MAR 19950031: SOUTHWESTERN

Received date: Dec 15, 1995

Public release date: Dec 16, 1996

DISCLAIMER

By accessing and using the Alberta Energy website to download or otherwise obtain a scanned mineral assessment report, you ("User") agree to be bound by the following terms and conditions:

- a) Each scanned mineral assessment report that is downloaded or otherwise obtained from Alberta Energy is provided "AS IS", with no warranties or representations of any kind whatsoever from Her Majesty the Queen in Right of Alberta, as represented by the Minister of Energy ("Minister"), expressed or implied, including, but not limited to, no warranties or other representations from the Minister, regarding the content, accuracy, reliability, use or results from the use of or the integrity, completeness, quality or legibility of each such scanned mineral assessment report;
- b) To the fullest extent permitted by applicable laws, the Minister hereby expressly disclaims, and is released from, liability and responsibility for all warranties and conditions, expressed or implied, in relation to each scanned mineral assessment report shown or displayed on the Alberta Energy website including but not limited to warranties as to the satisfactory quality of or the fitness of the scanned mineral assessment reports and warranties as to the non-infringement or other non-violation of the proprietary rights held by any third party in respect of the scanned mineral assessment report;
- c) To the fullest extent permitted by applicable law, the Minister, and the Minister's employees and agents, exclude and disclaim liability to the User for losses and damages of whatsoever nature and howsoever arising including, without limitation, any direct, indirect, special, consequential, punitive or incidental damages, loss of use, loss of data, loss caused by a virus, loss of income or profit, claims of third parties, even if Alberta Energy have been advised of the possibility of such damages or losses, arising out of or in connection with the use of the Alberta Energy website, including the accessing or downloading of the scanned mineral assessment report and the use for any purpose of the scanned mineral assessment report.
- d) User agrees to indemnify and hold harmless the Minister, and the Minister's employees and agents against and from any and all third party claims, losses, liabilities, demands, actions or proceedings related to the downloading, distribution, transmissions, storage, redistribution, reproduction or exploitation of each scanned mineral assessment report obtained by the User from Alberta Energy.

Alberta

Alberta Mineral Assessment Reporting System

19950031

Geochemical Sampling and Geological Report

on

Southwestern Alberta Mineral Permits

9 3 9080	220-231
939080	287-297
939080	300-304
939080	370-380

NTS 82G and 82J

by

Mike Waskett-Myers

and

Chris Graf, P.Eng.

for

Ecstall Mining Corporation

December 12, 1995

CONTENTS	<u>Page</u>
SUMMARY INTRODUCTION	5
METALLIC MINERAL PERMIT INFORMATION TABLE (following	g) 5
LOCATION, ACCESS, PHYSIOGRAPHY	6
PRIOR WORK	7
LAND STATUS AND LAND USE	10
GEOLOGY	11
REGIONAL STRATIGRAPHY AND INTRUSIVE ACTIVITY	11
REGIONAL STRUCTURAL GEOLOGY	12
GEOLOGY OF SOUTHWESTERN ALBERTA	14
1993 to 1995 EXPLORATION By Ecstall Mining Corporation	
INTRODUCTION	16
SAMPLING	16
CONCENTRATION	16
MICROSCOPIC OBSERVATION	17
ANALYSIS	17
DISCUSSION	18
CONCLUSIONS AND RECOMMENDATIONS	18, 19

.

.

REFERENCE

STATEMENT OF QUALIFICATIONS

APPENDICES

APPENDIX

I Analytical Results

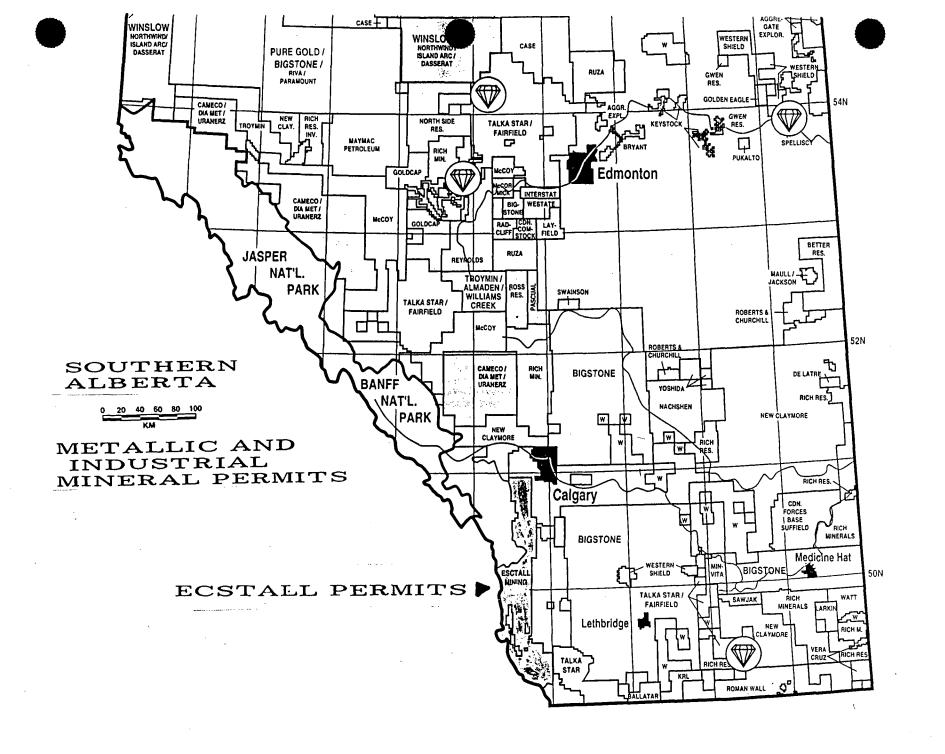
II Sample Locations

III Gold Grain Count and Microscope Observation Notes

- **IV** Field Notes
- V Cost Statement
- VI Rubicon Minerals Ltd. Summary Geological Report on Ecstall's Mineral Permits

20

ILLUSTRATIONS


Map 1	Mineral Permit Area Loc	ation Map	Following pg. 5
Plate 1	Location Map - Southern	Alberta Rift	Following pg. 16
Plate 2	Sample Locations Southwestern Alberta - N 1:250,000 Scale NTS 82J	orth Sheet	Following pg. 16
Plate 3	Sample Locations Southwestern Alberta - So 1:250,000 Scale NTS 82G		Following pg. 16
Plate 4	Gold Distribution Southwestern Alberta - No 1:250,000 Scale NTS 82J	orth Sheet	Following pg. 16
Plate 5	Gold Distribution Southwestern Alberta - So 1:250,000 Scale NTS 82G		Following pg. 16
IN THE PO	<u>CKET IN THE BACK OF T</u>	THE REPORT	
Plate 6	Kananaskis Lakes 82J NT	S sample locations	
Plate 7	Fernie 82G NTS sample lo	ocations	
Plate 8	Gold Results	1:250,000	
Plate 9	Arsenic Results	1:250,000	
Plate 10	Antimony Results	1:250,000	
Plate 11	Molybdenum Results	1:250,000	
Plate 12	Gold Results	North and South sheets 1:125,0	00
Plate 13	Arsenic Results	North and South sheets 1:125,0	00
Plate 14	Antimony Results	North and South sheets 1:125,0	00
Plate 15	Molybdenum Results	North and South sheets 1:125,0	00

SUMMARY

Ecstall's mineral permit area is centred on 49° 45' N latitude and 114° 30' W longitude in southwest Alberta, and comprises all or parts of National Topographic System mapsheets 82G/7,8,9,10,15,16 and 82J/1,2,7,8. The project encompasses a total area of about 7,320 km². Southwest Alberta comprises two physiographic regions: the Eastern System of the Western Cordillera and, in the northeast portion of the area, a small wedge of the Interior Plains. The Eastern System of the Western Cordillera can be divided into the Foothills and Rocky Mountains subprovinces. The area is underlain mainly by metasedimentary and, locally, by volcanic and intrusive igneous rocks that range in age from Middle Proterozoic to Tertiary.

A large number of metallic mineral occurrences and deposits exist in southwest Alberta, in southeast British Columbia and in the adjacent areas of northwestern United States of America. Many of them are spatially related to the Southern Alberta Rift. Metallic mineral exploration in southwestern Alberta peaked in the late 1960's to early 1970's when extensive exploration for copper and other metals was conducted in the Clark Range. potential exists for the discovery of : (a) stratabound copper-lead-zinc-silver deposits of Kupferschiefer and kipushi type in the Proterozoic rocks of the Clark Range and , possibly, in some Phanerozoic strata, (b) Mississippi Valley type lead -zinc deposits in selected carbonate rocks that range from Proterozoic to Triassic age, (c) stratiform sediment -hosted Sedex type lead-zinc or nickel-zinc deposits in black shales and other fine grained clastic rocks that range from Proterozoic to, possibly, Paleocene age, (d) epithermal or mesothermal precious metal deposits in strata of both Proterozoic and Phanerozoic age, (e) paleoplacer magnetite deposits and other heavy minerals, such as gold, in selected horizons within Cretaceous and , possibly, Lower Tertiary units that are derived from the Intermontane region of British Columbia, (f) diamondiferous kimberlite/lamproite diatremes or placer deposits in clastic rocks that range from Proterozoic to Tertiary in age

Southwest Alberta has had a long history of resource development as a result of extensive coal mining, oil and natural gas development, forestry and some other natural resource exploitation. There is a well-developed support infrastructure, including an extensive road network. The area is geologically complex and there are numerous diverse types of metallic mineral occurrences. Therefore, individual prospectors and the metallic mineral industry should consider southwest Alberta as a prospective place to explore for a variety of metallic mineral deposits. The Government of Alberta has an important role to play in encouraging industry by continuing to provide geoscientific information and by having an equitable, but environmentally effective, integrated resource policy for southwest Alberta. Such information will provide industry with the impetus it needs to discover metallic mineral deposits in southwest Alberta.

MAP 1

LAND STATUS AUTOMATED SYSTEM BASIC AGREEMENT SEARCH REPORT BY CLIENT ID

ENR-LSAS Report date: 1995-03-27	LAND STAT BASIC AGE TIME: 16:41:26	TUS AUTOMATED SYSTEM Reement search report by clif	ENT ID	
				PAGE = 1 LFAS4300
ASBESNENBER STATUS	STATUS CANCELLATION	Expert orbeiner	NT AREA (HA) CLIENT ID PA	RTEPTN HECTARES
	993 -08-05 1993 -08-05 1993 -08-05 1993 -08-05 1993 -08-05 1993 -08-05 1993 -08-05 1993 -08-05 1993 -08-05 1993 -08-05 1993 -08-05 1993 -08-05 1993 -08-05 1993 -08-05 1993 -08-07 1993 -09-07 1993 -09-07 1993 -09-07 1993 -09-07 1993 -09-07 1993 -09-07 1993 -09-07 1993 -09-07 1993 -09-07 1993 -09-07 1993 -09-07 1993 -09-07 1993 -09-07 1993 -09-07 1993 -00-07 1993 -00-07 1993 -00-07 1993 -00-07 199	20003-08-18 7,719 0000 20003-08-18 7,759 0000 20003-08-18 7,759 0000 20003-08-18 7,759 0000 20003-08-18 7,759 0000 20003-08-18 7,759 0000 20003-08-18 7,759 0000 20003-08-18 7,759 0000 20003-08-18 7,759 0000 20003-08-18 7,759 0000 20003-08-18 7,759 0000 20003-08-18 7,759 0000 20003-08-18 7,759 0000 20003-08-18 7,759 0000 20003-08-18 9,716 12000 20003-08-18 9,716 12000 20003-08-19 9,716 12000 20003-08-19 9,716 12000 20003-08-20 9,744 00000 20003-08-20 9,744 00000 20003-08-20 9,744 00000 2003-08-20 7,748 00000	7,419 00000 8033789 001 10 6,632 00000 8033789 001 10 6,632 00000 8033789 001 10 6,632 00000 8033789 001 10 7,914 00000 8033789 001 10 8,986 00000 8033789 001 10 7,914 00000 8033789 001 10 7,914 00000 8033789 001 10 7,914 00000 8033789 001 10 7,914 00000 80337789 001 10 7,914 00000 80333789 001 10 7,914 00000 80333789 001 10 7,914 00000 80333789 001 10 7,914 00000 80333789 001 10 7,914 00000 80333789 001 10 7,914 00000 803337	
CLIENT	ID # 8033789 001 CLIENT		·····	
		307,043.7680	307,037.7680	307,037.7680

*** END OF REPORT ***

LOCATION, ACCESS, PHYSIOGRAPHY

Ecstall's project area is centred on 49° 45' N latitude and 114° 30' W longitude in southwest Alberta (Figure 1). The program area comprises all or parts of national Topographic System (NTS) 1:50,000 scale map-sheets 82G/7,8,9,10,15,16 and 82J/1,2,7,8.

Access in the project area is provided by a well-maintained network of primary, hard surface, all-weather roads; secondary, loose surface all-weather roads and numerous tertiary logging roads and trails. Access to elevations of about 1,500m by loose all-weather roads is common. Access to the higher elevations backwoods areas can be achieved in dry weather by four-wheel drive vehicles and by foot. A helicopter would be beneficial for explorations of the steeper mountain ridges.

PHYSIOGRAPHY

Ecstall's project area is comprised of two physiographic regions: the Eastern System of the Western Cordillera and, in the northwest portion of the area, a small wedge of the Interior Plains. The Eastern System of the Western Cordillera is divided into four subprovinces: the Foothills, Front, Main and Western Ranges of the Rocky Mountains (North and Henderson 1954). Within the project area, the Eastern System of the Western Cordillera consists of the Foothills and the Front Ranges of the Rocky Mountains in about equal proportions.

The Interior Plains are characterized by a relatively featureless topography of low relief. The flat topography reflects the underlying, near-horizontal to gently west-dipping, easterly-tapering, Phanerozoic sedimentary sequence. Locally, the Plains are cut by rivers that provide moderate relief of up to a few tens of metres. The Interior Plains rise in elevation from east to west across the prairie provinces and reach their maximum elevation of about 1,100 m in the northwestern portion of the Southern Alberta Rift project area.

The boundary between the Interior Plains and the Foothills is located at or near the Turner Valley Fault, which is approximately at the unconformable lithological contact between the Cretaceous Belly River Formation and the Tertiary Paskapoo Formation. The Western boundary of the Foothills is located approximately at the McConnell Thrust Fault, where various older sedimentary rocks are thrust over younger sedimentary rock. The Foothills are characterized by a series of rounded, northerly-trending ridges with elevations up to about 1,800 m.

The Front Ranges occupy the westernmost portion of the project area, from the Foothills, west to the Alberta-British Columbia border and beyond. The Front Ranges are characterized by prominent grey cliffs with elevations at the summits typically reaching about 2,750 m. The characteristic layer-cake appearance of the Front Range cliffs is produced by alternating sequences of resistant Palaeozoic carbonates that are thrust-faulted over younger, recessive-weathering, clastic sedimentary rocks.

PRIOR WORK

Exploration by private industry in the Rocky Mountains and Foothills of Alberta has occurred periodically from the late nineteenth century onwards. In the late 1800's, mineral exploration and mining occurred in the Banff - Field corridor as the railway pushed through from Calgary to British Columbia. In the late 1950's and through the 1960's, base metals were explored for in the area from Canmore to Waterton Lakes National Park. Metallic mineral exploration in southwest Alberta peaked in the late 1960's to early 1970's, when extensive exploration for copper and other metals was conducted in the Clark Range. Based on the available assessment records, there has been minimal exploration for metallic minerals in southwest Alberta since the Government of Alberta implemented the Eastern Slopes Policy in 1977. In the late 1980's, a reported gold discovery in the Crowsnest Pass area fuelled a staking rush and renewed interest in exploration for the 'Lost Lemon Gold Mine' in southwest Alberta (Stewart 1989).

During the early 1900's, small-scale mining was performed on two copper-bearing diorite dykes at Coppermine Creek in the Clark Range of southwest Alberta, within what is now Waterton Lakes National Park (Goble 1970; Morton *et al.* 1974; Goble 1976). However, there are no records that indicate much regional exploration accompanied this mining activity. During the early 1960's, the Goble family rediscovered copper-silver mineralization in the Middle Proterozoic rocks of the Clark Range. Considerable staking and exploration followed, with important concentrations of stratabound copper and silver being discovered at the Spionkop, Yarrow, Grizzly and Whistler prospects or showings (Bradshaw 1967, 1968; Duncan 1970; Halferdahl 1971; Van Dyck 1971; Gyr 1971; Goble 1972; Goble 1973a; Allan 1973; Collins and Smith 1977), and stratabound lead-zinc-silver and copper-silver mineral occurrences being discovered in the North Kootenay Pass area (Carter 1971; Goble 1973a, 1973b, and 1975). In total, over 70 copper-silver and lead-zinc-silver showings have been found in the Clark Range.

The Oldman (formerly called Bearspaw) lead-zinc-silver prospect on the east flank of Mount Gass near the headwaters of the Oldman River was discovered by hunters in 1912 (Headley 1954, Holter 1973, 1977). West Canadian Collieries acquired the prospect and performed exploration during the early 1950's. Holter (1973, 1977) stated that galena and sphalerite are associated with intersecting faults in dolomitic limestone of the Upper Devonian Palliser Formation. However, Salat (1988) provided evidence that the Oldman deposit is spatially related to a dolomitization front and is hosted in a paleokarst system that developed at the top of the Palliser Formation. He also suggested that the deposit has potential for about 2 to 2.5 millions tons with an average grade of 5 to 7% zinc, 34.29 grams silver per tonne (g Ag/t) or 1 ounce silver per ton (oz Ag/T), 1% lead and 1 pound per ton cadmium. Assessment data indicate that other poorly documented base metal occurrences exist in the vicinity of the Oldman deposit. These include a lead occurrence on the northeast slope of Beehive Mountain and a copper occurrence at Mount Livingstone (Gills 1970). Assay certificates that accompany the assessment report by Gillis (lbid.) indicate that the copper occurrence is hosted in the uppermost Devonian Big Valley Formation. The Big Valley Formation is predominantly limestone and is time equivalent to the Costigan Member of the Upper Palliser Formation.

The geology and occurrences of the magnetite deposits near Burmis in the Crowsnest Pass region were first described by Leach (1912). Allan (1931) published a more detailed account of the stratigraphy and structure of the magnetite deposits north of Burmis, and he also prepared a brief unpublished report in 1941 on the Dungarvan magnetite deposits, which are south of Pincher reek. During the 1950's, extensive exploration including trenching, drilling and metallurgical testing, was to determine the potential of the magnetite deposits as feed for a possible iron ore smelter. This work is well-summarized in Bruce (1957), Steiner (1958) and Mellon (1961). During the 1970's and 1980's the magnetite deposit were re-evaluated for the potential use of magnetite in coal beneficiation processes. This work is summarized by Rushton (1972) and Grant and Trigg (1983).

Many other metallic mineral occurrences have been reported in the Alberta Rocky Mountains and Foothills, but most are poorly-documented or unsubstantiated. A possible base metal occurrence was reported by Trigg (1982), who described a specimen of galena, sphalerite and anglesite that was brought to him by a client. This specimen was supposed to have been collected from the south end of Mist Mountain about 18km southeast of Upper Kananskis Lake, but subsequent follow-up field work was unable to locate the occurrence. However, a few stream sediment samples that were collected in the vicinity of the occurrence are anomalous in zinc and silver (Johnston and Olson 1982).

There are several poorly-documented gold occurrences in the Alberta Rocky Mountains and Foothills. Perhaps the most famous and most elusive is the Lost Lemon Gold Mine, which was reportedly discovered in 1870 by two prospectors, Frank Lemon and his partner Blackjack, at the headwaters of a small stream between the Highwood River and Crowsnest Pass (Stewart 1989). Exploration for the Lost Lemon Gold Mine on the Alberta side of the Rocky Mountains has been ongoing since that time, but little documented information exists on this exploration. A company named Lost Lemon Mines.Ltd. performed exploration in the vicinity of Plateau Mountain t the southern boundary of Kananaskis Country in the 1970's and early 1980's. They reportedly drilled a hole in the valley of Dry Creek during 1981. The drill core was later logged by Dr. L. B. Halferdahl, P. Geol. who stated that the core he examined consisted of limestone, with black shale at the bottom of the hole (pers. comm. 1993). Assay certificates provided to Dr. Halferdahl by his client reported up to 0.446 grams gold per tonne (g Au/t) or 0.013 ounces gold per ton (oz Au/T) and up to 10.29 g Ag/t (0.3 oz Ag/T) from separate rock samples. The samples were reported to have been from the drill core, but the core interval that contained the anomalous samples was missing from the drill core that Dr. Halferdahl had been asked to log. Therefore, he could not confirm that the anomalous samples were from the drill core, from the surface in the vicinity of the drill hole, or from a completely different source. Low amounts of gold have been reported in the Crowsnest volcanics just west of Coleman along Highway 3 where rock grab samples assay up to 0.21 g Au/t, with extracted pyrite concentrates assaying as high as 2.54 g Au/t (Stewart 1989). This announcement precipitated a staking rush and resulted in renewed exploration for the Lost Lemon Gold Mine. Assessment data from this exploration are not yet publicly available.

In the Clark Range, Goble (1973a) stated that gold was discovered during the period 1901 to 1903. A gold occurrence is reported to be hosted within Lower Purcell quartzites, south of Oil City, on the northwest slope of Buchanan Ridge. The occurrence has never been substantiated, and is now within Waterton Lakes National Park. One other possible gold occurrence of note was reportedly discovered a few kilometres northeast of Blairmore at Transmission-line Structure Site 456. A non-geological employee of construction company had collected a rock grab sample from a calcareous siltstone at this site that assayed up to 0.76 g Au/t (Olson 1985b). This gold result could not be duplicated in follow-up exploration, but the original site that had been sampled was backfilled and could not be resampled.

Exploration for silver in southwest Alberta has mainly focused on existing base metal occurrences in the Rocky Mountains and Foothills. Three silver occurrences of note include a silver assay of 0.729 ounces per ton (25 g Ag/t) from a pyrite-rich limestone that is about 80km west of Calgary on the Ghost River (Hoffmann 1985), anomalous silver and phosphorous from samples of the Fernie Formation at the headwaters of Westrup Creek near Mount Livingstone (Hamilton 1978), and up to 32.57 g Au/t (0.95 Ag/T) and 0.72 g Au/t (0.021 oz Au/T) in samples from a series of syenitic to dioritic intrusions at the headwaters of Jutland Creek near the Alberta and British Columbia border in the Clark Range (Goble 1974a, 1974b). The location and description of the sample given for the Ghost River occurrence indicates that the sample my have been collected from Middle Cambrian Cathedral Formation. The intrusions sampled by Goble (1974a, 1974b) in the Clark Range are postulated to be of Late Cretaceous or Early Tertiary age.

Regional geochemical sampling information is sparse for the entire Alberta Rocky Mountains and Foothills. No government-conducted regional geochemical stream sediment or water database exists for southwestern Alberta, and no documented heavy mineral sampling has been performed by private industry in the region. Geochemical stream sediment and water sampling surveys were performed by Geophoto Services Ltd. for Imperial Oil in the area between Canmore and Vicary Creek (O'Donnel and Fuenning 1967), the Devonian Palliser Formation was systematically rock sampled by Esso Minerals and the Geological Survey of Canada (Geldsetzer et al. 1987), and stream sediment and water samples were collected in the Clark Range southwest of Pincher Creek (Bradshaw 1967, 1968; Gyr 1971; Halferdahl 1971; Van Dyck 1971; Allan 1973). In general, the geochemical surveys that were performed during the late 1960's and early 1970's failed to discover significant geochemical anomalies for follow-up exploration, even in areas of known mineral occurrences. However, a review of the existing publicly available geochemical data in the vicinity of the Oldman River lead-zinc-silver prospect at Mount Gass, indicates that subtle stream sediment geochemical anomalies do exist, but the anomalies tend to be restricted areally around the known occurrences. This is perhaps due to the high topographic elevations that result in low residence time for groundwater, or to carbonate buffering of the ground water by limy country rock, which would reduce the oxidation of sulphides and the resultant release of metals into the groundwater.

9

Other reported geochemical anomalies include copper and chromium contained within deposits of "Bog Iron" in the Ghost River area to the north study area (Renn 1956), and associated iron and phosphate anomalies in the Zephyr Creek area (Norman 1957; Kidd 1958). Renn (1956) stated that chromium is present in a "yellow section of ore", and that brown silicate rock was found. These descriptions may be an indication that mafic intrusions or diatremes exist in the Ghost River area, and hence warrant exploration for diamonds. Pell (1987) reported that such intrusive diatremes exist within the Mark diatreme cluster, which is centred on the Alberta and British Columbia border near the Freshfield Icefield, which is northwest of Banff. Northcote (1983a, 1983b) reported that a microdiamond was found in the largest diatreme on the Mark claims on the British Columbia side of the border. As well, in the Ram River area near Nordegg, Alberta, Takla Star Resources Ltd. (1993) has reported finding two chromite anomalies in heavy mineral concentrates from creek drainages. They suggest that the chemistry of the chromites might be indicative of diamonddiferous lamproites.

LAND STATUS AND LAND USE

Ecstall's mineral permit encompass a total area over 7,320 km². The Alberta Government originally approved "A Policy for Management of the Eastern Slopes" (Eastern Slopes Policy) in 1977 and amended the same in 1984. This Eastern Slopes Policy was intended as a guideline for the interigated management of resources. Within Ecstall's project area about 87 per cent (6,390 km²) of the land is under the jurisdiction of the Eastern Slopes Policy. Subsequent to the release of the amended Eastern Slopes Policy (1984), Sub-Regional Interigater Resource Plans were established between 1986 and 1988 to further refine the land use zoning as it applies to each sub region. The project area contain three such sub-regions: Kananaskis Country, Livingstone-Porcupine Hills and Castle River (Government of Alberta 1985, 1986, 1987).

The Eastern Slopes Policy and supplementing Sub-Regional Integrated Resource Plans identify broad units of land for which policies and interigated management objectives are specified. Land use zoning is employed as a mean of translating government policies into a planning and decision making format. The system consists of eight detailed land use zones, which define the permitted range of activities for a land use area. At present, the area restricted from mineral exploration and development within Ecstall's area consists of the whole of the Kananaskis Country Sub-Region, the Prime Protection and Facility Development Zones within the Livingstone River-Porcupine Hills and Castle River Sub-Regions, the Beauvias Lake and Chain Lakes Provincial Parks and the Eden Valley Indian Reserve. This restricted area for mineral exploration represents about 23 per cent (1,660 km²) of the total project area. Since the Government of Alberta implemented the Eastern Slopes Policy, it is of note that some exploration has been approved within some parts of those area designated as Prime Protection Zones.

10

GEOLOGY

REGIONAL STRATIGRAPHY AND INTRUSIVE ACTIVITY

The first geological map of the southern Canadian Rocky Mountains was published by Dawson (1886). Other pioneer work was done by McConnell (1887) and Daly (1912). The discovery of gas in 1924, followed by crude oil in 1936, at Turner Valley (Hume 1938) was the impetus for large mapping programs in the Foothills and Front Ranges of Alberta in order to assist in the search for additional hydrocarbon accumulations. Excellent summaries of the state of the knowledge are given by Clark (1954), North and Henderson (1954), Hume (1957), Fox (1959) and Shaw (1963). Much of the Canadian Rockies was mapped during a second period of increased mapping activity during the 1950's and 1960's. The geologists from the Geological Survey of Canada most notably involved during that period were Price, Mountjoy and Ollerenshaw. Their work is well summarized by Bally et al. (1966), Dahlstrom (1970), Douglas et al. (1970) and Price (1981). Much of the work during this period was on unravelling the complex Precambrian and Palaeozoic stratigraphy, and the complex structural history of these rocks. The Alberta Rocky Mountains and Foothills are covered by about 81 NTS map sheets at a scale of 1:50,000 and 11 map sheets at a scale of 1:250,000. Approximately 47 of the 1:50,000 scale map sheets have published geology at a scale of 1:63,360 or better. However, most of these published map sheets were completed prior to 1970, and the geological mapping was not focused on searching for features indicative of metallic mineral occurrences or processes.

The Rocky Mountains of Alberta are dominantly comprised of miogeosynclinal sedimentary and volcanic rocks ranging in age from Middle Proterozoic to Tertiary. The rocks are largely unmetamorphosed to slightly metamorphosed. The Proterozoic-Phanerozoic sedimentary sequence in southwest Alberta is thought to be underlain by crystalline basement rocks of Archean to early Proterozoic age. In general, the sedimentary sequence comprises:

(a)Middle to Upper Proterozoic: up to 13,700 m (45,000 feet) of quartzite, siltstone, argillite and minor amounts of carbonate that thicken to the west.

(b)Palaeozoic: mostly carbonate with some shale. Major unconformities below the base of the Cambrian, Middle Devonian and near the top of the Pennsylvanian.

(c)Triassic and Jurassic: generally an incomplete section of continental to marine conglomerate, sandstone, shale, carbonate, evaporite and coal.

(d)Cretaceous and Tertiary: conglomerate, sandstone, siltstone, shale, and coal of marine to continental origin. These rocks include two major clastic wedges derived from uplift in the west. The two clastic wedges are an Upper Jurassic to Lower Cretaceous Kootenay-Blairmore cycle, and an Upper Cretaceous to Oligocene Belly River-Paskapoo cycle.

Known igneous and volcanic rocks in the Alberta Rocky Mountains exist in the Crowsnest Pass area and the Clark Range. They range in age from Middle Proterozoic to Late Early Cretaceous. Several alkalic ultramafic diatremes and dykes have been identified north of the Southern Alberta Rift area near the Alberta-British Columbia border between Golden and Elkford (Pell 1987). Pell (ibid.) reports ages of between 348 Ma and 396 Ma for the HP pipe, which is part of the Mark diatreme cluster that straddles the Alberta-British Columbia border. In the Crowsnest Pass area, the Crowsnest volcanics, which are of trachytic to phonolitic composition (Dingwell and Brealry 1985, Adair 1986, Peterson and Currie 1993), are intercalated with the upper portions of the Blairmore sandstones. Folinsbee et al. (1957) dated the volcanics at 96 Ma. Igneous activity in the Clark Range of southwest Alberta is of at least three types and ages. The oldest is represented by Moyie-type diorite or diabase sills and dykes that have been dated as old as 1,580 Ma and as young as 1,400 Ma (Hunt 1962; Hoy 1989). The second type is the Purcell Lavas, which are andesitic in composition and form an excellent marker horizon throughout the Belt-Purcell Supergroup. Hunt (1962) suggested that the Purcell Lavas were extruded at about 1,100 Ma. The third of igneous activity is represented by trachytic to syenitic alkalic intrusions that straddle the Alberta-British Columbia border in the Clark Range near the headwaters of the Castle River (Price 1962; Goble 1974a, 1974b). Price (1962) stated that these intrusions are likely of Cretaceous or Tertiary age.

REGIONAL STRUCTURAL GEOLOGY

The Rocky Mountains and Foothills of Alberta are dominated by northwest-trending folds and thrust sheets that developed during accretion of land masses west of the Rocky Mountain Trench. The Lewis Thrust carried Precambrian and some overlying Palaeozoic rocks from as far west as Cranbrook, British Columbia and superimposed them on Palaeozoic and younger rocks. Also present within southwest Alberta are numerous other thrust faults as well as some normal faults which are transverse to the regional strike. The geological base maps which were compiled for inclusion in this report, are simplified and only selected faults and fold structures are shown. The structural geology of the Eastern Rocky Mountains and Foothills is well-summarized by Charlesworth (1959). Shaw (1963), Balley *et al.* (1966), Dahlstrom (1970), Jones (1971), and Price (1981). Work during the 1970's and 1980's was focused on the details of imbricate thrusting and the actual mechanisms responsible for the formation of such structures as floor thrusts, roof thrusts and duplexes (Fermor and Price 1987).

Uplift to the west is documented as early as the Jurassic by the Kootenay Group-Blairmore Group clastic wedge (Eisbacher *et al.* 1974). The formation of the Eastern Rocky Mountains and Foothills of Alberta was probably an ongoing process from Late Jurassic to Paleocene time, but the last major stage of uplift is thought by many authors to have occurred during Late Eocene to Oligocene. The evidence for this is the deformed Eocene and Oligocene conglomerates)Shaw 1963; Balley *et al.* 1966; Eisbacher *et al.* 1974). Other enigmatic structures that may have influenced tectonics, sedimention and metallogenesis have been documented or deducted to exist within or beneath the Eastern Rocky Mountains. These include the Southern Alberta Rift, West Alberta Arch and various transverse, tear or normal faults. A discussion of these structures follows.

SOUTHERN ALBERTA RIFT

The Southern Alberta Rift was first described by Kanasewich (1968) and Kanasewich et al. (1969) using deep seismic reflection, magnetic and gravity data. Kanasewich (1968) suggested the trace of the rift is visible for 450 km from just north of Medicine Hat near the Saskatchewan border to the Rocky Mountains southwest of Cranbrook near the Idaho border. Kanasewich et al. (1969) suggested that the rift is Precambrian in age, penetrates the crust to the Mohorovic discontinuity and has associated faults with vertical displacement of up to 5 km. McMechan (1981) described evidence of graben-like, synsedimentary normal faulting throughout Precambrian Belt-Purcell Supergroup. She stated that the northeast trending St. Mary-Boulder Creek Fault near Kimberley, British Columbia and the Moyie-Dibble Creek Fault further to the southeast were active periodically during much of the Proterozoic and that they correspond to the location of the subsurface trace of the Southern Alberta Rift identified by Kanasewich (lbid.). Regional Bouguer gravity anomaly maps reveal significant differences in the gravity field on either side of these faults making the site of a long-lived, crustal scale tectonic feature (Price 1981; Fountain and McDonough 1984). Rifting during Belt-Purcell, Windermere and Late Proterozoic-Early Cambrian time at the edge of the North American continent has been described by a number of authors (Leech 1962; Stewart 1972; Lis and Price 1976; Benvenuto and Price 1979; Struik 1987; Devlin and Bond 1988; Devlin 989). Evidence for a younger reactivation with, perhaps, lesser magnitude faulting associated with the Southern Alberta Rift has ben presented by a number of authors. Price and Lis (1975), for example, described significant differences in thicknesses and facies of Upper Palaeozoic rocks across the Moyie-Dibble Creek Fault. Hopkins (1987, 1988) described synsedimentary subsidence of Lower Cretaceous rocks in the Cessford hydrocarbon field associated with a narrow graben that reaches from the Precambrian basement into the Cretaceous section. The Cessford field is located southeast of Calgary near the proposed northern margin of the Southern Alberta Rift. Reactivation of the rift during the Lower Cretaceous is further supported by deposition of the thickest portions of the Crowsnest volcanics centred within the bounds of the rift (Pearce 1970; Adair 1986). The volcanics are trachytic to phonolitic in composition and, if compared to other trachyte and phonolite provinces, are indicative of continental rifting. The Lewis and Clark Fault System and the Great Falls Tectonic Zone can be regarded as step-like sympathetic structures to the Southern Alberta Rift. These two fault zones are deep-seated and have a history of recurrent fault movements very similar to the Southern Alberta Rift. Episodic fault movement along the Lewis and Clark Fault System and the Great Falls Tectonic Zone has been documented from early Proterozoic to the Tertiary and perhaps occurred as recently as the Holocene (Lorenz 1984; O'Neill and Lopez 1985; Wallace et al. 1990).

WEST ALBERTA ARCH

The West Alberta Arch is a northwest-trending structure with its axis located at about the eastern limit of the Rocky Mountains (Verrall 1968). It was active from at least Silurian to Middle Devonian time as evidenced by the lack of Late Cambrian to Middle Devonian carbonates and shales, and the presence of Middle to Upper Devonian fringing reefs (Geldsetzer and Mountjoy 1992). Verrall (1968) suggested that it might even have been active as early as Late Cambrian. Geldsetzer and Mountjoy (1992) described the presence of debris flows, spectacular megabreccias and deep-water channels (such as the Cline Channel) within Upper Devonian carbonates with no evidence of subaerial exposure associated with the West Alberta Arch. They suggested earthquake generated debris flows may have been responsible for these deposits. A graben-type environment might also have caused these deposits and may have been active in a few places along the West Alberta Arch during the Late Devonian, after the major uplift of the arch. Some evidence exists that the West Alberta Arch and other structures were reactivated during the Lower Carboniferous (Brandley and Krause 1993). The reason for uplift of the West Alberta Arch is known, but Bingham et al. (1985) reported that a conductive ridge underlies the Eastern Rocky Mountains. They suggested that in the American Rockies, similar conductive structures are correlated with high heat flow and low seismic velocities in the lower crust. They further suggested that partial melting and periodic uplift might have been associated with the conductive ridge. Perhaps partial melting during the Palaeozoic beneath the present-day location of the Eastern Rocky Mountains was responsible for uplift of the West Alberta Arch.

TRANSVERSE, TEAR AND NORMAL FAULTS

Northeast-trending transverse, tear and normal faults have been mapped in a few places along the Alberta Rocky Mountains and Foothills. Excellent summaries of the early mapping and geological setting of these structures is presented in Price (1967) and Dahlstrom (1970). Areas of prominent northeast-trending subvertical faults, with or without evidence of vertical movement, have been reported or mapped in the Alberta Rockies by Beach (1942), Birnie (1961), Fitzgerald (1962) Price (1967), Verrall (1968), Dahlstrom (1970), Moffat and Spang (1984), McGugan (1987) and McMechan (1988). The only prominent area of this type of faulting in Ecstall's project area has been mapped by Douglas (1958) in the vicinity of the Highwood River and Mount Head (NTS 82J/7 East Half).

GEOLOGY OF SOUTHWESTERN ALBERTA

Ecstall's project area is underlain by predominantly Middle Proterozoic to Tertiary age sedimentary rocks (Table 1).

The Proterozoic, Helikian to Hadrynian age, Purcell Group, which includes the Waterton, Altyn, Grinnell, Appekunny, Siyeh, Purcell Lava, Shepard and Kintla Formations in southwest Alberta, comprises a thick sequence of shallow water marine clastic sediments and near-shore stromatolitic carbonates (Douglas *et al.* 1970). The deposition of Proterozoic sediments ended

with uplift during the East Kootenay Orogeny (White 1959; Leech 1962). The Cambrian, which includes the Eldon, Pika, Arctomys, Elko and Flathead Formations in southwest Alberta, lies unconformably on the Proterozoic Purcell Group. The Cambrian rocks consist of thick accumulations of carbonate deposited in the Alberta Trough that grade laterally to the west into shallower water shales and conglomerates at the west margin of the Cambrian age Purcell Arch. In southwest Alberta, no Ordovician strata are known to exist. Regional uplift occurred during Ordovician to early Devonian time and this caused the erosion or non-deposition, or both, of much of the Ordovician strata. In the Early Late Devonian, seas transgressed over the Alberta Arch. Broad-scale subsidence was common over much of the craton. Devonian carbonate bank and reef growth, fringing the Alberta Arch kept pace with the subsiding craton. The Upper Devonian Fairholme Group lies unconformably under the Alexo and Palliser Formations. A marine regression caused the Upper Fairholme carbonate reefs to be emergent. The overlying Alexo is comprised of carbonate clastic sediments, possibly related to erosion of the Fairholme Group. Thick accumulations of Palliser Formation carbonates, which conformably overlie the Alexo, are in turn conformably overlain by early Mississippian black shales of the Exshaw Formation. The Miissippian Banff Formation and Rundle Group comprise a thick sequence of shallow-water crinoidal limestone and dolomite and carbonate clastic sediments. In southwest Alberta, the Pennsylvanian Spray Lakes Group conformably overlies the Mississippian Rundle Group and is unconformably overlain by Permo-Pennsyvanian Rocky Mountain Group (encompasses Permian Ishbel Group and Triassic Spray River Group). The Ishbel Group comprises shallow-water, cross-bedded sandstones, phosphatic, quartzose siltstones and cherty dolomite. The Rocky Mountain Group is unconformably overlain by the Triassic Spray River Group. The Spray River Group is comprised of the Sulphur Mountain Formation deltaic sediments, and the Whitehorse Formation, which consists of gypsum, red beds, and collapse breccias, likely deposited in a restricted basin. he Jurassic in southwest Alberta is represented by the Fernie Group. The retreat of the Late Fernie Sea and an influx of clastic sediments derived from the Columbian Orogen to the west, marks the gradational boundary of the Fernie and Jurassic-Cretaceous Kootenay Groups. Pansa (1972) suggested that the uppermost sandstones in the Fernie Group may be "passage beds" that are interpreted as prodelta deposits of an easterly-prograding clastic wedge, which are overlain by the deltaic coal deposits of the

In southwest Alberta, major sole thrusts such as the Lewis, McConnell, Turtle Mountain and Livingstone Thrusts carry older sedimentary or volcanic rocks, or both, over younger rocks Numerous other thrust faults are present throughout southwest Alberta. The Lewis Thrust sheet forms a large, broad, synclinorium which extends from the Akamina Syncline to several other

Kootenay Group. The Kootenay-Blairmore cycle, which is the lower molasse of Eisbacher et al.

(1974), comprises deltaic, shallow-marine sediments overlain by clastic wedge sediments derived from erosion of the Columbian Orogen to the west. Following the Lower Cretaceous Kootenay-Blairmore molasse cycle the Upper Cretaceous-Tertiary marine Alberta Assemblage

and the non-marine Belly River Paskapoo Assemblage comprise the upper molasse of the Columbian Orogen. The molasse cycles comprise a sequence of near-shore relatively shallow-water facies that alternate between marine and non-marine clastic sediments. The stratigraphy

of southwest Alberta is dominated by these cycles from Late Jurassic to Tertiary.

anticlines and synclines near Mount McCarty, which is south of Blairmore. In addition, steeplydipping, northeast-trending normal faults of undetermined vertical throw are known to exist within the project area.

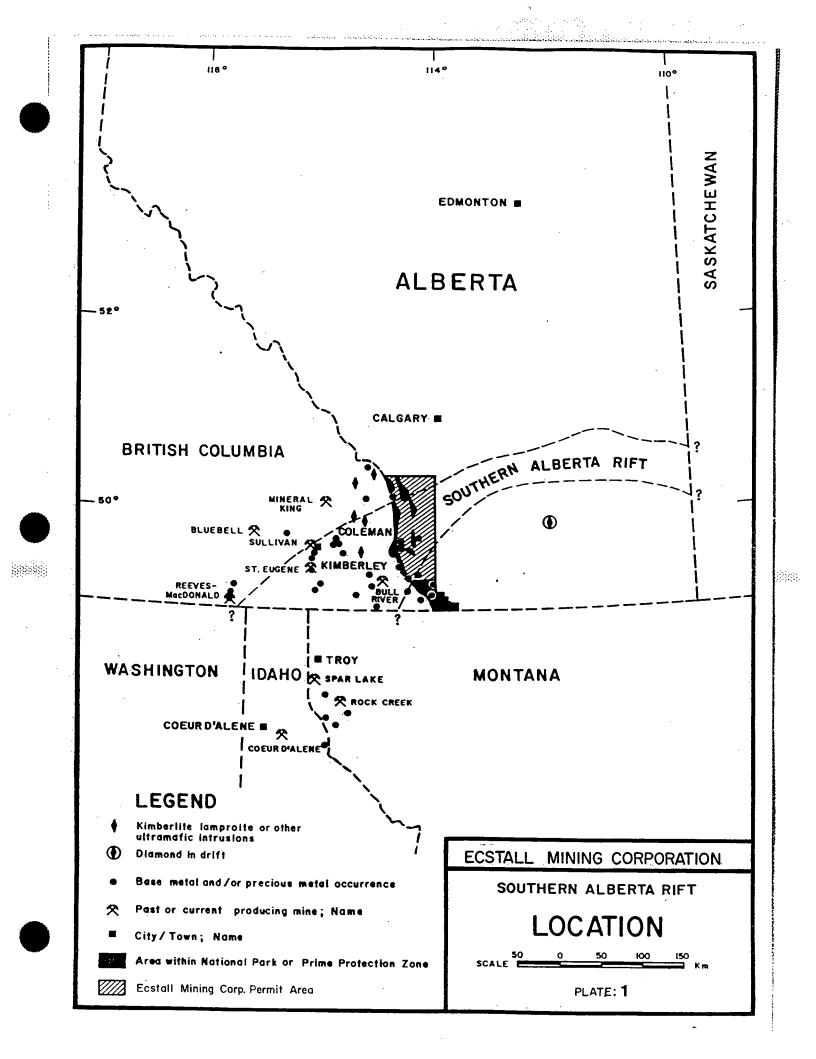
1993 - 1995 EXPLORATION

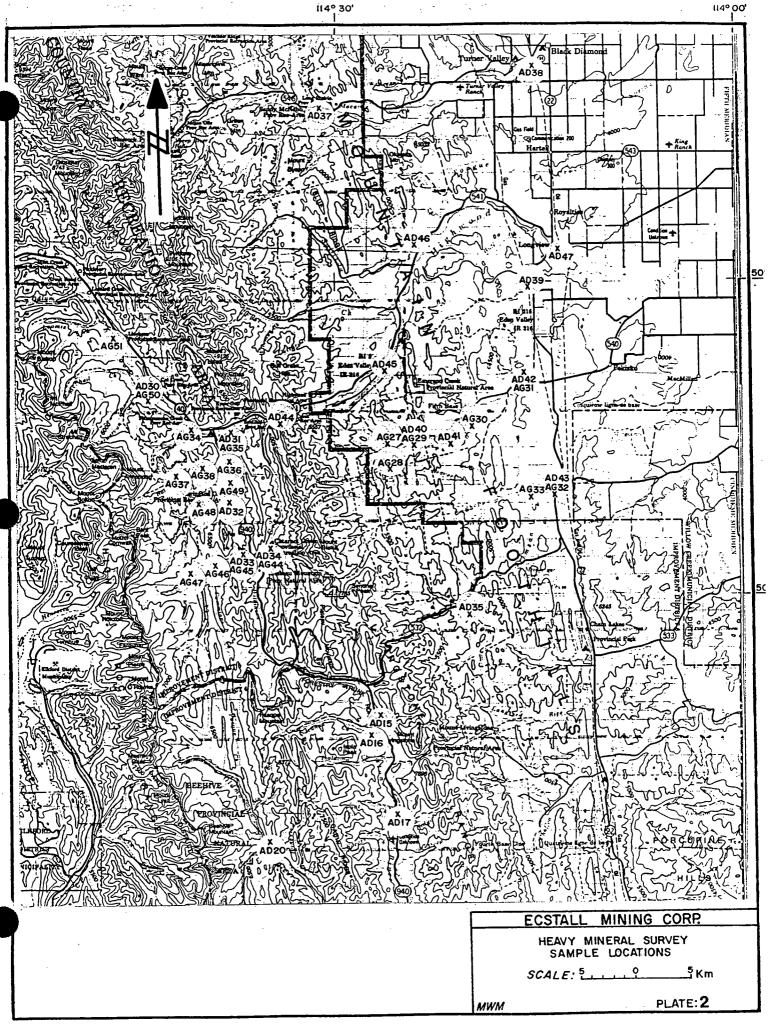
INTRODUCTION:

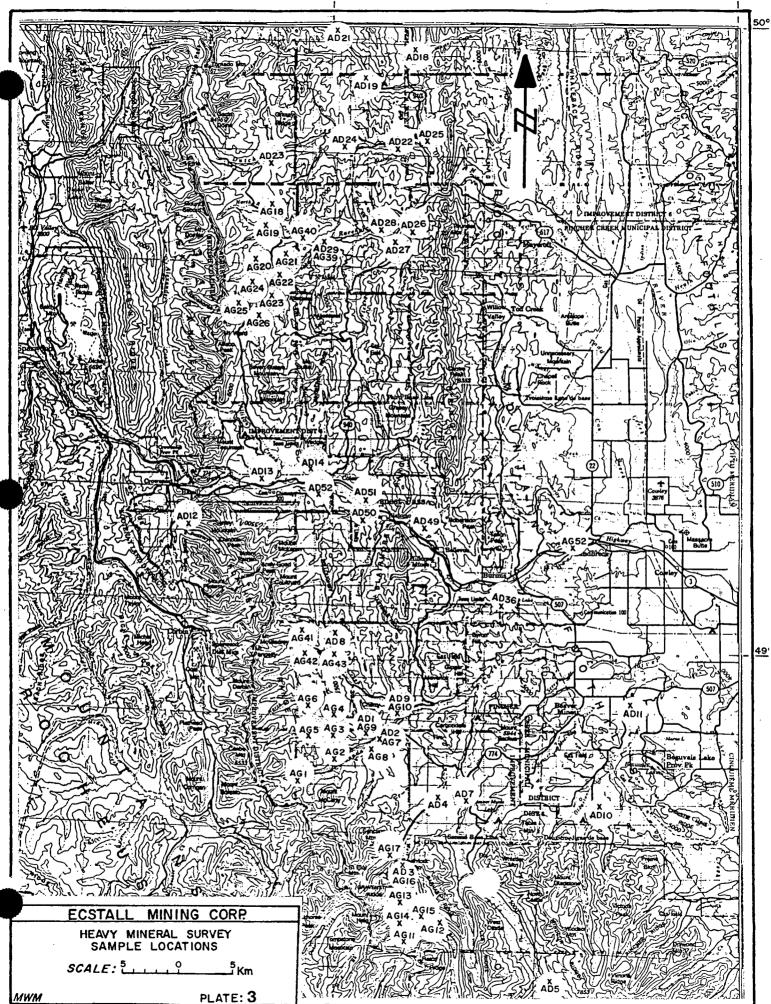
Between June 1993 and July 1995 heavy mineral sampling programs were carried out to help evaluate the economic potential of 307,000 hectares of mineral permits along the eastern slopes of the Rockies in SW Alberta. The permit area runs from just north of the US border to Turner Valley in the north, and from the foothills in the east to the Alberta/B.C. border in the west.

