MAR 19950026: COWPER

Received date: Nov 09, 1995

Public release date: Nov 10, 1996

DISCLAIMER

By accessing and using the Alberta Energy website to download or otherwise obtain a scanned mineral assessment report, you ("User") agree to be bound by the following terms and conditions:

- a) Each scanned mineral assessment report that is downloaded or otherwise obtained from Alberta Energy is provided "AS IS", with no warranties or representations of any kind whatsoever from Her Majesty the Queen in Right of Alberta, as represented by the Minister of Energy ("Minister"), expressed or implied, including, but not limited to, no warranties or other representations from the Minister, regarding the content, accuracy, reliability, use or results from the use of or the integrity, completeness, quality or legibility of each such scanned mineral assessment report;
- b) To the fullest extent permitted by applicable laws, the Minister hereby expressly disclaims, and is released from, liability and responsibility for all warranties and conditions, expressed or implied, in relation to each scanned mineral assessment report shown or displayed on the Alberta Energy website including but not limited to warranties as to the satisfactory quality of or the fitness of the scanned mineral assessment reports and warranties as to the non-infringement or other non-violation of the proprietary rights held by any third party in respect of the scanned mineral assessment report;
- c) To the fullest extent permitted by applicable law, the Minister, and the Minister's employees and agents, exclude and disclaim liability to the User for losses and damages of whatsoever nature and howsoever arising including, without limitation, any direct, indirect, special, consequential, punitive or incidental damages, loss of use, loss of data, loss caused by a virus, loss of income or profit, claims of third parties, even if Alberta Energy have been advised of the possibility of such damages or losses, arising out of or in connection with the use of the Alberta Energy website, including the accessing or downloading of the scanned mineral assessment report and the use for any purpose of the scanned mineral assessment report.
- d) User agrees to indemnify and hold harmless the Minister, and the Minister's employees and agents against and from any and all third party claims, losses, liabilities, demands, actions or proceedings related to the downloading, distribution, transmissions, storage, redistribution, reproduction or exploitation of each scanned mineral assessment report obtained by the User from Alberta Energy.

Alberta

Alberta Mineral Assessment Reporting System

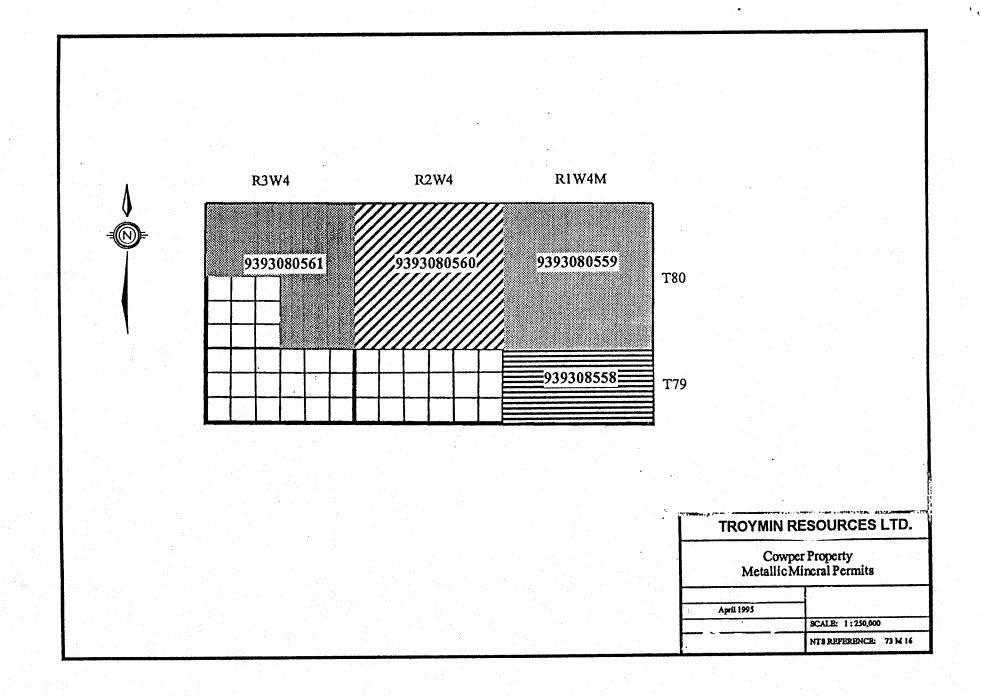
þ

FOCAL RESOURCES LIMITED

Cowper Property

Assessment Report

19950026


Authors: M. Innes, B.Sc. D. Nikols, P. Geo. L. Smith, P. Geol. August 1995

Cowper P	roperty
----------	---------

þ

Table of Contents

Summary		2
Introduction		2
Regional Geology Mineralisation Model Location, Access and Permit Tabulation		2 2 3
Work Performed		4
Sampling Rationale, Procedures and Analysis Exploration Strategy Lake Water Sampling Lake Sediment Sampling Stream Sediment Sampling Regional Ground Water Study Results		4 4 5 6 6 7
Conclusions	- - 	
Recommendation		7
Bibliography		8
Author Information		9
Appendicies		
Appendix I Analytical Techniques and Detection Limits ICP-AES Element Suite and Detection Limits Fire Assay with Atomic Absorption Spectrometry Neutron Activation Analysis Element Suite and Detection Limits Acidified Water ICP-MS Analysis Elements and Standard Detection Lim Activated Carbon ICP-MS Analysis Elements and Standard Detection L		
Appendix II Summary of Analytical Results Lake Sediments Lake Waters Stream Sediment		
Appendix III Assay and Analysis Certificates		
Appendix IV Maps 1. Location in Alberta 2. Property Boundaries and Permit Numbers 3. Regional Bedrock Geology 4. Sample Locations 5. Analytical Results of Interest		

Summary

Focal Resources Limited began its Northeast Alberta exploration programme in the spring of 1994. The Cowper Property (74,880 acres or 29,952 hectares) was included in that study. The principal exploration objective was to find gold and other metals in the Devonian limestones. In order to test the mineralisation model, lake sediment and lake waters and stream sediments were sampled.

Several high geochemical values were found in the lake sediments and waters; however, there is no significant evidence supporting any of the hypotheses which led to exploration in this area. It is therefore recommended that this property be dropped

Introduction

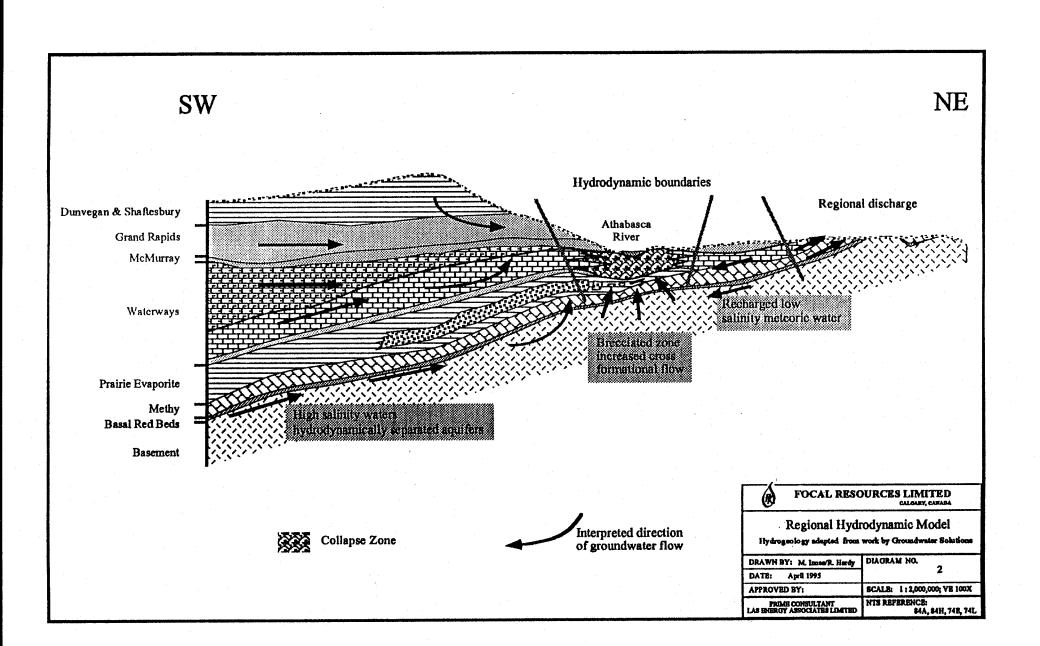
This report summarizes the exploration efforts carried out by Focal Resources Limited on the Cowper property (NTS 73 M 16; Maps 1 and 2) during the 1994 summer field season.

Regional Geology

Map 3 shows the bedrock geology of Northeastern Alberta, and Diagram 1 represents the regional stratigraphy of Northeast Alberta.

The Precambrian rocks in the region consist of the basement complex of intrusives and metasedimentary gneisses. During the Hudsonian Orogeny these rocks were structurally deformed and metamorphosed to amphibolite grade.

A hematitic regolith (the La Loche Formation), is commonly found overlying the Athabasca Formation (if present) or the Precambrian basement.


A wedge of Devonian limestones unconformably overlies the Precambrian rocks, and are in turn unconformably overlain but Cretaceous sediments. The Cretaceous is not found in outcrop due to the thick layer of glacial cover, which in the Cowper area ranges to a maximum thickness of 250 metres (Ozoray, 1974).

