MAR 19710011: SOUTHWESTERN ALBERTA

Received date: Dec 31, 1971

Public release date: Jan 01, 1973

DISCLAIMER

By accessing and using the Alberta Energy website to download or otherwise obtain a scanned mineral assessment report, you ("User") agree to be bound by the following terms and conditions:

- a) Each scanned mineral assessment report that is downloaded or otherwise obtained from Alberta Energy is provided "AS IS", with no warranties or representations of any kind whatsoever from Her Majesty the Queen in Right of Alberta, as represented by the Minister of Energy ("Minister"), expressed or implied, including, but not limited to, no warranties or other representations from the Minister, regarding the content, accuracy, reliability, use or results from the use of or the integrity, completeness, quality or legibility of each such scanned mineral assessment report;
- b) To the fullest extent permitted by applicable laws, the Minister hereby expressly disclaims, and is released from, liability and responsibility for all warranties and conditions, expressed or implied, in relation to each scanned mineral assessment report shown or displayed on the Alberta Energy website including but not limited to warranties as to the satisfactory quality of or the fitness of the scanned mineral assessment report for a particular purpose and warranties as to the non-infringement or other non-violation of the proprietary rights held by any third party in respect of the scanned mineral assessment report:
- c) To the fullest extent permitted by applicable law, the Minister, and the Minister's employees and agents, exclude and disclaim liability to the User for losses and damages of whatsoever nature and howsoever arising including, without limitation, any direct, indirect, special, consequential, punitive or incidental damages, loss of use, loss of data, loss caused by a virus, loss of income or profit, claims of third parties, even if Alberta Energy have been advised of the possibility of such damages or losses, arising out of or in connection with the use of the Alberta Energy website, including the accessing or downloading of the scanned mineral assessment report and the use for any purpose of the scanned mineral assessment report so downloaded or retrieved.
- d) User agrees to indemnify and hold harmless the Minister, and the Minister's employees and agents against and from any and all third party claims, losses, liabilities, demands, actions or proceedings related to the downloading, distribution, transmissions, storage, redistribution, reproduction or exploitation of each scanned mineral assessment report obtained by the User from Alberta Energy.

ECONOMIC MINERALS

FILE REPORT No.

CU-AF-027(2)

ALCOR MINERALS LTD.

GEOCHEMICAL SURVEY

OF

QUARTZ MINERAL EXPLORATION PERMIT 160

SOUTHWESTERN ALBERTA

Geographic Coordinates 49° 24' N 114° 25' W NTS Sheet 82G/8E

by
L. B. HALFERDAHL, Ph.D., P. Geol.

April 19, 1971

L. B. Halferdahl & Associates Ltd. 401 – 10049 Jasper Avenue Edmonton 15, Alberta

TABLE OF CONTENTS

	Page
Introduction	1
Summary and Recommendations	1
Field Procedure	1 .
Laboratory Procedure	2
Results	2
Conclusions	3
Certificate	5
Appendix: Field and Analytical Data on Water Analyses	6
LIST OF ILLUSTRATIONS	
	·
Figure 1: Location Map	At End
Figure 2: Sample Locations and Numbers	At End
Figure 3: Copper Concentrations in Waters	At End
Figure 4: Lead Concentrations in Waters	At End
Figure 5: Zinc Concentrations in Waters	At End

INTRODUCTION

Quartz Mineral Exploration Permit 160 lies in the Foothills of southwestern Alberta adjoining northeast of the Clark Range. It comprises 9920 acres. This report presents the results of a geochemical survey of Permit 160 which was conducted in October 1970.

SUMMARY AND RECOMMENDATIONS

A total of 106 samples of stream, spring, and lake waters in Permit 160 and some adjacent ground were collected and analyzed for copper, lead, and zinc. No significant anomalous concentrations were obtained in the copper and lead samples. Sixteen anomalous or slightly anomalous concentrations were obtained for zinc. They show no easily detectible pattern, and are considered to be due to vagaries in the geochemical mobility of zinc, whose source is in the Precambrian rocks to the south and west.

