MAR 20010008: NORTHWEST

Received date: May 17, 2001

Public release date: May 29, 2002

DISCLAIMER

By accessing and using the Alberta Energy website to download or otherwise obtain a scanned mineral assessment report, you ("User") agree to be bound by the following terms and conditions:

- a) Each scanned mineral assessment report that is downloaded or otherwise obtained from Alberta Energy is provided "AS IS", with no warranties or representations of any kind whatsoever from Her Majesty the Queen in Right of Alberta, as represented by the Minister of Energy ("Minister"), expressed or implied, including, but not limited to, no warranties or other representations from the Minister, regarding the content, accuracy, reliability, use or results from the use of or the integrity, completeness, quality or legibility of each such scanned mineral assessment report;
- b) To the fullest extent permitted by applicable laws, the Minister hereby expressly disclaims, and is released from, liability and responsibility for all warranties and conditions, expressed or implied, in relation to each scanned mineral assessment report shown or displayed on the Alberta Energy website including but not limited to warranties as to the satisfactory quality of or the fitness of the scanned mineral assessment reports and warranties as to the non-infringement or other non-violation of the proprietary rights held by any third party in respect of the scanned mineral assessment report;
- c) To the fullest extent permitted by applicable law, the Minister, and the Minister's employees and agents, exclude and disclaim liability to the User for losses and damages of whatsoever nature and howsoever arising including, without limitation, any direct, indirect, special, consequential, punitive or incidental damages, loss of use, loss of data, loss caused by a virus, loss of income or profit, claims of third parties, even if Alberta Energy have been advised of the possibility of such damages or losses, arising out of or in connection with the use of the Alberta Energy website, including the accessing or downloading of the scanned mineral assessment report and the use for any purpose of the scanned mineral assessment report.
- d) User agrees to indemnify and hold harmless the Minister, and the Minister's employees and agents against and from any and all third party claims, losses, liabilities, demands, actions or proceedings related to the downloading, distribution, transmissions, storage, redistribution, reproduction or exploitation of each scanned mineral assessment report obtained by the User from Alberta Energy.

Alberta

Alberta Mineral Assessment Reporting System

NORTHWEST ALBERTA PROJECT

MINERAL ASSESSMENT REPORT

Metallic and Industrial Minerals Permit Nos. 9397010001 and 9397010002

Permit Holder Alan David Lewis

Submitted by

713803 Alberta Ltd.

May 17, 2001

Table of Contents

,

			<u>Page</u>	<u>Tab</u>
Exec	utive Summary		(i)	
1.	Introduction	••••	1	1
2.	Lab Scale Mineral Content Analysis 2.1 Alan Lewis 2.2 Loring Laboratories 2.3 Metallurgical Research and Assay Laboratory 2.4 Auric Metallurgical Laboratories	•••••	2 2 4 5 6	2
3.	Pilot Plant Project	•••••	7	3
4.	Discussions with Other Companies		8	4
5.	Summary of Expenditures		9	5

Executive Summary

The last mineral assessment report was submitted on May 14, 1999. In that report it was indicated that 713803 Alberta Ltd. would continue to conduct further work to try to establish that commercially recoverable quantities of precious metals existed within target ore bodies.

That further work has in fact continued, being done almost entirely by Al Lewis. The work has encompassed continuing extraction technique and assay analysis at Mr. Lewis' home-based lab facilities as well as testing on a pilot scale of ore preparation and leach extraction. Unfortunately, none of that additional work in the period since May 1999 has been successful in establishing either the existence of significant quantities of precious metals on a widespread basis in the ore bodies or a commercially viable technique to extract those precious metals.

In terms of new approaches to the leaching extraction technique analysis, cyanide was tested . Historically cyanide has been the most commonly used leaching agent for precious metal recovery but had not been previously utilized in any 713803 Alberta Ltd. testing. Results obtained were negative. Leach testing also continued with other agents including bromine and chlorine based products as well as acids. The residues from the leaching tests were assayed by Mr. Lewis,. Beads obtained by Mr. Lewis from his assay process were in some instances submitted to third party labs to confirm their precious metal content. This further leach testing is described in more detail in section 2 of this report.

For the pilot plant testing, approximately 20 tons of raw ore were recovered from two different surface locations within the permit area and stockpiled under cover in Ponoka. A sample of 250 pounds of this raw ore was ground in a tractor PTO driven rod mill. The ground ore was then mixed with water and circulated as a slurry to allow contact with the bromide leaching agent. Several operational problems were encountered which are

İ.

described in more detail in section 3 of this report and any further pilot plant testing was suspended.

Finally, 713803 Alberta Ltd. has maintained contact with other companies or individuals who are pursuing similar efforts to extract precious metals from similar ores to determine if any joint efforts are feasible. These discussions have not led to any joint ventures at this time.

713803 Alberta Ltd. is currently reviewing all matters at this stage and will determine its future steps at an early date.

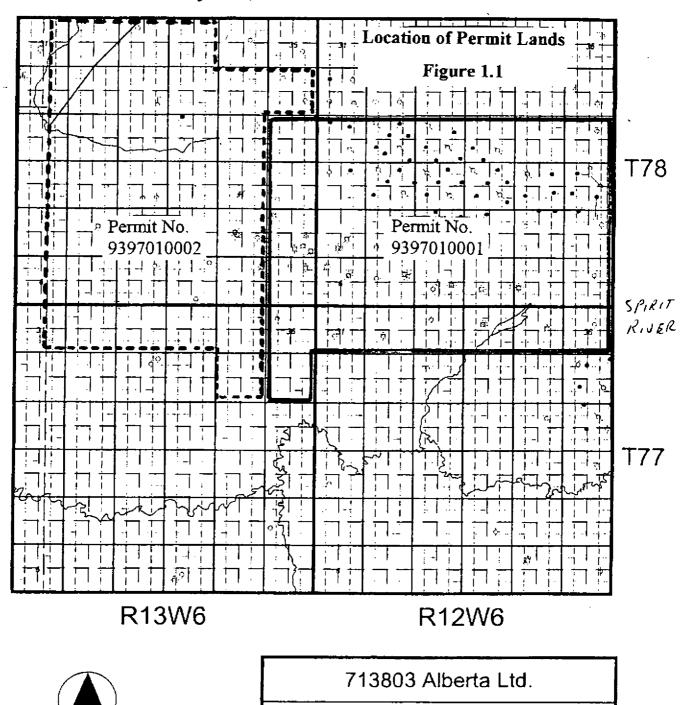
ii

1.0 Introduction

713803 Alberta Ltd. was incorporated in 1996 for the purpose of pursuing exploration and development of potential precious metal bearing properties in northwestern Alberta including the properties that are the subject of this report held under metallic and industrial minerals permit #9397010002 and #9397010001 in the name of Alan David Lewis, a shareholder of 713803 Alberta Ltd. (see figure 1.1 showing mineral permit location).

A Mineral Assessment Report, file number 19990013, was filed on May 14, 1999 and described the work undertaken up to that point in time. This report updates the further work conducted in the last two-year period with respect to the subject permit lands. The further work has consisted primarily of continuing lab analysis by Alan Lewis in his home-based facilities supported by a limited amount of external lab analyses.

In addition, Alan Lewis undertook the design and construction of a small pilot scale rod mill and leaching facility which endeavored to test the viability of leach extraction at the next step up from lab scale.