Mineralisation Model

Several variations of a working model were developed before the field work began and have been improved upon since (Diagram 2). The generic model for metallic mineral deposition involves ion rich waters migrating upwards and precipitating metals upon reaching an appropriate change in redox conditions. The upward migration of such fluids from the basal red beds or granite wash (La Loche Formation) is dependent on the breaching of aquatards in the overlying formations. Dissolution of the Prairie Evaporite salts results in collapse structures, and the associated faulitng/brecciation would providing the necessary fluid conduits for cross-formational fluid migration. The salts also provide a Diagram 1. Generalized Stratigraphy of Northeastern Alberta.

SYS	ГЕМ	GROUP	FORMATION	MEMBER	DOMI	INANT LITHOLOGY		
1 1	tocene	~~~~	Drift	<u>^</u>		till outwash gravels acolian sands		
		La Biche	La Biche			shale		
N N	Upper		Dunvegan			sandstone, siltstone		
Cretaceous			Shaftsbury			shale, bentonites fish scale horizon		
Creta			Pelican			sand		
			Joli Fou			shale		
	Lower	Mannville	Grand Rapids			lithic sands		
			Clearwater			shale & glauconite sands		
			McMurray	\sim	A -	quartzose sands, heavy oil		
		Beaverhill Lake	Waterways	Mildred		argillaceous limestone		
	cr			Moberly		limestone & shale		
	Upper			Christina		shale & limestone		
				Calumet		limestone & shale		
				Firebag		shale, minor limestone		
			Slave Point			limestone		
Devonian	Middle	Upper Elk Point	Prairie Evaporite			salts, anhydrite, shale & dolomite		
Dev	Wi		Methy			dolomite, minor reefs		
		Lower Elk Point	McLean River	··		shale, siltstone, dolomite		
			Cold Lake		//////	salt, minor shale		
	/er		Erestina			shale, limestone, anhydrite		
	Lower		Lotsberg			salt, minor shale		
			La Loche	<u>^</u>		arkosic sand & conglomerate (basal red beds/granite wash)		
Precar	nbrian		Athabasca Group		$ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	sandstone		
			Basement Complex			granitoids		

Modified after Dufresne et al (1994), and Hamilton and Mellon (1973).

source of ions for the migrating fluids. Fluids with meteoric compositions moving downward through the overlying surficial material will also affect overall fluid chemistry. The resultant fluids have a high oxygen content, and precipitation of the dissolved ions will occur when the fluids encounter a reducing environment. The McMurray Formation in the area contains hydrocarbons, providing the necessary reducing conditions. The redox boundary may not be a planar horizon, such as the base of the McMurray Formation, but due to leakage of hydrocarbons into the underlying rocks may be a wider zone enveloping the McMurray/Waterways contact. As such, there is potential for mineralisation in the Cretaceous sands as well as the Devonian limestones.

The model described above is a variation of the two-fluid mixing model for the deposition of Mississippi Valley Type lead-zinc ores. The carbonate rocks in the area exhibit several of the regional characteristics of MVT deposits: high porosity and permeability as a result of karstification, fracturing or faulting; the presence of biostromal carbonates; dolomitization and silicification; and an association with hydrocarbons (Olson et al, 1994).

In order to determine the potential for the type of mineralisation described above, geological interpretation (air photo and Landsat image analysis) and subsequently geochemical sampling of lake waters and sediments was conducted. The analyses show elevated geochemical values for several metals in all sample types.

Location, Access and Permit Tabulation

The Cowper property comprises the lands listed in Table 1. They are found within NTS map 73M (Winefred Lake). Map 1 shows the regional context of the property, and Map 2 shows the boundaries and permit numbers in detail. All Metallic Mineral Permits for the Cowper Property are currently held by Troymin Resources Limited, under option to Focal Resources Limited.

Table 1

Permit Numbers and Locations

Permit Number	Section(s)	Township	Range	Meridian		
9933080558	19-36	79	1 .	W4		
9393080559	1-36	80	1	W4		
9393080560	1-36	80	2	W4		
9393080561	1-3; 10-15; 19-36	80	3	W4		

Access to the area was gained via helicopter from Fort McMurray.

Work Performed

Tables 2 and 3 show the work carried out on and/or in support of work on the Cowper property from June 1994 - April 1995, and the cost of that work.

Table 2

Work Performed - Geological and Geochemical Surveys

Type of Work	Dates	Statistics		
Compilation of Existing Information	May - July 1994			
Lake Sediment Sampling	August & October 1994	13 samples		
Lake Water Sampling	August & October 1994	13 samples		
Stream Sediment Sampling	October 1994	1 sample		
Sample Analysis	September & October 1994			
Data Analysis, Interpretation and Consolidation	November 1994	·		

Table 3

Cost of Work Performed

Geological and Geochemical Surveys	
Company Labour & Consulting Fees	\$ 3,605.17
Geological Studies	1,437.50
Geochemical Studies	1,437.50
Assaying/Analysis	1,437.50
Transportation - helicopter	2,475.29
Transportation - fixed wing	216.00
Overhead	1,357.73
Total	\$ 11,966.69

Sampling Rationale, Procedures and Analysis

Exploration Strategy

The permits discussed in this report form a small portion of the lands considered in Focal Resources' overall programme for 1994. Positioning any specific property in a regional geological framework is an essential step in the interpretation of any data collected from that property. The information gathered from the literature was assembled and interpreted, an exploration and data collections strategy was developed, the appropriate field work was implemented, and the results were interpreted within a regional framework.

Due to the lack of bedrock exposure in this area, alternatives to the conventional approach were taken. Based on the literature and the mineralisation model, lake water, lake sediment, and stream sediment samples were collected for geochemical analysis.

The Cowper Property area is favorable for metal deposition due to the probability of the existence of pathways for upward and downward migrating fluids coupled with a strong reducing environment. The proximity to the salt solution edge creates the potential for brecciation, which would provide conduits for fluids moving up from depth.

The Snowbird Tectonic Zone (STZ), a major crustal discontinuity, cross cuts the property from southwest to northeast. The STZ is a major crustal lineament, with both gravity and aeromag expression, extending from Baker Lake in the North West Territories to just south of Lac La Biche in Alberta. In essence, it divides the Churchill Geological Province into two distinct basement domains (Ross et. al., 1989, 1991). In the North West Territories and in the Nordegg area of Alberta this zone is associated with interesting late Devonian and Cretaceous features; however, no direct association between such features and mineralisation or fluid conduit structures has been documented in the vicinity of this property (Olson, 1994).

The existance of a thick till cover (MacGillivary, 1992), combined with the water conductivity characteristics of an aquifer in the region (Richard Stein, personal communication) provides the mechanism for downward fluid movement and mixing. The presence of bitumen-rich Cretaceous rocks overlying the Devonian provides the necessary redox boundary.

The possibility that metallic ion rich waters could be migrating upward through conductive zones was tested by taking a series of lake water and sediment samples. It was believed that the lakes, many of which do not receive inflow from regional streams, would be the most likely repository for geochemical concentrations of metallic ions if these ions were reaching the near surface.

Lake Water Sampling

Lake water and sediments were taken using a pontoon equipped helicopter. Sampling devices were designed and built by Dr. J. D. Campbell of Jaycon Reconnaissance. Water and sediment samples were placed in clean 1 L, sample bottles. The water samples were treated as follows (Cody, 1995):

Electrical conductivity and pH were measured on the raw, un-filtered water as soon as possible. Samples were filtered through a 0.45 μ m cellulose acetate filter housed in a 2.4 L barrel filter unit using hand pumped air as a drive. Water was collected into 2, 125 ml polypropylene bottles. One was acidified to a pH<2 with five drops of concentrated nitric acid, sealed, labeled filtered acidified water and sent for analysis. The other was sealed and archived as filtered un-acidified water . A second filtered acidified sample was commonly taken for quality assurance and quality control purposes.

Gold, silver, and platinum group elements (PGEs) are unstable in aqueous solutions in plastic containers. To preserve these specific elements and to allow for lower limits of detection, a pre-concentration technique following that of Hall (1986), was utilized. To one liter of acidified water, 250 mg of activated carbon was added and vigorously agitated. The unstable elements are adsorbed onto the activated carbon. This mixture has been shown to be stable for over 30 days. The water plus activated carbon mixture was then re-filtered through a 0.45 µm

cellulose acetate filter to collect the activated carbon. The collected activated carbon was then analyzed for the above mentioned elements.

The acidified water samples and the activated carbon samples were analysed using Inductively Coupled Plasma Mass Spectrometry (ICP-MS) by Elemental Research Incorporated of Vancouver. The acidified water samples were run as received at ten times dilution. Table 7, Appendix 1 lists the elements and the standard detection limits for the water analyses. The activated carbon samples were made into solutions; 0.2g of dried sample was disolved in 2 ml of aqua regia, and made up to 10 ml of solution with 18 megaohm water. These solutions were run at 2.5X dilution. Table 8, Appendix 1 lists the elements analysed and their respective detection limits for the activated carbon analyses.

The collecting, handling and treatment of all water samples was done under the supervision of John Cody of Ground Water Solutions Limited, Calgary.

Lake Sediment Sampling

Lake sediment samples were collected using a tube-type sampling device from a pontoon equipped helicopter. The samples were transported to the lab as is (sealed in plastic bottles), where they were subsequently either ashed and analysed using Inductively Coupled Plasma Atomic Emission Spectrometry (ICP-AES) fire assay with atomic absorption finish (FA-AA), or a Neutron Activation Analysis (NAA) was performed on the whole sample.

Stream Sediment Sampling

Following air reconnaissance of the property via fixed wing aircraft, suitable sample sites were selected. The sampling was done in the fall to take advantage of low water levels. A 6mm screen was used to remove course material in the field. Approximately 40 kg of >6mm material was collected in a large plastic pail. The stream sample was taken to the University of Alberta Minerals Benefaction Laboratory and screened to 60 mesh. The minus 60 mesh fraction was run over a shaker table, separating each sample into concentrate, middling and tails; the heavy mineral fraction making up most of the concentrate. The fractions were subsequently examined under the light microscope and the concentrate assayed for gold using FA-AA.