It is recommended that Permit 160 be terminated.

FIELD PROCEDURE

Samples were collected in wide mouth 10 oz. or 16 oz. polyethylene bottles with bakelite caps, lined with cardboard and waterproof paper. Before use, each bottle and cap was thoroughly rinsed with the water to be sampled; then the sample was collected; the bottle tightly closed, numbered, and notes made. The notes consisted of recording the temperature of the water, estimating or measuring the breadth of water surface and maximum depth of the stream. The pH was measured by means of alkacid test paper and found to be between $5\frac{1}{2}$ and 6 in all samples. At

the field camp most turbid samples were filtered, and then all samples were acidified with concentrated HCl, about 12N at approximately 5 cc of acid per 300 ml of sample.

LABORATORY PROCEDURE

Samples were shipped to a commercial laboratory for analysis. There 200 ml of sample was evaporated to dryness in carefully cleaned glassware, the residue taken up with 25 ml of HCl and analyzed by standard atomic absorption techniques. In samples with appreciable concentrations of copper, lead, or zinc, a portion of the sample as received was checked against the concentrated sample. This precaution ensured that any serious contamination of samples occurring in the laboratory was detected, but not contamination during collection or acidification. The detection limits for samples treated as above for copper, lead, and zinc are 2, 9, and 2 ppb respectively, so that zeros in the data mean concentrations below these limits. In spite of this, concentrations as low as 5 ppb for lead have been reported.

RESULTS

The results of the geochemical survey are shown in Figures 3, 4, and 5, and tabulated in the Appendix. Evaluation of the geochemical survey is based on the concentrations below.

	BACKGROUND	slightly anomalous	ANOMALOUS		
•	· ·	Parts per Billion			
Cannon	Less than 18	18 to 27	More than 27		
Copper Lead	Less than 60	60 to 90	More than 90		
Zinc	Less than 65	65 to 120	More than 120		
•					

One copper concentration is slightly anomalous; all the other copper concentrations are background. All lead concentrations are background. One zinc concentration is anomalous; 15 are slightly anomalous; and the rest are background. No pattern for the anomalous and slightly anomalous zinc concentrations is readily detectible. They are regarded as illustrating the vagaries of the geochemical mobility of zinc from its source which is not believed to be in the Cretaceous rocks where the anomalous and slightly anomalous concentrations were found in the stream, spring, or lake waters. The geochemical mobility of zinc is apparently much higher than copper or lead.

CONCLUSIONS

The geochemical survey has shown three or four areas in or adjacent to Permit 160 with anomalous or slightly anomalous concentrations of zinc. No significant copper or lead anomalies were found. The zinc anomalies show no detectible pattern; they are believed to be due to the

mobility of zinc being greater than that of copper or lead in moving from its sources which are probably in the Precambrian rocks of the Purcell Series to the south and west.

Respectfully submitted,

Edmonton, Alberta April 19, 1971

L. B. HALFERDAHL, Ph.D., P. Geol.

CERTIFICATE

I, Laurence B. Halferdahl, with business and residence addresses in Edmonton, Alberta, do hereby certify that

- 1. I am a consulting geological and mineralogical engineer.
- I am a licensed Professional Geologist in the Province of Alberta and a licensed Professional Engineer in the Province of British Columbia.
- 3. I am a graduate of Queen's University, Kingston, Ontario (B. Sc. in 1952 and M. Sc. in 1954 in Geological Sciences in the Faculty of Applied Science) and of the Johns Hopkins University, Baltimore, Maryland (Ph. D. in 1959 in the Department of Geology).
- 4. From 1957 to 1969 I was on the staff of the Research Council of Alberta as a mineralogist and geologist where I was in charge of the mineralogy laboratory and conducted various field and laboratory investigations.
- 5. Prior to 1957 I obtained experience in mineral exploration and mining geology with a number of mining companies.
- The data in this report were obtained from a field program under my direction during October 1970. I personally supervised the field work from October 7-8, 13-17, and 22-29.