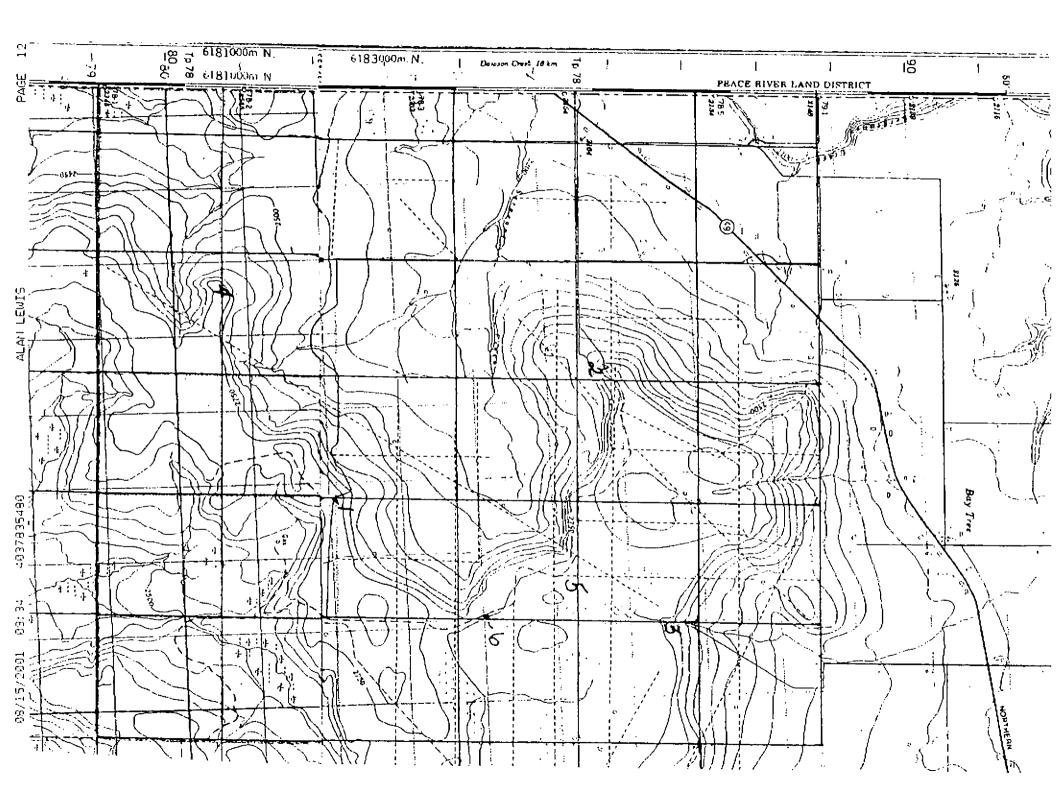

Other than visits to the permit sites for purposes of recovering additional material for testing, including the pilot testing, no further exploration work was conducted to delineate the extent of ore bodies.

Discussions have continued with a limited number of other companies to determine if there was interest in pursuing any exploration/analysis work on the subject permit lands. These discussions did not lead to any projects.

These various activities will be described in more detail in the following sections of the report.

1

83m/12,13


Location of Alan D. Lewis Permits

Permit No. 9397010001 ----

Licensed to : Geo-Energy Ventures Ltd.

1	SE PAUM	geol,OGIC	By		Date :	1999/06/02	
		4923 262-1912	Scale =1:12500	0	Project	: untilled	
	Tax mint faller						

÷

PAGE 02

Alan Lewis, Box 18, Site 13. R.R. 1, Ponoka, Alberta T4J 1R1.

Alberta Energy. Coal & Mineral Development, 7th Floor, North Tower, Petroleum Plaza, 9945 - 108 St., Edmonton, Alberta. T5K 2G6.

е,

ATTN: Hazel Henson.

Re: Metallic & Industrial Minerals Permit Nos. 9397010001 and 9397010002 (Assessment Report No. 20010008 Northwest)

In reply to your letter of August 1/01, regarding the locations of samples:

1. We have enclosed a map of the lease area with numbers at the 6 different locations from which samples were taken.

2. On the submission with the date of tests and numbers etc. (this would be in ATTACHMENT 2.1 of the report), we have added the corresponding map location number to the right of the ore type in each test.

- 3. Numbers 1,3,4 & 5 on the map are sandstone samples.
 Number 6 location is conglomerate samples.
 Number 2 location is conglomerate except for test nos. 443-444-470-479-525-571
- & 579, which are sandstone samples.

We trust this is the information you require. Please contact us if any more clarification is needed.

<u>Yours truly.</u> Alan-Lewis

2. Lab Scale Mineral Content Analysis

Lab scale analyses were conducted by:

- Al Lewis (196 tests in total) at his home lab
- Loring Laboratories Ltd.-5 Tests Reports
- Metallurgical Research and Assay Laboratory- 4 Test Reports
- Auric Metallurgical Laboratories 3 Test Reports

Each of these series of tests will be described below.

2.1 Al Lewis

A chronological summary of all test conducted by Al Lewis from April 30th of 1999 to April 18, 2001 is included as attachment 2.1. Columns 1 and 2 show the date when the test commenced and the test # respectively.

Column 3 shows the type and source of ore tested and the size of the sample used in the test in terms of the number of assay tons.

Column 4 describes the pre treatment and/or leaching agent used to extract precious metals.

Column 5 provides the results obtained. Where the bead obtained has been tested for precious metal content by an external laboratory the results obtained from the external laboratory are stated. In those instances where no external analysis has been done the value stated is that measured by Al Lewis. Unless otherwise noted the value stated will be the milligram weight of the bead obtained.

Approximately one-quarter of the tests obtained only a trace or no measurable precious metal beads. In other tests, particularly those where the bead was analyzed by external laboratories, the beads are found to contain significantly more silver than gold which obviously reduces the value. As was reported in the 1999 mineral assessment report, consistency and repeatability of results continues to be a problem. However, the fact that in some tests significant values of precious metal are obtained provides the basis for continuing efforts to develop a repeatable and commercially viable extraction process.

2.2 Loring Laboratories

All the tests conducted by Loring were to analyze the precious metal content of eleven beads obtained from test conducted by Al Lewis. Five Loring test reports are included in chronological order as attachment 2.2. An examination of these test results will show significant variability in precious metal content.

Of particular note is the test dated January 9, 2001 which shows the results of the analysis of 5 beads obtained using cyanide as the leaching agent. Cyanide had not been tested as a leaching agent in the prior work by Al Lewis. Only test #625 showed a significant value of gold and indicated that cyanide as a leaching agent did not produce any better results than previous chloride and bromide tests.

2.3 Metallurgical Research and Assay Laboratory

All of the tests conducted by this laboratory were also on beads obtained by Alan Lewis and are included chronologically according to Lewis test numbers.(535, 544, 545 and 547) and are included as attachment 2.3. These tests were more encouraging in that all four beads analyzed found significant levels of gold and platinum group metals.

2.4 Auric Metallurgical Laboratories

This is a laboratory which had not been used by 713803 Alberta in previous testing reported in the May 1999 Mineral Assessment Report. This laboratory is located in Salt Lake City, Utah. Tests were performed by Auric on eleven beads obtained from Al Lewis tests and also on for raw ore samples provided by Mr. Lewis. The tests on the Lewis beads are included as attachment 2.4.1. Of these eleven bead tests, three show significant gold values. (Lewis test numbers 459,462 and 470). This result is somewhat similar to the Loring results wherein most of the beads had relatively low gold content.

The raw head ore assay tests performed by Auric are included as attachment 2.4.2. These four tests show quite consistent levels of gold, silver and platinum group metals and did provide encouragement to us since other laboratories, as reported in the May 1999 Mineral Assessment Report, were unable to report any precious metal content from assays conducted directly on raw head ore.

3.0 Pilot Plant Project

In discussions both internally within 713803 Alberta Ltd. and externally with other interested parties, it was determined that it would be very beneficial if we could establish the capability to extract gold or others precious metals at a pilot scale. Al Lewis constructed and operated a small pilot plant as described in his report included as attachment 4. While it appears that problems encountered in the leaching process could be overcome with future design changes, a more significant problem is the need to first establish a leaching process that would be economically viable before attempting further proof on the pilot scale level.

4.0 Discussions with Other Companies

Further discussions were held with geologists from B H P and Placer Dome. Both of these companies had been previously contacted and had provided letter reports to 713803 Alberta Ltd. as reported in the May 1999 Mineral Assessment Report. At this time, no further interest has been expressed by these companies.

Contact has also been maintained with Birch Mountain Ltd. who are public company that has been active for several years in pursuing Alberta gold and platinum prospects. While interest has been expressed in pursuing possible cooperative work with 713803 Alberta Ltd., no arrangements have been established to date.

Finally, discussions were held with a third private company, who expressed interest in our project but wished to see more consistent confirmation of our results before proceeding with any further consideration of participation in our project.

