MAR 19970013: ENDIANG

Received date: Dec 01, 1997

Public release date: Dec 02, 1998

DISCLAIMER

By accessing and using the Alberta Energy website to download or otherwise obtain a scanned mineral assessment report, you ("User") agree to be bound by the following terms and conditions:

- a) Each scanned mineral assessment report that is downloaded or otherwise obtained from Alberta Energy is provided "AS IS", with no warranties or representations of any kind whatsoever from Her Majesty the Queen in Right of Alberta, as represented by the Minister of Energy ("Minister"), expressed or implied, including, but not limited to, no warranties or other representations from the Minister, regarding the content, accuracy, reliability, use or results from the use of or the integrity, completeness, quality or legibility of each such scanned mineral assessment report;
- b) To the fullest extent permitted by applicable laws, the Minister hereby expressly disclaims, and is released from, liability and responsibility for all warranties and conditions, expressed or implied, in relation to each scanned mineral assessment report shown or displayed on the Alberta Energy website including but not limited to warranties as to the satisfactory quality of or the fitness of the scanned mineral assessment reports and warranties as to the non-infringement or other non-violation of the proprietary rights held by any third party in respect of the scanned mineral assessment report;
- c) To the fullest extent permitted by applicable law, the Minister, and the Minister's employees and agents, exclude and disclaim liability to the User for losses and damages of whatsoever nature and howsoever arising including, without limitation, any direct, indirect, special, consequential, punitive or incidental damages, loss of use, loss of data, loss caused by a virus, loss of income or profit, claims of third parties, even if Alberta Energy have been advised of the possibility of such damages or losses, arising out of or in connection with the use of the Alberta Energy website, including the accessing or downloading of the scanned mineral assessment report and the use for any purpose of the scanned mineral assessment report.
- d) User agrees to indemnify and hold harmless the Minister, and the Minister's employees and agents against and from any and all third party claims, losses, liabilities, demands, actions or proceedings related to the downloading, distribution, transmissions, storage, redistribution, reproduction or exploitation of each scanned mineral assessment report obtained by the User from Alberta Energy.

Alberta

Alberta Mineral Assessment Reporting System

19970013

1997 ASSESSMENT SUMMARY

METALLIC AND INDUSTRIAL MINERAL PERMITS:

9393080543 TO 9393080547

FOR

656405 ALBERTA Ltd.

ΒY

A.C. GLATIOTIS, P.GEOL.

ON

NOVEMBER 25, 1997

TABLE OF CONTENTS

ľ

ĺ.

ľ

1

ļ

1. INTRODUCTION	1
2. CONCLUSIONS	1
3. RECOMMENDATIONS	2
4. LOCATION AND ACCESS	2
5. CLAIM AND TITLE	3
6. TOPOGRAPHY	3
7. GEOLOGY	3
7.1 The Sweetgrass Arch	5
8. GEOPHYSICS	5
8.1 Introduction	5
8.2 Initial Ground Magnetic Surveys	6
8.3 Airborne High Resolution Magnetic Survey	6
8.4 Follow-up Ground Magnetic Surveys	7
8.5 EM Survey	8
8.6 ERT Survey	8
8.7 Seismic	9
9. DRILLING	9
9.1 Introduction	9
9.2 1995	9
9.3 1997	10

Ι

9.4 Palynological Age Determinations	11
10. MINERALOGY AND GEOCHEMISTRY	11
10.1 Introduction	11
10.2 Surface Sampling	11
10.3 Bulk Test Pits	12
10.4 Rock Grab Samples	13
10.5 Drill Cuttings and Core	14
10.5.1 Drill Hole 95-1	14
10.5.2 Drill Holes 97-1 and 97-2	15
10.6 Thin Section Analyses	16
10.6.1 DH 95-1	16
10.6.2 Hand Specimens	17
11. STATEMENT OF EXPENDITURES	18
12. STATEMENT OF QUALIFICATIONS	19
13. REFERENCES	20

List of Figures

- Figure 1: Location Map; 1 to 1,500,000 scale road map of Alberta
- Figure 2: Location Map; 1 to 50,000 scale map with the Claim Boundary
- Figure 3: Schematic west to east cross section across the Western Canadian sedimentary basin
- Figure 4: Correlation of the uppermost Cretaceous and Paleocene formations of the S. Alta. Plains
- Figure 5: Subdivision of Edmonton Fm. according to Allen and Sanderson (1945) and Ower (1958)
- Figure 6: Computer generated map of the top of the Cambrian
- Figure 7: Magnetic Contour Map of Lake 4
- Figure 8: Magnetic Contour Map: ground survey over primary aeromag anomaly
- Figure 9: EM34 Survey
- Figure 10: ERT Section: line 250S crossing primary aeromag anomaly
- Figure 11: Microprobe Analysis from C.F. Mineral Research Ltd. on Samples #001 and #002
- Figure 12: Al₂O₃ vs Na₂O for Eclogitic Low Chrome Diopsides from hand samples #001 and #002
- Figure 13: Na₂O vs TiO2 for Eclogitic Garnets from samples #001 and #002
- Figure 14: Cpx K₂O vs Garnet Na₂O for samples #001 and #002
- Figure 15: Comparison of REE Values from DH 95-1 with the Mir Pipe and Average Kimberlite
- Figure 16: Al₂O₃ vs Na₂O for Eclogitic Low Chrome Diopsides from DH 95-1 cuttings
- Figure 17: CaO vs TiO₂ in Eclogitic Garnets from DH 95-1 core and cuttings
- Figure 18: TiO₂ vs Cr₂O₃ in Chromites from DH 95-1 cuttings
- Figure 19: Al₂O₃ vs Na₂O for Eclogitic Low Chrome Diopsides from DH 97-2
- Figure 20: K₂O vs TiO₂ for Diatreme Tourmalines from DH 97-1, DH 97-2 and sample 10001

List of Photographs

Photo 1: Raymond Haimila examines drill cuttings from hole 97-1

- Photo 2: DH 95-1, 332'; matrix supported sandstone clasts in glauconitic sandstone
- Photo 3: Boulder bed on north shore of Clear Lake
- Photo 4: Bulk test pit #1; immediately north of the boulder bed on Clear Lake
- Photo 5: Garnet Pyroxene Gneiss: hand specimen catalogue #001
- Photo 6: Garnet Pyroxenite: hand specimen catalogue #002
- Photo 7: Coarse grained tuff with crustal xenoliths: hand specimen catalogue #008
- Photo 8: Coarse grained crystal tuff: hand specimen catalogue #016
- Photo 9: Pyroxene crystal tuff: hand specimen catalogue #012
- Photo 10: Volcanic breccia: hand specimen catalogue #015
- Photo 11: DH 95-1, 372', 32x, cut parallel to bedding; coarse grained, laminated, bentonitic sandstone
- Photo 12: DH 95-1, 372', 120x: high relief, angular grains at center of photo are garnets
- Photo 13: DH 95-1, 372', 120x: an olivine and a detrital dolomite amid altered lithic fragments
- Photo 14: Same photo as above with crossed polars
- Photo 15: DH 95-1, 320", 32x; med. well sorted, angular lithic sandstone
- Photo 16: DH 95-1, 320', 80x; olivine?, detrital dolomite, abundant rock fragments
- Photo 17: Same as photo 16 with crossed polars
- Photo 18: DH 95-1, 372', 32x, cut perpendicular to bedding: overview of angular sandstone texture
- Photo 19: DH 95-1, 372', 120x, cut perpendicular to bedding: abundant rock fragments
- Photo 20: Same as above with crossed polars

Photo 21: DH 95-1, 384', 32x, cut perpendicular to bedding: overview showing abundant feldspars

- Photo 22: Same as above with crossed polars
- Photo 23: Thin section of hand sample Cat.#006, 32x: irregularly banded gneiss
- Photo 24: Same as above with crossed polars
- Photo 25: Thin section of hand sample Cat.#002, 32x: possible eclogite facies metamorphism
- Photo 26: Same as above with crossed polars
- Photo 27: Thin section of hand sample Cat.#003, 32x: granulite facies metamorphism
- Photo 28: Same as above with crossed polars

Appendices

- Appendix I Type Section of the Horseshoe Canyon Formation (Irish 1970)
- Appendix II Data from Initial Ground Based Magnetic Surveys of Lake 4 and Pearl Lake
- Appendix III Data from EM34 Reconnaissance Survey
- Appendix IV Palynological Age Determinations by Branta Biostratigraphic Ltd.
- Appendix V Drill Hole Logs
- Appendix VI Assay Data

List of Maps

Total Magnetic Intensity and Flight Path

Filtered Anomaly Map: 500m to 1900m, reduced to pole

1. Introduction

This report documents the work accomplished at the claims outlined in Section 5 of this report. A combination of features documented in the initial assessment report make this area prospective for diamond potential. These features include:

- The underlying basement rock of the Loverna Block is Archean in age (>2.6 Ga);
- The government lithoprobe studies indicate the presence of a mantle root deeper than the one at Lac de Gras;
- Government airborne magnetic surveys reveal a prominent elliptical anomaly;
- Government gravity data indicate an anomaly coincident with the magnetic anomaly;
- Reconnaissance magnetic surveys indicate near surface magnetic anomalies;
- Surface sampling found diamond indicator minerals including; G5, G9, G10 and G11 garnets and CP5 clinopyroxenes which plot in the diamond inclusion field; and,
- Surface sampling turned up hand specimens suggestive of kimberlite emplacement.

The follow up assessment work documented in this report consists of:

- Ground based magnetic surveys;
- An airborne magnetic survey;
- A follow-up ground based magnetic survey over the most prominent magnetic anomaly;
- An orientation ground based EM34 survey over the same anomaly;
- An orientation electrical resistance tomography section across the same anomaly;
- The drilling of three exploration drill holes;
- Surface sampling, prospecting and test pitting; and,
- Examination of existing seismic data.

2. Conclusions

The conclusions based upon this second phase of assessment work include:

- Surface sampling confirmed the glacial character of surface materials on the property;
- Indicator minerals and rocks suggestive of a kimberlitic source were located on surface;
- Initial ground magnetic surveys outlined two anomalies in Lake 4 (see figure 2 for location);
- The aeromagnetic survey confirmed the existence of a large deep seated anomaly and indicated numerous shallow anomalies;
- Follow-up ground magnetic work over the most prominent aeromagnetic anomaly increased resolution of the data but revealed variances between the airborne and ground based anomalies;
- An EM34 survey was able to measure bedrock conductance through the glacial overburden with the coils in vertical mode. EM34 data were not correlative with the

magnetic anomalies in the area tested. The magnetic anomaly source is too deep for an EM 34 instrument in the area tested. EM surveys may be effective where kimberlite pipes are present at the base of the glacial overburden;

- The ERT section yielded results indicative of a bedded sedimentary sequence above the primary magnetic anomaly;
- Although drill holes did not penetrate kimberlite pipe breccias or magmatic phase rock, the presence of diamond indicator minerals, mafic and ultramafic lithic fragments and olivine grains in the core and drill cuttings strongly suggests local kimberlitic volcanism was a sediment source rather than volcanism associated with Laramide mountain building to the west; and,
- The boulder bed on the north shore of Clear Lake is due to erosion of clay till by wave action rather than by glacial fluvial processes. There is no placer concentration of heavy minerals.

3. Recommendations

Based upon the field program and data analysis the following recommendation are made:

- ERT sections should be conducted to cross the strongest airborne magnetic anomalies;
- Existing core should be assayed for diamond content; and,
- Verified pipe structures should be drilled, assayed and evaluated.

4. Location and Access

The mineral claim lies between $102^{\circ}02'$ and $102^{\circ}16'$ of longitude and $51^{\circ}45'$ and $51^{\circ}52'$ of latitude in T32, R15 and 16 and T33, R 15 and 16 west of the fourth meridian, centred on the Chain Lakes northwest of Hanna about 23 kilometres.

Access is by paved highway (#56) 22 kilometres north from Drumheller and 43 kilometres east on highway 9 to the intersection of gravel road (#855). Continue north 15 kilometres into the claim. The entire property is accessible by many gravel and dirt roads which service local farms. Wet conditions can make these roads impassable due to the amount of clay present.

5. Claim and Title

The claim consists of the following Metallic and Industrial Mineral Permits:

Permit #	Area	Expiration Date
9393080543	8,704.0256	2003-08-26
9393080544	8 ,704: 02560	2003-08-26
9393080545	8,768.0,2304	2003-08-26
9393080546	8,768.0 1792	2003-08-26
9393080547	8,625.04876	2003-08-26

Interest in the claim is as follows:

656405 Alberta Ltd.		82.6%
718709 Alberta Ltd.		7.0%
718730 Alberta Ltd.		5.4%
Halonen, Leo Edward		5.0%
	Total	100.0%

6. Topography

Elevations on the claim range from 2,620 to 2,900 metres. The Chain Lakes occupy a wide glacial outwash valley which has a northwest trend and runs through the centre of the claim. To the northeast of the valley the surface is humocky and kettled while to the southwest the land is gently rolling. Valley slopes are gentle with occasional steep sided small gullies. The Chain Lakes are typically ephemeral, drying out by mid August except in unusually wet years. The lakes are alkaline forming salty mud flats when dry.

7. Geology

The property is underlain by approximately 2,100 metres of sediments of the Western Canada Sedimentary Basin deposited upon cratonic Archean rock of the Loverna block (GSC Bull 447, 1993). Figure 3 presents a west to east cross-section of the basin with a vertical arrow between Drumheller and Coronation indicating the position of the claims. The focus of this exploration program is the Upper Cretaceous which coincides with the Laramide orogeny to the west. Figure 4 summarizes the regional breakdown of formations in this time frame.

The surface materials covering the entire property are glacial in nature ranging from 10 to 50 m in thickness. The northwest trending valley occupied by the Chain Lakes is a geomorphological divide. To the northeast of the valley the terrain is strongly kettled. To the southwest is gently rolling till plain with glacial-fluvial channels which drained in a southwesterly direction. The valley occupied by the Chain Lakes appears to be a glacial outwash which formed at the toe of the retreating ice sheet at a point where the retreating ice stalled and became stagnant.

Directly underlying the Pleistocene glacial deposits are Upper Cretaceous rocks of the Edmonton and Bearpaw Formations which are the focus of interest in this report. These sediments belong to the Bearpaw-Cypress Hills megacycle, a regressive sequence due to uplift of the Laramide orogeny to the west which provided sediments deposited in the Bearpaw Sea. A progressively shallower sequence of environments is represented starting with the offshore Bearpaw shales progressing through littoral marginal marine, coastal plain and alluvial fan-braid plain upward to the Paleocene erosion surface. The shales of the Bearspaw wedge out westward. The Edmonton Formation thickens westward and in combination with the Belly River Formation becomes the Brazeau Formation.

The Edmonton Formation is stratigraphically complex. The outstanding features of this formation are:

- pronounced lensing and interfingering of strata so no two sections are identical;
- a great amount of bentonite in the beds; and,
- the presence of numerous coal seams.

Allen and Sanderson (1945) break the Edmonton Formation into three members (Fig. 5). The Lower Member is 200 m thick. It is comprised of bentonitic sands and shales, numerous coal seams and scattered fossiliferous limestone beds. This unit correlates to the Horseshoe Canyon Formation of Irish (1970). The Middle Member is 100 m thick. It consists of bentonitic sands and shales with fewer coal seams. The Kneehills tuff is a marker horizon at the top of the unit ranging from 0.15 to 0.3 m thick. It is found over 700 miles across southern and central Alberta. M. Shafiqullah (1963) assigned an absolute age of 66 million years to the tuff. P.L. Binda (1969) demonstrated progressive fining of median grain size in the tuff with distance north from the U.S.- Alberta border, indicating a southern source for the tuff. The Upper Member also consists of sands, shales and coal seams. Fossils of Triceratops, Tyrannosaurus, Thescelosaurus and Ankylosaurus have been found in Upper Member sediments above the Kneehills tuff (Sternberg, 1947). The top of the Edmonton Formation is an erosion surface.

The Bearpaw Formation is gradational with the overlying Edmonton Formation consisting of bioturbated basinal shales and silts.

The bentonitic component of the Edmonton formation has been widely considered to be the result of volcanism associated with the Laramide orogeny and mountain building in the west. Erosion has removed all of the sediments of the Upper member and some of the Middle member to a level below the Kneehills Tuff. What remains of the Edmonton Formation is equivalent to the Horsehoe Canyon Formation described by Irish (1970). Appendix I contains the detailed section done by Irish.

7.1 The Sweetgrass Arch

The Sweetgrass Arch plunges northward from the Kevin-Sunburst Dome into southeastern Alberta where it meets the south plunging Bow Island Arch. A break between the arches is called the Suffield Saddle. Figure 6 locates the position of these features relative to the property.

The modern expression of the arches is erosion of progressively older strata over the arch axis. The arches have a long and complex history which extends back to the Precambrian. They arose as a flexed hinge for shelf sedimentation on the western continental margin of the craton. Subsequently, the hinge was amplified by sedimentation from western sources. Lorenz (1982) suggested that episodic thrusting in the fold and thrust belt depressed the lithosphere, displacing mantle which further elevated the arch along pre-existing zones of weakness.

During the Laramide orogeny the combination of sediment loading in the basin, which would further have flexed the arches, and compressive structural forces, due to mountain building, may have penetratively fractured the crust in such a way as to create pathways to the surface for kimberlitic magmas.

8. Geophysics

8.1 Introduction

A prominent magnetic anomaly centred in the claims was obvious in airborne magnetic surveys performed by the government (Ross 1995). The magnetic anomaly is coincident with a gravity anomaly also revealed by government data (Ross 1995, p.210). Previous reconnaissance magnetic work confirmed the large scale magnetic anomaly and identified near surface magnetic signatures which could be due to the presence of near surface kimberlite pipes (Haimila, 1995).

Two ground based surveys were conducted early in 1997 to follow up on the reconnaissance work. Lake 4 and Pearl Lake were surveyed early in 1997. High diurnal magnetic fluctuations rendered the data collected during the Pearl Lake uninterpretable.

An airborne magnetic survey was undertaken to cover the entire property. A prominent strong deep anomaly was delineated which corresponds well with the larger scale government surveys. Filtering of the data set revealed numerous anomalies closer to the surface. The most prominent filtered aeromagnetic anomaly was targeted for a detailed follow-up magnetic survey. An EM34 survey and an ERT section were undertaken to verify the airborne magnetic data. A cursory examination of existing seismic data sought to establish some correlation with the magnetic data.

8.2 Initial Ground Magnetic Surveys

Two ground based magnetic surveys were carried out using a caesium vapour magnetometer to follow up on data gathered during reconnaissance work. Data are contained in Appendix $\Pi I = 1$

In February of 1997 a baseline was established on Lake 4 (the small lake east of Clear Lake) using a north-south fence line which runs into the lake. Lines were run perpendicular to the fence line at 50 metre intervals to 700S. Magnetic readings were taken at 25 metres intervals. When anomalous readings were encountered infill readings were taken around that location. Diurnal magnetic drift was corrected for by surveying closed loops to an established base point. Superimposed upon a background of magnetic values which increase westward are two localized magnetic irregularities, A and B, of similar magnitude (Fig. 7).

In March of 1997 a baseline was established using an East-West fence parallel to the road in order to follow up reconnaissance anomalies on Pearl Lake. Lines were run perpendicular to the fence line every 50 metres. Readings were collected every 25 metres along the grid lines. Wherever anomalous values were encountered infill readings were taken in the vicinity. Diurnal magnetic fluctuations were too high and too rapid during the day for the data to be corrected.

8.3 Airborne High Resolution Magnetic Survey

The aeromagnetic survey was performed by Spectra Exploration Geoscience Corp. The area covered is bounded by the coordinates $51^{0}45$ 'N to 51^{0} 52.1'N and 112^{0} 3.5'W to $112^{0}15$ 'W. The survey was flown 100 meters above the ground surface on a North-South grid with lines spaced 200 metres apart. East-West cross lines were flown every kilometre to tie in the grid. 948 line kilometres were flown on the survey lines and 199 line kilometres were flown on tie lines for a total of 1,147 line kilometres.

The geophysical system was carried by a Piper Navajo aircraft flying at 70 metres per second yielding one magnetic reading every 7 metres. The primary geophysical system was a high sensitivity, caesium vapour magnetometer. Support equipment included a triaxial fluxgate magnetometer, video camera, video recorder, radar altimeter, barometric altimeter, GPS receiver and navigation system which records real time flight path information.

A high sensitivity caesium vapour base station magnetometer was employed to correct for diurnal fluctuations in magnetic field strength due to solar activity. Time synchronization was accomplished with a GPS receiver. Ground GPS data from the base station was used to correct flight path data.

A large elliptical magnetic anomaly was delineated ranging from 57790 to 58195 gammas. Filtering revealed near surface anomalies of interest as exploration targets (Maps 1 and 2).

8.4 Follow-up Ground Magnetic Surveys

A survey grid was established using the fence line, parallel to the road running north from Clear Lake, as a baseline. Grid zero was located at the south post of the gate providing access to the field. Grid lines were run perpendicular to the baseline every 50 metres. Pickets were posted every 100 metres with pin flags set at 20 metre intervals.

A GSM-19 Overhauser memory magnetometer/gradiometer was used for measurement of total magnetic field and magnetic gradient in the survey. The device functions as a proton head magnetometer which has been modified for continuous data acquisition. Readings were continuously collected as the lines were traversed yielding a data density of 1 reading per metre.

A total field magnetometer measures the intensity of the earth's magnetic field in units of nanoteslas (nT). Ferromagnetic materials, occurring in the earth's magnetic field, tend to alter the field. Such materials, therefore, can be recognised as total field anomalies. The strength of the anomaly will be dependent largely on the mass of the ferromagnetic material and the depth of burial. Kimberlites often disturb the background total magnetic field causing anomalies in the order of tens of nanoteslas.

A magnetic gradiometer measures the change in total magnetic field between two sensors mounted at different heights above the ground. Gradient measurements have the advantages of being more sensitive to very near surface formations and being unaffected by diurnal changes in the earth's magnetic field. Gradient measurements, however, have a shallower depth of investigation than total field measurements.

The survey revealed a buried pipeline running parallel to the baseline. This was filtered out of the final plot of the total field data (Fig. 8). The survey was conducted on the east flank of the primary aeromag anomaly. The large scale features of the survey are similar to the aeromag data with readings ranging from 58740 to 58794 nT. There is considerably more character in the ground based survey than seen in the aeromagnetic map. The irregularities seen on the surface of the much larger anomaly indicates magnetic sources closer to the surface.

8.5 EM34 Survey

A trial EM34 survey was undertaken to determine whether a prominent aeromagnetic anomaly could be verified by measuring shallow electrical conductivities of the subsurface. A Geonics EM34 instrument was used to collect terrain conductivity data.

Terrain conductivity is defined as the bulk electrical conductivity of the subsurface. It is a measure of the combined electrical conductivity of the soil matrix and pore fluids. Typically, electrical conductivity is greater for finer matrix grain sizes (*i.e.*, clays are more conductive than sands, and shales are more conductive than sandstones). Additionally, high total dissolved solids (i.e. "salts") in the pore fluids will increase terrain conductivity.