Regional Ground Water Study

Water chemistry data from deep formations was collected over a wide area in the vicinity of this and other properties of interest. Existing wells were sampled using the best technology available. The waters were treated and analysed as described above for the surface waters. Existing water observation wells drilled by the Alberta Research Council and others formed the bulk of those sampled. Additional samples were taken from water supply wells and gas well separators in areas not covered by the existing piezometers. None of these samples were taken from within the boundaries of this property, however, the analysis of this data formed an important part of the overall evaluation of the mineral potential of these permits.

Bibliography

Andriashek L. D. & Fenton M. M. (1989) Quaternary Stratigraphy and Surfical Geology of the Sand River Area 73L, ARC Bulletin No. 57.

Cody, J. (1995) Groundwater Orientation Program Report, Groundwater Solutions Ltd.

- Dufresne, M.B., B.A. Henderson, M.M. Fenton, J.G. Pawlowicz, and R.J.H. Richardson (1994) The Mineral Deposits Potential of the Marguerite River and Fort MacKay Areas, Northeast Alberta (NTS 74E), Canada-Alberta MDA Project M93-04-038, Alberta Research Council Open File Report 1994-9.
- Green, et al. (1969) Bedrock Geology of Northern Alberta, Map, Alberta Research Council.
- Hall, Vaive and Ballantyne (1986) Field and Laboratory procedures for determining Gold in natural waters: Relative merits of preconcentration with activated charcoal. <u>Journal of Geochemical Exploration</u>, vol 26, p191-202.
- Hamilton, W.N. and G.B. Mellon (1973) Industrial Mineral Resources of the Fort McMurray Area. In M.A. Carrigy and J.W. Kramers (eds), Guide to the Athabasca Oil Sands Area, Alberta Research Council Information Series No. 65, pp.123-161.
- MacGillivray, J. R., et. al., (1992) Resource Characterization of the McMurray/Wabiska Deposit in the Athabasca South Region of Northeastern Alberta, AOSTRA Technical Publication Series #8.
- Olson R.A., Dusfrene, M.B., Freeman, M.E., Eccles, D.R., and R.J.H. Richardson (1994) Regional Metallogenic Evaluation of Alberta, Alberta Research Council Open File Report 1994-8.
- Ozoray, G.F., (1974) Hydrogeology of the Waterways-Winefred Lake Area, Alberta, ARC Report 74-1.
- Ozoray, G.F., Wallick, E. L., Lytviak, A. T, (1979) Hydrogeology of the Sand River Area, Alberta, ARC Report 79-1.
- Ross, G. M. (1991) Precambrian basement in the Canadian Cordillera: an introduction. <u>Canadian Journal of Earth Sciences</u>, vol 28, p1133-1139.
- Ross, G. M. (1993) Tectonic Evolution of Crystalline Basement Western Canada: Implications for Mantle Evolution. In D. Sawyer, The Calgary Mining Forum, Program and Abstracts, March 3 & 4 1993.

K

Author Information

This report was prepared by L.A. Smith, D. Nikols, M. Innes, and D. Reynolds. The geological service work and results reported herein was carried out by or under the supervision of the preparation team.

Leslie A. Smith, B.Sc., P. Geol. is a registered geologist in Alberta and has over 20 years of experience in mining and petroleum geology and project management.

Dennis J. Nikols, B.Sc., P. Geo. is a registered geoscientist in British Columbia. He has 26 years of experience in mineral exploration and mining geology and the management of geoscience projects for industry and the Alberta Geological Survey.

Michele B. Innes, B.Sc., MBA, G.I.T., a recent graduate of the University of Saskatchewan was directly involved in the mapping, sampling, and data collection on this project.

Darryl M. Reynolds, B.Sc., (Wildlife Biology), a recent graduate of the University of Montana was directly involved in the mapping, sampling, and data collection on this project.

Appendices

10

Ì

Í

Appendix I Analytical Techniques and Detection Limits

Table 5 ICP-AES Element Suite and Detection Limits

Element	Atomic Number	Symbol	Detection Limit	Units
Molybdenum	42	Мо	1	ppm
Copper	29	Cu	<u>1</u> .	ppm
Lead	82	Pb	3	ppm
Zinc	30	Zn	1	ppm
Silver	47	Ag	0.3	ppm
Nickel	28	Ni	1	ppm
Cobalt	27	Co	1	ppm
Mangenese	25	Mn	2	ppm
Iron	26	Fe	0.01	%
Arsenic	33	As	2	ppm
Uranium	92	U	5	ppm
Thorium	90	Th	2	ppm
Strontium	38	Sr	1	ppm
Cadmium	48	Cd	0.2	ppm
Antimony	51	Sb	2	ppm
Bismuth	83	Bi	2	ppm
Vanadium	23	V	1	ppm
Calcium	20	Ca	0.01	%
Phosphorous	15	Р	0.001	%
Lanthium	57	La	1	ppm
Chromium	24	Cr	1	ppm
Magnesium	12	Mg	0.01	%
Barium	56	Ba	1	ppm
Titanium	22	Ti	0.01	%
Boron	5	В	3	ppm
Aluminum	13	Al	0.01	%
Sodium	11	Na	0.01	%
Potassium	19	K	0.01	%
Tungsten	74	W	2	ррш

. <u>.</u> . . .

1

Table 6

Ĩ

Ì

Fire Assay Elements and Detection Limits (ICP-AES samples)

Element	Atomic Number	Symbol	Detection Limit	Units		
Gold	79	Au	5	ppb		

Table 7

Neutron Activation Analysis Element Suite and Detection Limits

Element	Atomic Number	Symbol	Detection Limit	Units
Silver	47	Ag	5.0000	ppm
Arsenic	33	As	2.0000	ppm
Gold	79	Au	5.0000	ppb
Barium	56	Ba	100.0000	ppm
Bromine	35	Br	1.0000	ppm
Calcium	20	Ca	1.0000	%
Cadmium	48	Cd	5.0000	ppm
Chromium	24	Cr	10.0000	ppm
Cesium	58	Cs	3.000	ppm
Iron	26	Fe	0.1000	%
Hafnium	72	Hf	1.0000	ppm
Molybdenum	42	Мо	5.0000	ppm
Sodium	11	Na	500.0000	ppm
Nickel	28	Ni	100.0000	opm
Rubidium	37	Rb	30.0000	ppm
Antimony	51	Sb	0.2000	ppm
Selenium	34	Se	5.0000	ppm
Strontium	38	Sr	500.0000	ppm
Tantalum	73 -	Ta	1.0000	ppm
Thorium	90	Th	0.5000	ppm
Uranium	92	U	0.5000	ppm
Tungsten	74	W	4.0000	ppm
Zinc	30	Zn	50.0000	ppm
Lanthanum	57	La	1.0000	ppm
Cerium	58	Ce	3.0000	ppm
Neodymium	60	Nd	10.0000	ppm
Samarium	62	Sm	0.5000	ppm
Europium	63	Eu	0.2000	ppm
Terbium	65	ТЪ	0.5000	ppm
Ytterbium	70	ΥЪ	0.2000	ppm
Lutetium	71	Lu	0.0500	ppm
Iridium	77	ŀ	20.0000	ppb

Table 8

Ì

Acidified Water ICP-MS Analysis Elements and Standard Detection Limits

Element	Atomic Number	Symbol	Detection Limit	Units*
Sodium	11	Na	10	μg/l
Magnesium	12	Mg	0.3	μg/1
Calcium	20	Ca	10	μg/l
Manganese	25	Mn	0.3	· µg/l
Iron	26	Fe	2	μg/1
Nickel	28	Ni	0.3	µg/l
Copper	29	Cu	0.5	µg/l
Zinc	30	Zn	1	µg/l
Silver	47	Ag	0.08	µg/l
Cesium	58	Ce	0.03	μg/l
Platinum	78	Pt	0.03	µg/l
Lead	82	· Pb	0.2	μg/l
Gold	79	Au	0.02	μg/l

* 1 μ g/l = 1 ppb

Table 9

Activated Carbon ICP-MS Analysis Elements and Standard Detection Limits

Element	Atomic Number	Symbol	Detection Limit	Units
Silver	47	Ag	0.08	μg/l*
Platinum	78	Pt	0.03	μg/l
Gold	79	' Au	0.02	μg/l
Ruthenium	44	Ru	0.04	μg/l
Rhodium	45	Rh	0.03	μg/l
Palladium	46	Pd	0.06	μg/l
Rhenium	75	Re	0.03	μg/l
Osmium	76	Os	0.02	μg/l
Iridium	77	ŀ	0.02	μg/l

* $1 \,\mu g/l = 1 \,ppb$

1

Appendix II Summary of Analytical Results

Lake Sediment Data (ICP and NAA)

