rounded (R) - results from continued abrasion, producing small polished spherical or ellipsoidal grains.

Please note that combinations of the descriptions may be used if different characteristics within each individual grain are obser

July 7, 2004

Page 90 of 101

125 - 15 Innovation Blvd., Saskatoon, Saskatchewan, S7N 2X8 Tel: (306) 933-8118 Fax: (306) 933-5656 Email: geochem@src.sk.ca Email: geochem@src.sk.ca

Sovereign Mining

Attention: Neil Torry PO #/Project:

Sample Number: 03NVT149

Estimated Weight of Gold in micrograms: 6.5

Length in µm	Width in µm	Description
140	120	A
140	120	A

Delicate (D) - Bedrock gold crystallizes as pitted granular masses with smooth protruding crystals.

Irregular (I) - After short ice transport, crystals are removed leaving smaller pitted grains with several protrusions. Grains may become curled.

Abraded (A) - With increasing transport, protrusions break off irregular grains producing several smaller leaf shaped grains. Pitted surfaces become smooth.

Rounded (R) - results from continued abrasion, producing small polished spherical or ellipsoidal grains.

Please note that combinations of the descriptions may be used if different characteristics within each individual grain are obser

Page 91 of 101

125 - 15 Innovation Blvd., Saskatoon, Saskatchewan, S7N 2X8 Tel: (306) 933-8118 Fax: (306) 933-5656 Email: geochem@src.sk.ca Email: geochem@src.sk.ca

Sovereign Mining Attention: Neil Torry PO #/Project:

Sample Number: 03NVT150

Estimated Weight of Gold in micrograms: 0.71

Length in µm	Width in µm	Description
100	60	А

July 7, 2004

Delicate (D) - Bedrock gold crystallizes as pitted granular masses with smooth protruding crystals.

Irregular (I) - After short ice transport, crystals are removed leaving smaller pitted grains with several protrusions. Grains may become curled.

Abraded (A) - With increasing transport, protrusions break off irregular grains producing several smaller leaf shaped grains. Pitted surfaces become smooth.

Rounded (R) - results from continued abrasion, producing small polished spherical or ellipsoidal grains.

Please note that combinations of the descriptions may be used if different characteristics within each individual grain are obser

125 - 15 Innovation Blvd., Saskatoon, Saskatchewan, S7N 2X8 Tel: (306) 933-8118 Fax: (306) 933-5656 Email: geochem@src.sk.ca Email: geochem@src.sk.ca

Sovereign Mining

Attention: Neil Torry PO #/Project:

Sample Number: 03NVT151

Estimated Weight of Gold in micrograms: 8.13

Length in µm	Width in µm	Description
180	120	А
140	100	А
80	60	I
20	20	Â

Delicate (D) - Bedrock gold crystallizes as pitted granular masses with smooth protruding crystals.

Irregular (I) - After short ice transport, crystals are removed leaving smaller pitted grains with several protrusions. Grains may become curled.

Abraded (A) - With increasing transport, protrusions break off irregular grains producing several smaller leaf shaped grains. Pitted surfaces become smooth.

Rounded (R) - results from continued abrasion, producing small polished spherical or ellipsoidal grains.

Please note that combinations of the descriptions may be used if different characteristics within each individual grain are obser

125 - 15 Innovation Blvd., Saskatoon, Saskatchewan, S7N 2X8 Tel: (306) 933-8118 Fax: (306) 933-5656 Email: geochem@src.sk.ca Email: geochem@src.sk.ca

Sovereign Mining

Attention: Neil Torry PO #/Project:

Sample Number: 03NVT152

Estimated Weight of Gold in micrograms: 1.05

Length in µm	Width in µm	Description
100	80	А

Delicate (D) - Bedrock gold crystallizes as pitted granular masses with smooth protruding crystals.

Irregular (I) - After short ice transport, crystals are removed leaving smaller pitted grains with several protrusions. Grains may become curled.

Abraded (A) - With increasing transport, protrusions break off irregular grains producing several smaller leaf shaped grains. Pitted surfaces become smooth.

Rounded (R) - results from continued abrasion, producing small polished spherical or ellipsoidal grains.

Please note that combinations of the descriptions may be used if different characteristics within each individual grain are obser

Page 94 of 101

125 - 15 Innovation Blvd., Saskatoon, Saskatchewan, S7N 2X8 Tel: (306) 933-8118 Fax: (306) 933-5656 Email: geochem@src.sk.ca Email: geochem@src.sk.ca

Sovereign Mining

Attention: Neil Torry PO #/Project:

Sample Number: 03NVT153

Estimated Weight of Gold in micrograms: 0.71

Length in µm	Width in μm	Description
100	60	А

Delicate (D) - Bedrock gold crystallizes as pitted granular masses with smooth protruding crystals.

Irregular (I) - After short ice transport, crystals are removed leaving smaller pitted grains with several protrusions. Grains may become curled.

Abraded (A) - With increasing transport, protrusions break off irregular grains producing several smaller leaf shaped grains. Pitted surfaces become smooth.

Rounded (R) - results from continued abrasion, producing small polished spherical or ellipsoidal grains.

Please note that combinations of the descriptions may be used if different characteristics within each individual grain are obser

Page 95 of 101

125 - 15 Innovation Blvd., Saskatoon, Saskatchewan, S7N 2X8 Tel: (306) 933-8118 Fax: (306) 933-5656 Email: geochem@src.sk.ca Email: geochem@src.sk.ca

Sovereign Mining

Attention: Neil Torry PO #/Project:

Sample Number: 03NVT155

Estimated Weight of Gold in micrograms: 13.73

Length in µm	Width in µm	Description
160	100	I
160	80	1
120	120	A
100	100	А
100	. 80	A
100	80	A
80	60	I
80	-60	A
80	40	IA
· 60	60	I
60	40	А
60	40	A

Delicate (D) - Bedrock gold crystallizes as pitted granular masses with smooth protruding crystals.