Terrain conductivity instruments use the principles of electromagnetic induction to measure the electrical conductivity of the soil. A transmitter coil induces electrical current to flow in the subsurface. A receiver coil measures the strength of this current which, under a limited range of conditions, is directly proportional to the conductivity of the soil.

Generally, the depth of investigation of an electromagnetic (EM) device is a function of transmitter - receiver intercoil spacing and the dipole (or coil) orientation. The EM34, with an intercoil spacing of 40 metres has a maximum depth of investigation of 60 metres in the vertical dipole mode and 30 metres in the horizontal mode.

In the horizontal mode the EM34 was not able to penetrate through the glacial till. Highly alkaline soils gave rise to readings of high conductivity. In the vertical mode the conductivity of the underlying bed-rock was determined (Fig. 9). No correlation exists between the EM survey and the magnetic data. The source of the magnetic anomaly is below the range of this instrument in the location surveyed.

8.6 ERT Survey

Electrical Resistance Tomography is technique for mapping the distribution of subsurface electrical resistivities in a cross-sectional format. Data are collected through a linear array of 61 electrodes coupled to a DC resistivity transmitter-receiver with an electronic switching box. The collection and recording process is driven by a laptop computer. The data are inverted using a 2-D finite difference inversion routine. The final product is a two dimensional cross-section which plots conductivities in milliSiemens per meter (mS/M) versus depth.

One ERT line was run on the 250S using 1.2 Km of cable. It extended from the fence line (0) westward to the far shore of Lake 6 (1200), cutting across the primary aeromagnetic anomaly and terminating in a secondary anomaly (Fig. 10) Surface water had evaporated and the silts were desiccating with the formation of mud cracks. Lake sediments were still wet enough that they could only be traversed using snow shoes.

The section reveals flat lying sediments which appear to drape down on either side. Edge effects and lack of data control point are responsible for the vertical nature of the anomalies.

8.7 Seismic

An attempt was made to utilize reflection seismic profiles to locate diatremes and pipes on the claims. Prior to possible purchase of the appropriate coverage in the area a quality inspection of seventeen lines was undertaken by Dr. N. Haimila, R. Haimila and A. Glatiotis.

During the inspection it was determined that the resolution at shallow depths was not good enough for the intended purposes. Also, the common depth point processing used in the petroleum industry focused on horizontal and subhorizontal events and tended to nullify most vertical events except for faults that offset bedding.

It was observed that deep within portions of the seismic sections there were large arched events. Additionally, diffraction patterns on some of the seismic lines were concentrated in sections 19, 20, 29 and 30 of township 32, range 15W4 and sections 14, 23 and 24 of township 33, range 15W4. Although these features are not definitive, they appear in the areas where other geophysical methods indicate anomalies.

9. Drilling

9.1 Introduction

Three holes have been drilled to date on the property. In 1995 a vertical hole was drilled under the supervision of 656405 Alberta Ltd. to a total depth of 386 feet. Two holes were drilled in 1997. Borehole 97-1 was located over a magnetic high obtained from the ground based magnetic survey which was a follow-up to the aerial survey. Borehole 97-2 was drilled at -45° to test a magnetic high mapped by an initial ground magnetic survey over Lake 4 which revealed an anomaly which was not present in the filtered airborne maps.

9.2 1995

The 1995 drill program, managed by the property owners, targeted one hole over the highest magnetic readings obtained by orientation magnetic data. A vertical hole was collared on the east side of the road that passes between Lake 4 and Clear Lake just north of the lakes (Fig. 2).

A tricone was used to a depth of 315 feet because the bed-rock was soft. Drill cuttings from the upper part of the hole were not sampled, losing valuable information in lithologies of interest. The rest of the hole, to a total depth of 386 feet, was cored using a 3" split tube core barrel. A clay rich interval in the upper part of the hole was described as having a blue colour. This material could have been kimberlitic in nature.

A section of core from 332 feet consisted of green glauconitic sandstone with matrix supported mudstone clasts (Photo 2). This may represent a submarine landslide. One clast at the top of the section deformed sediment under it in such a way as to suggest it was dropped into place. The remaining core from 320 to 334 feet was bentonitic sandstone with occasional large sandstone or mudstone clasts. Coally fragments are abundant. Grains of pink garnet, green pyroxene, mica (black, brown, yellow and green) and sapphire were identified using a binocular microscope. Thin sections confirmed the presence of garnet and olivine grains along with altered mafic rock fragments. Some textural features suggest the emplacement of the sediments is due to landslides in a shallow water environment. The sediments are reworked volcanics with diamond indicator minerals present. The environmental mechanism needed to explain this combination of features is proximity to a nearby kimberlitic volcanic crater rim.

9.3 1997

Two exploration holes were cored with a TH 60 Ingersol Rand drill-rig. Core was recovered with a 3" split core-barrel and a wireline. Hole 97-1 was collared north of Clear Lake and drilled vertically to a depth of 252 feet. Hole 97-2 was collared east of Lake 4 and angled at 45° from the horizontal to drill through a magnetic high under the lake (Fig 2) determined by the initial magnetic survey.

Hole 97-1 drilled through a typical section of Edmonton Formation; interbedded, bentonitic sands, silts, coal and muds. The sequence is typical of a near shore shallow marine/deltaic environment with a high volcanic component. Drill cuttings were periodically panned as the hole was being drilled. Likewise sections of core were shaved and panned to determine what heavy minerals were present. Garnets were abundant in the upper part of the hole. Blue sapphires and clinopyroxene grains were found. Marcasite worm casts and diatoms were abundant as was magnetite. Fewer indicator minerals were found in clean, well sorted sands at the bottom of the hole. Drill cuttings were caught and retained for future analysis.

Hole 97-2 was cored to 242 feet where core retrieval became impossible. The core would not lock into the core barrel but would slip out when the barrel was retrieved on the wireline. The softness of the sediment and the high bentonite content contributed to this problem. The only way to retrieve the core was to over-drill until the core barrel split. The core barrel would then jam inside the drill string making retrieval difficult. Coring was abandoned in favour of conventional drilling to a depth of 677 feet where coring resumed. The hole was drilled to a total depth of 723 feet. The rate at which the drill angle steepened was higher for conventional drilling than for coring. As a result, the

hole did not reach to the target magnetic anomaly. The cored top section was similar to hole 97-1. Drill cuttings were retained from the section which was drilled conventionally but have not been logged. The middle section consisted of very fine grained muds and silts which had a tendency to wash away altogether. When coring resumed it was in finely laminated, bioturbated, mud and claystones which are probably correlative to the Bearpaw Formation.

9.4 Palynological Age Determinations

Samples of core from drill holes 95-1 and 97-1 and 97-2 were submitted to Branta Biostratigraphy Ltd. for palynological age determinations (Appendix IV). From drill hole 95-1 samples were submitted from 314 feet and 322 feet depth (the glauconitic section seen in Photo 2). From hole 97-1 a sample was submitted from 174 feet depth. From hole 97-2 a sample was submitted from 100 feet depth. All samples yielded determinations of Late Campanian to early Maastrichtian age.

10. Mineralogy and Geochemistry

10.1 Introduction

Previous surface sampling recovered G1, G2, G5, G9, G10, G11 garnets of both eclogitic and peridotitic origin; CP5 chrome diopsides in the diamond inclusion field and phlogopite flakes which plot in the kimberlite field. Various rock grab samples from the glacially modified surface had textures and compositions which strongly suggest kimberlitic origin (Haimila, 1995). Surface prospecting and sampling was undertaken to confirm these findings. Mineral grains were hand picked from core of hole 95-1 and analysed. Drill cuttings from 95-1 were concentrated and analyzed for indicator minerals. Drill cuttings from holes 97-1 and 97-2 were concentrated and analysed for indicator mineralogy. A sandstone interval from 97-2 was split, crushed, concentrated and analysed for indicator mineralogy. Thin sections were cut from drill holes 95-1, 97-1 and 97-2. Petrographic analysis of these sections is only partially complete but has encouraging results.

10.2 Surface Sampling

Three samples were taken of surface materials. 10001 was a 5 gallon bucket of beach
sands taken from the south shore of Clear Lake. 10002 was a 5 gallon bucket of beach
sands taken from the north east shore of lake 6. 10003 was a 5 gallon bucket of beach sands taken from the south east shore of Pearl Lake (Fig. 2).

Sample 10001 was submitted to Loring Labs for concentration, magnetic separation, grain picking and analysis. 22.2 Kg of sample were screened. The +35 mesh and the -80 mesh material was discarded. 16.4 Kg of +80 mesh was concentrated using the Wilfley

table yielding 289 grams of concentrate. Using heavy media the concentrate was separated into three density categories; SG<2.9, SG 2.9-3.3, SG>3.3. The light fraction was discarded. The middlings were magnetically separated into magnetic and nonmagnetic parts. A Franz Magnetic Separator was used to classify the heavies into magnetic, paramagnetic, weakly paramagnetic and nonmagnetic categories.

A total of 64 indicator mineral grains were picked including: 7 garnets, 43 Cpx, 6 ilmenites, 1 chromite and 7 olivines. Fifteen grains were analyzed yielding: 5 G5 garnets, 3 Zn-spinels, 1 epidote, 2 tournalines and 4 ilmenites (Appendix VI-D). Tournaline, epidote and Zn-spinel grains were misidentified as clinopyroxene and olivine. The chromite grain was submitted for assay but disappeared. One of the tournalines plot in the Group I kimberlitic field for tournalines (Fig.20). One low chrome garnet has 0.06 wt% Na₂O which is close the levels recognized as deriving from lithospheric mantle.

A boulder bed on the north shore of Clear Lake (Photo 3) was initially thought to represent a glacial-fluvial deposit which might have concentrated indicator minerals. About two pounds of sand and gravel was panned by hand to concentrate heavy minerals. A rolled flake of gold about .5mm in diameter was found with an abundance of magnetite, garnets, pyroxenes, and amphiboles. A bulk test of the boulder bed was planned to evaluate the concentration of heavy minerals at this location.

10.3 Bulk Test Pits

A bulk test was conducted at grid coordinates 600S, 450W; just back from the boulder bed on the north shore of Clear Lake. The objective was to dig through and sample the horizon which gave rise to the boulder bed on the lake shore. It was thought that the boulder bed might be a glacial-fluvial channel which may have concentrated heavy minerals.

A 14.5 foot deep pit was dug with a backhoe. No glacial-fluvial gravels were encountered. The top 5 feet were medium to coarse grained, well sorted, loose sand with some silt, possibly lacustrine in origin. From 5 to 14.5 feet was chocolate brown, silty clay till. Boulders, cobbles and gravel sized material were supported in a matrix of clay. Several gneiss boulders had deteriorated to granular gravel in situ within the clay. Occasional silty lenses were present in the till. The boulder bed developed through the erosive action of waves removing fine grained material from the till rather than from glacial-fluvial sorting

Material from all horizons were loaded into a cement mixer. Water was added at a steady rate to carry away the fines in suspension. Material too coarse to wash away was caught in buckets and retained. The sample was seived into various size fractions and concentrated in a Pleitz jig. Results of heavy mineral separation are pending.

Diamond indicator minerals and kimberlitic rock specimens found in the boulder bed were also released from the till.

A second test pit was dug at 300S, 500W to a total depth of 13 feet. The entire hole was in clean, yellowish, glacial-lacustrine silts with occasional drop stones. Gypsum roses were common. Samples were bagged without washing and retained for mineral separation. The silt was later seived but was too fine to be concentrated by the Pleitz jig.

10.4 Rock Grab Samples

Two ultramafic specimens of very high metamorphic grade were recovered from the boulder bed on the north shore of Clear Lake. Sample #001 (Photo 5; labelled RH1 in Fig.11) is a garnet pyroxene gneiss with a specific gravity of 3.46. Sample #002 (Photo 6; labelled RH2 in Fig.11) is a garnet pyroxenite with a specific gravity of 3.64. Both samples contain G5 garnets with elevated sodium content. One garnet (grain 9 in sample #002) plots just inside the diamond inclusion field for eclogitic garnets (Fig.13). The clinopyroxenes in both samples are potassic and were classified as eclogitic by C.F. Mineral Research Ltd. (Fig.11). One clinopyroxene (grain 10 in sample #002) plots in the diamond inclusion field for eclogitics (Fig.12). Plotting Cpx K₂O versus Na₂O in the garnets places both of these specimens in the field of Group I kimberlites (Fig.14). Both specimens are probable chemical equivalents of basalt or gabbro.

Several specimens were collected which have the appearance of conglomerate but fall into the categories of milled volcanic breccia to lithic lapilli tuff. Specimen #008 (Photo 6) is an example in which well rounded crustal fragments are supported in a sandy matrix. The observed texture is as explainable by kimberlitic volcanism as by strictly sedimentary processes.

Sample #016 is one example of many coarse grained crystal tuff boulders that were found. In this specimen mafic and felsic lapilli fragments are supported in a sandy matrix of crustal minerals which includes red garnets (almandine). Although bedding was not well developed in this example, other samples were found with bedding well defined. Numerous examples of pyroxene crystal tuff (Photo 8) were also located.

Several examples of volcanic breccia were found with a texture that is almost mylonitic in nature. Specimen #015 (Photo 9) is a good example. The manner in which the fine grained mafic matrix appears to flow around felsic xenoliths suggests the material was moving very quickly prior to lithification.

Numerous rocks and boulders of dark grey phlogopite porphyry were also located. These have been described alternately as minettes and kimberlites by geologists familiar with these lithologies. Samples R1, R3, and R5 were collected from the boulder bed on Clear Lake. R5 was collected from Pearl Lake. All were submitted to Ashton Mining Canada

Inc. for identification (Appendix VI- F). Ashton in turn submitted them to Min-En Labs for whole rock ICP analysis. All four samples have the composition of lamproite.

Another igneous lithology is present in weathered tills in anomalous quantities. Sodalite and cancrinite bearing syenite rocks are abundant. No surface outcrops are known of this rock type in the upstream direction of ice movement.

The abundant hand samples, suggestive of kimberlitic origins, discovered on surface may have a local source coincident with magnetic anomalies delineated by the geophysical studies.

10.5 Drill Cuttings and Core

10.5.1 Drill Hole 95-1

A 19.6 Kg composite sample of drill cuttings, which were retained during the coring portion of drilling, was submitted to Loring Labs for heavy mineral concentration, magnetic separation, mineral picking and analysis (Appendix VI-A). Two garnet and 2 Cpx grains were picked.

A second 37 Kg composite sample of drill cuttings was also submitted for the same analysis. Additionally, half the sample was split and submitted for ICP whole rock analysis including rare earths. Eight grains were picked and analysed yielding 4 garnets, 3 Cpx and one blue sapphire corundum (Appendix VI-B). An additional 8 grains were picked from this sample and microprobed yielding: 3 garnets, 3 Cpx, one sphene and 1 spinel. 5 garnets were classified as G5 and 2 as G8. Five Cpx grains were classified as CP2 and 1 CP8.

All the Cpx grains plot in the diamond inclusion field for low chrome diopsides (Fig. 16). Notably, CP8 clinopyroxenes have hitherto only been identified as inclusions in diamonds and never in matrix kimberlite or lamproite (Fipke et. al. 1995, GSC Bull. 423, p.65). None of the garnets plot in the diamond inclusion field but are an unusual occurrence in sediments deposited so far from the Canadian Shield in the Western Canada sedimentary basin.

Figure 15 compares REE values from the 95-1 drill cuttings sample with values found at Mir and in an average kimberlite (Mitchell 1989). A marked similarity with the Mir kimberlite pipe are apparent. This suggests the volcanic sediments have a strong kimberlite component.

R. Haimila picked 10 grains from the core: 4 of which are garnets; 3 were staurolite, 1 was titanite, 1 was plagioclase and 1 blue crystal was too small to be analysed. The garnets were classified as: 1 G3, 2 G5 and 1 G8 (Appendix VI-B). None of the garnets plots in the eclogitic diamond inclusion field for Na₂O vs TiO₂. One garnet, grain 106 F, plots in the eclogitic diamond inclusion field for CaO vs TiO₂ (Fig.18).

In order to assay some picroilmenite, ilmenite and chromite examples R. Haimila also picked a number of dark coloured grains from the magnetic separations of the hole 95-1 cuttings sample. These were mounted, polished and microprobed (Appendix VI-B). Of the 11 grains selected there were: 2 chromites, 1 ilmenite, 1 Ti-magnetite, 3 altered Fe-Ti oxide/hydroxides, 3 rutiles and 1 allanite.

Both chromites, plot in the Argyle field (Fig. 19). Allanite is a REE mineral which is chemically reactive. It could only be found in this location if it were volcanically emplaced.

A variety of interesting mineral grains were hand picked from coarser sandstones in hole 95-1. These were submitted to M. Glatiotis for semiquantitive SEM/Kevex analysis (Appendix VI-E). The presence of sapphire was confirmed.

10.5.2 Drill Holes 97-1 and 97-2

Drill cuttings were collected while hole 97-1 was being drilled. 372.4 Kg of cuttings were submitted to Loring Labs for heavy mineral concentration, magnetic separation, mineral picking and analysis. A total of 208 indicator minerals were picked including: 98 garnets, 71 Cpx, 14 ilmenite and 25 olivine. 7 gold grains were also picked from the sample. Of 17 grains submitted for microprobe analysis; 5 were staurolite, 5 were garnet, 5 were tourmaline and two were apatite.

Of the garnets that were microprobed 4 are G7 and 1 is G11. G7 and G11 garnets derive from peridotite source rocks. The presence of these garnets indicates a volcanic source with an ultramafic component.

Figure 20 plots K_2O versus TiO_2 content of the tourmaline grains and compares them with tourmalines found in a variety of diamond pipes. All the tourmaline grains are potentially pseudomorphous after Group I and II Cpx which argues favourably for a kimberlitic source for these grains.

The gold grains are visible nuggets and flakes up to 1.5 mm long. They are surprisingly coarse considering the fine grained nature of the sandstones from which they derive. Gold is commonly found in volcanic horizons in Alberta.

Three samples were taken from drill hole 97-2 for heavy mineral separation and analysis. One composite sample was made from the drill cuttings from the top half of the hole (97-2A) and another composite sample was made from drill cuttings from the bottom half of the hole (97-2B). Both samples filled one five gallon pail each. Sample 97-2 was half of the split core from a sandy interval at the bottom of the hole between depths of 370 and 386 feet. The samples were submitted to Loring Labs for heavy mineral separation, classification into magnetic categories, mineral picking and microprobe analyses.

Eight mineral grains were picked from 97-2A but 10 grains were analysed. 10 mineral grains were picked from 97-2B but only five were analysed. Incorrect labelling or a transposition error was made in reporting at Loring Labs. From sample 97-2, 19 grains were picked as ilmenites, none of which were actually ilmenites but were pyroxene, tourmaline and spinel. Also, grains picked as Cpx from samples 97-2 A and B were actually tourmaline and spinel.

The Cpx grains were correctly identified as **low chrome** diopsides by Loring Labs but were plotted on the chart for **high chrome** diopsides thereby misidentifying the significance of the grains (Appendix VI-D). When plotted on the correct chart only one of the Cpx grains from drill hole 97-2 plotted outside the diamond inclusion field (Fig.19); a substantial error.

The tourmaline grain from sample 97-2 plots in the field for tourmalines potentially pseudomorphous after Group I Cpx (Fig. 20). Loring Labs gives no indication of the significance of tourmalines in their report (Appendix VI-D).

10.6 Thin Section Analyses

10.6.1 DH 95-1

Four polished thin sections were made at the University of Calgary from the core of DH 95-1 at depths of 320', 372' and 384'. The notable features are:

- angularity of quartz shards and feldspar grains;
- presence of mafic, and ultramafic lithic fragments;
- presence of olivine, pyroxene and garnet grains;
- pseudomatrix of lithic fragments that have altered to bentonite and
- detrital dolomite and siderite.

The slide which best demonstrates the olivine and mafic lithic fragments was cut parallel to bedding in a coarse grained lamination (Photo 11). The sediments were deposited proximal to a volcanic source. Olivine grains travel no farther than three kilometres in sedimentary environments before chemically weathering away. The macroscopic textures are sedimentary but the angularity of the grains is evidence that there was relatively little sedimentary reworking before deposition.

10.6.2 Hand Specimens

Five polished thin sections were prepared at the University of Calgary from hand specimens: #002, #003, #006, #009, and #019.

- Sample # 002 (Thin section photos 25 and 26; hand specimen photo 6): Garnet pyroxenite of eclogite grade metamorphism was found in the boulder bed on the north shore of Clear Lake. Specific gravity is 3.64. Mineral Research microprobed 11 grains from this specimen (RH2 in Fig.11). Five grains were G5 almandine garnets, three were eclogitic clinopyroxenes, one was ilmenite and the remaining two were quartz. One cpx plotted in the diamond inclusion field for low chrome diopsides (Fig.12). One garnet plotted in the diamond inclusion field for eclogitic garnets (fig.13). The garnets are sodic and the clinopyroxenes are potassic. A chart comparing those features indicates both group I and II kimberlite composition. This rock was subject to eclogitic facies metamorphism in the diamond stability field. Its original composition was probably basalt or gabbro.

- Sample #003 (Thin section Photos 27 and 28) is a high grade metamorphic rock found on the north shore of Lake 4. This specimen has a specific gravity of 3.05. In hand specimen there appeared to be corundums pseudomorphous after plagioclase. The grains have feldspar twinning but show a conchoidal fracture which is not characteristic of feldspar. Corundum replacing plagioclase indicates pressures in excess of 10 Kbars. In thin section the plagioclase is cloudy with extremely corroded edges. Metamorphic garnet, amphibole and pyroxene developed at the expense of the plagioclase.

23 24

Specimen #006 (Thin section photos 29^o and 30) is a high grade, banded metamorphic rock found on the east shore of Pearl Lake. The primary components are: hornblende, quartz, almandine and zoisite.

Thin section examinations were performed by Beth Haverslew. Examination of the remaining thin sections is not yet complete. Additionally, 34 thin sections were prepared by Mount Royal College from drill holes 97-1 and 97-2 and hand specimens. A report of these examinations is still pending.