5.0 Summary of Expenditures

Most of the expenditures incurred by 713803 Alberta Ltd. in the period covered by this report (May 1999 to April 2001) are contributed labor by shareholders in a 713803 the Alberta Ltd. and in particular, Al Lewis. Expenditures fall into categories as summarized below :

5.1 Contributed Labor

(a) Lab Analysis and Testing - Al Lewis Home Lab

(see Attach. 5.1(a) for detail)

(b) Pilot Plant Construction and Operation

(see Attach 5.1 (b) for detail)

(c) Field Trips for Sample Recovery, Trips to Laboratories, Trips for Business Discussions (see Attach 5.1 (c) for detail)

5.2 Materials, Services and Travel Expenses

5.3 Report Preparation

Sub Total

Sub Total

\$ 2,250.00

Grand Total Costs

\$171,347.75

\$143,300.00

\$ 25,797.75

ATTACHMENT 2.1

1	
÷	

TEST PROCEDURES & VALUES

DATE	TEST #	ORE	PROCESS	VALUE
Арт. 30/99	#436	SS - 2AT /	Aqua Regia	.333
May 2/99	#437	SS - 2AT /	H2SO4- PRETREAT	.262 NOT PARTED
May 3/99	#438	SS - 3AT j	Aqua Regia	<u> </u>
May 4/99	#439	SS - 3AT /	NaBr	.421 NOT PARTED
May 11/99	#440	SS - 3AT	H2SO4 & NaOH PRETREATS	.384 NOT PARTED
May 17/99	#441	Drill Hole #1- 4AT /	H2SO4 pretreat	trace
May 17//99	#442	Far West SS-4	H2SO4 pretreat	trace
May 18/99	#443	SS-2AT 2	HNO3 Pretreat	trace
May 18/99	#444	SS - 2AT 2	Panned	Au009, Ag458, Pl. .041, Pd001-d24 r r
May 21/99	#445	5-15 SS-3AT /	Dried	4 size 7 beads NOT PARTED
May 21/99	\$446	DH#1 SS-3AT	H2SO4 PRETREAT	nnalysis Sait Lake: Au. .025 , Ag. 1.089, PL .016, Pd002
May 22/99	#447	from test #421 - 3AT	Dried	Au025, Ag. 1.069, Pl .014, Pd002
May 22/99	#448	fram test #42]- 3AT	Dried 3 times - H2SO4 PRETREAT	Size 7 bead - NOT PARTED
May 24/99	#449	FWSS - 2AT 4	Parmed	trace
May 24/99	#450	5-15 SS-2AT /	Panned	trace
May 24/99	#451	from test #421 - 3AT	Dried	.465-NOT PARTEE
June 3/99	#452	from test #421- 3AT	Dried	2 size 8 beads- NOT PARTED
June 4/99	#453	SS-3AT 5	KI leach	.247 mgs.
June 6/99	#454	SS - 2nd. 1/2 of #453 5	KI leach	.647 mgs.
June 7/99	#455	P.C. SS-6AT 5	KI leach	A60 mgs parted
June 9/99	#456	FWSS-6AT 4	KI leach	.087 opT
June 11/99	#457	FWSS-3AT 4	Kl leach	Loring analysis - Au025, Ag2.74 mgs.
June 13/99	#458	FWSS-3AT 4	NaBr &Kl leacb	2.85 mgs. Not Parted
June 20/99	#459	FWSS - 4AT 4	Chloride leach	Auric Salt Lake - Au222, Pt067

.

.

1

DATE	TEST	ORE	PROCESS	VALUE
June 21/99	#460	FWSS-3AT 4	NaBR & KI	Auric Salt Lake Au018, Ag .216, PL047
June 25/99	#462	FWSS-4AT 4	NaBr	Auric Salt Lake Au246, Ag .080, Pt003
June 28/99	#463	FWSS-2AT 4	NaBr	Auric Salt Lake Au037, Ag .007, Pt013
June 30/99	#464	CONG4AT	Chloride	Auric Salt Lake Au007, Ag .016, Pt056
July 1/99	#465	CONG4AT	NaBr & KI	Aurictrace
Juty 2/99	#466	CONG-6AT	Chloride	4.2 mgsnearly pure Ag.
July 7/9 9	#469	6-26PS-SS- 3AT 5	Chloride	Bead lost
July 9/99	#470	P.CSS-3AT	NaBr & KI	Auric Salt Leke Au262, Ag .006, Pt003
July 14/99	#471	6-26-SS-6AT5	NaBr & KI	PARTED- fair Au
July 21/99	#472	5-15-SS- 3AT /	NaBr & KI	Auric Salt Lake Au27, Pt .008
July 24/99	#473	5-15-SS-3AT /	NaBr & Kl	.281 mgs.
July 26/99	#474	5-15-SS-3AT /	NaBr	Loring-Calgary Au039, Ag .21
Aug. 1/99	#475	5-15-SS-3AT	NaBr	.98 mgs 98%Ag.
Aug. 3/99	#476	5-15-SS-3AT /	NaBr & KI	limited showing
Aug. 5/99	#477	5-15-SS-3AT /	H2SO4 PRETREAT	trace
Aug. 8/99	#478	5-15-SS-1AT /	H2S04 & NaBr	trace
Aug. 10/99	#479	6-26-PS-3AT/	H2SO4	trace
Sept. 27/99	#481	FWSS-4AT 2	Scorification	limited showing
Sept. 28/99 to Oct. 4/99	#482,483,485, 486	FWSS- 4	Scorification	tracés
Oct. 1/99	#484	FWSS-IAT 4	Scorification	\$30.00 pT
Oct. 5/99	#489	FWSS-6AT 4	NaBr	trace
Oct. 6/99	#490	FWSS-1.5AT4	H2SO4 & NaOH-	\$25.00 pT

-1

.

]

e.

DATE	TEST	ORE	PROCESS	VALUE
Oct. 7/99	#491	FWSS-1AT 4	H2SO4	trace
Oct. 22/99	#492	SS-1AT /	NaBr	\$22.00 pT
Oct. 24/99	#493	MOX-SS-6AT	H2SO4-pretreat NaBr	\$33.00 pT
Oct. 25/99	#494	5-15-SS-3AT (NaBr & KI	\$45.23 pT
Oct. 27/99	#498	FWSS-5AT 4	Resin Beads	Loring Calgary Au199 opT
Oct. 28/99	#500	FWSS-5AT 4	NaBr	Loring Calgary Au282 opT
Oct. 29/99	#498-2nd 1/2	FWSS-SAT 4	NaBr & Kl	Loring Calgary Au261 opT
Oct. 29/99	#502	MOX-SS-3AT	NaBr	Loring Calgary Au269 opT
Nov 1/99	#503	FWSS-1AT 4	Fired	Loring Calgary Au009 opT
Nov. 2/99	#504	FWSS-3AT 4	NaBr	Loring Calgary Au162 opT
Nov. 4/99	#505	FWSS-3AT 4	NaBr	\$25.80 pT
Nov. 12/99	#506	CONG-SAT	NaBr & KI	\$23.00 pT
Nov. 13/99	#507	CONG-5AT	NaBr & KI	.62 mgs.
Nov. 24/99	#508	MOX-SS-5AT3	NaBr	.84 mgs.
Nov. 29/99	#509	MOX-SS-3AT 3	NaOH	inconclusive
Dec. 3/99	#510	MOX-SS-5AT3	NaBr	.36 mgs.
Dec. 4/99	#511	MOX-SS-5AT3	NaBr	.54 mgs.
Dec. 7/99	#512	CONG-5AT 2	NaBr	trace
Dec 8/99	#513	CONG-SAT 2	NaBr	trace
Dec. 9/99	#514	CONG-5AT (,	Chloride	poor
Dec 9/99	#515	CONG-5AT &	NaBr	small show
Dec. 10/99	#516	MOX-SS-5AT3	NaBr	.38 mgs.
Dec 11/99	#517	MOX-SS-5AT3	NaBr	.42 mgs.
Dec. 13/99	#518	CONG-5AT 6	NaBr	.37 mgs.
Dec. 15/99	#519	MOX-SS-5AT3	NaBr	trace
Dec. 18/99	#520	MOX-SS-JAT3	NaBr	trace
Dec. 21/99	#523	MOX-SS-3AT3	NaBr	trace Au.
Dec. 23/99	#524	FWSS-5AT 4	NaBr & KI	Pt15mgs
Dec. 26/99	#525	6-26 PS-5AT 2	H2SO4	.17 mgs.
Dec. 30/99	#526	5-15-SS-3AT /	H2SO4 PRETREAT NaBr	.18mgs

£	4

DATE	TEST	ORE	PROCESS	VALUE
Jan. 1/00	#527	MOX-SS-2AT	H2SO4-PRETREAT NaBr	\$28.00 pT
Jan. 2/00	#528	5-15-SS-2AT /	NaBr	#36.00 pT
Jan. 6/00	#530	MOX-SS-4AT3	NaBr	\$46.00 pT
Jan 10/00	#531	FWSS-5AT 4	NaBr & KI	#35.00 pT
Jan. 14/00	#532	RegSS-5AT	NaBt	.26 mgs.
Jan. 17/00	#533	RegSS-3AT /	NaBr	some Au Pt.
Jan. 19/00	#535	FWSS-3AT H	NaBr	Jordes-Handerson NV - #1-
Jan. 21/00	#536	RegSS-5AT	NaBr	.24 mgs
Jan. 22/00	#537	RegSS-5AT /	NaBr & KI	.45 mgs
Jan. 24/00	#538	RegSS-5AT /	NaBr & KI	fair Au Pt.
Jan. 24/00	#539	RegSS-3AT	Aqua Regia	.38 mgs. PGN type bead
Jan. 27/00	#540	6-26 PS-3ATク	Aqua Regia	.41 mgs.
Jan. 28/00	#541	CONG-3AT 6	Aqua Regia	.36 mgs. PGM- type bead
Jan. 29/00	#542	FWSS-3AT 4	Aqua Regia	.28 mgs.
Jan. 31/00	#544	FWSS-3AT 4	Chloride	Jordan - Henderson NV #2
Feb. 3/00	#545	FWSS-2AT 4	NaBr & Kl	JordanHenderson NV- #3
Feb. 5/00	#546	CONG-2AT 6	Chloride	lost bead
Feb. 5/00	#547	FWSS-2AT 4	Chloride	Jondao-Hoaderson NV# 4
Feb. 17/00	#548	#6 Drill Hole 6	Aqua Regia	.40 mgs.
Feb. 17/00	#549	CONG-3AT 6	Aqua Regia	.26 mgs
Feb. 20/00	#550	#6 Drill Hole- 2.25 AT	Chloride	Loring Calgary Au26 mgs., Ag 1.45 mgs.
Feb. 24/00	#551	FWSS-3.5AT-	Chloride	trace
Feb. 26/00	#552	FWSS-4AT 4	HNO3 & Resia Beads	nothing
Mar. 31/00	#553	5-15-SS- / 9.7AT	Chloride	.22 mgs.