Corrected Data			LOIX	Na (11)	Mg (12)	AI (13)	P (15)	Ca (20)	Mn (25)	Fe (26)	Co (27)	NI (28)	Cu (29)	Zn (30)	As (33)	Mo (42)
Sample Id	Sample Type	Lab Id	Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ррт
CWMI-BS-1	lake sediment	72747	46.34	859	1610	3917	837	8371	551	22430	3	16	38	90	93	2
CWMI-BS-2	lake sediment	72746	74.66	557	2838	4054	1102	13532	293	12011	4	19	16	103	19	2
CWMI-BS-3	lake sediment	72749	9.01	2093	14467	14103	3239	83711	1246	53684	10	61	69	301	57	5
CWMI-BS-4	lake sediment	72745	15.27	254	847	3389	585	3643	554	11100	3	8	8	59	6	1
CWMI-BS-6	lake sediment	72750	75.43	319	2187	4005	791	10295	277	13071	3	11	13	61	17	2
CWMI-BS-6	lake sediment	72743	72.37	138	1547	5940	672	8924	273	7626	6	14	9	123	90	1
CWMI-BS-7	lake sediment	72748	72.42	441	1931	7088	582	10591	390	9350	4	15	8	73	7	1
CWMI-BS-8	lake sediment	72744	56.94	301	1593	5512	422	11066	393	6373	3	9	6	120	97	1
CWMI-BS-09A	lake sediment	73142	7	1100				<10000		7000	7	<100		100	6	<5
CWMI-85-098	lake sediment	73143		900	-			10000		6000	7	<100		120	5	<5
CWMI-B8-10A	lake sediment	73144		900				20000		8000	<5	<100		<60	2	<6
CWMI-BS-10B	lake sediment	73145		900				20000		9000	<5	<100		<50	3	<5
CWMI-BS-11A	lake sediment	73146		2800				10000		17000	8	<100		60	5	<5
CWMI-BS-11B	lake sediment	73147		2600				10000		18000	88	<100		60	6	<5
CWMI-BS-11C	lake sediment	73148		2400	· · · · ·			10000		16000	7	<100		70	6	<5
CWMI-BS-12A	lake sediment	73149		1100				<10000		4000	<5	<100		70	5	<5
CWMI-BS-12B	lake sediment	73150		600				<10000		4000	<5	<100	· · · · · · · · · · · · · · · · · · ·	70	3	<5
CWMI-BS-13A	lake sediment	73151		2900		· ·		10000		39000	11	<100		100	9	7
CWMI-BS-138	lake sediment	73152		2700				<10000		37000	11	<100		90	8	<5

Cowper

Corrected Data	1		LOIX	Ag (47)	Cd (48)	Ba (56)	W (74)	Au (79)	Pb (82)	Sr (38)	Sb (51)	V (23)	BI (83)	Cr (24)	K (19)	TI (22)
Sample Id	Sample Type	Lab Id	Units	ppm	ppm	ррт	ppm	ppb	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
CWMI-BS-1	lake sediment	72747	46.34	3	1	180	1		209	73	5	10		10	966	
CWMI-BS-2	lake sediment	72748	74.66	0	1	63			68	60	1	9		31	887	76
CWMI-BS-3	lake sediment	72749	9.01	3	2	93	1	74	417	241	6	31		79	2730	273
CWMI-BS-4	lake sediment	72745	15.27	0	0	81		8	22	19		9	2	148	763	85
CWMI-BS-5	lake sediment	72750	75.43	0	1	61	0	19	69	32	1	10		14	983	74
CWMI-BS-6	lake sediment	72743	72,37	0	1	99		35	23	46	1	13		12	967	83
CWMI-BS-7	lake sediment	72748	72.42	0	0	83	0	6	24	49		15		12	1103	83
CWMI-BS-8	lake sediment	72744	56,94	0	1	124	0	24	14	74	4	10		11	990	43
CWMI-BS-09A	lake sediment	73142		<5		200		<5		<500	0.2			30		L
CWMI-BS-09B	lake sediment	73143		<5		200	*	2		<500	0.2			30		L
CWMI-B8-10A	lake sediment	73144		<5		100	⊲4	<5.		< 500	<0.2			10		L
CWMI-BS-10B	lake sediment	73145		<5	4	100	≪4	<5		<500	0.2			10		L
CWMI-BS-11A	lake sediment	73146		<5	•	300	<4	<5		<500	0.3			60		
CWMI-BS-11B	lake sediment	73147		<5		300	4	<5		<500	0.5			50		L
CWMI-BS-11C	lake sediment	73148		<5		300	- 4	<5		<500	0.6			80		L
CWMI-BS-12A	lake sediment	73149		<5		100	4	<5		<500	0.3			10		
CWMI-BS-12B	lake sediment	73150		<5		100	4	<5		<500	0.2			10		L
CWMI-BS-13A	lake sediment	73151		<5		300	4	<5		<500	0.2			60		L
CWMI-88-138	lake sediment	73162		<5		400		<5		<500	0.2			70		L

Lake Sediment Data (ICP and NAA)

Corrected Data	1		LOI %	B (5)	Br (35)	Cs (55)	Hf (72)	Rb (37)	Se (34)	Sr (38)	Ta (73)	ir (77)	La (57)	Th (90)	U (92)	Ce (58)
Sample Id	Sample Type	Lab Id	Unite	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
CWMI-BS-1	lake sediment	72747	46.34	17		· · · · · · · · · · · · · · · · · · ·				·		4	2	8	· · · ·	-
		72746	74.66	48								4	1			1
CWMI-BS-2	iake sediment											12	6	1		1
CWMI-BS-3	lake sediment	72749	9.01	128								12	<u> </u>			-{
CWMI-BS-4	lake sediment	72745	15.27	88								8		<u> </u>		
CWMI-BS-5	lake sediment	72750	75.43	20								4	1 .			·}
CWMI-BS-6	lake sediment	72743	72.37	12								5	2			
CWMI-BS-7	lake sediment	72748	72.42	19								7	2			
CWMI-BS-8	lake sediment	72744	56.94	19								6	2			
CWMI-BS-09A	lake sediment	73142			44	ŝ	1	<30	<5	<1	<20	7	2	1.1	11	2 <10
CWMI-BS-09B	lake sediment	73143			38	ŝ	1	<30	<5	<1	<20	5	1.6	0.6	10) <10
CWMI-BS-10A	lake sediment	73144			100	\$	<1	<30	<5	<1	<20	3	1.2	0.8	6	<10
CWMI-BS-10B	lake sediment	73145			110	ও	<1	<30	<5	<1	<20	4	0.9	1	7	<10
CWMI-BS-11A	lake sediment	73146			78	3	3	<30	<5	<1	<20	18	4.9	2.3	34	10
CWMI-BS-11B	lake sediment	73147			83	<3	3	<30	<5	<1	<20	17	4.3	1.7	32	2 10
CWMI-8S-11C	lake sediment	73148			94	<3	2	<30	<5	<1	<20	13	3.6	2.3	24	10
CWMI-BS-12A	lake sediment	73149			61	<3	<1	<30	<5	<1	<20	1	0.5	<0.5	\$	<10
CWMI-BS-12B	lake sediment	73150			63	<3	<1	<30	<5	<1	<20	1	0.5	<0.5	3	<10
CWMI-BS-13A	lake sediment	73151			83	3		30	<5	<1	<20	23	6.1		47	20
CWMI-BS-13B	lake sediment	73152	 		81	3	4	40	<5	<1	<20	22	6.3			

Lake Sediment Data (ICP and NAA)

Loring Labs/XRAL

Corrected Data			LOIN	Nd (60)	Sm (62)	Eu (63)	Тъ (65)	Yo (70)
Sample id	Sample Type	Lab id	Units	ppm	ppm	mqq	ppm	ppm
CWMI-BS-1	lake sediment	72747	46.34					
CWMI-BS-2	lake sediment	72746	74.66					
CWMI-BS-3	lake sediment	72749	9.01					
CWMI-BS-4	lake sediment	72745	15.27					
CWMI-BS-6	lake sediment	72750	75.43					
CWMI-BS-6	lake sediment	72743	72.37					
CWMI-B8-7	lake sediment	72748	72.42					
CWMI-BS-8	lake sediment	72744	56.94	1. S.				
CWMI-BS-09A	lake sediment	73142		0.9	0.4	<0.5	0.6	0.06
CWMI-BS-09B	lake sediment	73143		0.8	<0.2	<0.5	0.4	<0.05
CWMI-B8-10A	lake sediment	73144		0.5	0.4	<0.5	0.3	<0.06
CWMI-BS-10B	lake sediment	73146		0.5	<0.2	<0.5	0.2	<0.05
CWMI-BS-11A	lake sediment	73146		2.6	0.9	<0.5	1.1	0.19
CWMI-BS-11B	lake sediment	73147		2.5	0.6	<0.5	1.1	0.15
CWMI-BS-11C	lake sediment	73148		2	0.6	<0.5	1	0.13
CWMI-BS-12A	lake sediment	73149		<0.6	<0.2	<0.5	<0.2	<0.05
CWMI-85-128	lake sediment	73150		<0.5	0.2	<0.5	<0.2	<0.05
CWMI-BS-13A	lake sediment	73151		3.5	0.7	<0.5	1.7	0.24
CWMI-BS-13B	lake sediment	73152		3.3	0,8	<0.5	1.7	0.26

Lake Sediment Samples

Fire Assay Data

		Raw Au (ppb)	LOI (%)	Corrected Au (ppb)
Sample Number	Lab ID		73.28	<5
CWMI-BS-09B	73143	<5		<5
CWMI-BS-10A	73144	<5	80.79	
	73145	<5	79.02	<5
CWMI-BS-10B		<5	53.18	<5
CWMI-BS-11A	73146			<5
CWMI-BS-11B	73147	<5	55.61	<5
CWMI-BS-12A	73149	<5	90.04	
		<5	90.04	<5
CWMI-BS-12B	73150		45.89	<5
CWMI-BS-13A	73151	<5		
CWMI-BS-13B	73152	10	47.01	