11. Statement of Expenditures

Management:		\$	15,000.00
Geology:			
Literature Search: 16 hours @ \$60 Biostratigraphic Analyses: 4@\$).00/hour 181.90	\$ \$	960.00 727.60
Geophysics:			
Spectra Airborne Magnetic Survey		\$	14,526.32
Drilling:			
1995		\$ 1	15,000.00
1997		\$ 3	30,251.73
Reclamation and Test Pits		\$	500.00
Laboratory Analyses			
Loring Labs:		\$	6,008.14
Ashton Mining		\$	756.51 🦯
		\$	150.00
/U of C Contract Servi	ces	\$	160.50
Thin Sections			
U of C. Slide Preparation:	6 @ \$ 64.20	\$	385.20
M.R.C. Slide Preparation:	34 @ \$ 35.00	\$	1,190.00 🗸
examination:	5 @ \$100.00	\$	500.00
718709 Alberta Ltd.			
Labour, ground mag., EM34, ERT,	supervision, prospecting, etc	\$ 5	57,407.70~
Report Preparation		<u>\$</u>	5,000.00
Total Assessment Cost		\$1	48,528.70
GEO			

12. Statement of Qualifications

I, Andreas C. Glatiotis of Calgary, Alberta do hereby certify that:

- I am a consulting geologist with a business address at: 5643 Brenner Crescent NW, Calgary, Alberta, Canada; phone/fax: (403) 282-0145; E-mail: glatiota@cadvision.com.
- 2. I am a graduate of The University of Calgary: Department of Geology (B.Sc. 1977)
- 3. I have practised my profession in mineral exploration and development for the past 20 years.
- 4. I am a member in good standing of the Association of Professional Engineers, Geologists and Geophysicists of Alberta (APEGGA).
- 5. I have based this report upon information provided to me by 656405 Alberta Ltd. and upon work performed by me or under my supervision in 1997.
- 6. I have an indirect interest in this property as an investor in 718709 Alberta Ltd.

Signed and dated this 25th day of November, 1997 at Calgary Alberta.

13. References

Allen, J.R.L.	and Sanderson, J.O.G.
1946	Geology of Red Deer and Rosebud Sheets, Alberta
	Research Council of Alberta Report #15, 115pp.
Binda, D.L. 1969	Provenance of Upper Cretaceous Kneehills Tuff, Southern Alberta. Canadian Journal of Earth Sciences, Vol. 6, 1969, p. 510-513.
GSC Bull 447	, 1993
Fipke, C.E., C 1995	durney, J.J. and Moore R.O Diamond Exploration Techniques Emphasising Indicator Mineral Geochemistry and Canadian Examples. GSC Bulletin 423
Haimila, R. 1995	Assessment Report prepared for Dr. T. Yoshida of Calgary Alberta; holder of Metallic and Industrial Mineral Permits nos. 9393080543 to 9393080547 inclusive.
Helmstaedt, H 1995	., Schulze, D.J. and Kaminsky, F. Diamonds - Theory and Exploration; a "Hands-on" Short Course #20 Geological Association of Canada
Irish, E.J.W. 1970	The Edmonton Group of South Central Alberta. Bulletin of Canadian Petroleum Geology, Vol. 18, p. 125-155.
Leckie, D. and 1986	l Rosenthal, L. Cretaceous Depositional Facies in the Western Interior: The Southern Alberta Transect. C.S.P.G. Summer Field Trip, August 8 - 10, 1986.
Lorenz, J.C. 1982	Lithospheric Flexure and the History of the Sweetgrass Arch. in: Geological Studies of the Cordilleran Thrust Belt. R.B. Powers (ed.); Rocky Mtn. Assoc. of Geols. 1982 Symp., p.77-89.

McCandless, 1989:	T.E. and Gurney, J.J. Sodium in garnet and potassium in clinopyroxene: criteria for classifying mantle eclogites. In Kimberlites and Related Rocks, J.Ross (ed.). Geological Society of Australia, Special Publication no. 14, p. 827 to 832.
Mitchell, R.H 1989	Kimberlites: Plenum Press, New York and London
1995	Kimberlites, Orangeites and Related Rocks: Plenum Press, New York
Mitchell, R.H 1991	., and Bergman, S. Petrology of Lamproites: Plenum Press, New York
Ower, J.R. 1958	The Edmonton Formation Jour. Alberta Soc. of Petroleum Geologists, V. 8, no.11, p.309-323.
Moore, R.O. 1986	A study of the kimberlites, diamonds and associated rocks and minerals from the Monastery Mine, S.A. Unpublished Phd thesis, University of Cape Town, South Africa, v. 2, p. 1 to 359.
Ross, G.M. (e 1995	ditor) Alberta Basement Transects Workshop, Lithoprobe Report #47 Lithoprobe Secretariat, U.B.C.
Shafiqullah, M 1963	1. Geochronology of the Cretaceous-Tertiary Boundary, Alberta, Canada Msc Thesis, University of Alberta.
Shepheard, W 1969	.W. Bearpaw-Edmonton Transition, Drumheller. M.Sc. Thesis, University of Calgary.
Sternberg, C.N 1947	A. The upper part of the Edmonton Formation of Red Deer Valley, Alberta. G.S.C. Paper 47-1

Figure 1:

Figure 3. Schematic west to east cross-section across the Western Canada sedimentary basin.

.

	U	W NIT	ESTERN ED STATES	CENTRAL FOOTHILLS REGION	I	OLDMAN RIVER REGION	LITTLE BOW RIVER REGIGA	BOW RIVER-RED DEER RIVER REGION		CYPRESS HILLS, ALBERTA REGION									
EOCENE	FORT UNION		ORT UNION	PASKA POO FORMATION		PORCUPINE HILLS FM	PASKA POO	PASKA POO FORMATION		RAVENSCRAG									
PAL1			·····	ENTRANCE CONG	w	UPPER PART /ILLOW CR FM	FORMATION			FORMATION									
	LANCE				I.OWER PART WILLOW CREEK FORMATION		WILLOW CREEK FACIES			FRENCHMAN FORMATION									
						BATTLE FM	7	BATTLE FM		BATTLE FM									
				BEARPAW BRAZEAU FORMATION	V	HITEMUD FM	ST MARY	WHITEMUD FM	e .	WHITEMUD FM									
UPPER CRETACEOUS						RIVER FACIES	HORSESHOE NOLU CANYON LU FORMATION WQ	GROU	EASTEND FM										
	GROUP	JERRE	BEARPAW 92 92 94 94 94 94 94 94 94 94 94 94 94 94 94		ST. MARY RIVER FORMATION			HORSESHOE CANYON FACIES	EDMONTON	BEARPAW FORMATION									
	ONTANA	I					BLOOD RESERVE FM BEARPAW FM	BEARPAW FORMATION	BEARPAW FORMATION										
	W											JUDITH		RIVER UP	OLDMAN FORMATION	OLDMAN FORMATION	OLDMAN FORMATION		OLDMAN FORMATION
			RIVER		BELLY GRC	FOREMOST FORMATION	FOREMOST FORMATION	FOREMOST FORMATION		FOREMOST FORMATION									
			CLAGGETT	ALBERTA	PAKOWKI FM		PAKOWKI FM	LEA PARK FORMATION		PAKOWKI FM									
			EAGLE	GROUP	MILK RIVER FM		MILK RIVER FM			MILK RIVER FM									

Figure 4: Correlation of the uppermost Cretaceous and Paleocene formations of the southern Alberta Plans and central Foothills: from Irish 1970.

COMPOSITE SECTION RED DEER RIVER	ALLAN & SANDERSON	(1945)	OWER (1958)	
	COARSE SANDSTONE, DISCONFORMITY	PASKAPOO (TER.)	SANDSTONE	PASKAPOO (TER.
	FRESHWATER, BENTONITIC BEDS ARDLEY SEAM NO 14 GREY SANDSTONES NEVIS SEAM NO. 13 GREY & PALE BUFF SAND & SILTSTONES	UPPER EDMONTON MEMBER 290 FT.	DULL GREEN TO GREY, SLIGHTLY BENTONITIC SHALES; FINE TO COARSE SALT-8-PEPPER SANDSTONES; HEAVY COAL SEAMS.	MEMBER E 250 FT.
	KNEEHILLS TUFF HORIZON WHITE SANDSTONE THOMPSON SEAM NO. 12 GREY SANDS & SHALES	MIDOLE	BENTONITIC SHALE; TUFFACEOUS SHALE; TUFF BANDS BENTONITIC GREY SHALE; SALT-&-PEPPER SANDSTONES; SEVERAL COAL SEAM HORIZONS	MEMBER 40 FT. D MEMBER C
	CARBON SEAM NO. II DULL GREY SANDSTONE	EDMONTON MEMBER 300 FT.	LIGHT GREEN; SLIGHTLY BENTONITIC SHALES; LENSES OF SALT & PEPPER SANDSTONES; DRUMHELLER MARINE	MEMBER B
	CORBICULA ZONE BARREN BEDS OSTREA ZONE SEAM NO. 10		FOSSIFEROUS LIMESTONE	200 FT.
	SEAM NO. 9 SEAM NO. 8 CALCAREOUS & FERRUGINOUS SILTS & SANDS DALY SEAM NO. 7 SEAM NO. 6 SILT & SANDSTONE LENSES NEWCASTLE SEAM NO. 5 } SEAMS NOS. 2,3,4 DRUMHELLER SEAM NO. 1	LOWER EDMONTON MEMBER 600 FT.	GREY & BROWN BENTONITIC SHALES; WHITE & LIGHT GREY SALT-&-PEPPER FELDSPATHIC SANDSTONES; CARBONACEOUS SHALES; NUMEROUS CUAL SEAMS; THICKENS RAPIDLY TO NORTH REPLACING UNDERLYING BEARSPAW SHALE	MEMBER A 450 FT.
19 - 2019 - 2019 - 2019 - 2019 - 2019 - 2019 - 2019 - 2019 - 2019 - 2019 - 2019 - 2019 - 2019 - 2019 - 2019 - 2	SEAM NO. O LIGHT GREY SANDSTONE		· · · · · · · · · · · · · · · · · · ·	
	SHALES	BEARPAW	INTERBEDDED SHALES & SANDS	BEARPAW

Figure 5: Subdivision of Edmonton formation according to Allen and Sanderson (1945) and Ower (1958).

TOP OF THE CAMBRIAN STRUCTURE CONTOUR MAP

CONTOUR INTERVAL: 100m

Figure 7: Magnetic Contour Map of Lake 4.

				•							Batch File	··95-61	3"					Max		
				Classif	ications													Trace		
Sample #	Hou nt	Cell	Grain	SA DI	CFM	Si02	1i02	A(203	V203	Cr203	Fe203 Fe0	MgQ	Ce0	8r.ð 1 1.1	N TO	2710 	N6205	NaSO NaSO	K20	Totals ++++++
R#1	1705	1	7		IL		50.43	.00		.01	3.34 44.76	.00	.00	.58		.08	.04			99 .25
R51	1705	1	8		10		50.43	.00		.00	3.50 44.80	.02	. C2	.52		.00	. 65			9 9 .33
RAT	1705	1	10		OPK	49.04	.03	.25		. 93	43.59	3.33	.59	.22	.04			.029	-01	97,14
2H1	1705	1	4		GRTZ	101.04	.01	.C O		-02	.02	.0C	.01	- 00	.00			.015	. 02	101.14
	1705	1	1	CE	CPX	43.15	.29	8.17		.0 0	33.09	2.16	9.15	. 12	.02			.553	.25	96.95
	291	1	ŝ	CE	СРХ	45.01	. 29	5.38		.01	30.35	2.65	11.24	.03	.03			.471	. 20	95.69
241	1705		11	CE	СРХ	44.48	.25	7.26		.02	31_49	2.41	10.35	. 98	.01			.575	. 38	?7.31
241	1705	1	2	é	ALM	36.84	. 10	19.97		.03	34.38	.92	7.40	-44	.02			.012	.00	11.0.11
२ म १	1705	1	3	R	ALM	37.06	. 09	20.09		.03	34,00	.86	7.58	.46	. 04			.008	.01	100.23
RH'I	1705	1	6	R	ALM	36.91	11	19.95		.00	34.53	.97	7.05	.37	.01			.927	_01	99.94
851	1705	1	ş	R	ALM	36.69	.10	19.95		.02	34.16	.80	7.60	.43	.00			.011	. a'	
H2	1706	1	7		п		50.60	_01		.02	3.23 44.74	. 10	.01	.58		-00	.00			
47	1706	1	1		GRTZ	100.87	.01	.04		.02	.29	.00	.05	.00	.04			.501		
<i>.</i>	1706	1	3		ORTZ	100.44	-00	-01		.00	.05	.00	.00	.00	.02			.005		
HC ¹	i706	1	S	CE	CPX	47.44	.17	6.98		.04	22.20	7.58	11.65	. 10	-00			.495	5 5	
4. ¹	1706	1	10	CE	CPX	51.73	.13	2.23		.00	22.05	ዮ.12	11.90	.17	.92			.126	11,2	
ίt.	1706	1	12	CE	CPX	44.62	.40	10.53		.02	22.31	6.17	11.63	. 13	.03			.669	13	د .
882	1706	1	5	R	ALM	37.65	. 14	20.86	•	.00	30.23	5 3.11	7.56	.72	. 10			.004	۰	133.27
SK8	1 /06	i	ó	R	ALN	37.40	. 15	20.72		.02	30.08	3.08	7.43	.63	.03			.029	9.	97.54
RN2	1706	1	8	R	ALN	37.62	.08	20.93		.00	30.27	2.74	7.55	.75	-04			. 006	.01	\$9.99
RH2	1706	1	9	R	ALM	37.75	. 11	20.86		.00	29.87	3.04	7.53	.65	.03			. 053	01	97.89
R52	1706	1	11	R	ALM	37.59	. 08	20.79		.01	30.19	2.98	7.74	.68	.06			COR	30	100.11

Figure 11: Microprobe Analyses from C.F. Mineral Research Ltd. on samples #001 (RH1) and #002 (RH2).

Figure 12: AI2O3 vs Na2O for Eclogitic Low Chrome Diopsides from hand samples #001 and #002

Figure 13: Na2O vs TiO2 for Eclogitic Garnets from samples #001 and #002

Cpx K₂O vs Garnet Na₂O for Samples #001 and #002

Figure 14: Cpx K20 vs Gar Na2O for samples #001 and #002

A Comparison of Rare Earth Element Values

	DH 95-1 ppm	MIR ppm	average Kimberlite ppm	
La	20.0	21.5	150.0	
Ce	37.0	43.5	200.0	
Nd	17.0	10.7	85.0	
Sm	3.2	2.2	13.0	
Eu	0.4	0.8	3.0	
Tb	0.6		1.0	
Yb	1.4	0.1	1.2	
Lu	0.2	0.03	0.16	
Hf	3.6	na	5.6	
Cs	1.8	na	2.2	
U (diamo Th (6.7	2.0 ndiferous kimberlit ' ppm) than barren	na tes from the centre of the marginal kimberlites (U	3.1 Siberian Platform have lower U (1.2 ppm = 2.5 ppm, Th = 17.5 ppm)	ı) and
Th	5.1	na	17.0	
Rb	32.0	na	73.0	

Figure 15: Comparison of REE Values from DH 95-1 with the Mir Pipe and average Kimberlite.

Figure 16: Al2O3 vs Na2O for Eclogitic Low Chrome Diopsides from DH 95-1 cuttings

Figure 17: CaO vs TiO2 in Eclogitic Garnets from DH 95-1 core and cuttings

Figure 18: TiO2 vs Cr2O3 in Chromites from DH 95-1 cuttings

Figure 19: Al2O3 vs Na2O for Eclogitic Low Chrome Diopsides from DH 97-2

Diatreme Tourmalines

Figure 20: K₂O vs TiO₂ for diatreme tourmalines from DH 97-1, DH 97-2 and sample 10001.

Photo #1: Raymond Haimila examines drill cuttings from hole 97-1 in the field.

Photo 2: DH 95-1, 332': Glauconitic SS with matrix supported 'clasts'. Clast in section of core at left deforms the sediment underneath it suggesting it was dropped into place.

Photo 3: Boulder bed on the north shore of Clear Lake

1

Photo 4: Bulk test pit #1; immediately north of the boulder bed on Clear Lake.

Photo 5: Garnet Pyroxene Gneiss: hand specimen catalogue #001 Probable composition of metabasalt or metagabbro in the eclogite metamorphic facies.

Photo 6: Garnet Pyroxenite: hand specimen catalogue #002 Probable composition of metabasalt or metagabbro in the eclogite metamorphic facies.

Photo 7: Coarse grained tuff with crustal xenoliths: hand specimen catalogue # 008 Sand sized matrix of crustal minerals supports well rounded (milled) crustal xenoliths. Possible kimberlitic volcanic rock.

Photo 8: Coarse grained crystal tuff: hand specimen catalogue #016 Mafic and granitic lapilli fragments supported in a matrix of crustal minerals including garnet.

Photo 9: Pyroxene crystal tuff: hand specimen catalogue # 012 Coarse diopside crystals, felsic lapilli and mafic lapilli characterise this sample.

Photo 10: Volcanic breccia: hand specimen catalogue #015. Rolled felsic xenoliths are supported in a fine grained, mafic matrix demonstrating rapid movement of material prior to lithification.

-

-

Photo #11: DH 95-1, 372', 32x; cut parallel to bedding; coarse grained, laminated, bentonitic sandstone. Very angular, lithic sandstone with altered mafic and ultramafic rock fragments, angular quartz shards, feldspar and dolomite grains with accessory garnet and olivine.

Photo #12: DH 95-1, 372', 120x; high relief, angular grains at center of photo are garnets.

Photo #13: DH 95-1, 372', 120x; an olivine and a detrital dolomite amid altered lithic fragments.

Photo #14: Same photo as above with crossed polars.

1,

1.

Photo #15: DH 95-1, 320', 32x; med. well sorted, angular, lithic sandstone; siderite clasts are larger than the average rock fragment and siliciclastic grains

....

1

•

Photo #16: DH 95-1, 320', 80x; olivine?, detrital dolomite, abundant rock fragments.

Photo #17: Same as photo 16 with crossed polars

-

Photo #18: DH 95-1, 372', 32x, cut perpendicular to bedding: overview of angular sandstone texture.

Photo #19: DH 95-1, 372', 120x; cut perpendicular to bedding: abundant rock fragments; feldspar, feldspathic rock fragments and altered rock fragments; siderite in matrix

Photo #20: Same as above with crossed polars.

1

1.

Photo # 21: DH 95-1, 384', 32x; cut perpendicular to bedding; overview showing abundant feldspars, altered rock fragment pseudomatrix, detrital dolomite and microcrystalline siderite in matrix

Photo #22: Same as above with crossed polars

10

Photo #23: Thin section of hand sample Cat#006, 32x: irregularly banded gneiss; hornblende, quartz, almandine, zoisite?, epidote/clinozoisite and clinopyroxene.

Photo #24: Same as above with crossed polars.

1

Photo # 25: Thin section of hand sample Cat.#002, 32x: possible eclogite facies metamorphism; pyroxene, garnet and minor quartz

Photo #26: Same as above with crossed polars.

1.

Photo #27: Thin section of hand sample Cat.#003, 32x: granulite facies metamorphism; granular gar., qtz, fsp., bi., amphibole and cpx metamorphically developed at the expense of cloudy plagioclase.

Photo #28: Same as above with crossed polars.

10

Appendix I

Type Section

of the

Horseshoe Canyon Formation

(Irish, 1970)

E. J. W. IRISH

- Stewart, J. S., 1919, Geology of the Disturbed Belt of southwestern Alberta; Geol. Surv. Can., Mem. 112.
-, 1943, Bassano, Alberta; Geol. Surv. Can., Map 741A.
- Tozer, E. T., 1952, The St. Mary River Willow Creek contact on Oldman River, Alberta; Geol. Surv. Can., Paper 52-3.
-, 1956. Uppermost Cretaceous and Paleocene nonmarine molluscan faunas of Western Alberta; Geol. Surv. Can., Mem. 280.
- Tyrrell, J. B., 1887, Report on a Part of Northern Alberta and Portions of the Adjacent Districts of Assiniboia and Saskatchewan; Geol. Surv. Can., Ann. Rept. 1886, new. ser., v. II, pt. E, p. 1-176.
- Wells, G. C., 1957, The Sweetgrass Arch area Southern Alberta; Guidebook, Seventh Annual Field Conference; Alberta Soc. Petrol. Geol.
- Williams, E. P., 1949, Cardston, Alberta; Geol. Surv. Can., Paper 49-3.
- ----, 1951, St. Mary River Formation in Spring Coulce Magrath Area, Alberta; Bull. Am. Assoc. Petrol. Geol., vol. 35, pp. 885-898.
- Williams, G. D., and Burk, C. F., Jr., 1964, Upper Cretaceous in Geological History of Western Canada: Alberta Soc. Petrol. Geol., p. 169-189.
- Williams, M. Y., 1932, The Geological History of the Southwestern Plains of Canada; J. Geol., v. 40, p. 560-575.
- Williams, M. Y., and Dyer, W. S., 1930, Geology of southern Alberta and southwestern Saskatchewan; Geol. Surv. Can., Mem. 163.

Appendix

Section 1. Type section of Horseshoe Canyon Formation

Section 2. Type section of Scotlard Member

Section 1. Composite section measured along Red Deer River valley between Sec. 7, Tp. 28, Rgc. 18W4 and Sec. 7, Tp. 34, Rgc. 21W4.