-

-

.

4	
1	

DATE	TEST	ORE	PROCESS	VALUE
Apr. 6/00	#554	5-15-SS-5AT	Aqua Regia	poor
Арт. 17/00	#555	5-15-SS-3AT /	КІ	.17 mgs.
Арт. 22/00	#556	FWSS-3AT 4	KI	.22 mgs.
Apr. 25/00	#557	FWSS-3AT 4	H2SO4 PRETREAT CHLORIDE	trace
Арт. 27/00	#558	FWSS-3AT 4	NaBr & KI	.12 mgs.
Apr. 29/00	#559	FWSS-3AT 4	NaBr	poor
May 4/00	#560	FWSS-SAT 4	NaBr & Kl	trace
May 8/00	#561	FWSS-5AT 4	NaBr	trace
May 9/00	#562	FWSS-5AT 4	NaBr	PGM- type bead
May 16/00	#563	FWSS-SAT 4	NaBr & KI	nothing
May 16/00	#564	CONG-SAT 6	Chloride	lost
May 21/00	#565	FWSS-3AT 4	NaBr	nothing
Mary 23/00	#566	CONG-SAT 6	NaBr &KI	nothing
May 26/00	#567	CONG-SAT	NaBr & KI	trace
May 29/00	#568	FWSS-3AT 4	NaBr	trace
May 30/00	#569	FWSS-SAT 4	Chloride	.36 mgs.
June 1/00	#570	CONG-3AT 6	NaBr & KI	trace
June 2/00	#571	P.C.SS-6AT 2	NaBr & KI	.33 mgs.
June 9/00	#572	FWSS-SAT 4	NaBr & Kl	Lost with breakage
June 14/00	#573	FWSS-5AT 4	Chloride	.25 mgs.
June 30/00	#575	FWSS-SAT 4	HNO3	trace
July 3/00	#576	MOX-SS-4AT3	HNO3	твсе
July 6/00	#577	MOX-SS-3AT3	NaBr & KI	trace
July 11/00	#579	6-26 PS-2.25 2 AT	H2SO4 PRETREAT NaBr	Loring Jan,9/01- .89 mgs.
July 20/00	#580	FWSS-SAT 4	NaBr	.48 mgs.

۰.

DATE	TEST	ORE	PROCESS	VALUES
Aug. 22/00	#582	Rogr-SS-SAT	NaBr	.26 mgs.
Aug. 24/00	#583	Rogr-SS-SAT	H2SO4 PRETREAT	.27 mgs
Aug. 26/00	#584	Rogr-SS-5AT	NaBr	small bead
Aug. 27/00	#585	Rogr-SS-SAT /	HNO3	.15 MGS.
Aug 30/00	#586	Rogr-SS-6AT	H2SO4	.26 mgs.
Sept. 3/00	#587	Rogr-SS-3AT	H2SO4 PRETREAT CHILORIDE	.38 mgs.
Sept. 6/00	#588	Rogr-SS-SAT	NaBr & Kl	.37 mgs.
Sept. 8/00	#589	Rework #588		.58 mgs.
Sept. 11/00	#591	Rogr-SS-SAT	H2SO4	poor
Sept. 13/00	#593	Rogr-SS-6AT	NaBr & KI Resin beads	Loring - Sope. 29/00
Sept. 16/00	#594	Rogr-SS-6AT	NaBr & KI Resin beads	Loring - Sept. 29/00
Sept. 19/00	#595	Rogr-SS-3.5	NaBr & KI Resin beads	1.54 mgs.
Sept. 20/00	#596	FWSS-6AT 4	NaBr & KI	.17 mgs.
Sept. 22/00	#597	FWSS-6AT 4	Chloride	.37 mgs.
Sept. 25/00	#598	Rogr-SS-6AT	Chloride	Loring-Oct. 4/00
Sept. 27/00	#599	Rogr-SS-6AT	Aqua Regia	Loring -OoL 4/00
Sept. 28/00	#599A		Precip. #599	Loring -Oct.4/00
Oct. 2/00	#600	Rogr-SS-6AT	NaBr. & Kl Resin beads	20.48 mgs.
Oct. 3/00	#601	Rogr-SS-6AT	NaBr & Kl Resin boads	Ag 17.81 mgs. Au12 mgs

.

6

.

DATE	TEST	ORE	PROCESS	VALUE
Oct. 3/00	#60 1_	Rogr-SS-6AT	NaBr & KI Resin beads	17.85 mgs.
Oct. 9/00	#603	6-26-PS-6AT	NaBr & KJ Resin beads	\$25.00 pT
Oct. 9/00	#604	MOX-SS-GAT	NaBr & Kl Resin beads	\$20.00 pT
Oct. 13/00	#605	6-26-PS-6AT	NaBr & Kl Resin beads	.56 mgs.
Oct. 13/00	#606	MOX-SS-6AT	NaBr & Kl Resin beads	.21 mgs.
Oct. 17/00	#607	CONG-6AT	NaBr & Kl Resin beads	.88 mgs- Ag. .12 mgs. Au.
Oct. 18/00	#608	MOX-SS-3AT	NaBr & KI Resin beads	.26 mgs.
Oct. 20/00	#609	RogrSS-6AT	NaBr Resin beads	trace
Nov. 12/00	#611	RogrSS-2AT	NaBr	.056 mgs.
Nov. 12/00	#612	RogrSS-2AT /	Chloride	.056 mgs.
Nov. 16/00	#614	CONG-SAT 6	Chloride Resin beads	.25 mgs.
Nov. 16/00	#615	CONG-SAT (HNO3 Resin beads	.26 mgs.
Nov. 20/00	#616	CONG-4AT 6	HNO3	poor
Nov. 21/00	#617	RogrSS-5AT	H NO3	marginal
Nov. 22/00	#618	RogrSS-5AT	NaBr Resin beads	trace
Nov. 23/00	#619	RogrSS-5AT	NaBr Resin beads	trace
Nov. 24/00	#620	MOX-4AT 3	Aqua Regia Resin beada	trace
Dec. 1/00	#622	RogrSS-SAT /	NaCN Resin beads	Loring - Jan9/01
Dec. 6/00	#624	MOX-SAT 3	NaCN Resin beads	2.5AT .20 mgs.
Dec. 12/00	#625	MOX-SAT 3	NaCN Resin beads	Loring -Jan9/01
Dec. 15/00	#626	MOX-SAT 3	NaCN Resin beads	.32 mgs.
Dec. 20/00	#627	MOX-4AT -3	NaCN Resin beads	marginal

.