Cowper Water Chemistry

Cample Id	Sample Type	Lab Id	Na (11)	Mg (12)	Ca (20)	Mn (25)	Fe (26)	Ni (28)	Cu (29)	Zn (30)	Ag (47)
Sample Id	Sample 1990	Units	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm
											0.005
CWMI-W-1	Water (AC)	CWMI-W-1AC								0.0110	0.005
CWMI-W-1	Water	CWMI-W-1W	45.8	7.07	25.5	0.056	<0.1	0.00192	0.0234	0.0118	< 0.00005
CWMI-W-2	Water (AC)	CWMI-W-2AC								0.015	0.535
CWMI-W-2	Water	CWMI-W-2W	189	0.574	1.1	0.00777	0.254	0.00072	0.023	0.015	0.00073
CWMI-W-3	Water (AC)	CWMI-W-3AC							.0.0005	0.0172	< 0.00005
CWMI-W-3	Water	CWMI-W-3W	15.1	4.43	23.1	0.615	12.3	0.00156	< 0.0005	0.0173	< 0.000
CWMI-W-4	Water (AC)	CWMI-W-4AC						0.00000	-0.0005	0.688	< 0.0004
CWMI-W-4	Water	CWMI-W-4W	47.1	34.3	169	0.264	<0.1	0.00529	<0.0005	0.000	0.031
CWMI-W-5	Water (AC)	CWMI-W-5AC						0.00454	0.0040	0.0351	< 0.00005
CWMI-W-5	Water	CWMI-W-5W	2630	38.1	5.59	0.156	<0.1	0.00454	0.0042	0.0331	0.033
CWMI-W-6	Water (AC)	CWMI-W-6AC							0.00000	0.0202	< 0.00005
CWMI-W-6	Water	CWMI-W-6W	2060	9.24	19.8	0.253	<0.1	0.00604	0.00328	0.0203	0.053
CWMI-W-7	Water (AC)	CWMI-W-7AC						-	0.0010	0.0111	< 0.00005
CWMI-W-7	Water	CWMI-W-7W	7670	86.9	48.6	0.268	0.193	0.0243	0.0319	0.0111	< 0.000
CWMI-W-8	Water (AC)	CWMI-W-8AC		5					0.00000	0.0200	<0.00005
CWMI-W-8	Water	CWMI-W-8W	203	17.3	45	0.124	<0.1	0.00535	0.00082	0.0289	0.01
CWMI-W-9	Water (AC)	CWMI-W-9AC	-					0.0000	0.00065	0.125	<0.00005
CWMI-W-9	Water	CWMI-W-9W	215	20.5	33.2	4.12	21.4	0.00386	0.00065	0.125	0.014
CWMI-W-10	Water (AC)	CWMI-W-10AC						0.00.000	0.0247	0.013	< 0.00005
CWMI-W-10	Water	CWMI-W-10W	25.5	8.21	30.8	0.048	<0.1	0.00492	0.0247	0.015	0.082
CWMI-W-11	Water (AC)	CWMI-W-11AC						0.0000	0.0100	0.00602	< 0.0000
CWMI-W-11	Water	CWMI-W-11W	8050 -	153	13.1	0.0183	<0.1	0.00387	0.0158	0.00692	0.059
CWMI-W-12	Water (AC)	CWMI-W-12AC							0.0010	0.0407	< 0.0000
CWMI-W-12	Water	CWMI-W-12W	6690	88.1	50.1	0.178	<0.1	0.0135	0.0213	0.0497	0.18
CWMI-W-13	Water (AC)	CWMI-W-13AC						-	1 0 00100	0.0112	< 9.0000
CWMI-W-13	Water	CWMI-W-13W	337	2.59	5.53	0.0283	0.13	0.00442	0.00198	0.0113	1-01.0000.

Sample Id	Sample Type	Lab Id	Ce (58)	Pt (78)	Pb (82)	Au (79)	Ru (44)	Rh (45)	Pd (46)	Re (75)	Os (76)
Sample Id	Bampie Type	Units	ppm	ppm	ppm	ppb	ppm	ppm	ppm	ppm	ppm
			F.								
CWMI-W-1	Water (AC)	CWMI-W-1AC		< 0.005		<2	<.002	<.002	<.002	<0.002	< 0.002
CWMI-W-1	Water	CWMI-W-1W	<0.0001	< 0.0001	0.00095	<0.10					
CWMI-W-2	Water (AC)	CWMI-W-2AC		0.009	·	<2	<.002	<.002	<.002	<0.002	<0.002
CWMI-W-2	Water	CWMI-W-2W	< 0.0001	< 0.0001	0.00113	<0.10					
CWMI-W-2 CWMI-W-3	Water (AC)	CWMI-W-3AC		0.005		<2	<.002	<.002	0.004	<0.002	<0.002
CWMI-W-3	Water	CWMI-W-3W	< 0.0001	< 0.0001	0.00069	<0.10					
CWMI-W-4	Water (AC)	CWMI-W-4AC		< 0.004		<4	<0.004	<0.004	0.011	<0.004	<0.004
CWMI-W-4	Water	CWMI-W-4W	< 0.0001	< 0.0001	<0.0001	<0.10					0.001
CWMI-W-4	Water (AC)	CWMI-W-5AC		< 0.001		<1	0.003	0.002	0.025	0.001	<0.001
CWMI-W-5	Water	CWMI-W-5W	< 0.0001	0.0003	0.00024	<0.10					
CWMI-W-6	Water (AC)	CWMI-W-6AC		< 0.001		3	<0.001	<0.001	0.002	<0.001	<0.001
CWMI-W-6	Water	CWMI-W-6W	< 0.0001	< 0.0001	0.00025	<0.10					
CWMI-W-0	Water (AC)	CWMI-W-7AC		< 0.001		<1	<0.001	<0.001	0.005	<0.001	<0.001
CWMI-W-7	Water	CWMI-W-7W	< 0.0001	0.0002	0.00267	0.2					
CWMI-W-7	Water (AC)	CWMI-W-8AC		<0.001		8	0.002	<0.001	0.004	<0.001	<0.001
CWMI-W-8	Water	CWMI-W-8W	< 0.0001	< 0.0001	0.00025	0.2					
CWMI-W-9	Water (AC)	CWMI-W-9AC		< 0.001		<1	<0.001	<0.001	0.003	<0.001	<0.001
CWMI-W-9	Water	CWMI-W-9W	< 0.0001	< 0.0001	0.0124	<0.1					
CWMI-W-10	Water (AC)	CWMI-W-10AC		< 0.001		<1	<0.001	<0.001	<0.001	<0.001	<0.001
CWMI-W-10 CWMI-W-10	Water	CWMI-W-10W	< 0.0001	< 0.0001	0.0006	<0.10		<u> </u>		· · · · · ·	
CWMI-W-10 CWMI-W-11	Water (AC)	CWMI-W-11AC		< 0.001	1	<1	<0.001	<0.001	0.008	<0.001	<0.001
CWMI-W-11 CWMI-W-11	Water	CWMI-W-11W	< 0.0001	0.0001	0.00047	0.1					ļ
CWMI-W-11 CWMI-W-12	Water (AC)	CWMI-W-12AC	1	<0.001	1	<1	< 0.001	0.005	0.004	0.001	0.001
CWMI-W-12 CWMI-W-12	Water	CWMI-W-12HO	< 0.0001	0.0001	0.00088	<0.10					<u> </u>
CWMI-W-12 CWMI-W-13	Water (AC)	CWMI-W-12W		< 0.001		<1	< 0.001	<0.001	0.009	<0.001	< 0.001
CWMI-W-13 CWMI-W-13	Water	CWMI-W-13W	<0.0001	< 0.0001	0.00069	0.1					

Cowper Water Chemistry

Sample Id	Sample Type	Lab Id	Ir (77)
Dumple 14		Units	ppm
CWMI-W-1	Water (AC)	CWMI-W-1AC	<0.002
CWMI-W-1	Water	CWMI-W-1W	· · · · · · · · · · · · · · · · · · ·
CWMI-W-2	Water (AC)	CWMI-W-2AC	<0.002
CWMI-W-2	Water	CWMI-W-2W	
CWMI-W-3	Water (AC)	CWMI-W-3AC	<0.002
CWMI-W-3	Water	CWMI-W-3W	
CWMI-W-4	Water (AC)	CWMI-W-4AC	<0.004
CWMI-W-4	Water	CWMI-W-4W	
CWMI-W-5	Water (AC)	CWMI-W-5AC	<0.001
CWMI-W-5	Water	CWMI-W-5W	
CWMI-W-6	Water (AC)	CWMI-W-6AC	<0.001
CWMI-W-6	Water	CWMI-W-6W	
CWMI-W-7	Water (AC)	CWMI-W-7AC	<0.001
CWMI-W-7	Water	CWMI-W-7W	
CWMI-W-8	Water (AC)	CWMI-W-8AC	<0.001
CWMI-W-8	Water	CWMI-W-8W	
CWMI-W-9	Water (AC)	CWMI-W-9AC	<0.001
CWMI-W-9	Water	CWMI-W-9W	
CWMI-W-10	Water (AC)	CWMI-W-10AC	0.001
CWMI-W-10	Water	CWMI-W-10W	
CWMI-W-11	Water (AC)	CWMI-W-11AC	0.002
CWMI-W-11	Water	CWMI-W-11W	<u> </u>
CWMI-W-12	Water (AC)	CWMI-W-12AC	<0.001
CWMI-W-12	Water	CWMI-W-12W	
CWMI-W-13	Water (AC)	CWMI-W-13AC	<0.001
CWMI-W-13	Water	CWMI-W-13W	L

Stream Sediment

•

Ĩ

Ĩ

Í

Sample Number	Gold in Gross Sample (g/t)	Gold in Gross Sample (ppb)
Cowper#1	0.078	78

Appendix III Assay and Analysis Certificates

.