BATTLE FORMATION

3	Clay shale, brownish to purplish black, mauve-weathering, soft; extremely bentonitic; "popcorn-like" texture when weathered	10.0	96.0
2	Tuff, hard, brittle brownish grey light grey worthoring:	10.0	20.9
	vuggy (Kneehills tuff)	0.9	16.9
1	Clay shale, brownish to purplish black, mauve-weathering; soft; extremely bentonitic; "popcorn-like" texture when		
	weathered	16.0	16.0
	WHITEMUD FORMATION		
1	Sandstone, argillaccous and shale, sandy: sandstone, grey to greenish grey, white-weathering, soft, friable; in part crossbedded; contains lenses and thin beds of sandy shale. Contact with overlying Battle is abrupt	14.0	
	HORSESHOE CANYON FORMATION (Tupe Sectio	<i>n</i>)	
115	Shale, grey, weathering grey, bentonitie	3.0	748.1
114	Sandstone, green-grey, buff-weathering, fine-grained; concre-		
	tionary	3.0	745.1
113	Shale, grey, weathering grey, bentonitic	20.0	742.1

EDMONTON GROUP, SOUTH-CENTRAL ALBERTA

112	Sandstone, fine-grained, soft, argillaceous, bentonitic, grey, weathering light grey; unit contains numerous ironstone beds from 3 inches to 6 inches thick	15.0	722.1
111	Coal and fossilized wood, fossil tree stump; unit has 2 inches of dark grey, fissile shale both above and below the coal	3.0	707.1
110	Sandstone, fine-grained, argillaceous, grey, weathering light buff-grey: unit mainly soft but contains 3 layers about 10 in thick of hard, grey, brown-weathering, cross- bedded sandstone	10.0	7011
100	Coal and earbanagane chala	0.9	CO 1 1
108	Sandstone arguillaceous soft friable fine-grained grey to	0.0	0.94.4
1.00	light buff, weathering buff; well bedded with shaly and carbonaccous particles	16.0	693.3
107	Coal	0.7	677.3
106	Shale, silty interbedded with siltstone: shale, clayey and silty, grey, weathering grey; siltstone, grey, weathering		
	grey	11.0	676.6
105	Sandstone, fine-grained, grey, weathering light grey; mainly soft and argiflaceous; contains coaly partings near base; top of unit is 1 ft of very hard, fine-grained, calcareous, growther there is a solution.	10.0	CCE C
101	Sandstone, hard, fine-grained, grey, weathering buff, cross-	10.0	000.0
100	beaded	1.0	655.6
103	Ironstone, coheretionary bed; green, weathering red-brown Shale, bentonitic, soft, grey, grey-weathering; near base of unit are 2 bands of soft brown shale each about 1 in	0.5	654.6
	thick	13.0	654.1
101	Sandstone with much interbedded siltstone and silty shale: sandstone, argillaccous, fine-grained, grey, weathering light grey: siltstone, grey, weathering grey: shale, clayey, green, weathering buff. Unit contains several 2:in-thick, hard, crossbedded sandstone beds and numerous 2- to 4-in- thick concretionary, red-brown ironstone beds	26.0	611.1
100	Shale, soft, greenish grey, weathering buff: interbedded with sandstone, ine-grained, grey, weathering grey; sand- stone bods as much as 3 (1) thick (dimeasure boust)	27.0	615.1
99	Sandstone, argillaccous, bentonitic, fine-grained, grey, weathering light grey; interbedded with shale, silty, brownish grey, weathering buff; unit contains some thin	21.0	500.1
98	Sandstone, soft, argillaceous, bentonitic, fine-grained, grey, weathering light grey; unit contains 3 beds, from 1 to 2 ft thigh up for a set of the set o	16.0	588.1
	sandstone	32.0	572.1
97	Sandstone, siltstone, and silty shale in about equal amounts. Sandstone, fine-grained, soft, argillaceous, grey, weather- ing light grey; siltstone, argillaceous, grey, weathering grey; shale green, weathering light buff; 2 ft of coaly.		
	shale about 15 ft above base of unit	35.0	540.1
	This part of section measured in Sec. 10, Tp. 30, Rgc, 24W4		
96	Limestone, sandy and sandstone, calcareous; grey, grey- weathering, hard, dense; contains Corbicula occidentalus and Ostray dabra thrumheller marine tongue of Alban		
	and Sanderson, 1945)	2.0	505.1
95	Sandstone, fine-grained, grey, light grey-weathering, ar- gillaceous, bentonitic	10.0	503.1
94	Siltstone and silty shale interbedded. Siltstone, grey, grey-		
	weathering, argillaceous: shale, green-grey, silty, soft, ben- tonitic, light_buff-weathering	7.0	493.1
93	Sandstone, fine-grained, grey, light grey-weathering argilla-		
	ceous, benionitic; contains 2 bands of red-brown weather- ing ironstone about 2 in thick	6.0	486.1

92	Shale, silty, light green-grey, grey- to buff-weathering soft,	5.0	480-1
01	Sendstone fine grained grey light grey weathering argilla.		100.1
51	ceous, bentonitic; contains 3 bands of red-brown weath-		
	ering ironstone; contains band of hard, calcareous, concre-	100	175 1
	tionary, grey, buff-weathering sandstone, 4 in thick	10.0	470.1
90	Silistone, argillaceous, grey, grey-weathering	3.0	465.1
89	Sandstone, argillaceous, solt, bentonitic, line grained, grey,		
	1/2 in thick	3.0	462.1
88	Shale, silty, soft, bentonitic, grey, grey-weathering	8.0	459.1
87	Sandstone, fine-grained, grey, light grey-weathering, argilla-		
	ceous, bentonitic	3.0	451.1
86	Sandstone, fine-grained, calcareous, hard, grey, buff-weather-	0.0	1.10.1
~	ing	2.0	440.1
85	Sandstone, line-grained, soll, arginaceous, bentoniuc, grey,		
	along bedding surfaces; limestone pod or lens in upper		
	part of unit, lense is 4 ft thick and about 20 ft long	12.0	446.1
84	Siltstone, hard, grey, grey-weathering	2.0	131.1
83	Sandstone, soft, argillaceous, well bedded; carbonaceous		
	partings along bedding surfaces; grey, bull-weathering;		
	(3.in) ironstone hands	4.0	432.1
82	Shale, soft, bentonitic, green-grey, grey-buff weathering; in		
02	part silty; several thin (1 to 2 in) red-brown weathering		
	ironstone bands	11.0	428.1
81	Coal with 4-in-thick parting near middle of hard red-brown	9.0	117.1
	sandstone	2.0	417.1
80	Shale, soft, brownish grey, buil-grey weathering	2.5	410.1
79	Sandstone, grey, weathering light grey, friable, line-grained,		
	silty shale beds	9.5	412.6
78	Shale, carbonaceous, brown, weathering brown; thin coaly		
	stringers	1.0	403.1
77	Shale and silly shale, dark grey, grey and brown-weather-	• •	400.1
	ing; unit contains much plant debris	9.0	402.1
76	Shale, carbonaceous, in part fissile, brown, brown-weather-	1.0	393.1
75	Ing; much plant debus		
15	weathering	3.0	392.1
74	Shale and silty shale, soft, greenish grey, grey-weathering	14.0	389.1
73	Coal	2.0	375.1
	This part of section measured in Sec. 34, Tp. 29, Rac. 21Wh		
72	Shale soft grey-buff buff-weathering	3.5	373.1
71	Sandstone, fine-grained, grey, light grey-weathering, soft,		
• -	argillaceous, friable; unit contains coaly stringers and 2		
	thin (2 in thick) beds of red-brown weathering ironstone	4.0	369.6
70	Shale, soft, grey, grey-buff weathering	3.0	365.6
69	Sandstone, soft, argillaceous, bentonitic, grey, light grey-		
	weathering; some interbedded shale, grey to green, grey- weathering: scattered ironstone concretions	10.5	362.6
68	Coal	1.0	352.1
67	Shale, grey-brown, buff-weathering	2.7	351.1
66	Sandstone, grey, light grey-weathering, soft, fine-grained;		
	3 ironstone beds each 2 in thick	2.0	348.4
65	Shale, soft, bentonitic, in part silty, grey, grey-weathering;		
	surface of unit stained by numerous contained ironstone	50	216 4
	Deas	0.0	340.4
64	Coal and coaly shale	3.0	341.4