Respectfully submitted,

Edmonton, Alberta April 19, 1971

L. B. Haiferdahl, Ph.D., P. Geol.

APPENDIX: FIELD AND ANALYTICAL DATA ON WATER ANALYSES

Explanation of Column Headings

ELEV. Elevations were obtained from topographic maps with scale

1:50,000 and contour intervals of 100 feet, and by means of pocket altimeters. Figures are in feet above mean sea

level.

TEMP. Temperatures are in degrees Centigrade.

SIZE This refers to the size of the stream as estimated or measured

by the samplers. All figures are in inches, but only two figures are significant. The first figure is the breadth of the

water surface, and the second is the maximum depth.

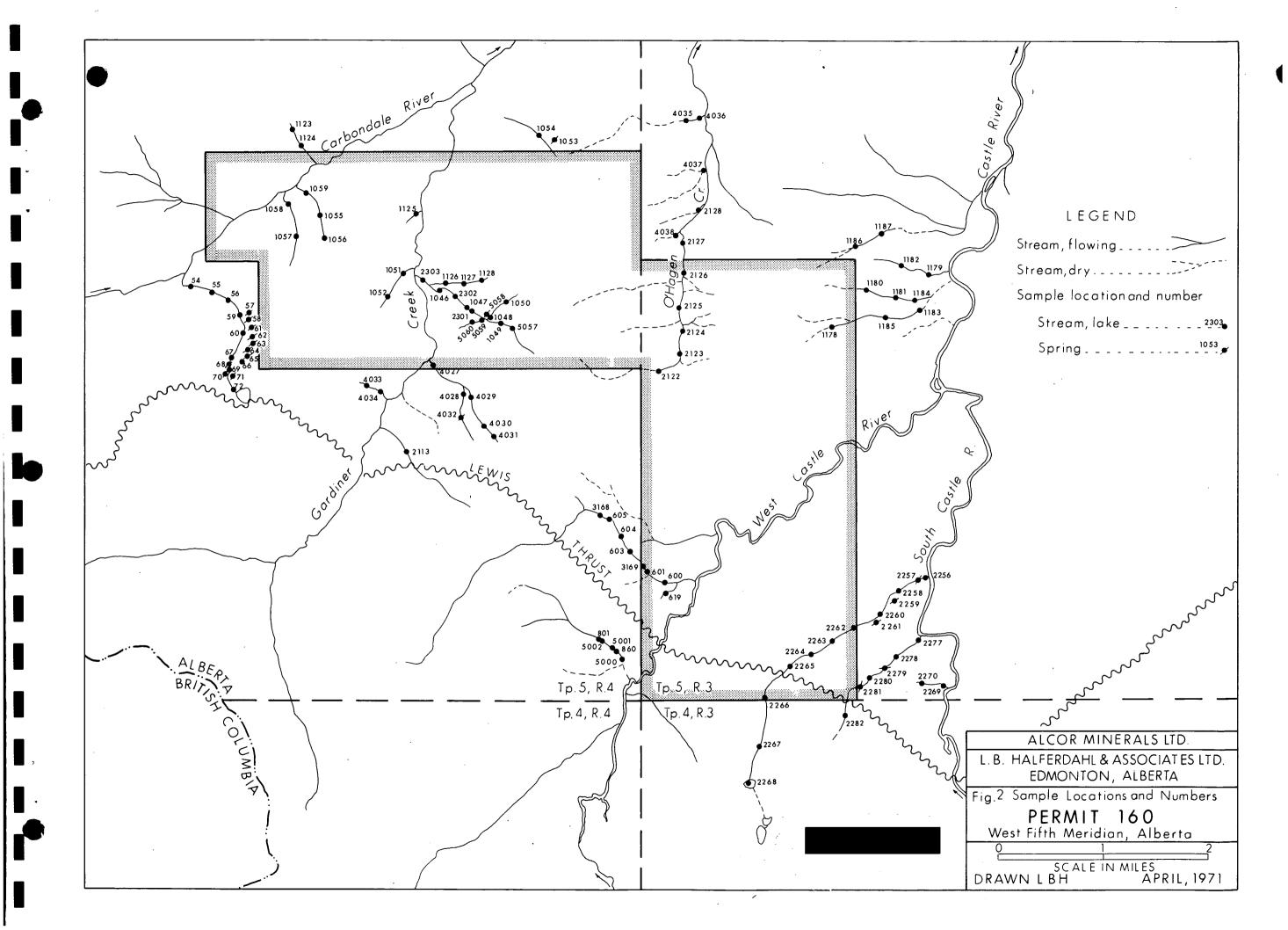
CU, PB, ZN These refer to the concentrations in parts per billion of