Irregular (I) - After short ice transport, crystals are removed leaving smaller pitted grains with several protrusions. Grains may become curled.

Abraded (A) - With increasing transport, protrusions break off irregular grains producing several smaller leaf shaped grains. Pitted surfaces become smooth.

Rounded (R) - results from continued abrasion, producing small polished spherical or ellipsoidal grains.

Please note that combinations of the descriptions may be used if different characteristics within each individual grain are obser

Page 96 of 101

125 - 15 Innovation Blvd., Saskatoon, Saskatchewan, S7N 2X8 Tel: (306) 933-8118 Fax: (306) 933-5656 Email: geochem@src.sk.ca Email: geochem@src.sk.ca

Sovereign Mining

Attention: Neil Torry PO #/Project:

Sample Number: 03NVT156

Estimated Weight of Gold in micrograms: 1.46

Length in µm	Width in µm	Description
120	80	A

Delicate (D) - Bedrock gold crystallizes as pitted granular masses with smooth protruding crystals.

Irregular (I) - After short ice transport, crystals are removed leaving smaller pitted grains with several protrusions. Grains may become curled.

Abraded (A) - With increasing transport, protrusions break off irregular grains producing several smaller leaf shaped grains. Pitted surfaces become smooth.

Rounded (R) - results from continued abrasion, producing small polished spherical or ellipsoidal grains.

Please note that combinations of the descriptions may be used if different characteristics within each individual grain are obser

Page 97 of 101

125 - 15 Innovation Blvd., Saskatoon, Saskatchewan, S7N 2X8 Tel: (306) 933-8118 Fax: (306) 933-5656 Email: geochem@src.sk.ca Email: geochem@src.sk.ca

Sovereign Mining Attention: Neil Torry

PO #/Project:

Sample Number: 03NVT400

Estimated Weight of Gold in micrograms: 1.96

Length in µm	Width in µm	Description
140	80	А

Delicate (D) - Bedrock gold crystallizes as pitted granular masses with smooth protruding crystals.

Irregular (I) - After short ice transport, crystals are removed leaving smaller pitted grains with several protrusions. Grains may become curled.

Abraded (A) - With increasing transport, protrusions break off irregular grains producing several smaller leaf shaped grains. Pitted surfaces become smooth.

Rounded (R) - results from continued abrasion, producing small polished spherical or ellipsoidal grains.

Please note that combinations of the descriptions may be used if different characteristics within each individual grain are obser

Page 98 of 101

125 - 15 Innovation Blvd., Saskatoon, Saskatchewan, S7N 2X8 Tel: (306) 933-8118 Fax: (306) 933-5656 Email: geochem@src.sk.ca Email: geochem@src.sk.ca

Sovereign Mining

Attention: Neil Torry PO #/Project:

Sample Number: 03NVT403

Estimated Weight of Gold in micrograms: 0.46

Length in µm	Width in µm	Description
80	60	А

Delicate (D) - Bedrock gold crystallizes as pitted granular masses with smooth protruding crystals.

Irregular (I) - After short ice transport, crystals are removed leaving smaller pitted grains with several protrusions. Grains may become curled.

Abraded (A) - With increasing transport, protrusions break off irregular grains producing several smaller leaf shaped grains. Pitted surfaces become smooth.

Rounded (R) - results from continued abrasion, producing small polished spherical or ellipsoidal grains.

Please note that combinations of the descriptions may be used if different characteristics within each individual grain are obser

125 - 15 Innovation Blvd., Saskatoon, Saskatchewan, S7N 2X8 Tel: (306) 933-8118 Fax: (306) 933-5656 Email: geochem@src.sk.ca Email: geochem@src.sk.ca

Sovereign Mining

Attention: Neil Torry PO #/Project:

Sample Number: 03NVT404

Estimated Weight of Gold in micrograms: 1.96

Length in µm	Width in µm	Description
140	80	А

Delicate (D) - Bedrock gold crystallizes as pitted granular masses with smooth protruding crystals.

Irregular (I) - After short ice transport, crystals are removed leaving smaller pitted grains with several protrusions. Grains may become curled.

Abraded (A) - With increasing transport, protrusions break off irregular grains producing several smaller leaf shaped grains. Pitted surfaces become smooth.

Rounded (R) - results from continued abrasion, producing small polished spherical or ellipsoidal grains.

Please note that combinations of the descriptions may be used if different characteristics within each individual grain are obser

Page100 of101

125 - 15 Innovation Blvd., Saskatoon, Saskatchewan, S7N 2X8 Tel: (306) 933-8118 Fax: (306) 933-5656 Email: geochem@src.sk.ca Email: geochem@src.sk.ca

Sovereign Mining

Attention: Neil Torry / PO #/Project:

Sample Number: 03NVT406

Estimated Weight of Gold in micrograms: 6

Length in µm	Width in µm	Description
180	140	íA

Delicate (D) - Bedrock gold crystallizes as pitted granular masses with smooth protruding crystals.

Irregular (I) - After short ice transport, crystals are removed leaving smaller pitted grains with several protrusions. Grains may become curled.

Abraded (A) - With increasing transport, protrusions break off irregular grains producing several smaller leaf shaped grains. Pitted surfaces become smooth.

Rounded (R) - results from continued abrasion, producing small polished spherical or ellipsoidal grains.

Please note that combinations of the descriptions may be used if different characteristics within each individual grain are obser

July 7, 2004

Page101 of101