EDMONTON GROUP, SOUTH-CENTRAL ALBERTA

153

63	Shale, in part silty or sandy, grey, grey weathering, unit contains plant remains and coal stringers	7.0	338.1
62	Sandstone, soft, argillaccous, bentonitic, grey, buff-grey weathering, fine-grained, bedded; coal and carbonaccous partings along bedding surfaces	5.0	331.4
61	Sandstone, soft, friable, bentonitic, argillaceous, fine-grained, grey, light grey-weathering; massive and crossbedded; contains large, hard, calcareous sandstone concretions and	Pt) F	200-1
<u>co</u>	lenses as well as ironstone nodules.	20,5	326.4
00	tains small, scattered ironston nodules	6.5	305.9
59	Ironstone concretionary bed	1.0	299.4
58	Sandstone, fine-grained, argillaceous, bentonitic, friable, light grey, light grey-weathering; massive and crossbedded: some argillaceous or carbonaceous partings	11.5	298.4
57	Sandstone, hard, calcareous, grey, buff-weathering, cross- bedded	1.0	286.9
56	Sandstone, soft, argillaceous, fine-grained, grey, grey-weath-	85	285.9
==	Chale Gasile exchangeous dark grey brown weathering	113	277.4
50 51	Shale, issue, rational ergy, bentenitic, grey-buff weathering: unit contains 4 thin ironstone beds each about 3 in thick	8,0	277.1
53	Sandstone and siltstone. Sandstone, fine-grained, grey,		
	grey-weathering; intercalated siltstone beds or lenses are grey and grey-weathering	5.0	269.1
52	Shale, grey and dark grey, dark grey-weathering; unit con-		0011
	tains coaly stringers	2.5	201.1
51	Shale, silty and siltstone, grey, grey-weathering	6.0	201.0 955.0
50	Ironstone, sandy, concretionary, brown-weathering	2.0	200.0
49	Coal	0,0	2.0.0.0
	Note: The coal seam at the base of the measured partial section in Sec. 34, Tp. 29, Rge. 21W4 is a 3-ft-thick single seam. At the top of measured partial section in Sec. 13, Tp. 29, Rge. 20W4 (at Drumheller) this seam consists of 3 benches of coal 2.8, 1, and 1.7 ft thick, each separated by about 1 ft of carbonaceous shale		
	This part of section measured in Sec. 13, Tp. 29, Rac. 20W4		
40	Shale dark grov brown weathering cathonaccous	0.9	252.3
40	Silistono soft brown-grey buff-grey weathering	2.5	251.4
46	Shale fissile carbonaceous brown brown weathering	0.5	248.9
45	Shale silty soft bentonitic grey, grey-weathering	14.0	218.4
44	Sandstone massive, crossbedded in part, fine-grained, argil-		
••	faceous, bentonitic, grey, light grey-weathering	5.5	231.4
43	Shale, grey, grey-weathering, bentonitic, silty	3.5	228.9
42	Ironstone concretionary bed, red-brown weathering	0,5	225.4
41	Shale, carbonaceous, in part fissile, brown, brown weather- ing; unit contains in middle a 4-in thickness of shaly coal	1.5	224.9
40	Siltstone and fine-grained sandstone: grey, grey-weather- ing, bentonitie; at 4 ft above base of unit is 6 in of carbonaceous, grey shale	8.0	223.4
39	Sandstone, fine-grained, argillaceous, bentonitie, grey, very	6.8	215.1
20	inght grey-weathering	1.0	208.6
38	nonstone concretionary bed, records in seathering	6.5	207.6
37			
~~~~	Shale, sifty, grey, grey-weathering	0.8	201.1
36	Shale, silly, grey, grey-weathering Coal Shale silly and some sillstone, grey, grey-weathering, ben-	0.8	201.1

 $\bigcirc$ 

,

34	Sandstone, fine-grained, argillaceous, bentonitic, light grey, light grey-weathering; contains some thin, shaly lenses		
33	Coa]	5.0	176.8
	mit in a second s		10.0
32	This part of section measured in Sec. 15, Tp. 28, Ege. 19W4 Shale, soft, brownish grey, buff-weathering, bentonitic, con- tains plant debaie	-	
31	Coal	7.0	168.8
30	Shale soft brown brown woathoring	3.0	161.8
29	Shale, silty or sandy grey growwoathoving	2.0	158.8
28	Shale, silty, carbonaceous, dark grow, dark grow weathering	6.0	156.8
27	Coal	1.5	150.8
26	Shale, silly grey grey, weathering; contains plant debuie	1.5	149.3
25	Sandstone, argillaceous, bentonitic, soft, grey, light grey, weathering; contains lenses and large concretions (2 to 6 ft) of hard, calcarcous, crossbedded, grey, buff-weathering sandstone. Unit contains carbonacoous detrius	2.0	146.8
24	Shale, silly, grey, grey-weathering; bentonitic, unit stained brown on surface by presence of an ironstone bed one	0.0	140.8
	inch thick	3.2	138.8
23	Coal	1.5	135.6
22	Shale, silly, coaly, carbonaceous	0.3	131.1
21	Sandstone, soft, argillaceous, bentonitic, grey, light grey- weathering	5.0	133.8
20	Shale, silty shale, and argillaceous siltstone, bentonitic, grey-		••••••
10	Contering	6.0	128.8
10	COAL Shala kuunia Lee (L. )	3.0	122.8
10	Shale, brown, buil-weathering	0.8	119.8
10	very light grey-weathering	9.0	119.0
10	Shale, sury in part, bentonitic, grey to dark grey, buff- weathering	6.5	110.0
15	grey-weathering	2.5	103.5
14	Shale, silly, grey and dark grey-weathering, bentonitic; unit contains 5 to 6 thin (3 in) ironstone concretionary beds	8.5	101.0
13	Shale, dark grey, dark grey-weathering: calcareous in part; unit contains <i>ostrea</i> coquina near Willow Creek; contains also 2 bentonite beds (2 in and 3 in thick)	5.0	92.5
12	Sandstone, fine-grained, argillaceous, bentonitic, banded grey and brown, banded grey and buff on weathered surface	2.0	07 E
11	Shale, silty, bentonitic, dark grey, dark grey-weathering	4.0	815
10	Coal	4.0	80.5
	This part of section measured in Sec. 7, Tp. 28, Rac. 18W4	3.07	00.0
9	Shale, silty, coaly, dark grey to brown, brown-weathering	0.5	76.5
8	Sandstone, fine-grained, argillaceous, bentonitic, grey, very light grey-weathering; 8 ft above base of unit is bed of	0.0	(0.0
7	hard, calcareous, grey, buff-weathering sandstone Shale, silty, grey-brown, buff-weathering; contains 3 thin C5	20.0	76.0
6	in) concretionary, red-brown weathering ironstone beds Sandstone, fine-grained, argillacrous bentopitie magnive	2.0	56.0
5	light grey, light grey-weathering; one 3-in-thick ironstone bed about 3 ft above base	8.5	51.0
5	dark grey shale at base of unit	7.0	15 5
4	Coat	2.0	45.5
3	Shale, soft, bentonitic, grey, grey, weathering; unit contains	2.0	38.5
-	coaly stringers	6.0	36.5

	EDMONTON GROUP, SOUTH-CENTRAL ALBERT	.1	155
2	Shale, bentonitic, silty or sandy, brownish grey, buff-grey weathering; basal 3 ft of unit composed of laminated		
	shale and siltstone	6,5	30.5
i	Sandstone, soft, triable, argillaceous, bentonitic, fine grained, light grey, light grey weathering; unit includes 3 zones of hard, grey, calcareous, brown-weathering sandstone about 6 to 10 inches thick; unit also contains thin beds and lenses (2 inches to 12 inches) of brown, brown-weather- ing shale	24.0	24.0
	Note: Base of this unit is arbitrarily chosen base of Horse- shoe Canyon Formation		
	Underlying beds: interbedded and interlensed, grey, light greyweathering sandstone and chocolate brown, silv shale. Proportion of sandstone increases upward. Unit is transitional between Bearpaw and Edmonton Group.	3.0 ±	
Section	m 2. East side of Red Deer River about 5 miles west of 5 Tp. 34, Rge, 21W.4).	Scollard	tsec. 7,
	Overlying beds: Pleistocene sand and clay		
	SCOLLARD MEMBER (Type Section)		
13	Shale, green; interbedded with grey siltstone and sand-		
	stone; poorly exposed	10.0	161.0
12	Coal, weathered, triable	4.0	191.0
11	Shale, grey, weathering grey; interbedded with grey, buff- weathering, silty shale and siltstone	12.0	150.0
10	Shale, grey, weathering grey and dull yellow-grey; in part- sandy	13.0	138.0
9	Sandstone, brown-grey, weathering buff, hard, well bedded	3.0	125.0
8	Shale, grey-green, weathering buff	4.2	122.0
7	Ironstone, discontinuous concretionary bed; red-brown		
	weathering	0.8	117.8
6	Sandstone, grey, weathering grey, pepper and salt; some in- tercalated brown-weathering beds as much as 6 in thick	12.0	117.0
5	Shale, silty to sandy, grey, weathering grey and buff; unit contains some thin yellow-brown-weathering beds	38.0	105.0
-1	Sandstone, grey, weathering grey; in part argillaceous: thick-bedded to massive; unit contains 6 hard, calcareous, brown-weathering, crossbedded, sandstone beds and		
	nodules	45.0	67.0
3	Shale, black, weathering grey; probably bemonite	6.0	22.0
2	of hard, brown-weathering sandstone each about 6 in thick	110	16.0
1	Shale green weathering grey	2.0	2.0
-		····	<b>.</b>
	BATTLE FORMATION		
1	Shale, purplish black, weathering mauve-grey, very benton- itie, rubbly; unit contains Knechills Tuff bed about 5 ft below top Underlying beds: Whitemud Formation	20.0	20.0

# Appendix II

## Data from Initial

# Ground Based Magnetic Surveys

of

## Lake 4 and Pearl Lake

N	Magnetic Survey of Lake 4, Chain Lakes, Alberta, February 12, 1997											
Grid Coo	rdinates:		Mag F	Readings:	Notes:							
West	South	Time	Field	Corrected								
104	0	9:25 AM	5,862	5,862	Barbed Wi	red Fence						
0	0	9:33 AM	5,868	5,868	<b>Barbed Wi</b>	red Fence						
104	25	9:38 AM	5,865	5,865	Barbed Wi	red Fence						
104	50	9:40 AM	5,865	5,865	Barbed Wi	red Fence						
104	75	9:41 AM	5,863	5,863	Barbed Wi	red Fence						
104	100	9:43 AM	5,868	5,868	Barbed Wi	red Fence						
100	125	9:48 AM	5,864	5,864	Lake							
100	150	9:49 AM	5,867	5,867	Lake							
100	175	9:51 AM	5,867	5,867	Lake							
100	200	9:53 AM	5,865	5,865	Lake							
100	225	9:54 AM	5,870	5,870	Lake							
100	250	9:56 AM	5,867	5,867	Lake							
100	275	9:58 AM	5,868	5,868	Lake							
100	300	10:00 AM	5,867	5,867	Lake							
100	325	10:02 AM	5,872	5,872	Lake							
100	350	10:03 AM	5,868	5,868	Lake							
100	375	10:04 AM	5.874	5.874	Lake							
75	375	10:06 AM	5.868	5,868	Lake							
50	375	10:08 AM	5,872	5 872	Lake							
100	400	10:10 AM	5 865	5 865	Lake							
100	425	10:13 AM	5 866	5 866	Lake							
100	450	10:14 AM	5,866	5,866	Lake	1						
100	475	10:16 AM	5,869	5,869	Lake		<u> </u>					
100	500	10:17 AM	5.873	5.873	Lake							
100	525	10:19 AM	5,863	5,863	Lake							
75	500	10:20 AM	5.871	5,871	Lake							
125	500	10:22 AM	5,868	5,868	Lake							
100	550	10:24 AM	5 869	5 869	lake	<u></u>						
100	575	10:25 AM	5 865	5 865	Lake							
100	600	10:27 AM	5 869	5 869	Lake							
104	625	10:29 AM	5 873	5 873	Iron Fence	Posts						
100	650	10:32 AM	5 868	5 868	No harhed	wire vet						
100	675	10:34 AM	5 867	5 867								
100	700	10:36 AM	5 872	5 872			<u>├</u> ────					
100	725	10:38 AM	5 873	5 873								
100	750	10:39 AM	5 866	5 866			<u>├</u>					
75	700	10:47 AM	5 869	5 869								
50	700	10:50 AM	5 867	5 867			<u> </u>					
25	700	10:52 AM	5,866	5 866		L						
0	700	10:54 AM	5,867	5 867			-					
0	675	10:57 AM	5 869	5 869			<u> </u>					
0	650	10:59 AM	5 868	5 868	·····		-					
0	625	11:00 AM	5 870	5 870		······································	·					
0	600	11:02 AM	5,866	5 866		· · · · · · · · · · · · · · · · · · ·						
0	575	11:04 AM	5,867	5.867		- <u></u>	<u> </u>					
0	550	11:06 AM	5.869	5.869			·					
0	525	11:07 AM	5,866	5.866								
0	500	11:09 AM	5,871	5,871								

M	agnetic	Survey of	Lake	4. Chain	Lakes, Al	berta.	February *	2. 1997	
Grid Coor	dinates.		Mag	Readings'	Notes	<u> </u>		1	1
West	South	Time	Field	Corrected					
0	<u> </u>	11·11 AM	5 865	5 865					
0	450	11:13 AM	5,866	5 866					
	425	11.10 AM	5 868	5 868					
	400	11.16 AM	5,866	5 866					
	375	11.18 AM	5 866	5 866	ļ				
	350	11.10 AM	5,867	5 867					
	325	11.71 AM	5,870	5 870	l				
25	325	11.27 AM	5 872	5 872					
20	300	11:24 AM	5 868	5 868	l	·····			}
	275	11:25 AM	5,867	5,867					
0	275	11.25 AM	5,873	5,873					
	200	11:28 AM	5 866	5,866	<u> </u>				
	223	11:20 AM	5,000	5,800					
	175	11:32 AM	5 967	5,804	ļ				
	175	11.32 ANA	5,007	5,807					
	100	11.33 AIVI	5,004	5,004					ļ
	125	11.34 AIVI	5,002	5,002					
0	75	11.30 AIVI	5,007	5,007		ļ			
	75	11.37 AIVI	5,007	5,007					
0	50	11.39 AM	5,00/	5,007	<u> </u>				
0	25	11:40 AIVI	5,670	5,870					
104		11.42 AIVI	5,007	5,807		£4	····		
104	0	11.45 AIVI	5,002	5,002	No wag on	π			
104	0	12:28 PM	5,862	5,862					
125	0	12:20 PM	5,004	5,604					
150	0	12:29 PM	5,867	5,867					
200	0	12:30 PIVI	5,872	5,872					
250	0	12:35 PIVI	5,007	5,607					
300	0	12.35 PIVI	5,000	5,600					
350	0	12:37 PIVI	5,004	5,804				· · · · · · · · · · · · · · · · · · ·	
400	0	12.39 PIVI	5,870	5,670					
450	0	12:41 PM	5,670	5,670					
500	0	12:53 PIVI	5,673	5,673					
000	0	12:47 MM	5,6/5	5,8/5	<u> </u>	· · · · · · · · · · · · · · · · · · ·			l 
000		12:49 MM	5,074	5,8/2				· • • • • • • • • • • • • • • • • • • •	
		12:51 PM	5,074	5,8/4				+	
700	0	12:53 PM	5,8/2	5,8/2					
150	0	12:00 PM	5,8/5	5,8/5				-++	
800	0	12:57 PM	5,875	5,8/5					
000	0		5,000	5,000		Barb W			
900		1:04 PM	5,070	5,8/b		Der			
926	0	1.40 PM	5,8/1	5,8/1		Bard W			
900	100	1:12 PM	5,8/3	5,8/3					
850	100	1:18 PM	5,878	5,8/8					·
800	100	1:20 PM	5,875	5,8/5					··· <b>_</b> =·····
/50	100	1:24 PM	5,880	5,880					
/00	100	1:25 PM	5,881	5,881					
650	100	1:27 PM	5,878	5,8/8					
600	100	1:30 PM	5,8/3	5,8/3					
550	100	1:33 PM	5,869	5,869					

## 10/11/97

,

M	lagnetic	Survev of	Lake	4. Chain	Lakes, Albe	rta, Fe	bruary 12	1997
Grid Coo	rdinates:		Mag F	Readings:	Notes:		T T	
West	South	Time	Field	Corrected			<u> </u>	
500	100	1:35 PM	5 870	5.870				
450	100	1:38 PM	5.870	5.870				
400	100	1:47 PM	5,869	5.869				
350	100	1.49 PM	5,867	5.867	<u> </u>			
300	100	1:53 PM	5.873	5.873				
250	100	1:57 PM	5.868	5,868				
200	100	1:59 PM	5.871	5.871				
150	100	2:01 PM	5.870	5.870				
50	200	2:05 PM	5.866	5.866				
150	200	2.11 PM	5.867	5,867	<b> </b>		<u> </u>	
200	200	2:12 PM	5.872	5.872				
250	200	2:12 PM	5,866	5.866				
300	200	2:15 PM	5.874	5.874				
300	175	2:17 PM	5.877	5.877				
300	150	2:18 PM	5.881	5.881				
300	125	2:20 PM	5.875	5,875				
275	150	2:21 PM	5.870	5.870				
325	150	2:23 PM	5,869	5,869				
350	200	2:26 PM	5,869	5,869			<u> </u>	
400	200	2:28 PM	5,867	5.867			<b> </b>  -	
450	200	2.29 PM	5.875	5.875				
500	200	2.31 PM	5 877	5 877				
550	200	2:34 PM	5.877	5.877				
600	200	2:36 PM	5.872	5.872				
650	200	2:37 PM	5.872	5.872				
700	200	2:40 PM	5.877	5.877				
750	200	2:42 PM	5.878	5.878				
800	200	2:44 PM	5,880	5.880	Lake Edge			
800	250	2:46 PM	5,876	5.876				
800	300	2:48 PM	5.879	5.879				
750	293	2:51 PM	5,874	5,874				
700	286	2:53 PM	5,874	5,874				
650	279	2:55 PM	5.874	5.874				
600	272	2:57 PM	5,876	5,876			-	
550	266	2:59 PM	5,879	5,879				
500	259	3:07 PM	5,873	5,873				
500	300	3:09 PM	5,870	5,870				
500	400	3:12 PM	5,881	5,881				
500	375	3:12 PM	5,873	5,873				
500	350	3:15 PM	5,872	5,872				
500	325	3:16 PM	5,876	5,876				
450	300	3:18 PM	5,876	5,876				
400	300	3:22 PM	5,874	5,874				
350	300	3:24 PM	5,875	5,875				
300	300	3:26 PM	5,874	5,874				
250	300	3:27 PM	5,875	5,875				
200	300	3:29 PM	5,873	5,873				
150	300	3:30 PM	5,865	5,865				
100	300	3:32 PM	5,867	5,867	No Mag Drift			

N	Magnetic Survey of Lake 4, Chain Lakes, Alberta, February 12, 1997											
Grid Coo	rdinates:		Mag F	Readings:	Notes:							
West	South	Time	Field	Corrected								
50	300	3:33 PM	5,867	5,867								
150	400	4:05 PM	5,869	5.869	<u></u>							
200	400	4:06 PM	5,869	5.869	İ.							
250	400	4:08 PM	5,871	5.871	1							
300	400	4:09 PM	5,871	5,871		<u>+</u>						
350	400	4:11 PM	5,872	5,872								
400	400	4:13 PM	5,872	5,872		1						
450	400	4:15 PM	5,872	5,872								
500	400	4:18 PM	5,874	5,873								
500	450	4:20 PM	5,874	5,873		<u> </u>						
500	500	4:25 PM	5,874	5,873	l							
550	400	4:30 PM	5,875	5,874								
600	400	4:32 PM	5,875	5,874								
650	400	4:33 PM	5,875	5,874								
700	400	4:35 PM	5,877	5,876								
450	500	4:41 PM	5,874	5,873		1						
400	500	4:46 PM	5,874	5,873								
350	500	4:49 PM	5,873	5,872								
300	500	4:51 PM	5,872	5,871								
250	500	4:52 PM	5,872	5,871								
200	500	4:54 PM	5,876	5,875								
150	500	4:55 PM	5,870	5,869								
100	500	4:57 PM	5,869	5,868	1:25:00		1					
50	500	4:58 PM	5,868	5,867								
150	600	5:01 PM	5,870	5,869					-			
200	600	5:03 PM	5,869	5,868								
250	600	5:04 PM	5,871	5,870								
300	600	5:06 PM	5,871	5,869								
350	600	5:08 PM	5,872	5,870								
400	600	5:10 PM	5,873	5,871								
450	600	5:12 PM	5,873	5,871	475w = La	ke Edge						
400	650	5:16 PM	5,873	5,871	Lake							
400	700	5:19 PM	5,872	5,869	Lake							
350	700	5:21 PM	5,871	<u>5,868</u>	Lake							
300	700	5:22 PM	5,870	5,867	Lake	ļ						
300	750	5:24 PM	5,871	5,868	Lake							
250	700	5:26 PM	5,870	5,867	Lake	L						
200	700	5:28 PM	5,869	5,866	175w = La	ke Edge						
150	700	5:29 PM	5,869	5,866								
200	650	5:32 PM	5,871	5,868								
100	400	5:40 PM	5,868	5,865	0:43:00	ļ	3					
104	0	5:50 PM	5,866	5,862			4					

:

Magnetic Survey of Pearl Lake, Chain Lakes, Alberta, March 3, 1997								
West	South	Gammas	Time					
4	4	5,835	9:41					
20	4	5,843	9:40					
4	50	5,841	9:44					
40	4	5,842	9:47					
60	4	5,842	9:47					
80	4	5,842	9:48					
100	4	5,843	9:49					
120	4	5,841	9:50					
140	4	5,841	9:50					
160	4	5.842	9:51		1			
180	4	5.841	9:51					
200	4	5.841	9:52					
220	4	5.842	9:56					
240	4	5.841	9:57		1			
260	4	5 842	9.57					
280	4	5 842	9:58					
300	4	5 842	9:59					
320		5.842	10:00					
340		5.842	10:00					
360		5,042	10:07		3	60		
200	4	5,041	10:02		<b>3</b>	00		
300	4	5,042	10.02					
400	50	5,642	10:03	<b>.</b>	·			
400	50	5846	10:05		+			
400	(5)	5486	10:06					
400	100	5845	10:07					
420	4	5845	10:10					
440	4	5845	10:11		<u> </u>			
460	4	5846	10:11					
480	4	5846	10:12					
500	4	5846	10:13		ļ			
520	4	5846	10:14					
540	4	5846	10:14					
560	4	5846	10:15					
580	4	5846	10:16					
600	4	5847	10:17					
600	25	5847	10:19					
600	50	5841	10:20					
600	75	5842	10:21					
600	100	5843	10:21					
620	0	5843	10:24					
640	0	5843	10:25					
660	0	5843	10:25					
680	0	5843	10:26					
700	0	5843	10:27					
720	0	5844	10:27					
740	0	5843	10:28		1	_		
760	0	5844	10:29		1			
780	0	5844	10:29					
800	0	5843	10:30		1			

## 10/11/97
Ì

Ma	gnetic S	urvey of I	Pearl Lake	, Chain	Lakes,	Alberta,	March 3	, 1997
West	South	Gammas	Time					
800	25	5843	10:31					
800	50	5843	10:32		1			
800	75	5843	10:33					
800	100	5843	10:34					
820	0	5845	10:38					
840	0	5844	10:38		<b>*</b>			
860	0	5843	10:39					
880	0	5844	10:40					
900	0	5844	10:40					
920	0	5845	10:41					
940	0	5843	10:42	·····				
960	0	5844	10:43					
980	0	5846	10:44					
1000		5843	10:45					
1000	25	5843	10:46					
1000	2J 50	5844	10.40		<u> </u>			
1000	75	5044	10.47					
1000	100	5044	10.47					
080	50	5045	10.46					
060	50	5044	10.54		·			
900	50	5044	10.55					
940	50	5844	10:55					
920	50	5843	10:56					
900	50	5843	10:56		ļ <b>.</b>			
088	50	5843	10:57	·				
860	50	5844	10:58					
840	50	5843	10:59					
820	50	5843	10:59					
800	50	5843	11:00	5843				
780	50	5843	11:01					
760	50	5843	11:01					
740	50	5843	11:02			_		
720	50	5842	11:02					
700	50	5843	11:03					
680	50	5843	11:06					
660	50	5842	11:06					
640	50	5842	11:07					
620	50	5842	11:07					
620	25	5843	11:09					
620	70	5843	11:09					
610	50	5843	11:10					
600	50	5842	11:11	5841				
580	50	5842	11:15					
560	50	5842	11:15					
540	50	5842	11:16					
540	25	5843	11:17					
520	50	5842	11:18					
500	50	5842	11:19					
480	50	5842	11 19		· · · · · · · · · · · · · · · · · · ·			
460	50	5842	11.20					

)

Ma	gnetic S	urvey of F	Pearl Lake	, Chain	Lakes, A	Alberta,	March 3	, 1997
West	South	Gammas	Time					
440	50	5842	11:21					
420	50	5841	11:22					
400	50	5842	11:22	5846				
380	50	5841	11:24					
360	50	5842	11:24					
340	50	5842	11:25					
320	50	5841	11:26					
300	50	5841	11:26					
280	50	5841	11:27					
260	50	5841	11:27			1		
240	50	5841	11:28					
220	50	5841	11:29					
200	50	5841	11:30					
200	75	5841	11.31	<del>`````````````````````````````````</del>				
200	100	5841	11:32					
180	50	5840	11.34					
160	50	58/1	11.25					
140	50	5841	11:36					
120	50	5841	11:37					
100	50	5941	11.37					
80	50	5941	11.37					
60	50	5840	11.30	<u>.</u>				
40	50	5840	11.39					
40	50	5840	11:39					
20	50	5838	11:40	5 0 4 4				
4	50	5840	11:41	5,841	-			
4	4	5831	11:42	5,835	- 4	↓		
4	/5	5839	11:48					
4	100	5841	11:49					
20	100	5841	11:50					
40	100	5840	11:51					
60	100	5841	11:52					