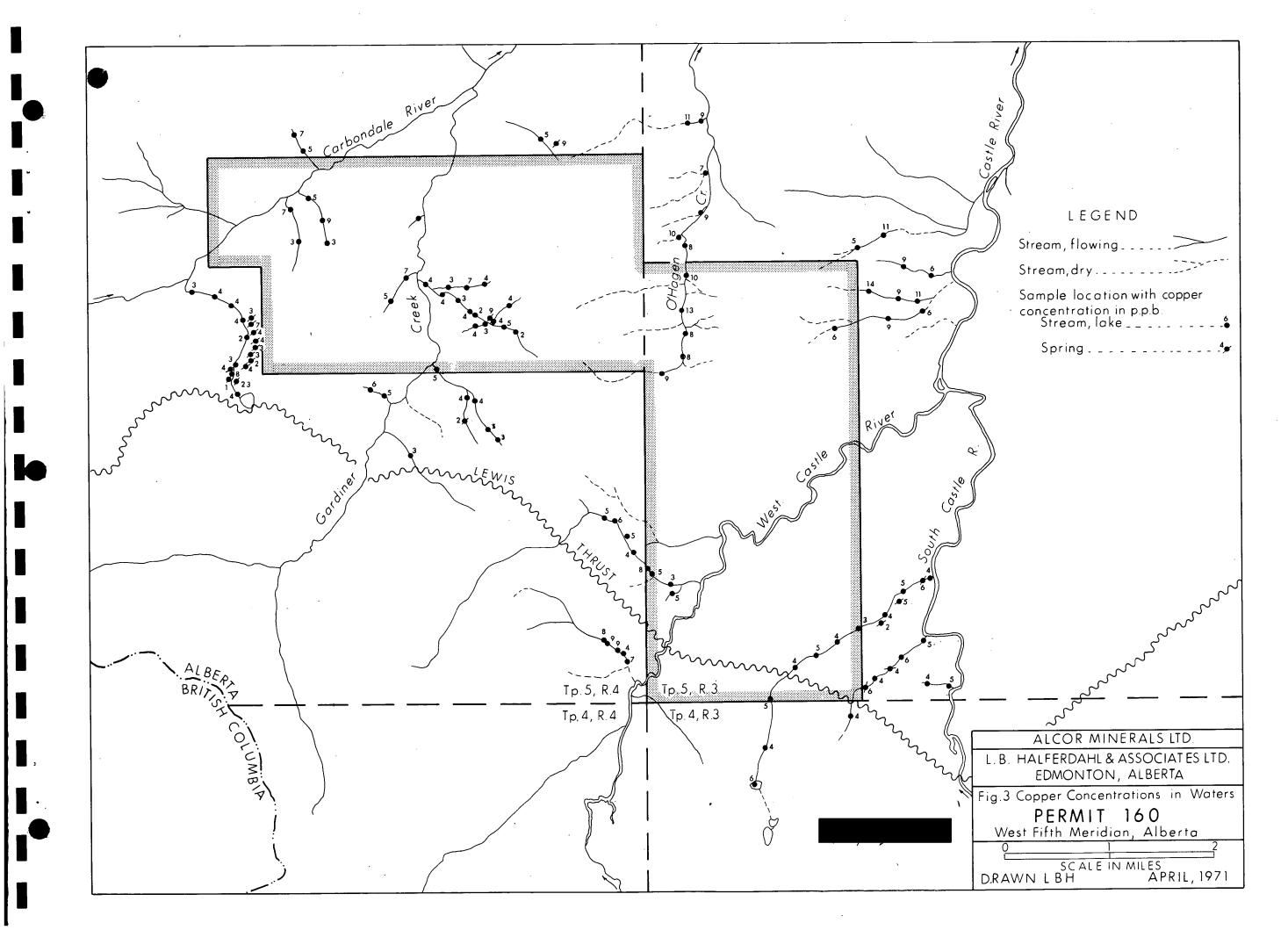
copper, lead, and zinc in the waters sampled.