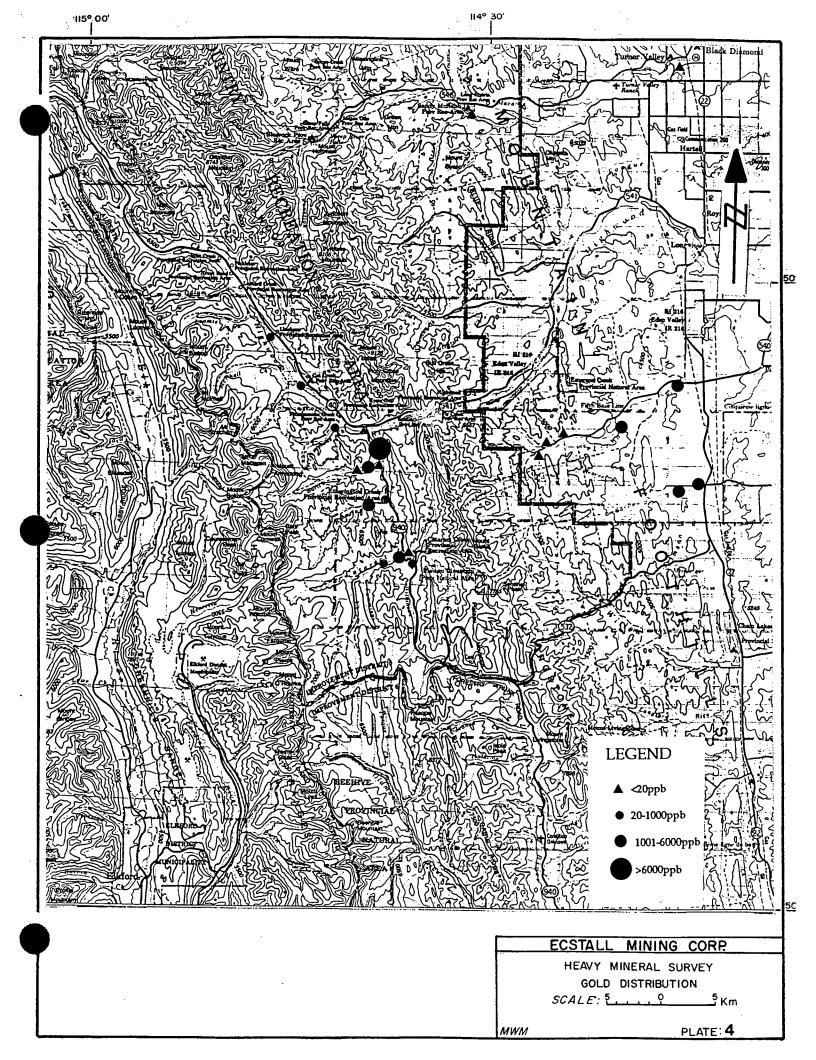
The project was initiated to explore for base and precious metal deposits and kimberlitic/lamproitic pipes in the region similar to the Crossing Creek kimberlite, 20 miles west in southeast B.C.. During the picking process for diamond indicator minerals anomalous amounts of fine gold were detected in a number of the samples. Though the diamond work is continuing, the emphasis on field work carried out in 1994 was oriented towards following up the gold bearing sample areas.

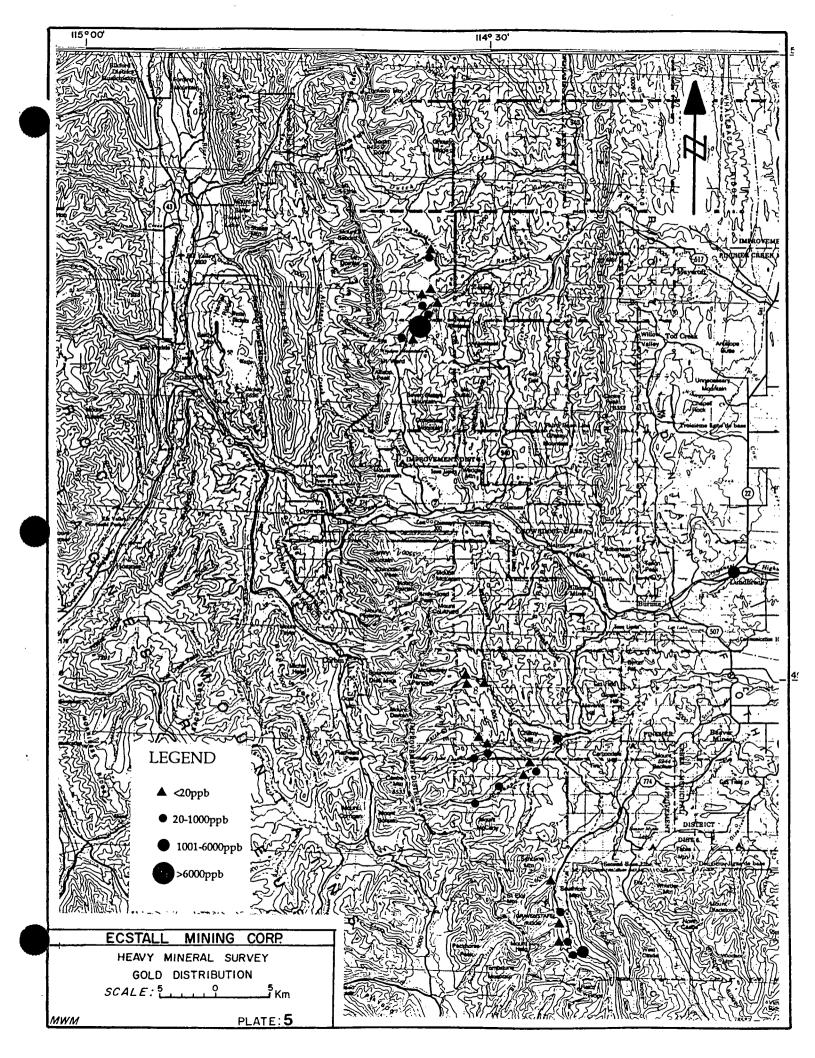
In both 1993 (52, 10kg samples AD 1-52) and 1994 (52, 10 kg samples AG 1-52) the major sampling was carried out in June by a two man crew based in Coleman Alberta. A further short sampling program (16, 10 kg samples ARI-16) was done in October 1994.


In July of 1995 approximately three weeks was spent prospecting and sampling (16,10 kg samples AG 60-75) (heavy minerals, silts and rocks) in order to determine the origin of the gold in the drainages of Lost Creek, Carbondale Creek, and Racehorse Creek, similar work was also carried out to locate a source for the garnets and gold in Pekisko and Shepard creeks. **SAMPLING:**


In the field sampling was carried out on the major drainages, and consisted of collecting 10 kilograms of minus 20 mesh material at each sample site which required the sieving of approximately 40 kilograms of raw stream bed detritus. The samples were put into plastic bags and shipped to Vancouver for further concentration.


CONCENTRATION:


In Vancouver the 10 kilogram samples went through two stages of concentration. The first stage was reducing the 10 kilogram sample to 2 kilograms by use of a HY-G centrifugal concentrator, and stage two was done using a Gold Genie spiral concentrator which reduced the sample to a few grams. The water flow and angle of the Gold Genie was set so the cut off was at the approximate specific gravity of garnet.


Following the Gold Genie concentration the resulting heavy mineral concentrates (few grams) were dried and put into numbered plastic vials.

MICROSCOPIC OBSERVATION:

Microscope work was carried out by Mike Waskett-Myers on the +60 mesh fraction of several samples following removal of the magnetic fraction, using a dip magnet.

The 1993 microscope work primarily involved looking for diamond indicator minerals such as pyrope garnets, chrome diopsides and titanium ilmenites however the presence of any other interesting minerals were also recorded.

During the picking procedure carried out on the 1993 samples, fine gold was noticed in several samples. Since the picking of diamond indicator minerals was being performed on the +60 mesh fraction it was decided to scan the -60 mesh fraction for gold content.

The scan of the -60 mesh fraction of all 52 1993 samples revealed fine gold (some hackly) in a number of the samples. While the largest gold grain count was from the sample taken on Lost Creek (15 grains), there appears to be a more definite pattern of anomalous concentrations of gold grains in the Highwood, Castle, and Pekisko/Shepard drainages. Various samples from other drainages also contained one or more gold grains, most notably a sample collected on the South Racehorse River (10 grains). See Appendix 3.

ANALYSIS:

As a result of the microscope work a number of mineral grains were analysed by scanning electron microprobe with a energy dispersive x-ray analyzer (SEM-EDX) at Cominco's lab in Vancouver. The result of this analysis was the confirmation of a chrome diopside in sample AD2 and a chrome pyrope garnet in sample AD43.

Grains thought visually to be gold were also picked from samples AD1,AD30 and AD34 for confirmation using the same SEM-EDX at Cominco's lab. All grains proved to be gold.

Further XRF and Probe work on these samples was carried out by LAC Minerals in there own lab, the results of this work are in Appendix 1.

.

Sample series AG (collected in June 1994) and AR (collected in October 1994) were also analyzed by Neutron Activation. The results indicate that gold is present in anomalous amounts in several of the drainages.

The available 1993 heavy mineral samples were also analysed by both neuton activation and ICP on behalf of Cyprus Amax Exploration Ltd. A number of these samples had been lost during earlier analytical work, therefore the results of the more recent analysis is inconclusive. See Appendix 1 for results.

Ecstall Mining has obtained the Alberta Geological Survey silt samples collected during the R.A.Olson Consulting Ltd program of 1992. These samples have been concentrated using the Gold Genie, to produce a panned concentrate for Neutron Activation analysis. While it is

understood that these concentrates will not be equivalent to the heavy mineral samples collected during the Ecstall programs, it is hoped that the samples will provide more complete sample coverage of the permit area. The results of the analysis of these samples will not be available for this report but will be added at a later date.

Based on the neutron activation work a correlation exists, in certain areas, between the following elements Au, Cr, Ba, As, Sb, La, Ce, and Th. Those areas are Pekisko/Shepard, Cataract/Etherington and the top end of the South Racehorse drainages. A stream sediment sample taken from the mouth of Allison creek was shown by neutron activation analysis to contain 66 ppm Ag (2 oz/t) as well as anomalous Pb, As and Sb contents.

DISCUSSION:

The sampling done in June of 1994, which was intended as follow up on those creeks that had shown gold in 1993, failed to reproduce some of the anomalous amounts of gold discovered in the 1993 samples. While gold was found in several 1994 samples it was not as plentiful or wide spread as in the 1993 samples, however anomalous concentrations of mercury were found in samples taken from various drainages in the region, particularly from the Castle River and Highwood River areas.

The more detailed work carried out in 1994 has shown that two creeks, Pekisko and Shepard contain considerable amounts of orange, red, and pink garnets. The garnets have a dodecahedron crystal form with well preserved crystal faces and are uniformly \sim 50 mesh in size. Stream sediment samples from both of these creeks also contain gold.

Because of the discrepancy between the amounts of native gold in the 1993 and 1994 samples it was decided that several more heavy mineral samples should be collected from select areas that had contained gold in the 1993 sampling. In October 1994 a two man crew returned to the area and collected a total of sixteen stream sediment samples from two (Lost/Carbondale creeks and Racehorse creek) of the anomalous gold drainages, as indicated by the 1993 sampling program.

Since in the fall when water levels are low there is a better choice of sampling sites, it was felt that the samples collected during the October program would have a better chance of containing more heavy minerals than those samples collected during the higher water June program.

The October sampling seems to support the spring 1994 sampling in as much as there is not as much gold as contained in the 1993 samples. However a number of gold grains were found in several samples.

CONCLUSIONS AND RECOMMENDATIONS:

Pekisko and Shepard creeks both contain anomalous amounts of garnets and gold grains. Since these two creeks drain a common area, further work is warranted in this area to explore its diamond and gold potential.

The Castle Creek and Highwood river areas are sensitive due to their land status/zoning. Stream sediment samples were collected from these drainages in order to complete the overall picture for the study area and it turned out that both streams contain gold. More work is justified in these areas to locate the sources for the gold in the stream sediment samples.

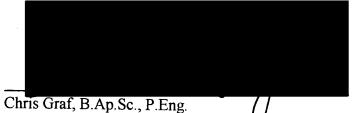
During July of 1995 a two man crew carried out a program of further follow up sampling and prospecting in the areas of Lost creek, Carbondale creek, Racehorse creek, Pekisko creek and a limited amount of work in the Highwood - Cataract creek drainages.

The 1995 work indicates that in the Lost/Carbondale creeks and Racehorse creek areas the gold is related to the volcanic flows (Crowsnest volcanic group) however, in the Highwood, Baril, Etherington and Cataract creek drainages there is no evidence of the Crowsnest volcanics, and it is possible that the gold in these drainages is glacially transported or more likely due to local undiscovered bedrock sources of a different nature.

The presence of anomalous gold values in the Crowsnest volcanics is well known, however their economic potential has not been thoroughly investigated, particularly with regard to locating areas of gold mineralized hydrothermal activity associated with their emplacement.

The Pekisko / Shepard drainages are of potential economic interest owing to the amount of garnets contained in their stream sediment samples. Also Cross creek, located east of Highway 22, contains a very large amount of garnets of possible kimberlite/lamproite origin. Unfortunately the above drainages flow through areas of very little outcrop however there appears to be a number of unexposed igneous/intrusive bodies distributed throughout this area and further sampling work is warranted.

REFERENCE


R.A.Olson Consulting Ltd. (1993) - The Southern Alberta Rift in Southwest Alberta, program to identify targets for metallic mineral exploration (Canada-Alberta MDA Project M92-04-002).

STATEMENT OF QUALIFICATIONS

I, Chris Graf, of Vancouver, British Columbia, Canada, hereby certify that the work desrcibed in this report was carried out under my supervision and that:

- 1. Mike Waskett-Myers carried out all of the field work and sampling and is qualified to write this report.
- 2. I graduated with a B.Ap.Sc. (Geological Engineering) from the University of British Columbia.
- 3. I am registered member of the Association of Professional Engineers of British Columbia, and have been since 1980.
- 4. I have been practising my geological engineering profession since 1974.

Signed in Vancouver, British Columbia, on the 12th day of December, 1995.

20

APPENDIX I

Analytical Results

•

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

Г

CYPRUS CANADA INC. C/O RUBICON MINERALS 119 53RD ST. DELTA, BC V4M 3B3

Project : AB302 Comments: CC: STEVE PERRY

									CE	RTIF	ICATE	OF A	NALY	SIS	A9526204
SAMPLE	PREP CODE	Mo ppm	Na %	Ni ppm	P ppm	Pb ppm	Sb ppm	Sc ppm	Sr Ti ppm %	T1 ppm	U ppm	V ppm	W ppm	Zn ppm	
NBS47026 NBS47027 NBS47028 NBS47029 NBS47030	201 202 201 202 201 202 201 202 201 202 201 202	< 1 < 1 < < 1 < 1 1	0.01 0.01 0.01 0.02 0.01	14 25 19 14 16	590 600 830 1170 890	12 6 8 6 16	2 2 2 2 2 2 4 2	2 4 3 1 2	72 < 0.01 30 < 0.01 45 0.01 72 < 0.01 30 0.01	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	17 34 38 25 21	< 10 < 10 < 10 10 10	54 90 66 58 48	· · · · · · · · · · · · · · · · · · ·
NBS47031 NBS47032 NBS47033 NBS47034 NBS47035	201 202 201 202 201 202 201 202 201 202 201 202	< 1 < 1 < 1 1 1	<pre> 0.01 0.06 0.01 0.01 0.01 0.01 </pre>	26 18 25 15 10	530 560 490 660 530	14 22 16 8 16	< 2 < 2 2 2 2	5 4 4 1 1	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	40 34 43 17 14	< 10 < 10 < 10 < 10 < 10 < 10	78 86 88 66 48	
NBS47036 NBS47037 NBS47038 NBS47039	201 202 201 202 201 202 201 202 201 202	< 1 <	<pre>0.01 0.01 0.01 0.01</pre>	24 20 14 15	570 360 480 570	14 16 8 12	2 2 < 2 2	3 4 3 2	58 < 0.01 72 < 0.01 18 < 0.01 32 < 0.01	< 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10	26 35 18 16	< 10 < 10 < 10 < 10	100 68 46 62	
				·											
·····															

CERTIFICATION:

Chemex Labs Ltd.

Го:

Page ar :1-B Total Pages :1 Certificate Date: 07-SEP-95 Invoice No. : 19526204 P.O. Number :950803 Account : MUB

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

Project : AB302 Comments: CC: STEVE PERRY

119 53RD ST. DELTA, BC V4M 3B3

CYPRUS CANADA INC. C/O RUBICON MINERALS

CERTIFICATE OF ANALYSIS

A9526204

	r	1								-						 	 ····	
SAMPLE	PREP CODE	Mo ppm	Na %	Nİ ppm	P ppm	Pb ppm	Sb ppm	Sc ppm	Sr ppm	Tİ %	T1 ppm	U ppm	V ppm	W ppm	Zn ppm	 		
NBS47026 NBS47027 NBS47028 NBS47029 NBS47029 NBS47030	201 202 201 202 201 202 201 202 201 202 201 202	< 1 < 1 < 1	0.01 < 0.01 0.01 0.02 0.01	14 25 19 14 16	590 600 830 1170 890	12 6 8 6 16	2 2 2 2 4 2	2 4 3 1 2	45 72 <	0.01 0.01 0.01 0.01 0.01	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	17 34 38 25 21	< 10 < 10 < 10 10 10	54 90 66 58 48		 ······································	
NB547031 NB547032 NB547033 NB547034 NB547035	201 202 201 202 201 202 201 202 201 202 201 202	1 . < 1 1	< 0.01 0.06 0.01 0.01 0.01	26 18 25 15 10	530 560 490 660 530	14 22 16 8 16	<pre>< 2 < 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2</pre>	5 4 4 1 1	47 < 42 <	0.01 0.01 0.01 0,01 0.01	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	40 34 43 17 14	< 10 < 10 < 10 < 10 < 10 < 10	78 86 88 66 48	 	 	
NB\$47036 NB\$47037 NB\$47038 NB\$47039	201 202 201 202 201 202 201 202 201 202	< 1 < 1	< 0.01 < 0.01 < 0.01 0.01	24 20 14 15	570 360 480 570	14 16 8 12	2 2 < 2 2	3 4 3 2	58 < 72 < 18 < 32 <	0.01 0.01	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10	26 35 18 16	< 10 < 10 < 10 < 10 < 10	100 68 46 62	 <u> </u>		
																N.		
																-		

.

Chemex Labs Ltd. Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 CYPRUS CANADA INC. C/O RUBICON MINERALS 119 53RD ST. DELTA, BC V4M 3B3 Page r :1-A Total r :1 Certificate Date: 07-SEP-95 Invoice No. :19526204 P.O. Number :950803 Account :MUB

Project : AB302 Comments: CC: STEVE PERRY

												CE	RTIFI	CATE	OF A	NAL	rsis		49526	204		
Field No.	SAMPLE	PREP CODE		Au ppb FA+AA	Ag ppm	A1 %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cđ ppm	Со ррш	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	K %	La ppm	Mg %	Mn ppm
1661	NBS47026 NBS47027 NBS47028 NBS47029 NBS47030	201 2 201 2 201 2 201 2 201 2 201 2	102 102 102	< 5 < 5 < 5	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	0.82 1.37 0.90 0.44 0.68	< 2 < 2 < 6 < 2 < 2	360 280 170 80 110	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 6 4 2 < 2	4.24 0.77 4.61 11.25 5.76	< 0.5 0.5 < 0.5 < 0.5 < 0.5 < 0.5	4 10 6 3 5	14 21 20 16 . 19	20 19 16 13 13	1.30 2.48 1.82 0.89 1.35	< 10 < 10 < 10 < 10 < 10 < 10	1 < 1 < 1 < 1 < 1 < 1	0.11 0.11 0.10 0.05 0.15	10 10 10 10 10	1.05 0.56 2.29 4.64 3.48	290 355 340 200 280
74 66 74 67 74 68 74 69	NBS47031 NBS47032 NBS47033 NBS47034 NBS47035	201 2 201 2 201 2 201 2 201 2 201 2	02 02 02	< 5 < 5 < 5	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	1.57 1.33 1.31 0.51 0.44	< 2 6 2 4 < 2	460 340 380 120 100	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 4	0.60 0.71 0.44 4.95 8.64	0.5 0.5 0.5 < 0.5 < 0.5 < 0.5	10 10 9 3 2	27 17 22 11 11	29 24 25 9 8	2.54 2.31 2.44 1.23 0.85	< 10 < 10 < 10 < 10 < 10	< 1 1 < 1 < 1 < 1	0.13 0.14 0.10 0.07 0.05	10 20 10 < 10 < 10	0.94 0.97 0.53 1.36 2.49	445 580 540 155 135
N+71 N+72	NBS47036 NBS47037 NBS47038 NBS47039	201 2 201 2 201 2 201 2	02 02	< 5 < 5	< 0.2 < 0.2 < 0.2 < 0.2	0.86 1.15 1.18 0.57	8 2 < 2 < 2	290 350 200 190	< 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 2 2	0.96 0.48 0.96 2.30	< 0.5 0.5 < 0.5 < 0.5	9 9 6 5	14 17 16 10	17 23 15 12	2.02 2.04 1.81 1.31	< 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1	0.10 0.09 0.12 0.08	< 10 10 10 < 10	0.40 0.42 1.22 0.88	275 375 350 150
Nolo:	split at	-1 l k		<i>Jac</i> tic	.n. (ler a	naiy	515	Pr	یو ہے ا	100 C	min	eva (cov	(<i>B</i> u	nati	en					

CERTIFICATION:

.

•

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers

To:

North Vancouver

212 Brooksbank Ave., British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

Project : AB302 Comments: CC: STEVE PERRY

V4M 3B3

CYPRUS CANADA INC. C/O RUBICON MINERALS 119 53RD ST. DELTA, BC

									·		CE	RTIFI	CATE	OF A	NALY	SIS	A9526204	
SAMPLE	PREP CODE		Mo ppm	Na %	Ni ppm	P ppm	Pb ppm	Sb ppm	Sc ppm	Sr ppm	ti %	T1 ppm	U mqq	V ppm	W M	Zn ppm		
NBS47026 NBS47027 NBS47028 NBS47029 NBS47030	201 20 201 20 201 20 201 20 201 20 201 20	02 02 02	< 1 < 1 < 1 < 1 < 1 1	0.01 < 0.01 0.01 0.02 0.01	14 25 19 14 16	590 600 830 1170 890	12 6 8 6 16	2 2 2 2 4 2 4	2 4 3 1 2	72 < 0.	.01 .01	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	17 34 38 25 21	< 10 < 10 < 10 10 10	54 90 66 58 48		
NBS47031 NBS47032 NBS47033 NBS47034 NBS47035	201 20 201 20 201 20 201 20 201 20 201 20)2)2)2	< 1 1 < 1 1 1	< 0.01 0.06 0.01 0.01 0.01	26 18 25 15 10	530 560 490 660 530	14 22 16 8 16	< 2 < 2 2 2 2	5 4 1 1	26 < 0. 44 0. 47 < 0. 42 < 0, 59 < 0.	01 01 01	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	40 34 43 17 14	< 10 < 10 < 10 < 10 < 10 < 10	78 86 88 66 48		
NBS47036 NBS47037 NBS47038 NBS47039	201 20 201 20 201 20 201 20 201 20	2	< 1 < 1	< 0.01 < 0.01 < 0.01 0.01	24 20 14 15	570 360 480 570	14 16 8 12	2 2 < 2 2	3 4 3 2	58 < 0. 72 < 0. 18 < 0. 32 < 0.	01 01	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10	26 35 18 16	< 10 < 10 < 10 < 10 < 10	100 68 46 62		
:																		
		•																
												·						
						·												

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 : CYPRUS CANADA INC. C/O RUBICON MINERALS 119 53RD ST. DELTA, BC V4M 3B3 Page pr :1-A Total Pag-3 :1 Certificate Date: 07-SEP-95 Invoice No. :19526206 P.O. Number :950803 Account :MUB

Project : AB302 Comments: CC: STEVE PERRY

CERTIFICATE OF ANALYSIS

SIS A9526206

A463 A464 A464 A465	SAMPLE NBS47041 NBS47042 NBS47043 NBS47044 NBS47045 NBS47046 NBS47047	299 299 299 299 299 299	DE 229 229 229 229 229 229 229 229	0.4 0.6 < 0.2 6.2 0.8 0.2	1.20 1.08 0.59 0.83 1.38 1.20	< 2 < 2 46 48 14 22	190 100 240 110 900 850	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	8 < 2 < 2 < 2 	Ca % not/ss 1 7.88 9.93 2.38 0.76 9.61 3.16	1.0 1.0 2.0 1.0 1.0	9 7 40 29 10 12	95 83 201 306 219 305	30 29 138 65 32 39	9.74 10.80 >15.00 11.10 10.85 12.95	10 10 10 10 20 10	6 < 1 29 14 	0.02 0.01 0.10 0.15 0.07 0.13	ppm not/ss 30 40 20 20 40 30	0.61 0.65 1.55 0.51 0.48 0.33	2170 330 550 2130 1565	Mo ppm not/ss 1 < 1 10 8 2 4 21
AG 80 AG 70	NBS47048 NBS47049 NBS47050 NBS47051 NBS47052 NBS47053	299 299 299 299 299	229 229 229 229 229 229 229 229	3.2 2.6 0.6 0.4 0.6 1.0	0.41 0.21 0.84 0.66 0.81 0.74	104 138 < 2 58 58 14	200 220 670 130 320 420	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 2 8 6 6	8.61 10.90 7.75 2.63 3.32 7.64	2.0 5.0 1.0 1.5 1.0 0.5	12 .15 4 12 39 3	130 110 49 82 160 61	77 83 24 34 168 29	13.15 14.05 8.00 13.40 12.30 8.76	20 10 10 10 10 10	57 16 2 	0.13 0.07 0.02 0.05 0.10 0.02	150 80 40 20 20 40	0.79 1.75 0.17 0.15 0.62 0.28	235 280 2030 1375 1000 1835	21 26 3 13 6 4
														``								
							•															
			-		· .																	
						<u>.</u>			<u>.</u>									-				

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 o: CYPRUS CANADA INC. C/O RUBICON MINERALS 119 53RD ST. DELTA, BC V4M 3B3 Page er :1 Total s :1 Certificate Date: 28-SEP-95 Invoice No. : 19526205 P.O. Number :950803 Account :MUB

Project : AB302 Comments: CC: STEVE PERRY

CERTIFICATE OF ANALYSIS

A9526205

eld No.	SAMPLE	PREP CODE	Au NAA S ppb	ppm ppm	As I ppm	Br NAA (ppm	Ce NAA ppm	Cr NAA ppm	Co NAA ppm	La NAA Mo ppm	D NAA A ppm	g NAA Ta	a NAA Ti ppm	h NAA ppm	W NAA ppm	U NAA ppm	Fe %	Ba ppm	
1462 1663	NB347041 NB347042 NB347043 NB347044 NB347045	2353999 2353999 2353999 2353999 2353999 2353999	6 15	39 3 3 8 11	120 16 22 160 91	< 5 < 1 < 1 < 2 < 1	190 180 210 120 140	1100 140 100 190 760	< 50 18 17 78 48	89 78 79 68 91	43 2 3 18 12	< 25 < 5 < 5 < 10 21	< 5 12 14 2 2	16 12 12 14 10	< 10 < 2 < 2 13 < 2	8 9 11	not/ss 11.40 12.40 >20.0 12.00	6900 440 250 3000 >10000	
AG66 1667	NBS47046 NBS47047 NBS47048 NBS47048 NBS47049 NBS47050	2358999 2358999 2358999 2358999 2358999 2358999	<pre>< 5 9 1060 23 7</pre>	3. 9 10 11 3	41 57 181 263 16	< 1 < 1 1 2 < 1	240 190 75 98 380	170 390 210 200 61	22 24 24 32 < 10	79 100 190 140 190	9 10 35 49 2	<pre>< 5 < 5 < 5 < 5 < 5 < 5</pre>	9 4 < 1 < 1 10	12 16 8 10 17	2 < 2 16 < 2 2	8 7 5 5 11	12.40 15.40 16.20 16.80 8.50	8100 1700 3200 4400 3200	
A6 77	NBS47051 NBS47052 NBS47053	2353999 2353999 2353999	8 14 10	16 7 5	151 127 30	< 1 1 < 1	300 340 340	490 420 120	31 67 < 10	180 170 170	22 14 7	< 5 < 5 < 5	7 5 8	26 15 17	7 < 2 2	11 10 12	15.80 14.00 9.80	2400 7000 4900	
				·															
															<u> </u>				

CERTIFICATION:_

Chemex Labs Ltd. Analytical Chemists * Geochemists * Registered Assayers

Page : 1 Total Former: 1 Certificate Date: 05-SEP-95 Invoice No. : 19526202 P.O. Number : 950803 Account : MUB

212 Brooksbank Ave.,North VancouverBritish Columbia, CanadaV7J 2C1PHONE: 604-984-0221FAX: 604-984-0218Common

Project : AB302 Comments: CC: STEVE PERRY

CERTIFICATE OF ANALYSIS

'SIS	A9526202	
	Account	:MU
	Account	

	SAMPLE	PRE COL	EP DE	Al2O3 % XRF	CaO %C1 XRF	203 %Fe XRF	203 % XRF	K20 % XRF	MgO % XRF	MnO % I XRF	Na20 %) XRF	205 % XRF	SiO2 % XRF	TiO2 % XRF	LOI % XRF	TOTAL %	Ba ppm	Rb ppm	Sr ppm	Nb ppm	Zr ppm	y Ppm
ai I	NBS47007 NBS47011 NBS47015	299 299 299	 	18.36 15.88 18.78	2.22 3.91 1.57	0.01	4.27 5.61 5.39	11.04 10.05 10.40	0.54 0.68 0.74	0.16 0.36 0.19	2.63 2.12 2.98	0.13	56.15 55.55 54.60	0.45 0.81 0.53	3.90	98.77 99.01 99.03	2980 3020 2820	290 220 280	3750 1350 1790	50 30 30	230 190 150	20 20 10
												•										
					·									·								
							•															
					•																	
								·														
												· •	t-		<u></u>		*					

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

Page r :1-A Total Poiss :1 Certificate Date: 07-SEP-95 Invoice No. :19526201 P.O. Number :950803 Account :MUB

Project : AB302 Comments: CC: STEVE PERRY

											CE	RTIFI	CATE	OF A	NAL	<u> (SIS</u>	/	49526	201	- <u></u>	
Field No	SAMPLE	PREP CODE	Au g/t FA+AA	Ag ppm	A1 %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cđ ppm	Со ррт	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	K %	La ppm	Mg %	Mn ppm
ri Rz Rz Rs	NBS47001 NBS47002 NBS47003 NBS47004 NBS47005	205 22 205 22 205 22	5 < 0.005 5 < 0.005 5 < 0.005 5 < 0.005 5 < 0.005 5 < 0.005 6 < 0.005 6 < 0.005 7 < 0.005 7 < 0.005 7 < 0.005 7 < 0.005 7 < 0.005 7 < 0.005 7 < 0.005 7 < 0.005 7 < 0.005 7 < 0.005 7 < 0.005 7 < 0.005 7 < 0.005 7 < 0.005 7 < 0.005 7 < 0.005 7 < 0.005 7 < 0.005 7 < 0.005 7 < 0.005 7 < 0.005 7 < 0.005 7 < 0.005 7 < 0.005 7 < 0.005 7 < 0.005 7 < 0.005 7 < 0.005 7 < 0.005 7 < 0.005 7 < 0.005 7 < 0.005 7 < 0.005 7 < 0.005 7 < 0.005 7 < 0.005 7 < 0.005 7 < 0.005 7 < 0.005 7 < 0.005 7 < 0.005 7 < 0.005 7 < 0.005 7 < 0.005 7 < 0.005 7 < 0.005 7 < 0.005 7 < 0.005 7 < 0.005 7 < 0.005 7 < 0.005 7 < 0.005 7 < 0.005 7 < 0.005 7 < 0.005 7 < 0.005 7 < 0.005 7 < 0.005 7 < 0.005 7 < 0.005 7 < 0.005 7 < 0.005 7 < 0.005 7 < 0.005 7 < 0.005 7 < 0.005 7 < 0.005 7 < 0.005 7 < 0.005 7 < 0.005 7 < 0.005 7 < 0.005 7 < 0.005 7 < 0.005 7 < 0.005 7 < 0.005 7 < 0.005 7 < 0.005 7 < 0.005 7 < 0.005 7 < 0.005 7 < 0.005 7 < 0.005 7 < 0.005 7 < 0.005 7 < 0.005 7 < 0.005 7 < 0.005 7 < 0.005 7 < 0.005 7 < 0.005 7 < 0.005 7 < 0.005 7 < 0.005 7 < 0.005 7 < 0.005 7 < 0.005 7 < 0.005 7 < 0.005 7 < 0.005 7 < 0.005 7 < 0.005 7 < 0.005 7 < 0.005 7 < 0.005 7 < 0.005 7 < 0.005 7 < 0.005 7 < 0.005 7 < 0.005 7 < 0.005 7 < 0.005 7 < 0.005 7 < 0.005 7 < 0.005 7 < 0.005 7 < 0.005 7 < 0.005 7 < 0.005 7 < 0.005 7 < 0.005 7 < 0.005 7 < 0.005 7 < 0.005 7 < 0.005 7 < 0.005 7 < 0.005 7 < 0.005 7 < 0.005 7 < 0.005 7 < 0.005 7 < 0.005 7 < 0.005 7 < 0.005 7 < 0.005 7 < 0.005 7 < 0.005 7 < 0.005 7 < 0.005 7 < 0.005 7 < 0.005 7 < 0.005 7 < 0.005 7 < 0.005 7 < 0.005 7 < 0.005 7 < 0.005 7 < 0.005 7 < 0.005 7 < 0.005 7 < 0.005 7 < 0.005 7 < 0.005 7 < 0.005 7 < 0.005 7 < 0.005 7 < 0.005 7 < 0.005 7 < 0.005 7 < 0.005 7 < 0.005 7 < 0.005 7 <	< 0.2 0.4 0.2 < 0.2 < 0.2 < 0.2	3.37 2.31 0.15 0.63 0.73	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	90 100 100 440 130	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	2 2 2 2 2 2 2	0.86 1.26 0.03 0.65 1.15	0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	23 3 < 1 6 5	37 44 170 78 56	30 45 7 17 18	5.43 2.67 0.53 1.59 1.57	20 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1	0.08 0.17 0.03 0.15 0.19	30 40 < 10 < 10 < 10	2.56 0.22 0.02 0.47 0.71	560 810 45 70 70
Ēĩ	NBS47006 NBS47007 NBS47008 NBS47009 NBS47010	205 22 205 22 205 22	6 < 0.005 6 < 0.005 6 < 0.005 6 < 0.005 6 < 0.005	< 0.2 0.2 < 0.2 < 0.2 < 0.2 < 0.2	3.02 2.21 0.49 0.86 0.41	< 2 < 2 < 2 4 < 2	450 70 1440 550 200	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	8 2 < 2 < 2 6	0.82 1.23 3.18 0.37 0.39	< 0.5 < 0.5 1.0 < 0.5 < 0.5	26 1 10 6 6	27 21 50 74 90	20 47 15 : 13 9	6.57 1.93 15.00 1.99 4.52	20 20 10 < 10 < 10	1 1 < 1 < 1 < 1 < 1	0.07 0.18 0.10 0.14 0.09	10 30 10 < 10 < 10	3.40 0.28 1.09 0.28 0.36	670 680 780 45 280
RI2 RIS	NBS47011 NBS47012 NBS47013 NBS47014 NBS47015	205 22 205 22 205 22	$ \begin{array}{r} 6 < 0.005 \\ 6 < 0.005 \\ 6 < 0.005 \\ 6 < 0.005 \\ 6 < 0.005 \\ 6 < 0.005 \\ \end{array} $	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	0.77 0.72 0.22 0.14 < 0.01	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	200 300 260 130 300	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 4 < 2 < 2 < 2 < 2	2.45 0.17 1.60 0.06 1.34	0.5 < 0.5 0.5 < 0.5 4.0	6 3 < 1 1 7	25 99 13 140 29	72 8 15 8 22 :	2.57 1.53 0.73 0.36	10 < 10 < 10 < 10 < 10 10	< 1 < 1 < 1 1 < 1	0.22 0.11 0.06 0.04 0.05	30 < 10 < 10 < 10 < 10 < 10	0.26 0.17 0.64 0.01 1.05	1895 45 50 15 2920
12-16	NB547016 NB547017		6 < 0.005 6 < 0.005	0.2	3.32 0.48	< 2 < 2	180 200	< 0.5 < 0.5	< 2 4	0.93 0.98	0.5 3.5	4 11	13 23	37 34	2.92 1.07	10 < 10	1 < 1	0.23 0.20	30 < 10	0.32 0.30	925 150
					•			·			·										
			•	•																	
																			ı.		

٣

Chemex Labs Ltd. Analytical Chemists * Geochemists * Registered Assayers

Fo:

Г

CYPRUS CANADA INC.

119 53RD ST. DELTA, BC V4M 3B3

C/O RUBICON MINERALS

Page r :1-B Total :1 Certificate Date: 07-SEP-95 Invoice No. : 19526201 P.O. Number : 950803 Account : MUB

212 Brooksbank Ave.,North VancouverV4M 3B3British Columbia, CanadaV7J 2C1Project :AB302PHONE: 604-984-0221FAX: 604-984-0218Comments:CC: STEVE PERRY

<u> </u>										CE	RTIF	CATE	OF A	NALY	SIS	A9526201	
SAMPLE	PREP CODE	Mo ppm	Na %	Ni ppm	P ppm	Pb ppm	Sb ppm	Sc ppm	Sr ppm	Tİ %	T1 ppm	U ppm	V ppm	W ppm	Zn ppm		
NB547001	205 226	1	0.72	13	1760	24	2	8	123	0.07	< 10	< 10	81	10	166	·	
NBS47002	205 226	< 1	1.20	3	630	22	< 2	2	85	0.18	< 10	< 10	89	< 10	74		
NBS47003	205 226	3	0.01	3	100	4	< 2	< 1		0.01	< 10	< 10	12	< 10	20		
NBS47004 NBS47005	205 226 205 226	1 1	0.01 0.01	21 19	680 700	8	< 2 4	3 3		0.01 0.01	< 10 < 10	< 10 < 10	17 20	< 10 < 10	90 108		
NBS47006	205 226	< 1	0.01	15	2630	12 36	4	11	28	0.02	< 10	< 10	72	10	190		
NBS47007	205 226	1	0.83	2	320	36	2	1	1985	0.12	< 10	< 10	102	< 10	90		
NBS47008	205 226	< 1	0.03	11	5920	22	14	10	197 <		< 10	< 10	210	20	138		
NB547009 NB547010	205 226 205 226	< 1 1	0.01 < 0.01	19 12	710 740	14 2	< 2 < 2	3 2		0.01 0.01	< 10 < 10	< 10 < 10	35 26	< 10 < 10	78 46		
NBS47011	205 226	< 1	0.02	2	530	12	2	2	88	0.10	< 10	< 10	88	< 10	72		
NB\$47012	205 226		< 0.01	13	590	4	< 2	2		0.01	< 10	< 10	23	< 10	44	•	
NB\$47013 NB\$47014	205 226		< 0.01 < 0.01	3	40	6	2	4		0.01	< 10	< 10	15	< 10	38		
NBS47015	205 226 205 226	5	0.03	10 24	30 1430	2 12	< 2 14	1 12		0.01 0.01	< 10 < 10	< 10 < 10	4 69	< 10 < 10	34 80		
NBS47016 NBS47017	205 226 205 226	< 1 1	1.86 0.02	1 56	280 1300	18 18	< 2 2	1 5	158 32 <	0.15 0.01	< 10 < 10	< 10 < 10	108 26	< 10 < 10	80 280		<u></u>
																11	
				•													
			•														
											•						
		•															

CERTIFICATION:___

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

Page ver :1-A Total Pages :1 Certificate Date: 13-AUG-95 Invoice No. :19523956 P.O. Number :950710 Account :MUB

A9523956

Project : AB302 Comments: CC: STEVE PARRY.

CERTIFICATE OF ANALYSIS

* PLEASE NOTE

										<u> </u>			<u> </u>							
SAMPLE	PREP CODE	Au g/t FA+AA	Ag ppm	A1 %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cđ ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	K %	La ppm	Mg %	Mn ppm
NBC47607 NBC47608 NBC47609 NBC47610 NBC47611	205 226 205 226 205 226 205 226 205 226 205 226	1.780 0.145 < 0.005	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	0.92 0.37 0.53 0.24 0.92	6 16 6 6	390	< 0.5 0.5 < 0.5 < 0.5 1.0	< 2	11.55 13.40 11.90	< 0.5	3 6 3 1 9	126 43 26 46 105	9 3 14 < 1 6	1.39 6.51 1.52 0.50 10.40	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.17 0.08 0.16 0.13 0.09	< 10 < 10 < 10 < 10 < 10 < 10	0.13 0.54 0.38 6.27 0.31	20 850 340 65 800
NBC47612 NBC47613 NBC47614 NBC47615 NBC47616	205 226	0.010 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005	< 0.2 < 0.2 < 0.2	0.10 0.02 0.49 2.30 0.13	< 2 4 < 2 2 2	< 10 120 170	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2	0.24 5.61	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	1 < 1 4 22 1	240 47 201 214 154	3 < 1 6 < 1 2	1.12 0.09 1.72 5.28 0.76	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.02 0.01 0.06 0.07 0.05	< 10 < 10 < 10 40 < 10	0.02 2.01 0.02 3.86 1.78	75 15 90 970 480
NBC47617 NBC47618 NBC47619	205 226	< 0.005 < 0.005 < 0.005	< 0.2	0.50 0.37 2.30	8 < 2 6	80	< 0.5 < 0.5 < 0.5	< 2 < 2 < 2	0.14 1.34 1.06	< 0.5 < 0.5 < 0.5	4 < 1 9	236 197 110	8 6 18	0.82 0.36 3.14	< 10 < 10 < 10	< 1 < 1 1	0.10 0.23 0.19	< 10 < 10 10	0.10 0.14 0.96	135 10 765
											-									
										·										
											·									

CERTIFICATION:__

.

* PLEASE NOTE

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave.North VancouverBritish Columbia, CanadaV7J 2C1PHONE: 604-984-0221FAX: 604-984-0218

Paga er :1-B Total Pages :1 Certificate Date: 13-AUG-95 Invoice No. :19523956 P.O. Number :950710 Account :MUB

Project : AB302 Comments: CC: STEVE PARRY.

CERTIFICATE OF ANALYSIS

A9523956

																			-	
SAMPLE	PREP CODE		Mo mqq	Na %	Ni ppm	P ppm	Pb ppm	SD ppm	Sc ppm	Sr ppm	ri %	T1 ppm	U ppm	V ppm	W ppm	Zn ppm	Ba ppm		- 11 <u>-11</u> -	
IBC47607 IBC47608 IBC47609 IBC47610 IBC47611	205 226 205 226 205 226 205 226 205 226	5	< 1 < 2 < 1 1	0.01 0.01 0.01 0.01 0.01	13 14 13 6 18	530 1570 620 300 3960	8 < 2 4 < 2 2	< 2 < 2 < 2 < 2 < 2 < 2 < 2	2 2 3 < 1 4	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	01 01 01	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	30 61 16 6 90	< 10 < 10 < 10 < 10 < 10 < 10	50 50 64 50 62	620 780 860 160 440			
BC47612 BC47613 BC47614 BC47615 BC47615 BC47616	205 226 205 226 205 226 205 226 205 226 205 226	5	<pre>< 1 < < < 1 < <</pre>	0.01 0.01	4 5 18 101 3	280 190 370 1170 80	< 2 < 2 4 2 < 2	< 2 < 2 < 2 < 2 < 2 < 2	< 1 < 1 4 12 < 1	6 < 0. 250 < 0. 46 < 0. 64 0. 9 < 0.	01 01 05	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	8 6 56 94 2	< 10 < 10 < 10 < 10 < 10 < 10	4 42 68 100 2	20 100 340 480 220			
BC47617 BC47618 BC47619	205 226 205 226 205 226	5	1 < < 1 < < 1	0.01 0.01 0.03	15 7 24	490 220 820	4 < 2 6	< 2 < 2 < 2	1 < 1 9	7 < 0. 30 < 0. 65 0.)1	< 10 < 10 < 10	< 10 < 10 < 10	26 10 82	< 10 < 10 < 10	30 22 78	160 120 1500			
																		·		
								<u>.</u>											•	

CERTIFICATION:__

.

Chemex Labs Ltd. Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

Г

Page 3r :1-A Total , :1 Certificate Date: 07-SEP-95 Invoice No. :19526203 P.O. Number :950803 Account :MUB

Project : AB302 Comments: CC: STEVE PERRY

											CE	RTIFI	CATE	OF A	NAL	YSIS		A9526	203		
	SAMPLE	PREP CODE	Au ppb FA+AA	Ag ppm	A1 %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cđ ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	K %	La ppm	Mg %	Mn ppm
52	NBS47018 NBS47019 NBS47020 NBS47021 NBS47022	201 202 201 202 201 202 201 202 201 202 201 202	<pre>< 5 < 5 < 5 < 5 </pre>	0.2 < 0.2 0.2 0.2 0.2	2.53 0.82 0.67 0.67 0.64	< 2 2 < 2 28 12	360 520 420 280 190	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2	0.12 0.03 0.10 0.53 3.52	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	5 6 8 3 11	15 14 13 4 12	10 22 17 9 28	1.93 2.21 1.73 2.78 2.32	< 10 < 10 < 10 < 10 < 10 < 10	1 < 1 < 1 < 1 < 1 < 1	0.10 0.20 0.14 0.13 0.10	< 10 < 10 < 10 < 10 30 < 10	0.16 0.16 0.17 0.18 0.72	60 50 75 140 175
37	NBS47023 NBS47024 NBS47025	201 202 201 202 201 202	< 5	< 0.2 < 0.2 < 0.2	2.24 2.59 2.14	34 32 16	400 310 290	< 0.5 < 0.5 < 0.5	4 2 < 2	0.92 0.72 0.61	1.5 0.5 1.0	16 11 11	24 26 26	39 32 29	3.79 3.35 3.25	10 10 < 10	< 1 < 1 < 1	0.22 0.14 0.11	10 10 10	0.69 0.69 0.81	4310 2110 2130
											· .										
		Ţ								ĸ											

-

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

o: CYPRUS CANADA INC. C/O RUBICON MINERALS 119 53RD ST. DELTA, BC V4M 3B3

Project : AB302 Comments: CC: STEVE PERRY

CERTIFICATE OF ANALYSIS

A9526203

			•			• •			L				<u> </u>			
SAMPLE	PREP CODE	Мо ррш	Na %	Ni ppm	P ppm	Pb ppm	Sb ppm	Sc ppm	Sr ppm	Ti %	T1 ppm	U mqq	V mqq	ррш W	Zn ppm	
B547018 B547019 B547020 B547021 B547022	201 202 201 202 201 202 201 202 201 202 201 202	1 < 1 11	0.01 0.01 < 0.01 0.01 0.01	19 14 17 7 31	4170 780 530 950 860	14 22 12 60 16	2 < 2 < 2 < 2 4	3 3 3 4	14 107 < 81 < 145 < 87 <	0.01 0.01	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	30 20 18 10 16	< 10 < 10 < 10 < 10 < 10 < 10	184 78 78 44 98	 <u> </u>
547023 547024 547025	201 202 201 202 201 202	3 .	< 0.01 < 0.01 < 0.01	19 17 18	1410 1330 1260	44 26 22	4 2 < 2	12 8 9	87 105	0.06 0.06 0.06	< 10 < 10 < 10	< 10 < 10 < 10	101 77 82	< 10 < 10 < 10	166 124 126	

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

CYPRUS CANADA INC. C/O RUBICON MINERALS 119 53RD ST. DELTA, BC V4M 3B3

**

Project : AB302 Comments: CC: STEVE PARRY.