80	100	5840	11:53		······································			
100	100	5841	11:54					
120	100	5841	11:54					
140	100	5841	11:55					
160	100	5841	11:56					
180	100	5840	11:56					
200	100	5841	11:57					
200	125	5841	11:59					
200	150	5841	11:59					
220	100	5841	12:03					
240	100	5841	12:04					
260	100	5841	12.05					
280	100	5841	12:05	-				
300	100	5841	12:06					
320	100	5842	12:07			-		
340	100	5841	12:08					
360	100	5842	12:08					
380	100	5842	12:09					

### 10/11/97

ľ

Magnetic Survey of Pearl Lake, Chain Lakes, Alberta, March 3, 1997									
West	South	Gammas	Time						
400	100	5840	12:10	5845	-5				
400	125	5841	12:11						
400	150	5841	12:12						
420	100	5841	12:14						
440	100	5842	12:15						
460	100	5841	12:16						
480	100	5842	12:16						
500	100	5842	12:17						
520	100	5843	12:18						
540	100	5842	12:19						
560	100	5842	12:19						
580	100	5843	12:20						
600	100	5842	12:21	5843	-1				
620	100	5846	12:35	5842					
620	120	5846	12:36	5842					
620	80	5848	12:37	5844					
600	50	5845	12:38	5841	4				
640	100	5846	12:40	5842					
660	100	5846	12:40	5842					
680	100	5847	12:41	5843					
700	100	5846	12:42	5842					
720	100	5846	12:42	5842					
740	100	5846	12:43	5842					
760	100	5846	12:44	5842					
780	100	5846	12:45	5842					
800	100	5847	12:46	5843	4				

## 10/11/97

# Appendix III

Data from

# EM34 Reconnaissance Survey

	Chain Lakes Property										
	EM 34 Survey										
	40 metre Coil Spacing										
	30-Jul-97										
	by: Steve and Lynn Ross and Andy Glatiotis										
Loc	ati	on	Horizontal	Vertical							
Line		Station	Field	Field							
400	S	20	110	53							
400	s	40	110	31							
400	S	60	130	50		 					
400	S	80	120	60					ļ		
400	S	100	120	66					<u> </u>		
400	S	140	120	59							
400	S	180	120	52							
400	S	200	120	68							
400	S	220	115	58							
400	S	240	115	58	· · · · · · · · · · · · · · · · · · ·						
400	S	260	110	/4							
400	2	280	112	/3							
400	2	300	110	67							
400	3	320	115	02					+		
400	0	340	110	44	······				1		
400	8	300	110	40	· · · · · · · · · · · · · · · · · · ·						
400	0	400	110	30							
400	5	400	110	45							
400	S	420	115	51							
400	5	440	115	78			-+				
400	s	480	172	81							
400	s	500	130	37				1	•		
400	s	520	130	66				1			
400	s	540	140	62							
400	s	560	140	35				1			
400	s	580	150	59		······					
400	s	600	150	44				+			
400	S	620	160	25			1				
400	S	640	150	34				1			
400	S	660	155	38					· · · · · · · · · · · · · · · · · · ·		
400	S	680	150	51				1			
400	s	700	145	58							
400	s	720	150	47							
350	s	20	135	65	13:00			<u> </u>			
350	S	40	135	55							
350	S	60	135	62				<u> </u>			
350	s	80	135	55							
350	S	100	135	48				<u> </u>	)		
350	S	120	125	40							
350	<u>s</u>	140	125	47					ļ		
350	<u>s</u>	160	125	76							
350	S	180	120	63			1	1			

				Chair	n Lakes P	roperty				
	EM 34 Survey									
					netre Coil S	nacing	<u>, , ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,,</u>			
					30101-97	, v				
			by:	Steve and I	vnn Ross a	nd Andy (	Iatiotis			
Loc	atic	n	Horizontal	Vertical	,				1	
Line		Station	Field	Field			+		-	
350	s	200	120	57				-	+	
350	s	220	115	54						
350	S	240	115	66					-	
350	S	260	115	66		<u> </u>				
350	S	280	110	60						
350	S	300	110	65		<u> </u>	-			
350	S	320	100	66						
350	S	340	100	56						
350	S	360	100	54						
350	S	380	110	52			Ì			
350	S	400	110	55						
350	S	420	120	68						
350	S	440	120	65						
350	S	460	130	64						
350	S	480	130	78					1	
350	S	500	140	48						
350	S	520	145	38						
350	S	540	154	60						
350	S	560	150	50						
350	S	580	145	17						
350	S	600	150	48						
350	S	620	140	54						
350	S	640	145	62						
350	S	660	140	51	4449T-4					
350	S	680	135	55						
350	s	700	135	45					·····	
350	S	720	135	38						
350	S	740	130	40	5 					
350	S	760	135	51						
350	S	780	135	69	12:00					
300	s	20	140	14	13:45					
300	<u>s</u>	40	155	46		·····		ļ		
300	<u>s</u>	60	140	44						
300	S	80	150	56						
300	<u>s</u>	100	140	4/						
300	<u>S</u>	120	135	46						
300	5	140	125	60					······	
300	<u>s</u>	160	125	68			<u>.</u>			
300	<u>s</u>	180	120	40						
300	5	200	110	54						
300	3	220	110	55						
300	3	240	110	/U 				<u> </u>		
300	<u> </u>	200	100	10		~,				
1 300	3	∠ou	100	01	Į		1	L	ļ	

. .

	Chain Lakes Property										
	EM 34 Survey										
	40 metre Coil Spacing										
	by: Steve and Lynn Ross and Andy Glatiotis										
Loc	ati	on	Horizontal	Vertical			1				
Line		Station	Field	Field		<u> </u>					
300	S	300	105	60							
300	S	320	105	54							
300	S	340	105	42			<u> </u>				
300	S	360	100	63							
300	S	380	105	68							
300	S	400	110	63			<u> </u>				
300	S	420	120	62							
300	S	440	130	44							
300	S	460	135	60							
300	S	480	150	61							
300	S	500	150	42							
300	S	520	160	45							
300	S	540	160	45	······································	very sensit	ive				
300	S	560	160	36		very sensit	ive				
300	S	580	160	41							
300	S	600	150	52							
300	S	620	150	50							
300	S	640	135	80							
300	S	660	125	74							
300	S	680	125	62							
300	S	700	130	32							
300	S	720	130	50							
300	S	740	135	70			 				
300	S	760	135	62							
300	S	780	140	48	12:00						
250	S	20	110	74	15:40						
250	S	40	110	58							
250	S	60	120	48							
250	S	80	120	70							
250	S	100	130	60					[ 		
250	S	120	130	40							
250	S	140	130	50		· · ·					
250	S	160	125	60							
250	S	180	130	64							
250	S	200	130	63							
250	S	220	125	72					<u> </u>		
250	S	240	130	48							
250	S	260	140	26		+					
250	S	280	130	30				···			
250	S	300	165	58							
250	$\frac{s}{s}$	320	105	67				·			
250	2	340	99	64				+			
250	2	300	105	5/					<u> </u>		
250	3	380	110	45							

	Chain Lakes Property										
	EM 34 Survey										
	40 metre Coil Spacing										
	30-Jul-97										
	by: Steve and Lynn Ross and Andy Glatiotis										
Loc	ati	on	Horizontal	Vertical				1	1		
Line		Station	Field	Field		·					
250	S	400	120	63							
250	S	420	125	48							
250	S	440	140	37							
250	S	460	150	52							
250	S	480	160	30							
250	S	500	150	44							
250	S	520	160	66							
250	S	540	165	32							
250	S	560	160	32							
250	S	580	155	53							
250	S	600	150	54							
250	S	620	150	54							
250	S	640	145	46							
250	S	660	140	34							
250	S	680	140	48				1			
250	S	700	130	56							
250	S	720	135	73							
250	S	740	125	66							
250	S	760	130	47				ļ	<u> </u>		
250	S	780	140	38	14:40						
0	S	20	82	72	16:00						
0	S	40	82	72							
0	S	60	83	63		P					
0	S	08	80	63				<u> </u>			
0	S	100	82	57		·		+			
	2	140	00								
0	3	140	00	59							
0	<u>s</u>	170	00	67							
0	3	180	00	68							
	5	200	83	68							
	S	2200	85	80							
	S	240	90	70							
0	S	240	92	48							
0	s	280	95	43							
0	s	300	98	52							
0	S	320	97	59					1		
0	s	340	92	58				1	<u>.</u>		
0	S	360	88	56							
0	S	380	86	76				1			
0	S	400	85	74				1	1		
0	s	420	96	72							
0	S	440	120	70							
0	S	460	110	32							

	Chain Lakes Property										
	EM 34 Survey										
	40 metre Coil Spacing										
	30-Jul-97										
	by: Steve and Lynn Ross and Andy Glatiotis										
Loc	ati	on	Horizontal	Vertical							
Line		Station	Field	Field							
0	S	480	120	42							
0	S	500	115	60							
0	S	520	120	47							
0	S	540	115	50							
0	S	560	130	33							
0	S	580	140	36	16:40						
100	Ν	20	72	66	17:26						
100	Ν	40	72	67							
100	Ν	60	77	67							
100	Ν	80	83	66							
100	N	100	82	74							
100	Ν	120	86	61	·						
100	Ν	140	82	55							
100	Ν	160	84	50							
100	Ν	180	78	57							
100	N	200	80	72							
100	N	220	82	64							
100	N	240	82	50							
100	N	260	80	48							
100	N	280	85	61		. <u></u>					
100	N	300	78	57		·					
100	N	320	78	64		<u> </u>					
100	N	340	76	67		······································					
100	Ν	360	80	51							
100	N	380	80	44							
100	N	400	85	64		<u> </u>					
100	N	420	83	74							
100	N	440	87	60							
100	N	460	88	62							
100	N	480	86	56							
100	N	500	94	57							
100	N	520	94	48							
100	N	540	93	70							
100	N	560	98	56							
100	N	580	115	60	16:40		1		t		

Appendix IV

.

# Palynological Age Determinations

by

Branta Biostratigraphic Ltd.

### BRANTA BIOSTRATIGRAPHY LTD.

### Haimila Samples ... p. 1

DH: 95-1

#### Haimila samples

Two samples from each ends of a core submitted by Mike Clark were palynologically analysed for age determinations and paleoenvironments. The upper sample was a brown mudstone and the lower sample was a glauconitic sandstone. Abundant and well preserved samples were present in both samples indicating a Late Campanian to possibly earliest Maastrichtian age. Nearshore marine environments with freshwater influx

Unless otherwise noted, single specimens were observed.

## Sample 1: Brown mudstone Core A 314

#### Age & Zone

Late Campanian to possibly earliest Maastrichtian Mancicorpus tripodiformis Zone.

#### Dinoflagellates

Canningia sp. Ceraticpsis sp. Cribroperidinium sp. Dinoflagellata indet. Spinidinium densispinatum

#### Angiosperm Pollen

Aquilapolienites attenuatus(Common)Aquilapollenites reticulatus(Rare)Cranvellia striata(Rare)Fibulipollis pusilusIntegricorpus spLoranthacites sp.Mancicorpus minimumMancicorpus tripodiformisFachysandra cretaceaRetitricolpites spp.Tricolporopollenites spp.

#### **Gymnosperm Pollen**

Piceaepollenites spp. (Common) Pinuspollenites spp. Taxodiaceaepollenites hiatus (Common)

#### **Byrophyte & Pteridophyte Spores**

Baculatisporites comaunensis Balmesporites sp. B. Snead 69 Camarozonosporites dakotaensis Cicatricosisporites spp. (Rare) Concavissimisporites variveruccatus Cvathidites spp. Gleicheniidites senonicus Interlobites triangularis (Rare) Laevigatosporites ovatus (Common) Lycopodiumsporites austroclavitidites (Common) Osmundacidites clavtonites Rouseisporites radiatus

#### Other Algae & Miscellanea

Pesavis sp. Ioannides & Mcintyre 1980 (Rare) Schizophacus grandis

#### Paleoenvironment

The presence of rare marine dinoflagellates and rare freshwater algae indicates a nearshore marine, possibly brackish, environment such as a lagoon or estuary.

#### Comments

Late Campanian to possibly earliest Maastrichtia:: age..

### BRANTA BIOSTRATIGRAPHY LTD.

## Sample 2: Green sandstone Core B 322

#### Age & Zone

Late Campanian to possibly earliest Maastrichtian *Mancicorpus tripodiformis* Zone.

#### Dinoflagellates

Isabelidinium cooksoniae Palaeoperidinium pyrophorum

#### Angiosperm Pollen

Aquilapollenites attenuatus Aquilapollenites catenireticulatus Aquilapollenites quadrilobatus (Common) Aquilapollenites sp Fibulipollis pusilus Integricorpus #Ecicatricose Integricorpus clarireticulatus (Rare) Loranthacites sp. Mancicorpus clavus Mancicorpus tripodiformis

#### **Gymnosperm Pollen**

Abiespollenites spp. Rugubivesiculites rugosus

#### **Byrophyte & Pteridophyte Spores**

Aequitriradites spp. Balmesporites sp. B. Snead' 69 Cyathidites spp. (Rare) Gabonisporis bacaricumulus (Rare) Gleicheniidites senonicus Isbelidinium belfastensis Kellstrom Laevigatosporites ovatus (Common) Lusatisporis dettmannae Lycopodiumsporites austroclavitidites (Common)

Polypodiidites favus

#### **Other Algae & Miscellanea**

Pediastrum sp.	
Schizophacus grandis	(Rare)

#### Paleoenvironment

The presence of rare marine dinoflagellates and rare freshwater algae indicates a nearshore marine, possibly brackish, environment such as a lagcon or estuary.

#### Comments

black coaly material (Common) The presence of *Cranwellia striata, Fibulispollis pusilus, and Mancicorpus tripodiformis* suggests a Late Campanian to possibly earliest Maastrichtian age. This is supported by the association with the dinoflagellates *Isabelidinium cooksoniae and Paleoperidinium pyrophorum*. The later species ranges from the Late Cretaceous into the Paleccene, however there are no other definitive Paleocene species.

Thin SECTION - SHOWED SHOUKED QUARTZ? ACCORDING to M. Clark m

### Haimila samples II

Two samples from cores 97-1 and 97-2 submitted by Mike Clark were palynologically analysed for age determinations and paleoenvironments. The First sample was a mudstone and the lower sample was a sandstone. Abundant and well preserved assemblages were present in the first sample indicating a Late Campanian to possibly earliest Maastrichtian age. Nearshore marine environments with high freshwater influx such as a *Polypodium* brackish water marsh is indicated. The second sample contains an impoverished assemblage of mixed origins. The age of the sample is taken to be represented by the youngest fossils which indicate an indefinite Campanian to Maastrictian age.

Unless otherwise noted, single specimens were observed.

### Sample 1: Mudstone Core 97-2 100'

#### Age & Zone

Late Campanian to possibly earliest Maastrichtian Mancicorpus tripodiformis Zone.

#### Dinoflagellates

Alterbidinium spp.	(Rare)
Canningia sp.	

#### Angiosperm Pollen

#### Aequitriradites spinulosus

Aquilapollenitesattenuatus	
Aquilapollenitesquadrilobatus	(Rare)
Cranwelliastriata	(Common)
Fibulipollispusilus	(Rare)
Integricorpusclarireticulatus	
Laevigatosporitesovatus	(Dominant)
Liliaciditescomplexus	(Common)
Liliaciditessp.	(Rare)
Mancicorpusminimum	
Mancicorpustripodiformis	(Common)
Momipitescoryloides	
Pachysandracretacea	
Syncolpitessp.	

#### Gymnosperm Pollen

Piceaepollenitesspp.	(Common)
Pinuspollenitesspp.	(Rare)
Taxodiaceaepollenites hiatus	(Dominant)

#### Byrophyte & Pteridophyte Spores

Camarozonosporitesdakotaen Camarozonosporitesinsignis	sis
Ditoidosporahallii	(Rare)
Gleicheniiditessenonicus	(Rare)
Gleicheniiditessp.	(Rare)
Hammulatisporitesloeblichii	(Rare)
Heliosporitesaltmarkensis	(Common)
Osmundaciditesclaytonites	(Rare)
Polypodiiditesfavus	(Common)
Reticulatisporitessp.	(Abundant)
Retitniletesspp.	
Rouseisporites stellatus	(Common)
Stereisporites stereoides	(Common
Triletes bettianus	

#### Other Algae & Miscellanea

Schizophacus grandis Schizophacus parvus

#### Palecenvironment

The presence of rare brackish water dinoflagellates and rare freshwater algae indicates a nearshore marine, possibly brackish, environment such as close proximity to a Polypodium brackish water marsh or lagoon.

#### Comments

The presence of *Cranwellia striata*, *Fibulispollis pusilus*, and *Mancicorpus tripodiformis* suggests a Late Campanian to possibly earliest Maastrichtian age.

### Sample 2: Sandstone

#### Age & Zone

Campanian to Maastrichtian Indeterminate Zone.

#### Dinoflagellates

Isabelidinium cooksoniae (Rare

#### Angiosperm Pollen

Kurtzipites spp. Penitetrapites mollis

#### **Gymnosperm Pollen**

(Rare)
(Rare)
(Rare)

#### **Byrophyte & Pteridophyte Spores**

Cicatricosisporites #ECE	
Cicatricosisporites spp.	(Rare)
Deltoidospora hallii	
Gleicheniidites senonicus	(Rare)
Laevigatosporites ovatus	(Rare)
Leiotriletes mecklenburgensis	
Polypodiidites favus	
Retitricolpites spp.	
Stereisporites stereoides	(Rare)
Striatriletes coronianus	

#### Core 97-1 174' 4"

Other Algae & Miscellanea

Schizophacus parvus (Rare)

#### Paleoenvironment

The presence of rare marine dinoflagellates and rare freshwater algae indicates a nearshore marine, possibly brackish, environment such as a lagoon or estuary.

#### Comments

black coaly material (Common) This sample is marked by a mixture of Mid Cretaceous and Late Cretaceous forms. Albian to Cenomanian components comprise Penitetrapites mollis, Exesisporites tumulus, Ephedripites virginiensis and Striatriletes coronianus. These forms as well as Cedripites canadensis and Deltoidospora are dark in colour and often fragmented suggesting that these forms were olThe reworked into younger sediments. presence of Polypodium favus, Kurtzipites, and Isabelidinium cooksoniae suggests a Campanian to Maastrichtian age. The exact age of this sample cannot be determined due to the impoverished assemblages...

# Appendix V

# Drill Hole Logs

E

		Chain Lakes Property
Donth	Pock	Difil Hole. 33-1
Erom	Type	Descriptive Comments
320	Siltv	Light grey with abundant coally fragments and silty to fine sandy laminae.
	Mudstone	Occasional tan to light green, clay to mudstone clasts
		Bentonitic
· · · · · · · · · · · · · · · · · · ·		323': green and vellow mica, possible Cpx, angular black lithic frags.
		324': small bivalve mollusc
		325': red garnet @200x magnification
	Denteritie	
320	Bentonitic	Igraded bedding: sitsin grades upward into mosin over o
	slitstone	occasional matrix supported clasts, soft at time of deposition.
		1 pink garnet, mica flakes (black, yellow, brown and green); coally fragments
		327': 2" band of light grey silty mudstone with med. grey mudstone r/u clasts
		32 ¹ light grey fine sandstone with mudstone and glauconitic? sandstone clasts
		one clast in finely laminated silts with coally laminae: clast placement inexplicable
		one clast in mely laminated sits with coarry laminae. clast placement mexplicable
		334': graded bedding from sandy to muddy over 2"; Cpx grain?
		335': 1" x-bedded sandstone; Cpx grain?
		336": light grey siltstone with interlaminated grey mudstone and mudstone clasts
		bioturbated
		227/L and some the block with Con 2
		S37 : red garnet, philogopite, Cpx?
339	Mudstone	dark grey mudstone with coally bedding tops, strong bioturbation
		occassional bentonitic lavers.
		341': 2" clam shell
	·····	342': 3" bentonitic silt
		348': wine red garnet in bentonitic mudstone
	· · · · · · · · · · · · · · · · ·	
070	0	
370	Sandstone	light grey, bentonitic, fine to medium grained sandstone with coally laminae
	Dentonitic	grades upward into mudstone.
		Garnets: 3 lilac and 1 wine red; 1 Cpx; micas: black brown and white
		374': 3 garnets and 2 Cpx
		379'-383'; cross bedding in sandstone.
386		ЕОН

## Sheet1

	Chain Lakes Property											
	Drill Hole: 97-1											
Depth	Rock	Descriptive Comments										
From	Туре											
0	Till	dark brown clay till; lost circulation and drill bouncing on boulders at bottom.										
	1											
50.0	Sandstone	Bentonitic, light grey sandstone: poor recovery										
58.0	Mudstone	light brown with interlaminated silts										
62.8	Coal	very crumbly when dry										
63.2	Sandstone	bentonitic; panned: magnetite, garnets: 2 lilac + 5 deep red, zirc?										
65.0	Coal	crumbly when dry										
L												
66.3	Siltstone	light grey and coally										
70.0	Mudstone	finely interlaminated light grey silty claystone and brown mudstone										
		82' - 92.5': fragments/clasts of lighter color mudstone, well rounded with long axis										
		at assorted angles; scouring at base with underlying muds disturbed; poorly										
		bedded; coally fragments abundant; Mudslide?										
	ļ	91': very angular quartz grains, 1 garnet, magnetite and ilmenite										
00.5												
92.5	Coal											
08.0	Mudetono	Dark brown mudatone with matrix augmented electric of light coloured hontonitic										
90.0	widdstone	Dark brown mudstone with mathx supported clasts of light coloured bentonitic										
		Sandstone, bedding at 60 to c/a										
	<u></u>	100.5' 106.8: no clasts										
		106.5' - 100.0. To clasts										
		show ranid deposition: clasts subhorizontal										
108.0	Coal											
100.0	Coai											
108.8	Mudstone	Brown mudstone grading from coally on top to sandy on the bottom										
109.0	Sandstone	medium grained, light green, well sorted without well defined bedding.										
		perfect bipyramidal quartz grains										
117.7	Coal	bedding @ 85° to c/a										
118.8	Sandstone	medium grained, light green, well sorted and bentonitic										
bedding @ 90° to c/a												
135' - 137': small white platy ?clasts? 1mm to 2 cm parallel to weak bedding.												
		139' - 142': interlaminated bentonitic ss. and sandy bentonite										
		144': euhedral quartz bipyramids, glauconite?, ilmenite, magnetite, and strange										