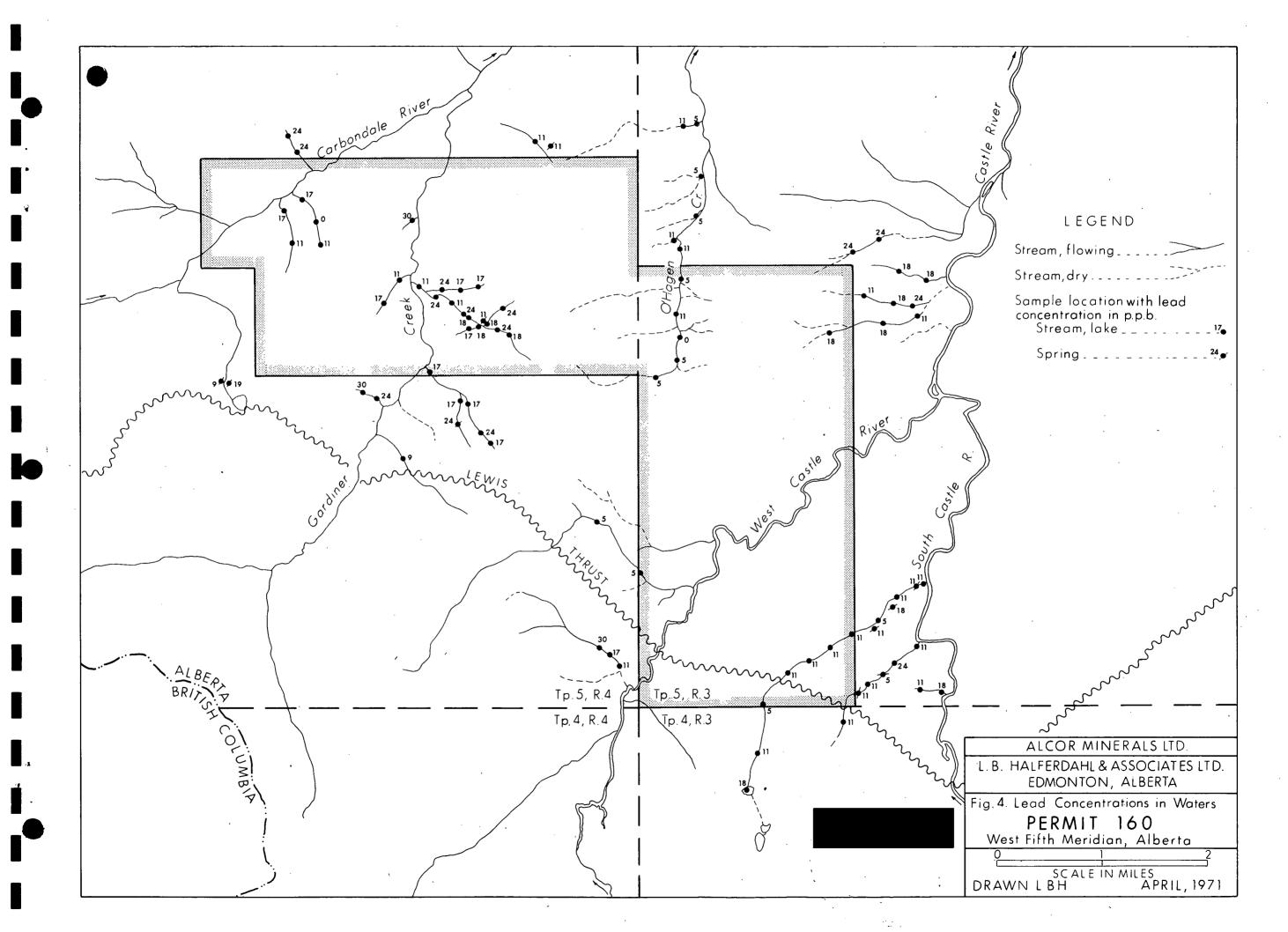
TYPE This refers to the type of water sampled and is coded as