	- 									CI	ERTIF		EOF	ANAL	YSIS		A952	3955		
SAMPLE	PREP CODE	Ag ppm	Al %		Ba ppm	Be ppm	Bi ppm	Ca %	Cđ ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	K %		Mg %	Mn ppm	Mo ppm
- AD05 - AD06 - AD07 - AD10 - AD11	299 22 299 22 299 22 299 22 299 22 299 22	e < 0.4 < 0.4 2.0	1.46 1.41 1.26 1.31 2.09	2 38 12 298 148	>10000 8240 6240 400 250	0.5 1.0 2.0 1.0 3.0	<pre></pre>	0.80 0.92 2.18 1.93 7.58	1.0 0.5 < 0.5 < 0.5 < 0.5	19 38 32 45 48	1005 895 364 483 362	77 36 145	11.95 >15.00 >15.00 >15.00 >15.00	< 10 < 10 10 10 < 10	15 14 13 34 20	0.53 0.39 0.15 0.24 0.12	10 20 30 20 60	0.79 1.05 0.99 1.38 1.21	560 550 835 635 3170	1 4 5 43 29
~ AD13 ~ AD15 ~ AD15 ~ AD16 ~ AD17 ~ AD18	299 229 299 229 299 229	not/ss not/ss < 0.4	0.90 not/ss not/ss 1.14 1.40	86 not/ss not/ss 78 116	not/ss	<pre>< 0.5 not/ss not/ss 1.5 1.5</pre>	not/ss	13.35 not/ss not/ss 2.55 2.49	22.5 not/ss not/ss 1.5 0.5	10 not/ss not/ss 22 31	430 not/ss not/ss 240 176	not/ss not/ss 53	>15.00 not/ss not/ss >15.00 >15.00	<pre> < 10 not/ss not/ss 10 < 10 </pre>	10 not/ss not/ss 7 8	0.07 not/ss not/ss 0.22 0.25	40 not/ss not/ss 20 20	0.94 not/ss not/ss 0.76 0.63	2070 not/ss not/ss 1025 1105	18 not/ss not/ss 52 35
· AD19 _ AD20 AD21 - AD22 AD22 AD23	299 229 299 229 299 229 299 229 299 229 299 229	1.2 3.6 < 0.4	1.24 2.09 1.85 1.91 0.49	80 118 84 46 342	2560 4410 3180 1250 300	1.0 1.5 1.5 0.5 < 0.5	<pre></pre>	4.20 2.02 3.03 9.48 7.92	0.5 1.0 2.0 0.5 1.0	11 19 18 10 30	133 461 454 432 153	56 45 39	>15.00 >15.00 >15.00 >15.00 >15.00	10 < 10 < 10 10 < 10	6 3 3 2 4	0.14 0.39 0.33 0.30 0.05	30 30 30 40 20	0.20 0.44 0.47 0.55 1.36	1530 1155 1440 2220 940	31 32 29 12 60
- AD24 - AD25 - AD25 - AD26 - AD35 - AD36	299 229 299 229 299 229 299 229 299 229 299 229	4.0 < 0.4 2.0	2.65 1.83 1.09 1.50 1.43	192 188 28 62 < 2	440 1100 2250 4010 600	0.5 3.0 0.5 1.0 < 0.5	10 < 2 2	>15.00 4.25 7.67 0.94 14.15	0.5 2.0 0.5 0.5 < 0.5	17 55 9 19 5	253 171 110 123 130	200 43 59	>15.00 >15.00 >15.00 >15.00 >15.00 >15.00	30 40 < 10 < 10 20	5 8 6 6 2	0.15 0.24 0.10 0.22 0.04	90 20 30 20 40	0.54 0.69 0.45 0.28 0.23	4680 2100 1995 1120 3560	39 61 13 37 4
- AD37 - AD38 AD48 AD48 AD48 AD49	299 229 299 229 299 229 299 229 299 229 299 229	0.8	0.99 0.67 1.18 0.67 1.32	114 28 66 12 58	420 1610 2430 5610 7030	1.0 0.5 1.5 0.5 0.5	2 4 2 2 14	5.81 13.90 3.17 >15.00 7.06	< 0.5 < 0.5	30 12 16 4 17	101 111 142 180 193	27 44 14	>15.00 13.00 >15.00 10.35 >15.00	10 < 10 10 < 10 10	2 3 1 2 7	0.17 0.12 0.20 0.11 0.12	10 < 10 20 20 30	0.76 1.67 0.45 3.57 0.28	590 865 640 465 2750	26 6 33 7 42
~ AD50 ~ AD51 ~ AD52	299 229 299 229 299 229	< 0.4	1.51 1.60 1.58	< 2 < 2 6	380 290 2270	< 0.5 < 0.5 < 0.5		14.40 >15.00 14.60	< 0.5 < 0.5 < 0.5	10 4 5	129 374 122	27	>15.00 >15.00 >15.00	10 10 10	5 4 4	0.03 0.07 0.06	50 60 60	0.20 1.05 0.19	4480 3830 4070	1 1 7
		-		·																
						-														

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 CYPRUS CANADA INC. C/O RUBICON MINERALS 119 53RD ST. DELTA, BC V4M 3B3

....

Page r :1-B Total Pages :1 Certificate Date: 14-AUG-95 Invoice No. :19523955 P.O. Number :950710 Account :MUB

Project : AB302 Comments: CC: STEVE PARRY.

											C	ERTIF	ICATI	E OF A	NALYS	IS	A9523	3955	
SAMPLE	PR CO		Na %	Ni ppm	P ppm	Pb ppm	Sb ppm	Sc ppm	Sr ppm	Ti %	Tl ppm	U ppm	V mgg	M Mada	Zn ppm				
D05 D06 D07 D10 D11	299 299 299	229 229 229 229 229 229	0.05 0.04 0.02 0.03 0.04	67 78 60 81 148	290 620 480 550 1010	20 184 48 122 144	< 2 2 4 < 2 22	7 9 18 10 28	469 258 233 231 334	0.75 0.69 0.75 0.43 1.63	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	453 428 657 241 1575	< 10 < 10 < 10 < 10 < 10 < 10	76 92 122 98 380				<u></u>
D13 D15 D16 D17 D18	 299	229 229 229 229	0.03 not/ss not/ss 0.02 0.02	83 not/ss not/ss 103 108	2880 not/ss not/ss 3830 2530	816 not/ss not/ss 62 232	8 not/ss not/ss 36 28	8 not/ss not/ss 9 9	273 not/ss not/ss 140 229	0.67 not/ss not/ss 0.11 0.17	< 10 not/ss not/ss < 10 10	<pre> < 10 not/ss not/ss < 10 < 10 < 10</pre>	458 not/ss not/ss 491 458	30 not/ss 1 not/ss 1 10 < 10	240 not/ss not/ss 258 182				
019 020 021 022 023	299 299 299	229 229 229 229 229 229	0.02 0.04 0.03 0.07 0.02	58 92 87 61 203	800 1670 1980 1380 1580	88 146 94 68 180	40 18 28 2 8	11 10 11 13 3	101 124 123 168 123	0.60 0.37 0.35 0.88 0.25	<pre>< 10 < 10</pre>	<pre>< 10 < 10 < 10 < 10 < 10 < 10 < 10</pre>	1055 645 621 763 211	<pre>< 10 < 10</pre>	144 200 220 160 360				
D24 D25 D26 D35 D36	299 299 299	229 229 229 229 229 229	0.07 0.03 0.03 0.02 0.05	166 163 45 76 27	1650 2770 1190 1520 860	2460 180 76 102 18	56 68 12 32 2	20 17 13 9 15	241 180 166 95 161	1.25 0.43 0.83 0.18 1.05	<pre>< 10 < 10</pre>	< 10 20 < 10 20 < 10 < 10	1635 1215 897 590 1100	10 10 < 10 < 10 < 10	216 322 156 170 140				
037 038 044 048 049	299 299 299	229 229 229 229 229 229	0.02 0.02 0.02 0.02 0.02 0.03	146 48 59 25 69	480 1490 1690 1790 1320	80 10 78 24 430	16 < 2 40 4 30	6 7 9 4 12	102 155 91 154 206	0.12 0.01 0.19 0.16 0.82	<pre>< 10 < 10</pre>	< 10 < 10 < 10 < 10 < 10 < 10	518 75 738 259 962	< 10 < 10 < 10 < 10 < 10 < 10	254 156 144 66 234				
D50 D51 D52	299	229 229 229 229	0.04 0.07 0.06	42 27 32	940 1200 710	214 84 50	< 2 < 2 16	13 16 17	172 246 229	1.14 1.19 1.13	< 10 < 10 < 10	< 10 < 10 < 10	1175 1140 1355	< 10 < 10 < 10	300 180 168				
				•															

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 CYPRUS CANADA INC. C/O RUBICON MINERALS 119 53RD ST. DELTA, BC V4M 3B3

**

Page r :1-A Total Pag. :1 Certificate Date: 14-AUG-95 Invoice No. :19523955 P.O. Number :950710 Account :MUB

Project : AB302 Comments: CC: STEVE PARRY.

·		1								C	ERTIF	ICAT	E OF	ANAL	.YSIS		A952	3955		
SAMPLE	PREP CODE	Ag ppm			Ba ppm	Be ppm				Co ppm	Cr ppm	Cu ppm	Fe %					-		Mo ppm
AD05 AD06	299 229 299 229	< 0.4 < 0.4			>10000 8240	0.5				19	1005		11.95		15					1
AD07	299 229	< 0.4	1.26	12		2.0		2.18		38 32	895 364		>15.00 >15.00							4
AD10 AD11	299 229 299 229				400 250	1.0 3.0	<pre>< 2 < 2 < 2</pre>		< 0.5 < 0.5	45 48	483 362	145	>15.00 >15.00	10	34 20	0.24	20	1.38	635	43 29
AD13 AD15	299 229					< 0.5	< 2 not /85	13.35	22.5	10	430	361	>15.00	< 10	10	0.07	40	0.94	2070 not/ss	18
AD16		1 doc/ss	not/ss	not/ss	not/ss	not/ss	not/ss	not/ss	not/ss	not/ss	not/ss	not/ss	not/ss	not/ss	not/ss	not/ss	not/ss	not/ss	not/ss not/ss	not/ss
AD17	299 229	I € 0.4	1.14	/8	5070	1.5	< 2	2.55	1.5	22	240	53	>15.00	10	100,33					52
AD18	299 229	2.4	1.40	116	1430	1.5	< 2	2.49	0.5	31	176	74	>15.00	< 10	8	0.25	20	0.63	1105	35
AD19	299 229				2560	1.0	< 2	4.20	0.5	11	133	37	>15.00	10	6	0.14	30	0.20	1530	31
AD20 AD21	299 229 299 229				4410	1.5	42	2.02	1.0	19	461	56	>15.00	< 10	3	0.39	30			32
AD22	299 229				3180 1250	1.5 0.5	< 2 34	3.03 9.48	2.0 0.5	18 10	454 432		>15.00 >15.00		3					29
AD23	299 229	7.6			300	< 0.5	2	7.92	1.0	30	432 153		>15.00	10 < 10	2 4					12 60
AD24	299 229				440	0.5	< 2	>15.00	0.5	17	253	102	>15.00	30	5	0.15	90	0.54	4680	39
AD25 AD26	299 229 29 29			188 28	1100 2250	3.0	10	4.25	2.0	55	171	200	>15.00	40	8	0.24	20	0.69	2100	61
AD35	299 229			62	4010	0.5 1.0	< 2 2	7.67 0.94	0.5 0.5	9 19	110 123		>15.00 >15.00	< 10 < 10	6 6	0.10 0.22				13
AD36	299 229	< 0.4		< 2	600	< 0.5		14.15	< 0.5	5	130		>15.00	20	2					37 4
AD37 AD38	299 229 299 229	3.6 0.8		114	420	1.0	2		< 0.5	30	101		>15.00	10	2					26
AD44	299 229	< 0.4		28 66	1610 2430	0.5 1.5	4		< 0.5 < 0.5	12 16	111 142		13.00 >15.00	< 10 10	3	0.12				6
AD48	299 229		0.67	12	5610	0.5		>15.00		4	180		10.35	< 10	2					33 7
AD49	299 229	0.8	1.32	58	7030	0.5	14	7.06	0.5	17	193		>15.00	10	7					42
AD50 AD51	299 229 299 229	< 0.4 < 0.4	1.51 1.60	<pre>< 2</pre> <pre>< 2</pre>	380 290	< 0.5 < 0.5			< 0.5 < 0.5	10	129		>15.00	10	5	0.03				1
AD52	299 229		1.58	6		< 0.5		14.60		4 5	374 122		>15.00 >15.00	10 10	4	0.07 0.06			3830 4070	1

CERTIFICATION:_

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

CYPRUS CANADA INC. C/O RUBICON MINERALS 119 53RD ST. DELTA, BC V4M 3B3

**

Page r :1-B Page Total Fug. 1 Certificate Date: 14-AUG-95 Invoice No. : 19523955 P.O. Number : 950710 Account : MUB

Project : AB302 Comments: CC: STEVE PARRY.

·····											C	ERTIF	ICATI	E OF A	NALYSIS	A9523955
SAMPLE		EP DE	Na %			Pb ppm	Sb ppm	Sc ppm	Sr ppm	Ti %	Tl ppm	U ppm	V ppm	W ppm	Zn ppm	
AD05 AD06 AD07 AD10 AD11	299 299 299	229 229 229 229 229 229	0.05 0.04 0.02 0.03 0.04	78 60 81	620 480 550	20 184 48 122 144	<pre></pre>	7 9 18 10 28	469 258 233 231 334	0.75 0.69 0.75 0.43 1.63	<pre>< 10 < 10</pre>	< 10 < 10 < 10 < 10 < 10 < 10	453 428 657 241 1575	< 10 < 10 < 10 < 10 < 10 < 10	76 92 122 98 380	
AD13 AD15 AD16 AD17 AD18	299 299	229 229 229	0.03 not/ss	83 not/ss not/ss 103	2880 not/ss not/ss 3830	816 not/ss	8 not/ss	8 not/ss	273 not/ss	0.67 not/ss	< 10 not/ss not/ss	<pre> < 10 not/ss not/ss < 10 </pre>	458 not/ss	30 not/ss 1 not/ss 1 10 < 10	240 pot /ss	
AD19 AD20 AD21 AD22 AD23	299 299 299	229 229 229 229 229 229	0.02 0.04 0.03 0.07 0.02	58 92 87 61	800 1670 1980 1380 1580	88 146 94 68 180	40 18 28 2 8	11 10 11 13 3	101 124 123 168 123	0.60 0.37 0.35 0.88 0.25	<pre></pre>	<pre></pre>	1055 645 621 763 211	<pre>< 10 < 10</pre>	144 200 220 160 360	
AD24 AD25 AD26 AD35 AD36	299 299 299	229 229 229 229 229 229	0.07 0.03 0.03 0.02 0.05	166 163 45 76 27	1650 2770 1190 1520 860	2460 180 76 102 18	56 68 12 32 2	20 17 13 9 15	241 180 166 95 161	1.25 0.43 0.83 0.18 1.05	<pre>< 10 < 10</pre>	<pre>< 10 20 < 10 20 < 10 20 < 10</pre>	1635 1215 897 590 1100	10 10 < 10 < 10 < 10	216 322 156 170 140	
AD 3 7 AD 3 8 AD 4 4 AD 4 8 AD 4 9	299 299 299	229 229 229 229 229 229	0.02 0.02 0.02 0.02 0.02 0.03	146 48 59 25 69	480 1490 1690 1790 1320	80 10 78 24 430	16 < 2 40 4 30	6 7 9 4 12	102 155 91 154 206	0.12 0.01 0.19 0.16 0.82	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	518 75 738 259 962	< 10 < 10 < 10 < 10 < 10 < 10	254 156 144 66 234	
AD50 AD51 AD52	299	229 229 229	0.04 0.07 0.06	42 27 32	940 1200 710	214 84 50	<pre>< 2 < 2 < 16</pre>	13 16 17	172 246 229	1.14 1.19 1.13	< 10 < 10 < 10	< 10 < 10 < 10	1175 1140 1355	< 10 < 10 < 10	300 180 168	
				·						•						

.

CERTIFICATION

Г

Chemex Labs Ltd. Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

CYPRUS CANADA INC. C/O RUBICON MINERALS 119 53RD ST. DELTA, BC V4M 3B3

Project : AB302 Comments: CC: STEVE PARRY.

CERTIFICATE OF ANALYSIS

A9523954

SAMPLE	PREP CODE	Au NAA ppb	Sb ppm ppm	As I ppm	Br NAA (ppm	Ce NAA (ppm	Cr NAA (ppm	Co NAA I ppm	a NAA M	io NAA i ppm	Ag NAA (ppm	Ta NAA 1 ppm	Th NAA ppm	W NAA ppm	U NAA ppm	Fe tot %		
AD05 AD06 AD07 AD10 - AD11	235 220 235 220 235 220 235 220 235 220 235 220	15 420 2690	2 4 7 14	28 79 70 396 159	< 1 2 4 < 1 3	47 58 130 95 220	760 690 310 460 200	32 44 43 42 38	21 36 71 54 110	2 4 5 42 17	6 < 5 < 5 < 5 < 5	2 2 3 2 4	8 9 10 7 13	< 2 3 3 4 4	5 6 8 6 8	21.37 38.92 24.01	not/ss not/ss not/ss not/ss not/ss	
AD13 AD15 AD16 AD17 AD18	235 220 235 220 235 220 235 220 235 220 235 220	5780 28 19	12 16 19 45 38	133 170 130 149 168	10 < 5 < 2 < 1 3	230 < 50 130 40 90	660 710 540 290 220	20 < 50 41 28 36	89 44 59 39 47	21 - 65 28 49 33	26 < 25 < 10 < 5 < 5	5 < 5 < 2 < 1 < 1	13 5 11 7 8	14 < 6 < 2 13 5		not/ss 21.69 40.96	not/ss not/ss not/ss not/ss not/ss	
AD19 AD20 AD21 AD22 AD23	235 220 235 220 235 220 235 220 235 220 235 220	2520 13500 8070	58 42 42 11 20	132 190 141 77 451	< 1 < 2 < 1 < 1 2	140 190 160 250 140	120 550 500 390 270	20 28 26 18 37	59 82 65 91 71	25 35 25 12 58	< 5 < 10 < 5 < 5 13	1 < 2 1 4 1	11 15 11 10 9	12 8 9 3 < 2	12 10 9 9 5	31.87 32.26 19.16	not/ss not/ss not/ss not/ss not/ss	
AD24 AD25 AD26 AD35 AD36	235 220 235 220 235 220 235 220 235 220 235 220	140	41 50 15 49 6	124 161 56 118 17	1 < 1 < 1 2 < 1	310 62 200 140 310	180 63 140 350 150	17 35 16 29 16	140 33 79 53 100	19 28 11 38 3	< 5 < 5 < 5 < 5 < 5 < 5	5 1 4 < 1 8	14 8 10 9 12	8 6 < 2 < 2 < 2	11 10 8 14 10	41.64 23.37 24.72	not/ss not/ss not/ss not/ss not/ss	
AD37 AD38 AD44 AD48 AD49	235 220 235 220 235 220 235 220 235 220 235 220	2800 5330 < 5 1180 8830	29 5 50 9 88	154 48 115 22 232	2 < 1 2 < 2 < 4	63 45 66 140 410	130 230 220 270 690	29 21 15 < 20 50	24 20 38 54 150	24 7 27 15 83	< 5 < 5 5 < 10 < 5	< 1 < 1 < 1 < 2 7	5 3 10 8 21	5 < 2 < 2 < 2 < 2 < 2	7 3 11 6 23	14.20 41.21 11.35	not/ss not/ss not/ss not/ss not/ss	
AD50 AD51 AD52	235 220 235 220 235 220	6880 15 852	5 14 4	10 31 10	2 < 3 3	320 370 370	110 130 370	18 12 18	110 140 110	< 2 6 < 2	< 5 6 6	8 7 9	12 14 15	< 2 < 2 < 2	9 11 11		not/ss not/ss not/ss	
				•														
																	-	

CERTIFICATION:__

Rubicon Minerals Corporation

119 - 53rd Street Delta, BC V4M 3B3

Fax Cover Sheet

DATE:	September 12, 1995	TIME:	11:18 AM
то:	Chris Graf	PHONE:	(604)681-4402
	Ecstali	FAX:	(604)681-1562
FROM:	Garfield MacVeigh	PHONE:	(60 4) 948-2583
	Rubicon Minerals Corp.	FAX:	(60 4) 990-0457
RE:	SW Alberta		

CC:

9/12/95 1104AM

Number of pages including cover sheet: [4]

Message

I have attached HMC results for AD samples (Cert A9523954). Also faxed are original rock sample results from rock samples collected by MacVeigh (Cert A9539560) Au(30gm) + ICP. I requested a reassay for the anomalous results and Chemex was unable to repeat the analysis - I am expecting a letter from them re the repeat analysis.

Still outstanding are the HMC results from Mike's last round of samples.

Garfield

A9523954		FTF				· · · · ·				i					1	
CLIENT : C	CONTRACTOR OF A CONTRACTOR	a second of the second second	NC					···· ·· · ····························	and dans take name of the off field of							
# of SAMF	CONTRACTOR CONTRACTOR OF A DOMESTIC OF A DOM						· · · · ·····			(1			
DATE REC	Address of the second sec	states and a second														
PROJECT	and the second se															
CERTIFIC		MENTS :	CC: STE	E PARRY	·.											
	4139	4140		4142		4144	4145	4146	4147	4148	4149	4150	4151	4152	325	
SAMPLE	Au NAA	Sb ppm	As	Br NAA	Ce NAA	Cr NAA	Co NAA	La NAA	Mo NAA	Ag NAA	Ta NAA	Th NAA	W NAA	U NAA	Fe tot	Ba
DESCRIP	ppb	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm
AD05	5610	2	28	<1	47	760	32	21	2	6			<2	5	the second to take attracts where	not/ss
AD06	15	4			58	690	44	36		<5	2	9	· · · · · · · · · · · · · · · · · · ·			not/ss
AD07	420	4	70	4			43			<5	3	10	3			notiss
AD10	2690	7	396		95	460	42			<5	2	7	4	6		not/ss
AD11	19	14	159	3	220	200	38	110		<5 ·	4	13	4	8		not/ss
AD13	2420	12	133	10		and the second second second second	20	89	21		5	13		Contract of the second s		not/ss
AD15	5780	16	170	<5	<50	710		44		<25	<5		<6			not/ss
AD16	28	19	. 130	<2	130		41	59		<10	<2		<2	8		not/ss
AD17	19	45	149	<1	40		28)			<5	<1	7	13	10		not/se
AD18	13	38	168	3	90	220	36		and an and the second s	<5	<1	8	second real sector states a second seco			nct/ss
AD19	500	58	132		140	a second s	20			<5	1	11	and the second se	12	the second second second second second second second second second second second second second second second se	not/ss
AD20	2520		190	<2	190	canal state strategy and the state	28	82		<10	<2	15	and the second second second			not/ss
AD21	13500	42	141		160		26			<5	1	11				not/ss
AD22	8070	11	77	and the second se	250	and the second state of the second	18	91		<5	4	10				not/ss
AD23	4090	20		2		in the second se	37	71	58				<2	5		not/ss
AD24	1130	the second second second second second second second second second second second second second second second se	124	Construction of the second sec	310			manufacture is shown in the second		<5	5	14		11		not/ss
AD25	140	50			62		35			<5	1	8		10		not/ss
AD26	420	15	56		200	the state of the s			11		4		<2	8		not/ss
AD35	26700	49	118	has a resummer resonant and the rest		the second second second second	29	53		<5	<1		<2	14		not/ss
AD36	1980			<1	310		16			<5	8	12		10		not/ss
AD37	2800		154	2	And and a second s			24		<5	<1	5		7		notiss
AD38	5330	5		<1	45					<5	<1		<2			not/ss
AD44	<5	50	115	the survey of the second second	66			38	27		<1		<2	11		not/ss
AD48	1180		the second second second second second second second second second second second second second second second se	<2	140	and the second se		54		<10	<2		<2	6		not/ss
AD49	8830		232		410		50	150		<5	7	21		23		not/ss
AD50	6880	5	10				18	110		<5	8	12		9		not/ss
AD51	15	14	31		370			140	6				<2	11		not/ss
AD52	852	4	10	3	370	370	18	<u>110 </u>	<2	6	9	15	<2	11	17.22	not/ss

•

A9523954

- 19 - ² -

A9523956 -	CEDTIELE	<u> </u>			1	1	<u> </u>			1			•					1
CLIENT : C		·_ · · · · · · · · · · · · · · ·				÷				†+								
# of SAMPL			:					·····				· !						
DATE REC		. 11 11 - 05								++								
PROJECT		-301-33				+				 								
CERTIFICA	and an example the same state of the	ENTS - CO				· · · · · · · · · · · · · · · · · · ·				++								• • • • •
CENTIFICA	494	2118	2119	2120	2121	2122	2123	2124	2125	2126	2127	2128	2150	2130	2131	2132	2151	2134
SAMPLE	Au g/t	Ag	Al	As	Ba	Be	Bi	Ca	Cd	Co	Cr	Си	Fe	Ga	Hg	ĸ	La	Mg
DESCRIPTI	······································	mqq		ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	%	ppm	%
NBC47607	0.025	•	0.92	<u></u>	in man and construction of	<.5	2	0.08		2	126	9	1.39		<1	0.17	and the second s	0.13
				40						8	43	3	6.51		<1	0.08		0.54
NBC47608	1.78		0.37	16		. le		11.55										
NBC47609	0.145	<.2	0.53	6	460	<.5	<2	13.4		3	26		1.52		<1	0.16		0.38
NBC47610	<.005	<.2	0.24	6	40	<.5	2	11.9	<.5	1	46	<1	0.5		<u><1</u>	0.13	encontrate a construction of the second	6.27
NBC47611	0.045	<.2	0.92	6	320	1	<2	0.86	<.5	9	105	6	10.4	<10	<1	0.09	<10	0.31
NBC47612	0.01	<.2	0.1 <	<2	20	<.5	<2	0.08	<.5	1	240	3	1.12	<10	<1	0.02	<10	0.02
NBC47613	<.005	<.2	0.02	4	<10	<.5	<2	14.2	<.5	<1	47	<1	0.09	<10	<1	0.01	<10	2.01
NBC47614	<.005	<.2	0.49 <	<2	120	<.5	<2	0.24	<.5	• 4	201	6	1.72	<10	<1 ·	0 ,06	<10	0.02
NBC47615	<.005	<.2	2.3	2	170	<.5	<2	5.61	<.5	22	214	<1	5.28	<10	<1	0.07	40	3.86
NBC47616		<.2	0.13	2	80	<.5	<2	2.97	<.5	• 1	154	2	0.76	<10	<1	0.05	<10	1.78
	<.005	<.2	0.5	8	70	<.5	<2	0.14	<.5	4	236	8	0.82	<10	<1	0.1	<10	0.1
		<.2	0.37 <	<2	+	<.5	<2	1.34	<.5	<1	197	6	0.36	<10	<1	0.23	<10	0.14
		<.2	2.3	- 6		<.5	<2	1.06	<.5	9	110	18	3.14	<10	1	0.19	10	0.96

प्रदार राजा स्टित

suzies nizme •

. بو

Gafel Karker

5/12/95 11:2463i

A9523956 -						1					I					
CLIENT : C					and the star was											
# of SAMPL																
DATE RECE	.														·	
PROJECT :	ļ					 					ļ					
CERTIFICA	ĺ							!								
· · · ·	2135	2136	2137	2138	2139	2140	2141	2142	2143	2144	2145	2146	2147	2148	2149	25
SAMPLE	Mn	Mo	Na	Ni	Р	Pb	Sb	Sc .	Sr	Ti	TI	U	• V	W	Zn	Ba
DESCRIPTI	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm
NBC47607	20	<1	<.01	13	530	8	<2	2	. 26	<.01	<10	<10		<10	50	620
NBC47608	850	2	0.01	14	1570	<2	<2	2	143	<.01	<10	<10	61	<10	50	780
NBC47609	340	2	0.01	13	620	4	<2	3	279	<.01	<10	<10	16	<10	64	860
NBC47610	65	<1	0.01	6	300	<2	<2	<1	54	<.01	<10	<10	6	<10	50	160
NBC47611	800	1	0.01	18	3960	2	<2	4	74	<.01	<10	<10	90	<10	62	440
NBC47612	75	<1	<.01	4	280	<2	<2	<1	6	<.01	<10	<10	8	<10	4	20
NBC47613	15	<1	0.01	5	190	<2	<2	<1	250	<.01	<10	<10	6	<10	42	100
NBC47614	90	<1	<.01	18	370	4	<2	4	46	<.01	<10	<10	56	<10	68	340
NBC47615	970	<1	<.01	101	1170	· 2	<2	12	64	0.05	<10	<10	94	<10	100	480
NBC47616	480	<1	<.01	3	80	<2	<2	<1	9	<.01	<10	<10	2	<10	2	220
NBC47617	135	1	<.01	15	490	4	<2	1	7	<.01	<10	<10	26	<10	30	160
NBC47619	10	<1	<.01	7	220	<2	<2	<1	30	<.01	<10	<10	10	<10	22	120
NBC47619	765	<1	0.03	24	820	6	<2	9	65	0.2	<10	<10	82	<10	78;	1500

9523956

·

XRAL Laboratories A Division of SGS Canada Inc.

1885 Leslie Street Don Mills, Ont. Canada M3B 3J4 Telephone (416) 445-5755 Fax (416) 445-4152

DISTRIBUTION

TO: ECSTALL MINING CORP. ATTN: DON SHARPE 307-475 HOWE STREET VANCOUVER, B.C. V6C 2B3

CUSTOMER No. 376

REPORT 30706

WORKORDER 2087-03

XRAL Laboratories A Division of SGS Canada Inc.

1885 Leslie Street Don Mills, Ont. Canada M3B 3J4 Telephone (416) 445-5755 Fax (416) 445-4152

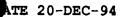
CERTIFICATE OF ANALYSIS REPORT 30706

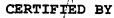
TO: LAC MINERALS LTD. ATTN: J. GARFIELD MACVEIGH EXPLORATION DIVISION 698 SEYMOUR ST., STE.204 VANCOUVER, B.C. **V6B 3K6**

WORKORDER

CUSTOMER No. 376

DATE SUBMITTED 30-Nov-94


TOTAL PAGES 8


67 **HEAVY MINERAL CONCENTRATES**

2087-03

		METHOD	DETECTION LIMIT	METHOD CODE		METHOD	DETECTION LIMIT	METHOD CODE
AU	PPB	NA	10.	14-2	BA PPM	NA	200.	14-2
NA	PPM	NA	500.	14-2	LA PPM	NA	1.	14-2
CA	€	NA	1.	14-2	CE PPM	NA	3.	14-2
SC	PPM	NA	.1	14-2	SM PPM	NA.	.1	14-2
CR	PPM	NA	10.	14-2	EU PPM	NA	.2	14-2
FE	÷	NA	.02	14-2	YB PPM	NA	.2	14-2
CO	PPM	NA	5.	14-2	LU PPM	NA	.1	14-2
NI	PPM	NA	200.	14-2	HF PPM	NA	1.	14-2
ZN	PPM	NA	200.	14-2	TA PPM	NA	1.	14-2
AS	PPM	NA	5.	14-2	W PPM	NA	10.	14-2
SE	PPM	NA	20.	14-2	IR PPB	NA	50.	14-2
MO	PPM	NA	20.	14-2	TH PPM	NA	.5	14-2
AG	PPM	NA	5.	14-2	U PPM	NA	.5	14-2
SB	PPM	NA	.2	14-2			•-	

*** UNLESS INSTRUCTED OTHERWISE WE WILL DISCARD PULPS IN 90 DAYS ** AND REJECTS IN 30 DAYS FROM THE DATE OF THIS REPORT

61

Jean H. Opdebeeck, General Manager

.

20-DEC-94

REPORT 30706

WORKORDER 2087-03

8

PAGE 1 of

SAMPLE	AU PPB	NA PPM NA	CA % NA	SC PPM	CR PPM	FE %	CO PP
	NA 14 0			NA	NA	NA	N
	14-2	14-2	14-2	14-2	14-2	14-2	14-:
AR1	<10	700	15	10.5	 50	31.6	11
AR2	<10	600	17	10.5	50	22.5	10
AR3	<10	600	12	8.2	190		v 26
AR4	<10	800	13	14.5	160	27.5	22
AR5	<10	800	13	16.3	160	24.7	17
AR6	<10	1000	14	16.2	130	26.7	16
AR7	<10	900	17	15.0	60	21.0	13
AR8	<10	900	15	14.9	70	22.9	19
AR9	<10	700	14	11.0	70	29.5	28
A R10	<10	2000	16	16.4	180	20.5	16
AR11	<10	1000	16	13.4	80	22.8	9
AR12	10	1100	13	9.2	300	22.6	28
AR13	30	800	7	5.7	270	34.4	39
AR14	<10	600	12	10.9	70	32.2	22
A R15	26000	700	<3	17.4	830	27.5	31
AR16	20	800	. 7	8.8	300	26.3	42
AG1	450	700	8.	13.7	190	39.9	35
AG2	430	800	15	13.8	190	20.3	14
AG3	470	<500	7	16.8	380	42.2	36
AG4	<10	1100	20	16.3	130	23.0	19
AG5	510	600	11	14.1	. 360	29.8	27
AG6	10	800	14	15.2	150	37.6	40
AG7	<10	900	10	19.0	280	37.1	26
AG8	60	900	11	15.3	160	28.4	18
AG9	<10	1000	13	15.5	90	19.5	18
A G10	430	900	16	14.4	110	35.4	33
AG11	370	1000	<1	27.0	160	38.4	33
AG12	5100	800	<1	29.7	180	43.8	15
AG13	NSS	NSS	NSS	NSS	NSS	NSS	NSS
AG14	NSS	NSS	NSS	NSS	NSS	NSS	NSS
AG15	870	800	<1	29.8	170	43.4	17
AG16	30	1500	<1	29.0	520	42.0	43
AG17	NSS	NSS	NSS	NSS	NSS	NSS	NSS
AG18	NSS	NSS	NSS	NSS	NSS	NSS	NSS
AG19	<10	9 00	12	8.5	370	21.2	28
AG20	NSS	NSS	NSS	NSS	NSS	NSS	NSS
AG21	10	600	6	7.4	290	25.6	27
AG22	10	800	19	13.8	90	25.9	16
AG23	20	800	<1	14.9	630	27.4	32
AG24	20	60 0	9	8.1	370	25.9	26

20-DEC-94

REPORT 30706

WORKORDER 2087-03

PAGE 2 of

8

SAMPLE	AU PPB	NA PPM	CA 🕏	SC PPM	CR PPM	FE %	CO PPM
	NA	NA	NA	NA	NA	NA	NA
	14-2	14-2	14-2	14-2	14-2	14-2	14-2
AG25	600	500	5	8.6	320	32.0	 41
1 AG27	<10	900	<1	9.4	180	49.4	12
- AG28	10	1600	<1	10.1	430	33.9	10
AG29	NSS	NSS	NSS	NSS	NSS	NSS	NSS
AG30	2900	900	1	8.4	170	37.8	9
- AG31	4200	800	<1	20.7	590	38.5	29
- AG32	3000	<500	<2	62.6	1900	22.5	26
AG33	5300	<500	<1	44.9	1000	14.6	20
~ AG34	30	500	6	8.6	710	37.3	76
- AG35	· 10000	700	<1	8.9	390	37.8	23
AG36	<10	800	20	4.4	270	13.6	14
- AG37	1400	800	4	8.2	290	34.7	16
~ AG38	<10	900	3	11.8	1000	44.3	19
AG39	<10	600	12	10.6	100	37.3	20
AG40	<10	800	16	13.5	. 70	22.4	9
AG41	<10	600	8	11.6	330	31.9	35
	<10	1000	13	19.6	130	23.4	19
AG43	<10	1000	11	21.2	250	29.5	24
- AG44	170	1900	1	12.4	370	32.2	21
~ AG4 5	<10	800	<1	10.9	570	35.9	20
A G46	4600	700	<1	14.6	1200	44.8	26
- AG47	20	800	<1	9.0	480	36.4	28
~ AG48	1600	600	<1	9.2	690	36.0	23
··· AG49	920	1000	3	11.2	470	39.2	19
- AG50	50	900	3	14.0	630	36.5	28
~ A G51	760	<500	<1	3.3	150	9.20	6
~ AG52	5600	900	16	11.8	270	13.8	17
D AR1	630	800	17	12.8	150	26.4	15
D AG9	10	1100	14	16.1	80	19.6	.16
D AG34	NSS	NSS	NSS	NSS	NSS	NSS	NSS

D - QUALITY CONTROL DUPLICATE

· ·

REPORT 30706

	•

WORKORDER 2087-03

PAGE 3 of

8

SAMPLE	NI PPM	ZN PPM	AS PPM	SE PPM	MO PPM	AG PPM	SB PPI
	NA 14 0	NA	NA	NA	NA	NA	N
	14-2	14-2	14-2	14-2	14-2	14-2	14-2
AR1	<200	<200	42	<20	20	<5	27.0
AR2	<200	<200	25	<20	<20	<5	14.0
AR3	<200	700	6	<20	<20	<5	3.8
AR4	<200	200	17	<20	<20	<5	11.0
AR5	<200	<200	20	<20	<20	<5	5.7
AR6	<200	<200	28	<20	<20	<5	9.4
AR7	<200	<200	12	<20	<20	<5	3.5
AR8	<200	<200	7	<20	<20	<5	3.
AR9	<200	300	8	<20	<20	<5	2.9
AR10	· <200	<200	20	<20	<20	<5	7.1
AR11	<200	<200	22	<20	<20	<5	10.0
A R12	<200	200	210	<20	40	<5	41.0
AR13	<200	400	400	<20	60	<5	21.0
AR14	<200	600	13	<20	<20	<5	11.0
AR15	<200	200	180	<20	40	<5	11.0
AR16	<200	200	390	<20	80	<5	18.0
AG1	<200	400	23	<20	<20	<5	7.
AG2	<200	<200	12	<20	<20	<5	3.
AG3	<200	400	17	<20	<20	<5	5.0
AG4	<200	200	8	<20	<20	<5	2.1
AG5	<200	300	17	<20	· <20	<5	5.0
AG6	<200	400	11	<20	<20	<5	4.3
NG7	<200	200	29	<20	<20	<5	8.3
AG8	<200	<200	38	<20	<20	<5	10.0
AG9	<200	200	18	<20	<20	<5	5.0
AG10	<200	400	15	<20	<20	<5	6.1
AG11	<200	400	36	<20	<20	<5	3.3
AG12	<200	<200	17	<20	30	<5	2.0
AG13	NSS	NSS	NSS	NSS	NSS	NSS	NSS
AG14	NSS	NSS	NSS	NSS	NSS	NSS	nss
AG15	<200	<200	20	<20	<20	<5	2.0
NG16	<200	<200	100	<20	150	<5	3.0
AG17	NSS	NSS	NSS	NSS	NSS	NSS	NSS
LG18	NSS	NSS	NSS	NSS	NSS	NSS	NSS
1 G19	<200	200	190	<20	20	<5	58.0
4G20	NSS	nss	NSS	NSS	NSS	NSS	NSS
G21	<200	200	230	<20	30	<5	11.0
G22	<200	400	7	<20	<20	<5	4.0
G23	<200	<200	180	<20	30	<5	10.0
AG24	<200	200	250	<20	40	<5	12.0

•

.

 \bigcirc

20-DEC-94

REPORT 30706

PAGE 4 of WORKORDER 2087-03

8

SAMPLE	NI PPM	ZN PPM	AS PPM	SE PPM	MO PPM	AG PPM	SB PP
	NA	NA	NA	NA	NA	NA.	N
	14-2	14-2	14-2	14-2	14-2	14-2	14-3
AG25	400	200	410	<20	60	<5	22.0
AG27	<200	<200	140	<20	40	<5	80.
AG28	<200	300	86	<20	20	<5	43.0
AG29	NSS						
AG30	<200	<200	85	<20	20	<5	56.
AG31	<200	<200	85	<20	20	<5	44.0
AG32	<200	<200	12	<20	<20	<5	з.
AG33	<200	<200	11	<20	<20	<5	2.
AG34	<200	300	260	<20	50	<5	28.
AG35	<200	<200	150	<20	40	<5	96.
AG36	<200	200	50	<20	<20	<5	5.
AG37	<200	300	120	<20	30	<5	24.
AG38	<200	300	120	<20	40	<5	46.
AG39	<200	500	40	<20	20	<5	27.
AG40	<200	<200	26	<20	<20	<5	11.
AG41	<200	400	170	<20	- 30	<5	9.3
AG42	<200	<200	18	<20	<20	<5	з.
AG43	<200	200	19	<20	<20	<5	з.
AG44	<200	200	86	<20	20	<5	38.
AG45	<200	<200	140	<20	40	<5	47.
AG46	<200	200	160	<20	. 50	<5	58.
AG47	<200	<200	180	<20	40	<5	43.
AG48	<200	200	140	<20	20	<5	38.
AG49	<200	<200	130	<20	50	<5	43.
AG50	<200	300	120	<20	30	<5	38.
AG51	<200	<200	30	<20	<20	<5	13.
AG52	<200	<200	13	<20	80	<5	З.
AR1	<200	300	27	<20	<20	<5	13.
AG9	<200	200	15	<20	<20	<5	4.
AG34	NSS						

D - QUALITY CONTROL DUPLICATE NSS - NOT SUFFICIENT SAMPLE

REPORT 30706

20-DEC-94

WORKORDER 2087-03

PAGE 5 of

8

SAMPLE	BA PPM	LA PPM	CE PPM	SM PPM	EU PPM	YB PPM	LU PPI
	NA	NA		NA	· Nž		
	14-2	14-2		14-2	14-2	14-2	14-:
ARI	. 2200	124	329	46.2	12.0	11.4	1.6
AR2	2500	74	243	42.4	11.6	12.2	1.4
AR3	600	70	187	28.1	8.3	8.4	1.
AR4	3300	78	242	37.6	10.8		
AR5	2800	88	260	40.8	10.8	10.3 11.7	1.
AR6	1500	75	248	39.9	10.9	11.3	1.
AR7	3800	71	263	44.8	12.8	12.4	1.
AR8	1200	73	262	45.3	12.4	12.3	1.
AR9	. 800	77	214	32.1	9.3	8.9	1.
AR10	2500	94	302	51.7	13.6	15.8	2.3
R11	6400	167	426	57.0	14 0	17 0	•
R12	12000	130	236	31.4	14.8	17.3	2.
R13	16000	95	. 74	15.5	6.6 4.4	10.0	1.
R14	2000	87	271	42.9		6.4	1.
R15	61000	429	773	40.2	11.4	12.2	1.
	02000	429	115	40.2	5.7	22.8	4.:
R16	24000	180	300	14.9	2.0	5.8	1.:
G1	290 0	65	191	30.1	8.7	8.7	1.
G2	1100	74	228	35.7	10.3	10.1	1.
LG3	5000	60	170	23.9	7.1	8.4	1.
G4	1400	97	315	51.1	14.3	14.3	2.
AG5	3300	67	201	30.6	· · · ·		-
vG6	3200	75	232			10.6	1.
G7	4500	90	327	36.6	10.5	9.7	1.
G8	17000	90 70		35.6	10.4	12.4	1.9
LG9	2200	111	204 265	32.2 37.0	9.8 12.9	10.2 12.5	1.0
					10.19	12.5	2.0
G10	1100	95	266	43.3	11.6	12.1	1.
G11	300	112	208	25.4	8.1	7.1	1.
G12	1000	69	227	10.7	3.4	3.2	.!
G13	NSS	NSS	NSS	NSS	NSS	NSS	NSS
G14	NSS	NSS	NSS	NSS	NSS	NSS	NSS
G15	900	67	128	11.5	4.1	3.7	
G16	5800	235	501	39.8	6.9	5.8	. 1
G17	NSS	NSS	NSS	NSS	NSS	NSS	NSS
G18	NSS	NSS	NSS	NSS	NSS	NSS	NSS
G19	12000	192	269	33.2	7.3	13.1	2.3
G20	NCO	NCO	NCO	NGG	N C C		
G21	NSS 50000	NSS 80	NSS	NSS	NSS	NSS	NSS
G22		88	141	19.6	5.0	8.4	1.2
	1500	119	415	56.9	15.7	16.7	2.6
G23	73000	369	646	44.5	5.8	18.7	3.3
G24	17000	98	166	20.5	5.2	9.8	1.7

REPORT 30706

PAGE	6	oĔ
------	---	----

WORKORDER 2087-03

8

SAMPLE	BA PPM	LA PPM	CE PPM	SM PPM	EU PPM	YB PPM	LU PPN
	NA	NA	NA	NA	NA	NA	NZ
	14-2	14-2	14-2	14-2	14-2	14-2	14-2
AG25	25000	212	353	18.1	2.6	9.4	1.7
AG27	9100	44	120	14.7	5.4	25.0	4.2
AG28	4700	82	158	15.9	5.1	20.5	3.2
AG29	NSS						
A G30	5900	34	59	9.8	4.3	12.7	2.3
AG31	32000	91	181	16.1	4.1	20.9	3.3
AG32	180000	465	896	58.1	8.3	30.9	4.0
AG33	150000	369	662	28.8	6.6	22.9	3.5
AG34	55000	65	154	16.2	3.6	15.4	2.
AG35	14000	91	170	12.0	2.9	6.2	1.0
AG36	6000	17	36	3.1	1.2	1.8	.3
AG37	20000	36	72	7.9	1.9	5.2	.:
AG38	20000	73	169	19.4	4.5	5.2	1.0
AG39	2400	108	281	40.4	11.2	11.1	1.4
AG40	2600	145	397	57.4	15.8	17.6	2.
AG41	8400	48	129	20.6	6.1	7.1	1.1
AG42	4200	72	180	30.7	11.7	10.1	1.5
AG43	3700	90	255	42.1	12.8	12.9	2.0
AG44	3900	76	124	11.1	3.7	5.0	
AG45	11000	68	116	12.4	4.4	10.9	1.8
AG46	31000	123	243	18.5	4.6	11.0	2.1
AG47	45000	55	104	9.9	3.3	8.7	1.2
AG48	37000	68	127	12.1	2.9	9.3	1.6
AG49	31000	40	196	9.2	2.4	4.5	.8
AG50	11000	47	122	10.6	2.8	8.3	1.5
AG51	3900	11	31	1.8	. 6	1.8	.3
AG52	1200	71	352	29.7	10.4	10.3	1.8
AR1	1300	108	329	52.8	14.9	15.4	2.4
AG9	2400	91	241	37.8	13.4	12.1	1.8
AG34	NSS						

D - QUALITY CONTROL DUPLICATE

..