Ì

Ĩ

640, 910 - 7th Avenue Calgary, Alberta T2P ATTN: Eric Allen	<u>S.W</u> <u>3N8</u>		Date <u>Octa</u> Samples	<u>obec_13, 1994</u>	-
	ertifica NG LABC	ite of DRATOF	Assa ≀IES	Хтр.	
SAMPLE NO.	Page	* * 6	× LOI		
727 43 72744		т. Т.	72.37 56.94 15.27		

74.66

48.34

72.42

9.01

75.43

I Hereby Certify that the above results are those assays made by me upon the herein described samples....

Rejects retained one month. Pulps retained one month unless specific arrangements are made in advance.

72745

72746

72747

72748

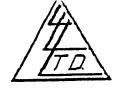
72749

640, 910 - 7th Avenue S.W.

Calgary, Alberta T2P 3N8

Date November 18, 1994

Samples Sand


ATTN: Eric Allen

Certificate of Assay LORING LABORATORIES LTD.

SAMPLE NO.		OZ./TON GOLD	OZ./TON SILVER	OZ./TON PLATINUM
		•		
,	•		•	
"Assay Analysi	s"	ی ایک مرکز ایک		
		•		
COWPER CONC		0.062	<0.01	
	•			
			•	
	Horehy Cer	tifv that the	he above results are th the herein described sa	ose mples

Ĭ,

Calgary, Alberta T2P 3N8

Samples _

ATTN: Eric Allen

Certificate of Assay LORING LABORATORIES LTD.

	Page # 2		
SAMPLE NO.	PPB GOLD	LOI	


73143	<5	73.28
73144	<5	80.79
73145	<5	79.02
73146	<5	53.18
73147	<5	55.61

I Hereby Certify that the above results are those assays made by me upon the herein described samples....

Rejects retained one month. Pulps retained one month unless specific arrangements are made in advance.

640. 910 - 7th Avenue S.W., Calgary, Alberta T2P 3N8

Date December 23, 1994

Samples

ATTN: Eric Allen

Certificate of Assay LORING LABORATORIES LTD.

Page # 3					
PPB GOLD	LOI				
~5	90.04				
<5	90.04				
<5	45.89				
10	47.01				
	РРВ GOLD <5 <5 <5 <5				

I Hereby Certify that the above results are those assays made by me upon the herein described samples....

Assayer

Rejects retained one month. Pulps retained one month unless specific arrangements are made in advance.

DATE: 29-NOV	-94 REPORT: 5070 FILE NUMBER: 5110	PAGE: 7	
_	SAMPLE NUMBERS		
ELEMENT !		**	
& UNITS		73142**	
			
ag p ph [,]		<5	
AS PPM		6	
AU PPB		<5 ·	•
BA PPH		200	
BR PPH		44	
ca z		<1	
CA % CO PPM		7	
CR PPM	· ·	30	
CS PPM		3	
FE %		0.7	
HF PPM		Ĺ	
HO PPH		<5	
NA PPM		1100	
NI PPM		<100	
RB PPH		<30	
SB PPN	•	0.2	
C PPH		1.8	
E PPM		<5	
SR PPH		<500	
ta p ph		<1	
TH PPM		2.0	
U PPH		1.1	
W PPH		<4	
ZN PPH		100	
la ppn		7	
CE PPM		12	
ND PPM		<10	
SH PPH		0.9	
EU PPN		0.4	
TB PPH		<0.5	
YB PPN		0.6	
LU PPH		0.06	
IR FPB		(20	

XRAL ACTIVATION SERVICES INCONFORMED

PAGE: 8 FILE NUMBER: 5110 : 29-HOV-94 5070 **REFORT:**

SAMPLE NUMBERS

E		** 73143**	** 73144**	** 73145#*	** 7314 6**	++ 73147 ++	++ 73148++
			15	<5	(5	43	<5
	M	<5	<5 7	2	5	-6	6
]	PPM	8	2 <5	رج ح	. (5	(5	<5
	208	B	100	100	300	300	300
	2098 2011 2011	200 38	100	110	78	83	94
		1	2	2	1	1	1
	24	7	(5	<5	8	8	7
	PPH	30	10	10	50	50	80
	een een	<3	ت	(3	3	3	G
	-11	0.5	0.8	0.9	1.7	1.8	1.6
	PPH	- 1	<1	<1	2	3	2
	PPH	< 5	(5	<5	(5	(5	<5
	PH	900	900	900	2800	2600	2400
	PPH	<100	<100	<100	<100	<100	<100
	PPH	<30	<30	(30	(30	(30	<30
i	PPM	0.2	<0.2	0.2	0.3	0.5	0.6
		1.5	1.0	1.1	4.8	4.4	3.7
		<5	<5	< 5	(5	<5	<5
	PPH	<500	<500	<500	<500	<500	<500
1	PFM	<1	<1	<1	<1	<1	<1
,	PPM	1.6	1.2	0.9	4.9	4.3	3.6
	PPM	0.6	0.8	1.0	2.3	- 1.7	2.3
- (PPH	<4	<4	<4	<4	<4	<4
4	PPN	120	(50	(50	60	60	70
ł	PPH	5	3	4	18	17	13
ε	PPH	10	6	7	34	32	24
3	PPM	<10	<10	<10	10	10	10
8	PPN	0.8	0.5	0.5	2.6	2.5	2.0
្ស	PPH	<0.2	0.4	<0.2	0.9	0.6	0.5
B	PPN	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
в	PPH	0.4	0.3	0.2	1.1	1.1	1.0
_U	PPH	<0.05	<0.05	<0.05	0.19	0.15	0,13
R	PPB	<20	<20	(20	(20	<20	(20

....

5110

	DATE:	29 -NOV-94	REPORT:	5070	FILE NUMBER:	
-						

PAGE: 9

SANPLE NUMBERS."

ELEMENT !						
	- در دار الا نام		** 73149**	++ 73150++	** 73151**	**
			/514/##	/3130**	/3131##	73152++
	AG	PPM	ব্য	(5	<5	⟨5
	AS	PPH	5	3	9	8
	AU	PPB	(5	(5	3	ব্র
	BA	PPH	100	100	300	400
	BR	PPH	61	ស	83	81
	CA	z	<1	<1	1	<1
	CO	PPH	<5	(5	11	. 11
-	CR	PPH	10	10	60	70
;	CS	PPH	(3	(3	. 3	<3
	FE	2	0.4	0.4	3.9	3.7
	HF	PPH	<1	<1	4.	4
	MO	PPH	<5	(5	7	(5
	NA	PPH	1100	600	2900	2700
12	NI	PPH	<100	<100	<100	<100
	RB	PPM	<30	<30	30	40
	SB	PPH	0.3	0.2	0.2	0.2
ŧ.	SC	PPH	0.4	0.4	5.8	5.5
	BE	PPM	<5	(5	(5	<5
	SR	PPH	<500	<500	<500	<500
_	TA	PPM	(1	<1	<1	<1
	ТН	PPM	0.5	0.5	6.1	6.3
-	U	PPH	<0.5	<0.5	2.1	2.2
	W	PPH	<4	<4	{4	<4
	ZN	PPH	70	70	100	90
	LA	PPH	1	1	23	22
	Œ	PPM	ß	3	47	41
	ND	PPH	<10	<10	20	20
	SH	PPH	<0.5	<0.5	3.5	3.3
	EU	PPH	<0.2	0.2	0.7	0.8
	धा	PPH	<0.5	<0.5	<0.5	<0.5
	YB	PPH	<0.2	<0.2	1.7	1.7
	LU	PPH	<0.05	<0.05	0.24	0.26
	IR	PPB	<20	(20	(20	<20

Raw Data

Sample Id	Lab Id	LOI	Na (11)	Mg (12)	AI (13)	P (15)	Ca (20)	Mn (25)	Fe (26)	Co (27)
	Units	%	ррт	ppm	ррт	ррт	ppm	ррт	ррт	ррт
	70747	40.04	1000	2000	7000	1500	15600	1026	41800	6
CWMI-BS-1	72747	46.34	1600	3000	7300	1560	15600			
CWMLBS-2	72746	74.66	2200	11200	16000	4350	53400	1158	47400	14
CWMI-BS-3	72749	9.01	2300	15900	15500	3560	92000	1369	59000	11
CWMI-BS-4	72745	15.27	300	1000	4000	690	4300	654	13100	3
CWMI-BS-5	72750	75.43	1300	8900	16300	3220	41900	1129	53200	14
CWMI-BS-6	72743	72.37	500	5600	21500	2070	32300	988	27600	21
CWMLBS-7	72748	72.42	1600	7000	25700	2110	38400	1414	33900	16
CWMI-BS-8	72744	56.94	700	3700	12800	980	25700	912	14800	8
CWMI-BS-09A	73142		1100				<10000		7000	7
CWMI-BS-09B	73143		900				10000		6000	7
CWMI-BS-10A	73144		900				20000		8000	<5
CWMI-BS-10B	73145		900				20000		9000	<5
CWMI-BS-11A	73146		2800				10000	3	17000	8
CWMI-BS-11B	73147		2600				10000		18000	8
CWMI-BS-11C	73148		2400				10000		16000	7
CWMI-BS-12A	73149		1100				<10000		4000	<5
CWMI-BS-12B	73150	1	600				<10000		4000	<5
CWMI-BS-13A	73151		2900				10000	1	39000	11
CWMI-BS-13B	73152		2700				<10000		37000	11