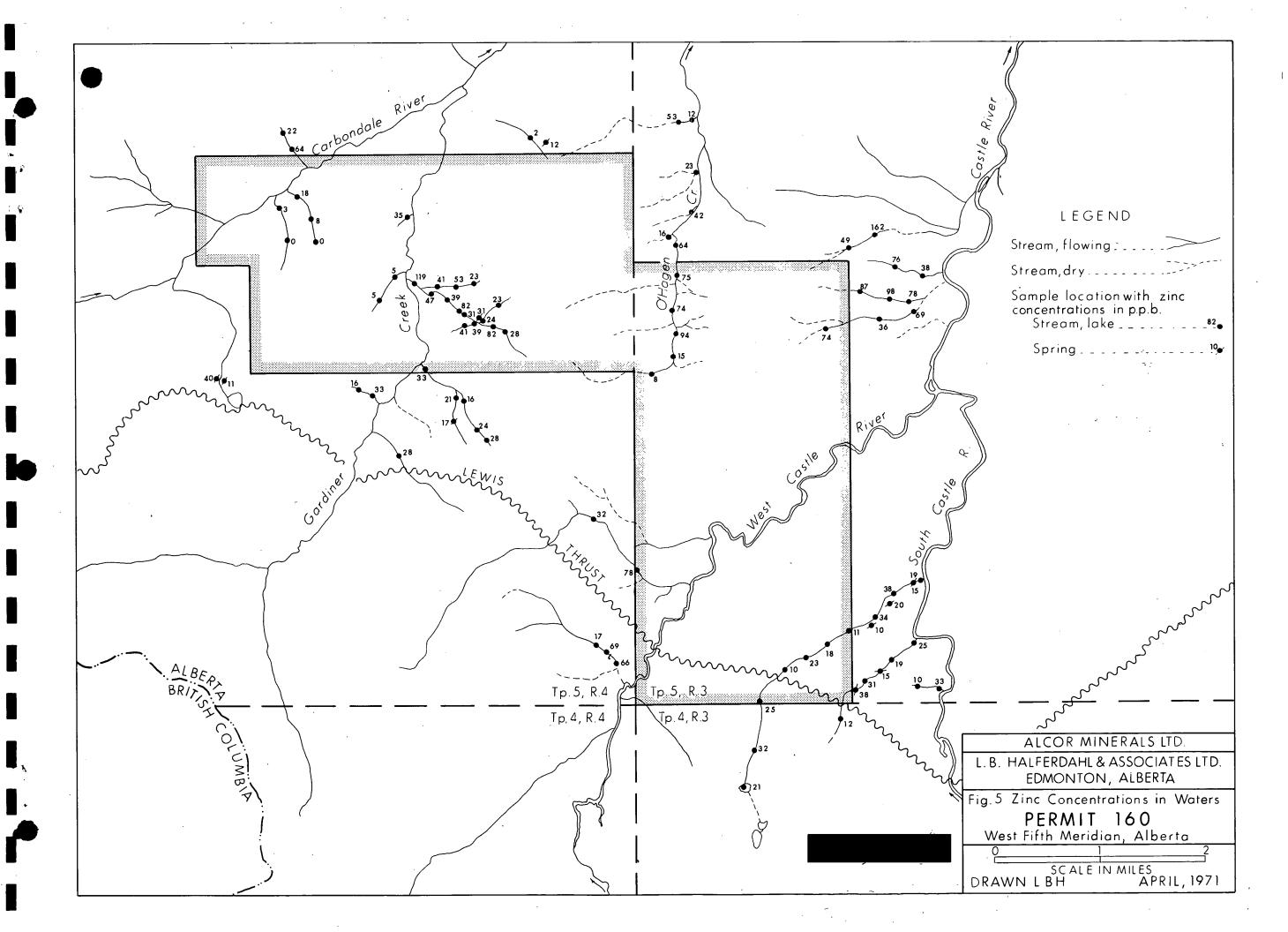
follows: 1 - stream, 2 - spring or well, 3 - lake.