PAGE 7 of 8

20-DEC-94

REPORT 30706

 $(\)$

WORKORDER	2087-03
HOLDIGAL,	2001 03

SAMPLE	HF PPM	TA PPM	W PPM	IR PPB	TH PPM	U PPM
	NA	NA	NA	NA	NA	NA
	14-2	14-2	14-2	14-2	14-2	14-2
AR1	20	4	10	<50	14.0	14.2
AR2	21	4	<10	<50	10.0	11.3
AR3	22	4	<10	<50	9.2	6.0
AR4	34	7	<10	<50	13.0	7.5
AR5	28	8	<10	<50	10.0	7.3
AR6	31	8	<10	<50	11.0	8.3
AR7	25	10	<10	<50	10.0	8.3
AR8	24	10	<10	<50	11.0	
AR9	18	5	<10	<50	9.2	8.2
A R10	 38	7	<10	<50	9.2 12.0	7.0 9.4
AR11	39	6	10	<50	16.0	10.0
AR12	100	<2	<10	<50 <50	16.0	10.8
AR13	39	2	<10	<50	20.0	8.5
AR14	25	- 6	10	<50	8.1	5.2
AR15	410	<2	<10	<50	13.0 62.0	9.7 21.5
		·	120	130	02.0	21.5
AR16	110	3	<10	<50	29.0	6.7
AG1	35	6	<10	<50	9.3	7.2
AG2	35	9	<10	<50	9.0	8.1
AG3	53	5	<10	<50	13.0	8.0
NG4	46	10	<10	<50	13.0	9.2
AG5	56	7	<10	<50	13.0	7.5
AG6	30	8	10	<50	11.0	7.9
AG7	45	7	10	<50	12.0	8.5
AG8	42	5	<10	<50	8.9	8.1
AG9	41	8	<10	<50	18.0	8.9
AG10	33	6	10	540	12.0	8.9
AG11	15	1	<10	<50	9.9	6.0
AG12	. 9	1	10	<50	6.4	3.9
AG13	NSS	NSS	NSS	NSS	NSS	NSS
AG14	NSS	NSS	NSS	NSS	NSS	NSS
AG15	8	1	<10	<50	7.1	4.7
AG16	30	2	10	<50	11.0	5.5
AG17	NSS	NSS	NSS	NSS	NSS	NSS
AG18	NSS	NSS	NSS	NSS	NSS	NSS
AG19	120	<2	<10	<50	21.0	10.4
AG20	NSS	NSS	NSS	NSS	NSS	NSS
G21	76	2	<10	<50	11.0	7.0
G22	38	- 7	<10	<50	14.0	11.2
4G23	380	<1	<10	<50	62.0	20.7
4G24	100					20.7

|--|

REPORT 30706

WORKORDER 2087-03

PAGE 8 of

8

SAMPLE	HF PPM	TA PPM	W PPM	IR PPB	TH PPM	U PPM
	NA	NA	NA	NA	NA	NA
	14-2	14-2	14-2	14-2	14-2	14-2
AG25	150	<1	<10	<50	30.0	8.8
AG27	13	<1	20	<50	10.0	11.1
AG28	47	<1	10	<50	12.0	9.0
AG29	NSS	NSS	NSS	NSS	NSS	NSS
AG30	16	<1	10	<50	7.2	8.9
AG31	43	1	10	<50	28.0	10.4
AG32	170	5	10	<50	130	15.5
AG33	120	7	10	<50	100	9.2
AG34	. 93	<1	<10	<50	13.0	9.2
AG35	46	<1	10	<50	17.0	10.5
AG36	19	<1	<10	<50	8.2	3.9
AG37	31	<1	10	<50	13.0	10.1
AG38	98	<1	10	<50	27.0	14.8
AG39	22	5	10	<50	13.0	13.4
AG40	32 [.]	6	<10	<50	13.0	10.4
AG41	40	4	. 20	<50	6.3	7.5
AG42	26	7	<10	<50	8.5	7.5
AG43	40	. 8	<10	<50	12.0	8.0
AG44	33	<1	10	<50	13.0	9.7
AG45	66	1	10	<50	14.0	9.8
AG46	140	1	20	<50	. 22.0	15.2
AG47	47	<1	10	<50	12.0	9.5
AG48	82	1	10	<50	13.0	13.2
AG49	50	<1	20	<50	16.0	8.9
AG50	130	<1	10	<50	12.0	11.7
A G51	37	<1	20	<50	2.5	2.4
AG52	48	5	90	<50	9.0	5.5
AR1	33	6	10	<50	13.0	12.2
AG9	36	7	<10	<50	12.0	8.1
AG34	NSS	NSS	NSS	NSS	NSS	NSS

D - QUALITY CONTROL DUPLICATE

NSS - NOT SUFFICIENT SAMPLE

•

** ***		
	LAC	

Garfield MacVeigh

From: Dave Brosnahan

To:

Date: August 9, 1994

Subject: Mineralogy of Selected SW Alberta Samples

INTRODUCTION

Memorandum

This memo gives results of X-ray diffraction (XRD) and microprobe examinations of heavy mineral concentrates from Southwest Alberta. You selected sample numbers AD1, AD29, AD30, and AD43 for priority in your June 17 memo. The samples included initial concentrate material, and hand-picked particles attached to tape. We pulverized small splits from each concentrate for XRD. Table I below lists samples selected for microprobe study.

Table I

Southwest Alberta Samples Examined by Electron Microprobe

Sample #	Hand-Picked	Concentrate
AD1	two mounts: 1. gangue, 2. gold grains	polished epoxy grain mount
AD30	one mount with gangue and gold grains	· · · · · · · · · · · · · · · · · · ·

Sections of tape with the attached hand-picked grains were cut out of cardboard holders with scissors, remounted on microprobe specimen holders, and carbon-coated for electrical conductivity. In addition, we made a polished epoxy mount from AD1 initial concentrate for microprobe confirmation of the XRD results.

DISCUSSION

X-Ray Diffraction

Table II shows the semi-quantitative mineralogical compositions as determined by XRD. AD1 and AD29 were similar showing mostly andradite garnet, with hematite and quartz. AD30 was mostly hematite and quartz, with minor calcite and goethite. AD43 contained almandine garnet rather than andradite, and included barite in addition to quartz and hematite.

Microprobe Analysis - Gangue

Minerals checked in Table III show electron microprobe identifications. The colors in parentheses were noted during stereomicroscopic examinations of the hand-picked grains. The hand-picked garnet, chlorite, epidote, and staurolite confirm an origin from metamorphic terrain. The calc-silicates, and diopside and calcite in the AD1 concentrate, suggest the possibility of skarn. Zircon and sphene are accessories in such rocks.

Microprobe Analysis - Gold

Under a stereomicroscope, the hand-picked gold grains showed a range of lusters from dull pyrite-like to shiny. The duller-appearing gold generally correlated with higher mercury contents,

as confirmed by microanalysis. Some gold grains, with or without mercury, also contained alloying silver and iron.

The AD1 grains showed the following chemical compositions:

- pure gold,
- gold with trace to several percent mercury,
- . gold with trace to several percent silver,
- gold with trace to several percent silver and mercury,
- gold with several percent silver, and trace to several percent iron.

The AD30 gold grains showed higher mercury contents than those in AD1, with one grain suggesting a composition of 45% Au, 40% Hg, and 15% Ag. All the AD30 gold included mercury; silver ranged from below detection to $\approx 15\%$, and two grains showed several percent iron along with mercury and silver.

Table II

X-Ray Mineralogy of Southwest Alberta Heavy Mineral Concentrates

			Арр	rox. %	
Mineral	Formula	AD1	AD29	AD30	AD43
almandine	$Fe_3Al_2(SiO_4)_3$				35
andradite	$Ca_3Fe_2(SiO_4)_3$	75	67.	•	
barite	BaSO ₄				4
calcite	CaCO ₃			5	
goethite	FeO·OH			4	
hematite	Fe ₂ O ₃	15	20	49	10
quartz	SiO ₂	10	13	42	. 51

Table III

(Excluding XRD Identifications)				
Mineral (color)	Formula	AD1 Hand- Picked	AD1 Con	AD30 Hand- Picked
almandine (pink)	$(Fe,Mn)_3Al_2(SiO_4)_3$	\checkmark	V	
arsenopyrite	FeAsS		\checkmark	
barite	BaSO ₄		\checkmark	
calcite .	CaCO ₃		\checkmark	
chlorite (green)	$(Mg,Fe,Al)_6(Al,Si)_4O_{10}(OH)_8$			1
diopside	Ca(Mg,Fe)Si ₂ O ₆		\checkmark	
epidote (green)	$Ca_2(Al,Fe)_3Si_3O_{12}(OH)$	\checkmark		1
ilmenite	FeTiO ₃		$\overline{\mathbf{v}}$	
K-feldspar	KAlSi ₃ O ₈		\checkmark	1
pseudomalachite(?) (green)	Cu ₅ (PO ₄) ₂ (OH) ₄ ·H ₂ O	. √.		
pyrite	FeS ₂	√	\checkmark	
spessartine (orange)	$(Mn_3Fe)_3Al_2(SiO_4)_3$			√.
sphene (yellow)	CaTiSiO ₅	1		· √
staurolite (orange)	FeAl ₄ Si ₂ O ₁₀ (OH) ₂	1		
zircon (purple)	ZrSiO ₄	V		1

Gangue Minerals Identified by Microprobe Analysis (Excluding XRD Identifications)

LAC NORTH AMERICA LTD.

Vancouver Office

698 Seymour St. - Suite 204 Vancouver, British Columbia V6B 3K6

Telephone: (604) 687-7091 Fax: (604) 683-5113

June 6, 1994

LAC

Mr. Don Sharp Ecstall Mining Corporation 307 -475 Howe Street Vancouver, BC V6C 2B3

Dear Don:

I am returning information on your SW Alberta property area that you provided me when I left your office. We had copies of the ARC reports on hand.

I also acknowledge receipt of six cards with mounted grains selected from heavy mineral concentrates and several small bags of mineral concentrates numbered - AD1, AD3, AD14, AD29, AD30, AD31, AD32, AD34, AD39, AD43, AD45, AD46. Our Denver Lab will examine these samples and I will provide a copy of all the results to you.

I expect to hear from you about general terms of an option deal. Thanks for your time today,

Sincerety yours

J. Garfield MacVeigh Disrtict Manager

Cominco Ltd./Exploration Hesearch Laboratory/1486 East Peners Street Vancouver, B.C./ pada V5L 1V8/Tel. (604) 685-3032/Fax. (60 444-2686

Exploration Research Laboratory

Mr. Chris Graf, P. Geol. Ecstall Mining Corporation #307 - 475 Howe Street Vancouver, B.C. V6C 2B3

12 May 1994

Dear Mr. Graf:

I have had photographs taken for some of your mineral grains. The photographs are of the following samples:

- 1) Sample AD1. A grouping of gold grains (15) that have previously been studied and reported on.
- 2) Sample AD29. This sample has two purple grains which are identified as zircons and 9 grains of gold. One grain of gold proved to contain considerable Hg and minor Ag.
- 3) Sample AD43. This group of grains contains 5 grains of gold, a green grain which proved to be diopside, two white grains and numerous purple grains. One of the purple grains appears to be a garnet and was in fact confirmed as a Cr - pyrope.
- 4) Sample AD39. This sample contains a metallic looking grain that proved to be rutile (TiO_2) . White grains proved to be quartz, purple grains are zircons and one grain of gold is rich in Ag and contains minor Cu and Zn.

Sample AD39 was cleaned in alcohol and purple looking grains (some) turned white. These grains proved to be quartz. It was in this sample that the metallic looking grains (thought to be diamonds) occurred. One may have been lost in the cleaning attempt but the remaining grain proved to be rutile. I hope this information is useful. The photographs (prints) have been made directly from color slides which I shall return with the sample grains.

Yours truly,

J.A. McLeod, P.Eng.

JAM/el

.:

. . .

.

.

Cominco Lig./ Exploration Research Laboratory/ 1460 East Pender Street Vancouver, B.C./ Canada V5L 1V8/Te1. (604) 685-3032/Fax. (604) -44-2686

Exploration Research Laboratory

Mr. Chris Graf, P.Geol. Ecstall Mining Corporation #307 - 475 Howe Street Vancouver, B.C. V6C 2B3

08 March 1994

•

Dear Mr. Graf:

Following are the results of microscopic grain study, picking and analysis by SEM-EDX.

ROW <u>1</u>	- 2 - 3 - 4	 a black grain from AD7 is a Fe-oxide. a black grain from AD7 is a Fe-oxide. a green green from AD16, possibly augite pyroxene. a tiny purple grain from AD20 is a zircon. a yellow grain from AD20 is sphene.
ROW 2		 a gold grain from AD32 is gold. a purple grain from AD32 is an almandine >grossular garnet.
	- 3	- a black grain from AD32 is a Fe-silicate.
		- a black grain from AD32 is a Fe-silicate.
		- a tiny gold grain from AD34 is a Au with some Hg.
		- a tiny purple grain from AD34 is a zircon.
		- a pink garnet from AD35 is a almandine garnet.
ROW 3	- 1	- a black grain from AD39 is a normal ilmenite.
		- a black grain from AD39 is a ilmenite with minor Mg.
		- an apple green grain from AD39 is a diopside.2
		- a dark purple grain from AD42 is a zircon.
		- a tiny round purple grain from AD42 is a zircon.
		- a black grain from AD42 is a normal ilmenite.
		- a tiny round purple grain from AD43 is a zircon.
	1	a ciny round purple grain from AD43 IS a 21rcon.

LETTER TO: Mr. Chris Graf/Escstall/08 March ()994

ROW 4 - 1 - a lilac garnet from AD43 is a Cr-pyrope. - 2 - a purple grain from AD43 is a zircon. - 3 - a green grain from AD43 is a diopside. - 4 - a green grain from AD43 is a diopside.

- 5 a bluish clear grain from AD43 is apatite.
- ROW 5 1 a gold grain from AD1 is gold. - 2 - a purple grain from AD1 is a zircon. - 3 - a round purple grain from AD1 is a zircon. - 4 - a gree-blue grain from AD1 is a Zn, Fe, Al-oxide. - 5 - a yellow grain from AD1 is sphene.
- ROW 6 1 a tiny green grain from AD2 is a Cr-diopside. - 2 - a metallic grain from AD2 is a Au-Hg phase. It contains a ilmenite inclusion.

Of all the grains anlayzed, one from AD43 is visually and by SEM-EDX analysis, a Cr-pyrope garnet of the type associated with kimberlites. Also, one grain, from AD2 is a Cr-diopside.

The grains picked out in this study where done to provide a knowledge of a variety of coloured grains that might be misidentified as kimberlite indicators. In fact, the Cr-pyrope and Cr-diopside were believed to be indicator minerals from visual inspection. Most of the others were not.

Sincerely,

J.A. McLeod., P.Eng.

JAM/skw

ECSTALL MINING CORPORATION 307 - 475 Howe St., Vancouver, B.C. V6C 2B3

Telephone: (604) 681-4402

Facsimile: (604) 681-1562

February 15, 1994

Trading Symbol: VSE-EAM

NEWS RELEASE 94.03

GOLD DISCOVERED IN HEAVY MINERAL SAMPLES- SW ALBERTA PROPERTY

In July, 1993, Ecstall carried out a reconnaissance stream sediment sampling program on the Crowsnest, Oldman, Castle and Highwood river drainages within Ecstall's 1.27 million acre southwest Alberta permit area.

During the program, 52 screened (minus 20 mesh) stream sediment samples, each weighing approximately ten kilograms, were collected. Gravity concentrates of these samples were made using High-G and Gold Genie concentrators. The samples were then examined by binocular microscope. Three of these concentrated samples, each from a different drainage (Highwood River, Cataract Creek and Lost Creek), were observed under the binocular microscope to contain numerous small gold grains, many of which are angular, indicating short transport distances.

A number of these grains were subsequently analyzed by SEM-EDX (scanning electron microprobe) at the Cominco Ltd/ Exploration Research Laboratory which confirmed that they were native gold. The SEM/EDX analysis found that all the native gold grains from Cataract Creek were identical in that they contained a modest amount of silver whereas the gold grains from the other two drainages contained copper and/or mercury as well as silver. These results indicate that Cataract Creek has one local source for its gold whereas the main Highwood River has two different gold sources and Lost Creek has three gold sources.

Ecstall intends to have all 52 reconnaissance samples analyzed for gold and minor metal content in order to locate hardrock source areas for this gold mineralization. These areas will then be sampled on much closer spacing in combination with a mapping and prospecting program this season.

This is the first scientifically documented discovery of native gold in this area of southwestern Alberta (apart from the legendary Lost Lemon gold mine). This area has a favourable geological environment for gold deposits similar to the types known in adjacent areas of Montana and further south in Nevada.

Chris Graf, President

The Vancouver Stock Exchange has not reviewed and does not accept responsibility for the adequacy or accuracy of the contents of this News Release.

Cominco Ltd./Exploration Research Laboratory/1400 East Pender Street Vancouver, B.C./Canada V5L 1V8/Tel. (604) 685-3032/Fax. (604) 644-2686

Exploration Research Laboratory

Mr. Chris Graf, P.Geol. Ecstall Mining Corporation #307 - 475 Howe Street Vancouver, B.C. V6C 2B3

14 January 1994

Dear Chris:

Three samples were submitted for mineral grain identification. The selected grains studied from each sample are optically all believed to be gold and are finer to considerably finer than 60 mesh (250 microns). The three samples are numbered AD-1, AD-30, and AD-34.

A sampling of "gold" grains were picked from each of the three samples and were analyzed by scanning electron microprobe with a energy dispersive x-ray analyzer (SEM-EDX).

In all cases grains picked from sample AD-1 (7 grains), AD-30 (6 grains) and AD-34 (5 grains) proved to be native gold by SEM-EDX analysis.

Yours truly,

J. A. MCLEOD BRITISH J.A. McLeod, P.Er

JAM/skw

8080 GLOVER ROAD, LANGLEY, B.C. V3A 4P9 PHONE (604) 888-1323 • FAX (604) 888-3642

August 10, 1993

Chris Graf Ecstall Mining Corp. 307-475 Howe St. Vancouver, V6C 2B3

Dear Chris:

REG: Sample AD 42

Garnet mineral grains were picked from the sample by use of stereo-binocular microscope set at 16 power. Majority of grains were in the size range of 30 to 60 mesh fraction.

Out of 200 garnet grains picked, 25 were mounted and polished for electron probe analysis. The enclosed probe results indicate that all grains contained high percentages of Feo in the 30% plus range with very low to no Cr_2O_3 content. According to Dawson and Stephens (1975) your samples categorized as class 5 (Magnesian Almandine), the copy of the chart is enclosed.

຺ຘຨຎຬຬຬຬຆຏຬຬຨຎຎຩຎຎຏຎ຺ຨຏຏຬຬຬຎຎຏຌຌ຺຺ຬຬຬຬຎຬຎຎຎຎຎຬຬຬຎຬຬ຺ຬ຺ຬຬຬຎຎຬຬຬຎ຺ຬຬຬຎຎ

Sincerely.

Jim Vinnell

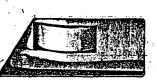
Vancouver Petrographics Ltd Data Sheet of Indicator Mineral Picking

Sample #

Lab

Field #

AD 42


NON MAG - ZO MESH

Indicator Minerals

1		Other	Pyro	pe(?)	Cr-Diopside	Chromite &	Other
		Garnet	Good	Poor		Ilmenite	
10-20 Mesh					А. (
			T.				
20-30 Mesh							
							н 1 л. 1
			۱ ـ ۰ ۱۰ ـ ۱		3 groows		.
	Mame (many Red -	more to	possibly	not transfere	A hots of	مايي
30-60 Mesh		pink anber	the pink , color not	G-9	Cr. diop.	chromate)	ר ^א
an sa sa sa sa sa sa sa sa sa sa sa sa sa		red	enoughter !	1 A.	CLINOPY ROAD	ne a la la la la la la la la la la la la l	(free a sector) A sector
General Co	mments			<u>_</u>	••••••••••••••••••••••••••••••••••••••		
				· • • • •	t ch	com 20	
	ole	cont	and a	201000	ant ch		to
Sam	- y-						
•						$0 \land 0 \cdots \cdots$	1
Pick	led	Sever	al (100-	200)	JANNI		ender
Pick	led pende	sever r gan	al (100- wet gr	200)	Not eno	ugh lau	25 04
Pick	led pende	sever r gan	al (100- wet gr	200)	Not eno	ugh lau	25 04
Pick Law to	led sende say	sever r gan they	net (100- wet gr were volsak	200) anns pyro ple ti	vot ene pe. Pi be pi	iked in the probe an	25 04
Pick Law to	led sende say	sever r gan they	net (100- wet gr were volsak	200) anns pyro ple ti	vot ene pe. Pi be pi	iked in the probe an	25 04
Pick Law to	led sexde say e m	sevier r gan they lost	net (100- wet gr were probate	200) anns. pyro ple to pmici	vot eno pe. p. be p. coprobe.	iked probe an	25 04 A Mu
Pick Law to	led sexde say e m	sevier r gan they lost	net (100- wet gr were probate	200) anns. pyro ple to pmici	vot eno pe. p. be p. coprobe.	iked probe an	25 04 A Mu
Pick Law to the for No	led say e M (et te: s	sever r gan they host ectro mple	N probable	200) anns pyro ple te phe te	vot ene pe. Pr be pr coprobe.	iked probe an	25 04 A Mu
Pick Law to the for No	led say e M (et te: s	sever r gan they host ectro mple	net (100- wet gr were probate	200) anns pyro ple te phe te	vot ene pe. Pr be pr coprobe.	iked in the probe an	25 0- 2 Mu

	·			na ^{a ta} n Yangan ya ya	`		•••	×	· .	_					
• •	13-6	DEAK	BACKGR.	I.X./I.STL.	K-RATIO	SIG/K	BEAM		()					
ELT.	peak Pos	peak (C/S)	(C/S)					-						•	
`	1001		\-				30.	1					-		
-	48083	1707.11	12.07	0.46820	0.22907	0.9			•	•.					
	32465	5281.20	58.61	0.90720	0.07667	0.6				(1-1	.S7A	÷ e		
	38386	168.96	17.70	0.02979	0.00701	2.5 8.2									
Na	46413	14.80	12.60	0.00094 0.88215	0.00005	0.4		,							
Si		10154.94	69.91 8.20	0.03477	0.00936	3.7								-	
Mn	52201	74.71 989.05	26.30	0.22533	0.01648	1.1									
Mg	38502 31452	36.60	32.47	0.00029	0.00016	5.2									
Ti Cr	56868	6.70	6.30	0.00023	0.00006	12.2									
UI	30000	K		HT. % N	ORMALIZED										· ·
ELEM	NT I.	(./I.STD.	K.RAT10	CONCEN.	atom. C			CONCEN.		•					
Fe		0.4682	0.2291	26.945	11.60	FeO		242664							
AL		0.9072	0.0767	11.436	10.19	A1203		21.607							
Ca	:	0.0298	0.0070	0.757	0.45	Ca0 No20		1.060 0.014							
Na		0.0009	0.0000	0.011	0.01 14.60	Na20 SiO2		36.478							
Si		0.8821	0.1233	17.051 1.103	0.48	MnO		1.424							
Mn		0.0348	0.0094 0.0165	2.831	2.80	MgO		4.694							
Mg T:		0.2253	0.0002	0,018	0.01	TiO2		0.030							
Ti Cr		0.0002	0.0001	0.007	0.00	Cr203		0.010							
0	•	•••••		39.822	59.85	BY STOICH	IOMETRY	(
				00.004				99.981		、		• .			
	AL :			99.981				331304							
ITE	RATION	: 3 	אור א	0 42 FOR Na										-	
	BE CAKE	FULL - K.	(./#.г	0.42 FOR Na			•							•	
	NT N :	51	X= 9250	Y= -30732	Z= -88	MGARNET	•								
		••						•,							
ELT	PEAK	Peak	BACKGR.	I.X./I.STD.	K.RATIO	SIG/K	BEA	M				•			•
	POS.	(C/S)	(C/S)				20	1	•						
					0.0050		30								
		3 1679.72		0.46046	0.2252										
Al				0.90791	0.0767 0.0068										
Ca			19.20	0.02928 0.00038	0.0000										
Na		3 13.80 9 10234.49			0.1242										
<u>S1</u>	2773 a.C. 17 1	7 10234.43	07.01						C. C.	THE		<u>ت</u> ماند المراجع	ا المنطقة المنطقة المنطقة المنطقة المنطقة المنطقة المنطقة المنطقة المنطقة المنطقة المنطقة المنطقة المنطقة المن مناطقة المنطقة ا		
	In S. E	CERCEN								- HO HO					
					이가 있다. 사람이 있는 것이 있는 것이 있는 것이 있는 것이 있는 것이 있는 것이 있는 것이 있는 것이 있는 것이 있는 것이 있는 것이 있는 것이 있는 것이 있는 것이 있는 것이 있는 것이 있는 것이 있는 것이 같은 것이 있는 것이 있는 것이 있는 것이 있는 것이 있는 것이 있는 것이 있는 것이 있는 것이 있는 것이 없는 것이 있는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것이 없는 것									· ·	
													یس میں در در در اور در اور اور اور		
						· · · · · · ·									5.50

•

Ti Cr Ca Ca Si Si Ca Si Ca Si Ca Ca Ca Ca Ca Ca Ca Ca Ca Ca Ca Ca Ca		35.30 1174.25 34.80 8.90 K ./1.STD.).4605).9079).0293).0004).8892).0143).2689 0.0000 0.0014	7.90 25.50 34.71 6.40 K.RATIO 0.2253 0.0767 0.0069 0.0000 0.1242 0.0039 0.0197 0.0000 0.0004	0.01433 0.26887 0.0001 0.00141 HT. % CONCEN. 26.554 11.453 0.746 0.004 17.210 0.455 3.357 0.000 0.043 40.061 99.883	10.15 0.45 0.00 14.65 0.20 3.30 0.00 0.02	5.4 1.0 5.4 10.6 COMPOUND FeO A1203 CaO Na20 SiO2 MnO MgO TiO2 Cr203 Y STOICHIO	CONCEN. R4-1611 21.639 1.044 0.006 36.817 0.588 5.566 0.001 0.062 ETRY 99.883
	ation : E carefi		./W.F. = 0	.43 FOR Na			
POIN BB8	TN:	52	X= 9140	Y=32761	Z= -82	MGARNET	
ELT.	PEAK POS.	peak (C/S)	Backgr. (C/S)	1.X./1.STD.	K.RATIO	SIG/K	BEAM
	PU5.	(6/3)	(6/3)				30.
Fe	48083	1812.45	14.60	0.49663	0.24299	0.9	
Al Ca	32465 38386	5256.28 222.90	57.51 18.10	0.90314 0.04034	0.07633 0.00949		
Na	46413	13.90	12.30	0.00068	0.00003	8.5	
		10097.69	75.01	0.87676	0.12250		
	52201		7.40	0.04016	0.01081	3.5	
Mg	38502	560.03	22.80	0.12575	0.00920		•
Ti Cr	31452 56868		32.49 6.60	0.00023 0.00062	0.00013 0.00017	5.3 11.4	
Ur	10000	K .	0.00		NORMALIZED		
ELEME	NT I.X	(./I.STD.	K.RATIO	CONCEN.	ATOM. C	Compound	
Fe		0.4966	0.2430	28.488	12.42	Fe0	36.649
A1 Ca		0.9031 0.0403	0.0763 0.0095	11.356	10.25 0.62	A1203 Ca0	21.456 1.429
Na	-	0.0007	0.0000		0.01	Na20	0.011
Si		0.8768	0.1225	16.888	14.64	Si02	36.129
. Mn		0.0402	0.0108	1.269		MnO	1.639
Mg Ti	•	0.1257 0.0002	0.0092 0.0001	1.600 0.014	1.60 0.01	MgO TiO2	2.653 0.024
Cr		0.0006	0.0002	0.019	0.01	Cr203	0.027
0				39.353	59 . 89 i	BY STOICHIO	METRY
TOTA	AL : RATION :	: 3		100.016			100.017
			R./W.F. = 1	0.42 FOR Na			
P01N 88 9	NTN:	53	X= 9047	Y= -34081	Z= -81	MGARNET	
	Peak	PEAK	BACKGR.	1.X./1 STD	. K.RATIO	S16/K	BEAM
	POS.	(C/S)	(C/S)	1 1010			
-	40000	1/70 40	44 00	0 47000	0 00547	۸Q	30.
Fe Al	48083 32465			0.46082 0.92000	0.22547 0.07775		
Ca	38386			0.02735	0.00643		
Na	46413			0.00145	0.00007		
Si	27739	10275.10	77.01	0.89218	0.12466		
<i>u</i> .	C0004	10 /0	5 00	0 00658	0 001 7 4	7 4	

Cr	56868	6.40 K	5.10	0.00074 HT. %		12.5		~~~``
ELEM	ז הר		¥ 84710)ORMALIZED		001001	
		X./I.STD. 0.4608		CONCEN.	ATOM. C			
Fe Al		0.9200	0.2255 0.0778	26.574 11.601	11.28	FeO	84 <u>7187</u>	
 HT		0.0273	0.0064		10.19	A1203	21.919	
				0.697	0.41	CaO N=22	0.975	
	1	0.0014	0.0001		0.02	Na20	0.022	
		0.8922		17.266	14.57	SiO2	36.937	
Mn Ma		0.0065		0.208	0.09	Mn0	0.268	
Mg		0.2948	0.0216	3.678	3.59	MgO	6.098	
Ti		0.0004	0.0002	0.022	0.01	TiO2	0.036	
Cr	I .	0.0007	0.0002	0.022	0.01	Cr 203	0.032	
0				40.392	59.84	BY STOICHIO	METRY	
					• •			
TOTA		•		100.475	·· ·		100.475	
	ATION		[.]	· · · · · · · · · · · · · · · · · · ·				
E	be care	FULL - K.I	R./W.F. = 0	1.43 FOR Na				
				· · ·	· .			
POIN	IT N :	. 54	X= 8833	Y= -36319	Z= -71	MGARNET		
B810						•	·.	
ELT.	Peak	Peak	BACKGR.	1.X./I.STD.	K.RATIO	SIG/K	BEAM	·
	POS.	(C/S)	(C/S)			÷		
							30.	
Fe	48083	1479.97	12.33	0.40539	0.19834	1.0		
Al		5418.08		0.93155	0.07873			
Ca	38386			0.02989	0.00703			
Na	46413			0.00060	0.00003		•	
Si		10474.22		0.90964	0.12710			
Mn	52201			0.00878	0.00236			
Mq		1916.32		0.44215				
	38302	1310.32	<i>//./</i> U					
rig Tig					0.03234			
	31452	35.90	33.20	0.00019	0.00010	5.3		
		35.90 6.50		0.00019 0.00045	0.00010 0.00013	5.3		
	31452 56868	35.90 6.50 K	33.20 5.70	0.00019 0.00045 HT. % 1	0.00010 0.00013 VORMALIZED	5.3 12.4		
ELEME	31452 56868 NT I.3	35.90 6.50 K K./I.STD.	33.20 5.70 K.RATIO	0.00019 0.00045 HT. % f CONCEN.	0.00010 0.00013 NORMALIZED ATOM. C	5.3 12.4 COMPOUND	CONCEN.	
ELEME	31452 56868 NT I.3	35.90 6.50 K K./I.STD. 0.4054	33.20 5.70 K.RATIO 0.1983	0.00019 0.00045 HT. % M CONCEN. 23.516	0.00010 0.00013 NORMALIZED ATOM. C 9.76	5.3 12.4 COMPOUND Fe0	60 253	• •
ELEME Fe Al	31452 56868 NT I.3 :	35.90 6.50 K K./I.STD. 0.4054 0.9315	33.20 5.70 K.RATIO 0.1983 0.0787	0.00019 0.00045 HT. % M CONCEN. 23.516 11.765	0.00010 0.00013 NORMALIZED ATOM. C 9.76 10.11	5.3 12.4 COMPOUND Fe0		
ELEME	31452 56868 NT I.3 :	35.90 6.50 K K./I.STD. 0.4054 0.9315 0.0299	33.20 5.70 K.RATIO 0.1983 0.0787 0.0070	0.00019 0.00045 MT. % M CONCEN. 23.516 11.765 0.767	0.00010 0.00013 NORMALIZED ATOM. C 9.76 10.11	5.3 12.4 COMPOUND Fe0	60 253	•
ELEME Fe Al	31452 56868 NT I.3 : :	35.90 6.50 K K./I.STD. 0.4054 0.9315	33.20 5.70 K.RATIO 0.1983 0.0787 0.0070	0.00019 0.00045 HT. % P CONCEN. 23.516 11.765 0.767 0.007	0.00010 0.00013 NORMALIZED ATOM. C 9.76 10.11 0.44 0.01	5.3 12.4 COMPOUND Fe0 A1203 Ca0 Na20	22.229	•
ELEME Fe Al	31452 56868 NT I.3 : :	35.90 6.50 K K./I.STD. 0.4054 0.9315 0.0299 0.0006 0.9096	33.20 5.70 K.RATIO 0.1983 0.0787 0.0070 0.0000 0.1271	0.00019 0.00045 MT. % M CONCEN. 23.516 11.765 0.767 0.007	0.00010 0.00013 NORMALIZED ATOM. C 9.76 10.11 0.44 0.01	5.3 12.4 COMPOUND Fe0 A1203 Ca0 Na20	22.229 1.074	•
ELEME Fe Al Ca Na	31452 56868 NT I.3 : : :	35.90 6.50 K K./1.STD. 0.4054 0.9315 0.0299 0.0006	33.20 5.70 K.RATIO 0.1983 0.0787 0.0070 0.0000 0.1271	0.00019 0.00045 MT. % M CONCEN. 23.516 11.765 0.767 0.007 17.681 0.281	0.00010 0.00013 NORMALIZED ATOM. C 9.76 10.11 0.44 0.01 14.59 0.12	5.3 12.4 COMPOUND Fe0 A1203 Ca0 Na20 Si02 Mn0	22.229 1.074 0.009 37.824	•
ELEME Fe Al Ca Na Si	31452 56868 NT I.3 : : : :	35.90 6.50 K K./I.STD. 0.4054 0.9315 0.0299 0.0006 0.9096 0.0088	33.20 5.70 K.RATIO 0.1983 0.0787 0.0070 0.0000 0.1271	0.00019 0.00045 MT. % M CONCEN. 23.516 11.765 0.767 0.007 17.681 0.281	0.00010 0.00013 NORMALIZED ATOM. C 9.76 10.11 0.44 0.01 14.59 0.12	5.3 12.4 COMPOUND Fe0 A1203 Ca0 Na20 Si02 Mn0	22.229 1.074 0.009 37.824 0.363	•
ELEME Fe Al Ca Na Si Mn	31452 56868 NT I.J : : : : :	35.90 6.50 K K./I.STD. 0.4054 0.9315 0.0299 0.0006 0.9096 0.0088	33.20 5.70 K.RATIO 0.1983 0.0787 0.0070 0.0000 0.1271 0.0024 0.0323	0.00019 0.00045 MT. % CONCEN. 23.516 11.765 0.767 0.007 17.681 0.281 5.383	0.00010 0.00013 NORMALIZED ATOM. C 9.76 10.11 0.44 0.01 14.59	5.3 12.4 COMPOUND Fe0 A1203 Ca0 Na20 Si02 Mn0 Mg0	22.229 1.074 0.009 37.824 0.363 8.925	•
ELEME Fe Al Ca Na Si Mn Mg	31452 56868 NT I.J : : : : : : :	35.90 6.50 K (./I.STD. 0.4054 0.9315 0.0299 0.0006 0.9096 0.9096 0.0088 0.4421	33.20 5.70 K.RATIO 0.1983 0.0787 0.0070 0.0000 0.1271 0.0024 0.0323 0.0901	0.00019 0.00045 MT. % CONCEN. 23.516 11.765 0.767 0.007 17.681 0.281 5.383 0.012	0.00010 0.00013 XORMALIZED ATOM. C 9.76 10.11 0.44 0.01 14.59 0.12 5.13 0.01	5.3 12.4 COMPOUND Fe0 A1203 Ca0 Na20 Si02 Mn0 Mg0 Ti02	22.229 1.074 0.009 37.824 0.363 8.925 0.020	•
ELEME Fe Al Ca Na Si Mn Mg Ti	31452 56868 NT I.J : : : : : : :	35.90 6.50 K K./I.STD. 0.4054 0.9315 0.0299 0.0006 0.9096 0.0088 0.4421 0.0002	33.20 5.70 K.RATIO 0.1983 0.0787 0.0070 0.0000 0.1271 0.0024 0.0323 0.0901	0.00019 0.00045 MT. % CONCEN. 23.516 11.765 0.767 0.007 17.681 0.281 5.383 0.012	0.00010 0.00013 NORMALIZED ATOM. C 9.76 10.11 0.44 0.01 14.59 0.12 5.13 0.01 0.01	5.3 12.4 COMPOUND Fe0 A1203 Ca0 Na20 Si02 Mn0 Mg0 Ti02	22.229 1.074 0.009 37.824 0.363 8.925 0.020 0.020	•
ELEME Fe Al Ca Na Si Mn Mg Ti Cr	31452 56868 NT I.J : : : : : : :	35.90 6.50 K K./I.STD. 0.4054 0.9315 0.0299 0.0006 0.9096 0.0088 0.4421 0.0002	33.20 5.70 K.RATIO 0.1983 0.0787 0.0070 0.0000 0.1271 0.0024 0.0323 0.0901	0.00019 0.00045 MT. % M CONCEN. 23.516 11.765 0.767 0.007 17.681 0.281 5.383 0.012 0.014	0.00010 0.00013 NORMALIZED ATOM. C 9.76 10.11 0.44 0.01 14.59 0.12 5.13 0.01 0.01	5.3 12.4 COMPOUND Fe0 A1203 Ca0 Na20 Si02 Mn0 Mg0 Ti02 Cr203	22.229 1.074 0.009 37.824 0.363 8.925 0.020 0.020	•
ELEME Fe Al Ca Na Si Mn Mg Ti Cr	31452 56868 NT I.J : : : : : : :	35.90 6.50 K K./I.STD. 0.4054 0.9315 0.0299 0.0006 0.9096 0.0088 0.4421 0.0002	33.20 5.70 K.RATIO 0.1983 0.0787 0.0070 0.0000 0.1271 0.0024 0.0323 0.0901	0.00019 0.00045 MT. % M CONCEN. 23.516 11.765 0.767 0.007 17.681 0.281 5.383 0.012 0.014	0.00010 0.00013 NORMALIZED ATOM. C 9.76 10.11 0.44 0.01 14.59 0.12 5.13 0.01 0.01	5.3 12.4 COMPOUND Fe0 A1203 Ca0 Na20 Si02 Mn0 Mg0 Ti02 Cr203	22.229 1.074 0.009 37.824 0.363 8.925 0.020 0.020 0.020 IETRY	•
ELEME Fe Al Ca Na Si Mn Mg Ti Cr O TOTA	31452 56868 NT I.J : : : : : : :	35.90 6.50 K K./I.STD. 0.4054 0.9315 0.0299 0.0006 0.9096 0.0088 0.4421 0.0002 0.0005	33.20 5.70 K.RATIO 0.1983 0.0787 0.0070 0.0000 0.1271 0.0024 0.0323 0.0901	0.00019 0.00045 HT. % P CONCEN. 23.516 11.765 0.767 0.007 17.681 0.281 5.383 0.012 0.014 41.291	0.00010 0.00013 NORMALIZED ATOM. C 9.76 10.11 0.44 0.01 14.59 0.12 5.13 0.01 0.01	5.3 12.4 COMPOUND Fe0 A1203 Ca0 Na20 Si02 Mn0 Mg0 Ti02 Cr203	22.229 1.074 0.009 37.824 0.363 8.925 0.020 0.020	•
ELEME Fe Al Ca Na Si Mn Mg Ti Cr 0 TOTA ITER	31452 56868 NT I.3 : : : : : : : : : : : : : : : : : : :	35.90 6.50 K (./I.STD. 0.4054 0.9315 0.0299 0.0006 0.9096 0.0088 0.4421 0.0002 0.0005	33.20 5.70 K.RATIO 0.1983 0.0787 0.0070 0.0000 0.1271 0.0024 0.0323 0.0901	0.00019 0.00045 HT. % P CONCEN. 23.516 11.765 0.767 0.007 17.681 0.281 5.383 0.012 0.014 41.291 100.717	0.00010 0.00013 NORMALIZED ATOM. C 9.76 10.11 0.44 0.01 14.59 0.12 5.13 0.01 0.01	5.3 12.4 COMPOUND Fe0 A1203 Ca0 Na20 Si02 Mn0 Mg0 Ti02 Cr203	22.229 1.074 0.009 37.824 0.363 8.925 0.020 0.020 0.020 IETRY	•
ELEME Fe Al Ca Na Si Mn Mg Ti Cr 0 TOTA ITER	31452 56868 NT I.3 : : : : : : : : : : : : : : : : : : :	35.90 6.50 K (./I.STD. 0.4054 0.9315 0.0299 0.0006 0.9096 0.0088 0.4421 0.0002 0.0005	33.20 5.70 K.RATIO 0.1983 0.0787 0.0070 0.0000 0.1271 0.0024 0.0323 0.0001 0.0001	0.00019 0.00045 HT. % P CONCEN. 23.516 11.765 0.767 0.007 17.681 0.281 5.383 0.012 0.014 41.291 100.717	0.00010 0.00013 NORMALIZED ATOM. C 9.76 10.11 0.44 0.01 14.59 0.12 5.13 0.01 0.01	5.3 12.4 COMPOUND Fe0 A1203 Ca0 Na20 Si02 Mn0 Mg0 Ti02 Cr203	22.229 1.074 0.009 37.824 0.363 8.925 0.020 0.020 0.020 IETRY	•
ELEME Fe Al Ca Na Si Mn Mg Ti Cr O TOTA ITER B	31452 56868 NT I.3 : : : : : : : : : : : : : : : : : : :	35.90 6.50 K (./I.STD. 0.4054 0.9315 0.0299 0.0006 0.9096 0.0088 0.4421 0.0002 0.0005 : 3 TULL - K.R	33.20 5.70 K.RATIO 0.1983 0.0787 0.0070 0.0000 0.1271 0.0024 0.0323 0.0001 0.0001	0.00019 0.00045 HT. % P CONCEN. 23.516 11.765 0.767 0.007 17.681 0.281 5.383 0.012 0.014 41.291 100.717 .44 FOR Na	0.00010 0.00013 XORMALIZED ATOM. C 9.76 10.11 0.44 0.01 14.59 0.12 5.13 0.01 0.01 59.83 E	5.3 12.4 COMPOUND Fe0 A1203 Ca0 Na20 Si02 Mn0 Mg0 Ti02 Cr203 Y STOICHION	22.229 1.074 0.009 37.824 0.363 8.925 0.020 0.020 0.020 IETRY	•
ELEME Fe Al Ca Na Si Mn Mg Ti Cr O TOTA ITER B POIN	31452 56868 NT I.3 : : : : : : : : : : : : : : : : : : :	35.90 6.50 K (./I.STD. 0.4054 0.9315 0.0299 0.0006 0.9096 0.0088 0.4421 0.0002 0.0005 : 3 TULL - K.R	33.20 5.70 K.RATIO 0.1983 0.0787 0.0070 0.0000 0.1271 0.0024 0.0323 0.0001 0.0001	0.00019 0.00045 HT. % P CONCEN. 23.516 11.765 0.767 0.007 17.681 0.281 5.383 0.012 0.014 41.291 100.717	0.00010 0.00013 XORMALIZED ATOM. C 9.76 10.11 0.44 0.01 14.59 0.12 5.13 0.01 0.01 59.83 E	5.3 12.4 COMPOUND Fe0 A1203 Ca0 Na20 Si02 Mn0 Mg0 Ti02 Cr203 FY STOICHION	22.229 1.074 0.009 37.824 0.363 8.925 0.020 0.020 0.020 IETRY	•
ELEME Fe Al Ca Na Si Mn Mg Ti Cr O TOTA ITER B	31452 56868 NT I.3 : : : : : : : : : : : : : : : : : : :	35.90 6.50 K (./I.STD. 0.4054 0.9315 0.0299 0.0006 0.9096 0.0088 0.4421 0.0002 0.0005 : 3 TULL - K.R	33.20 5.70 K.RATIO 0.1983 0.0787 0.0070 0.0000 0.1271 0.0024 0.0323 0.0001 0.0001	0.00019 0.00045 HT. % P CONCEN. 23.516 11.765 0.767 0.007 17.681 0.281 5.383 0.012 0.014 41.291 100.717 .44 FOR Na	0.00010 0.00013 XORMALIZED ATOM. C 9.76 10.11 0.44 0.01 14.59 0.12 5.13 0.01 0.01 59.83 E	5.3 12.4 COMPOUND Fe0 A1203 Ca0 Na20 Si02 Mn0 Mg0 Ti02 Cr203 FY STOICHION	22.229 1.074 0.009 37.824 0.363 8.925 0.020 0.020 0.020 IETRY	•
ELEME Fe Al Ca Na Si Mn Mg Ti Cr 0 TOTA ITER B POIN CC1	31452 56868 NT I.3 : : : : : : : : : : : : : : : : : : :	35.90 6.50 K K./I.STD. 0.4054 0.9315 0.0299 0.0006 0.9096 0.0088 0.4421 0.0002 0.0005 : 3 FULL - K.R 55	33.20 5.70 K.RATIO 0.1983 0.0787 0.0070 0.0000 0.1271 0.0024 0.0323 0.0001 0.0001	0.00019 0.00045 HT. % P CONCEN. 23.516 11.765 0.767 0.007 17.681 0.281 5.383 0.012 0.014 41.291 100.717 .44 FOR Na Y= -17694 2	0.00010 0.00013 XORMALIZED ATOM. C 9.76 10.11 0.44 0.01 14.59 0.12 5.13 0.01 0.01 59.83 B	5.3 12.4 COMPOUND Fe0 A1203 Ca0 Na20 Si02 Mn0 Mg0 Ti02 Cr203 FY STOICHION	22.229 1.074 0.009 37.824 0.363 8.925 0.020 0.020 0.020 ETRY 100.717	•
ELEME Fe Al Ca Na Si Mn Mg Ti Cr 0 TOTA ITER B POIN CC1	31452 56868 NT I.3 : : : : : : : : : : : : : : : : : : :	35.90 6.50 K K./I.STD. 0.4054 0.9315 0.0299 0.0006 0.9096 0.0088 0.4421 0.0002 0.0005 : 3 FULL - K.R 55	33.20 5.70 K.RATIO 0.1983 0.0787 0.0070 0.0000 0.1271 0.0024 0.0323 0.0001 0.0001 k./H.F. = 0 X= 5508 BACKGR.	0.00019 0.00045 HT. % P CONCEN. 23.516 11.765 0.767 0.007 17.681 0.281 5.383 0.012 0.014 41.291 100.717 .44 FOR Na	0.00010 0.00013 XORMALIZED ATOM. C 9.76 10.11 0.44 0.01 14.59 0.12 5.13 0.01 0.01 59.83 E	5.3 12.4 COMPOUND Fe0 A1203 Ca0 Na20 Si02 Mn0 Mg0 Ti02 Cr203 FY STOICHION	22.229 1.074 0.009 37.824 0.363 8.925 0.020 0.020 0.020 IETRY	•
ELEME Fe Al Ca Na Si Mn Mg Ti Cr 0 TOTA ITER B POIN CC1	31452 56868 NT I.3 : : : : : : : : : : : : : : : : : : :	35.90 6.50 K K./I.STD. 0.4054 0.9315 0.0299 0.0006 0.9096 0.0088 0.4421 0.0002 0.0005 : 3 FULL - K.R 55	33.20 5.70 K.RATIO 0.1983 0.0787 0.0070 0.0000 0.1271 0.0024 0.0323 0.0001 0.0001	0.00019 0.00045 HT. % P CONCEN. 23.516 11.765 0.767 0.007 17.681 0.281 5.383 0.012 0.014 41.291 100.717 .44 FOR Na Y= -17694 2	0.00010 0.00013 XORMALIZED ATOM. C 9.76 10.11 0.44 0.01 14.59 0.12 5.13 0.01 0.01 59.83 E	5.3 12.4 COMPOUND Fe0 A1203 Ca0 Na20 Si02 Mn0 Mg0 Ti02 Cr203 FY STOICHION	22.229 1.074 0.009 37.824 0.363 8.925 0.020 0.020 0.020 METRY 100.717 BEAM	•
ELEME Fe Al Ca Na Si Mn Mg Ti Cr O TOTA ITER B POIN CC1 ELT.	31452 56868 NT I.3 : : : : : : : : : : : : : : : : : : :	35.90 6.50 K (./I.STD. 0.4054 0.9315 0.0299 0.0006 0.9096 0.0088 0.4421 0.0002 0.0005 : 3 FULL - K.R 55 PEAK (C/S)	33.20 5.70 K.RATIO 0.1983 0.0787 0.0070 0.0000 0.1271 0.0024 0.0323 0.0001 0.0001 8./W.F. = 0 X= 5508 BACKGR. (C/S)	0.00019 0.00045 MT. % P CONCEN. 23.516 11.765 0.767 0.007 17.681 0.281 5.383 0.012 0.014 41.291 100.717 .44 FOR Na Y= -17694 Z	0.00010 0.00013 XORMALIZED ATOM. C 9.76 10.11 0.44 0.01 14.59 0.12 5.13 0.01 0.01 59.83 B	5.3 12.4 COMPOUND Fe0 A1203 Ca0 Na20 Si02 Mn0 Mg0 Ti02 Cr203 FY STOICHION MGARNET SIG/K	22.229 1.074 0.009 37.824 0.363 8.925 0.020 0.020 0.020 ETRY 100.717	
ELEME Fe Al Ca Na Si Mn Mg Ti Cr 0 TOTA ITER B POIN CC1	31452 56868 NT I.J : : : : : : : : : : : : : : : : : : :	35.90 6.50 K K./I.STD. 0.4054 0.9315 0.0299 0.0006 0.9096 0.0088 0.4421 0.0002 0.0005 : 3 FULL - K.R 55 PEAK (C/S) 1578.37	33.20 5.70 K.RATIO 0.1983 0.0787 0.0070 0.0000 0.1271 0.0024 0.0323 0.0001 0.0001 8./H.F. = 0 X= 5508 BACKGR. (C/S) 11.73	0.00019 0.00045 HT. % P CONCEN. 23.516 11.765 0.767 0.007 17.681 0.281 5.383 0.012 0.014 41.291 100.717 .44 FOR Na Y= -17694 2 1.X./I.STD. 0.43276	0.00010 0.00013 NORMALIZED ATOM. C 9.76 10.11 0.44 0.01 14.59 0.12 5.13 0.01 0.01 59.83 B 2= -46 K.RATI0 0.21173	5.3 12.4 COMPOUND Fe0 A1203 Ca0 Na20 Si02 Mn0 Mg0 Ti02 Cr203 W STOICHION MGARNET SIG/K 1.0	22.229 1.074 0.009 37.824 0.363 8.925 0.020 0.020 0.020 METRY 100.717 BEAM	
ELEME Fe Al Ca Na Si Mn Mg Ti Cr O TOTA ITER B POIN CC1 ELT.	31452 56868 NT I.J : : : : : : : : : : : : : : : : : : :	35.90 6.50 K K./I.STD. 0.4054 0.9315 0.0299 0.0006 0.9096 0.0088 0.4421 0.0002 0.0005 : 3 FULL - K.R 55 PEAK (C/S) 1578.37 5424.31	33.20 5.70 K.RATIO 0.1983 0.0787 0.0070 0.0000 0.1271 0.0024 0.0323 0.0001 0.0001 8./W.F. = 0 X= 5508 BACKGR. (C/S) 11.73 57.81	0.00019 0.00045 HT. % P CONCEN. 23.516 11.765 0.767 0.007 17.681 0.281 5.383 0.012 0.014 41.291 100.717 .44 FOR Na Y= -17694 Z I.X./I.STD. 0.43276 0.93227	0.00010 0.00013 XORMALIZED ATOM. C 9.76 10.11 0.44 0.01 14.59 0.12 5.13 0.01 0.01 59.83 B 2= -46 K.RATI0 0.21173 0.07879	5.3 12.4 COMPOUND Fe0 Al203 Ca0 Na20 Si02 Mn0 Mg0 Ti02 Cr203 W STOICHION MGARNET SIG/K 1.0 0.6	22.229 1.074 0.009 37.824 0.363 8.925 0.020 0.020 0.020 METRY 100.717 BEAM	
ELEME Fe Al Ca Na Si Mn Mg Ti Cr O TOTA ITER B POIN CC1 ELT.	31452 56868 NT I.J : : : : : : : : : : : : : : : : : : :	35.90 6.50 K K./I.STD. 0.4054 0.9315 0.0299 0.0006 0.9096 0.0088 0.4421 0.0002 0.0005 : 3 FULL - K.R 55 PEAK (C/S) 1578.37 5424.31 192.77	33.20 5.70 K.RATIO 0.1983 0.0787 0.0070 0.0000 0.1271 0.0024 0.0323 0.0001 0.0001 8./W.F. = 0 X= 5508 BACKGR. (C/S) 11.73 57.81 20.20	0.00019 0.00045 HT. % P CONCEN. 23.516 11.765 0.767 0.007 17.681 0.281 5.383 0.012 0.014 41.291 100.717 .44 FOR Na Y= -17694 Z I.X./I.STD. 0.43276 0.93227 0.03399	0.00010 0.00013 XORMALIZED ATOM. C 9.76 10.11 0.44 0.01 14.59 0.12 5.13 0.01 0.01 59.83 E x= -46 K.RATI0 0.21173 0.07879 0.00800	5.3 12.4 COMPOUND Fe0 A1203 Ca0 Na20 Si02 Mn0 Mg0 Ti02 Cr203 Y STOICHION MGARNET SIG/K 1.0 0.6 2.3	22.229 1.074 0.009 37.824 0.363 8.925 0.020 0.020 0.020 METRY 100.717 BEAM	
ELEME Fe Al Ca Na Si Mn Mg Ti Cr O TOTA ITER B POIN CC1 ELT.	31452 56868 NT I.3 : : : : : : : : : : : : : : : : : : :	35.90 6.50 K K./I.STD. 0.4054 0.9315 0.0299 0.0006 0.9096 0.0088 0.4421 0.0002 0.0005 : 3 FULL - K.R 55 PEAK (C/S) 1578.37 5424.31 192.77 13.70	33.20 5.70 K.RATIO 0.1983 0.0787 0.0070 0.0000 0.1271 0.0024 0.0323 0.0001 0.0000 0.0000 0.0024 0.0000 0.0000 0.0000 0.0000 0.0000 0.0024 0.0000 0.0000 0.0000 0.0000 0.0024 0.00000 0.00000 0.00000 0.000000	0.00019 0.00045 HT. % P CONCEN. 23.516 11.765 0.767 0.007 17.681 0.281 5.383 0.012 0.014 41.291 100.717 .44 FOR Na Y= -17694 2 I.X./I.STD. 0.43276 0.93227 0.03399 0.00153	0.00010 0.00013 XORMALIZED ATOM. C 9.76 10.11 0.44 0.01 14.59 0.12 5.13 0.01 0.01 59.83 E 2= -46 K.RATIO 0.21173 0.07879 0.00800 0.00007	5.3 12.4 COMPOUND Fe0 A1203 Ca0 Na20 Si02 Mn0 Mg0 Ti02 Cr203 Y STOICHION MGARNET SIG/K 1.0 0.6 2.3 8.6	22.229 1.074 0.009 37.824 0.363 8.925 0.020 0.020 0.020 METRY 100.717 BEAM	•
ELEME Fe Al Ca Na Si Mn Mg Ti Cr O TOTA ITER B POIN CC1 ELT.	31452 56868 NT I.3 : : : : : : : : : : : : : : : : : : :	35.90 6.50 K K./I.STD. 0.4054 0.9315 0.0299 0.0006 0.9096 0.0088 0.4421 0.0002 0.0005 : 3 FULL - K.R 55 PEAK (C/S) 1578.37 5424.31 192.77 13.70 10181.18	33.20 5.70 K.RATIO 0.1983 0.0787 0.0070 0.0000 0.1271 0.0024 0.0323 0.0001 0.0000 0.0001 0.00000 0.00000 0.000000	0.00019 0.00045 HT. % P CONCEN. 23.516 11.765 0.767 0.007 17.681 0.281 5.383 0.012 0.014 41.291 100.717 .44 FOR Na Y= -17694 Z I.X./I.STD. 0.43276 0.93227 0.03399 0.00153 0.88477	0.00010 0.00013 XORMALIZED ATOM. C 9.76 10.11 0.44 0.01 14.59 0.12 5.13 0.01 0.01 59.83 E 2= -46 K.RATI0 0.21173 0.07879 0.00800 0.00007 0.12362	5.3 12.4 COMPOUND Fe0 A1203 Ca0 Na20 Si02 Mn0 Mg0 Ti02 Cr203 Y STOICHION MGARNET SIG/K 1.0 0.6 2.3 8.6 0.4	22.229 1.074 0.009 37.824 0.363 8.925 0.020 0.020 0.020 METRY 100.717 BEAM	
ELEME Fe Al Ca Na Si Mn Mg Ti Cr O TOTA ITER B POIN CC1 ELT.	31452 56868 NT I.3 : : : : : : : : : : : : : : : : : : :	35.90 6.50 K K./I.STD. 0.4054 0.9315 0.0299 0.0006 0.9096 0.0088 0.4421 0.0002 0.0005 : 3 FULL - K.R 55 PEAK (C/S) 1578.37 5424.31 192.77 13.70 10181.18 28.80	33.20 5.70 K.RATIO 0.1983 0.0787 0.0070 0.0000 0.1271 0.0024 0.0323 0.0001 0.0000 0.0001 0.00000 0.00000 0.00000 0.00000 0.000000	0.00019 0.00045 HT. % P CONCEN. 23.516 11.765 0.767 0.007 17.681 0.281 5.383 0.012 0.014 41.291 100.717 .44 FOR Na Y= -17694 Z I.X./I.STD. 0.43276 0.93227 0.03399 0.00153 0.88477 0.01088	0.00010 0.00013 XORMALIZED ATOM. C 9.76 10.11 0.44 0.01 14.59 0.12 5.13 0.01 0.01 59.83 E 2= -46 K.RATIO 0.21173 0.07879 0.00800 0.0007 0.12362 0.00293	5.3 12.4 COMPOUND Fe0 A1203 Ca0 Na20 Si02 Mn0 Mg0 Ti02 Cr203 Y STOICHION MGARNET SIG/K 1.0 0.6 2.3 8.6 0.4 5.9	22.229 1.074 0.009 37.824 0.363 8.925 0.020 0.020 0.020 METRY 100.717 BEAM	
ELEME Fe Al Ca Na Si Mn Mg Ti Cr O TOTA ITER B POIN CC1 ELT.	31452 56868 NT I.3 : : : : : : : : : : : : : : : : : : :	35.90 6.50 K K./I.STD. 0.4054 0.9315 0.0299 0.0006 0.9096 0.0088 0.4421 0.0002 0.0005 : 3 FULL - K.R 55 PEAK (C/S) 1578.37 5424.31 192.77 13.70 10181.18 28.80 1437.62	33.20 5.70 K.RATIO 0.1983 0.0787 0.0070 0.0000 0.1271 0.0024 0.0323 0.0001 0.0000 0.0001 0.00000 0.00000 0.00000 0.00000 0.000000	0.00019 0.00045 HT. % P CONCEN. 23.516 11.765 0.767 0.007 17.681 0.281 5.383 0.012 0.014 41.291 100.717 .44 FOR Na Y= -17694 Z I.X./I.STD. 0.43276 0.93227 0.03399 0.00153 0.88477	0.00010 0.00013 XORMALIZED ATOM. C 9.76 10.11 0.44 0.01 14.59 0.12 5.13 0.01 0.01 59.83 E 2= -46 K.RATIO 0.21173 0.07879 0.00800 0.0007 0.12362 0.00293	5.3 12.4 COMPOUND Fe0 Al203 Ca0 Na20 Si02 Mn0 Mg0 Ti02 Cr203 W STOICHION MGARNET SIG/K 1.0 0.6 2.3 8.6 0.4 5.9 1.0	22.229 1.074 0.009 37.824 0.363 8.925 0.020 0.020 0.020 METRY 100.717 BEAM	