		spheres made of marcasite? ball bearings; quartz extremely angular										
		149.6' - 152': ss clasts? to 3" in diameter with well rounded edges supported in										
		ss matrix; long axis parallel to bedding.										

.

Í

)

	Chain Lakes Property								
	Drill Hole: 97-1								
Depth	Rock	Descriptive Comments							
From Type									
	Sandstone	152' - 153': silty claystone; 40% bentonite; quartz shards very sharp and angular;							
hexagonal bipyramid quartz grains; magnetite, ilmenite, chromite?									
153.2': 1cm x 4cm clay clast @ 70° to c/a									
154.5': 4cm brown clay bed; glauconite?, marcasite? ball-bearing sphere									
shards / extremely angular, frosted grains.									
154.6' - 160.7': medium grained, light grey ss with matrix supported ss cla									
	brown clay rims: clasts at all angles to c/a.								
		160.7' - 164': conglomerate of ss and mdst clasts to 6cm in diam.							
		164' - 170': occas. ss clasts of sandstone and claystone.							
		170.25' - 170.8': bentonitic ss, panned very angular quartz shards, magnetite,							
		glauconite and abundant yellow carbonate crystals.							
174.6	Claystone	bentonitic light green claystone with abundant pyritised diatoms and occassional							
	silty	brown mudstone clasts							
		179.2' - 186': very poor recovery; lumps of gooey clay							
		186' -206': finely laminated clay mudstones with soft sed, deformation and small							
		clasts above 3" clean glauconitic greywacke.							
		207' - 217.8': very finely interlaminated brown mudstone and white, bentonitic							
		siltstone							
217.8	Sandstone	clean white, well sorted, crossbedded at base							
220.7	Mudstone	very finely laminated brown mudstone and white siltstone							
222.3	Sandstone	Clean, well sorted, greywacke							
		229': crossbeds							
252		EOH							

		Chain Lakes Property						
		Drill Hole: 97-2						
Depth	Rock	Descriptive Comments						
From	Туре							
0	Till							
	· · · · · · · · · · · · · · · · · · ·							
40.0	Mudstone	Bentonitic, occas laminated siltstone clasts to 1'x 2"						
		light bentonitic siltstone interbeds						
	1							
		54./ - //.5: very poor recovery - cherty clast clogged bit and ground away the						
		mudstone so that it just washed away as very fine cuttings.						
		cherty clasts have very angular quartz shards and micropreccia textures.						
		mom a 6 sand interval. Garnets: mac, orange and deep red, Cpx, Opx, Olivine?,						
		magnetite, chromite?, limenite grains seen under scope.						
		51 A' 52': light siltetone: garnet tourmaline zircon magnetite and cov in nanned						
		concentrate of shaved core						
	· · · · · · · · · · · · · · · · · · ·	53.5' - 54': sandstone interbed garnet magnetite chromite? ilmenite and zircon						
		panned in concentrate from shaved core.						
		78': 3" x 1.5" sandstone 'clast' in laminated mudstone						
-		· · · · · · · · · · · · · · · · · · ·						
		84': 2" x 1" sandstone 'clast' with fossil fragments in mudstone						
97.5	Coal	45° bedding to c/a						
	·····							
99.0	Mudstone	brown, bentonitic						
105.01								
105.3	Coal							
400.0	<b>N A</b>							
100.0	wudstone	brown, bentonitic						
118.0	Cool	116' badding to $a/a = 48^{\circ}$						
110.0	Cual							
122.0	Siltstone	light gray fine grained bentonitic to vanving degrees						
122.0	Ontatone	ingit grey, the granied, bentonitie to varying degrees						
		127' - 134': rythmic interlaminated brown mud and light grey silts every 3" to 4"						
		132': panned minor magnetite, marcasite spherules and zircon						
		177': 3" bentonite bed; panned very angular quartz shards, zircon, and carbonate						
177' - 187': Thin coally laminae and coally fragments abundant								
		186': bedding to c/a = 49°						
187	Sandstone	light grey, bentonitic, fine grained and interlaminated with silts and clays at top						
		grading down into sands; clasts of sandstone and mudstone common						
		glauconitic throughout, micas common (biotite, muscovite and phiogopite)						

		Chain Lakes Property
		Drill Hole: 97-2
Depth	Rock	Descriptive Comments
From	Туре	
		197' - 200': finely interlaminated bentonitic silts and muds
		200' - 202': sandstone and mudstone 'clasts' abundant at all angles
		202' 205': hontonitic so with interlaminated arean clave
		202 - 203. Demonitie ss with internationated green clays
		205' - 210': mudstone 'clasts' in bentonitic sands
210.0	Mudstone	dark grey, finely laminated, bentonitic; occas thin silty laminae or thin beds
		237': bedding to c/a = $48^{\circ}$
2125	2	very poor core recovery core will not lock into core barrel: GOTO conventional
242.0		drilling: cuttings retained but not logged
		anning. Suamge reamed but not logged
677.0	Mudstone	interbedded and interlaminated clayey siltstone and dark grey mudstone; soft
		sediment deformation textures common; channel scouring common; graded
		bedding rythmically repeated; strong bioturbation
	<u> </u>	
		677': bedding to c/a = $65^{\circ}$
		684': bedding to c/a = $66^{\circ}$
	<u> </u>	686' - 687': fossil worm burrows; no indicator minerals panned
		692' - 693': dense shale with mud cracks; no indicator minerals panned
		709': bedding to c/a = 65"
		723: panned abundant marcasite spherules (worm castings), minor glauconite,
	· · · · · · · · · · · · · · · · · · ·	carbonate and some magnetite.
		1/23: bedding to c/a = 62°

ļ

## **Appendix VI**

## **Assay Data**

- A LORING LABS: 95-1 DRILL CUTTINGS
- **B LORING LABS: 95-1 GRAINS PICKED FROM CORE**
- C LORING LABS: HAND SAMPLES: #001, #002, #003; BULK DENSITY
- D LORING LABS: SURFACE SAMPLE 10001, 97-1 DRILL CUTTINGS, 97-2: A and B DRILL CUTTINGS, 97-2 CORE
- E M. GLATIOTIS; SEM/KEVEX ANALYSES

**F - ASHTON MINING: HAND SPECIMEN WHOLE ROCK ANALYSES** 

G - DR. NASSICHUK: X-RAY DIFFRACTOGRAM OF CORE FROM 314', 95-1

## A - LORING LABS 95-1 DRILL CUTTINGS

r.

.



629 Beaverdam Road N.E., Calgary Alberta T2K 4W7 Tel: 274-2777 Fax: 275-0541

Date: November 28, 1995 File: 37822-D Client : DR. TED YOSHIDA

## **REVISED SUMMARY OF POTENTIAL INDICATORS PICKED**

Sample	Garnet	Clinopyroxene	Ilmenite	Chromite	Olivine	Diamond	Total Grains
2	1	3	0	0	0	0	4
Totolo		<b>9</b>	0	•	•	0	
TOLAIS	Ĩ	J	U	U	U	U	4
	ja						



629 Beaverdam Road N.E., Calgary Alberta T2K 4W7 Tel: 274-2777 Fax: 275-0541

FILE # : 37822-D

COMPANY: DR. TED YOSHIDA

DATE : Nov 28, 1995

	ORIGINAL WEIGHT		SCRE	EN YSIS		TABLEMIDDLINGSCONC.2.9 - 3.3SG			HEAVIES >3.3 SG							
				[		1		1	MAG.	+28		P.M.		W	.P.M.	N.M.
SAMPLE ID.		+6 mesh	+35 mesh	35 x 80 mesh	-80 mesh	+80 mesh	MAG.	NON - MAG.	(-)	Mesh	0.5	0.6	0.7	1.2	2.0	2.0
	(Kg)	(Kg)	(Kg)	(K <u>G</u> )	(Kg)	( <u>g</u> )	(9)	( <u>g</u> )	( <u>g)</u>	<u>(g)</u>	<u>(g)</u>	<u>(9)</u>	<u>(g)</u>	<u>(g)</u>	<u>(9)</u>	(9)
2	19.6	0.7	2.0	6.5	10.5	763	0.06	36.26	0.31	9.18	15.58	3.30	0.38	1.65	0.28	1.98

NOTE : P.M. = PARAMAGNETIC

W.P.M. = WEAKLY PARAMAGNETIC

C N.M. = NON-MAGNETIC

ASSAYER



629 Beaverdam Road N.E., Calgary Alberta T2K 4W7 Tel: 274-2777 Fax: 275-0541

Date: November 28, 1995 File: 37822-D Client : DR. TED YOSHIDA

## **REVISED SUMMARY OF POTENTIAL INDICATORS PICKED**

1 2 2 0 0 0 0	4
· · · · · · · · · · · · · · · · · · ·	
	•
Totais 2 2 0 0 0 0	4

NOTE: There are a lot more Clinopyroxene, only picked two to represent.



629 Beaverdam Road N.E., Caigary Alberta T2K 4W7 Tel: 274-2777 Fax: 275-0541

FILE # : 37796-D

COMPANY: DR. TED YOSHIDA

DATE : Nov 28, 1995

	ORIGINAL WEIGHT	SCREEN ANALYSIS				TABLE CONC.	E MIDDLINGS C. 2.9 - 3.3 SG				HEAVIES >3.3 SG -					
SAMPLE ID.		+6 mesh	+35 mesh	35 x 80 mesh	-80 mesh	+80 mesh	MAG.	NON - MAG.	MAG.	+28 Mesh	0.5	P.M. 0.6	0.7	1.2	.P.M. 2.0	N.M. 2.0
	(Kg)	(kg)	(kg)	(kg)	(Kg)	(g)	(g)	(g)	(g)	(g)	(g)	(g)	(g)	(g)	(g)	(g)
1	37.6	2.6	5.4	13.5	16.1	725	0.68	62.97	3.81	1.32	12.67	2.35	0.67	0.95	0.16	0.87

NOTE : P.M. = PARAMAGNETIC

.

£

W.P.M. = WEAKLY PARAMAGNETIC

N.M. = NON-MAGNETIC

ASSAYER



629 Beaverdam Road N.E., Calgary Alberta T2K 4W7 Tel: 274-2777 Fax: 275-0541

File No. 37822-1-D Client: Dr. Ted Yoshida

Microprobe Data

Dec 31, 1995

	- Loc	atior	n l					Data i	n wt %-					-	
Sample#	P#	C# I	R#	SiO2	TiO2	AI2O3	Cr2O3	FeO	MgO	CaO	Na2O	MnO	K20	Total	Mineral
		·												-	
#1	102	В	1	0.01	0.03	69.45	0.05	4.89	26.48	0.03	0.01	0.13	0.00	101.08	spinel
#1	102	С	1	30.34	38.48	0.66	0.00	0.84	0.00	28.55	0.01	0.11	0.00	98.99	sphene
#1	102	F	1	38.20	0.18	20.70	0.00	1.60	0.05	36.98	0.00	0.32	0.00	98.03	garnet
#1	102	G	1	38.79	0.09	21.00	0.02	2.93	0.04	36.00	0.00	0.16	0.00	99.03	garnet
#2	102	Н	1	37.05	0.08	20.84	0.06	35.39	4.07	2.19	0.00	0.40	0.00	100.08	garnet
#2	102	Α	2	53.30	0.13	1.47	0.00	7.05	13.99	23.89	0.36	0.46	0.00	100.65 p	yroxene
#2	102	В	2	53.48	0.04	1.38	0.18	7.64	14.36	22.47	0.46	0.29	0.00	100.30 p	yroxene
#2	102	С	2	53.84	0.09	1.00	0.33	4.03	17.50	23.08	0.20	0.09	0.00	100.16 p	yroxene

Note: First 4 grains from sample #1 submitted by R. Haimila



629 Beaverdam Road N.E., Calgary Alberta T2K 4W7 Tel: 274-2777 Fax: 275-0541

File No. : 37796-1-D, 37822-1-D Client: Dr. Ted Yoshida

Garnet Classification (after Dawson and Stephens, 1975)

		Locat	ion				Dai	ia in wt %						G	arnet	s Cla	ssific	ation-			·	
Grain #	Sample #	P#	C#	R#	TiO2	Cr2O3	FeO	MgO	CaO	Na2O	G1	G2	G3	G4	G5	G6	G7	G8	G9	G10	G11	G12
ļ	1																					
1	#1	103	D	1	0.09	0.00	27.47	3.92	9.35	0.04	••	••			5				• •	• •		•••
2	#1	103	Е	1	0.02	0.00	37.94	2.98	0.65	0.01			••	• •	5	••			••	• •	• •	
3	#1	103	н	1	0.01	0.03	36.54	4.20	0.68	0.02	••	••			5							
4	#1	103	L	1.	0.04	0.14	36.59	3.75	0.81	0.00					5					••		
5	#1	102	F	1	0.18	0.00	1.60	0.05	36.98	0.00								8		•••		
6	#1	102	G	1	0.09	0.02	2.93	0.04	36.00	0.00								8				
7	#2	102	н	1	0.08	0.06	35.39	4.07	2.19	0.00					5	• •						
																					_	
										7	0	0	0	0	5	0	0	2	0	0	0	0
											G1	G2	G3	G4	G5	G6	G7	G8	G9	G10	G11	G12



629 Beaverdam Road N.E., Calgary Alberta T2K 4W7 Tel: 274-2777 Fax: 275-0541

.

File #: 37796-1-D, 37822-1-D Client: Dr. Ted Yoshida

Pyroxene Classification (after Stephens and Dawson, 1977)

												OR	гнор	YRO	XENE	:			CL	INOF	YRO	XENI	E			[
	-	Locat	ion				Data i	in wt %																		
G #	Sample #	P#	C#	R#	TiO2	AI2O3	Cr2O3	FeO	MgO	CaO	Na2O	1	2	3	4	5	1	2	3	4	5	6 [′]	7	8	9	10
	.															·····						*******		<b></b>		
1	#1	103	F	1	0.11	2.29	0.08	6.38	14.38	22.85	1.04	• • • •		• • • •		••••		2		••••	• • • •	• • • •	• • • •	••••		• • • •
2	#1	103	G	1	0.02	1.08	0.13	6.11	14.82	22.96	0.87				••••	••••		2	· • • •	• • • •	• • • •		• • • •	• • • •	• • • •	
3	#1	103	J	1	0.05	1.45	0.04	7.01	13.68	7.67	0.97				• • • •	••••		• • • •		· · · ·	• • • •		• • • •	8	· <b>· ·</b> ·	
4	#2	102	Α	2	0.13	1.47	0.00	7.05	13.99	23.8 <del>9</del>	0.36				••••	••••		2		• • • •	• • • •	• • • •				. <b></b> .
5	#2	102	в	2	0.04	1.38	0.18	7.64	14.36	22.47	0.46					• • • •		2		· · · ·		• • • •				
6	#2	102	C,	2	0.09	1.00	0.33	4.03	17.50	23.08	0.20					• • • •		2		• • • •						
																				~-						
											*	OR	THOF	YRO	XENE	:			CL	.INOF	PYRC	XEN	E			
												1	2	3	4	5	1	2	3	4	5	6	7	8	9	10
							Total	Pyroxe	ene =	6		0	0	0	0	0	0	5	0	0	0	0	0	1	0	0

629 Beaverdam Road N.E., Calgary Alberta T2K 4W7 Tel: 274-2777 Fax: 275-0541

File No. 37796-1-D Client: Dr. Ted Yoshida

Microprobe Data

Dec 31, 1995

	- Loc	atic	on					Data i	n wt %-						
Sample#	P#	C#	R#	SiO2	TiO2	AI2O3	Cr2O3	FeO	MgO	CaO	Na2O	MnO	K20	Total	Mineral
						*									
#1	103	В	1	0.01	0.15	98.12	0.08	0.83	0.00	0.00	0.00	0.04	0.00	99.23	corundum
#1	103	D	1	37.82	0.09	20.59	0.00	27.47	3.92	9.35	0.04	1.52	0.00	100.80	garnet
#1	103	Е	1	36.54	0.02	20.70	0.00	37.94	2.98	0.65	0.01	1.64	0.00	100.48	garnet
#1	103	F	1	52.57	0.11	2.29	0.08	6.38	14.38	22.85	1.04	0.34	0.02	100.06	pyroxene
#1	103	G	1	53.53	0.02	1.08	0.13	6.11	14.82	22.96	0.87	0.18	0.01	99.71	pyroxene
#1	103	Н	1	37.11	0.01	21.03	0.03	36.54	4.20	0.68	0.02	1.12	0.00	100.74	garnet
#1	103	1	1	36.84	0.04	21.00	0.14	36.59	3.75	0.81	0.00	1.34	0.00	100.51	garnet
#1	103	J	1	53.13	0.05	1.45	0.04	7.01	13.68	7.67	0.97	0.27	0.01	84.28	pyroxene *

* EDS indicate diopside, edge interference on Ca-Ti



629 Beaverdam Road N.E., Calgary Alberta T2K 4W7 Tel: 274-2777 Fax: 275-0541

O: DR. TED YOSHIDA ILE # 37796-1-D

DATE: December 5, 1995

ement	AU	AG	AS	BA	BR	CA	CO	CR	CS	FE	HF	HG	IR	MO	NA	NI	RB	SB	SC	SE	SN	SR	TA	ТН	U	w	ZN
nits	PPB	PPM	PPM	PPM	PPM	%	PPM	PPM	PPM	%	PPM	PPM	PPB	PPM	PPM	PPM	PPM	PPM	PPM	PPM	%	%	PPM	PPM	PPM	PPM	PPM
37796	-5	-5	8	810	-1	2	8	110	1.8	1.75	3.6	-1	-5	-5	14600	-50	32	0.7	5.1	-3	-0.01	0	-1	5.1	2	-3	130

ement	LA	CE	ND	SM	EU	TB	YB	LU
its	PPM							
37796	20	37	17	3.2	0.8	0.6	1.4	0.22



629 Beaverdam Road N.E., Calgary Alberta T2K 4W7 Tel: 274-2777 Fax: 275-0541

File No. : 38373 Client: R.Haimila Microprobe Data Date: July 19, 1996

,

		Loca	atior	ו						Data	in wt %				
Grain	Sample#	P#	C#	R#	TiO2	AI2O3	Cr2O3	V2O3	FeO	MnO	MgO	NiO	ZnO	Total	Mineral
						••••••				····					
2	0.7	111	Α	1	0.03	18.71	50.64	0.19	17.60	0.34	12.03	0.04	0.22	99.79	Chromite
2	0.7	111	В	1	15.19	0.10	0.14	0.25	76.69	0.12	0.06	0.00	0.03	92.59	Ti-magnetile
2	0.7	111	С	1	60.04	0.11	0.04	0.38	31.97	0.22	0.02	0.00	0.04	92.83	altered tFi-Fe oxide
3	1.2	111	Α	1	0.04	2.84	0.01	0.02	64.39	3.18	0.58	0.00	0.06	71.11	altered Fe oxide/hydroxide
3	1.2	111	В	1	99.42	0.03	0.19	0.69	0.27	0.01	0.00	0.02	0.01	100.63	rutile
3	1.2	111	С	1	53.50	0.00	0.00	0.25	44.89	2.18	0.03	0.00	0.02	100.87	ilmerile
3	1.2	111	D	1	0.48	9.64	47.64	0.06	32.98	0.65	7.58	0.09	0.23	99,35	Chromite
3	1.2	111	Е	1	89.34	0.32	0.23	1.47	1.78	0.00	0.00	0.02	0.02	93,17	rutile
4	2.0	111	A	1	99.31	0.05	0.1 <b>1</b>	0.89	0.13	0.00	0.00	0.01	0.02	100.52	rutile
4	2.0	111	В	1	2.37	12.79	0.00	0.00	15.72	0.32	0.75	0.00	0.07	32.02	allanite
4	2.0	111	C	1	72.79	2.71	0.17	0.66	14.24	0.17	0.07	0.00	0.04	90.83	altered Ti-Fe oxide



629 Beaverdam Road N.E., Calgary Alberta T2K 4W7 Tel: 274-2777 Fax: 275-0541

I No. : 38373 I nt: R.Haimila icroprobe Data

	Loca	ation	1						Data	in wt %					
rain: Sample#	P#	C#	R#	SiO2	TiO2	AI2O3	Cr2O3	FeO	MnO	MgO	CaO	Na2O	K2O	Total	Mineral
1 Li LAC	111	B	1	32.62	0.01	0.00	0.02	0.00	0.04	0.00	0.04	0,00	0.00	32.7	ll zircon
2 Li LAC	111	C	1	32.67	0.04	0.00	0.02	0.00	0.06	0.01	0.06	0.03	0.00	32.9	zircon
3 LI LAC	111	D	1	31.96	0.04	0.02	0,00	0.00	0.00	0.02	0.02	0.03	0.00	32.1	zircon
4 ange	111	E	1	29.15	36.70	1.37	0.00	1.43	0.10	0.02	26.91	0.01	0.00	95.7	sphene
■5 Orange	111	F	1	29.39	36.32	1.70	0.00	1.42	0.14	0.01	27.99	0.04	0.00	97	sphene
o Pale Copper	1.1.1	G	1	31.22	0.11	20.90	0.04	27.31	2.89	1.74	8.98	0.01	0.00	99.2	unknown

**B - LORING LABS 95-1 GRAINS PICKED FROM CORE** 



629 Beaverdam Road N.E., Calgary Alberta T2K 4W7 Tel: 274-2777 Fax: 275-0541

le No 37917 Client: R. Haimila

Microprobe Data

		Loca	ation						Data in w	k %	**********				1	
Grain#	Sample	Plug	C#	R#	SiO2	TiO2	AI203	Cr203	FeO	MnO	MgO	CaO	Na2O	K20	Total	Mineral
					<del></del>											
1	1	106	Α	2	27.85	0.76	52.41	0.10	12.47	0.02	2.10	0.00	0.01	0.00	95.72	Staurolite
2	2	106	В	2	27.90	0.66	53.70	0.00	13.07	0.20	1.93	0.00	0,00	0.00	97.46	Staurolite
3	3	106	Ċ	2	28.43	0.75	52.88	0.00	12.91	0.07	2.11	0.00	0.00	0.01	97.16	Staurolite
4	4	106	D	2	29.66	36.79	1.25	0.00	1.14	0.18	0.01	27.53	0.00	0.00	96.56	Titanite
5	5	106	Е	2	36.99	0.19	20.40	0.00	29.63	0.43	1.26	10.55	0.01	0.01	99.47	Garnet
6	6	106	F	2	40.74	0.34	22.12	0.20	13.28	0.43	18.40	4.04	0.04	0.00	99.5 <del>9</del>	Garnet
7	7	106	G	2	38.25	0.00	21.48	0.00	26.56	2.25	8.32	2.79	0.01	0.00	99.66	Garnet
8	8	106	н	2			SAMPL	Е ТОО	SMALL							
9	9	106	T	2	37.88	0.33	20.36	0.04	3.26	0.29	0.12	34.74	0.01	0.01	97.04	Garnet
10	10	106	J	2	59.99	0.10	25.15	0.00	0.17	0.00	0.00	7.41	7.11	0.30	100.23	Unknown

24-Jan-96


629 Beaverdam Road N.E., Calgary Alberta T2K 4W7 Tel: 274-2777 Fax: 275-0541

Date: Sept 30, 1996

File No. : 38917-1-D Client: TUL Petroleum

Garnet Classification (after Dawson and Stephens, 1975)

		Loca	tion				·D	)ata in wt	%		-			(	Garne	ets Cl	assifi	catio	]			
Grain #	Sample #	P#	C#	R#	TiO2	Cr2O3	FeO	MgO	CaO	Na2O	G1	G2	G3	G4	G5	G6	G7	G8	G9	G10	G11	G12
5	5	106	Е	2	0.19	0.00	29.63	1.26	10.55	0.01					5	· ·						
6	6	106	F	2	0.34	0.20	13.28	18.40	4.04	0.04			3									
7	7	106	G	2	0.00	0.00	26.56	8.32	2.79	0.01					5							
9	9	106	Ι	2	0.33	0.04	3.26	0.12	34.74	0.01	• •					· •		8				• •
										4	0	0	1	0	2	0	0	1	0	0	0	0
											G1	G2	G3	G4	G5	G6	G7	G8	G9	G10	G11	G12



Page 1



# Loring Laboratories Ltd.

629 Beaverdam Road N.E., Calgary Alberta T2K 4W7 Tel: 274-2777 Fax: 275-0541

File No. : 37978-D Client: RAYMOND HAIMILA Microprobe Data

		Loc	ation							Dat	ain wt %	6						
Grain	Sample	Piug	C#	R#	SiO2	TiO2	AI2O3	Cr2O3	FeO	MnO	MgO	CaO	Na2O	K2O	NiO	ZnO	Total	Mineral
1	1	107	А	5	98.24	0.04	0.00	0.00	0.00	0.01	0.00	0.04	0.00	0.00			98.33	QUARTZ
2	2	107	В	5	96.84	0.10	0.00	0.02	0.00	0.00	0.03	0.00	0.00	0.00			96, <b>9</b> 9	QUARTZ
3	3	107	С	5	<b>98</b> .02	0.08	0.02	0.03	0.02	0.00	0.03	0.02	0.00	0.00			98.22	QUARTZ
4	4	107	D	5	0.22	0.00	0.00	0.00	0.03	0.00	0.00	20.24	0.00	0.00			20.49	SCHEELITE *
5	5	107	Ε	5	37.30	0.10	20.42	0.02	33.09	0.65	1.81	7.17	0.00	0.00			100.56	GARNET

.

NOTE: EDS indicate W

Commiss GE examples

C - LORING LABS HAND SAMPLES: #001, #002, #003; BULK DENSITY

To : Andy Glatiotis 5643 Brenner Cr. NW Calgary, Alberta T2L 1Z3 ATTN : Andy Glatiotis



File No : **39378** Date : 7-Aug-97 Samples : Project : P.O.#

# **Certificate of Assay Loring Laboratories Ltd.**

Sample No.	Density		
"Bulk Density Analyses"			
CL-97- 1	3.46		
CL-97- 2 CL-97- 3	3.04 3.05		
		·	
I HEREBY CERTIFY that the a	above results are those assays		
made by me upon the nerein	uescribed samples :	 	

### D - LORING LABS SURFACE SAMPLE 10001, 97-1 DRILL CUTTINGS, 97-2: A AND B DRILL CUTTINGS, 97-2 CORE

629 Beaverdam Rd. N.E. Calgary, Alberta T2K 4W7



Tel: (403) 274-2777 Fax: (403) 275-0541

To: Mr. Andy Glatiotis

From: LORING LABORATORIES LTD.

Date: October 7, 1997

Subject: Sample Results

File: 39382,39216,39353

#### 1. Introduction

Enclosed are the results of the processing of your samples 10001, 97-2, 97-2 A, 97-2 B, 97-1 Cutting.

The data sheets enclosed represent the adjusted microprobe data as received from the technician. On the tables and charts attached to this report, the oxides are presented in weight percent of the composition of the mineral and -- indicates that the oxide was not analyzed in the mineral (see Microprobe Data table)

Each grain was designated a number which can be found in the leftmost column of the microprobe data sheet. All numbers plotted on any charts refer to these numbers.

Care must be taken in interpreting this data. Although some of these minerals may be found in kimberlite or lamproite, they may also be present in other rocks.

Following are a few notes on the mineral grains picked from the samples.

#### 2. Garnet

The garnets have been categorized according to Dawson and Stephens' (1975) classification. Of the 17 grains selected for probing, 11 rank as G5 (Magnesian Almandine), 5 rank as G7 (Fe-Mg Uvarovite), 1 rank as G11 (Titanian Uvarovite-Pyrope). (see Garnet Classification tables).

None of the Grain plotted in the Eclogitic Field from Fipke.(1989) (see Eclogite Garnet Indicators chart).

#### 3.Pyroxene

Eight grains were identified as pyroxene. Two of these grains classify as CP-2 (Diopside), six classifies as CP-4 (Low Chrome Diopside). None of the grain plots in the diamond inclusion field (Fipke 1989) (see chart)

#### 4.Ilmenite

Four grains were identified as Ilmenite, neither of these grains fall in the diamond inclusion field(Fipke, 1989).

#### 5.Other Minerals

Six grains from these samples had low totals of weight percent since not all oxides were probed for. Four are probable Zn-spinel, two are probable apatite. Also eight grains are probable Tourmaline, five are probable staurolite, three spinel and one epidote.