An N in the table means that the data so designated were not obtained.


SAMPLE	ELEV.	TEMP.	SIZE	<u>cu</u>	<u>PB</u>	ZN	TYPE
# 54	4960	6.0	60×24.0	3	Ν	Ν	1
55	5075	6.0	36x 6.0	4	Ν	Ν	1
56	51 <i>7</i> 5	5.5	48×24.0	4	Ν	N	1
57	5400	9.0	N	3	N	Ν	2
58	5400	9.0	N	7	Ν	Ν	2
59	5300	5.5	60×24.0	4	Ν	Ν	1
60	5500	5.5	60× 6.0	2	N	Ν	1
61	5500	6.0	Ν	4	/ N ;	Ν	2
62	5625	7.0	Ν	4	Ν	Ν	2
63	5700	6.0	N	3	N	Ν	. 2
64	5750	7.0	N	3	Ν	Ν	2
65	5800	8.0	Ν	2	Ν	N	2
66	5825	8.0	Ν	4	Ν	Ν	2
67	5825	6.0	60x 6.0	3	Ν	Ν	1,
68	5900	9.0	N	4	Ν	Ν	2
69	5925	10.0	Ν	8	Ν	Ν	2
· 70	5925	12.0	N	1	9	40	2
71	5900	12.0	N	23	19	11	2
72	6000	7.0	48×24.0	4	Ν	Ν	1
601	4650	Ν	48× 2.0	5	Ν	Ν	1,
603	4800	N	48× 7.0	4	Ν	Ν	1
604	4900	N	96× 6.0	5	Ν	N	1
605	5100	Ν	96× 6.0	6	Ν	Ņ	1
619	4575	N	96×10.0	5	Ν	Ν	1
800	4650	Ν	12x 1.0	4	N	N	; 1
801	4900	N	12x 3.0	8	N	Ν	1
1046	4800	6.0	10× 3.0	4	24	47	1
1047	4900	6.0	8× 2.0	4 .	24	82	1 .
1048	5000	5.0	5x 1.0	4	18	24	1
1049	5050	5.5	8x 5	5	24	82	1
1050	5200	5.0	4× 1.0	4	24	23	1


S	AMPLE	ELEV.	TEMP.	SIZE	CU	PB	ZN	TYPE
#	1051	4900	3.0	3× 5	7	11	5	1
	1052	5125	3.0	2x 5	5	1 <i>7</i>	5	1
	1053	5050	6.0	N	9	11 -	12	2
	1054	5000	7.0	N	5	11	2	1
	1055	5000	5.0	7x 1.5	9	Ν	8	1
	1056	5280	4.0	3x 1.0	3	11	Ν	1
	1057	5100	4.0	2x 1.0	3	11	Ν	1
	1058	4800	6.0	6x 1.0	7	1 <i>7</i>	3	1
	1059	4800	6.0	10x 2.0	5	1 <i>7</i>	18	1
	1123	4990	1.5	3x 1.0	7	24	22	1
	1124	4880	2.0	6x 5	5	24	64	1 .
	1125	4720	2.0	2x 1.0	7	30	35	1 .
	1126	4800	1.5	5x 1.0	3	24	41	1
	1127	4950	1.0	3x 1.0	7	1 <i>7</i>	53	1
	1128	5100	1.0	5× 5	4	17	23	1
	1178	4900	1.5	3x 5	6	18	74	1
	1179	4450	1.0	1x 5	6	18	38	1
	1180	4690	1.5	3x 5	14	11	87	1
	1181	4550	1.5	8x 1.0	9	18	98	. 1
	1182	4600	1.0	N	9	18	76	.1
	1183	4450	1.0	1x 5	6	11	69	. 1
	1184	4480	1.0	2x 5	11	24	78	1 .
•	1185	4590	1.5	3x 5	9	18	36	1
	1186	4880	1.0	1x 5	5	24	49	1
	1187	4760	1.5	2x 1.0	11	24	162	1
	2113	5090	Ν	24x 2.0	3	9	28	1
	2122	5050	6.0	12x 3.0	9	5	. 8	1
	21 23	5000	7.0	24x 3.0	. 8	5	15	1
	2124	4990	7.0	12x 5	8	N	94	· 1
	21 25	4975	6.0	18x 2.0	13	5	74	1.
	21 26	4900	5.0	18× 1.0	10	5	75	1