.

•

• .

. .. .

K ELEMENT I.X./I.STD. Fe 0.4328 A1 0.9323 Ca 0.0340 ** 0.0015 ** 0.0015 ** 0.0109 Mg 0.3229 Ti 0.0001 Cr 0.0005 O TOTAL<:	K.RATIO 0.2117 0.0788 0.0080 0.0001 0.1236 0.0029 0.0241 0.0001 0.0001	CONCEN 25.030 11.753 0.869 0.017 17.175 0.347 4.073 0.006 0.015 40.336 99.621	0.01	COMPOUND Fe0 A1203 Ca0 Na20 Si02 Mn0 Mg0 Ti02 Cr203 Y STOICHI0	22.200 22.206 1.216 0.023 36.742 0.448 6.753 0.010 0.023	
POINT N : 56 CC2		Y= -19306 Z=	-58	MGARNET	, V	
ELT. PEAK PEAK POS. (C/S)	BACKGR. (C/S)	I.X./I.STD.	K.RATIO	SIG/K	BEAM	
Fe 48083 1674.49 Al 32465 5378.44 Ca 38386 143.14 Na 46413 14.60 Si 27739 10300.62 Mn 52201 23.80 Mg 38502 1366.32 Ti 31452 35.50 56868 8.00 K ELEMENT I.X./I.STD. Fe : 0.4592 Al : 0.9243 Ca : 0.0245 Na : 0.0006 Si : 0.8943 Ma : 0.0098	0.1250	CONCEN. 26.494 11.674 0.624 0.007 17.337	14.53	0.9 0.6 2.7 8.3 0.4 6.5 1.0 5.3 11.2 COMPOUND Fe0 A1203 Ca0 Na20 Si02 Mn0	22.058 22.058 0.874 0.009 37.090	
Ti: 0.0002	0.0230	0.279 3.905 0.014 0.039	3.78 0.01	MgO TiO2	0.361 6.474 0.023 0.058	· ·
0 TOTAL : ITERATION : 3 BE CAREFULL - K.I	· · · ·	40.656 101.029		Y STOICHIO		· · · · · · ·
POINT N : 57 CC3	X= 5150	Y= -20856 Z=	-58	MGARNET		
ELT. PEAK PEAK POS. (C/S)	(C/S)				BEAM 30.	
Fe 48083 1414.89 32465 5415.32 38386 233.01 46413 15.40 Si 27739 10496.73 Mn 52201 22.00 Mg 38502 1939.49 Ti 31452 40.50 Cr 56868 5.60	58.41 16.30 13.80 74.41 9.50 29.50	0.93061 0.04268 0.00068 0.91172 0.00654 0.44706 0.00063 0.00062	0.07865 0.01004 0.00003 0.12739 0.00176 0.03270 0.00034	0.6 2.1 8.1 0.4 6.8 0.9 5.0		

•

.

.....

	•						
Al	:	0.8899	0.0752	11.238/1	√ 10.10	A1203	21.233
Ca	:	0.0245	0.0058	0.622	J 0.38	CaO	0.870
Na	1	0.0014	0.0001	0.016	0.02	Na20	0.021
Si	: 1	0.8790	0.1228	16.965	14.65	SiO2	36.294
Mn		0.0073	0.0020	0.231	0.10	MnO	0.298
·	-	0.1595	0.0117	2.031	2.03	MgO	3.368
	-	0.0000	0.0000	0.002	0.00	TiO2	0.004
Cr		8000.0	0.0002	0.024	0.01	Cr203	0.034
· 0	• .		010002	39.487		Y STOICHION	
U			· ·.	021107	03100 0		
TOTA				100.261			100.261
	ATION :	3					
		-	./W.F. = 0	.42 FOR Na			
POIN	T-N :	60	X= 4924	Y= -27107	Z= -60	MGARNET	
CC6		00					
660		•					
ELT.	PEAK	PEAK	BACKGR.	I.X./I.STD	K RATIO	SIG/K	BEAM
ELI.	· · ·	(C/S)	(C/S)	11/12/14/010		DID K	
	POS.	(6/5)	(6/3)				30.
F .	40000	1771 55	12.47	.0.48591	0.23774	0.9	30.
Fe		1771.55					
A1	32465			0.89797	0.07589	0.6	
Ca	38386	142.84		0.02472	0.00582	2.7	
Na	46413	12.30		0.00000	0.00000	9.0	
Si	27739	10267.60	78.41	0.89131	0.12454		
Mn	52201	13.80	7.60	0.00324	0.0 0087	8.5	
Mg	38502	1022.39	28.10	0.23272	0.01702	1.1	
Ti	31452	35.90	33.53	0.00017	0.00009	5.3	
Cr	56868	6.70	5.50	0.00068	0.00019	12.2	
.		K		WT. %	NORMALIZED		
ELEME	NT TY	./I.STD.	K.RATIO	CONCEN.	ATOM. C	Compound	CONCEN
		0.4859	0.2377	27,970	12.01	FeO	35.983
	-			11.336	10.07		21.418
Al		0.8980					0.880
Ca		0.0247	0.0058	0.629	0.38	Ca0	
Na		0.0000		0.000	0.00	Na20	0.000
Si	-	0.8913	0.1245	17.232	14.71	SiO2	36.864
Mn	:	0.0032	0.0009	0.103		MnO	0.133
Mg	:	0.2327	0.0170	2.926	2.89	MgO	4.852
Ti	:	0.0002	0.0001	0.010	0.01	TiO2	0.017
Cr	1	0.0007	0.0002	0.020	0.01	Cr203	0.030
0	• • •	· · ·		39.950	59.88 B	Y STOICHION	TETRY
		Antiri in	· · ·			· · ·	
TOTA	¥Ľ:			100.177			100.177
ITEF	RATION	3	1				
* E	be caref	ULL - K.I	R./W.F. = (.00 FOR Na			
							•
POIN	ITN:	61	X= 5030	Y= -31446	Z= -72	MGARNET	· .
CC8							
						CIC/V	BEAM
ELT.	PEAK	PEAK	BACKGR.	1.X./1.STD	. K.RATIO	SIG/K	
ELT.	PEAK POS.	PEAK (C/S)	BACKGR. (C/S)	1.X./1.STD	. K.RATIO	310/K	
ELT.				I.X./I.STD	. K.RATIO	310/ K	30.
	POS.		(C/S)	0.47416	0.23199	×	
Fe	POS. 48083	(C/S) 1727.35	(C/S) 10.80			0.9	
Fe Al	POS. 48083 32465	(C/S) 1727.35 5307.45	(C/S) 10.80 57.21	0.47416	0.23199 0.07708	0.9 0.6	
Fe Al Ca	POS. 48083 32465 38386	(C/S) 1727.35 5307.45 156.05	(C/S) 10.80 57.21 20.30	0.47416 0.91205 0.02673	0.23199 0.07708 0.00629	0.9 0.6 2.6	
Fe Al	POS. 48083 32465 38386 46413	(C/S) 1727.35 5307.45 156.05 14.70	(C/S) 10.80 57.21 20.30 11.40	0.47416 0.91205 0.02673 0.00140	0.23199 0.07708 0.00629 0.00007	0.9 0.6 2.6 8.3	
Fe Al Ca	POS. 48083 32465 38386 46413 27739	(C/S) 1727.35 5307.45 156.05 14.70 10179.82	(C/S) 10.80 57.21 20.30 11.40 74.91	0.47416 0.91205 0.02673 0.00140 0.88393	0.23199 0.07708 0.00629 0.00007 0.12351	0.9 0.6 2.6 8.3 8.4	
Fe Al Ca Ma	POS. 48083 32465 38386 46413 27739 52201	(C/S) 1727.35 5307.45 156.05 14.70 10179.82 45.40	(C/S) 10.80 57.21 20.30 11.40 74.91 7.40	0.47416 0.91205 0.02673 0.00140 0.88393 0.01987	0.23199 0.07708 0.00629 0.00007 0.12351 0.00535	0.9 0.6 2.6 8.3 0.4 4.7	
Fe Al Ca Ma Mg	POS. 48083 32465 38386 46413 27739 52201 38502	(C/S) 1727.35 5307.45 156.05 14.70 10179.82 45.40 1049.20	(C/S) 10.80 57.21 20.30 11.40 74.91 7.40 28.30	0.47416 0.91205 0.02673 0.00140 0.88393 0.01987 0.23895	0.23199 0.07708 0.00629 0.00007 0.12351 0.00535 0.01748	0.9 0.6 2.6 8.3 0.4 4.7 1.1	
Fe Al Ca Ma	POS. 48083 32465 38386 46413 27739 52201 38502 31452	(C/S) 1727.35 5307.45 156.05 14.70 10179.82 45.40 1049.20 39.80	(C/S) 10.80 57.21 20.30 11.40 74.91 7.40 28.30 34.31	0.47416 0.91205 0.02673 0.00140 0.88393 0.01987 0.23895 0.00038	0.23199 0.07708 0.00629 0.00007 0.12351 0.00535 0.01748 0.00021	0.9 0.6 2.6 8.3 0.4 4.7 1.1 5.0	
Fe Al Ca Ma Mg	POS. 48083 32465 38386 46413 27739 52201 38502	(C/S) 1727.35 5307.45 156.05 14.70 10179.82 45.40 1049.20	(C/S) 10.80 57.21 20.30 11.40 74.91 7.40 28.30 34.31	0.47416 0.91205 0.02673 0.00140 0.88393 0.01987 0.23895 0.00038 0.00000	0.23199 0.07708 0.00629 0.00007 0.12351 0.00535 0.01748 0.00021 0.00000	0.9 0.6 2.6 8.3 0.4 4.7 1.1	
Fe Al Ca Ma Mg Ti	POS. 48083 32465 38386 46413 27739 52201 38502 31452	(C/S) 1727.35 5307.45 156.05 14.70 10179.82 45.40 1049.20 39.80	(C/S) 10.80 57.21 20.30 11.40 74.91 7.40 28.30 34.31	0.47416 0.91205 0.02673 0.00140 0.88393 0.01987 0.23895 0.00038	0.23199 0.07708 0.00629 0.00007 0.12351 0.00535 0.01748 0.00021 0.00000 NORMALIZED	0.9 0.6 2.6 8.3 0.4 4.7 1.1 5.0	30.
Fe Al Ca Ma Mg Ti	POS. 48083 32465 38386 46413 27739 52201 38502 31452 56868	(C/S) 1727.35 5307.45 156.05 14.70 10179.82 45.40 1049.20 39.80 4.80	(C/S) 10.80 57.21 20.30 11.40 74.91 7.40 28.30 34.31	0.47416 0.91205 0.02673 0.00140 0.88393 0.01987 0.23895 0.00038 0.00000	0.23199 0.07708 0.00629 0.00007 0.12351 0.00535 0.01748 0.00021 0.00000	0.9 0.6 2.6 8.3 0.4 4.7 1.1 5.0	30. CONCEN.
Fe Al Ca Ma Mg Ti Cr	POS. 48083 32465 38386 46413 27739 52201 38502 31452 56868 ENT I.J	(C/S) 1727.35 5307.45 156.05 14.70 10179.82 45.40 1049.20 39.80 4.80 K	(C/S) 10.80 57.21 20.30 11.40 74.91 7.40 28.30 34.31 5.50	0.47416 0.91205 0.02673 0.00140 0.88393 0.01987 0.23895 0.00038 0.00000 WT. %	0.23199 0.07708 0.00629 0.00007 0.12351 0.00535 0.01748 0.00021 0.00000 NORMALIZED	0.9 0.6 2.6 8.3 0.4 4.7 1.1 5.0 14.5	30.

Na² Al².

Si		0.8837	0.1235	17.085	14.63	Si02	36.549	
Mn :		0.0128	0.0034	0.405	0.18	MnO	0.522	
Mg :		0.2155	0.0158	2.711	2.68	MgO	4.495	
Ti :		0.0001	0.0000	0.003	0.00	Ti02	0.005	
ۍ ۲ ۰		0.000.0	0.0000	0.000	0.00	Cr203	0.000-	
		•		39.816	59.87 B	y stoichiom	ETRY	
		•			•	••• •		• •
TOTAL	. :			99.961	·		99.961	.*
	ATION :	3						
B	e caref	ULL - K.R.	./W.F. = 0	42 FOR Na				
BE	e caref	ULL - K.R	./W.F. = 0	.00 FOR Cr				
POIN	T N :	64 2	K= 694	Y= -17445	Z= -12	MGARNET		
0D1							• • •	
			· .	• • • • •			· .	
ELT.	Peak	PEAK	BACKGR.	I.X./I.STD.	K.RATIO	SIG/K	Beam	
	POS.	(C/S)	(C/S)					
			2.1.1				30.	
Fe	48083	1639.36	10.13	0.45006	0.22020	0.9		
Al	32465	5396.11	59.31	0.92714	0.07836	0.6		
Ca	38386	125.83	20.10	0.02082	0.00490	2.9		
Na	46413	13.00	13.60	0.00000	0.00000	8.8		
Si		10150.88	72.51	0.88165	0.12319	0.4		
Mn	52201	15.70	7.60	0.00424	0.00114	8.0		
Mg	38502		28.20	0.33501	0.02450	1.0		
Ti	31452	41.90	33.03	0.00062	0.00034	4.9		
	56868	6.30	6.30	0.00000	0.00000	12.6		
Cr	30000	K 6130	0.00	WT. %	NORMALIZED	10.00		
		(./I.STD.	K.RATIO	CONCEN.	ATOM. C	COMPOUND	CONCEN.	
ELEME			0.2202	25.997	11.03	FeO	33.445	
Fe		0.4501	0.2202	11.721	10.29	A1203	22.145	
Al		0.9271		0.532	0.31	CaO	0.744	·
		0.0208	0.0049		0.00	Na20	0.000	
Na		0.0000	0.0000	0.000				
Si		0.8817	0.1232	17.130	14.45	SiO2	36.646	
Mn		0.0042	0.0011	0.135	0.06	Mn0	0.174	•
Mg		0.3350	0.0245	4.151	4.04	Mg0	6.883	
Ti		0.0006	0.0003	0.039		Ti02	0.064	
Cr	1	0.0000	0.0000	0.000	0.00		0.000	
0				40.398	29.80 8	BY STOICHION	1ET KT	
			•				400 400	
TOTA		_		100.102			100.102	
ITE	RATION	: 3				· · · ·	· · · · · · ·	
				.00 FOR Na				
E	be care	FULL - K.I	$R_{\star}/W_{\star}F_{\star} = 0$.00 FOR Cr				
۰.		· ·					• •	
•	N 1	65	X= 671	Y= −19598	Z= -35	MGARNET		•.
DD2								
					K 04770	010 0/	DEAN	
ELT.				. I .X./I .STD	. K.KATIU	SIG/K	Beam	
	POS.	(C/S)	(C/S)		. •			
	•	•					30.	
Fe	48083	1710.23		0.46914			•	•
Al	32465	531 4.09	60.91	0.91272	0.07714		· •	
Ca	38386	130.23	18.60	0.02199				
Na	46413		10.60	0.00247	0.00012			
Si		9915.93		0.86064	0.12025	0.4		
	52201			0.11515	0.03098	2.2		
		545.29		0.12161		1.4		
Ti	31452			0.00008				
Cr	56868			0.00079	0.00022			
U	10000	K K	0100	WT. %	NORMALIZED			
E1 C1	CNIT 1	X./1.STD.	K.RATIO	CONCEN.	ATCM. C	COMPOUND	CONCEN.	
ELEM		0.4691	0,2295	26.865		FeO	34.562	
Fe		0.4691	0.2293	11.477		A1203	21.686	
	:	0.512/	0.0//1	11.3//	10.10	THEOD		

Naz. Caz.

.

Si	:	0.8606	0.1203	16.589	14.45	Si02	35.489
Ma :		0.1151	0.0310	3. <u>63(</u>) 1.62	MnO	4.698
Mga		0.1216	0.0089	1.549	1.56	Mg0	- 2.569
Ti :		0.0001	0.0000	0.005	0.00	TiO2	0.008
Cra	•	0.0008	0.0002	0.024	0.01	Cr203	0.035
				39.129	59 . 82 B	y stoichiom	EIKT
					•		00.001
TUTAL		_		99.861			99.861
	ATION :			10 500 11-			
81	e caref	ULL - K.M	./W.F. = 0	.42 FUK Na			
00110	- 11 -	66	X= 547	Y= -21896 7	Z= -42	MGARNET	
POIN	INI	60	V- 141	121020 1	L - -42	FIGHING I	
DD3			•	· ·			
	DEAK	PEAK	BACKGR.	I.X./I.STD.	K.RATIO	SIG/K	Beam
ELT.	PEAK		(C/S)	1	VIMITO .	SIGK	DCHI
	POS.	(C/S)	(45)				30.
-	40000	1700 00	10 07	0 47540	0 22261	n o .	au.
Fe	48083	1733.99	13.07	0.47542	0.23261	0.9	
Al	32465		60.21	0.91650	0.07746	0.6	
Ca	38386	118.03	20.50	0.01921	0.00452	2.9	
Na	46413	13.10	13.30	0.00000	0.00000	8.8	
Si	27739		77.31	0.86681	0.12111	0.4	
Ma	52201		8.40	0.05303	0.01427	3.1	
Mg	38502		27.50	0.19400	0.01419	1.2	
Ti	31452	35.40	36.51	0.00000	0.00000	5.3	
Cr	568 68	6.70	6.60	0.00006	0.00002	12.2	
		K			NORMALIZED		
eleme		(./1.STD.	K.RATIO	CONCEN.	ATOM. C	COMPOUND	CONCEN.
Fe	:	0.4754	0.2326	27.311	11.85	Fe0	35.136
Al	:	0.9165	0.0775	11.556	10.38	A1203	21.835
_ Ca	:	0.0192	0.0045	0.487	0.29	CaO	0.682
	1	0.0000	0.0000	0.000	0.00	Na20	0.000
	:	0.8668	0.1211	16.768	14.47	Si02	35.871
Mn	:	0.0530	0.0143	1.679	0.74	MnO	2.168
Mg		0.1940	0.0142	2.450	2.44	Mg0	4.063
Ti	:	0.0000	. 0.0000	0.000	0.00	Ti02	0.000
Cr	:	0.0001	0.0000	0.002	0.00	Cr 203	0.002
0				39.503	59 . 83 E	y stoichior	ETRY
				•			
TOTA	L:			99.7 57			99.7 57
ITER	ATION	: 3					
				.00 FOR Na			• *
·B	e care	FULL - K.I	R./W.F. = 0	.00 FOR Ti	•	*	
				· · ·			
POIN	IT N 🗄	67	X= 🔆 551	Y= -23862	Z= -45	MGARNET	
DD4							
		•	••	· .			
ELT.	Peak	Peak	BACKGR.	I.X./I.STD.	K.RATIO	SIG/K	BEAM
	POS.	(C/S)	(C/S)				
				•			30.
Fe	48083			0.45052	0.22042		
Al	32465	5306.02		0.91196	0.07708		
Ca	38386	151.25	17.20	0.02640	0.00621	2.6	
Na	46413	14.30	11.90	0.00102	0.00005	8.4	
Si	27739	10244.07	72.41	0.88987	0.12434	0.4	
Mn	52201		7.50	0.01161	0.00312	5.8	
	38502		28.00	0.29728	0.02174	1.0	
	31452		30.35	0.00014	0.00008	5.6	
Cr	56868		6.70	0.00034	0.00009		
		K	-		NORMALIZED		
ELEME	NT L	x./I.STD.	K.RATIO	CONCEN.	ATOM. C	COMPOUND	CONCEN.
Fe		0.4505	0.2204	26.012	11.11	Fe0	33.464
Al		0.9120	0.0771	11.508	10.17	A1203	21.743
Ca		0.0264	0.0062	0.674	0.40	CaO	0.943
		• -			· ··		n n+E

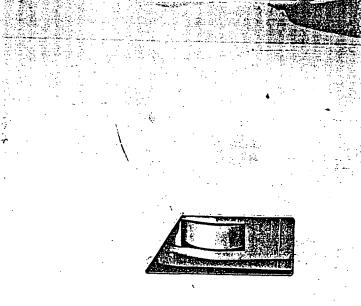
512. No2

 \bigcirc

Mn	 :	0.0116	0.0031	0.369-	0.16	MnO	0.477	
Mg		0.2973	0.0217	3.69		MgO	6.127	()
Ti		0.0001	0.0001	0.009	0.00	Ti02	0.015	
Cr		0.0003	0.0001	0.010	0.00	Cr203	0.015	
n			· · ·	40.157	59 . 87 E	A STOICHIO	ETRY	
			· · · · ·			· ·		
A	L:		in 1 a 11	99.691			99.691	•
ITEN	ATION :	3	• • •	· · ·				A
B	e caref	ULL - K.R	\mathbb{K} ./W.F. = 0	.43 FOR Na				•
	· •			· ·				•••
POIN	T N :	68	X= 337	Y= -27635	Z= -51	MGARNET		
DD6								
			۰.					
ELT.	Peak	PEAK	BACKGR.	I.X./I.STD.	K.RATIO	SIG/K	BEAM	
	POS.	(C/S)	<u>(</u> C/S)					, • • •
			•				30.	
Fe	48083	1687.07	12.27	0.46273	0.22640	0.9		
Al .	32465		56.91	0.92680	.0.07833			
Ca	38386		21.40	0.04486	0.01055	2.1		
Na	46413		12.00	0.00115	0.00006	8.3		
Si		10153.48	74.21	0.88188	0.12322	0.4		
Mn	52201	26.60	6.80	0.01035	0.00279			
Mg		1148.73	25.30	0.26301	0.01924	1.1		
Ti	31452		31.27	0.00031		5.3		
Cr	56868		6.60	0.00011	0.00003	12.2		
		K			NORMALIZED			
ELEME		X./I.STD.	K.RATIO	CONCEN.	ATOM. C	COMPOUND	CONCEN.	
Fe		0.4627	0.2264	26.680	11.37	Fe0	34.323	
A1		0.9268	0.0783	11.677	10.30	A1203	22.063	
Ca		0.0449	0.0106	1.143	0.68	Ca0	1.599	
Na		0.0011	0.0001	0.013	0.01	Na20	0.018	
	:	0.8819	0.1232	17.071	14.46	SiO2	36.520	
Tin		0.0104	0.0028	0.329	0.14	MnO ·····	0.425	
Mg		0.2630	0.0192	3.283	3.21	Mg0	5.443	
Ti		0.0003	0.0002	0.019	0.01	Ti02	0.032	•
Cr	1	0.0001	0.0000	0.003	0.00	Cr203 By Stoichion	0.005	
0				40.209	J2.01 I		12111	
TOTA	л.			100,428	. *		100.428	
	ATION	• 3		1001120			1001120	
				.43 FOR Na	•			
						· · · · ·		
POIN	IT N :	69	X= 257	Y= -29199	Z= -50	MGARNET	· · ·	
DD7								1
					•		· · · ·	· .
ELT.	Peak	PEAK	BACKGR.	I.X./I.STD.	K.RATIO	SIG/K	Beam	• •
	POS.	(C/S)	(C/S)		•			
							30.	
Fe	48083	1575.25	10.33	0.43231	0.21151			
Al	32465			0.92017				
Ca	38386			0.02400	0.00565			
Na	46413	13.00		0.00068	0.00003			
Si	27739	10390.95		0.90259	0.12611			
Mn	52201			0.00994	0.00267			
Mg		1571.42		0.36109	0.02641			
τī	31452			0.00007	0.00004			
	56868		5.80	0.00000	0.00000			
		ĸ			NORMALIZED			
ELEME	NT I.	X./I.STD.		CONCEN.	atom. C			1
Fe	:	0.4323	0.2115	25.004	10.54	Fe0	32.167	YYYCA -
Al	:	0.9202	0.0778	11.608	10.12	A1203	21 .9 33	5 1 1
Ca	:	0.0240	0.0056	0.613	0.36	Ca0	0.857	MAN L.
Na		0.0007	0.0000	0.008	0.01	Na20	0.010	Mur.
Si	:	0.9026	0.1261	17.482	14.65	SiO2	37.399	

•

lan and the


£. I'		0.0001 0.0000	0.0000 0.0000	0.004 0.000 40.695	0.00 59.85	Tiu2 Cr203 BY STOICHIO	0.007 0.000 METRY -
	AL:			100.211			100.211
	RATION					• •	
			$R_{\bullet}/H_{\bullet}F_{\bullet}=0$				
	be care	FULL - K.	R./W.F. = 0	.00 FOR Cr			
2	nt n : Glanted	70	X= 177	Y= -30924	Z= -63	MGARNET	
ELT.	PEAK POS.	peak (C/S)	BACKGR. (C/S)	I.X./I.STD.	. K.RATIO	\$16/K	Beam
Fe Al Ca Na							30.
Fe	48083			0.47471	0.23226	0.9	
) Al	32465			0.90679	0.07664	0.6	
Ca	38386	140.94		0.02420	0.00569	2.7	
; ···	46413	15.40	13.60	0.00077	0.00004	8.1	
Si		10233.13		0.88914	0.12423		
Ma	52201	55.71	7.20	0.02537	0.00683		
	38502	-	26.50	0.22832	0.01670	1.1	
Ti	31452	32.60	36.04	0.00000	0.00000	5.5	
Cr	56868	5.40	4.80	0.00034	0.00009	13.6	
		K			Normalized		
ELEME		./I.STD.	K.RATIO	CONCEN.	atom. C	Compound	CONCEN.
Fe		0.4747	0.2323	27.339	11.73	FeO	35.171
Al		0.9068	0.0766	11.432	10.16	A1203	21.600
Ca		0.0242	0.0057	0.617	0.37	CaO	0.863
Na		0.0008	0.0000	0.009	0.01	Na20	0.012
Si		0.8891	0.1242	17.206	14.68	SiO2	36.809
		0.0254	0.0068	0.806	0.35	MnO	1.041
		0.2283	0.0167	2.853	2.81	MgO	4.730
Ti		0.0000	0.0000	0.000	0.00	Ti02	0.000
Cr	:	0.0003	0.0001	0.010	0.00	Cr203	0.015
0				39.969	59.88 8	Y STOICHIOM	ETRY

TOTAL :

100.240 ITERATION : 0 BE CAREFULL - K.R./W.F. = 0.43 FOR Na BE CAREFULL - K.R./W.F. = 0.00 FOR Ti

end fistal

100.240

APPENDIX II

Sample Locations

	<u> </u>	<u> </u>	APPENDIX 2		
	FIELD N	OTES	FOR SW ALBERTA HEAVY MINERAL PROGRAM		
		Į			
SAMP#	WIDTH	VEL	LOCATION	EAST	NORTH
	JUNE	1993			
		-			
AD1	5	F	Lost Creek @jct with Carbondale	685646.00	5478808.29
AD2	5	F	Carbondale @ jct with Lost Creek	685753.87	5478419.59
AD3	6	F	West Castle 10.2Km from bridge	688254.08	5465647.67
AD4	8	F	West Castle @ main bridge	691459.95	5472966.22
AD5	5	F	Castle Creek @ Scarpe Ck	700615.82	5457596.47
AD6	6	F	Castle Creek @10.2 Km north of AD5	700618.64	5458291.69
AD7	10	F	Castle Creek just above bridge	693085.47	5474041.73
AD8	4	F	Lynx Creek 10Km north of jct with Carbondale	681013.70	5486184.99
AD9	6	F.	Lynx Creek @ jct with Carbondale	687607.75	5481065.07
AD10	4	F	Mill Creek @ road bridge	705218.60	5472459.69
AD11	6	F	Mill Creek @ washed out bridge	707673.62	5482850.93
AD12	4	F	Below Ptolomy Ck jct	668018.24	5497490.33
AD13	4	F	Allison Ck @ No.3 Hwy	674335.62	5500317.69
AD14	4	F	Macgillvery Ck 1Km N of Hwy 3	679118.28	5501449.97
AD15	6	F	Livingstone Ck @ Savanna Ck	682529.84	5557223.00
AD16	5	F	Savanna Ck @ jct Livingstone	682422.87	5557222.46
AD17	8	F	Livingstone Ck 10Km S of AD 15	684183.16	5549209.98
AD18	8	F	Livingstone Ck 10Km S of AD17	686529.99	5538383.31
AD19	9	F	Oldman Riv. 3.2 Km W road jct	682659.79	5536410.92
AD20	9	F	Oldman Riv. 10.6Km above AD21	673160.86	5546079.55
AD21	9	F	Oldman Riv. 5.5 Km above AD19	679132.46	5540394.90
AD22	12	F	Dutch Ck @ main road	686972.45	5530899.04
AD23	5	M	Dutch Ck @ 18 Km Bridge	673891.84	5529429.62
AD24	6	M	Dutsh Ck 7.7 Km East of AD 23	680365.99	5531432.62
AD25	12	F	Oldman Riv @ jct with Dutch Ck	687685.40	5530966.42
AD26	6	F	Daisy Ck @ jct with Vicary Ck	685982.99	5523837.88
AD27	5	F	Vicary Ck @ jct with Racehorse Ck	685513.75	5522550.56
AD28	8	F	Racehorse Ck @ jct with Vicary Ck		
AD20 AD29	6	F		685078.29	5523057.77
AD29 AD30	10	- F	South/North Racehorse Jct	678564.51	5521896.83
AD30 AD31	7	F	Highwood River @ Cat Ck	662210.84	5586434.55
AD31 AD32	6	F	Baril Ck @ road	667258.21	5583135.16
AD32 AD33	7		Etherington Ck @ road	668873.99	5578249.43
AD33 AD34	6	ר ר	Cateract Ck @ road	671513.12	5572627.51
AD34 AD35	5		Wilkinson Ck @ road Willow Ck @ road	671683.98	5572495.78
AD35 AD36	5 14			689123.99	5568753.76
AD30 AD37	14	ק ק	Crowsnest Riv. @ road bridge on Hwy 507	696537.71	5492259.15
AD38	12	F	Sheep River @ Sandy Mc Nabb rec area	675103.28	5611222.90
		1	Sheep River @ compressor plant Turner Valley	693268.36	5616457.79
AD39	5	F	Coal Ck @ Hwy 22	694724.59	5597927.61
AD40	7	F	Pekisko Ck 13 Km W of AD42	685139.44	5583605.34
AD41	8	F	Pekisko Ck 5Km E of AD 40	688341.70	5583549.48
AD42	8	F	Pekisko Ck @ road bridge	694700.46	5588596.61
AD43	6	F	Shepard Ck @ Hwy 22	697001.89	5579769.89
AD44	14	F	Highwood River @ Fir Ck	672629.96	5584639.68

Page 1

Coartin

	WIDTH	VEL	LOCATION	EAST	NORTH
AD45	14	F	Highwood River @ Eden Valley Reserve	681657.73	5590458.44
AD46	7	F	Flat Ck @ Hwy 541	685031.71	5600674.05
AD47	12	F	Highwood River @ Hwy 22	696127.43	5600255.50
AD48	- 4	F	Todd Ck @ Willow Valley	695947.98	5516239.66
AD49	7	F	Gold Ck @ Hwy No. 3	687770.53	5497110.80
AD50	9	F	Crowsnest River @ West Access Crossing	683516.68	5498589.58
AD51	5	F	Blaimore Ck @ Hwy No. 3	683674.60	5498675.05
AD52	10	F	Crowsnest River 2.2 Km W of Coleman	679342.24	5500447.65
1994 SAI	MPLING I	ROG	RAM - JUNE		
AG1		F	Carbondale Ck	679656.44	5474861.20
AG2		F	Carbondale Ck 3Km E of AG1	682265.87	5476275.67
AG3	4	F	South Lost Ck @ jct with N. Lost Ck	681772.34	5479902.57
AG4		F.	North Lost Ck @ jct with S. Lost Ck	681690.95	5480033.54
AG5		F	South Lost Ck 1.7Km W of AG3	680247.29	5478987.58
AG6		F	North Lost Ck 800 m above AG4	680807.14	5480038.88
AG7	7	F	Carbondale Ck @ jct with Gardiner Ck	685603.88	5478349.42
AG8	2	M	Gardiner Ck @ jct with Carbondale Ck	685733.71	5478249.44
AG9	8	F	Lost Ck @ jct with Carbondale Ck	685731.06	5478714.40
AG10		F	Lynx Ck @ jct with Carbondale Ck	687522.54	5481162.77
AG11	2	F	Middlepass Ck @ West Castle Ck jct	689533.53	5462198.28
AG12		F	West Castle Ck @ Middlepass Ck jct	689709.19	5462296.09
AG13	1.5		Trib. to West Castle Ck (small)	688657.77	5463625.59
AG14	3	F	West Castle trib. @ jct with West Castle Ck	689034.82	5463153.19
AG15		F	West Castle Ck @ jct with trib	689158.73	5463107.78
AG16		F	West Castle Ck @ bridge@ Ski area	688264.96	5465794.57
AG17		F	Syncline Brook @ road	687594.37	5468468.68
AG18		F	N. Racehorse Ck @ west road	675171.80	5523344.17
AG19		F	First Ck @ west road	675118.46	5523097.94
AG20		F	Smith Ck @ west road	674871.19	5519725.43
AG21		F	Trib to Smith Ck @ west road	674868.67	5519918.01
AG22		F	Racehorse Ck above Smith Ck jct	675382.10	5519122.40
AG23		F	Racehorse Ck @ trib jct	674465.10	5518230.25
AG24	1.5		Trib @ Racehorse Ck Jct	674421.68	5518381.03
AG25		F	Racehorse Ck @ trib jct	672860.71	5516141.21
AG26	0.5		Trib @ Racehorse jct	673029.36	5516141.46
AG27		F	Pekisko Ck	683634.65	5582985.14
AG28		F	McConnel Ck @ Pekisko Ck jct	682309.94	5582150.39
AG29		F	Smith Ck @ road Above Pekisko Ck	685245.67	5583653.31
AG30	9	F	Pekisko Ck 5Km E. of AG29	689343.59	5584452.53
AG31	12		Pekisko Ck @ road bridge Hwy 540	694764.22	5588595.64
AG32		F	Sheppard Ck @ road bridge	697065.38	5579804.51
AG33		F	Sheppard Ck 1.2 Km W.of AG32	695875.81	5579437.43
AG34		F	Fitzsimmons Ck Above Highwood jct	664810.56	5583476.99
AG35		F	Baril Ck above Highwood Jct	667470.03	5583213.71
AG36		F	Baril Ck @Hwy 940	668150.26	5581011.71
AG37		F	Baril Ck 1Km W. of AG 36	667497.32	5580293.84
AG38		F	Baril Ck 15Km W. of AG36	667906.95	5580621.65
	<u>່</u> ວ			1001200.23	1000021.00

SAMP#		VEL	LOCATION	EAST	NORTH
AG40		F	North Racehorse Ck @North/South Racehorse jct	678406.62	5522093.57
AG41	3	F	Goat Ck north trib	679251.99	5485903.46
AG42	4	F	Goat Ck south trib	679213.31	5485715.35
AG43			Goat Ck @ road bridge	681146.27	5485416.96
AG44		F	Wilkinson Ck @ Cateract Ck jct	671728.63	5572332.01
AG45		F	Cateract Ck @ Wilkinson Ck jct	671477.88	5572415.41
AG46		F	Cateract Ck .5Km W.of AG45	671023.81	5572371.50
AG47		F	Cateract Ck .7Km W.of AG46	670298.62	5572171.42
AG48	6		Etherington Ck 1.2 Km W. of Hwy 940	668415.53	5577455.88
AG49	.7	F	Etherington Ck @ Hwy 940	669064.24	5578452.83
AG50	.12	F	Highwood River @ Cat Ck	662388.53	5586290.24
AG51	12	F	Highwood River @ Lineham	658221.14	5591242.17
AG52	15	F	Crowsnest River Below Lundbreck Falls	702097.60	5496031.40
FOLLOW	V UP SAN	PLINC	G - OCTOBER		
AR1			South Passhama @ AC20	678535.27	5524002.27
AR2			South Racehorse @ AG39 North Racehorse @ AG40		5521992.27
AR3			Vicary Ck @ road bridge	678406.62	5522093.57
AR4				679850.12	5513818.68
AR5			Lost Ck @ AG9 Carbondale Ck @AG7	685628.08	5478678.98
AR6				685639.54	5478480.62
AR7			Carbondale Ck @AG2	682362.10	5476387.29
AR8			South Lost Ck @AG3	681638.42	5479877.56
AR9			North Lost Ck @ AG4	681570.50	5480087.99
			Lynx Ck 1Km N. W. of AG10	687397.79	5481296.06
AR10			Crowsnest River below Lundbreck falls	702097.60	5496031.40
AR11			North Racehorse @ AG18	675180.59	5523251.91
AR12			First Ck @ AG19	675179.64	5523094.72
AR13			Smith Ck @ AG20	674794.76	5519728.19
AR14			South Racehorse @ AG22	675415.24	5519217.19
AR15			South Racehorse @ AG23	674467.41	5518239.19
AR16			South Racehorse @ AG25	672875.60	5516111.20
1995 SAI		PROG	RAM - JULY		
AG60				710290.56	5577610.41
AG61				688694.71	5568690.39
AG62				678193.78	5481340.71
AG63				678207.83	5481499.99
AG64				676763.15	5477416.22
AG65				679801.68	5474580.26
AG66				678172.75	5474818.74
AG67				680719.86	5474799.74
AG69				673173.34	5522488.26
AG70				674250.96	5524013.04
4G71			· · · · · · · · · · · · · · · · · · ·	681631.03	5475202.38
AG72				684972.70	5475455.07
AG73			1	674999.08	5523379.48
1	·			689847.76	5586542.67
AG74				00904//0	

APPENDIX III

Gold Grain Count and Microscope Observation Notes

APPENDIX 3

SW		MINERAL SAMPLING, 19	93
		ENT (Grains counted)	
Sample No.	Au Grains	Sample No.	Au Grains
AD 1	15	AD27	1
AD 2	1	AD28	
AD 3	3	AD29	10
AD 4	1	AD30	12
AD 5	1	AD31	5
AD 6		AD32	3
AD 7	1	AD33	
AD 8		AD34	5
AD 9	1	AD35	
AD10		AD36	
AD11		AD37	
AD12		AD38	
AD13		AD39	1
AD14	2	AD40	
AD15		AD41	1
AD16		AD42	1
AD17		AD43	5
AD18		AD44	1
AD19		AD45	3
AD20		AD46	2
AD21	1	AD47	
AD22	1	AD48	
AD23	1	AD49	
AD24		AD50	
AD25		AD51	1
AD26		AD52	1