DATE	TEST	ORE	PROCESS	VALUE
Dec. 23/00	#628	MOX-3AT	NaCN Resin beads	.31 mgs. sprouted beads
Jan. 9/01	#630	Rogr\$S-7.5 3	Aqua Regia	trace
Jan. 9/01	#631	RogrSS-7.5	Aqua Regia	.16 mgs.
Jan. 12/01	#632	RogrSS-7.5	Aqua Regia	.62 mgs.
Jan. 16/01	#633	RogrSS-3.5	Chloride Resin beads	.65 mgs.
Jan. 19/01	#634	RogrSS-3.5	Chloride	.31 mgs.
Jan. 24/01	#635	RogrSS-3.5	HNO3	.42 mgs. Silver crystal
Jan. 26/01	#636	RogrSS-3.5	Chloride Resin beads	.08 mgs.
Jan 29/01	#637	RogrSS-3.5	NaCN Resin beads	small silver beads
Feb. 2/01	#638	CONG-SAT 6	NaBr & Kl Resin beads	.28 mgs.
Feb. 17/01	#641	MOX-1.5AT 3	Chloride	.17 mgsPGM type
Feb. 19/01	#642	MOX-1.5AT 3	Chloride	.21 mgs.
Feb. 23/01	#643	MOX-2AT 3,	Chloride	.27 mgs.
Fcb. 28/01	#644	CONG-2AT	NaBr& KI	.38 mgs.
Mar. 2/01	#645	CONG-SAT b	NaBr & Kl Resin beads	.056 mgs.
Mar. 6/01	#646	RegSS-5AT	NaBr & KI	2.5AT36 mgs.
Mar. 9/01	#647	CONG-SAT 6	NaBr & KI	.35 mgs.
Mar. 22/01	#648	RogrSS-SAT	NaBr & Kl Resin beads	.26 mgs.
Mar. 23/01	#649	CHIN-3AT 5	NaBr & KI	Au10 mgs
Mar. 25/01	#650	RogrSS-5AT /	H2SO4	TRACE
Mar. 26/01	#651	RogrSS-4AT/	NaBr & KI	.28 mgs.

¥.

Mar. 27/01 #652 CHIN-5AT Hg 5 .15 mgs Mar. 29/01 #653 CHIN-5AT NaBr & KI 5 3.21 mgs., 1 Mar. 29/01 #653 CHIN-5AT NaBr & KI 5 3.21 mgs., 1 Mar. 29/01 #654 CHIN-5AT NaBr & KI 5 3.21 mgs., 7 Mar. 29/01 #654 CHIN-5AT Aqua Regia 5 margina Mar. 6/01 #655 MOX-3AT NaBr & KI 3 some A Apr. 6/01 #656 MOX-5AT HCI & NaBr 3 .35 mgs. Apr. 11/01 #656 MOX-5AT HIS04 petront .32 mgs.	TEST	ORE	PROCESS	VALUE
Mar. 29/01 #653 CHIN-SAT NaBr & KI 5 3.21 mgs. 1 Mar. 29/01 #654 CHIN-SAT Aqua Regia 5 margina Mar. 29/01 #654 CHIN-SAT Aqua Regia 5 margina Apr. 6/01 #655 MOX-3AT NaBr & KI 3 some A Apr. 11/01 #656 MOX-5AT HCl & NaBr 3 .35 mgs. type		CHIN-5AT	Hg 5	.15 mgs.
Mar. 29/01 #654 Chin-JA1 Autors Some A Apr. 6/01 #655 MOX-3AT NaBr & KI 3 some A Apr. 11/01 #656 MOX-5AT HCl & NaBr 3 .35 mgs. Apr. 11/01 #656 MOX-5AT HCl & NaBr 3 .35 mgs. Vipe			NaBr & KI 5	3.21 mgs., 1.67 mgs. 1.58 mgs.,PARTED Trace Au.
Apr. 6/01 #655 MOX-3AT NaBr & KI 3 some A Apr. 11/01 #656 MOX-5AT HCl & NaBr 3 .35 mgs. type	#654	CHIN-SAT	Aqua Regia 5	marginal
Apr. 11/01 #656 MOX-5AT HCl & NaBr 3 .35 mgs. type		MOX-3AT	NaBr & KJ 3	some Au.
Description / 32 mgs.		MOX-5AT	HCl & NaBr 3	.35 mgs. PGM type
Арт. 18/01 #658 RegSS-3/AI NuCN / type	#658	RegSS-5AT		.32 mgs. PGM type
рт. 18/01		#653 #654 #655 #656	#652 CHIN-SAT #653 CHIN-SAT #654 CHIN-SAT #655 MOX-3AT #656 MOX-5AT	HESTCHIN-SATHg5#652CHIN-SATNaBr & KI5#653CHIN-SATNaBr & KI5#654CHIN-SATAqua Regia5#655MOX-3ATNaBr & KI3#656MOX-SATHCI & NaBr 3

05/14/2001	22:07	4037835480
------------	-------	------------

ALAN LEWIS

PAGE 11

•	

RR 1,Site 13, Box 18 Porioka, Alberta **T4J 1R1**

.

Loring Laboratories Ltd.

829 Berverden Road N.E., Calgary Alberta T2K 4W7 Tel: 274-2777 Fax: 275-0541

FILE:41244

DATE:June28,1999

Attn: Alan Lawis

.

TO: ALAN LEWIS

PGM ANALYSIS

Sample	Au	Pd	Pt	Rh	Bead wt.
No.	<u> </u>	<u>ug.</u>	ug.	ug.	Mg.
#457	6.25 asy	<0.15	<0.15	0.15	0.986
			· · ·		

Certified by:

ð

Bead was weighed, dissolved in aqua regia, and analyzed by ICP.

To : MR. ALAN LEWIS RR # 1, Site 13, Box 18 Ponoks, Alberta T4J 1R1

.

File No : 41357 Date : August 16, 1999 Samples : Project : P.O.#

Certificate of Assay Loring Laboratories Ltd.

629 Beaverdam Road, NE Calgary Alberta Tet. (403)274-2777 Fax: (403)275-0541

Sample No.	Ag mg	Au mg	Pt mg	Pd mg	Rh mg	
"Assay Analysis"					- u u	
474	< 0.01	0.039	< 0.001	< 0.001	< 0.001	
				,		
					·	
I HEREBY CERTIFY that the	above results are	those assa	yà			
made by me upon the herein	gescribed sample		•	- 7	Assayer	
Relacts and revine a	re retained for one more	th unless uner	ific pronome	/	ettance	

To : MR. ALAN LEWIS

T4J 1R1

Ponoka, Alberta

ALAN LËWIS

T-D

P.01

COTHCA-2000 DATEMAN PROFILER DUE LABS

R.R. # 1, Site 13, Box 18

File No : 43368-1 Date : Octrober 4, 2000 Samples : Project : P.O.#

14037879468

Certificate of Assay Loring Laboratories Ltd.

5. severdern Road NE Calgary Alberta T2K 4W7 Tel: (403)274-2777 Fax (403)275-0541

Au	Ag	Pt	Pd	Rh	<u></u>	
- Pu	тg	<u>u0</u>	<u> </u>	ug		
8 80	9 54	< 1	< 1	< 1	12.00	n ton
2 10	14.1 9	< 1	< 1	ا م ۱۰	هر 26,69	a too
						j
~~	- · · · · · · · · · · · · · · · · · · ·			<u></u>		
ribed samples	1 ·	_			U	
	9 880 2 10 2 10	V9 00	vg mg ug 8 80 9 54 < 1	ug mg ug ug 8 80 9 54 < 1	ug mg ug ug <thu< th=""> ug ug ug<td>uq mg ug ug ug 880 954 <1 <1 <1 /12.80 p 210 14/9 <1 <1 <1 26,69 p 10 14/9 <1 <1 <1 26,69 p 10 14/9 14 14 14 14 14 14 14 14 14 14 14 14 14</td></thu<>	uq mg ug ug ug 880 954 <1 <1 <1 /12.80 p 210 14/9 <1 <1 <1 26,69 p 10 14/9 <1 <1 <1 26,69 p 10 14/9 14 14 14 14 14 14 14 14 14 14 14 14 14

To : MR. ALAN LEWIS

R.R. # 1, Site 13, Box 18 Ponoka, Alberta * T4J 1R1

·.

File No: 43368 Date: September 29, 2000 Samples: Project: P.O.#

Certificate of Assay Loring Laboratories Ltd.

629 Beaverdam Road, NE Calgary Alberte T2K 4W7

Tet: (403)274-2777 Fee: (403)275-0541

Sample No.	Au 	Ag mg	Pt ug	Pd vg	Sample Wi	
91	t 3	35.32	< 1	< 1	0.698 g	
#2	150	44.79	< 1	< 1	3.075 g	
Bead # 1A	7	25.12	< 1	< 1		
Boad # 2A	85	29.95	< 1	< 1		
L. Au. \$411.00						
1 - + #593 ashed resi		.).P.T. 043	\$CND 1.77	Ag. 0.P.T. 11.77	87.21	Total per ton Cl 89.00
2 - + #594 ashed real	n - 3 A.T0	5	20.55	14.93	110.63	131.00
714- 1 #593 ash fire	@ home 3 A.T0	023	باو_0	8.37	62.02	63.00
72A- 1 #594 ash fired	S home 3 A.T0	28	11.50	9.98	73-95	85.00
I HEREBY CERTIFY the						
made by me upon the h	rein described samp				Seaver	 _

.0 : MR. ALAN LEWIS R.R. # 1, Site 13, Box 18 Ponoka, Alberta T4J 1R1

File No : 43594 Date : January 9, 2001 Samples : Project : P.O.#

Certificate of Assay Loring Laboratories Ltd.