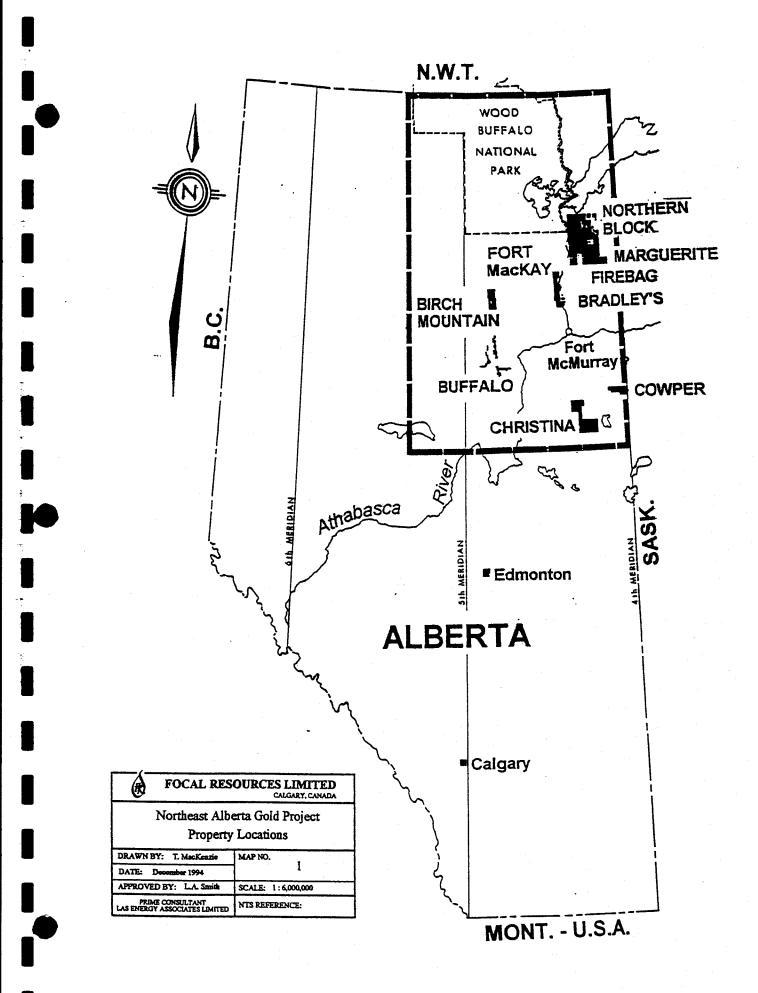
Raw Data

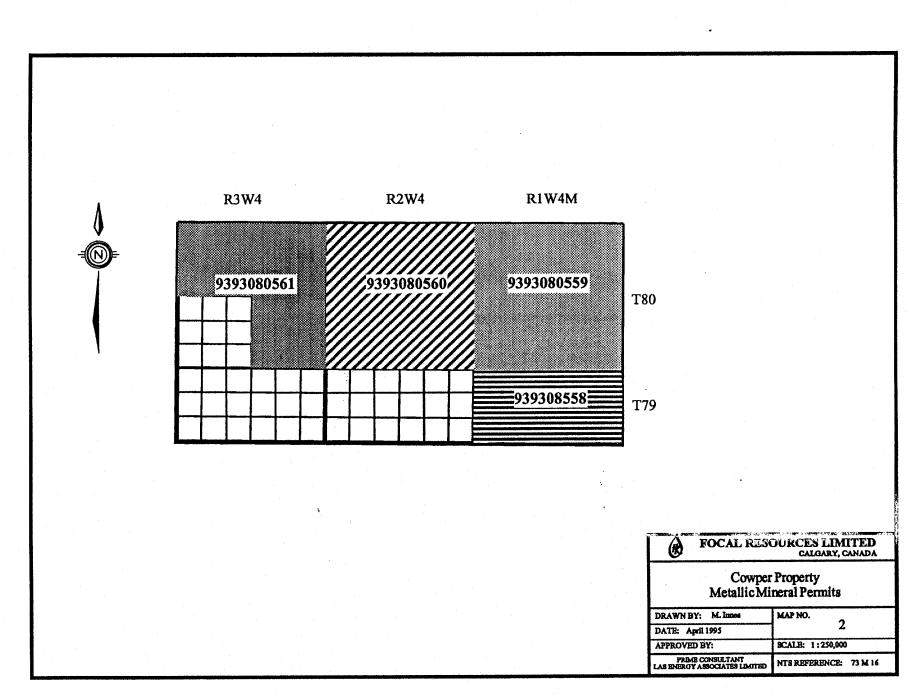
Ni (28)	Cu (29)	Zn (30)	As (33)	Mo (42)	Ag (47)	Cd (48)	Ba (56)	W (74)	Au (79)	Pb (82)	Sr (38)
ррт	ppm	ррт	ppm	ppm	ppm	ppm	ppm	ppm	ppb	ppm	ppm
		4.07	470							0.00	100
30	71	167	173	3	5.8	1.4	336	2		390	136
76	63	406	74	6	1.3	2.1	249	<1		228	235
67	65	331	63	5	3.2	1.7	102	1	81	458	265
10	9	70	7	1	0.1	0.4	96	<1	10	26	22
44	54	248	70	8	1.4	2.3	249	1	76	281	131
50	31	445	327	4	0.9	2.2	358	<u> </u>	128	83	165
55	30	265	27	3	0.5	1.7	302	. 1	20	86	179
22	15	279	225	2	0.8	1.2	289	1	55	33	172
<100		100	6	<5	<5		200	<4	<5		<500
<100		120	5	<5	<5		200	<4	2		<500
<100		<50	2	<5	<5		100	<4	<5		<500
<100		<50	3	<5	<5		100	<4	<5		<500
<100		60	5	<5	·· <5		300	<4	<5		<500
<100		60	6	<5	<5		300	<4	<5		<500
<100		70	6	<5	<5	·	300	<4	<5		<500
<100		70	5	<5	<5		100	<4	<5		<500
<100		70	3	<5	<5		100	<4	<5	· · · · · · · · · · · · · · · · · · ·	<500
<100		100	9	7	<5		300	<4	<5		<500
<100		90	8	< 5	<5		400	<4	<5		<500

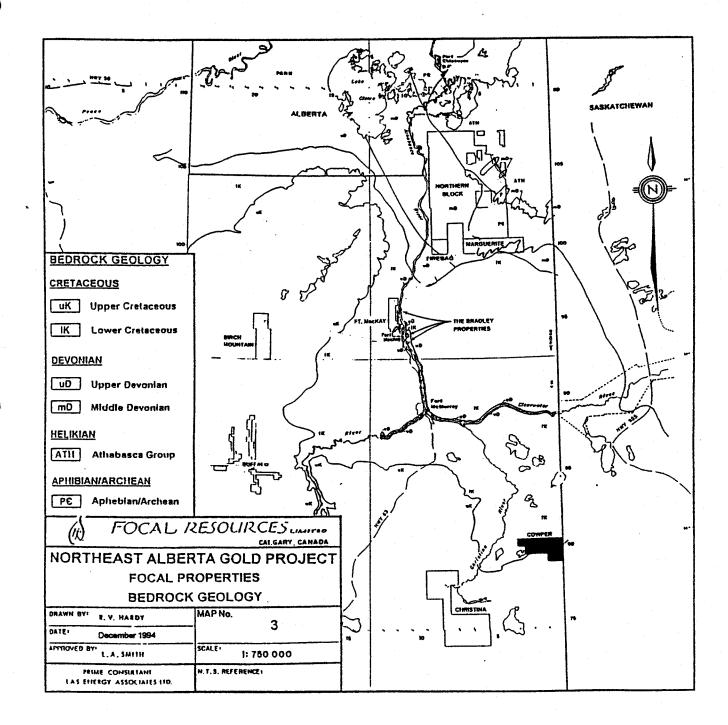
Raw Data

Sb (51)	V (23)	Bi (83)	Cr (24)	K (19)	Ti (22)	B (5)	Br (35)	Cs (55)	Hf (72)	Rb (37)	Se (34)
ppm	ppm	ppm	ррт	ррт	ppm	ррт	ррт	ррт	ррт	ppm	ppm
10	19	<2	18	1800	<100	31					
4	34	<2	124	3500	300	189				·	
7	34	<2	87	3000	300	141					·
<2	11	2	175	900	100	10					
4	42	<2	58	4000	300	80				······································	
5	48	<2	42	3500	300	42					
<2	55	<2	45	4000	300	69					
9	24	<2	25	2300	100	43					
0.2			30				44	<3	1	<30	<5
0.2			30				38	<3	1	<30	<5
<0.2			10				100	<3	<1	<30	<5
0.2			10				110	<3	<1	<30	<5
0.3			60				78	3	3	<30	<5
0.5			50				83	<3	3	<30	<5
0.6			80				94	<3	2	<30	<5
0.3			10				61	<3	<1	<30	<5
0.2			10	2			63	<3	<1	<30	<5
0.2			60	· .			83	<u> </u>	4	30	<5
0.2			70				81	<3	4	40	<5