AT MANNER MELANITE (BLACK GANNET), SORE MEMATITE, RINK OS. ORADUE POWDELY LAYER ON SORE CHASTALS (ANSENIL?), CHALCO - RAME SATURE 3 STALL FLAKE AN - CONTAMINATION ADZ ITELOWITE, HEAMTITE - THATS ABUT IT BUT FOR LANE GAUNIT BB MEINNING, NEVILYTINE, PINKY HUTINDINF (MULLE), 972, PIELE OF BULNEN LIKE MEGYL / 3 IN WITH) 611 vin LIKE 12 67 4 (3 IN XOTA) ADA MELANITE, HEITHTITE, PYMIE (MASSIVE-AME) OLLASING LANDER - PINK Hg? B5 GT2 CNUCHEROID, BOCK FUGERENTS, MELANUTE (NOT MUCH), MUNDEPITIS HOW BACUDE? PURPLE GANNET ? AD 6 MELANTITE, NETATIE, GT2, (HLOMOTOND, HONDBLEDDE AD 7 MELANTE, HETHITE, GT2, CHLONDTOND, BLACK MIN (ILEMONITE?) OD COM Manist por Minon Routine, 872 109 MAINLY MELANITE, MACNENTE, HEANTONE , PINK GANNET (& BITS) ADIO MANNETITE, PYMTE, HERATITE, GIZ, MINON MELADITE, CHLOHIDOW, GANNET - FIN ON MULE (FILKED REV GARALE), IRAISESCENT BLUE MINERAL (BORNITE?) OR MULE MINERAL ONER BLUE MINENTE PICKED ADII MELMUTE, HERATUTE, STZ, BANTES CANNET ADIZ CALCITE, MACNEFITC, MELMUTE (GAMAL ANT), VERY MINDU GAMNET (PINK) ADIS AMENETITE, MELMONTE, CHLEITE, GARNER, PUNITE (MINON) RDIA MAINLY MELYNITE, SOME HEAVTITE FDIS CALLITÉ, SORE MELTINITE, MINON 972, MINON MUITE, MINON MUTUNETITE IRON OXIDE CEGTINE ON ADD GATINS CALCITE, HERAFITE, BONNITE (RINON) POSSIBLE COMOTE- DIOPSIDE (POKEN) PrNITE ADIT VAMIOUS IMOND OXIDES, GIZ (FILNON) CANCITE, HUTHFITE ADIB NERATIVE , FYNITY GANNET , CALCIVE

CHMIS GMAF MELANITE, HEAMTITE, VENY MINON PINK GAMMET. AD 20 GTZ, NETTATITE, GAGE MINENAL (ALKED), WHITE/CLEAN (FILKED), MANTE ADZI MAG NETITE, NETATLIFE, TELANITE (MINOU) FIELE OF COMMENTE GOW, VENY MINON AD 22 MAGNETITE, MELANITE, NERATITE AD23 MHUNETURE, MELMOUTE (MINON), HERMITISF, CALCITE, OXIOF CONTINES, PIECE OF COANSE GOID, POSSIBLE FUNCTE (FILKED) AD24 MELADITE, NETATITE, VENY MINOR MAGNETITE AS 25 MELANITE (MEDIUD), HERMITIE, MINON MATC, FE, MM, COMPINES, MINON 6-44 NET (ALRONDINI) 26 MINON MOTONETITE, MERATITE AD27 VENY RINUN RHGE, METATITE (PILKED ONE GANNET (?) AD28 MELANITE, HCMUTITE AD29 MAINLY MELANITE, SOME HEADTITE, MODEMATE RAT-NETITE, PICKED TWO MINEMALS ME AYANET COTHER UNKNOWN AD30 MINON MERMITE, NEMATITE, MU COANSE 3 PIECES, PILKED VANIOUS GAMMET. & ONE QUIEN FIRE AD31 MINON MELINDITE, NEMATLIFE, NAMIETY of GHANETS (PILKED CALSS SECTION) CHEERS MINER, PULLED MET AIKELY CADICA. An (COANSE VENY GRAN), POSSIBLE FYNCAE XELLCH D32 HEMATITE MINICA RECANITE , MACANETITE MINICH, CXIDE (DATINTES, GOW FILLED GANNERS P/CARES SETIM, GN RINEMAL 33 MINON PAR, HEARTITE, UNKNOWN FILNENAL FICKED, BLACK MINENALS PICKED, GANNETS FICKED

34 HEMATITE, POSSIB PURF CHANT PICKED, GARTO MINERAL VICKED, SEVENAL SAME VIELTS LOWINGE LOLD PILKED LYNGEST. MA OXIDE COPPENDS VENY MINON MUTANETITE AD 35 VERY TINON MAL, FEMM CONSINTLY, HEMATITE, MINON CANNET (loss PURP) AD36 HER MININ MUT- NYJUN MELINUTE _____ AD37 V/M MAG, PYNITE, HERMITE, SOME CHANET AD38 VIA MAD, CALLIFE, MINON FYMITE, OXIDE COATINGS, GANNET -MAINLY FINK, GMEEN 2 MINEMITE (GANNET?) AD 39 MINON MAGO, PYMITE, MUCH GAMNET 8 ADAD VIN MOTE, PYMITE, HEADATITE, POS CR DIOF, MARDINE CAL VIT MAL, OXIDE LOAFINGS, HEATAFITE, MINON FAMITE, POSS CA DIOP ADAZ VIN MUCHARTE, PARTE, BARTE, CHANTE MICH, AN (1 PIECE), CHETTON MINERAL D BLUE / WHITE ? ADA3 MINON MAINER ANNA ANNET SOME MELTONICE FURIN PINK (FULLES) RDAA VIT AHG, HEATHFITE, FE An OXIDES, FEW SAAL CHITS GANNET -90 A LOT OF YELLOW ADAS VIT NOT, CALCUTE, OXIDE CONTINUS, MENATITE, PAULTE, AU, FEW US ADAG VITI MAG, HS MBOUE (INCLUDING HU I PIECE) ADAT MINON MAL, AS ABOVE (NO AN OBSERVED) AD AB MINON MATE, MINON MELONITE, CHECITE, PYNITE V/M, TO AG MINON MALL, MAJON MELLINITE, MEMIZTITC ADSO MAGNETITE, MAJON MELADITE, PINITE, HEMATITE

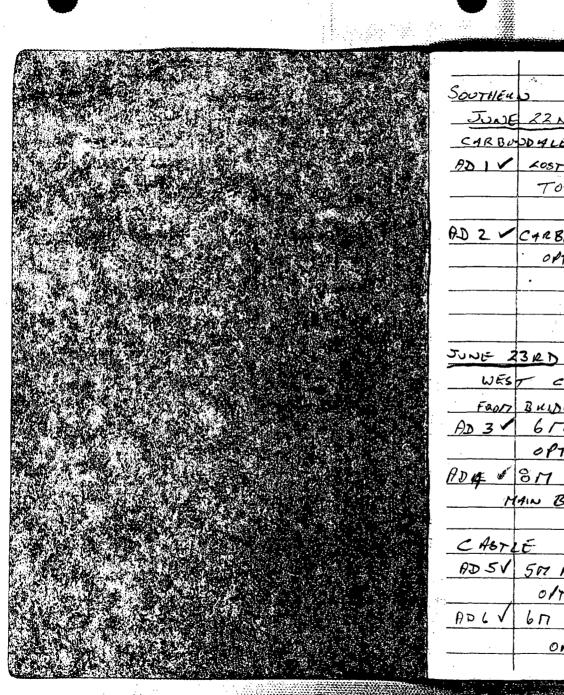
AD 51 Minon 17th, MECHANITE (MAJON) HEAMATITE MAINLY MELINITE, MACNEFITE, PYMITE, I CALCITE AD 52 11000 -

An 1. (VENY STALL) 161 Poss Lyck FINES CARBONDALE A 74 6-3 - Hy ____ PYMORE ? (wonr) SINTH LUST -6-4 NORTH LOST 65 SOUTH LOST 20-6 NUXTH LOST 800 M/UF 67 CARBIN DALE 16-03 GANDWIEN 69 - tly, LOST AT BRIDAF 610 LYNX 1611 - Heit 1612 - Hg++ '6-13 - Hy 6-4 - Hgt C ASTLE - ALL (FLAT, PLACEN) 6-15 ----617 ----618 -:619 -6-20 - Hg 6-21-KALEHONSE DRAINAGE. 1622 -423 - 2ynbe OR PEBOLES PURPLE ZIRCON 6 24 -6-25 - Hg 6-26 NO SYNFLE 6-27-1- 20 -PEKWKU - HG. 630 - 1 Piae of AU (PUSSICIA 4144-47) 6-31 BRIGHT GIVEN MINENAL (MICH ON CONTINE) KOT OF PIECE OF FAINLY GENGH GOLD

Ab-32 - LOT OF GYNNET, Du I RUNDRO FLAIN, HG SHERMAN CK A 33 - LOT OF GANNET, Au'l KONDED A6-34 -146-35 - Aul VENY STALL PIECO BANIL CK A636 -A6-37-\$6-38 -Ab-39 - Aul VENY SAYLL ViErt POSSIBLY MAYLLIDA RACEHONSC A6-A0 -A6A1 ζγωχ A6-A2-A6-43 -A644-Abas - Hg ALSO ANZ(FLAT, PLACEN) ALSO SERTED MORE 50 NAUL FINE MATEMAL AGAT - Hg NIGHW ODD LONNINY 4648 - Hg AC-49- Hg + A650 - Hg A6-51-Hg++ Ab-52 - Hgt++ An I (PANT Hg) CHOWSNEST CLUNNBREK FALLS

SW 46BE KIH

API - Hy (MINOL) -60 AD2 - By AL 2 FIERES (I VENY SATUL) -60 AR3--60 gr At -60 An 5 --60 AR6 --60 A27 -- 60 - 60 428 - I PIECE AN (FAINLY COARSE), LOTHEN VIECE MAYBE AN 429 - 1 " (VENT STAL) - 60 ARIO -- 60 ARII -- 60 ARIZ ws HRI3 -WS AR14--60 A I Pitt An? (curnst) ws 91216 -NS

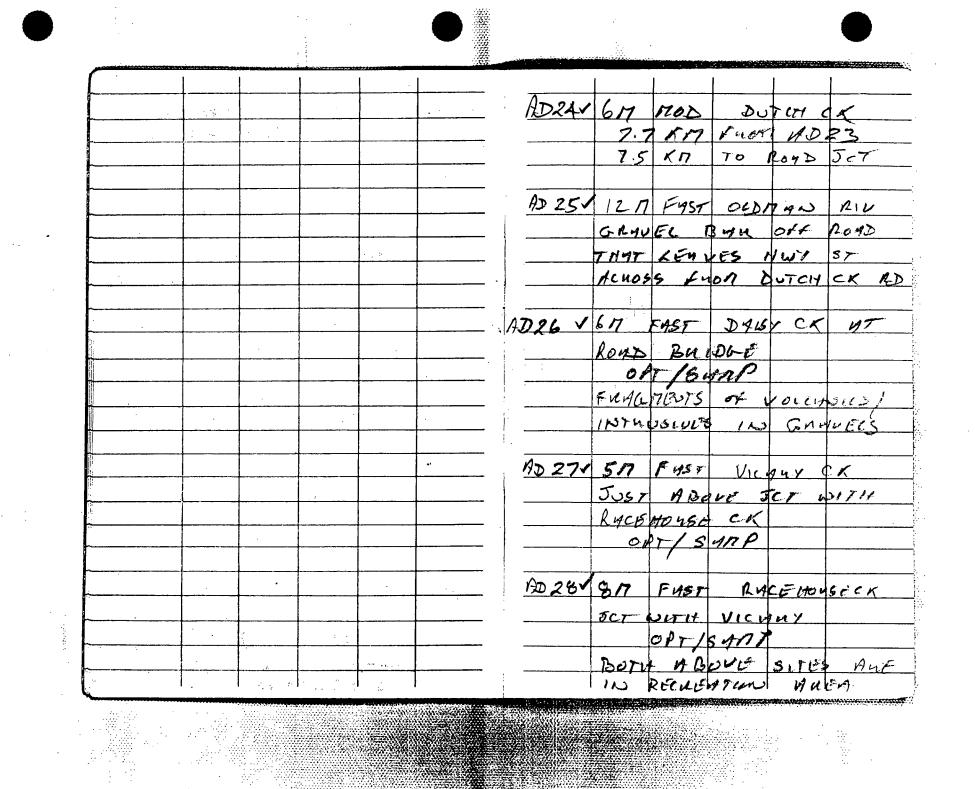

LNI - KOT OF METHATION FILC GYNERTS

-60 - 40 WS

APPENDIX IV

Field Notes

873 2077 Guy in Y DRAFTING PLOTTING Neville Crosby Inc. 325 West 6th Avenue, Vancouver, B.C. V5Y 1L1 Tel: (604) 873-4343 + Fex: (604) 873-8166 + Toll Free: 1-800-663-6733 Waterproof Level Book NCI #342 Mike Mgers - 20 ment 10/g a concentrate somale botoit 1993 rowsnas Oldmein, Highwood ond Castle River drainage a de la calencia de la constitución de


		·				
	<u> </u>	ŀ .	199	B]]	100
SOUTHEN		AREM	-14 7	Prov	RECCE	
			-70	177000		
_JUNE						
CARBO	1	1	i	1 .	T	
HOIV	· · ·	1	1	1	VELLY BAR	
	700	K ON	TICAL	SYAPL	Ē	
				ļ		
AD 2 /	CAR BOI	DDTLE	517 1	1ST	By12	
		44 5				
			1. 1.			
	1					
T	2			<u> </u>		
JUNE Z				<u></u> _		
WES	T	STLE	KonD	avi "	T 10.2K	
FROM						
AD 3 🗸	617	Fus	T/Di	EP	AT BULIDO	
		CAL				
ADK &					TIF 4T	
M	AIN BY	EDGE	- 01	A 150	INT P	
				1/34		
CABT	F					
	1	PT W				
		5101				
ADLV	617 F	457	10.2Km	FROT A	D5	
	OP	5.917	PLE			
						E /

	a		2.5			AD 74	107	FAS	- C	ST AD	OVE BRIDG
WE HAVE	TR			ct 10	Kas (20 BS)				1541		
OF -20 MES	SH 56	EDINENT	FROM	EVENY	SITE	I					
AT EACH Si	TE a	DE DE	ENMIN	ED TO	E. BEST	JUNE 24					
SARPZING PE	DINT	FOR O	PTITIZ	TION O	F HEAVIES	ADB	4M	FUST	AYNX C	RQ	IOKM
CONCENTRATIO	on.			 				EA			
AT A NUTTO	SEN	of si	TES A	517410	Eн						
SAMPLE WAS	s cor	LETED	FOU	FONCER	TRATION	-A091	<u>'6 n</u>	FAST	LYNX	CKO	BRDGE
USING THE	6-04	O GENI	I PR	OR TO	EXH TIN HTTON	·	ofi	1510	P		
UNDEN THE	1			4			WIDO	Roto	シレモ	or 1	DIFF
SITES ANF	NOV	red G	y 'of	T/SAM	P"		VOLC	ROCK	Fri	105	
						ADION	417	FAST	MIL	- CK	AFRA
V. 54	AMPLE	SITE	PLOTTER	on 1	50,000		BRIDG	E OI	17/50	₽ P	
							MILL C	K HIG	115-22 U	1 15	BHARRED
SA SA	TPLE	COLLEC	rEDJon				to ALC	ESS B	V BAPS	-IST C	HURCH
No No	or c	OLLECT	EDS	BLACKK	WHITE		CAMP				
					······						
AL.	L SAL	TPLES	NHITED	"A"	FOIL		GL AD ST	ONE O	K 15	NOT	M UCH
	BERT	-17 DI4	thowast				BETTEN	THAN	> 9 7	21CK1É	AT
							SOUT H	END			
	PIEGI	es ox	FL 900	ING A	- EACH	2.				Act	MILL CK
<u>ຣ</u> ,	TË	lon	NOF 3	WITH	NO, ON	ADIIV	F	617	BLAD	STONC	AT
· Ar	001	PLNK	±" Pic	с£			WASH	EDO	VI B	RIDO	-0
I								00-	34	RD AR	

$\frac{\partial T}{\partial t} = \frac{\partial T}{\partial t} = $		
$\frac{\partial T}{\partial x} = \frac{\partial T}{\partial x} = $		
$\frac{\partial T}{\partial x} = \frac{\partial T}{\partial x} = $		ADIZIAN FAST BELOW MOLDAY (K T.
$\frac{1}{1}$ $\frac{1}$		
$\frac{PD 13^{\prime} 4H}{P457} P(L)SOD CX$ $\frac{PD 13^{\prime} 4H}{P457} P(L)SOD CX$ $\frac{PD 13^{\prime} 4H}{P457} P(L)SOD CX$ $\frac{PD 13^{\prime} 4H}{P457} P(L)SOD CX$ $\frac{PD 14^{\prime} 4H}{P457} P(L)SOD CX$		 KST COULDINT AET VOKE
$\frac{PD 13^{\prime} 4H}{P+37} P(L)SOD CX$ $\frac{PD 13^{\prime} 4H}{P+37} P(L)SOD CX$ $\frac{PD 13^{\prime} 4H}{P+37} P(L)SOD CX$ $\frac{PD 13^{\prime} 4H}{P+37} P(L)SOD CX$ $\frac{PD 13^{\prime} 4H}{P+37} P(L)SOD CX$ $\frac{PD 14^{\prime} 4H}{P+37} P(L)SOD CX$		 _ 2.77 FOUT HUS ICARPSITE
$\frac{1}{10000000000000000000000000000000000$		
$\frac{1}{10000000000000000000000000000000000$		
		 - $ -$
$\frac{1 \text{ NCREASE IN VECCANCEPT COMMENTER \frac{5 \text{ NEE 25FW}}{5 \text{ NEE 25FW}} \frac{5 \text{ NEE 25FW}}{1 \text{ NEE 25FW}} \frac{7 \text{ NEE 25FW}}{1 \text{ NEE 25FW}}$		
$\frac{1 \text{ NCREASE IN VECCANCEPT COMMENTER \frac{5 \text{ NEE 25FW}}{5 \text{ NEE 25FW}} \frac{5 \text{ NEE 25FW}}{1 \text{ NEE 25FW}} \frac{7 \text{ NEE 25FW}}{1 \text{ NEE 25FW}}$		
$\frac{J_{SNE} 2574}{P_{ST}}$ $\frac{J_{SNE} 2574}{P_{ST}}$ $\frac{J_{SNE} 2574}{P_{ST}}$ $\frac{J_{SNE} 2574}{P_{ST}}$ $\frac{P_{ST} 2574}{P_{ST}}$ $\frac{P_{ST} 2574}{P_{ST}}$ $\frac{P_{ST} 2574}{P_{ST}}$ $\frac{P_{ST} 2574}{P_{ST}}$ $\frac{P_{ST} 2574}{P_{ST}}$ $\frac{P_{ST} 2574}{P_{ST}}$ $\frac{P_{ST} 2574}{P_{ST}}$ $\frac{P_{ST} 2574}{P_{ST}}$ $\frac{P_{ST} 2574}{P_{ST}}$ $\frac{P_{ST} 2574}{P_{ST}}$ $\frac{P_{ST} 2574}{P_{ST}}$ $\frac{P_{ST} 2574}{P_{ST}}$ $\frac{P_{ST} 2574}{P_{ST}}$ $\frac{P_{ST} 2574}{P_{ST}}$	1	INCREME IN VOLCHARDS
$\frac{PD_{15} \ 6H}{P} = \frac{PP_{25} \ LIVINGSTONE}{PT \ Corrected to the set of $		
$\frac{PD_{15} \ 6H}{PT_{cov} FLVFVE} \frac{AIVINGSTONF}{BT_{cov} FLVFVE}}{PT_{cov} FLVFVE} \frac{AIVINGSTONF}{BT_{cov} FLVFVE}}{OPT_{cov} FLVFVE} \frac{AIVINVA}{SHVPVNA}}{OPT_{cov} FLVFVE} \frac{AIVINVA}{SHVPVA} \frac{AVINVA}{SHVP} \frac{AVINVA}{SH$		JUNE 25TH
$\frac{PT COUFLUEDLE WITH SHUTNNY}{OT SHTP}$ $\frac{PT COUFLUEDLE WITH SHUTNNY}{OT SHTP}$ $\frac{PT COUFLUEDLE WITH SHUTNYY}{OT SHTP}$		
$\frac{\partial T}{\partial t} = \frac{\partial T}{\partial t} = $		 AD15 6M FAST LIVINGSTONE
AD 16 517 FAST SAUVANA CA OPT /SATT AT SOT WITH LIVINGS AD 170 817 FAST / DECP-LIVING-STO		 AT CONFLUENCE WITH SHUMNING CK
ADI70 817 FUST / DEEP-LIVING-STE		 - OTT SAMP
ADI70 817 FUST / DEEP-LIVING-STE		
ADI70 BIT FAST IDEEP-LIVING-STC		- 170 16 517 145 - 5400404 CA
ADI70 817 FAST IDEEP-LIVING-STC		- UNI / STAIL AT JET WITH KIVING STONE
<u>1017 011 1-07 1.000-1000-1000-570</u>		AD. 70 & M CASE LAND LAND
In ER EROD Salancial ad		- INT FOR FOR SALANDE
BASK SANGLE		 - IOKA FROD STLONDA CK RD BANK STARLE

an a sum and an an an an an an an an an an an an an			
	 RD1	8 8 17 Fust	LIVINGSTONE MIC
	 	10K 300	W of MD17
	AD 19	· []	CLDITONU 32KN No
		STANT OF	ANP
	 AD2	i . I	CLONNO 10.64 UBONE
	·	HJZX 017/54	np
	ADZ	11917 FHST	OLDAM 55 K/1 ABO
	· · · · ·	AD19	
	 <u> </u>	E 267H	
	 RD	224 1217 F45	Buyuec Byu
	 	DUTCH CK	ISMAR 15MAR
	AD2	31 517 1702	GRAVEL BUN
	·		K @ 18 KT BADG
	·		

.

		 •. · ·		·,	RD 291	611 =	FAST	DEEP	Sour	D RACE
		 				1		1035 EH(1	1	57 70
		 		·	\$ UNE ;	2774				
		 		`	- AD 301	177/	F457 EL 13	1	6 3	C-97 C-4
		 			AD31V		T/Su			
					<u><u>It</u><u>J</u><u>J</u><u>V</u></u>		15MA			
				· · ·	AD 321	617 01	FUST /.	EEP PLE	ETHER 400M (P CK
		 			AD 33V			DEEP UE J		
÷		 	· · · · · · · · · · · · · · · · · · ·				1250			
· · · · · · · · · · · · · · · · · · ·					· · · · · · · · · · · · · · · · · · ·					
	• •			4		1 				alalasi culturasi

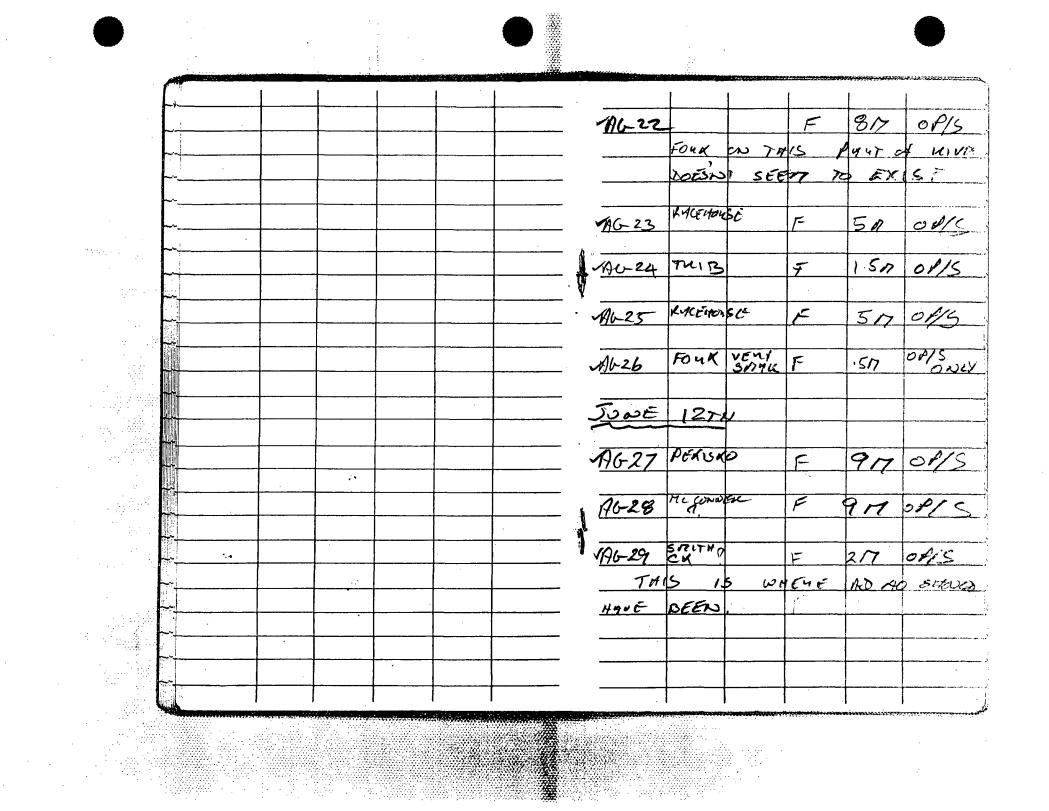
.

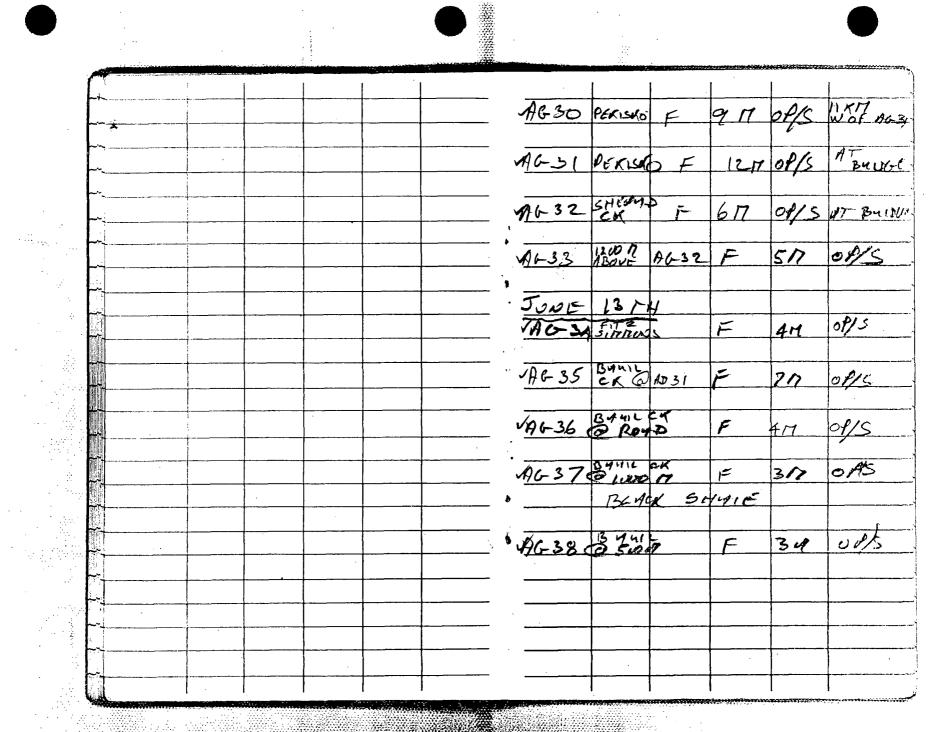
						. <u>.</u>					
			* : 			an an an an an an an an an an an an an a					
						AD 34		Euser		<	
						110 34	AT	AG I	ANEM	505	- MDOUE
	· · · · · · · · · · · · · · · · · · ·							1			CK_
					· · ·	·	<u> </u>		5-1171		·····
	~							,			
						AD 35	517	FAST	WILLOW	CR	BELOW
							BALAG	E B	2 Let	NETH	<u>rs</u>
				· ·			AUESS	NUT	10551	BLE	IN EITHE
	~			· · ·	·		DINFET	in		Crust	
					•.,•	 	OPTI	SARP	(a) / (b) D	12-1	
· · ·						-					
· · · ·						AD 361	l	1			cmo
		· · ·			·				Dr F	X17	······································
					·	<u></u>	OPT	15450			
							0-0-0-		<u> </u>		
						JUNG	287				
						RD 37	12 17	EAST	5.11	TED A	10154
		· · ·							AN		
	·						1		1		SARPA
			•				1		assibe		
	-								DE CH		
			- ·				RIVIN		SAMPO		OTAPA
							Side	THI	S VM	107 L	בסן ז
			·				WELL.	bevec	pes 7	to AL	OW EASY ATTRING
										in the state of the second second second second second second second second second second second second second	
									. •		

.

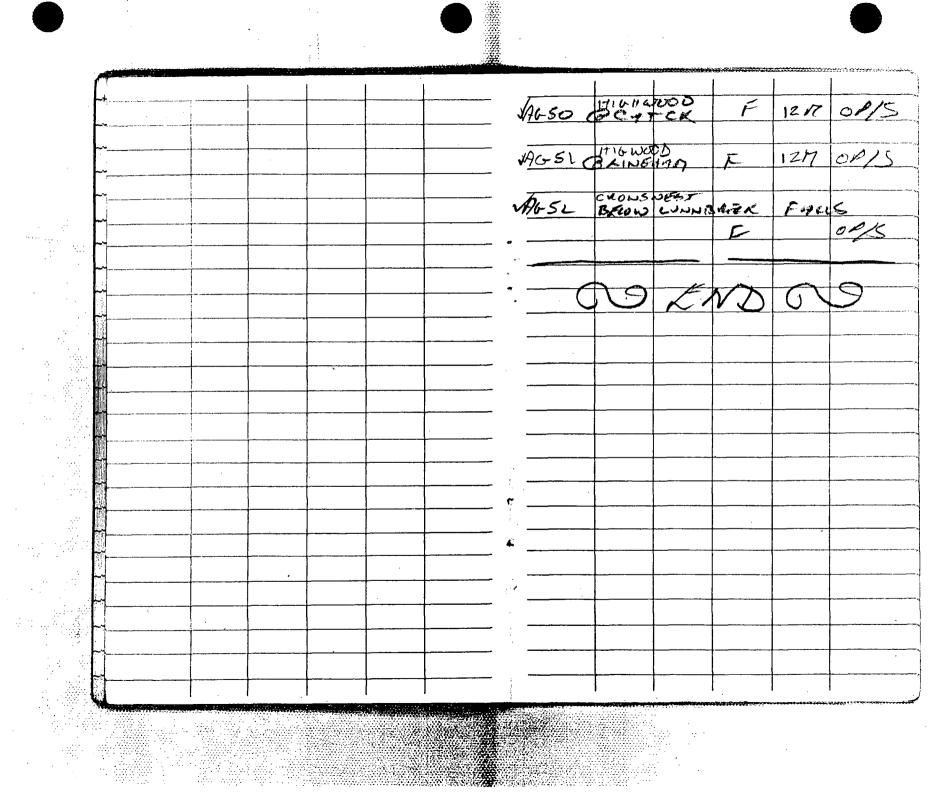
AD 38 1017 FAST SHEEP RIVEN BENIND COMPANEERIN NUME * .Y. 84. NT TURNER MALLEY OPT ISAMP AD 39V 5M FAST COULCK AT ROAD (22) BHIDGE 717 FUST 13 KM PERISKU 1 ADAD NUT TUCH IN WAY A FINE OPT/ SANA BLACK SHACE ATCROP ABUNDENT 817 FOR SKA EOF ADAI 1860 PERISKO de RD JET ADAL BA FAST PEKISKO CK SUST YBOUT ROYA REPLACE . OPTISIAN s an is a .

				· · · ·	· · · ·		A	D43	67	FAST	51	Fory.	A CH
	~			<u>.</u>			-		4.7	RD	Bui	ove.	A CA
	~~~~						101		CTT H				
	~~~~~	2					. –	ADA4					
	~	· · · ·					-		4T	FIR CA	C RE 54AP	e An	E4
	· · · · · · · · · · · · · · · · · · ·						-					1411	4, 11935
							• -	ADASV	AT 1	NDIM	S RI	SEIL	E VALLIN
							• <u>-</u>	9D46 V					
						· · · ·	····	1046	1	1	DUE		wess
							· • _		i .	KHEN OPT /	ARE. SARP	85	
ļ								0 0 07		/			
					χ.			AVAN	MAJAN	RUN	D /22	нісн () 	ONS PT
	· · · · · · · · · · · · · · · · · · ·					· · · · · · · · · · · · · · · · · · ·	• 1	DAEV	411	Fust	700	n C	≮
ŀ	~		•										if the
	· · · · · · · · · · · · · · · · · · ·						; _		NOT	OIZHEC	Γ		


的形式和广告。


~}	_		· · · · · · · · · · · · · · · · · · ·		AD 491	717	F457	Gai	bck	
							choi	1		1454
	 						2	1511	1	
	 				THEME	645	NO	207	D 1/c	4055
	 		+	÷.	H4H WU	os a	vs v	P (1	PEN M	er ca
	 				AS SH	nun	an 1	rop.		·
	 				<u> </u>	3-27-11				
			· · · · · · · · · · · · · · · · · · ·		JUNE AD50V	9M	FAST	CRE	WSN.	EST A
							EST 1		1	
	 			•			nno			
	 			.	AD51					
	 					ATC	12025	NBT	1/10/	
	 			. .			087/	SGII		<u> </u>
		\ \		· · .	ADSZV	100	F 4751	CHURS	UEST	ne
	 					2.2	KNW	or	10101	792
	 			.1			ND			
	 									<u> </u>
	 			.'.						
	 			·						
	 		+							

	· - · · · · · · · · · · · · · · · · · ·	<u>*.</u>			BTH JU.		ALBI	ENT4		994
			 		VAG 1	\sim	m) 27(1	= 617	Fus	- opjs
-~_ -~_		· · · · · · · · · · · · · · · · · · ·			AUZ	C443m 6M	UD71F F	ЗКЛ	NOT	FALL
				1	<u></u>					
		 			AG-31	SONTH	KOST	F	47	oP/S
			 	 -	AGAN	NOUTH	LOGT	F	517	UP/S
		 			AG-51	SOUTH KOST	17007 5 863	F	67	opis
					97# 50	NE				
-		 			A6-6-	Noult H Last	900 M HBOLE H	64 F.	417	offs
		 		 Ì	80-7V	CHRBON DALE	ABOVE G-44D-NICE	F	711	OP/S
			 		AG-8 J	CANDAI	<i>a</i> u	Μ	1-3/7	01/5
~~		 •	 		A6-9 ~	LOST CK	AT BAIDUE	F	317	op/s
	ī	 			AGLOV	KXNX	AT	F	817	


.

]				İ	
		LOTH 3	Daz E			
	 	A611	MODUS Pas	F	217	of/s
~·		A612	CHSTLE CK	F	617	01/5
		AG-13	CHARLE SATIL	Ē	1.5	
	 	AG-14	CASTLÉ THIP	F	3	ols
		A615	CASTLE	F	617	opp
	 	A6-16	C Bridert	F	717	opis
		Ab-17	CASTLE THIB	F	AR	or/s
		1 11714	JUNE			
		140-15	N RAFERONSE	F	517	offs
<u> </u>		1AG-19	FINST	F	317	OP/S
		VAG-20	SITITU CK	F	317	OP/S
····		40 21	FOAK TO SAITM	F	317	op/s

				٠
· · · · · · · · · · · · · · · · · · ·		WE LATH	······	an annailtean 1812 i 1814 i 1817
	AG	-39 SOUTH RACEHONSE	617 F	oP/s
· · · · · · · · · · · · · · · · · · ·		40 NOILTH	617 F	OPTS
	. AC-	41 FIRST FURK	NOUTH 317	OPIS
	. 40-	AZ SOUF 7 HIB	x F 4 17	0115
	<u>AG-</u>	43 KYNX Frib 2 Bribot	517	00/5
	<u> </u>	DE ISTIK		
	JALS.	44 AT REC MUEN	F 917	opp
		25 CATEMACT CK	F 917	01/5
	·····	6 SCHO ADA VE AS	F 917	OPIS
		2 CALENDER OK 2 700 ADOUT A	6 F 3 M	01/5
	180	18 Eriteninter	1 1	OP/S
	JAGA	9 ETHERITOR	F 71	OPIS

5WK	ANDER	1 rug	- 165	- KU		COT 14					
(mr)	7		+			AL 1)	N V.	ACEIDY	SE	-	
ABL		24	. 39	Ruc	E 1to 46C	AL 12	Fina	- cr			
	1	ł	AUCH			1712 IL	Fing		-	_	
						A1213	SMIT	HCK			
AKZ	Non	H K	EIter	50			1		<u></u>		
A12 3	VICAN	r ck	ļ	ļ		ARIA	SOUTH	RACER	onsr		
					· · ·		l				
				<u> </u>	·	ALIS	4	21		1.3 K	17 17
OCT 13					· ·		ļ		·		
AR4	LOST	CK	-20	2007	· · ·	ARIB	11	11		-	
A125	6.20	7				,					
1/12.5	1		$\frac{1}{2}$						·····		
		670			13-0				<u> </u>		
ARG	2.KT	Sor	115	me	ARBONDA	•					
								-			
ARZ	S LO.	ST C	ĸ			,,,,					
1.0- 0			·						·····		
AR 8	is to	sr	<u> </u>								
											
ARg	LYNX	0	BRID	+0		-					
A1210	6.0.1.2		(BELO				·			· /	

: •

Rite in the Rain[®] paper was created specifically for writing Water Resistant field notes in wet or humid weather. A chemical coating sheds water, making it possible to write clear, readable notes. This paper accepts most types of pen and pencil without smearing, It is available in most grid patterns and book sizes as well as special printing and blank pages which feed through most photocopiers. Other waterproof & water resistant paper products available. **Cruiser's Field Book** Level/Metric JUHTON WOUR REHTA NORPAC North Pacific Supply Corp. 443 Terminal Avenue, Vancouver, B.C. V6A 2L7 Tel: (604) 662-7676 • Fax: (604) 662-8133 + 1-800-873-8166 24 Pages the second second second

)				
SW ALDERTH	- 1995			
JULY 12/ PERIS	TO - POWNER SILT			
, RED (Bridge - SONE F Synders 025Euro			
	SLOW FULL of CL OUTCHOPS ALL			
A6-61 V W14	20ω εκ μβου ς 5η	KO ZD		
JAY 13 AG-62 F		SOUTO FORK X TOP OF 2057 NO WTH FORK		
	417 ~ 1307 N 5105 OF	NONTH FOR		
(CROWENERT?)	ABLE FLOYT OF DN SOUTH SIDE NO NOATH SIDE			
Rax SAMPLE	OF PORPHYAY	CANIC OD BD		
POSSIBLE BEACK	GANNET			
	2			

JULY IATH	
SOUTH LOST	
LAKEE CONOLON BUNLDEN NO	
16 NEOUS CLASTS / DIFF SOUT OF	
MINTIN	
AGGA V. F. R. TOP OF SOUTH FOUR	
SMALL SHAPLE	
RA - BLACK SHALE BED	
RA - BLACK SHIPLE BED	
R3 V CONGROM -SOUTH 2055	
R3 V CONGROM -SOUTH 2055	
JULY 15 - CARDONDALE	
AC-65- F 5 MACDONALD CX	
AG66 V F 10 CARBODDALE MT	
ROAD FORATING RAIN-NO DIAR	
TO COLLER FULL NEMM	
A667 F 3 Q SHEAN ZUNE	

				1									
5023 1674													
AC-68 /	F	2	Q	WYEN	out				╡╋┽┽ ┥╋┿┿ ┥╋┽┿┿	╡┫╍┤┤ ╡ ┥┫╺┧╶┤			╼╂╸╎╸┼╶┼╌┤╴ ╤╉╌╏╸╿╼┿╾┾ ┉┨╺┟╍┥╼╄╌╎ ┈┠╶┦╸┞╼╿╼┫
	Smith e	K											
<u> </u>	NHLKED	Smith	ck Roy	ז סז מ	THINS								
·····	DWLY 1												
	MILLOW S			<u> </u>						╞ ┇ ╞╋┿╋			<u></u>
										┟╋╃┿┾ ┟╋┽┽┽	┿╋┽┼┾╸ ┿╋┿┥┿╸ ┝╋┼┼┿		<u></u>
<u>R7/</u>					VOLCANICS		╪╪╪┽ ╪╪ ┾╪╊╵┾╺	╈╋┿┿		╞╋╆┿┿			
	(FLON) FLOM 5	h .			SPAN CUTSI								
				RITH C									╊┿┿┿┿ ╊┿┿┿┿
			5 XI	L 20								╍╊╍╞╌┼╌┤┄ ╍╊╍╞╌┼╌┤╌┤╌	┨╍┽┈┾╸┼╸┽╶┥ ┥╶┾╾┽╺┾╼┾╼ ┽╶┿╼┿╸┝╺┿╼┥
<u>S</u>] /	BROWN	20		501	Fred? Jer								
521	G-REY BLACK	SHALC	CLAV	100 17	W 51		╆╫╋╫┿ ┝╋╋┿┥┿						
	. /						┥┥╻┥ ┥						
53 /	SHALE	GHED	ELAY	15017	WS1			╪ ┇ ╴╴╴╴╴ ╞╋╴╴╴╴╴ ┝╋╴╴╴╴					
BOTH ROAD	1	· ·		1			╶╶╴╴╴	┥┥ ┥ ┥ ┥ ┥	╊┾┿┿╡ ╋┿┿┿┥				
× SHTST	NE.	STEN							╏┼┼┼┼				
	ļ		 6						ļ				

JULY 1774	NOKTH RACE HOUSE		
AG-69 / F	3 167003	<u>nisse</u>	
	(Paprol - DUCH	┨╴ ┣┼┼╍┿╍╋╸┫╶╽ ╼┿	
	LE Q CY		
R82 overet	P/FLOAT ZUD FT W of ADi	23	
AF 70 V F	2 FAST of W, RALEMAN	se	
RIO V HOLLIM WALKED & DROV	E FIRST CR ONLY ROLKA ORS		
WENE ZINGSTONE DROVE OVEN TO	NORTH RACENDESE VIA FIL	<u>67</u>	
BILTSTUNE			

5044 1874 - A6-71 TAIB	CARBON DALE /C F 2		
RII ROAD OFF	CAR BODDACE YE		
2-1 KM	I J. MADERICK MI	<u>nu</u>	
COUTINE Sous	Enort can acol		
S7 ON TO	$rac{1}{2}$		
58 10 SID			

· .'

·

JULY 1274 ACEMENSUS RIZ - Sout A RIMONSE Pass VOLCANCS @ 46-RZ Vocconics KACE NOUSE @ WISHED OUT BY AG-73 ~ NOUTH F JULY LOTH 14453 KMANASKIS MIGHWOOD REVEN NO NOULAT WO OF VOLCODICS TO ALVEN BONS. SOME CONDUTT OF AUGUTEITE ISONALE TYPE CK - ONDER NOLK NOVES IN BAnu ALTUSTENT, STUDSTONF EVIDEDLE WNF SILSTENE & CONGLOR OF SUBITZITE! SHOLE TY AL RIA SLIGHTLY COOKEN SICK STORE ETHENNOTON CK - 34/75 105 BANIL CK. SINCE THERE DOES NOT MIPEYL TO BE MAY VOLCANICS IN THIS MARK PENNAPS THE GOLD IS DENVED FROM OLACINE TILL CLOCKED CALLSON CONTRACTOR

Frex 2157 - 5 170 Porns 50	UTHX NONTH RHEFITOUSE	
CALBONDAL 170463 70	WINT- GHNASELD KW. E / LUET CK. A LEN LOND VIEN SHOWED	
JUCK 23 ND WILCON	Cod TO MININ HOM	25
	KINSON CK. RUCK STRALES AT	
RIT PANNED JU NATUNAL	HALE (ACTIND HS LIFFLES) NO COLOU	
	MITE, NO MALNETU ATN - ACCESS RANNED S TO BE HUL AIDESTON	

	H - PERWKO CK - = NOSSED RIVEY HADD WELKED WESS TO FALLS 15-2KH SIEVED WDD FADNER STOPPUS - NO CHANNERS	
	WEYT SEED CLINDED HILL F OF PERSKOCK TO INTERCEPT DICKSIND CK. NOTILED WINNYT	
	MATTINES TO BE A SLUNP FEMPONE. MOONT A MILE TO SWIM, IT TUNNED NT DO BE A RELEBSING SHALE UNIT,	
	HENDED FOR DICKSON - PANNED SILTS NO GUANETS, NO INDUCTIONS OF ANYTHING DIFFENDET IN THE FLOHT.	
	NAIKED DOWN TO JCT WITH PERISKO, (WE STANTED FROM POP DAMS) PANNED DICKSON JUST ABOVE PERISKO - NO CHANTS	
·		

JULY 25.	H - PEK	SKO CK		
AG-74 -		ETTENSON CK		
	CHANETS SIL	PINK)		
		PERISKO		
	HBOUC OMUNDETS	ENENSON	<u>ND</u>	╋┿╋
A6751	F 1		3 TO FABRER	
<u></u>	1 1	TO WEST MANY GAN		
	THON 20	MEY CHUPS M MESON, WALKI	to up	
	CK SEVENA INTO SWARF	A KENS	<u>, ck 608</u>	
·		······································		

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
Rock	SAMPLES SW. ALBENTH 1895
RI	
R3	CONGLOT FLOTT S. LOST
124	BANCK SHALE 9 IN PLACE S. 6057
R5	BRACK SHALE INS PORCE CARDON DIALA
	CNOWS NEGT VOLCMUC WITH AEODISU
	CNYSTALS - CARBONDALE (FLOMT)
<u></u>	VOLCHNIK FLOW - SPUTH RACEHOLLST
	SMITH ER SET
<u> </u>	VOLCODIC FLOW TOO 17 W
	OF CK (SHARDER - DUTCH)
_ <u>R</u> .9	SAME AS MBQUE - FIDEN
	Ryruix
<u>R10</u>	VOLCODIL JUST ABOUND
	RACEMPRE - CONTHINS BUILT
	SPOTS THAT MAY BE SULPHUN
<u>R11</u>	VOLCMIL ON RED OFF CARENDAUE
RIZ	Sourn RINGUST (AG23)
	ourchop on RIUER
<u>R13</u>	COAL FROM VICANY CK HARES
Riq	EAULATRY CODRED SUTSTOLE FORM
RIS	BARIL CK (FEDTA)
<u> <u> </u></u>	From @ CMMIBONDWC / CK JET
RIG	on canbonder in Piace
<u>~16</u>	RUSTY 34500 K ND W1214-

# **APPENDIX V**

Cost Statement

# COST STATEMENT

<u>1995</u>	Rubicon Minerals field and analytical work	\$16 ADA 65
<u>1770</u>	•	·
	-	
	-	,
	•	
		\$ 867.54
SUB TOTA	L	<u>\$30,670.66</u>
<u>1994</u>	MWM Exploration	\$ 2,200,00
	MWM Exploration	•
	•	,
	•	,
	<b>4</b>	,
	•	,
		,
		•
SUR TOTA		4 101100
SUDIUIA		<u>\$13,910.80</u>
<u>1993</u>	MWM Exploration	\$ 2,841.00
		\$ 2,004.22
	MWM Field Assistant	•
	Vancouver Petrographics	
MWM Exploration         \$ 2,800.00           MWM Exploration         \$ 4,264.00           MWM Exploration         \$ 520.00           MWM Field Assistant         \$ 2,125.00           Hy G Sample Concentration         \$ 107.00           Eagle Mapping (airphotos)         \$ 867.54           SUB TOTAL         \$30.670.66           1994         MWM Exploration         \$ 1,843.64           MWM Exploration         \$ 1,820.00           MWM Exploration         \$ 1,820.00           MWM Exploration         \$ 1,820.00           MWM Exploration         \$ 1,820.00           MWM Field Expenses         \$ 973.64           MWM Field Assistant         \$ 1,200.00           COMINCO         \$ 160.50           COMINCO         \$ 107.00           SUB TOTAL         \$ 13.910.80           1993         MWM Exploration         \$ 1,200.00           MWM Field Assistant         \$ 1,200.00           COMINCO         \$ 160.50           COMINCO         \$ 107.00           SUB TOTAL         \$ 13.910.80           1993         MWM Exploration         \$ 2,841.00           MWM Field Assistant         \$ 1,100.00		

TOTAL

<u>\$50,740.68</u>

# MWM EXPLORATION 4949 5TH AVENUE DELTA, B.C. V4M 1J6

#### **INVOICE FOR SERVICES**

December 04, 1995

ECSTALL MINING CORPORATION #307 - 475 HOWE STREET VANCOUVER, B.C. V6C 2B3

Preparation/Concentration of Alberta Geological Survey stream sediment samples

350 samples x \$8.00 /per sample:-----\$2,800.00

Total

\$2,800.00

Please make cheque payable to: M. Waskett-Myers

**Rubicon Minerals Corporation** 

RMC

119-53rd St. Delta, B.C. Canada V4M 3B3

-----

#### David W. Adamson Ph.D. Principal

Phone: 604-848-2583 Fax: 604-990-0457 E-mail:David.Adamson@deepcove.com

	Expenditure s	ummary on	Ecsta	Ill south	vest Albert	a Property		Dec3/95
<u> </u>								
CERT #	LAB:	DATE	NET	·	GST	TOTAL	comment	1
19526201	CMX	7-Sep-9	5	297.16	20.80	317.96	ok	
19526202	CMX	5-Sep-9	5	60.00	4.20			• • • • • • • • • • •
19526203	CMX	7-Sep-9	5	120.00	8.40		And a second second second second	
19526204	CMX	7-Sep-9						
19526206	CMX	8-Sep-9	5	67.20				·:
19526205	CMX	28-Sep-9	5				need inv	
19523954	CMX	6-Sep-9		900.64				
19523955	CMX	14-Aug-9		145.60			need inv	
19523956	CMX	13-Aug-9					need inv	i
R30706	XRAL	30-Nov-9		1708.50	An		····	<u>.</u>
	1				110.00	1020.10	110 114	
					}		·····	<u>+</u> · · · · · · · · · · · · · · · · · · ·
other info		t					ļ	
	credit 7 days wo	rk @ \$350/c	lav	· · · ·	2450.00		<u>1</u>	
	credit 10 days (	@\$450/day	· · · · · · · · · · · · · · · · · · ·		4500:00	<u></u>	÷	· · · · · · · · · · · · · · · · · · ·
exc	enses related to	Property			1201.04	1		+
probe work by	Lac minerals + 1	nt estimater			1000.00		+	
			Talue		1000.00		· · · · · · · · · · · · · · · · · · ·	
AGS silt sam	ples (in progress	: :)	-+					
sample prep	350 samples	@ \$8 00/sa	nnle		2800.00	<u> </u>		·
analysis	350 samples @			est			·····	·
		10.0178al		<u>cə</u> t	0449.00	F not inc	roded 14	project
note: the quot	e from Chemex i				l		claimed assesso	

# **INVOICE FOR SERVICES**

July 28, 1995

ECSTALL MINING CORP. #307 - 475 HOWE STREET VANCOUVER, B.C. V6C 2B3

Heavy mineral sampling and prospecting, SW Alberta project 17 Days @ \$240.00 per day	\$4080.00
Air photo work, setting up report and drafting 8 Hours @ \$20.00 per hour	\$ 160.00
Typing report, 12 pages @ \$2.00 per page	\$ 24.00
TOTAL	\$4264.00

Please make cheque payable to: M. Waskett-Myers

DATE July 31, 1995AMOUNT _ 7846.47	
CK# ACCOUN	8
PAYMENT APPROVED	

#### **INVOICE FOR SERVICES**

April 25, 1995

ECSTALL MINING CORP. #307 - 475 HOWE STREET VANCOUVER, B.C. V6C 2B3

Drafting and report preparation for SW Alberta project

26 hours @ \$20.0/ hour

\$520.00

Please make cheque payable to:

DATE April 27/95 AMOUNT 520.0 CK# 1818 ACCOUNT.	Ð
PAYMENT APPROVED	

#### **INVOICE FOR SERVICES**

July 28, 1995

ECSTALL MINING CORP. #307 - 475 HOWE STREET VANCOUVER, B.C. V6C 2B3

Field assistant on SW Alberta project 17 Days @ \$125.00 per day

\$2125.00

Please make cheque payable to:

DATE July 31, 195 AMOUNT 2125."
CK# 1905 ACCOUNT
PAYMENT APPROVED

E	<b>XPENSE</b>	SHEET			
-NAME	ECSTALL	MINING CO	2 <u>P</u>	MONT	HJULY 1995
DATE	LOCATION	DAILY	TRANS.	ACCOM.	SUNDRY
10		32.00 LUNCH	54.51 6.15 8		
11	CRANBROK	Aloo Bring (3	3A-00 6-45 3	MOTEL	G-MOLÉMES 105.33 B
12		35.00 DANNEN @	36.60 6.45 (10)		
13		20.00 DINNEY (D)	_		
14		36.00 DINNEN (B)		· · · · · · · · · · · · · · · · · · ·	
15		39 UD 11 (A)			OHOCENIES 24.47 (13)
		30:25 11 (3)			
17		33.00 11 (18)	31.30 6-45 10		KITGIRS UTENSILS 5.20 (7)
18		29.00 . (2)			
		43.20 · ( 21)			GROCENIES 17.64 20
20	· · · · · · · · · · · · · · · · · · ·	30 to . 23	27.50 6-45 (23		
21		LUNCH (2)	20.70 6.452	Mar. 5.	· · · · · · · · · · · · · · · · · · ·
22	COLETIAN	63.00 ANNEN RO		MOTEL 517.44 (25)	GROCENIES 11.37 8 RB
23		33.40 DINNEN 3)	28.51 6.45 30		
24		<u>30.07 " (32)</u>		hatel a	·
25	LONGVIEW		26.65 6-15 (35)	278.20 (33)	
26		13.46 LUNCH (33)			COQUINALLA TOLL 10.00(38)
27		<u> </u>	30.97645 39		
			1682.92 AD		
			·		
	· · · · · · · · · · · · · · · · · · ·				FIELD SUPPLIES 10.55
·					
		34.57	GST 124.18	54.66	ii:45
TOTAL		528-A3 -	2010.38	858-60	185.06

Daily 528-43

Trans. 2010.38

858.60 Accom.

Sundry 185.06

TOTAL

3582 · A7

•

LESS

4DVANCE OF \$300.00 = \$3282.47

	DATE	
		7
1	AMOUNT 3582 UD	
1	CK# 1903	
L	CK# 1903 ACCOUNT	
F		
1.	PAYMENT	
۰.	PAYMENT APPROVED	

-----

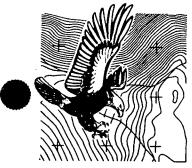
Hy-G Manufacturing Inc. 6080 196 Street Langley, B.c. V3A 5X3

. و . بردیده بایه مرفقات . . .