529 Beeverdem Road, NE Celgery Alberta T2K 4W7 Tel: (403)274-2777 Fax: (403)275-0541

Sample No.	Beed Wt mg	Au mg	Pt mg	Pd mg	Ag mg
"PGM Analysis"					
# 579 1 NaBr.	0.965	0.010	< 0.001	< 0.001	0.955 2-25AT PLANT
# 623 2 No.CN	0,222	0.004	< 0.001	< 0.001	0.218 5 A.T. mor.
1625 shatN	0.603	0.343	< 0.001	< 0.001	0.260 5A.T. mor.
H 629A + Zo CN	0.260	0.004	< 0.001	< 0.001	0.258 2. 5 AT Mac.
# 6298 5 macn	0.148	0.019	< 0.001	< 0.001	0.129 2.5 A.There.
(HEREBY CERTIFY that the here is a second s	he above results ern vin described sampi	those ass			Assayer

.

•

1

 \smile

Metallurgical Research and Assay Laboratory

745 Sunset Road Suites 8 Henderson, NV 89015 702-585-0074

ASSAY REPORT

6805 Assay Number: Date: 3/21/00 Customer : AL LEWIS Sample Identification: BEAD #1 - 2 A.T. Test # 535 <u>PPM</u> Element Au-Gold 39.9 Pt-Platinium 17.3 Rh-Rhodium 5.5 Os-Osmium 5.7 **Ru-Ruthenium** 10.4 Pd-Palladium 2.8 Ir-iridium 0.0 DONALD E IORDAN

> These results are based on well known accepted analytical procedures used solely on the sample submitted by the customer. This report is prepared for the exclusive use of the customer. No warranty as to the reproducibility or extractability of the meterfal other than the sample is given. Donald E. Jerdan and/or Metallurgical Research and Assay Laboratory make no representation express or implied on material other than that represented by the sample essayed.

Note: " #VALUE! " MEANS THAT ELEMENT HAS NOT BEEN ANALYZED FOR THIS REPORT. Unless prior arrangements are made, all samples will be discarded effer 30 days.

L

Metallurgical Research and Assay Laboratory

745 Sunset Road Suites 8 Henderson, NV 89015 702-565-0074

ASSAY REPORT

5566	Date: 3/1/00	
Customer : AI LEWIS		
Semple Identification: #2 DORE 3 AT. Jest # 544		
Element	<u>PPM</u>	
Au-Gold	12.4	
Pt-Platinium Rh-Rhodium Os-Osmium Ru- Ruthenium Pd-Palladium Ir-Iridium	26.3 3.9 86.0 0.0 64.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	-

These results are based on well known accepted analytical procedures used solely on the sample submitted by the customer. This report is prepared for the exclusive use of the customer. No warranty as to the reproducibility of entractability of the meterial other than the sample is given. Donald E. Jordan and/or Metallurgical Research and Ase ay Laboratory make no representation supress or implied on material other than their represented by the sample assayed.

Nole: " #VALUE! " MEANS THAT ELEMENT HAS NOT BEEN ANALYZED FOR THIS REPORT. Unless prior arrangements are mattle, di semples will be discarded after 30 days,

Metallurgical Research and Assay Laboratory

746 Sunset Road Sulles 8 Henderson, NV 89015 702-565-0074

Date: 2/3/98

ASSAY REPORT

Assay Number: 5558

Customer : AL LEWIS

Sample Identification: #3 DORE 2A.T. Just # 545

•

Element	PPM	
Au-Gold	8.Q	
Pt-Platinium Rh-Rhodium Os-Osmium Ru- Ruthenium Pd-Palladium Ir-Iridium	18.8 2.6 18.9 0.0 67.0 0.0	Part of the second seco
		JOADAN

These results are based on well known accepted analytical procedures used solely on the sample submitted by the customer. This report is prepared for the exclusive use of the customer. No warranty as to the reproducibility or extractability of the meterial other than the sample is given. Donaid E. Jordan and/or Matehurgical Research and Assay Laboratory meterino representation express or implied on material other than that represented by the sample is sayed.

Note: " (IVALUE) " MEANS THAT ELEMENT HAS NOT BEEN ANALYZED FOR THIS REPORT. Unless prior errangements are made, all campies will be discarded after 30 days.],

Metallurgical Research and Assay Laboratory

745 Sunset Road Suites 8 Henderson, NV 89015 702-585-0074

Date: 3/1/00

ASSAY REPORT

Assay Number: 5567

Customer : AL LEWIS

Sample Identification: #4 DORE 2 A T. Jest # 547

Element	PPM
Au-Gold	17.7
Pt-Platinium Rh-Rhodium Os-Osmium Ru- Ruthenium Pd-Palladium	29.9 4.2 2.7 0,0 32.8
Ir-Iridium	0.0

These results are based on well known accepted analytical procedures used solely on the sample submitted by the customer. This report is prepared for the exclusive use of the customer. No warranty as to the reproducibility or extractability of the material other than the sample is given. Densid E. Jordan and/or Metallurgical Research and Assay Laboratory make no representation express or implied on material other than that represented by the sample assayed.

Note: " #VALUE! " MEANS THAT ELEMENT HAS NOT BEEN ANALYZED FOR THIS REPORT. Unless prior arrangements are made, all samples will be discarded after 30 days. Of particular note is the test dated January 9, 2001 which shows the results of the analysis of 5 beads obtained using cyanide as the leaching agent. Cyanide had not been tested as a leaching agent in the prior work by Al Lewis. Only test #625 showed a significant value of gold and indicated that cyanide as a leaching agent did not produce any better results than previous chloride and bromide tests.

2.3 Metallurgical Research and Assay Laboratory

All of the tests conducted by this laboratory were also on beads obtained by Alan Lewis and are included chronologically according to Lewis test numbers. (535, 544, 545 and 547) and are included as attachment 2.3. These tests were more encouraging in that all four beads analyzed found significant levels of gold and platinum group metals.

2.4 Auric Metallurgical Laboratories

This is a laboratory which had not been used by 713803 Alberta in previous testing reported in the May 1999 Mineral Assessment Report. This laboratory is located in Salt Lake City, Utah. Tests were performed by Auric on eleven beads obtained from Al Lewis tests and also on for raw ore samples provided by Mr. Lewis. The tests on the Lewis beads are included as attachment 2.4.1. Of these eleven bead tests, three show significant gold values. (Lewis test numbers 459,462 and 470). This result is somewhat similar to the Loring results wherein most of the beads had relatively low gold content.

The raw head ore assay tests performed by Auric are included as attachment 2.4.2. These four tests show quite consistent levels of gold, silver and platinum group metals and did provide encouragement to us since other laboratories, as reported in the May 1999 Mineral Assessment Report, were unable to report any precious metal content from assays conducted directly on raw head ore.

.

Jul-29-99 02:28P

AURIC. Metallurgical Laboratories

Date: July 28, 1999

÷

ASSAY REPORT:

To: Mr. Alan D. Lewis RR 1, Site 13, Box 18 Ponoka, Alberta Canada T4J 1R1 Fax: (403) 783 5480

	AuRIC Sample No:	Customer Sample ID No:	Button mg	Gold mg	Silver mg	Platinum mg	Palladium mg
	2077 A	Button # 418 2 AT	0.479	0.009	0.458	0.011	0.001
ł	2078 A	Button # 444 ZAT	0.083	0.016	0.060	0.005	0.002
	2079 A	Button #446 3AT	0.314	0.065	0.232	0.015	0.002
ł	2080 A	Button # 447 3 AT	1.100	0.025	1.059	0.014	0.002
ł		= 1 ¹¹¹					
Ì		,					

Analysis method: GFAA

The results reported above are based on well known, accepted analytical procedures used solely on the sample submitted by the customer. No warranty as to the reproducibility or extractability of the material other than the sample is given. AuRIC Metallurgical Laboratorics, LLC makes no representation express or implicit on the material other than that represented by the assayed sample.