#### 6.References

Dawson J.B. and W.E. Stephens 1975: Statistical Classification of Garnets from Kimberlite and Associated Xenoliths. Journal of Geology, vol. 83, p. 589-607.

Fipke, C. E. (ed.) 1989: The development of advanced technology to distinguish between diamondiferous and barren diatremes. Geol. Surv. of Canada, Open File Report 2124.

Gurney, J. J.

1985: A correlation between garnets and diamonds in Kimberlites; in J.E. Glover and P.G. Harris (eds.), Kimberlite Occurrence and Origin: A basis for conceptual models in exploration, Geol. Dept. and Univ. Exten., Univ. W. Aust., Publ. No. 8, 143-166.

Stephens W.E. and J.B. Dawson

1977: Statistical Comparison Between Pyroxenes from Kimberlites and their Associated Xenoliths. Journal of Geology, vol. 85, p. 433-449.

629 Beaverdam Road N.E., Calgary Alberta T2K 4W7 Tel: 274-2777 Fax: 275-0541

File No. : 39382,39216,39353 Client : Andy Glatiotis Microprobe Data Date: October 7, 1997

		Loca	ation						Data in v	vt %					
Grain	Sample	Plug	C#	SiO2	TiO2	AI2O3	Cr2O3	FeO	MnO	MgO	CaO	Na2O	K20	Total	Mineral
1	97-1 Cutting	124	1B	0.18	0.11	0.20	0.01	2.35	0.35	0.14	45.30	0.11	0.00	48.74	apatite?
2	97-1 Cutting	124	1C	0.00	0.06	0.19	0.00	1.69	0.09	0.15	45.44	0.27	0.00	47.90	apatite?
3	97-2 A	124	1G	36.04	0.12	20.09	0.00	32,95	0.77	1.30	7.25	0.00	0.00	98.52	garnet
4	97-2 A	124	1H	36.86	0.00	20.40	0.01	31.89	0.75	2.57	6.95	0.00	0.00	99.42	garnet
5	97-2 A	124	11	36.61	0.06	20.55	0.01	30.24	2.54	2.16	7.32	0.02	0.02	99.52	garnet
6	97-2 B	124	1J	36.71	0.08	20.01	0.00	29.50	2.60	2.13	6.9 <del>9</del>	0.01	0.00	98.03	garnet
7	97-2 B	124	2A	35.95	0.00	20.75	0.03	33.48	3.61	2.43	2.81	0.00	0.00	99.06	garnet
8	97-2 B	124	2B	36.46	0.02	20.14	0.08	31,78	1.39	2.46	6.58	0.00	0.01	98.92	garnet
9	10001	124	2C	37.41	0.00	21.20	0.00	29.90	0.26	7.85	2.55	0.00	0.00	99.17	garnet
10	10001	124	2D	36.34	0.00	20.91	0.00	36.18	1.17	3.91	0.97	0.03	0.00	99.51	garnet
11	10001	124	2E	35.79	0.04	20.53	0.00	36.26	2.88	1.24	2.35	0.00	0.00	99.10	garnet
12	10001	124	2F	36,35	0.08	20.69	0.00	33.80	0.39	3.06	4.31	0.00	0.00	98.67	garnet
13	10001	124	2G	35.23	0.01	19.85	0.00	25.72	16.04	0.36	0.52	0.06	0.00	97.78	garnet
14	97-1 Cutting	124	ЗА	26.86	0.64	52.01	0.04	12.68	0.07	2.35	0.00	0.00	0.00	94.65	staurolite
15	97-1 Cutting	124	3B	26.70	0.77	51.78	0.03	13.14	0.08	2.28	0.00	0.00	0.01	94.79	staurolite
16	97-1 Cutting	124	ЗC	26.84	0.71	51.71	0.03	12.96	0.04	2.13	0.00	0.01	0.00	94.42	staurolite
17	97-1 Cutting	124	ЗD	26.58	0.63	51.78	0.03	12.74	0.05	2.17	0.00	0.00	0.00	93.97	staurolite
18	97-1 Cutting	124	ЗE	25.94	0.69	52.16	0.06	12.74	0.00	1.83	0.00	0.00	0.00	93.42	staurolite
19	97-1 Cutting	124	<b>4</b> A	35.66	0.17	0.07	9.69	18.35	0.05	0.08	34.24	0.00	0.01	98.33	garnet
20	97-1 Cutting	124	<b>4</b> B	37.72	0.63	15.26	6.50	4.29	1.32	0.23	32.73	0.04	0.00	98.72	gamet
21	97-1 Cutting	124	4C	37.30	1.25	11.43	11.29	1.95	0.94	0.16	34.60	0.00	0.00	98.93	gamet
22	97-1 Cutting	. 124	4D	37.01	0.19	9.01	15.17	1.60	1.09	0.27	33.67	0.00	0.01	98.01	garnet
23	97-1 Cutting	124	4E	36,67	0.65	9.48	11.53	0.25	0.07	0.25	35.56	0.00	0.01	94.46	gamet?
24	97-2 A	124	4F	35.91	0.13	0.06	10.08	17.91	0.02	0.05	33.87	0.04	0.00	98.07	garnet
25	97-2 A	124	4G	52.45	0.04	1.58	0.09	7.47	0.23	14.18	22.65	0.65	0.00	99.34	pyroxene
26	97-2 A	124	4H	52.47	0.11	1.32	0.05	8.09	0.28	13.24	23.68	0.72	0.00	99.97	pyroxene
27	97-2 A	124	4	52.55	0.20	1.36	0.07	8.73	0.45	13.45	22.63	0.63	0.00	100.06	pyroxene
28	97-2 A	124	4J	51.60	0.11	1.51	0.02	9.73	0.51	12.09	23.42	0.51	0.01	99.51	pyroxene
29	97-2 A	124	5A	52.71	0.11	1.07	0.00	9.77	0.87	12.78	22.33	0.77	0.00	100.40	pyroxene
30	97-2 A	124	5B	53.80	0.12	0.81	0.00	7.07	0.08	14.18	22.85	1.33	0.01	100.23	pyroxene
31	97-2B	124	5C	52.08	0.13	1.51	0.01	8.34	0.48	13.81	21.89	0.81	0.00	99.07	pyroxene
32	9/-28	124	5D	0.00	0.00	51.42	0.02	14.98	0.14	2.54	0.00	0.00	0.00	69.09	Zn-spinel
33	10001	124	5E	0.00	0.00	49.70	0.01	11.81	0.15	2.46	0.01	0.00	0.00	64.14	Zn-spinei
34	10001	124	51	0.00	0.02	42.62	0.00	4.63	0.41	0.02	0.00	0.00	0.00	4/.70	Zn-spinel
35	10001	124	5G	0.00	0.05	44.42	0.00	6.58	0.22	0.59	0.04	0.00	0.01	51.92	Zn-spinei
36	10001	124	SH	36.11	0.03	22.82	0.04	7.79	0.13	1.02	22.46	0.03	0.06	90.47	epidote
37	97-1 Cutting	124	6A	34.71	0.64	33.57	0.02	12.75	0.11	1.62	0.26	2.05	0.07	85.80	tourmaline
38 20		124	60 80	30,20 25.72	0.99	33.35	0.00	9.43	0.02	4.27	0.62	1.84	0.05	85.77	tourmaline
39		124		35.73	0.00	33.55	0.00	10.07	0.09	4.70	0.40	1.0∠ 2.24	0.03	04.98	tourmaline
40		124	ου	30,71	1.00	33.70	0.00	ו∪.∠/ מידים	0.007	J.00	0.20	∠.∠I 1 0⊑	0.03	00.75 95 50	tourmaline
41	oz o	124		50.22	0.00	JZ.90	0.00	0.73	0.07	4.00	1.40	C0.1	0.05	400.00	DVIOVADO
42	97-2 07-2	124	00 0	31.70	0.30	4.41	0.11	10./1 6.E0	0.29	∠⊐.∠۱ ه∽∞	1.10	0.09	0.00	05.74	tourmaling
45	31-2	124	00 7۸	30.90	0.30	31.04	0.07	0.00	0.09	0.20	C1.10	2.24	0.09	60./1 0F 4F	tourmaline
44		124	78	34.58	0.87	33.32	0.00	10.45	0.02	3.00	0.33	2.15	0.07	65.45	loumaline

629 Beaverdam Road N.E., Calgary Alberta T2K 4W7 Tel: 274-2777 Fax: 275-0541

File No. : 39382,39216,39353 Client : Andy Glatiotis Microprobe Data Date: October 7, 1997

		Loca	ation						Data in v	vt %					
Grair	Sample	Plug	C#	SiO2	TiO2	AI2O3	Cr203	FeO	MnO	MgO	CaO	Na20	K20	Total	Mineral
		••													
45	10001	124	7B	35.31	0.48	29.39	0.00	2.67	0.05	12.17	4.87	0.46	0.00	85.41	tourmaline
46	97-2	124	6F	0.07	0.70	58.81	0.06	21.33	0.09	18.18	0.02		-	99.24	spinel
47	97-2	124	6H	0.05	0.99	55.61	0.10	24.93	0.16	17.24	0.00			99.08	spinel
48	97-2	124	61	0.09	1.37	53.93	0.06	27.03	0.10	16.44	0.00			99.01	spinel
49	10001	124	7C	0.01	53.21	0.02	0.07	45.55	0.57	0.58	0.00			100.00	ilmenite
50	10001	124	7D	0.02	51.55	0.03	0.02	45.98	2.09	0.20	0.00			99.88	ilmenite
51	10001	124	7E	0.01	50.11	0.02	0.00	47.97	1.73	0.30	0.00		-	100.14	ilmenite
52	10001	124	7F	0.00	49.54	0.10	0.06	47.64	1.02	1.51	0.00		-	99.88	ilmenite



629 Beaverdam Road N.E., Calgary Alberta T2K 4W7 Tel: 274-2777 Fax: 275-0541

Date: Oct 07, 1997

File No. : 39382,39216,39353

Client: Andy Glatiotis

Garnet Classification (after Dawson and Stephens, 1975)

	-	Locat	ion	l		Dat	ta in wt %			<b> </b>			G	arnet	s Cla	ssifica	ation-				
Grain #	Sample #	P#	C#	TiO2	Cr2O3	FeO	MgO	CaO	Na2O	G1	G2	G3	G4	G5	G6	G7	G8	G9	G10	G11	G12
	-									<b> </b>					••						
3	97-2 A	124	1G	0.12	0.00	32.95	1.30	7.25	0.00				• •	5		• •					
4	97-2 A	124	1H	0.00	0.01	31.89	2.57	6.95	0.00				• •	5	••		••	• •			
5	97-2 A	124	11	0.06	0.01	30.24	2.16	7.32	0.02		••		•••	5		• •					• •
6	97-2 B	124	1J	0.08	0.00	29.50	2.13	6.99	0.01					5	• •						
7	97-2 B	124	2A	0.00	0.03	33.48	2.43	2.81	0.00		• •			5		••				• •	• •
8	97-2 B	124	2B	0.02	0.08	31.78	2.46	6.58	0.00					5							
9	10001	124	2C	0.00	0.00	29.90	7. <b>8</b> 5	2.55	0.00	••				5	••						
10	10001	124	2D	0.00	0.00	36.18	3.91	0.97	0.03	••	• •			5	••						• •
· 11	10001	124	2E	0.04	0.00	36.26	1.24	2.35	0.00		••			5	• •						
12	10001	124	2F	0.08	0.00	33.80	3.06	4.31	0.00					5							
	10001	124	2G	0.01	0.00	25.72	0.36	0.52	0.06	••				5	••	• •					• •
19	97-1 Cutting	124	<b>4</b> A	0.17	9.69	18. <b>3</b> 5	0.08	34.24	0.00	••	• •			• •	••	7				• •	
20	97-1 Cutting	124	48	0.63	6.50	4.29	0.23	32.73	0.04											11	
21	97-1 Cutting	124	4C	1.25	11.29	1.95	0.16	34.60	0.00		• •					7					
.22	97-1 Cutting	124	4D	0.19	15.17	1.60	0.27	33.67	0.00				••	••		7					
23	97-1 Cutting	124	4E	0.65	11.53	0.25	0.25	35.56	0.00					• •		7					
24	97-2 A	124	4F	0.13	10.08	17.91	0.05	<b>33</b> .87	0.04				••	••	••	7	•••				
												_									
									17	0	0	0	0	11	0	5	0	0	0	1	0
1										G1	62	63	G4	65	66	G7	GR	60	G10	G11	G12







629 Beaverdam Road N.E., Calgary Alberta T2K 4W7 Tel: 274-2777 Fax: 275-0541

File #:39382,39216,39353 Client: Andy Glatiotis

Pyroxene Classification (after Stephens and Dawson, 1977) ORTHOPYROXENE CLINOPYROXENE --- Location ----Data in wt %--|-----|----l ŀ C# TiO2 Al2O3 Cr2O3 FeO MgO CaO Na2O 1 2 3 4 5 1 2 3 4 5 6 7 8 9 10 G # Sample P# --- |------ŀ -1 1-25 97-2 A 124 4G 0.04 1.58 0.09 7.47 14.18 22.65 0.65 26 97-2 A **4**H 0.11 0.72 ..... 4 ..... 124 1.32 0.05 8.09 13.24 23.68 27 97-2 A 0.07 124 4 0.20 1.36 8.73 13.45 22.63 ..... 4 28 97-2 A 124 4J 0.11 1.51 0.02 12.09 23.42 0.51 9.73 ..... 4 29 97-2 A 124 5A 0.11 1.07 0.00 9.77 12.78 22.33 0.77 30 97-2 A 124 5B 0.12 0.81 0.00 1.33 7.07 14.18 22.85 31 97-2 B 124 5C 0.13 1.51 0.01 8.34 13.81 21.89 42 97-2 124 6G 0.35 4.41 0.11 16.71 14.17 23.59 -- -- -- -- -ORTHOPYROXENE **CLINOPYROXENE** 2 1 з 4 5 1 2 з 4 5 6 7 8 9 10 Total Pyroxene = 8 0 0 0 0 0 0 2 0 6 0 0 0 0 0 0







629 Beaverdam Road N.E., Calgary Alberta T2K 4W7 Tel: 274-2777 Fax: 275-0541

Date: August 29, 1997 File: 39216-D Client : ANDY GLATIOTIS

#### SUMMARY OF POTENTIAL INDICATORS PICKED

<u>Sample</u>	<u>Garnet</u>	<u>CPX</u>	<u>llmenite</u>	<u>Chromite</u>	<u>Olivine</u>	<u>Diamond</u>	<u>Total Grains</u>	<u>Remarks</u>
10001	7	43	6	1	7	0	64	
Totals	7	43	6	1	7	0	64	

**CPX = Clinopyroxene** 



629 Beaverdam Road N.E., Calgary Alberta T2K 4W7 Tel: 274-2777 Fax: 275-0541

FILE # : 39216-D

COMPANY: ANDY GLATIOTIS

DATE : ____Aug 29, 1997

	ORIGINAL WEIGHT		SCREEN ANALYSI	s	TABLE CONC.	MIDDI 2.9 -	INGS 3.3 SG				HEAVIES	6 <b>&gt;3.3 SG</b>			
SAMPLE		+ 35	35 x 80	-80	+ 80	ļ	NON -	MAG.	+ 28 Mesh	0.5	P.M. 0.6	0.7	1.2 W	2.0	N.M. 2.0
1D.		mesh	mesh	mesh	mesh	MAG.	MAG.								
	(Kg)	(kg)	(kg)	(Kg)	(g)	(g)	(g)	(g)	(g)	(g)	(g)	(g)	(g)	(g)	(g)
10001	22.2	5.2	16.4	0.6	289	0.03	3.86	35.55	5.19	103.01	21.11	2.24	2.06	0.77	4.78
	1														
		1								[		<u>}</u>			
			· ·	ļ											
	·														
	1		1												
			+						<u> </u>						
							<u>-</u>		<b> </b>					1	<u> </u>

NOTE : P.M. = PARAMAGNETIC

۰.

W.P.M. = WEAKLY PARAMAGNETIC

...

N.M. = NON-MAGNETIC

ASSAYER

Page 1



629 Beaverdam Road N.E., Calgary Alberta T2K 4W7 Tel: 274-2777 Fax: 275-0541

Date: August 29, 1997 File: 39353-D Client : ANDY GLATIOTIS

#### SUMMARY OF POTENTIAL INDICATORS PICKED

Sample	<u>Garnet</u>	<u>СРХ</u>	<u>llmenite</u>	<u>Chromite</u>	<u>Olivine</u>	<u>Diamond</u>	<u>Total Grains</u>	<u>Remarks</u>
97-1 CUTTING	98	71	14	0	25	0	208	7 grains of gold
Totals	98	71	14	0	25	0	208	

CPX = Clinopyroxene



629 Beaverdam Road N.E., Calgary Alberta T2K 4W7 Tel: 274-2777 Fax: 276-0541

FILE # : 39353-D

COMPANY: ANDY GLATIOTIS

DATE : Aug 29, 1997

	ORIGINAL WEIGHT		SCREEN ANALYSI	s	TABLE CONC.	MIDDI 2.9 -	LINGS 3.3 SG				HEAVIES	5 >3.3 SG			
SAMPLE ID.	(Kg)	+ 35 mesh (ka)	35 x 80 mesh (kg)	-80 mesh (Ka)	+ 80 mesh (a)	MAG.	NON - MAG.	MAG.	+ 28 Mesh (g)	0.5 (a)	P.M. 0.6	0.7 (g)	1.2 (g)	(.P.M. 2.0	N.M. 2.0 (g)
97-1 Cutting	372.4	112.0	177.6	82.8	1066	0.12	33.94	59.64	3.65	406.80	4.09	21.67	30.19	0.13	48.13
								ļ							
	<u> </u>		 				ļ	 	 						 
									}						]
														<u> </u>	
														 	ļ 

NOTE : P.M. = PARAMAGNETIC

W.P.M. = WEAKLY PARAMAGNETIC

N.M. = NON-MAGNETIC

ASSAYER

Page 1



629 Beaverdam Road N.E., Calgary Alberta T2K 4W7 Tel: 274-2777 Fax: 275-0541

Date: August 29, 1997 File: 39382-D Client : ANDY GLATIOTIS

#### SUMMARY OF POTENTIAL INDICATORS PICKED

Sample	<u>Garnet</u>	<u>СРХ</u>	<u>llmenite</u>	<u>Chromite</u>	<u>Olivine</u>	<u>Diamond</u>	Total Grains	<u>Remarks</u>
97-2	0	0	19	0	0	0	19	
97-2 A	3	4	0	0	1	0	8	
97-2 B	3	4	3	0	0	0	10	
Totals	6	8	22	0	1	0	37	

CPX = Clinopyroxene



629 Beaverdam Road N.E., Calgary Alberta T2K 4W7 Tel: 274-2777 Fax: 275-0541

FILE # : 39382-D

COMPANY: ANDY GLATIOTIS

DATE : Aug 29, 1997

	ORIGINAL WEIGHT		SCREEN ANALYSI	s	TABLE CONC.	MIDD1 2.9 -	INGS 3.3 SG	調整の			HEAVIES	6 > 3.3 SG			
Ì					1			MAG.	+ 28		P.M.		W	.P.M.	N.M.
SAMPLE		+ 35	35 x 80	-80	+80	l .	NON -		Mesh	0.5	0.6	0.7	1.2	2.0	2.0
ID.		mesh	mesh	mesh	mesh	MAG.	MAG.						i i		
	(Kg)	(kg)	(kg)	(Kg)	(g)	(g)	(g)	(g)	(g)	(g)	(g)	(g)	(g)	(g)	(g)
		· · · - ·										T			
97 - 2	16.1	0.2	1.1	14.8	187	0.03	7.8	0.14	3.21	1.79	0.11	0.05	0.04	0.03	0.02
							[						ļ		
97 - 2 A	28.9	2.5	6.1	20.3	104	0.02	10.02	0.89	5.74	3.64	0.31	0.13	0.06	0.03	0.02
97 - 2 B	30.1	0.8	4.3	25.0	230	0.01	8.85	1.55	9.78	3.88	0.07	0.10	0.18	0.05	0.03
		<u> </u>	<u> </u>				í	1	1			<u> </u>	1		
				_								Γ			
								1							i
												T			
	<u> </u>														

NOTE : P.M. = PARAMAGNETIC

W.P.M. = WEAKLY PARAMAGNETIC

N.M. = NON-MAGNETIC

ASSAYER

Page 1

### E - M. GLATIOTIS; SEM/KEVEX ANALYSES

### Mike Glatiotis Geotechnical Contract Services

X-Ray Emmission Spectroscopy

Samples Submitted:

- 1) Bottle of magnetic material, black flakes with Fe Oxide coating one side, leftover from caustic fusion analysis.
- 2) 1 clear grain from drill cuttings Drill 97–2
- 3) Series of grains picked out after caustic fusion
- 4) Series of grains picked out after caustic fusion from drill core.
- 5) Series of grains panned from surface.

Samples analyzed in a Cambridge 250 Scanning Electron Microscope with a KEVEX xray emmision spectrograph.

Analyses are non quantitative. Emmissons are collected to a maximum intensity of 70 for the strongest response. Other elemental intensity is recorded relative to this 70 scale. Different elements give different emmission responses. As no standards were run, quantitative calculations are not possible.

A response indicates presense of that element. Intensty reflects relative proportions. The KEVEX analytical tool is limited to detecting Sodium as the lightest element.

Mount #1	<ol> <li>Rusty metal</li> <li>Rusty metal</li> <li>Rusty metal</li> <li>Clear stone</li> </ol>	a) b)	Fe 70 Ca 30 Si 5 Fe 70 Ca 35 Si 20 Fe 70 Ca 5 Si 70 Si 70
	5 Grey metal		Fe 70 Ti15
Mount #2	Magnetic black flakes	5	Fe 70 Na 5 Ti 2 Fe 70
Mount #3 Caustic fusion	Large, clear stone	a) b)	Si 70 Al 20 K 15 Si 70
	Small dark stone	•	AI 15 Si 70 K 5
Mount #4	1 Dark translucent		AI 70 Si 50
Caustic fusion	2 Dark Purple 3 Dark opaque		SI 70 AI 50 AI 70 SI 65 CI 20 Na 30
	4 Blue translucent		Al 70
	5 Blue green transparer	nt	Al 70 Si 40
	6 Dark		Al 70 Si 60
	7 Pale blue		Al 70 Si 35 Ca 10 Fe 10
	8 Dark blue		Si 70 Al 30 Mg 15
	9 green opaque		Si 70 Al 50
	10 Pale blue translucent		Al 70 Si 30
	11 Dark		Si 70 Al 60
	12 Yellow		Si 50 Al 70
	13 Clear		Si 70 Mg 20 Ca 15
	14 Clear		SI 70 AI 45

					<b>-</b>		
Mount #5a	1 4 micron	S70	Si 45	Cl 45	Ca 30		
Surface pans	1a 400nm	S 70	Si 45	Cl 52	Ca 25	Fe 5	
	2 2 micron	Si 70					
	2a 200nm	Si 70					
	3	Na 35	Si 39	S 45	CI 70	K 25	
	За	Na 45	Si 40	S 45	CI 70	K 5	
	4	Cr 70	Fe 40	Ti 15	Al 10	Mg 10	)
	5	S 70	Si 15	Ca 10			
	5a	S 70	Si 20	CI 20	Fe 5		
	6	S70					
	7	Si 70	S 60	Ca 20			
	7a	Si 70	S 60	Ca 10	CI 45	K 30	High background
	8	CI 70	Na 30	Si 20			
	89	Na 45	Si 45	S 45	CI 70	к 20	
	0	Si 70		0 40	0.70	11 20	
	9	Si 70					
	9a 10		Si 20	Eo 10			
	10	AI 70	5130				
	10a	AI 70	5130	Fe IU			
	<b>a</b>	0:	c				
Mount 5D)	1 metallic looking	51	3	C			
Surface pans	2 pale blue	AI 70	5120				Amorphous around Si
	3 metallic looking	SI 30	S 35	CI 70	<u></u>		
	<b>3a</b> metallic looking	Na 20	S1 40	S 30	CI 70	K 20	
	4 pale blue	CI 70	Si 30	S 30			
	5 pale blue	AI 70	Si 50				
	6 metallic looking	Si 70					
	7 orange	AI 70					
	8 pink	CI 70					Amorphous around Si, Al.
	8a pink	CI 70					Amorphous around Si, Al.
	9 pink	AI 30	Si 70	Κ5	Fe 5		
	10 orange	AI 70					
	11 pink	Si 70	AI 30	Mg 20	Ca 35	Cr 25	
	12 hexagonal clear	Si 55	P 70	0			
	12a hexagonal clear	Si 55	P 70				
	13 clear	P 70	Si 45	Fe 5			•
	13a clear	AI 70					
	13h clear						
	14 clear	Si 70					
		Si 70					
	15 alaon		Eo 10				
		01 70	1010				
	10 clear						
	10d clear						
	17 clear		T: -				
	10 brown						
	19 orange	AI 70	Fe 25				
	20 Clear	5170					

Z

F - ASHTON MINING: HAND SPECIMEN WHOLE ROCK ANALYSES

•

L

٩.,

ICOMP: ASHTON MINING OF CANADA INC.MIN-EN LABS - WHOLE ROCK ANALYSIS FILE NO: 5V-0228-RL1 BZBZ SHERBROOKE ST., VANCOUVER, B.C. V5X 4EB DATE: 95/07/18 PROJ: 1210 N.AMERICA GENERAL high * ROCK * TEL: (604)327-3436 hesh ATTN: JEFF BRENDON FAX: (604)327-3423 (ACT:F25) ŚR) AZO) K. Y AGO ION MNO SAMPLE NAZO P205 AL203 8A CAO FE203 \$102 5017¹⁰2 LØI NUMBER Χ ž 54 X <u>⁄x</u> * X ሂ 7 * 2 5.82 2.71 .95 55.15 .040 10.72 .520 6.36 6.40 7.05 .09 .83 2.20 RH-R1 6.40 6,36 5.95 2.57 56.83 .065 RX-RZ 10.88 .350 6.06 .10 1.25 .66 1.40 <u>3.2</u>0 3.93 .81 .09 3.84 .17 ! 67.35 .030 4.90 RH-R3 12.85 .180 -81 1.10 RH-R4 12.05 ,035 \ 7.55 15,42 2.50 4.00 .19 1.95 .36 51.33 .035 2.77. .70 74.41 RH-R5 8.02 .055 / 1.48 5.55 2.42 .11 1.56 .04 .020 .46 2.50 2.42 0.32 0.7 352 76 0.93 27.4 2.3 4.4 6.11 0.11 0.09 KIMBERLITE ALEAN Representative average compositions of lamproites (after Bergman, 1987)

> Leucite Hills Murcia-Almeira West Kimberley Average lamproite USA (24) Spain (51) Australia (98) (worldwide) (309) Volatile Free (wt%) SiO₂  $52.7 \pm 3.8$  $51.3 \pm 6.6$  $57.4 \pm 5.2$ 52.5 ± 6.6 TiO₂  $2.4 \pm 0.3$  $5.1 \pm 1.5$  $1.5 \pm 0.2$ 3.0 ± 1.7 Al₂O₃  $10.8 \pm 1.4$  $7.2 \pm 2.4$  $10.5 \pm 1.8$  $9.0 \pm 2.5$ FeO'  $5.1 \pm 1.4$  $7.1 \pm 1.1$  $5.3 \pm 1.1$  $6.8 \pm 2.2$ MnO  $0.9 \pm .03$ .09 ± .03 .08 ± .05  $0.10 \pm .05$ MgO 8.4 ± 2.3  $11.7 \pm 7.5$  $10.5 \pm 4.7$  $12.3 \pm 6.6$ CaO  $6.7 \pm 3.8$  $6.0 \pm 8.0$ 4.9 ± 2.4  $6.1 \pm 4.4$ Na₂O  $1.3 \pm 0.5$  $0.5 \pm 0.3$  $2.0 \pm 1.0$  $1.4 \pm 1.0$ К2О  $10.4 \pm 2.4$ 8.3±2.9  $6.6 \pm 2.2$  $6.9 \pm 2.8$  $P_2O_5$ 1.5±0.6  $1.1 \pm 0.6$  $1.1 \pm 0.5$ 1.3 <u>+</u> 0.7 BaO  $0.67 \pm 0.3$  $1.2 \pm 0.8$  $0.3 \pm 0.2$  $0.7 \pm 0.6$ ZrO2  $0.22 \pm 0.7$  $0.15 \pm 0.4$ .08 ± .04  $0.13 \pm .07$ Volatile Content (wt%) H20+  $2.6 \pm 1.2$  $3.0 \pm 1.8$  $2.8 \pm 1.7$  $2.6 \pm 1.8$ CO2  $1.0 \pm 1.0$  $1.9 \pm 5.5$  $1.7 \pm 2.3$  $2.7 \pm 3.9$

() = number of samples

reprinted from GSC Bulletin 423,1995 Diamond Exploration Techniques Fipke,Gurney, Moore

TABLE 2

+ R2 is FROM North side of FARREL LAKE

RH-RI, -R3, -R21, -R5. Il. Dr. 1/05HIDAC Clion clion clicus. Claims

15

TOTAL P.84 Subal 9561-05-200 

92: ASHTON MI DJ: 1210 H.AM IN: JEFF BREM	HING OF EAU ERICA GENER DON	ADA IN Al	Ç.					5	XN	IIN- BZ SH TEL:	EN ERBRO (604)]	LAE 016 9 327-3	35 - 57., 1 1436	I MANCOU FAX:	CP VER, (604)	REP 9.C. \ 527-34	ORT /51 4 423	E8	L	X							FIL * R	E HD: QAJ OCK *	5V-023 E: 95, {ACI	28-83 70775 1:#31
SAMPLE	AG AL PPR X	AS PPN	BA	BE PPH	81 PPM	EA X	CD PPH	CO PPA	CR	CU PPH	fE X	GA PPM	K Z	L1 PPN	NG X	NN PPN	RO FPH	NA Z	ANI/ REA	P PPK	PB PPH	SB PPN	SN PPM	SR PPM	1 H <b>PPH</b>	T1 2	U	V PPH	N PPN	ZН PPИ
₩-** <b>*</b> :- :}	1.7 1.64 .7 .27 .4 .45 1.1 1.37 .1 1.20	26 3 114 30 1 1	159 509 67 53 64	1.6 1.6 .6 .9	15 1 7 1 11 13 1 4	- 48 - 87 - 89 - 22 - 79	.1	24 9 9 27 14	178 241 269 115 106	60 5 10 325 15	7.80 1.30 2.25 5.14 7.81	1 1 1	.91 .36 .16 .56 .13	19 15 7 30 24	2.50 1.00 .39 .80 1.50	205 148 193 347 616	t 3 1	.08 .11 .10 .24 .05	71 28 16 31 22	3850 5170 860 1430 330	96 11 29 38 14	1 1 1 1	42254	417 943 52 64 10	1 12 1 1 1	.19 .06 .08 .17 .02	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	48.6 27.8 20.2 217.7 30.8	4 10 13 6 2	86 30 45 89 45
IMPARLITIC GAIN			1100					د ن	etc	43									455					<del>2</del> 35				100		69
IMBERUTK RANGE		151	, HIV				~ ~	2° 24	10 ¹ 7									11	ĥ				95 (1	v ⁱ⁾		- <u>-</u>	ر ب ک	50	5	17
								<b>4</b>										<u> </u>								·	<u> </u>			
							·													 ;						·				
			2 2																											·
							;																							
						****							<u></u>									<u> </u>		.,						
												. <u></u> .									•									·
1									•								·						~	-, <u> </u>			<u></u>			
			<u>.</u>		•	<b></b>																								

 G - DR. NASSICHUK: X-RAY DIFFRACTOGRAM OF CORE FROM 314', 95-1

JAN-11-96 THU 16:09	PALEONTOLOGY SUB	FAX NO. 403 292	6014 P. 01
- 70. DR.	W. NASSICHUK	FILE# :	96-XR-01

FROM:

-----

JENNY WONG Clay Mineralogy lab. DATE: JAN.8, 1996

#### RE: MINERAL DETERMINATION OF ONE CHAIN LAKE CORE SAMPLE

X-ray powder diffraction analysis was carried out on one Chain Lake core. Diffractogram reveals the follow minerals:

2%
18
tr
698
tr
58
20%
3%



P. 02

PALEONTOLOCY SUB