SA	MPLE	ELEV.	TEMP.	SIZE	<u>CU</u>	<u>PB</u>	ZN	TYPE
#	21 27	4880	6.0	24x 2.0	8	11	64	1
	2128	4790	6.0	12x 1.0	9	5	42	1
	2256	4500	1.5	18x 1.0	4	11	19	1
	2257	4600	3.0	2x 5	6	11	15	2
	2258	4600	2.0	48× 3.0	5	11	38	1 .
	2259	4625	3.5	4× 5	5	18	20	2
	2260	4700	2.0	48× 6.0	4	5	34	. 1
	2261	4710	1.5	2x 5	2	11	10	2
	2262	4800	1.0	36x 2.0	3	11	11	1
	2263	4900	1.0	30x 2.0	4	11	18	. 1
	2264	5025	2.0	36x 2.5	5	11	23	1:
	2265	5180	5	24x 1.0	4	11	10	1 .
	2266	5700	1.0	48x 4.0	5	. 5	25	1
	2267	6020	5	36x 2.0	4	11	32	1
•	2268	6280	5	N	6	18	21	3
	2269	4590	2.0	12x 1.0	5	18	33	1
·	2270	4725	2.0	12x 1.0	4	11	10	1
•	2277	4590	2.0	36x 2.0	5	11	25	1
	2278	4700	2.0	36x 2.0	6	24	19	1
*****	2279	4790	3.0	12x 1.0	4	5	15	2
	2280	4890	2.0	24x 1.0	4	11	31	1
	2281	4885	3.0	12x 1.0	6	11	38	2
	2282	5375	2.0	12 _x 5	4	11	12	1
	2301	4900	5	48× 3.0	2	18	31	1
	2302	4880	5	36x 1.5	3	. 11	39	1
	2303	4700	4.0	36x 3.0	4	11	119	1
•	4027	5200	2.0	24x 2.0	5	17	33	1
, 15	4028	5400	2.0	12 _x 5	4 :	17	21	1 .
	4029	5500	2.0	24x 2.0	4	17	16	1
	4030	5300	2.0	12x 2.0	3	24	24	1
	4031	5200	2.0	12× 1.0	3	17	28	1



					·	10.	
AMPLE	ELEV.	TEMP.	SIZE	CU	<u>PB</u>	ZN	TYPE
# 4032	5100	2.0	6x 5	2	24	17	2
4033	5000	4.0	12x 5	6	30	16	1
4034	5100	4.0	24× 1.0	5	24	33	. 1
4035	4700	5.0	12× 5	11	11	53	1 .
4036	4650	9.0	Ν	9	5	12	3
4037	4750	5.0	12x 5	7	5	23	1
4038	4890	5.0	12x 5	10	11	16	1
5000	4600	1.5	6x 1.0	7	11	66	1
5001	4700	2.0	12x 1.0	9	17	69	1
5002	4900	3.0	18x 1.0	9	30	17	1 .
5057	5080	N	12x 1.0	2	18	28	1
5058	5000	1.0	3× 4.0	9	11	31	2
5059	4990	N	1x 1.0	3	18	39	. 1
5060	4960	N	12x 2.0	4	17	41	1