Ahmet B. Altinay Metallurgical Engineer

j

4037835480

Date: August 2 1999

ASSAY REPORT

Mr. Alan D. Lewis TO: RR 1, Site 13, Box 18 Ponoka, Alberta' Canada T4J 1R1 Fax: (403) 783 548G

Auros acone No.	Custome: Sample IO No.	B(anca) 1959	Cold ing	Silver	Platinum	,11Q
2081 A	# 463 Sandstone	2 47	0.037	0 007	0,013	0.000
	# 465 Conglomerate	4A7	0.008	0 004	0,033	0.000
A 2665	# 460 Sandstone	3 AT.	0.018	0.216	0.047	C.000
2085 A	# 464 Conglomerate	4 47	0.007	0.016	0.056	0.00
2064 A	# 459 ST	1 45	0.222	0.078	0.067	0.00
2085 A			0.248	0.080	0,003	0.00
2086 A	# 462 ST	445	0 262	0.006	0.003	0.00
2087 A	# 471) ST	2.A.F.				• • • •

A player method

HNO parted PM billiou remnants, Aqua regia digusted - GPAA

The results reported above are based on well known, accepted analytical procedures used solely of the sample wells of a second solely of the sample wells of a second solely of the sample wells. Superior No construction as to the representation of construction of the material other than the should be given that the superior of a state of the superior of a state of the superior of a state of the superior of the sup

Ahmel B. Allinay Metallurgical Engineer

3260 West Directors Row Set Line City, Uter 64154 (054 - 11: 601-974-7677 - Res. 603-974-6656 AURIC MAINTURINAL Labor Matter 19 in Cashad Linking Camunity

.

Date: August 12, 1999

These results were obtained

by Auric from assays

done on head ore

ar.

ASSAY REPORT:

States Mr. Alan D. Lowis RR 1, Site 13, Box 18 Elonoka, Alberta Canada 14J URE Fax. (403) 783 5480

Aufri(Customes Sample (D Na)	Gold Gold Frozitin	Sever Triotedon	Platinin Platinim Triozition	Paelann Palifician 1- 112/101	in curiton
2097 A 2098 A 2099 A 2100 A	Sandstone Sandstone Conglomerate	0 083 0 069 0 074	0.048 0.052 0.060	0 080 0 081 0 063	0 044 0 040 0 027	
2097A	Conglomerate	0.077 gr 22/2	0.061	0.057 4168	0.020 # 7.0.94	94 74
20184 2019A 2100A		19.64 19.64 19.80		4220	19.04	87.94

Ο

Amhysis method

. بەر

Aug-13-SMARCH BAA

Nethellurgecal Libbratories

~ Ge

·: .

1997 - Sec.

1

the states weather drives the

¥,

1

(for AriRIC Sample No 's engine with A (FA/GFAA)

tor AuRIC Sample No is ending with C - ARISXICIEAN; --

The science of other share are baind on over known, merchich analy that new stones and solar one the second relations. The many real and the representation of the second statement of the material report to the permit is given a data before the second statement of the ----the stand of the stand of the standard of the standard of the standard state that the standard of the set state is standard of the
Alami B. Albney Metalitical Foundation

3205 West Olivestory Hum, Salt Lake City, Usen, 84104, USA ALLOC Almatha gratic annuments in a Lincol Labolity Company

Phy 80 : 474-2577 201-724

3.0 Pilot Plant Project

In discussions both internally within 713803 Alberta Ltd. and externally with other interested parties, it was determined that it would be very beneficial if we could establish the capability to extract gold or others precious metals at a pilot scale. Al Lewis constructed and operated a small pilot plant as described in his report included as attachment **3**. While it appears that problems encountered in the leaching process could be overcome with future design changes, a more significant problem is the need to first establish a leaching process that would be economically viable before attempting further proof on the pilot scale level.

ATTACHMENT 3.0

.

PILOT PLANT

In order to conduct a bulk sample test, a rodmill with a capacity of more than 500 lbs. was built. It was powered by a diesel tractor power take-off and proved very successful. There was an arrangement of 4 plastic tanks to handle the leaching process and the pregnant solution settling phase.

Difficulty was found in obtaining a proper pump to handle the corrosive leach solution.

The usual iron particles from a rodmill were present in the shurry. The magnetic drive pump recommended by the pump company attracted the metal particles and rendered the pump useless.

With a large slurry of this very fine material, circulation was very difficult. These problems have all been solved for the future.

The unsolved portion is in the nature of the ore, making it necessary to use reagents at a strength beyond monetary practicality.

Submitted by:

04/14/01

Alan D. Lewis.

4.0 Discussions with Other Companies

Further discussions were held with geologists from B H P and Placer Dome. Both of these companies had been previously contacted and had provided letter reports to 713803 Alberta Ltd. as reported in the May 1999 Mineral Assessment Report. At this time, no further interest has been expressed by these companies.

Contact has also been maintained with Birch Mountain Ltd. who are public company that has been active for several years in pursuing Alberta gold and platinum prospects. While interest has been expressed in pursuing possible cooperative work with 713803 Alberta Ltd., no arrangements have been established to date.

Finally, discussions were held with a third private company, who expressed interest in our project but wished to see more consistent confirmation of our results before proceeding with any further consideration of participation in our project.

5.0 Summary of Expenditures

Most of of the expenditures incurred by 713803 Alberta Ltd. in the period covered by this report (May 1999 to April 2001) are contributed labor by shareholders in a 713803 the Alberta Ltd. and in particular, Al Lewis. Expenditures fall into categories as summarized below:

5.1 Contributed Labor

(a) Lab Analysis and Testing - Al Lewis Home Lab

(see Attach. 5.1(a) for detail)

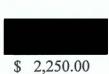
(b) Pilot Plant Construction and Operation

(see Attach 5.1 (b) for detail)

(c) Field Trips for Sample Recovery, Trips to Laboratories, Trips for Business Discussions (see Attach 5.1 (c) for detail)

Sub Total	\$143,300.00

5.2 Materials, Services and Travel Expenses



Sub Total

Sub Total

Grand Total Costs

\$171,347.75

- **5.3 Report Preparation**

ATTACHMENT 5.1(a)

ALAN LEWIS

PAGE 01

1

	05/14/2001	22:15 4037835480
•	DATE	TEST
	Apr. 30/99	#436 - 12 hrs
	May 2/99	#437 - 9 hrs
	May 3/99	1438 - 12 hrs
_	May 4/99	#439 - 15 hrs
	Mary 11/99	1140 - 11 hrs.
	May 17/99	#441 - 8hrs
	May 17//99	#442 - 1 hr.
	May 18/99	18443 - 9 hrs
	May 18/99	8444 - 1hr.
	May 21/99	11445 - 9 hrs
	May 21/99	\$446 - Bhy
	May 22/99	#447 - 10 hrs
	Mary 22/99	#448 - 6. hrs
	May 24/99	#449 - Bhrs
	May 24/99	#450 - 1 hr.
	May 24/99	11451 - 8 hrs
	June 3/99	#452 - 7 hrs
	June 4/99	1453 - 12hrs
	June 6/99	11454 - 7 hrs.
	June 7/99	11455 - 15 hrs
	June 9/99	#456 - Ilhrs
	June 11/99	11457 - 5 hrs
	June 13/99	#458 - 12 hrs
	June 20/99	1459 - 15hrs

DATE	TEST
June 21/99	#460 - 12hrs
June 25/99	4462 - 12.hrs
June 28/99	1463 - 10 hrs
June 30/99	11464 - 7hrs
July 1/99	1465 - 12hrs
July 2/99	1466 - 13hrs
July 7/99	1469 - 10his
July 9/99	11470 - 14 hrs
July 14/99	#471 - 16hrs.
July 21/99	#472 - 13 hrs
July 24/99	11473 - 13 hrs
July 26/99	#474 - 12 hrs
Aug. 1/99	#475 - 14 hrs
Aug. 3/99	1476 - 13hm
Aug. 5/99	1477 - 9hrs
Aug. 8/99	1478 - 12 hrs
Aug. 10/99	1479 - 8hrs
Sept. 27/99	1481 - 5hrs
Sept. 28/99 to Oct. 4/99	#482,483,485, 486 - 20 hrs
Oct. 1/99	#484 - 5 hrs
Uct. 5/99	#489 - 12 hr
Oct. 6/99	#490 - 10 hrs

212 hrs

252 hrs

05/14/2001 22:15 4037835480

ALAN LEWIS

PAGE 02

2

DATE	TEST
Oct. 7/99	1491 - 9 hrs
Oct. 22/99	#492 - 12 hrs
Oct. 24/99	#493 - 14 hrs.
Oct. 25/99	#494 - 13hrs
Oct. 27/99	#498 - 11hrs.
Oct. 28/99	#500 - 15 hrs
Oct. 29/99	#498-2nd 1/2 - 2 hrs.
Oct. 29/99	#502 - 12 hrs
Nov 1/99	#503 - 7 hrs
Nov. 2/99	#504 - 15 hrs
Nov. 4/99	#505 - 15 hrs
Nov. 12/99	#506 - 14 hrs
Nov. 13/99	#507 - 14 hrs
Nov. 24/99	#508 - 12 hrs
Nov. 29/99	#509 - 9 hrs
Dec. 3/99	#510 - 15 hrs
Dec. 4/99	#511 - 15hrs
Dec. 7/99	#512 - 8hrs
Dec 8/99	#513 - 14hrs
Dec. 9/99	#514 - 12hrs
Dec 9/99	#515 - 5hrs
Dec. 10/99	#516 - 15 hrs
Dec 11/99	#517 - 14 hrs
Dec. 13/99	#518 - 15 hrs
Dec. 15/99	#519 - 13hrs
Dec. 18/99	#520 - 12hrs
Dec. 21/99	#523 - 13hrs
Dec. 23/99	#524 - 17hrs
Dec. 26/99	#525 - 9hrs
Dec. 30/99	#526 - 14hrs
	215h