......

.....




No.

REFER TO THIS NUMBER 1460628

SOLD TO	307 47	75 Howe		S H	SAM	1E		
		iver, B	.C.	l P				
	V6C 2	33		Ţ				
DATE	SHIPPED VIA		GST	O	IDEA NO.	TERMS		
08/09	(95		122886351		ladaris (1302		SALESMAN	
BACK ORDERED	QTY ORDERED		DESCRIPTION		QTY. SHIPPED	UNIT PRICE	. AMO	UNT
and the set the set		Concen	trating placer samples with					
		Mike	Myers - two hours @			50.00	100	00
AIR	FOTA						7	00
00a	FRTA	S						
frede	IDZ I IE							
			DATE <u>Aug-18/95</u> AMOUNT 107 9 CK# 1914 ACCOUNT	7				
			CK# 1914 ACCOUNT					
			PAYMENT APPROVED					
	-			J		(1999) (1999) (1999) (1999) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997) (1997)		
		ARE OT	ERED ITEMS WILL BE SHIPPED AS SOON AS AVAILABLE UNLESS. AT HERWISE ADVISED ARE NOT AVAILABLE AND HAVE NOT BEEN BACK ORDERED.	e shipped		B/O FROM E	107 107	.00
								E & OE

INVOICE

E & OE



a

EAGLE MAPPING SERVICES LTD.

Topographical / Digital Mapping and Orthophoto

#17 - 1833 Coast Meridian Road Port Coquitlam, B.C. Canada V3C 6G2

Phone: (604) 942-5551 Fax: (604) 942-5951

#### *** I N V O I C E ***

.

· · · · ·	INVOICE # 1274Ø
	DATE: MAY 12, 1995
·	OUR JOB 95-T-19 95-T-20
	OUR GST # 101537264
SOLD TO:	DATE May 15/95 AMOUNT 8.67.54
ECSTALL MINING CORPORATION #307-475 HOWE STREET,	CK# 1837 ACCOUNT.
VANCOUVER, B.C. V6C 2B3	
*======================================	
TERMS: PAYABLE UPON RE	CEIPT
ATTENTION: MR. CHRIS GRAF Auphot	or: Southwest Alberta
For the provision of a total of 116 p	rints as follows:
AS 4211 160-165,172-199	
AS 4233 40-49,57-65,73-80 AS 4234 117-123,133-138,149-155,167-1	72,
184-190,203-209,222-226 AS 4322 116-120,134-138.	
FIRM LUMP SUM PRICE	····.\$ 725.00
One contact print each, for a total o prints, as follows:	f 6 contact
BC 86Ø45 95-97 BC 861ØØ 225-227	
FIRM LUMP SUM PRICE	\$ 36.00 \$ 761.00
PST	••••••••••••••••••••••••••••••••••••••

....\$ 867.54

. . . .

TOTAL AMOUNT DUE.....

ing Inc. REFER TO THIS NUMBER 1460605 GST # 122886351 Testall Mining Corp. 307-475 Howe St. Vancouver, BC SAME SOLD TO Ó ALESMAN 7-25-9 AMOUNT UNIT PRICE OTY, SHIPPED DESCRIPTION QTY. ORDERED BACK ORDERED 45.00 1,755 00 hours concentrating samples .39. 122 85 7% GST 1,877 85 DATE JUY 25/24 AMOUNT 41877 4 CK#_____ ACCOUNT SAMPLE PROCESSING - SWALTA PROJECT PAYMENT APPROVED . DATE SHIPPED B/OTO State of the state BACK ORDERED ITEMS WILL BE SHIPPED AS SOON AS AVAILABLE UNLESS INVOICE 1,877,85 7/22/94 E & OE INVOICE 0 630 15 99985 MOORE* 

Ject for: % Ecstall Mining Corp. 307-475 Howe St. Fri. July 23/94 Vancouver, BC. Ph. (604)681-4402 52 x 2016. screened gravel samples Nos. HG-1thm 52 A)-wet screen to 1/8" minus and concentrate to approx 4 lbs. in 5" HY-G batch concentrator - : @15 min. B) - reconcentrate thru spiral Gold Genie "wheel (affrox. 5 rune) @ 30 min reduce to affrox 1/2 1/b. of concentrate containing an estimated 50% of total garnets in 2016. sample. Time to complete = A-13hrs. ; plus B-26 hrs = total 39 hrs. Work performed by: ..... ». ..... en analos e lesso,

#### **INVOICE FOR SERVICES**

October 25th, 1994

ECSTALL MINING CORP. #307 - 475 HOWE STREET VANCOUVER, B.C. V6C 2B3



Field work on SW Alberta gold project

MWM - Geochemist: 5 Days

Ian Palmer - Helper 5 Days

TOTAL

\$2200.00

Please make cheque payable to: M.Waskett-Myers

DATE 02725/94 AMOUNT 404364	
CK# 1674 ACCOUNT	
PAYMENT APPRO	

#### **INVOICE FOR SERVICES**

October 25th, 1994

ECSTALL MINING CORP. (For Lac Minerals) #307 - 475 HOWE STREET VANCOUVER, B.C. V6C 2B3

Transportation of samples from SW Alberta Sample prep - HI-G and GOLD GENIE concentration Binocular microscope observation of concentrates, and reporting of results

# TOTAL COST

\$1843.64

Please make cheque payable to: M.Waskett-Myers

EXPENSE SHEET

NAME_____

MONTH OCTOBER 1994

DATE	LOCATION	DAILY	TRANŜ.	ACCOM.		SUNDRY	
Птн		APPLES 1.11 Q	)		GAS	2A.00 D	<del>(</del>
	 	KUNCH 19003	)		CAS .		
1274	COLETIM	GROCENES 29.51		TOFE 69.155			
		DINNER 22.00					
1374		DINNEN 25.00		·	G-45	21,50(7)	
47#	4	DINNEH 33.00	[12]	MOTEL 134		13.00 (10)	
r					FIX FLOT TI	4F 8.00 (M)	
5TH		DNDEN 25.99			6-45	29.00 (14)	
TH			TRUCK 453.98	<b>P</b>	F4S	37.00 1	
		·	<u>_</u>	f	····-		
		· · · · · · · · · · · · · · · · · · ·					
		·		<u> </u>			
		· · · · · · · · · · · · · · · · · · ·			<u> </u>		
		· · · · · · · · · · · · · · · · · · ·					
						· · · · · · · · · · · · · · · · · · ·	
					· · · · · · · · · · · · · · · · · · ·		
						······································	<u> </u>
				·			
		~ <u>~~~</u> ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~					
OTAL			· · · · · · · · · · · · · · · · · · ·				
		157-61	453.98	203.55	158	50	
Daily	157	10.3/	28.33	4.52	1.5 7		
-	157.			8.40	1,70		
Trans.	<u>453.</u>	98			1.41		
Accom	203.	55		12.92	, 85		
					1.90		
Sundry					2.42		
TOT	AL 973.6	1			2.85		

٠

GST 61.41

•--

1101 Laburnam Ave Port Coquitlam V3B 1K2

June 21,1994

# INVOICE FOR SERVICES

ECSTALL MINING CORP.

Field work: 12 Days @ \$100.00/per day

\$1200.00

Please make cheque payable to

ſ	DATE JUNE 2014 AMOUNT 1200 2
	CK# ACCOUNT
	PAYMENT APPROVED

#### 4940 5th Avenue Delta, B.C. V4M 1J6

June 21,1994

# INVOICE FOR SERVICES

ECSTALL MINING CORP.

Organisation and planning of Alberta project 1.5 Days @ \$200.00/per day 300.00 Field work: 12 Days @ \$240.00/per day

Processing 23 samples @\$10.00/sample

TOTAL

\$3470.00

230.00

2880.00

Please make cheque payable to

DATE JUNE 20/94 AMC	DUNT 5106 02
СК# 1596 ACCOU	T
PAYMENT APPROVED	

le) Ultico	E.	XPENSE	E SHEE	Г			
	NAME	ELSTA	IL MINI	~~		MONT	H JUNE
_	DATE	LOCATIO	N DAILY	TRAN	IS 1	100011	
	5	PRINCETON	QUNCH 160	5 G45 2	4.20	ACCOM.	
	- 2	G	DINNER 10:At	6-16 20	8.50		FAX 2.30 0
	7	KOLEMAN (	DGKOC 80.03		2.00	70.91(8)	
	8	I. I.	DINNER 31.50	RAS 201	.00	14/110	DINNER 24.50 7
	2	<u>`` (2</u>	DINNER 35-00	0			
	10	1 (1)	DINNEY 24.07				
		1 1 (2)	DINNE 428.4	G-45 27.11	om		
			DINNEY 28.0	10-45 20.6	DA		
	13		レノノ いんそん えつ しょ	10.00 00 0	Una		GROLEMIES 18.47 (2)
	/A	· (3)	DINNER 37.0	2			
		11 .		5-4521.00	67		6 <u>-22-</u>
		11		0-45 20.20	201	TOTEL A23	
ł		OSOY UDS		C-45 26.0	061	MATEI	
ł			·	1	-67	\$133.40	
ł	16	OSO YUD S	DINNEY 38.77			TIOSAC A	<u>y</u>
	1/		BREAK 12.50	GAS In	0067	7)	
⊦	17	HOPE (28)	DINNEN 28.38	0.45 174	10 29		
⊢	18			GAS 26.1			
-				TRUCK B12.			L
┝							FIELD SUPPLIES 36 8 322
							FIELD SUPPLIES 36.8332
$\rightarrow$							
	<b></b>						
7	₽						
⊢							
┝							
-							
┝							
$\vdash$	<b>_</b>						
-							
Ļ	0.74						
Ľ	OTAL	·	405.49	1076.76	- 6	31.67	
				<u></u> t.Y			82-10

Daily	A05.49				
Trans.	1076.76				
Accom.	631.67				
Sundry	82.10				
TOTAL 2196.02					

AD VANCE OF \$500

.

BALENCE = \$ 1696.02

#### 4940 5th Avenue Delta, B.C. V4M 1J6

April 13th 1994

#### INVOICE FOR SERVICES

# ECSTALL MINING CORP.

Processing samples using GOLD GENIE 52 samples @ \$10.00 per sample	=\$520.00
3 days picking samples (+60 mesh)	=\$600.00
3 days picking samples (-60 mesh)	=\$600.00
1/2 day at Cominco, etc.	=\$100.00

TOTAL .

=\$1820.00

Please make cheque payable to Thank you.

DATE April 20/24 AMOUNT 1820 -CK# 1562 ACCOUNT. • PAYMENT APPROVED

### COMINCO EXPLORATION

500 - 200 Burrard Street / Vancouver, B.C. / Canada V6C 3L7 / Tel. (604) 682-0611 / Fax (604) 685-3041



INVOICE

INVOICE NO: V-0311

**TERMS: On Receipt** GST #R101063576

30 March 1994

ECSTALL MINING CORPORATION #307 - 475 Howe Street Vancouver, B.C. V6C 2B3

ATTENTION: Mr. Chris Graf, P.Geol.

3 MARCH 1994 Mineralogical Report/SEM-EDX 2 hours @ \$75.00 = \$ 150.00

SUB TOTAL	<b>\$</b> 150.00
G.S.T. @ 7%	<u>10.50</u>
TOTAL INVOICE	\$ 160.50 =======

COMINCO EXPLORATION

500 - 200 Burrard Street / Vancouver, B.C. / Canada V6C 3L7 / Tel. (604) 682-0611 / Fax (604) 685-3041

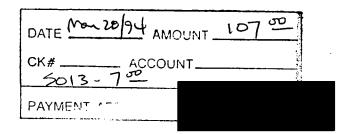
. . . . . . . . . . . . .



INVOICE

INVOICE NO: V-0214

TERMS: On Receipt GST #R101063576


02 March 1994

ECSTALL MINING CORPORATION #307 - 475 Howe Street Vancouver, B.C. V6C 283

ATTENTION: Mr. Chris Graf, P.Geol.

<u>10 FEBRUARY 1994</u> Mineralogical Report

= \$ 100.00



•

SUB TOTAL	\$ 100.00
G.S.T. @ 7%	7.00
TOTAL INVOICE	<b>\$</b> 107.00



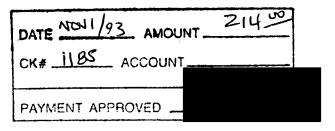
# Vancouver Petrographics Ltd.

8080 Glover Road Langley, B.C. V3A 4P9

(604) 888-1323 Fax (604) 888-3642



Ecstall Mining Corp. 307-475 Howe St. Vancouver,B.C. V6C 2B3


# INVOICE

GST # R105484687	No.	930486
SALESPERSON	DATE OF INVOICE	10,93
SHIP TO		
Atten: Chris	Graf	
Atten: Chris	Graf	
Atten: Chris	Graf	

ACCOUNT NO.	DATE SHIPPED	SHIPPED VIA	COL P.P	F.O.B. POINT	TERMS	YOUR ORDER	NUMBER
	Aug.10,199	Loomis	x	Ft. Langley	30 Days	Chris Graf	
QUANTITY			DESCRIPTIO	N		UNIT PRICE	AMOUNT
1.5 1 17	Setting f	obe analysis ervices	ck	· · ·		50.00 20.00 5.00	75.00 20.00 85.00 20.00 14.00
			Thank Y	<i>Cou</i>	•	TOTAL	214.00

YOUR COMPLETE GEOLOGICAL SERVICE & SUPPLY COMPANY

REMARKS:



SAMPLE PREPARATION FOR MICROSTUDIES * PETROGRAPHIC REPORTS * GEOLOGY FIELD STUDIES FIELD AND LABORATORY * SUPPLIES AND EQUIPMENT July 5th, 1993 👘

### INVOICE FOR SERVICES

ECSTALL MINING

Assistant sampler for southern Alberta Project

11 Days at \$100/day

=\$1100.00

TOTAL

=\$1100.00

Please make cheque payable to

Thank you.

DATE JULYS AMOUNT 1100 22 CK# 1140 ACCOUNT South AUTA PROT. PAYMENT APPROVED _____ 4940 5th Avenue Delta, B.C. V4M 1J6

July 5th, 1993

### INVOICE FOR SERVICES

ECSTALL MINING

Organising and sampling for southern Alberta Project 11 Days at \$230/day =\$2530.00 1 day general work in Vancouver @\$200/day =\$ 200.00 Sample prep and visual inspection - 37 samples at \$3.00/ sample =\$ 111.00 TOTAL =\$2841.00

Please make cheque payable to

Thank you.

DATE JUYS 3 AMOL	
PAYMENT APPROVED	

EXPENSE SHEET

Ν	Α	M	E	

MONTH JUNE

	DATE	LOCATION	DAILY	TRANS.	ACCOM.	SUNDRY	
r-h	18/6/93	Vin				FIELD G-EAR	107.99
	19/6/93	Vn				FIELD DETIN	34.50
9	19/6/93	Vin		RENTH 375.00			34,30
4	21/6/93	PRINCETON	LUNCH 15.52	Desit H			
5	11 11 11	11		G-45 19.73			
6	K (4) (4) -	YAHK		GHS 20.00			
7	N 11 11	CEMBRICK			51.75	FAX TO THRIFTY	2.00 1
8	H 1[ 11	· ((	SNACK 7.63				
9	22/6/93	BLAIRMORE	GROCENIES 54.13	GAS 30.003			
10	23/6/93	¥1	DINNER 21-00				
	24/6/93	11	G. KOL 8.6913	GAS 30.000			
	n N	COLERY	DINNEY 1940		<u> </u>		
16	22/6/93	C12-ANBRIOK	BLENK 8-13				
17		COLETTYN	DINNEY 200	4			
	2616/93	11	DINNEL CRA.00			JAR OF JAN	7.74 2
A	27/6/93		n	6-15 23.300 6-15 11.00 6-1521.40		STE OF SUTT	7.79 (2)
	26/6/93	1 25	DINNEY 28.00	6-45 25.0027			<u> </u>
	19/6/93	1,	DINNEY 27.00	R R			- <u></u>
1	30/6/73	1. (29)		6-45 28.0050	ົ	CHR W45H (37)	4.50
		0				710 2 20 (31)	7.30
	1/7/93	COLETIVNO		(i	Hore 122.21	PHONE CALL 3.0.	5 (33)
		- 1 - 1 - 1	KUNCH 13.00 3		WILL ALSON	1100E CALL 5.0.	\$ (33)
		osoxos	<b>X</b>	6-45 34.00	25)	· · · · · · · · · · · · · · · · · · ·	
		DELT4			36)	·····	<del></del>
		VAN		THULK 427.96	2 J	<u> </u>	<u></u>
			· · · · · · · · · · · · · · · · · · ·	400110 10.70	2//	· · · · · · · · · · · · · · · · · · ·	·····
					- <u></u> .		
	TOTAL		30224	1071199	175.11		. 2 h
				· · · · · · · · · · · · · · · · · · ·			<u>'?.</u>

ť

Daily	302129		
Trans.	1071.99		
Accom.	A75.11		

Sundry 154.83

TOTAL

2004.22



.

## **APPENDIX VI**

# Rubicon Minerals Ltd. Summary Geological report on Ecstall's Mineral Permits

### **RUBICON MINERALS CORPORATION**

### 119-53rd Street

Delta

Property submission to Cyprus Canada - SW Alberta Property of Ecstall Mining Corporation 03/10/95

PROPERTY:	SW Alberta.
OWNER:	Ecstall Mining Corporation. Chris Graf (President) - Tel. 604-681-4402.
LOCATION:	SW of Calgary, Alberta, to the Waterton National Park boundary.

CLAIMS: 1.2 million acres under permit. (approximately 46 townships). No detailed claim search carried out. No details of assessment requirements, but thought to require major work by December, 1995 (approximately \$45,000/Twp). Major property rationalization is required.

 TARGET:
 Sediment/volcanic hosted, disseminated gold?. Paleo-placer Au?

INFRASTRUCTURE: Well developed.

SENSITIVITIES: None, except close to park boundaries.

**GEOLOGY:** Ecstall Mining control over 1.2million square acres of property underlain by the Foothills and Front Ranges linear belts. Foothills geology is dominated by thrust faults with footwall Mesozoic and Tertiary strata and hanging wall Mesozoic or Carboniferous strata. The Front ranges are marked by the Lewis and McConnell thrusts which place Devonian to Proterozoic carbonates onto Cretaceous rocks. Igneous activity in southwest Alberta is of three ages. The oldest is represented by 1.4-1.58Ga mafic sills and dykes. The second is represented by intermediate flows of the Purcell Group, thought to have been extruded at approximately 1.1Ga. The third, and most prevalent is the early Cretaceous Crowsnest Formation, which comprises alkaline trachytic to phonolitic volcaniclastics.

MINERALIZATION: Olson et.al (1994) have summarized showings in the area. they include: stratabound copper-silver occurrences in Proterozoic rocks, Cu-Zn-Pb sulphides in quartz-carbonate veined rocks which cut Hadrynian to Cambrian strata, Pb-Zn showings in carbonate rocks and a gold occurrence reported in Crowsnest volcanics.

Since 1994, Ecstall Mining have carried out stream, silt and limited rock sampling in selected parts of the property. The majority of data are from heavy mineral concentrates (HMC's) of stream gravels analyzed using neutron activation analysis. Thirty seven out of 102 plotted samples are considered to contain 'anomalous' gold, typically >1000ppb and up to 35,200ppb. Gold anomalies are generally accompanied by weaker anomalies in As, Sb and Mo. The magnitude and relative proportion of gold anomalies on the Ecstall property greatly exceeds published data from the region or from similar terrains.

Limited probe work indicates that gold grains consist of Au-Ag-Hg alloys with rare Au-Hg alloys. There is no indication that the component of Hg is caused by human activity. Known Hg-bearing gold grains have not been reported from the placer gold deposits of the North Saskatchewan River, suggesting a possible local source on the Ecstall property. Very limited lithological sampling in the Dutch Creek area has returned anomalous gold up to 1.78g/t Au. Chemex labs report strong heterogeneity of gold in this sample and did not reproduce it in two subsequent splits. Gold anomalies are developed across a wide area and it is not clear at this stage what geological controls influence gold distributions. It appear however, that gold anomalies are best developed close to the Lower Cretaceous/Upper Cretaceous boundary. This boundary may be important in that it encompasses the Crowsnest alkaline volcanics and the Upper Cretaceous Fish Scale Group which marks a major extinction possibly related to a widespread volcanic event.

Ecstall silt samples (15) do not contain any anomalous gold. In addition, 393 silt samples from the region, sampled and analyzed by the Alberta Geological Survey, contain few anomalous samples. Reference to a regional GSC silt study in NE BC where similar lithological and tectonic elements are present, indicates that, in that area, standard silt sampling is not effective in detecting gold anomalies and that there is thus no correlation between HMC's Au and Au in silts. However, when HMC's are extracted from the silts, weighed

and converted to gold (ppb) and combined with a standard 30g sample fire assay neutron activation analysis, there is an improved correlation with gravel HMC Au and additional, undiscovered anomalies are developed. Assuming that the Alberta government silt samples are available to Cyprus, a unique opportunity exists to further examine gold distributions on the Ecstall Property at low costs. Alberta Geological Survey samples cover much of the Ecstall property (see attached maps).

### **RECOMMENDATIONS:**

An option agreement with Ecstall should be sought. A proposed work program should include:

1) Acquisition of the AGS silt samples, preparation of silt HMC's and analysis by NAA for gold plus pathfinders. This work could be carried out in 1995.

2) Additional HMC sampling in under explored parts of the property (see maps accompanying this report).

3) Lithological sampling and analysis in anomalous areas. Analysis should include large sample or total assay techniques.

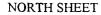
4) Property rationalization is forced by upcoming assessment requirements. Present data are not sufficient to allow this rationalization to be carried out with confidence. However, most gold anomalies occur between 550000 N and 560000N. Dropping ground outside this range would reduce the property by approximately 30%. Even so, additional rationalization would probably be required. This could be best carried out following analysis of the Alberta Geological silt samples.

### **DESCRIPTION OF ACCOMPANYING DATA**

The following maps accompany this report:

1:125,000 North and South sheets Au, As, Mo, Sb in Heavy Mineral Concentrates 1:125,000 North and South sheets coloured AGS geological base maps 1:125,000 North and South sheets stream silt Ecstall and AGS data 1:250,000 Au, As, Sb, Mo in HMC's

All data are stored in a FoxPro digital database prepared by Rubicon Minerals Corporation


### **DESCRIPTION OF ANOMALIES**

11

All anomalies determined from visual inspection of data, no statistical analysis of the data has been carried out.

### SOUTH SHEET

AREA	Au(>500ppb)	Sb(>20ppm)	As(>50ppm)	Mo(>30ppm)
West Castle River:	3/7 anomalous.	no anomalies	1/9 anomalous.	2/9 anomalous.
generally draining	370,870, <b>5100ppb</b>		100ppm	30,150ppm
Precambrian				
sediments				
9 samples				
Mill Creek area:	1/2	1/2	2/2	1
generally subdued	2690ррb		298,148ppm	42ppm
topo. L-U Cret				51
seds include.				-
Crowsnest Fm.				
Local thrusting.				
2 samples	6106	0/06	0.00	1/07
Carbondale-Lost	6/26	0/26	2/26	1/26
Creek area: L-U	430,430,450,510		58,86	30ppm
Cret include	35,200			
Crowsnest, overthrust PC seds.				
26 samples				
Lynx Creek: north	0/3	0/3	1/3	1/3
of Carbondale.	015	015	170ppm	30ppm
3 samples			170ppm	Joppin
Crowsnest Area:	6/8	1/8	2/8	3/8
extensive source	852,1980, 2420,	2.0	58,86ppm	21,80,83
area from	5600, 6880,			, ,
Crowsnest Pass.	8830ppb			
8 samples				
East of Racehorse	2/2			
Ck:	420,1180			
2 samples				
Racehorse Creeks	3/23	6/23	8/23	11/23
areas:	600, <b>1080, 26,000</b>	up to 58ppm	up to 410ppm	up to 80 ppm
23 samples				



Generally sample areas underlain by folded, thrusted L-U Cretaceous sequence. Crowsnest formation absent or rare. Anomalies more common in Upper Cretaceous?

٠,

, .•

AREA	Au	Sb	As	Mo
Dutch Ck	3/4	3/4	4/4	2/4
4 Samples	1130,4090,8070	up to 58ppm	up to 342ppm	up to 58ppm
Hidden Ck:	2/3	3/3	2/3	3/3
3 Samples	500,13,500	up to 33ppm	up to 116ppm	up to 33ppm
:Livingstone/	2/4	1/4	2/4	4/4
Oldman/Savanna:	2520,5780ррь	up to 18ppm	up to 118	up to 65ppm
4 Samples				
Cataract Ck:	1/4	4/4	4/4	4/4
4 Samples	up to <b>4600ppb</b>	up to 58ppm	up to 180ppm	up to 50ppm
Etherington Ck:	3/8	6/8	8/8	6/8
8 Samples	1400,1600,>10,00	up to 96ppm	up to 260ppm	up to 40ppm
•	0ppb			
Sheppard Ck	1/2			
2 Samples	26,700			
Pekisko Ck:	2/5	4/5	3/5	3/5
5 Samples	2900,4200ppb	to 80 ppm	up to 140ppm	up to 40ppm
S. Pekisko Ck	2/2			
2 Samples	3000,5300			
Highwood Ck:	1/2	1/2	1/2	2/2
2 Samples	760ppb	up to 38ppm	up to 120ppm	up to 50
Sheep Ck:	1/1			
1 Sample	5330 -			
Coal Ck:	1/1	1/1	1/1	1/1
1 Sample	2800ppb	up to 16ppm	up to 114ppm	up to 24ppm

.

.

### ECSTALL MINING CORPORATION #307 - 475 Howe Street,

TELEPHONE: (604) 68 1-4402 FAX: (604) 68 1-1562 / E- MAIL: CGRAF@ECSTALL.COM

### December 18, 1995

Alberta Energy Attention: Mr. Brian Hudson Petroleum Plaza-North Tower 9945 108 Street Edmonton, Alberta T5K 2G6

Dear Mr. Hudson:

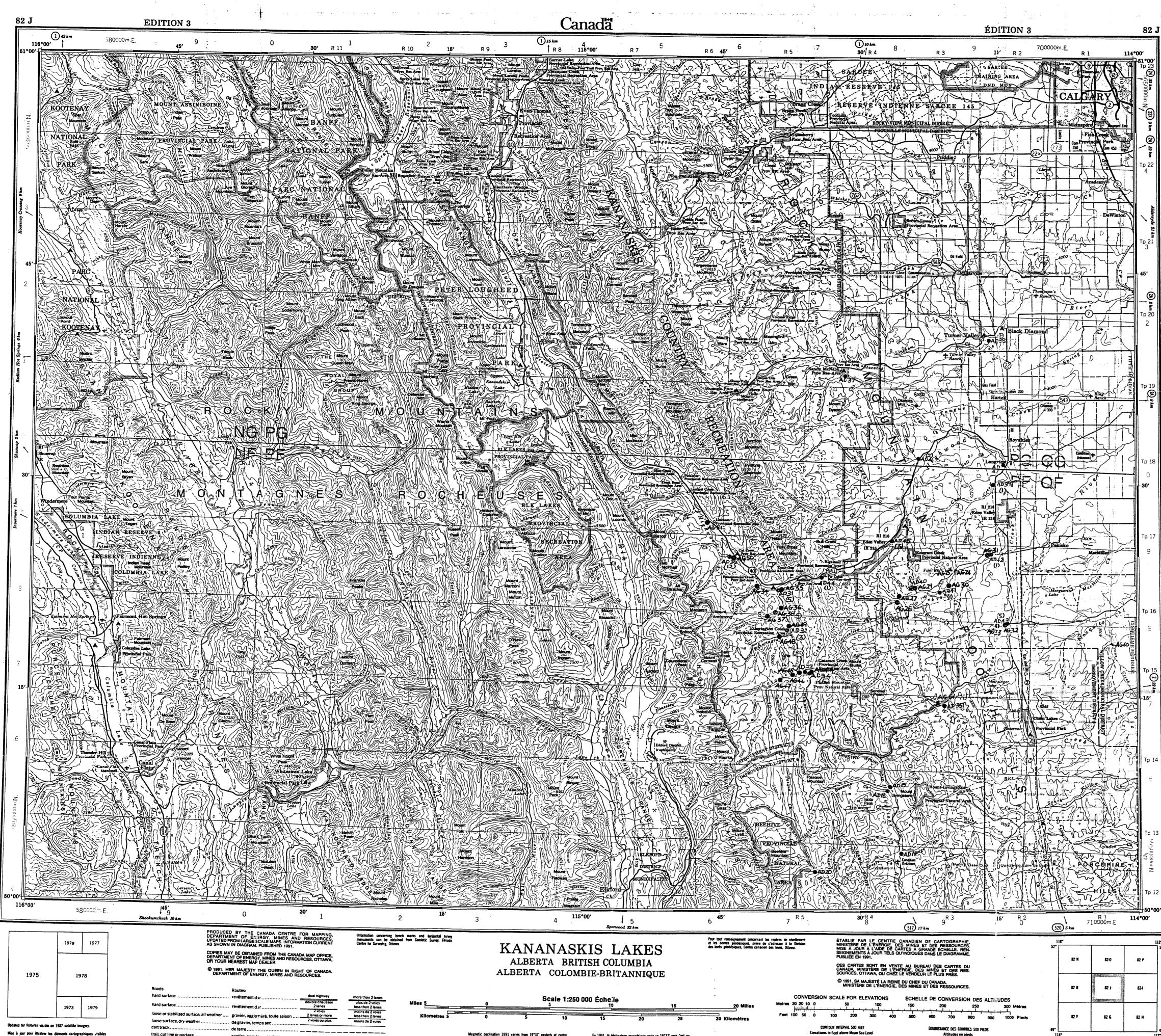
### RE: MINERAL PERMITS 9393080 (220-231), (287-297), (300-304), (370-380)

Further to your letters of November 17, 20, 21 and 22, 1995 this response is written to describe certain land areas, within the above captioned mineral permits which I, as agent for Ecstall Mining Corporation, wish to retain.

On the enclosed table I have listed the selected lands within Ecstall's mineral permits that are to be retained (10,148 hectares in total), all but three are west of the 5th meridian. An assessment report describing the geological/geochemical sampling work carried out by Ecstall on these mineral permits was sent to your office December 15, 1995. Ecstall's exploration expenditures incurred carrying out this work were \$50,740.

I trust you will find everything in order but if you require further information please do not hesitate to contact me.

Sincerely, ECSTALL MINING CORPORATION


Chris Graf, P.Eng., President

Enclosure

DEC 18 '95 15:15 604 681 1562

3

PROSPECT	MINERAL PERMIT #	TOWNSHIP	RANGE	SECTION
RACEHORSE 9393080297 CREEK GOLD		10 10	4 4	7 ALL 18 ALL
**	11 11	10 10	5	2 ALL 3 ALL
BURMIS	9393080300	5	2	12NW1/4
MAGNETITE	11	5	2	12NE1/4
GRIZZLY COPPER	9393080301	4	3	22 ALL
**	~~~~~	4	3	21NE1/4
	••	4	3	28 ALL
·	•1	4	3	27 ALL
	••	4	3	32 ALL
**	~	4	3	33 ALL
SPIONKOP	9393080304	3	1	8NE1/4
COPPER	<b>N</b>	3	1	9SE1/4
	**	3	1	9SW1/4
**	~	3	1	9NW1/4
	**	3.	1	16SW1/4
(west of 4th meridian)		3	30	16SWJ/4
	11	3	30	17NE1/4
· · · ·	.,	3	30	17SE1/4
PEKISKO	9393080371	16	2	6 ALL
CREEK		16	2	7 ALL
DIAMONDS	~~	16	2	8 ALL
	9393080372	16	3	32 ALL
	13	16	3	33 ALL
	9393989373	17	3	10 ALL
	••	17	3	3 ALL
	••	17	3	
		17	3	4 ALL 15 ALL



Mise à jour pour illustrer les éléments cartographiques visible sur les images satellite de 1987.

sentier, percée ou portage ..... FOR COMPLETE REFERENCE SEE REVERSE SIDE POUR UNE LISTE COMPLETE DES SIGNES, VOIR AU VERSI

rail, cut line or portage ...

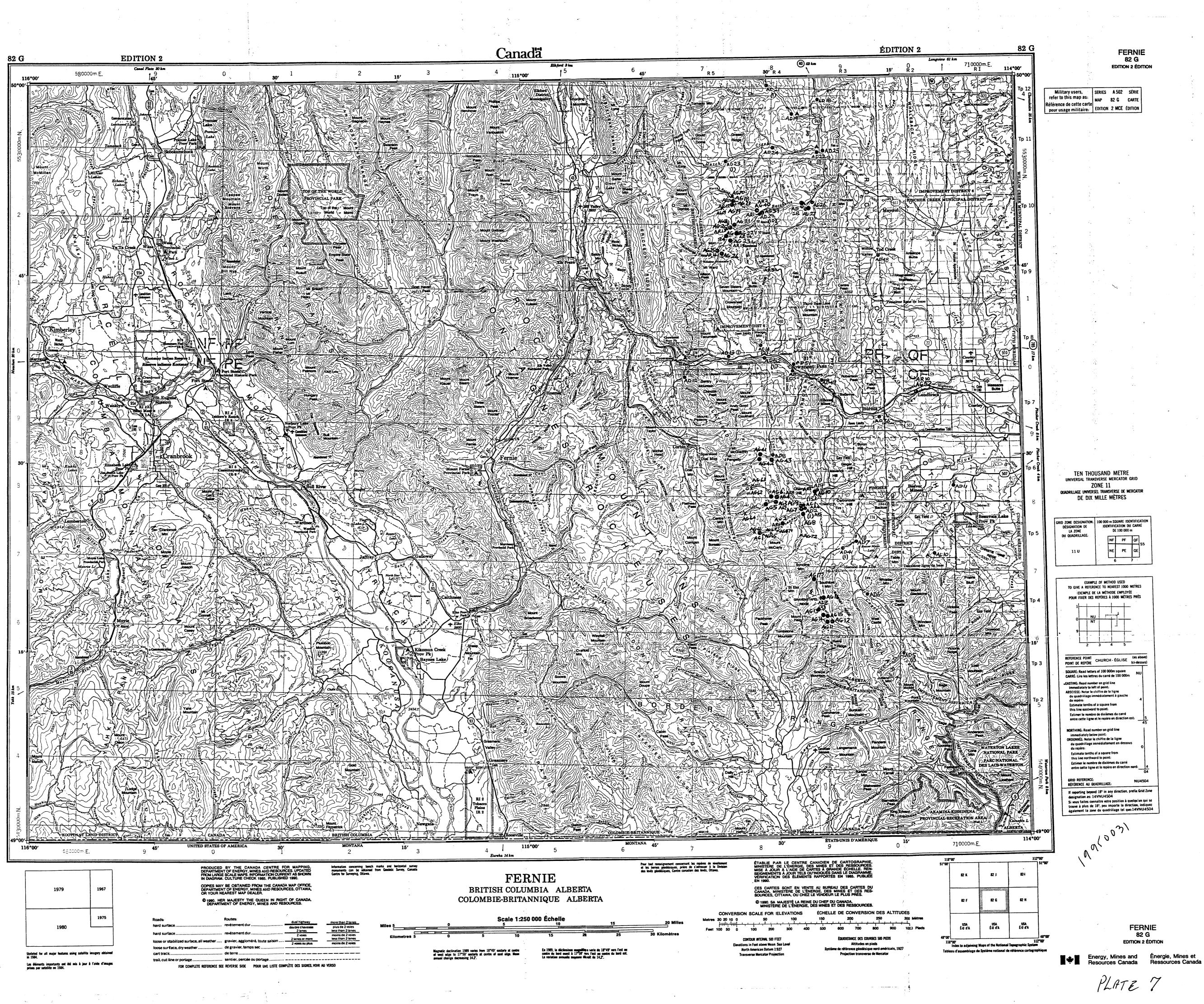
Magnetic declination 1991 varies from 19°37' easterly at centre of west edge to 18°46' easterly at centre of east edge. Mean annual change decreasing 7.0'.

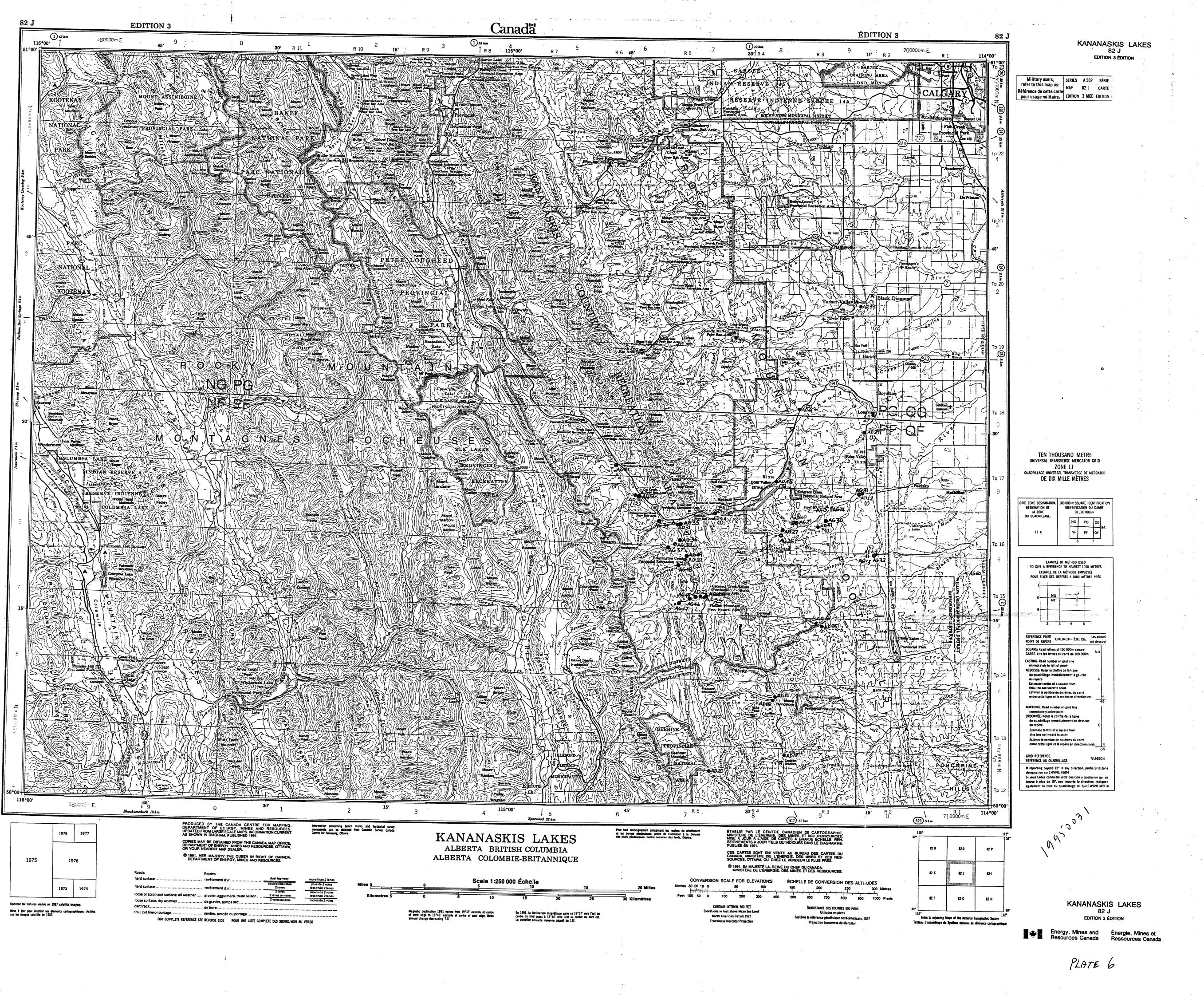
En 1991, la déclinaison magnétique varie ce 19°37' vers l'est au centre du bord quest à 18°46' vers l'est au centre du bord est. La variation anquelle moyenne décruit de 7,0'.