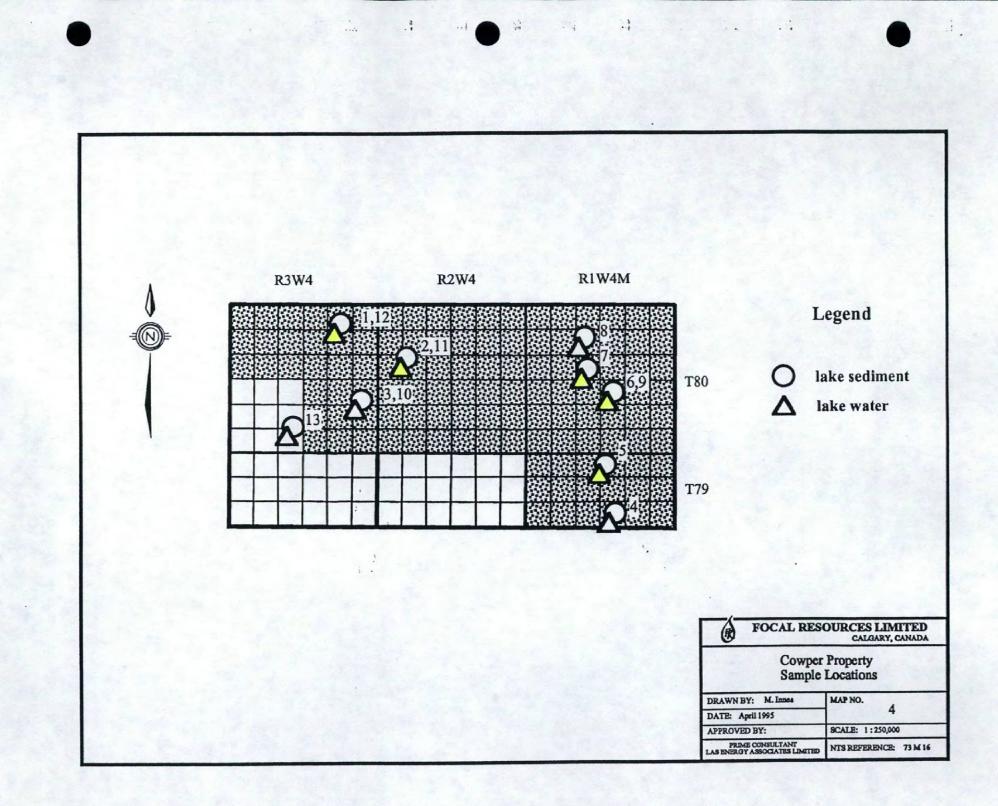
Raw Data

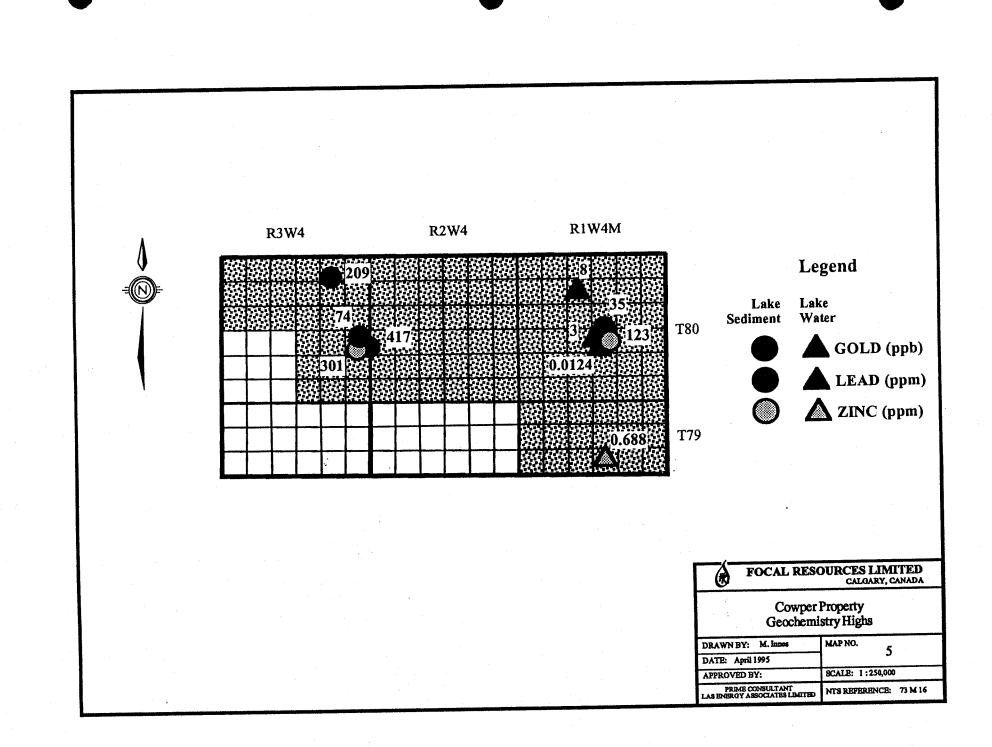

Sr (38)	Ta (73)	lr (77)	La (57)	Th (90)	U (92)	Ce (58)	Nd (60)	Sm (62)	Eu (63)	Тb (65)	Yb (70)
ppm	ppm	ррт	ррт	ppm	ppm	ррт	ppm	ppm	ppm	ppm	ррт
. <u>.</u>		8	4	14							
		15		<5							
		13		<5							
				<5							
- b aar - a a a a a a a a a a a a a a a a a a a		15	5	<5							
		17		<5							
		24	7	<5							
		14	5	<5							
<1	<20	7	2	1.1	12	<10	0.9	0.4	<0.5	0.6	0.0
<1	<20	5	1.6	0.6	10	<10	0.8	<0.2	<0.5	0.4	<0.05
<1	<20	3	1.2	0.8	6	<10	0.5	0.4	<0.5	0.3	<0.05
<1	<20	4	0.9	<u>ः</u> 1	7	<10	0.5	<0.2	<0.5	0.2	<0.05
<1	<20	18	4.9	2.3	. 34	10	2.6	0.9	<0.5	1.1	· · · · · · · · · · · · · · · · · · ·
<1	<20	17	4.3	1.7	32	10	2.5		<0.5	1.1	1
<1	<20	13	3.6	2.3	24	10	2	0.6	<0.5	1	0.1
<1	<20	1	0.5	<0.5	<3	<10	<0.5	<0.2	<0.5	<0.2	<0.05
<1	<20	1		<0.5	<3	<10	<0.5		<0.5	<0.2	<0.05
<1	<20	23	6.1	2.1	47	20	3.5		<0.5	1.7	
<1	<20	22	6.3	2.2	41	20	3.3	0.8	<0.5	1.7	0.2


Appendix IV Maps



.


,



з»j

TROYMIN RESOURCES LTD.

200, 622 - 5 Avenue SW Caigary AB T2P 0M6 Phone (403) 269-5811 🔶 Fax (403) 262-8786

November 7, 1995

Alberta Energy 9945 - 108 Street Edmonton, AB T5K 2G6

Attention: Mr. Brian Hudson Manager, Mineral Agreements

Dear Mr. Hudson:

Re: Assessment Work Report - Cowper Property Metallic and Industrial Minerals Permits 9393080558 to 9393080561

Please be advised that expenditures in the amount of \$11,966.69 have been incurred on these permits as summarized on Table 1. Based upon the required expenditure of \$5 per hectare during the first and second year of the term of the permits, we are therefore surrendering and downsizing the permits to a cumulative size of 2,390 hectares located in Permit 9393080559, as to sections 21, 22, 23 and 27 and in Permit 9393080561, as to sections 12, 13, 14, 23 and 24.

Pursuant to section 15 of the Metallic and Industrial Mineral Regulations, enclosed are two (2) copies of the Assessment Work Report prepared for Troymin by Focal Resources who had the property under an Option Agreement which has now expired.

Yours truly, Jack D. McCleary, President

ENERGY / ENV, PROT

Nov

ഫ

JDM/cma

<u>EGEAL RESOURCES LIMITED</u> <u>PROJECT NAME: 1720- TROYMIN CHRISTINA I</u> <u>FOR THE PERIOD ENDING: MARCH 31,1995</u>

Permits 9393080558 to 9393080561

COWPER PROPERTY

TABLE I

	ACC. 5762 CLR: N. E. ALTA MAPPING	OPENING	CURRENT	CLOSING		
CODE	MINING EXPLORATION ACTIVITIES	BALANCE	PERIOD	BALANCE		
		DALANCE	r uniou	DALANCE		
1	Company labor	\$2,844.23	\$260.94	\$3,105.17		
	Travel and vehicles	\$2,044.23	\$20U.54	\$3,105.17		
the second s	Contract labor				· · · · · · · · · · · · · · · · · · ·	
	Consulting fees	500.00		500.00	- 	
the second s		500.00		500.00		
	Meals and entertainment					
	Safety and security					
	Site access and preparation	`				
	Site clean-up					
	Camp and catering					
	Communications			•		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	Surface land costs					
	Damage claims					
	Permits and licenses					
	Claim staking & recording					
	Line costs					
	Surveying and photogrammetry					
200	Assaying and testing	1,437.50		1,437.50		· · ·
210	Studies-geological and mapping	1,437.50		1,437.50		
211	Studies-geophysical	•		1		
212	Studies-geochemical	1,437.50		1,437.50		
213	Studies-geotechnical					
214	Studies-environ. & social affairs					· · · · · · · · · · · · · · · · · · ·
	Drilling - diamond					
the second s	Drilling - rotary					
	Trenches, pits, underground open					
	Logging services and materials					
	Fresh water and storage					
	Fuel, lubricants and utilities	-				
	Printing and reproduction	1				· · · ·
	Drill bits and accessories					
	Non-controllable material					
	Controllable equipment					
the second s	Transportation-helicopters	2,475.29		0.475.00		
	Transportation-fixed wing aircraft			2,475.29		
	Transportation-vehicles	216.00		216.00		· · · · · · · · · · · · · · · · · · ·
the second s	Move-in/out					
	Equipment rentals					
	Miscellaneous					
the second s						
	Administrative Costs (Inhouse)			1.1.2. 		
330	Overhead	1,322.50	35.23	1,357.73		
	PROJECT TOTAL	\$11,670.52	\$296.17	\$11,966.69		

	WORKING INTEREST DISTRIBUTION:					
	Focal Res. Ltd	100.00000%		\$11,966.69		
. 						
		·				
• •	TOTAL WORKING INTERESTS:	100.000000%		\$11,966.69		