DATE	TEST
Jan. 1/00	#527 - 14hrs
Jan. 2/00	#528 - 10hrs
Jan. 6/00	#530 - 8hrs
Jan 10/00	#531 - 13 hrs
Jan. 14/00	#532 - 13 hrs
Jan. 17/00	#533 - 13 hrs
Jan. 19/00	#535 - 13 hrs
Jan. 21/00	#536 - 8hrs
Jan. 22/00	#537 - 14 hrs
Jan. 24/00	#538 - 12hrs
Jan. 24/00	#539 - 10hrs
Jan. 27/00	#540 - 10 hrs
Jan. 28/00	#541 - 10hrs
Jan. 29/00	#542 - 10hrs
Jan. 31/00	#544 - 12hrs
Feb. 3/00	#545 - 13hrs
Feb. 5/00	#546 - 12 hrs
Feb. 5/00	#547 - 12 hrs
Feb. 17/00	#548 - 12 hrs
Fcb. 17/00	#549 - 6hrs
Feb. 20/00	#550 - 13hrs
Feb. 24/00	#551 - 10hrs
Feb. 26/00	#552 - 13hrs
Mar. 31/00	#553 - 18 hrs

279hrs

3651	hrs
------	-----

May	26/00	#567 -	12hrs
B.A.s.	20100	4620	101

Sept.	20/00	1 #390	-	13 hrs
1	33/00	#507	-	126.

ALAN LEWIS

PAGE 09

3

DATE	TEST
Apr. 6/00	#554 - 12 hrs
Apr. 17/00	#555 - 14 hrs
Apr. 22/00	#556 - 13 hrs
Apr. 25/00	#557 - 13 hrs
Apr. 27/00	#558 - 13 hrs
Apr. 29/00	#559 - 9 hrs
May 4/00	#560 - 12hrs
May 8/00	#561 - 11hrs
May 9/00	#562 - 12hrs
May 16/00	#563 - 12hrs
May 16/00	#564 - 11hrs.
May 21/00	#565 - 15hrs
May 23/00	#566 - 13hrs
May 26/00	#567 - 12hrs
May 29/00	#568 - 12hrs
May 30/00	#569 - 12hrs
June 1/00	#570 - 11 hrs
June 2/00	#571 - 12hrs
June 9/00	#572 - 6hrs
June 14/00	#573 - 13hrs
June 30/00	#575 - 8hrs
July 3/00	#576 - 11 hrs
July 6/00	#577 - 12hrs
July 11/00	#579 - 16hrs
July 20/00	#580 - 12 hrs

DATE	TEST
Aug. 22/00	#582 - 12 hrs
Aug. 24/00	#583 - 18hrs
Aug. 26/00	#584 - 11 hrs
Aug. 27/00	#585 - 11 hrs
Aug 30/00	#586 - 10 hrs
Sept. 3/00	#587 - 11hrs
Sept. 6/00	#588 - 13hrs
Sept. 8/00	#589 - 6hrs
Sept. 11/00	#591 - 9hrs
Sept. 13/00	#593 - 13hrs
Sept. 16/00	#594 - 12hrs
Sept. 19/00	#595 - 16hrs
Sept. 20/00	#596 - 15 hrs
Sept. 22/00	#597 - 12hrs
Sept. 25/00	#598 - 12hrs
Sept. 27/00	#599 - 14hrs
Sept. 28/00	#599A - 2 hrs
Oct. 2/00	#600 - 16hrs.
Oct. 3/00	1601 - 16hrs
L	

229hrs

297hrs

DATE	TEST
Oct. 3/00	#602 - 15 hrs
Oct. 9/00	#603 - 14 hrs
Oct. 9/00	#604 - 9 hrs
Oct. 13/00	#605 - 19hrs
Oct. 13/00	#606 - 8 hrs
Oct. 17/00	#607 - 15hrs
Oct. 18/00	#608 - 16 hrs
Oct. 20/00	#609 - 19hrs
Nov. 12/00	#611 - 10hr
Nov. 12/00	#612 - 1hr.
Nov. 16/00	#614 - 9hm
Nov. 16/00	#615 - 4hrs
Nov. 20/00	#616 - 9hrs
Nov. 21'00	#617 - 9hrs
Nov. 22/00	#618 - 11hrs
Nov. 23/00	#619 - Ilhrs
Nov. 24/00	#620 - 10hrs
Dec. 1/00	#622 - 12hrg
Dec. 6/00	#624 - 10hrs
Dec. 12/00	#625 - 16 hrs
Dec. 15/00	#626 - 14hrs
Dec. 20/00	#627 - 13 hrs

DATE	TEST
Dec. 23/00	#628 - 13hrs
Jan. 9/01	#630 - 9 hrs
Jan. 9/01	#631 - 5 hrs
Jan. 12/01	#632 - 4 hrs
Jan. 16/01	#633 - 13hrs
Jan. 19/01	#634 - 13hm
Jan. 24/01	#635 - 15 hrs
Jan. 26/01	#636 - 13hm
Jan 29/01	#637 - 16hrs
Feb. 2/01	#638 - 12 hrs
Feb. 17/01	#641 - 11 hrs
Feb. 19/01	#642 - 11hrs
Feb. 23/01	#643 - 13 hrs
Feb. 28/01	#644 - 11hrs
Mar. 2/01	#645 - 7hrs
Mar. 6/01	#646 - 15 hrs
Mar. 9/01	#647 - 15 hrs
Mar. 22/01	#648 - 13hrs
Mar. 23/01	#649 - 11 hrs
Mar. 25/01	#650 - 8hrs
Mar. 26/01	11651 - 14hrs
Mar. 27/01	#652 - 7hrs
Mar. 29/01	#653 - 11hrs
Mar. 29/01	1654 - 5hra
Apr. 6/01	1655 - 11hrs
Apr. 11/01	#656 - 10hrs
Apr. 18/01	#658 - 1965 Total hours 2178

ATTACHMENT 5.1(b)

DATE	# DAYS	# HOURS
June 9 - 13/00	5 days	50 hrs.
June 15 - 16/00	2 days	20 hrs.
June 20 - 29/00	10 days	100 hrs.
July 7 - 8/00	2 days	20 hrs.
July 12 - 17/00	6 days	60 hrs.
July 21 - 31/00	11 days	110 hrs.
Aug. 1 - 12/00	12 days	120 hrs.
		Total 480 hrs.

ATTACHMENT 5.1(c)

A. LEWIS FIELD TRIPS - APRIL 30, 1999 - APRIL 18, 2001

1. Ponoka, AB. to Salt Lake, UT.- Auric Metallurgical Labs. - May 25 - 28/99 incl. - 4 days.

2. Ponoka, AB. to Salt Lake, UT. - Auric Metallurgical Labs. - July 18 - 20/99 incl. - 3 days.

3. Ponoka, AB. to Dawson Creek, BC. - Ore samples from Lease - Aug. 23-25/99-3 days. Barry Luft also Participated.

4. Ponoka, AB. to Dawson Creek, BC. - Ore samples from Lease - Nov. 9-11/99 - 3 days. Barry Luft also participated

5. Ponoka, AB. to Vancouver, BC. - Harry Muntanion- Principal Geologist, B.H.P. and Brian Fowler- Senior Geologist, Placer Dome - Nov.21-23/99 - 3 days.

6. Ponoka, AB. to Henderson, NV. & Phoenix, AZ. - Don Jordan - Metallurgical Research & Assay Lab. -(Henderson) - Assay Work. - David Flasha - CanPay Mining, (Phoenix)-leaching information.-Mar. 18 - 27/00 incl. - 10 days.

7. Ponoka, AB. to Dawson Creek, BC. - Truck load of ore for bulk sample - July 18 & 19/00 - 2 days. Barry Luft and Bob Liddle also participated

8. Ponoka, AB. to Phoenix, AZ. - David Flasha - CanPay Mining- Cyanide leaching process demonstration - Nov. 5 - 11/00 incl. - 7 days. Barry Lift also Participated.