112" 112" Index to adjoining Maps of the National Topographic System Tableau d'assemblage du Système national de référence cartographique

Utitudes en pieds

stème de référence géodésique nord-américain, 192


jection transverse de Mercati


		2 J			
	EDITION	3 ÉDITION		* •	
			•		
Military users, refer to this map as	SERIES A 502 SÉRIE		2		
Référence de cette ca pour usage militaire	rte dz J CARIE	-	•		
pour usuge minitaire	<u>···</u> ]	]	•	-	
			-		
				·.	•
					•
				1	
					к. 1
				· :.	
~					
			··.	<b>—</b> ,	
				æ	
	•			:	•
	•				
			7		•
	W.				
	٥			-	
			-		
			A.		•
			•	1	
				. *	N.
QUADRILLAGE UNIVER	ONE 11 SEL TRANSVERSE DE MERCATOR MILLE MÈTRES				
DÉSIGNATION DE LA ZONE	IDENTIFICATION DU CARRÉ DE 100 000 m				•
DU QUADRILLAGE:	NG PG QG				<i>,</i>
	56	1			
11 U	NF PF QF				
11 U					
EXAMPL				-	
EXAMPL TO GIVE A REFERE EXEMPLE DE	E OF METHOD USED NCE TO NEAREST 1000 METRES		- 1 	-	
EXAMPL TO GIVE A REFERE EXEMPLE DE	E OF METHOD USED NCE TO NEAREST 1000 METRES		•	-	•
EXAMPL TO GIVE A REFERE EXEMPLE DE POUR FIXER DES I	E OF METHOD USED MCE TO NEAREST 1000 METRES LA MÉTHODE EMPLOYÉE REPÈRES À 1000 MÈTRES PRÈS			-	
EXAMPL TO GIVE A REFERE EXEMPLE DE POUR FIXER DES 1	E OF METHOD USED NCE TO NEAREST 1000 METRES LA MÉTHODE EMPLOYÉE REPÈRES À 1000 METRES PRÈS			-	
EXAMPL TO GIVE A REFERE EXEMPLE DE POUR FIXER DES 1 0 NU	E OF METHOD USED MCE TO NEAREST 1000 METRES LA MÉTHODE EMPLOYÉE REPÈRES À 1000 MÈTRES PRÈS			-	
EXAMPL TO GIVE A REFERE EXEMPLE DE POUR FIXER DES I 1 0 NU 9 2 2	E OF METHOD USED MCE TO NEAREST 1000 METRES ILA METHODE EMPLOYÉE REPÈRES À 1000 MÈTRES PRÈS 3 4 5			-	
EXAMPL TO GIVE A REFERE EXEMPLE DE POUR FIXER DES I 1 0 NU 9 9 2 2 REFERENCE POINT POINT DE REPÊRE	E OF METHOD USED MCE TO NEAREST 1000 METRES ILA METHODE EMPLOYÉE REPÈRES À 1000 MÈTRES PRÈS 3 4 5 CMURCH - ÉGLISE (as above) (ci-dessus) de 100 000m course			-	
EXAMPL TO GIVE A REFERE EXEMPLE DE POUR FIXER DES I I O NU 9 2 REFERENCE POINT POINT DE REPÈRE SQUARE: Read letters CARRE: Lire ies lettret	NF PF QF 6 7 E OF METHOD USED NCE TO NEAREST 1000 METRES LA MÉTHODE EMPLOYÉE REPÉRES À 1000 MÉTRES PRÈS			-	
EXAMPL TO GIVE A REFERE EXEMPLE DE POUR FIXER DES I 1 0 9 2 2 REFERENCE POINT POINT DE REPÉRE SQUARE: Read numbe immediately to letters CARRÉ: Lire les letters CARRÉ: Lire les letters CARRÉ: Lire les letters CARRÉ: Lire les letters	NF     PF     QF       6     7   E OF METHOD USED NCE TO NEAREST 1000 METRES LA MÉTHODE EMPLOYÉE REPÉRES À 1000 METRES PRÈS Internet de l'action de la ligne NU ron grid line of point- iffre de la ligne NU			-	
EXAMPL TO GIVE A REFERE EXEMPLE DE POUR FIXER DES I 1 0 9 2 2 REFERENCE POINT POINT DE REPÉRE SQUARE: Read numbe immediately to letter EASTING: Read numbe	NF       PF       QF         6       7         E OF METHOD USED       METHOD USED         NCE TO NEAREST 1000 METRES         LA MÉTHODE EMPLOYÉE         REPÉRES À 1000 MÉTRES PRÈS         Image: State of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the sta			•	
EXAMPL TO GIVE A REFERE EXEMPLE DE POUR FIXER DES I I O NU O SUARE REAL SOUARE: Read letters CARÉ: Lire les lettres EASTING: Read numbe immediately to left ABSCISSE: Noter le ch du quadrillage imm du repère: Estimate tents d'i this line eastward I Estimer le nombre d	NF       PF       QF         6       7         E. OF METHOD USED NCE TO NEAREST 1000 METRES         I.A. MÉTHODE EMPLOYÉE REPÉRES À 1000 MÉTRES PRÈS         I.M. MÉTHODE EMPLOYÉE REPÉRES À 1000 MÉTRES PRÈS         I.M. MÉTHODE EMPLOYÉE REPÉRES À 1000 MÉTRES PRÈS         I.M. METHODE EMPLOYÉE REPÉRES À 1000 000m square s du carré de 100 000m         r on grid line of point: iffre de la tigne rédiatement à gauche a square from to point: de dixièmes du carré			•	
EXAMPL TO GIVE A REFERE EXEMPLE DE POUR FIXER DES I O O NU O NU O NU O NU O NU O NU O NU O	NF       PF       QF         6       7         E OF METHOD USED       MCE TO NEAREST 1000 METRES         ILA MÉTHODE EMPLOYÉE         REPÉRES À 1000 MÉTRES PRÈS         ILA MÉTHODE EMPLOYÉE         GI 100 000m square         s du carré de 100 000m         ron grid line         of 100 000m square         s du carré de 100 000m         ron grid line         of point:         iftre de la ligne         Médiatement à gauche         a square from         to point:         de dixièmes du carré         le repère en direction est:         5			• • •	
EXAMPL TO GIVE A REFERE EXEMPLE DE POUR FIXER DES I U U U U U U U U U U U U U U U U U U	NF       PF       QF         6       7         E OF METHOD USED       METHOD METRES         ILA MÉTHODE EMPLOYÉE       REPÉRES À 1000 MÉTRES PRÈS         ILA MÉTHODE EMPLOYÉE       REPÉRES À 1000 MÉTRES PRÈS         ILA MÉTHODE EMPLOYÉE       (as above)         ILA MÉTHODE EMPLOYÉE       (ci-dessus)         ILA METHODE EMPLOYÉE       (ci-dessus)         ILA METHODE EMPLOYÉE       (ci-dessus)         ILA METHODE EMPLOYÉE       (ci-dessus)         ILA METHODE EMPLOYÉE       (ci-dessus)     <				
EXAMPL TO GIVE A REFERE EXEMPLE DE POUR FIXER DES I U U U U U U U U U U U U U U U U U U	NF     PF     QF       6     7   E. OF METHOD USED NCE TO NEAREST 1000 METRES I. LA MÉTHODE EMPLOYÉE REPÉRES À 1000 METRES PRÈS I IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII				
EXAMPL TO GIVE A REFERE EXEMPLE DE POUR FIXER DES I O NU SUBJECT POUR FIXER DES I O NU O NU O NU O NU O NU O NU O NU O N	NF       PF       QF         6       7         E OF METHOD USED       METHODE EMPLOYÉE         KE TO NEAREST 1000 METRES         LA MÉTHODE EMPLOYÉE         REPÉRES À 1000 MÉTRES PRÈS         Image: State of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the				
EXAMPL TO GIVE A REFERE EXEMPLE DE POUR FIXER DES I U U REFERENCE POINT POINT DE REPÉRE SOUARE: Read letters CARRÉ: Lire les lettres CARRÉ: Lire les lettres CARRÉ: Lire les lettres EASTING: Read numbe immediately to lett ABSCISSE: Noter le ch du quadrillage imm du repère: Estimate tenths of this line eastward 1 Estimer le nombre de entre cette ligne et NORTHING: Read num immediately below ORDONNE: Noter le ch du quadrillage imm du repère: Estimate tenths of this line northward Estimer le nombre de entre cette ligne et entre cette ligne et	NF       PF       QF         6       7         E. OF METHOD USED NCE TO NEAREST 1000 METRES         I.A MÉTHODE EMPLOYÉE REPÉRES À 1000 MÉTRES PRÈS         I.METHODE EMPLOYÉE         Gasabove)         Gi-dessus         3       4         5         CMURCH - ÉGLISE       (as above) (ci-dessus)         of 100 000m square s du carré de 100 000m       NU         r on grid line of point: iffre de la tigne védiatement à gauche a square from le repère en direction est:       5         ber on grid line point:       4         Assuare from to point:       5         de dixièmes du carré le repère en direction est:       5         45       5         ber on grid line point:       0         a square from hédiatement en dessous       0         a square from hto point:       0				
EXAMPL TO GIVE A REFERE EXEMPLE DE POUR FIXER DES I I O NU O NU O NU O O NU O NU O NU O NU	NF       PF       QF         6       7         E. OF METHOD USED NCE TO NEAREST 1000 METRES I LA MÉTHODE EMPLOYÉE REPÉRES À 1000 METRES PRÈS         1       1         1       1         3       4         5       1000 METRES PRÈS         1       1         1       1         1       1         1       1         1       1         1       1         1       1         1       1         1       1         1       1         1       1         1       1         1       1         1       1         1       1         1       1         1       1         1       1         1       1         1       1         1       1         1       1         1       1         1       1         1       1         1       1         1       1         1       1         1       1         <			-	
EXAMPL TO GIVE A REFERE EXEMPLE DE POUR FIXER DES I I O NU S EFFERENCE POINT POINT DE REPÊRE SQUARE: Read letters CARRÉ: Lire les lettres CARRÉ: Lire les lettres EASTING: Read numbe immediately to lett ABSCISSE: Noter le ch du quadrillage imm du repère: Estimate tenths of i this line eastward t Estimer le nombre de entre cette ligne et NORTHING: Read num immediately below ORDONNÉE: Noter le ch du quadrillage imm du repère: Estimate tenths of this line northward Estimer le nombre le GRID REFERENCE: RÉFÉRENCE AU QUAD H reporting beyond I designation as: 14VI	NF       PF       QF         6       7         E. OF METHOD USED NCE TO NEAREST 1000 METRES I. LA MÉTHODE EMPLOYÉE REPÉRES À 1000 MÉTRES PRÈS         Image: State of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of th				
EXAMPL TO GIVE A REFERE EXEMPLE DE POUR FIXER DES I O I I O I I O I I O I I O I I O I I O I I O I I O I I O I I O I I O I I O I I O I I O I I O I I O I I O I I O I I O I I O I I O I I O I I O I I O I I O I I O I I O I I O I I O I I O I I O I I O I I O I I O I I O I I O I I O I I I O I I I O I I I O I I I O I I I I	NF       PF       QF         6       7         E. OF METHOD USED NCE TO NEAREST 1000 METRES I. LA MÉTHODE EMPLOYÉE REPÉRES À 1000 MÉTRES PRÈS         Image: Construction of the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second seco				
EXAMPL TO GIVE A REFERE EXEMPLE DE POUR FIXER DES I I O NU O NT 9 2 REFERENCE POINT POINT DE REPÈRE SOUARE: Read letters CARRÉ: Lire les lettres CARRÉ: Lire les lettres CARRÉ: Lire les lettres EASTING: Read numbe immediately to left ABSCISSE: Noter le ch du quadrillage imm du repère: Estimate tenths of this line eastward t Estimer le nombre d entre cette ligne et NORTHING: Read num immediately below ORDONNÉE: Noter le cî du quadrillage imm du repère: Estimate tenths of this line northward Estimer le nombre d entre cette ligne et GRID REFERENCE: RÉFÉRENCE AU QUAD H reporting beyond I designation as: 14VI Si vous faites connaî trouve à plus de 18 ^o	NF       PF       QF         6       7				
EXAMPLE TO GIVE A REFERE EXEMPLE DE POUR FIXER DES 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1	NF       PF       QF         6       7         E. OF METHOD USED         NCE TO NEAREST 1000 METRES         I.A MÉTHODE EMPLOYÉE         REPÉRES À 1000 METRES PRÈS         Image: Comparison of the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second seco				
EXAMPL TO GIVE A REFERE EXEMPLE DE POUR FIXER DES 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1	NF       PF       QF         6       7				

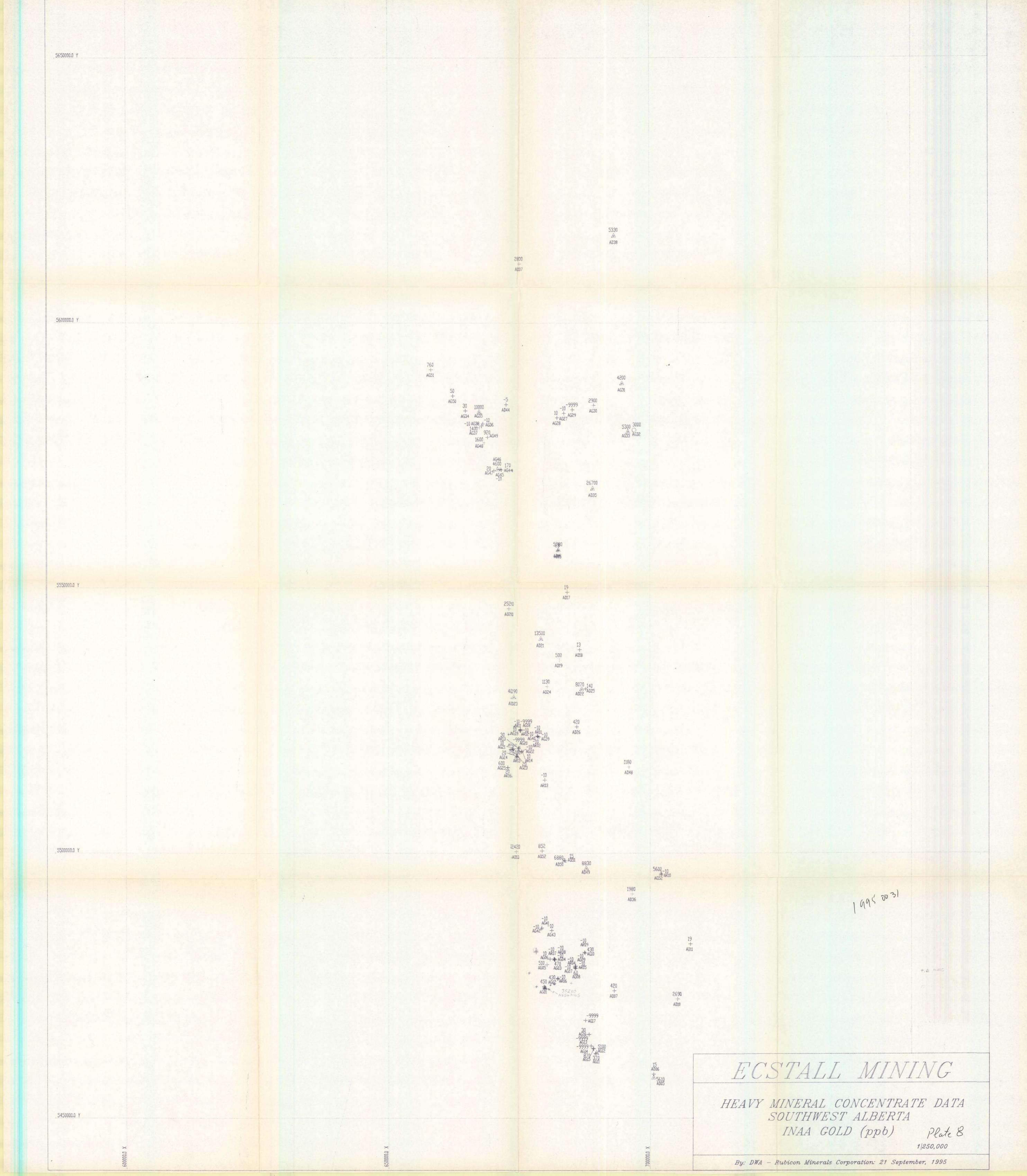
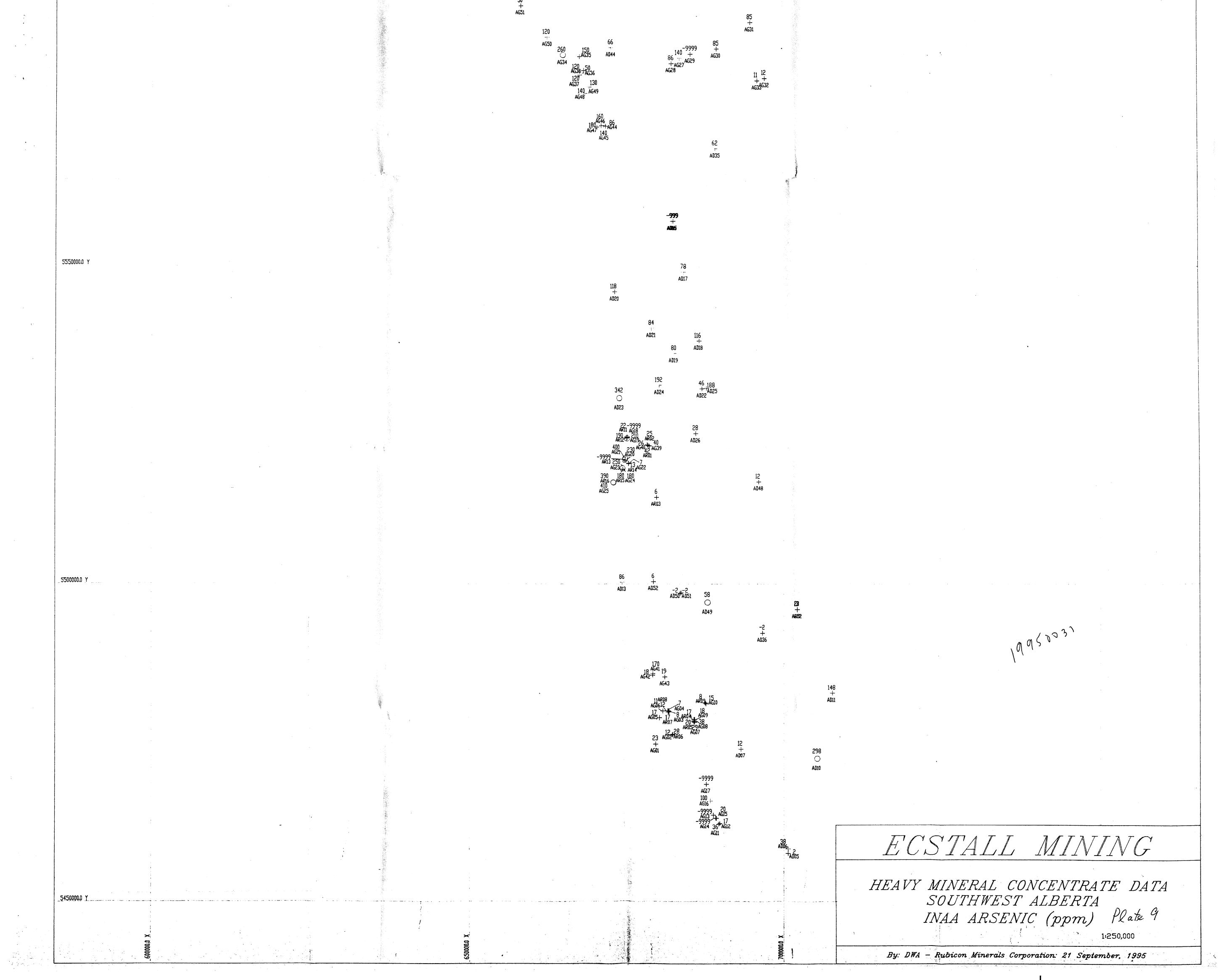

KANANASKIS LAKES 82 J EDITION 3 ÉDITION

PLATE 6

Energy, Mines and Énergie, Mines et Resources Canada Ressources Canada








	<b></b>										······	·	
•					:					. · · ·			
•								, t			) :		
	5650000.0 Y		······································			-	}						
			ананананананананананананананананананан										
											· · · ·		
	r.	• * • * •											
	- -												
								28 + AD38	,				
							114 - <del> -</del> AD37						
			· · · · · · · · · · · · · · · · · · ·				х С.						, _ ) }
	_ 5600000.0 Y	· · ·											
:		· · · · · · · · · · · · · · · · · · ·					· · · · •·	• • • •					
н. 				••	า						•		

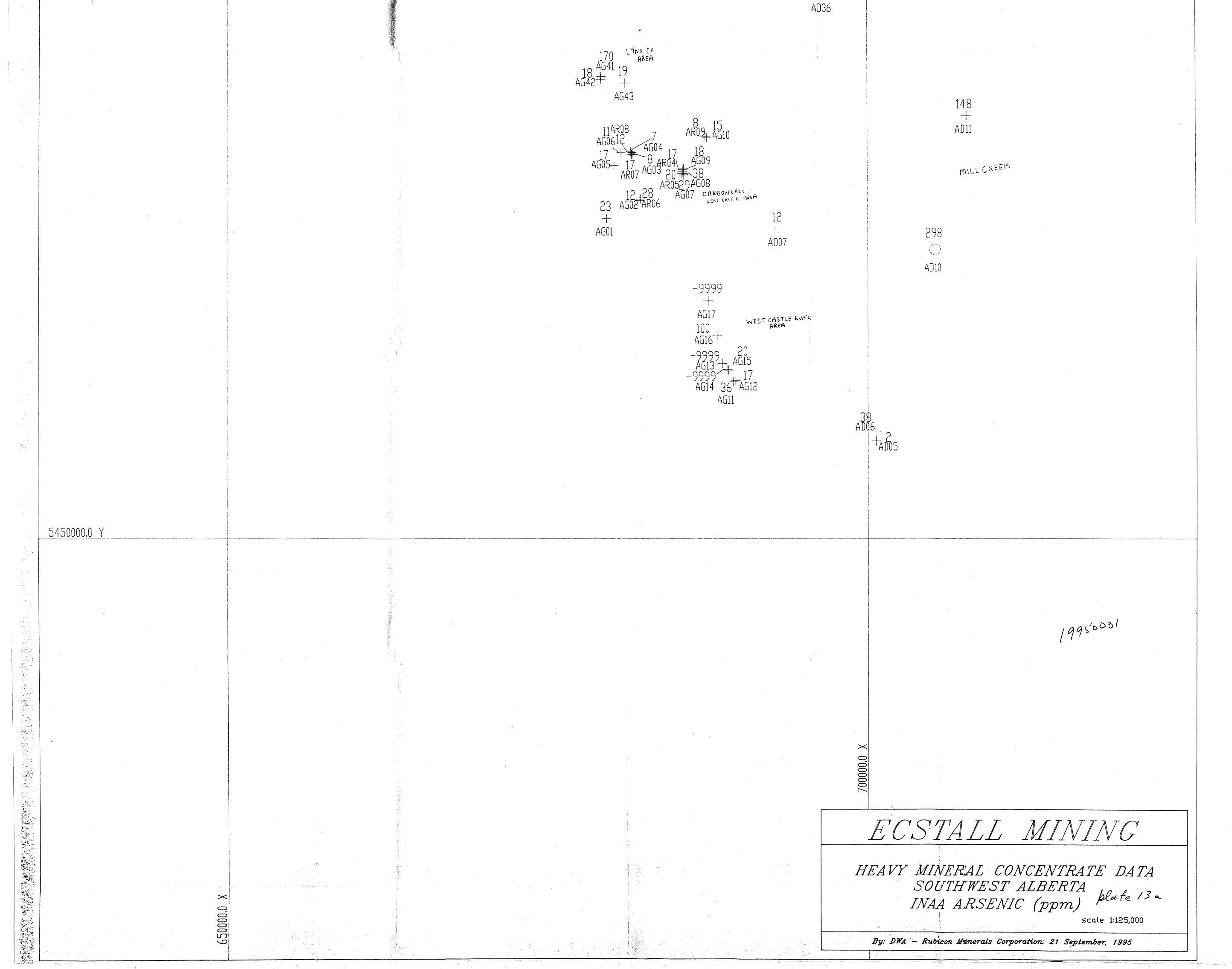
l

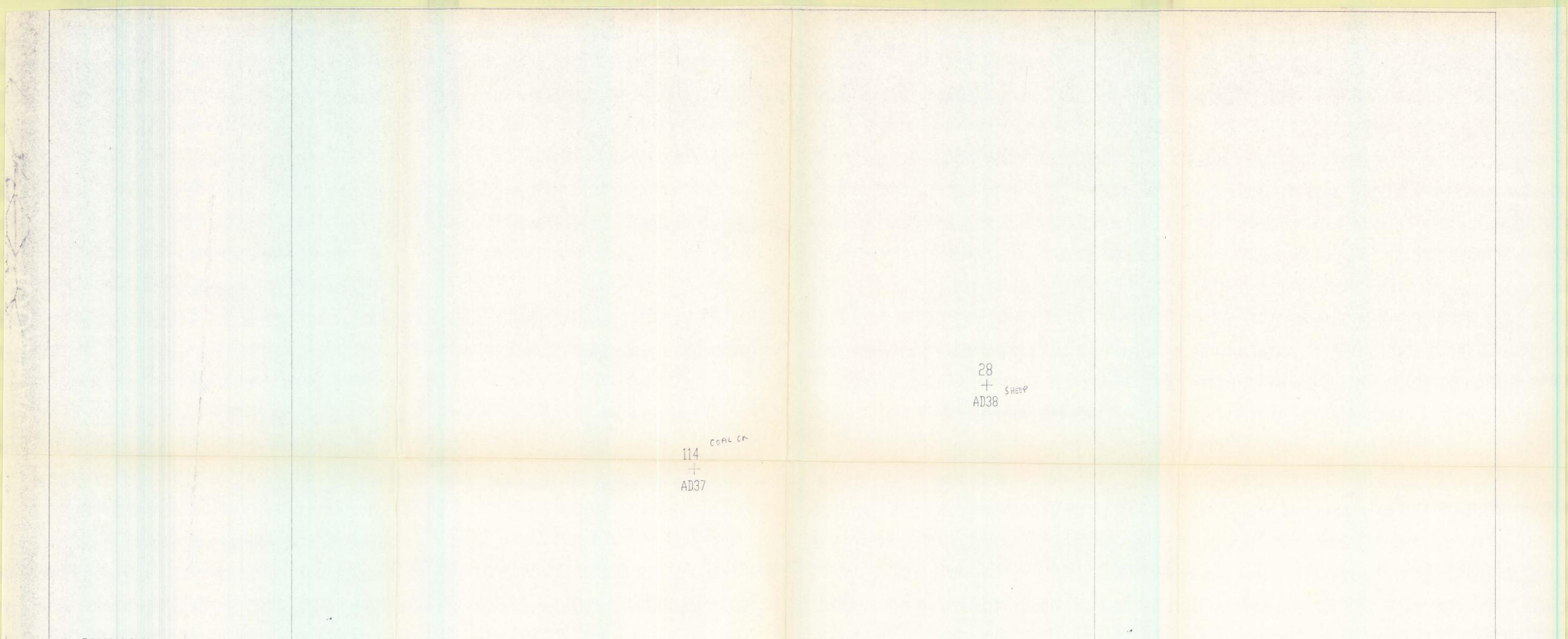


	a de la companya de la companya de la companya de la companya de la companya de la companya de la companya de l		

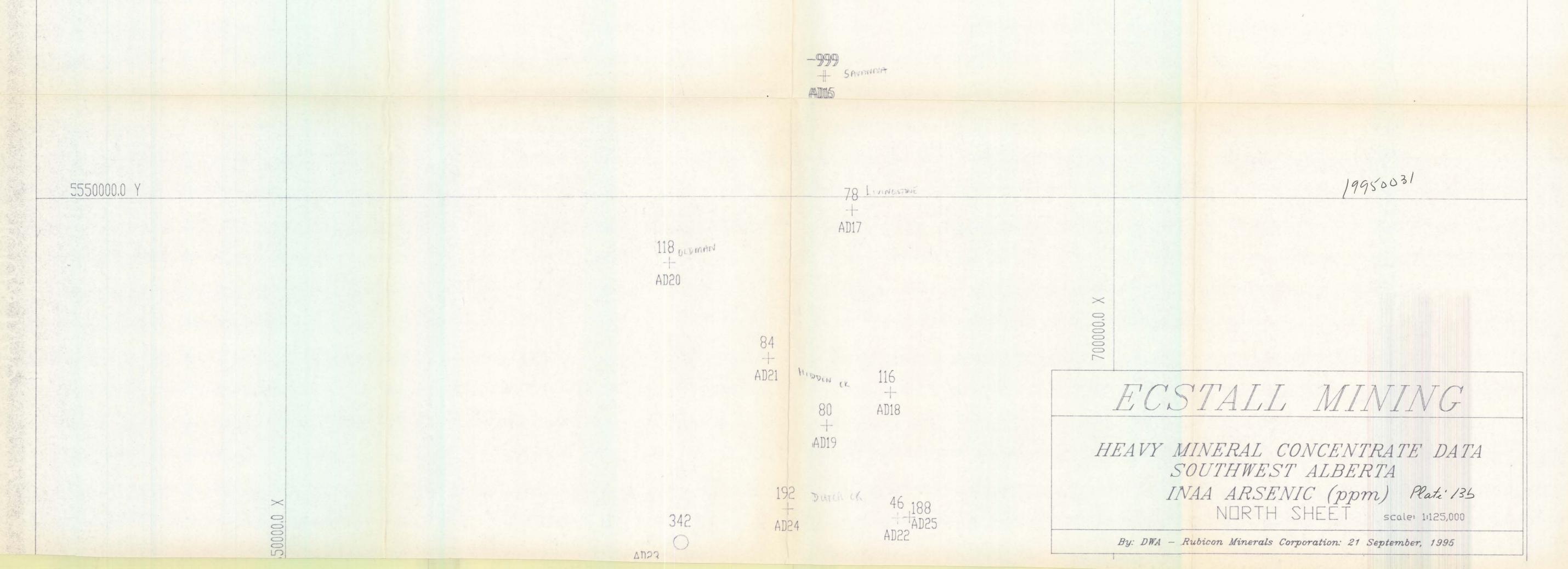
-				· · · · · · · · · · · · · · · · · · ·
	5650000.0 Y	: • • • • • • • • • • • • • • • • • • •		
		· · · · · · · · · · · · · · · · · · ·		
				:
			7	
		24 + AD37		
	5600000.0 Y	· · · · · · · · · · · · · · · · · · ·		
			· · · ·	
		-20		
		-cu +		

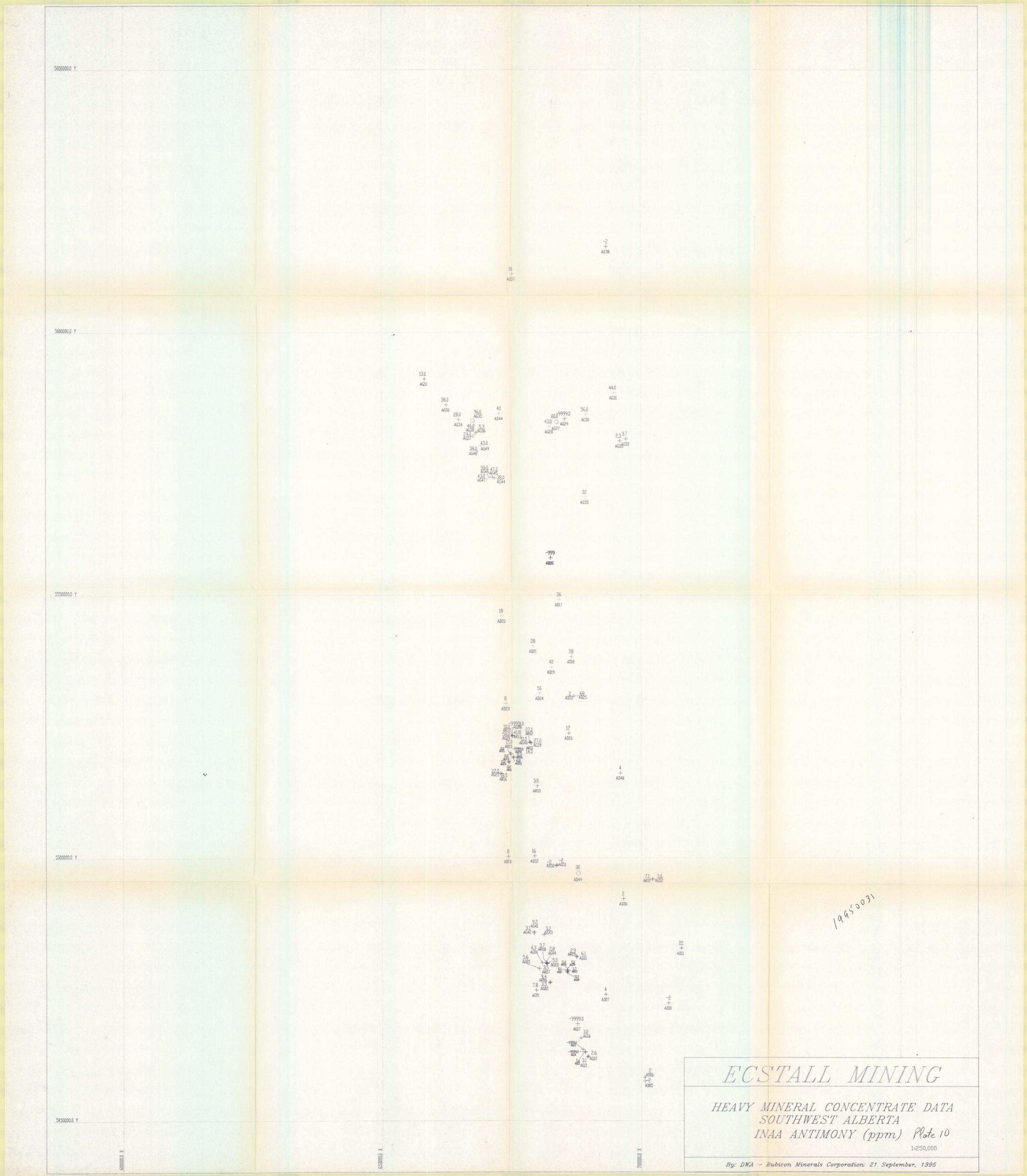






			· ·				
	· · · · ·					i .	
	,					:	
						• •	
		•		• •			
Y CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR OF CONTRACTOR						• •	
					SHELP		
					5330		
			pL				
			2800				
							-
			יטעח				
	.•						
						, <i>•</i>	







28 -----AD26 3 AG22 RACEHORSE CK 12 + AD48 AG25 D AR03 86 5500000.0 Y 1.---AD52 58 CROWSNEST RIVER AREA AD13 -2_1-2 AD50^HAD51 2B + ABEP AD49 -2 + AD36 •





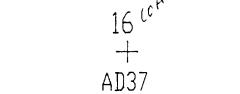
560000.0 Y * 30 + AG51 85 HIGHWOOD AG31 120 + AG50 PERISKO 66 +-AD44 85 --AG30 260 0 AG34 -9999 140 + 86 + AG29 -- AG27 AG28 150 AG35 120 AG381 AG36 ETHERINGTON 120 AG37 130 140 AG49 AG48 11 12 + + AG33G32 160 AG46 86 1801-HT-AG44 AG47 140 AG45 62 + AD35





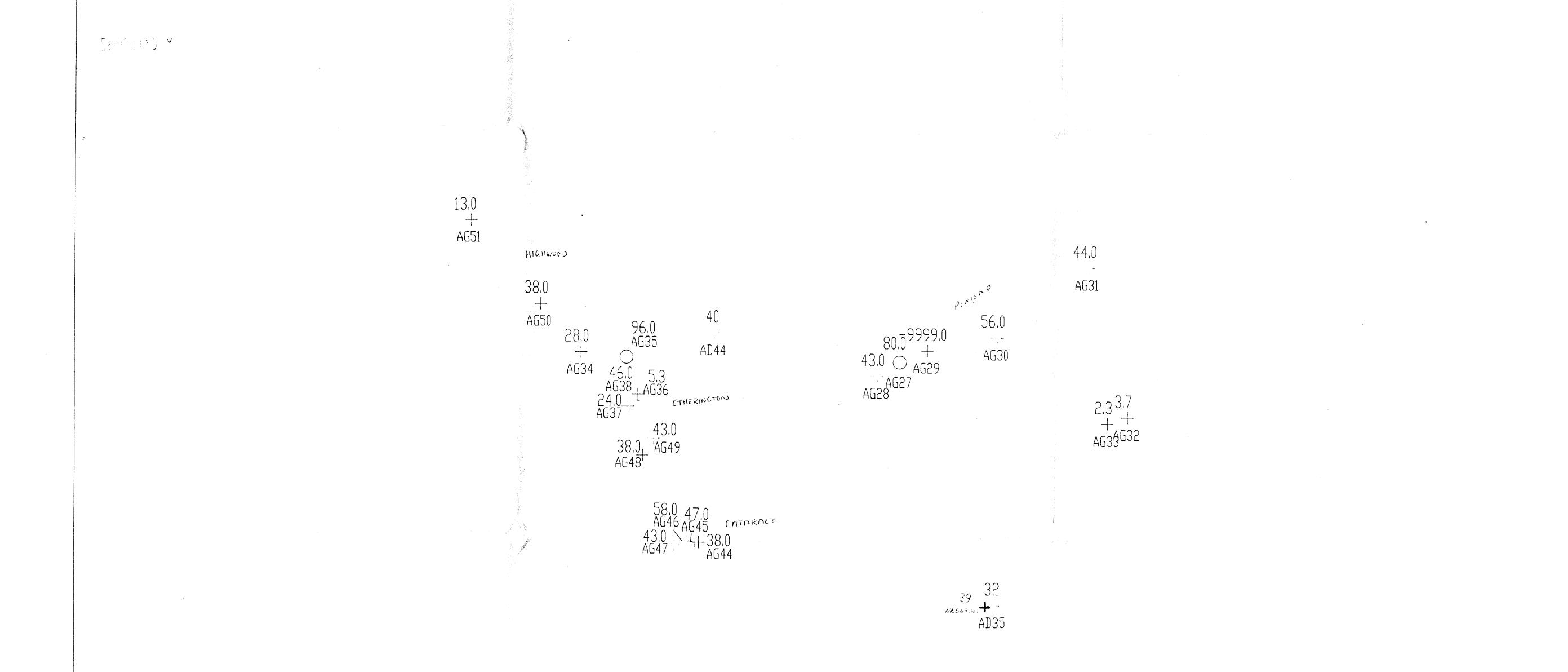
	357			
		notes	• / • 1	
		Hage -		

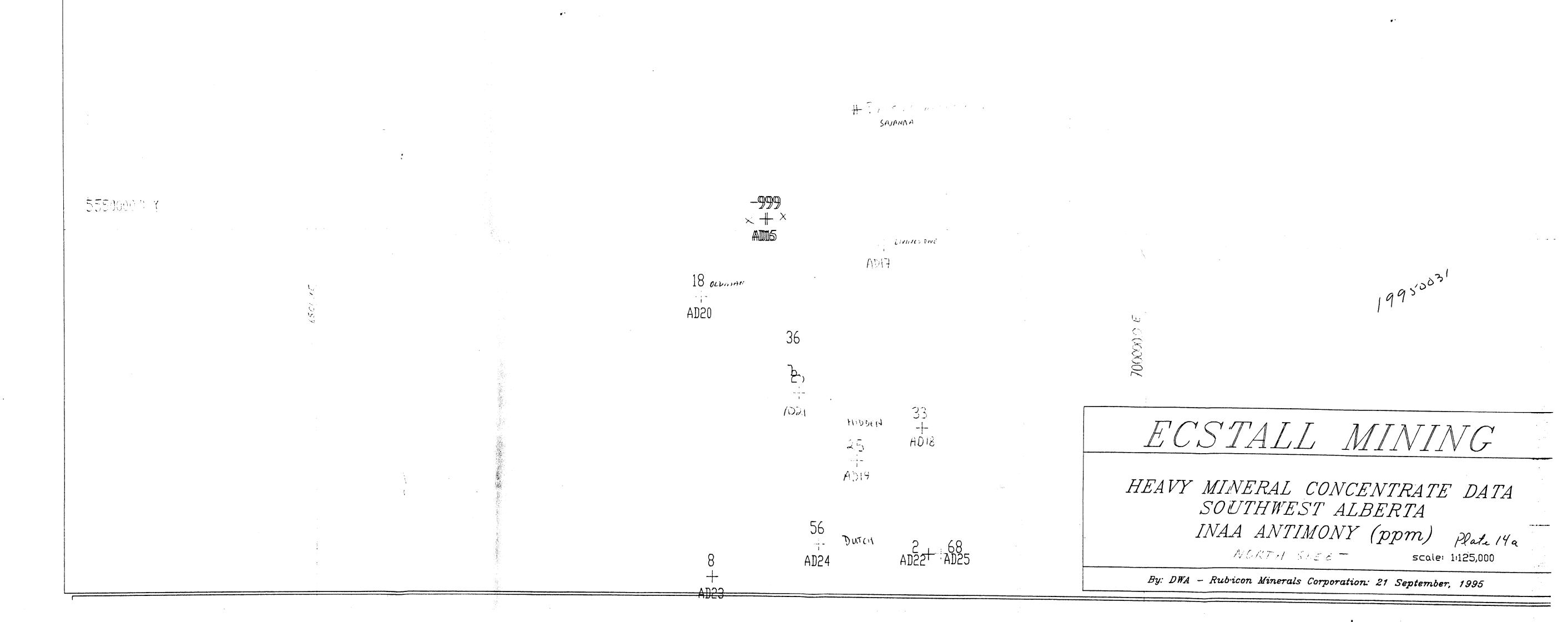
		а. 1
		• •

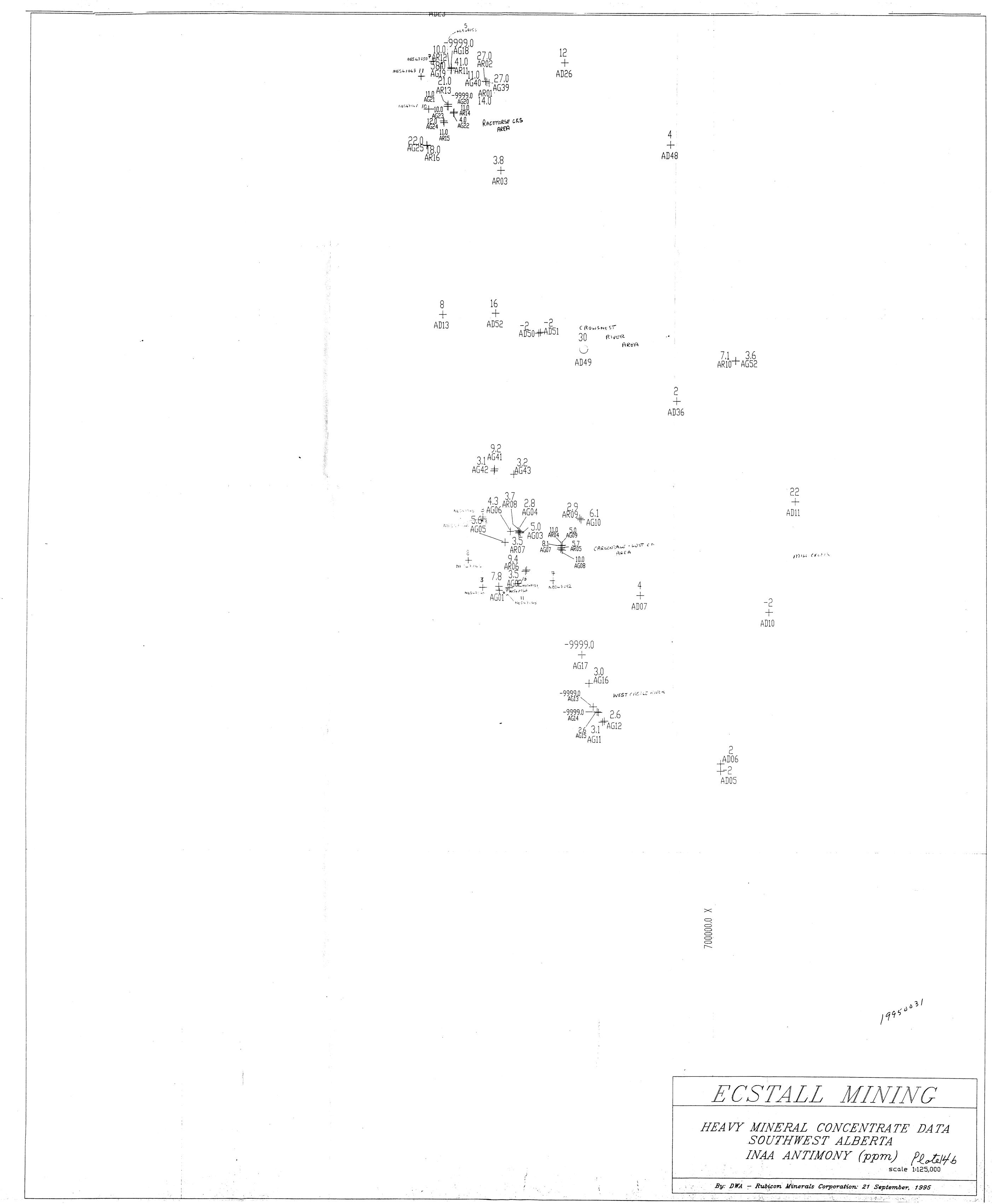

, , ,

`








16 ^u + AD37







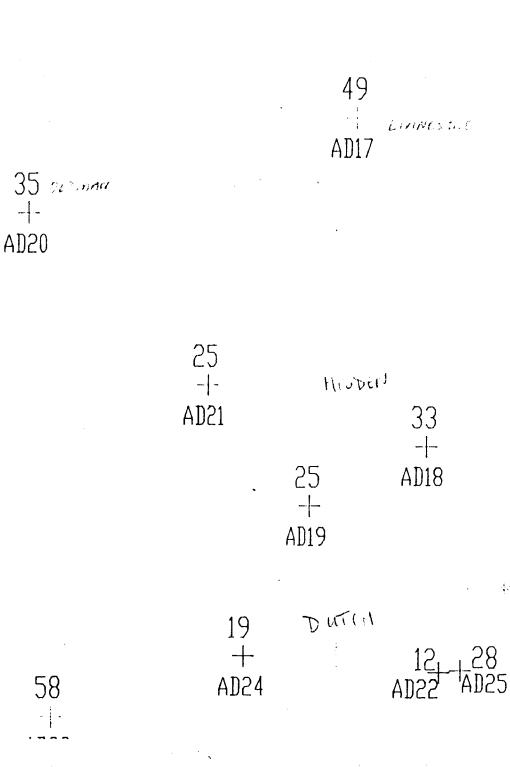


,

5550000.0 Y

N

.

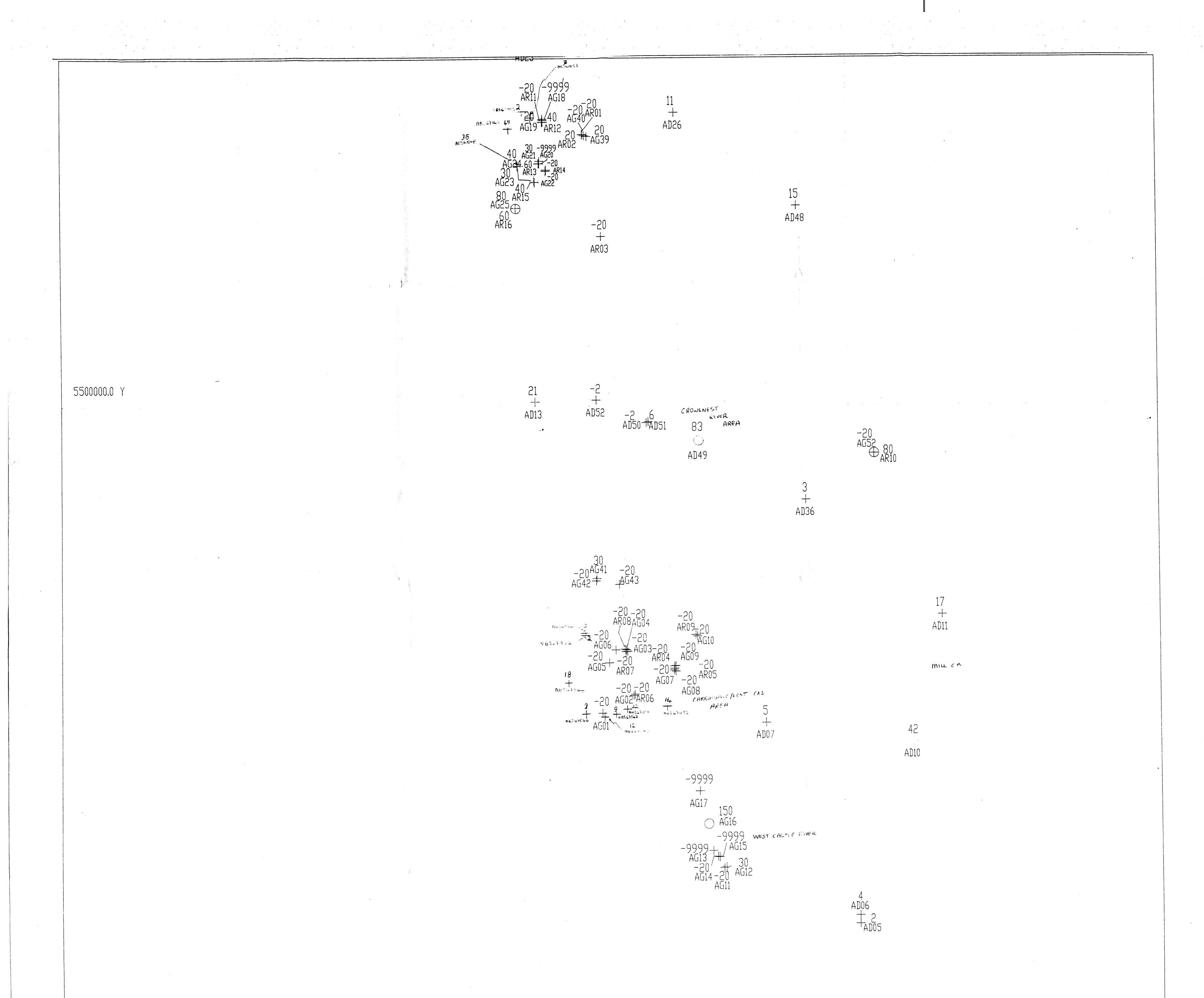

650000.0 X

· -. *'* 

· 、

•

```




AD20

BB SALIDARA

AD15

1 700000,0 X 19950031 ECSTALL MINING HEAVY MINERAL CONCENTRATE DATA SOUTHWEST ALBERTA INAA MOLYBDENUM (ppm) Plate 15a NORTH SHEET scale: 1:125,000 By: DWA – Rubicon Minerals Corporation: 21 September, 1995



5450000.0 Y

# 50000.0 X

700000,0 X

19950031 ECSTALL MINING HEAVY MINERAL CONCENTRATE DATA SOUTHWEST ALBERTA Plate 15b INAA MOLYBDENUM (ppm) scale 1:125,000 SOUTH SHEET

By: DWA - Rubicon Minerals Corporation: 21 September, 1995